Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* Xilinx CAN device driver
3 *
4 * Copyright (C) 2012 - 2022 Xilinx, Inc.
5 * Copyright (C) 2009 PetaLogix. All rights reserved.
6 * Copyright (C) 2017 - 2018 Sandvik Mining and Construction Oy
7 *
8 * Description:
9 * This driver is developed for Axi CAN IP and for Zynq CANPS Controller.
10 */
11
12#include <linux/bitfield.h>
13#include <linux/clk.h>
14#include <linux/errno.h>
15#include <linux/ethtool.h>
16#include <linux/init.h>
17#include <linux/interrupt.h>
18#include <linux/io.h>
19#include <linux/kernel.h>
20#include <linux/module.h>
21#include <linux/netdevice.h>
22#include <linux/of.h>
23#include <linux/platform_device.h>
24#include <linux/property.h>
25#include <linux/skbuff.h>
26#include <linux/spinlock.h>
27#include <linux/string.h>
28#include <linux/types.h>
29#include <linux/can/dev.h>
30#include <linux/can/error.h>
31#include <linux/phy/phy.h>
32#include <linux/pm_runtime.h>
33#include <linux/reset.h>
34
35#define DRIVER_NAME "xilinx_can"
36
37/* CAN registers set */
38enum xcan_reg {
39 XCAN_SRR_OFFSET = 0x00, /* Software reset */
40 XCAN_MSR_OFFSET = 0x04, /* Mode select */
41 XCAN_BRPR_OFFSET = 0x08, /* Baud rate prescaler */
42 XCAN_BTR_OFFSET = 0x0C, /* Bit timing */
43 XCAN_ECR_OFFSET = 0x10, /* Error counter */
44 XCAN_ESR_OFFSET = 0x14, /* Error status */
45 XCAN_SR_OFFSET = 0x18, /* Status */
46 XCAN_ISR_OFFSET = 0x1C, /* Interrupt status */
47 XCAN_IER_OFFSET = 0x20, /* Interrupt enable */
48 XCAN_ICR_OFFSET = 0x24, /* Interrupt clear */
49
50 /* not on CAN FD cores */
51 XCAN_TXFIFO_OFFSET = 0x30, /* TX FIFO base */
52 XCAN_RXFIFO_OFFSET = 0x50, /* RX FIFO base */
53 XCAN_AFR_OFFSET = 0x60, /* Acceptance Filter */
54
55 /* only on CAN FD cores */
56 XCAN_F_BRPR_OFFSET = 0x088, /* Data Phase Baud Rate
57 * Prescaler
58 */
59 XCAN_F_BTR_OFFSET = 0x08C, /* Data Phase Bit Timing */
60 XCAN_TRR_OFFSET = 0x0090, /* TX Buffer Ready Request */
61 XCAN_AFR_EXT_OFFSET = 0x00E0, /* Acceptance Filter */
62 XCAN_FSR_OFFSET = 0x00E8, /* RX FIFO Status */
63 XCAN_TXMSG_BASE_OFFSET = 0x0100, /* TX Message Space */
64 XCAN_RXMSG_BASE_OFFSET = 0x1100, /* RX Message Space */
65 XCAN_RXMSG_2_BASE_OFFSET = 0x2100, /* RX Message Space */
66 XCAN_AFR_2_MASK_OFFSET = 0x0A00, /* Acceptance Filter MASK */
67 XCAN_AFR_2_ID_OFFSET = 0x0A04, /* Acceptance Filter ID */
68};
69
70#define XCAN_FRAME_ID_OFFSET(frame_base) ((frame_base) + 0x00)
71#define XCAN_FRAME_DLC_OFFSET(frame_base) ((frame_base) + 0x04)
72#define XCAN_FRAME_DW1_OFFSET(frame_base) ((frame_base) + 0x08)
73#define XCAN_FRAME_DW2_OFFSET(frame_base) ((frame_base) + 0x0C)
74#define XCANFD_FRAME_DW_OFFSET(frame_base) ((frame_base) + 0x08)
75
76#define XCAN_CANFD_FRAME_SIZE 0x48
77#define XCAN_TXMSG_FRAME_OFFSET(n) (XCAN_TXMSG_BASE_OFFSET + \
78 XCAN_CANFD_FRAME_SIZE * (n))
79#define XCAN_RXMSG_FRAME_OFFSET(n) (XCAN_RXMSG_BASE_OFFSET + \
80 XCAN_CANFD_FRAME_SIZE * (n))
81#define XCAN_RXMSG_2_FRAME_OFFSET(n) (XCAN_RXMSG_2_BASE_OFFSET + \
82 XCAN_CANFD_FRAME_SIZE * (n))
83
84/* the single TX mailbox used by this driver on CAN FD HW */
85#define XCAN_TX_MAILBOX_IDX 0
86
87/* CAN register bit masks - XCAN_<REG>_<BIT>_MASK */
88#define XCAN_SRR_CEN_MASK 0x00000002 /* CAN enable */
89#define XCAN_SRR_RESET_MASK 0x00000001 /* Soft Reset the CAN core */
90#define XCAN_MSR_LBACK_MASK 0x00000002 /* Loop back mode select */
91#define XCAN_MSR_SLEEP_MASK 0x00000001 /* Sleep mode select */
92#define XCAN_BRPR_BRP_MASK 0x000000FF /* Baud rate prescaler */
93#define XCAN_BRPR_TDCO_MASK GENMASK(12, 8) /* TDCO */
94#define XCAN_2_BRPR_TDCO_MASK GENMASK(13, 8) /* TDCO for CANFD 2.0 */
95#define XCAN_BTR_SJW_MASK 0x00000180 /* Synchronous jump width */
96#define XCAN_BTR_TS2_MASK 0x00000070 /* Time segment 2 */
97#define XCAN_BTR_TS1_MASK 0x0000000F /* Time segment 1 */
98#define XCAN_BTR_SJW_MASK_CANFD 0x000F0000 /* Synchronous jump width */
99#define XCAN_BTR_TS2_MASK_CANFD 0x00000F00 /* Time segment 2 */
100#define XCAN_BTR_TS1_MASK_CANFD 0x0000003F /* Time segment 1 */
101#define XCAN_ECR_REC_MASK 0x0000FF00 /* Receive error counter */
102#define XCAN_ECR_TEC_MASK 0x000000FF /* Transmit error counter */
103#define XCAN_ESR_ACKER_MASK 0x00000010 /* ACK error */
104#define XCAN_ESR_BERR_MASK 0x00000008 /* Bit error */
105#define XCAN_ESR_STER_MASK 0x00000004 /* Stuff error */
106#define XCAN_ESR_FMER_MASK 0x00000002 /* Form error */
107#define XCAN_ESR_CRCER_MASK 0x00000001 /* CRC error */
108#define XCAN_SR_TDCV_MASK GENMASK(22, 16) /* TDCV Value */
109#define XCAN_SR_TXFLL_MASK 0x00000400 /* TX FIFO is full */
110#define XCAN_SR_ESTAT_MASK 0x00000180 /* Error status */
111#define XCAN_SR_ERRWRN_MASK 0x00000040 /* Error warning */
112#define XCAN_SR_NORMAL_MASK 0x00000008 /* Normal mode */
113#define XCAN_SR_LBACK_MASK 0x00000002 /* Loop back mode */
114#define XCAN_SR_CONFIG_MASK 0x00000001 /* Configuration mode */
115#define XCAN_IXR_RXMNF_MASK 0x00020000 /* RX match not finished */
116#define XCAN_IXR_TXFEMP_MASK 0x00004000 /* TX FIFO Empty */
117#define XCAN_IXR_WKUP_MASK 0x00000800 /* Wake up interrupt */
118#define XCAN_IXR_SLP_MASK 0x00000400 /* Sleep interrupt */
119#define XCAN_IXR_BSOFF_MASK 0x00000200 /* Bus off interrupt */
120#define XCAN_IXR_ERROR_MASK 0x00000100 /* Error interrupt */
121#define XCAN_IXR_RXNEMP_MASK 0x00000080 /* RX FIFO NotEmpty intr */
122#define XCAN_IXR_RXOFLW_MASK 0x00000040 /* RX FIFO Overflow intr */
123#define XCAN_IXR_RXOK_MASK 0x00000010 /* Message received intr */
124#define XCAN_IXR_TXFLL_MASK 0x00000004 /* Tx FIFO Full intr */
125#define XCAN_IXR_TXOK_MASK 0x00000002 /* TX successful intr */
126#define XCAN_IXR_ARBLST_MASK 0x00000001 /* Arbitration lost intr */
127#define XCAN_IDR_ID1_MASK 0xFFE00000 /* Standard msg identifier */
128#define XCAN_IDR_SRR_MASK 0x00100000 /* Substitute remote TXreq */
129#define XCAN_IDR_IDE_MASK 0x00080000 /* Identifier extension */
130#define XCAN_IDR_ID2_MASK 0x0007FFFE /* Extended message ident */
131#define XCAN_IDR_RTR_MASK 0x00000001 /* Remote TX request */
132#define XCAN_DLCR_DLC_MASK 0xF0000000 /* Data length code */
133#define XCAN_FSR_FL_MASK 0x00003F00 /* RX Fill Level */
134#define XCAN_2_FSR_FL_MASK 0x00007F00 /* RX Fill Level */
135#define XCAN_FSR_IRI_MASK 0x00000080 /* RX Increment Read Index */
136#define XCAN_FSR_RI_MASK 0x0000001F /* RX Read Index */
137#define XCAN_2_FSR_RI_MASK 0x0000003F /* RX Read Index */
138#define XCAN_DLCR_EDL_MASK 0x08000000 /* EDL Mask in DLC */
139#define XCAN_DLCR_BRS_MASK 0x04000000 /* BRS Mask in DLC */
140
141/* CAN register bit shift - XCAN_<REG>_<BIT>_SHIFT */
142#define XCAN_BRPR_TDC_ENABLE BIT(16) /* Transmitter Delay Compensation (TDC) Enable */
143#define XCAN_BTR_SJW_SHIFT 7 /* Synchronous jump width */
144#define XCAN_BTR_TS2_SHIFT 4 /* Time segment 2 */
145#define XCAN_BTR_SJW_SHIFT_CANFD 16 /* Synchronous jump width */
146#define XCAN_BTR_TS2_SHIFT_CANFD 8 /* Time segment 2 */
147#define XCAN_IDR_ID1_SHIFT 21 /* Standard Messg Identifier */
148#define XCAN_IDR_ID2_SHIFT 1 /* Extended Message Identifier */
149#define XCAN_DLCR_DLC_SHIFT 28 /* Data length code */
150#define XCAN_ESR_REC_SHIFT 8 /* Rx Error Count */
151
152/* CAN frame length constants */
153#define XCAN_FRAME_MAX_DATA_LEN 8
154#define XCANFD_DW_BYTES 4
155#define XCAN_TIMEOUT (1 * HZ)
156
157/* TX-FIFO-empty interrupt available */
158#define XCAN_FLAG_TXFEMP 0x0001
159/* RX Match Not Finished interrupt available */
160#define XCAN_FLAG_RXMNF 0x0002
161/* Extended acceptance filters with control at 0xE0 */
162#define XCAN_FLAG_EXT_FILTERS 0x0004
163/* TX mailboxes instead of TX FIFO */
164#define XCAN_FLAG_TX_MAILBOXES 0x0008
165/* RX FIFO with each buffer in separate registers at 0x1100
166 * instead of the regular FIFO at 0x50
167 */
168#define XCAN_FLAG_RX_FIFO_MULTI 0x0010
169#define XCAN_FLAG_CANFD_2 0x0020
170
171enum xcan_ip_type {
172 XAXI_CAN = 0,
173 XZYNQ_CANPS,
174 XAXI_CANFD,
175 XAXI_CANFD_2_0,
176};
177
178struct xcan_devtype_data {
179 enum xcan_ip_type cantype;
180 unsigned int flags;
181 const struct can_bittiming_const *bittiming_const;
182 const char *bus_clk_name;
183 unsigned int btr_ts2_shift;
184 unsigned int btr_sjw_shift;
185};
186
187/**
188 * struct xcan_priv - This definition define CAN driver instance
189 * @can: CAN private data structure.
190 * @tx_lock: Lock for synchronizing TX interrupt handling
191 * @tx_head: Tx CAN packets ready to send on the queue
192 * @tx_tail: Tx CAN packets successfully sended on the queue
193 * @tx_max: Maximum number packets the driver can send
194 * @napi: NAPI structure
195 * @read_reg: For reading data from CAN registers
196 * @write_reg: For writing data to CAN registers
197 * @dev: Network device data structure
198 * @reg_base: Ioremapped address to registers
199 * @irq_flags: For request_irq()
200 * @bus_clk: Pointer to struct clk
201 * @can_clk: Pointer to struct clk
202 * @devtype: Device type specific constants
203 * @transceiver: Optional pointer to associated CAN transceiver
204 * @rstc: Pointer to reset control
205 */
206struct xcan_priv {
207 struct can_priv can;
208 spinlock_t tx_lock; /* Lock for synchronizing TX interrupt handling */
209 unsigned int tx_head;
210 unsigned int tx_tail;
211 unsigned int tx_max;
212 struct napi_struct napi;
213 u32 (*read_reg)(const struct xcan_priv *priv, enum xcan_reg reg);
214 void (*write_reg)(const struct xcan_priv *priv, enum xcan_reg reg,
215 u32 val);
216 struct device *dev;
217 void __iomem *reg_base;
218 unsigned long irq_flags;
219 struct clk *bus_clk;
220 struct clk *can_clk;
221 struct xcan_devtype_data devtype;
222 struct phy *transceiver;
223 struct reset_control *rstc;
224};
225
226/* CAN Bittiming constants as per Xilinx CAN specs */
227static const struct can_bittiming_const xcan_bittiming_const = {
228 .name = DRIVER_NAME,
229 .tseg1_min = 1,
230 .tseg1_max = 16,
231 .tseg2_min = 1,
232 .tseg2_max = 8,
233 .sjw_max = 4,
234 .brp_min = 1,
235 .brp_max = 256,
236 .brp_inc = 1,
237};
238
239/* AXI CANFD Arbitration Bittiming constants as per AXI CANFD 1.0 spec */
240static const struct can_bittiming_const xcan_bittiming_const_canfd = {
241 .name = DRIVER_NAME,
242 .tseg1_min = 1,
243 .tseg1_max = 64,
244 .tseg2_min = 1,
245 .tseg2_max = 16,
246 .sjw_max = 16,
247 .brp_min = 1,
248 .brp_max = 256,
249 .brp_inc = 1,
250};
251
252/* AXI CANFD Data Bittiming constants as per AXI CANFD 1.0 specs */
253static const struct can_bittiming_const xcan_data_bittiming_const_canfd = {
254 .name = DRIVER_NAME,
255 .tseg1_min = 1,
256 .tseg1_max = 16,
257 .tseg2_min = 1,
258 .tseg2_max = 8,
259 .sjw_max = 8,
260 .brp_min = 1,
261 .brp_max = 256,
262 .brp_inc = 1,
263};
264
265/* AXI CANFD 2.0 Arbitration Bittiming constants as per AXI CANFD 2.0 spec */
266static const struct can_bittiming_const xcan_bittiming_const_canfd2 = {
267 .name = DRIVER_NAME,
268 .tseg1_min = 1,
269 .tseg1_max = 256,
270 .tseg2_min = 1,
271 .tseg2_max = 128,
272 .sjw_max = 128,
273 .brp_min = 1,
274 .brp_max = 256,
275 .brp_inc = 1,
276};
277
278/* AXI CANFD 2.0 Data Bittiming constants as per AXI CANFD 2.0 spec */
279static const struct can_bittiming_const xcan_data_bittiming_const_canfd2 = {
280 .name = DRIVER_NAME,
281 .tseg1_min = 1,
282 .tseg1_max = 32,
283 .tseg2_min = 1,
284 .tseg2_max = 16,
285 .sjw_max = 16,
286 .brp_min = 1,
287 .brp_max = 256,
288 .brp_inc = 1,
289};
290
291/* Transmission Delay Compensation constants for CANFD 1.0 */
292static const struct can_tdc_const xcan_tdc_const_canfd = {
293 .tdcv_min = 0,
294 .tdcv_max = 0, /* Manual mode not supported. */
295 .tdco_min = 0,
296 .tdco_max = 32,
297 .tdcf_min = 0, /* Filter window not supported */
298 .tdcf_max = 0,
299};
300
301/* Transmission Delay Compensation constants for CANFD 2.0 */
302static const struct can_tdc_const xcan_tdc_const_canfd2 = {
303 .tdcv_min = 0,
304 .tdcv_max = 0, /* Manual mode not supported. */
305 .tdco_min = 0,
306 .tdco_max = 64,
307 .tdcf_min = 0, /* Filter window not supported */
308 .tdcf_max = 0,
309};
310
311/**
312 * xcan_write_reg_le - Write a value to the device register little endian
313 * @priv: Driver private data structure
314 * @reg: Register offset
315 * @val: Value to write at the Register offset
316 *
317 * Write data to the paricular CAN register
318 */
319static void xcan_write_reg_le(const struct xcan_priv *priv, enum xcan_reg reg,
320 u32 val)
321{
322 iowrite32(val, priv->reg_base + reg);
323}
324
325/**
326 * xcan_read_reg_le - Read a value from the device register little endian
327 * @priv: Driver private data structure
328 * @reg: Register offset
329 *
330 * Read data from the particular CAN register
331 * Return: value read from the CAN register
332 */
333static u32 xcan_read_reg_le(const struct xcan_priv *priv, enum xcan_reg reg)
334{
335 return ioread32(priv->reg_base + reg);
336}
337
338/**
339 * xcan_write_reg_be - Write a value to the device register big endian
340 * @priv: Driver private data structure
341 * @reg: Register offset
342 * @val: Value to write at the Register offset
343 *
344 * Write data to the paricular CAN register
345 */
346static void xcan_write_reg_be(const struct xcan_priv *priv, enum xcan_reg reg,
347 u32 val)
348{
349 iowrite32be(val, priv->reg_base + reg);
350}
351
352/**
353 * xcan_read_reg_be - Read a value from the device register big endian
354 * @priv: Driver private data structure
355 * @reg: Register offset
356 *
357 * Read data from the particular CAN register
358 * Return: value read from the CAN register
359 */
360static u32 xcan_read_reg_be(const struct xcan_priv *priv, enum xcan_reg reg)
361{
362 return ioread32be(priv->reg_base + reg);
363}
364
365/**
366 * xcan_rx_int_mask - Get the mask for the receive interrupt
367 * @priv: Driver private data structure
368 *
369 * Return: The receive interrupt mask used by the driver on this HW
370 */
371static u32 xcan_rx_int_mask(const struct xcan_priv *priv)
372{
373 /* RXNEMP is better suited for our use case as it cannot be cleared
374 * while the FIFO is non-empty, but CAN FD HW does not have it
375 */
376 if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI)
377 return XCAN_IXR_RXOK_MASK;
378 else
379 return XCAN_IXR_RXNEMP_MASK;
380}
381
382/**
383 * set_reset_mode - Resets the CAN device mode
384 * @ndev: Pointer to net_device structure
385 *
386 * This is the driver reset mode routine.The driver
387 * enters into configuration mode.
388 *
389 * Return: 0 on success and failure value on error
390 */
391static int set_reset_mode(struct net_device *ndev)
392{
393 struct xcan_priv *priv = netdev_priv(ndev);
394 unsigned long timeout;
395
396 priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
397
398 timeout = jiffies + XCAN_TIMEOUT;
399 while (!(priv->read_reg(priv, XCAN_SR_OFFSET) & XCAN_SR_CONFIG_MASK)) {
400 if (time_after(jiffies, timeout)) {
401 netdev_warn(ndev, "timed out for config mode\n");
402 return -ETIMEDOUT;
403 }
404 usleep_range(500, 10000);
405 }
406
407 /* reset clears FIFOs */
408 priv->tx_head = 0;
409 priv->tx_tail = 0;
410
411 return 0;
412}
413
414/**
415 * xcan_set_bittiming - CAN set bit timing routine
416 * @ndev: Pointer to net_device structure
417 *
418 * This is the driver set bittiming routine.
419 * Return: 0 on success and failure value on error
420 */
421static int xcan_set_bittiming(struct net_device *ndev)
422{
423 struct xcan_priv *priv = netdev_priv(ndev);
424 struct can_bittiming *bt = &priv->can.bittiming;
425 struct can_bittiming *dbt = &priv->can.data_bittiming;
426 u32 btr0, btr1;
427 u32 is_config_mode;
428
429 /* Check whether Xilinx CAN is in configuration mode.
430 * It cannot set bit timing if Xilinx CAN is not in configuration mode.
431 */
432 is_config_mode = priv->read_reg(priv, XCAN_SR_OFFSET) &
433 XCAN_SR_CONFIG_MASK;
434 if (!is_config_mode) {
435 netdev_alert(ndev,
436 "BUG! Cannot set bittiming - CAN is not in config mode\n");
437 return -EPERM;
438 }
439
440 /* Setting Baud Rate prescaler value in BRPR Register */
441 btr0 = (bt->brp - 1);
442
443 /* Setting Time Segment 1 in BTR Register */
444 btr1 = (bt->prop_seg + bt->phase_seg1 - 1);
445
446 /* Setting Time Segment 2 in BTR Register */
447 btr1 |= (bt->phase_seg2 - 1) << priv->devtype.btr_ts2_shift;
448
449 /* Setting Synchronous jump width in BTR Register */
450 btr1 |= (bt->sjw - 1) << priv->devtype.btr_sjw_shift;
451
452 priv->write_reg(priv, XCAN_BRPR_OFFSET, btr0);
453 priv->write_reg(priv, XCAN_BTR_OFFSET, btr1);
454
455 if (priv->devtype.cantype == XAXI_CANFD ||
456 priv->devtype.cantype == XAXI_CANFD_2_0) {
457 /* Setting Baud Rate prescaler value in F_BRPR Register */
458 btr0 = dbt->brp - 1;
459 if (can_tdc_is_enabled(&priv->can)) {
460 if (priv->devtype.cantype == XAXI_CANFD)
461 btr0 |= FIELD_PREP(XCAN_BRPR_TDCO_MASK, priv->can.tdc.tdco) |
462 XCAN_BRPR_TDC_ENABLE;
463 else
464 btr0 |= FIELD_PREP(XCAN_2_BRPR_TDCO_MASK, priv->can.tdc.tdco) |
465 XCAN_BRPR_TDC_ENABLE;
466 }
467
468 /* Setting Time Segment 1 in BTR Register */
469 btr1 = dbt->prop_seg + dbt->phase_seg1 - 1;
470
471 /* Setting Time Segment 2 in BTR Register */
472 btr1 |= (dbt->phase_seg2 - 1) << priv->devtype.btr_ts2_shift;
473
474 /* Setting Synchronous jump width in BTR Register */
475 btr1 |= (dbt->sjw - 1) << priv->devtype.btr_sjw_shift;
476
477 priv->write_reg(priv, XCAN_F_BRPR_OFFSET, btr0);
478 priv->write_reg(priv, XCAN_F_BTR_OFFSET, btr1);
479 }
480
481 netdev_dbg(ndev, "BRPR=0x%08x, BTR=0x%08x\n",
482 priv->read_reg(priv, XCAN_BRPR_OFFSET),
483 priv->read_reg(priv, XCAN_BTR_OFFSET));
484
485 return 0;
486}
487
488/**
489 * xcan_chip_start - This the drivers start routine
490 * @ndev: Pointer to net_device structure
491 *
492 * This is the drivers start routine.
493 * Based on the State of the CAN device it puts
494 * the CAN device into a proper mode.
495 *
496 * Return: 0 on success and failure value on error
497 */
498static int xcan_chip_start(struct net_device *ndev)
499{
500 struct xcan_priv *priv = netdev_priv(ndev);
501 u32 reg_msr;
502 int err;
503 u32 ier;
504
505 /* Check if it is in reset mode */
506 err = set_reset_mode(ndev);
507 if (err < 0)
508 return err;
509
510 err = xcan_set_bittiming(ndev);
511 if (err < 0)
512 return err;
513
514 /* Enable interrupts
515 *
516 * We enable the ERROR interrupt even with
517 * CAN_CTRLMODE_BERR_REPORTING disabled as there is no
518 * dedicated interrupt for a state change to
519 * ERROR_WARNING/ERROR_PASSIVE.
520 */
521 ier = XCAN_IXR_TXOK_MASK | XCAN_IXR_BSOFF_MASK |
522 XCAN_IXR_WKUP_MASK | XCAN_IXR_SLP_MASK |
523 XCAN_IXR_ERROR_MASK | XCAN_IXR_RXOFLW_MASK |
524 XCAN_IXR_ARBLST_MASK | xcan_rx_int_mask(priv);
525
526 if (priv->devtype.flags & XCAN_FLAG_RXMNF)
527 ier |= XCAN_IXR_RXMNF_MASK;
528
529 priv->write_reg(priv, XCAN_IER_OFFSET, ier);
530
531 /* Check whether it is loopback mode or normal mode */
532 if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)
533 reg_msr = XCAN_MSR_LBACK_MASK;
534 else
535 reg_msr = 0x0;
536
537 /* enable the first extended filter, if any, as cores with extended
538 * filtering default to non-receipt if all filters are disabled
539 */
540 if (priv->devtype.flags & XCAN_FLAG_EXT_FILTERS)
541 priv->write_reg(priv, XCAN_AFR_EXT_OFFSET, 0x00000001);
542
543 priv->write_reg(priv, XCAN_MSR_OFFSET, reg_msr);
544 priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_CEN_MASK);
545
546 netdev_dbg(ndev, "status:#x%08x\n",
547 priv->read_reg(priv, XCAN_SR_OFFSET));
548
549 priv->can.state = CAN_STATE_ERROR_ACTIVE;
550 return 0;
551}
552
553/**
554 * xcan_do_set_mode - This sets the mode of the driver
555 * @ndev: Pointer to net_device structure
556 * @mode: Tells the mode of the driver
557 *
558 * This check the drivers state and calls the corresponding modes to set.
559 *
560 * Return: 0 on success and failure value on error
561 */
562static int xcan_do_set_mode(struct net_device *ndev, enum can_mode mode)
563{
564 int ret;
565
566 switch (mode) {
567 case CAN_MODE_START:
568 ret = xcan_chip_start(ndev);
569 if (ret < 0) {
570 netdev_err(ndev, "xcan_chip_start failed!\n");
571 return ret;
572 }
573 netif_wake_queue(ndev);
574 break;
575 default:
576 ret = -EOPNOTSUPP;
577 break;
578 }
579
580 return ret;
581}
582
583/**
584 * xcan_write_frame - Write a frame to HW
585 * @ndev: Pointer to net_device structure
586 * @skb: sk_buff pointer that contains data to be Txed
587 * @frame_offset: Register offset to write the frame to
588 */
589static void xcan_write_frame(struct net_device *ndev, struct sk_buff *skb,
590 int frame_offset)
591{
592 u32 id, dlc, data[2] = {0, 0};
593 struct canfd_frame *cf = (struct canfd_frame *)skb->data;
594 u32 ramoff, dwindex = 0, i;
595 struct xcan_priv *priv = netdev_priv(ndev);
596
597 /* Watch carefully on the bit sequence */
598 if (cf->can_id & CAN_EFF_FLAG) {
599 /* Extended CAN ID format */
600 id = ((cf->can_id & CAN_EFF_MASK) << XCAN_IDR_ID2_SHIFT) &
601 XCAN_IDR_ID2_MASK;
602 id |= (((cf->can_id & CAN_EFF_MASK) >>
603 (CAN_EFF_ID_BITS - CAN_SFF_ID_BITS)) <<
604 XCAN_IDR_ID1_SHIFT) & XCAN_IDR_ID1_MASK;
605
606 /* The substibute remote TX request bit should be "1"
607 * for extended frames as in the Xilinx CAN datasheet
608 */
609 id |= XCAN_IDR_IDE_MASK | XCAN_IDR_SRR_MASK;
610
611 if (cf->can_id & CAN_RTR_FLAG)
612 /* Extended frames remote TX request */
613 id |= XCAN_IDR_RTR_MASK;
614 } else {
615 /* Standard CAN ID format */
616 id = ((cf->can_id & CAN_SFF_MASK) << XCAN_IDR_ID1_SHIFT) &
617 XCAN_IDR_ID1_MASK;
618
619 if (cf->can_id & CAN_RTR_FLAG)
620 /* Standard frames remote TX request */
621 id |= XCAN_IDR_SRR_MASK;
622 }
623
624 dlc = can_fd_len2dlc(cf->len) << XCAN_DLCR_DLC_SHIFT;
625 if (can_is_canfd_skb(skb)) {
626 if (cf->flags & CANFD_BRS)
627 dlc |= XCAN_DLCR_BRS_MASK;
628 dlc |= XCAN_DLCR_EDL_MASK;
629 }
630
631 if (!(priv->devtype.flags & XCAN_FLAG_TX_MAILBOXES) &&
632 (priv->devtype.flags & XCAN_FLAG_TXFEMP))
633 can_put_echo_skb(skb, ndev, priv->tx_head % priv->tx_max, 0);
634 else
635 can_put_echo_skb(skb, ndev, 0, 0);
636
637 priv->tx_head++;
638
639 priv->write_reg(priv, XCAN_FRAME_ID_OFFSET(frame_offset), id);
640 /* If the CAN frame is RTR frame this write triggers transmission
641 * (not on CAN FD)
642 */
643 priv->write_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_offset), dlc);
644 if (priv->devtype.cantype == XAXI_CANFD ||
645 priv->devtype.cantype == XAXI_CANFD_2_0) {
646 for (i = 0; i < cf->len; i += 4) {
647 ramoff = XCANFD_FRAME_DW_OFFSET(frame_offset) +
648 (dwindex * XCANFD_DW_BYTES);
649 priv->write_reg(priv, ramoff,
650 be32_to_cpup((__be32 *)(cf->data + i)));
651 dwindex++;
652 }
653 } else {
654 if (cf->len > 0)
655 data[0] = be32_to_cpup((__be32 *)(cf->data + 0));
656 if (cf->len > 4)
657 data[1] = be32_to_cpup((__be32 *)(cf->data + 4));
658
659 if (!(cf->can_id & CAN_RTR_FLAG)) {
660 priv->write_reg(priv,
661 XCAN_FRAME_DW1_OFFSET(frame_offset),
662 data[0]);
663 /* If the CAN frame is Standard/Extended frame this
664 * write triggers transmission (not on CAN FD)
665 */
666 priv->write_reg(priv,
667 XCAN_FRAME_DW2_OFFSET(frame_offset),
668 data[1]);
669 }
670 }
671}
672
673/**
674 * xcan_start_xmit_fifo - Starts the transmission (FIFO mode)
675 * @skb: sk_buff pointer that contains data to be Txed
676 * @ndev: Pointer to net_device structure
677 *
678 * Return: 0 on success, -ENOSPC if FIFO is full.
679 */
680static int xcan_start_xmit_fifo(struct sk_buff *skb, struct net_device *ndev)
681{
682 struct xcan_priv *priv = netdev_priv(ndev);
683 unsigned long flags;
684
685 /* Check if the TX buffer is full */
686 if (unlikely(priv->read_reg(priv, XCAN_SR_OFFSET) &
687 XCAN_SR_TXFLL_MASK))
688 return -ENOSPC;
689
690 spin_lock_irqsave(&priv->tx_lock, flags);
691
692 xcan_write_frame(ndev, skb, XCAN_TXFIFO_OFFSET);
693
694 /* Clear TX-FIFO-empty interrupt for xcan_tx_interrupt() */
695 if (priv->tx_max > 1)
696 priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXFEMP_MASK);
697
698 /* Check if the TX buffer is full */
699 if ((priv->tx_head - priv->tx_tail) == priv->tx_max)
700 netif_stop_queue(ndev);
701
702 spin_unlock_irqrestore(&priv->tx_lock, flags);
703
704 return 0;
705}
706
707/**
708 * xcan_start_xmit_mailbox - Starts the transmission (mailbox mode)
709 * @skb: sk_buff pointer that contains data to be Txed
710 * @ndev: Pointer to net_device structure
711 *
712 * Return: 0 on success, -ENOSPC if there is no space
713 */
714static int xcan_start_xmit_mailbox(struct sk_buff *skb, struct net_device *ndev)
715{
716 struct xcan_priv *priv = netdev_priv(ndev);
717 unsigned long flags;
718
719 if (unlikely(priv->read_reg(priv, XCAN_TRR_OFFSET) &
720 BIT(XCAN_TX_MAILBOX_IDX)))
721 return -ENOSPC;
722
723 spin_lock_irqsave(&priv->tx_lock, flags);
724
725 xcan_write_frame(ndev, skb,
726 XCAN_TXMSG_FRAME_OFFSET(XCAN_TX_MAILBOX_IDX));
727
728 /* Mark buffer as ready for transmit */
729 priv->write_reg(priv, XCAN_TRR_OFFSET, BIT(XCAN_TX_MAILBOX_IDX));
730
731 netif_stop_queue(ndev);
732
733 spin_unlock_irqrestore(&priv->tx_lock, flags);
734
735 return 0;
736}
737
738/**
739 * xcan_start_xmit - Starts the transmission
740 * @skb: sk_buff pointer that contains data to be Txed
741 * @ndev: Pointer to net_device structure
742 *
743 * This function is invoked from upper layers to initiate transmission.
744 *
745 * Return: NETDEV_TX_OK on success and NETDEV_TX_BUSY when the tx queue is full
746 */
747static netdev_tx_t xcan_start_xmit(struct sk_buff *skb, struct net_device *ndev)
748{
749 struct xcan_priv *priv = netdev_priv(ndev);
750 int ret;
751
752 if (can_dev_dropped_skb(ndev, skb))
753 return NETDEV_TX_OK;
754
755 if (priv->devtype.flags & XCAN_FLAG_TX_MAILBOXES)
756 ret = xcan_start_xmit_mailbox(skb, ndev);
757 else
758 ret = xcan_start_xmit_fifo(skb, ndev);
759
760 if (ret < 0) {
761 netdev_err(ndev, "BUG!, TX full when queue awake!\n");
762 netif_stop_queue(ndev);
763 return NETDEV_TX_BUSY;
764 }
765
766 return NETDEV_TX_OK;
767}
768
769/**
770 * xcan_rx - Is called from CAN isr to complete the received
771 * frame processing
772 * @ndev: Pointer to net_device structure
773 * @frame_base: Register offset to the frame to be read
774 *
775 * This function is invoked from the CAN isr(poll) to process the Rx frames. It
776 * does minimal processing and invokes "netif_receive_skb" to complete further
777 * processing.
778 * Return: 1 on success and 0 on failure.
779 */
780static int xcan_rx(struct net_device *ndev, int frame_base)
781{
782 struct xcan_priv *priv = netdev_priv(ndev);
783 struct net_device_stats *stats = &ndev->stats;
784 struct can_frame *cf;
785 struct sk_buff *skb;
786 u32 id_xcan, dlc, data[2] = {0, 0};
787
788 skb = alloc_can_skb(ndev, &cf);
789 if (unlikely(!skb)) {
790 stats->rx_dropped++;
791 return 0;
792 }
793
794 /* Read a frame from Xilinx zynq CANPS */
795 id_xcan = priv->read_reg(priv, XCAN_FRAME_ID_OFFSET(frame_base));
796 dlc = priv->read_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_base)) >>
797 XCAN_DLCR_DLC_SHIFT;
798
799 /* Change Xilinx CAN data length format to socketCAN data format */
800 cf->len = can_cc_dlc2len(dlc);
801
802 /* Change Xilinx CAN ID format to socketCAN ID format */
803 if (id_xcan & XCAN_IDR_IDE_MASK) {
804 /* The received frame is an Extended format frame */
805 cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >> 3;
806 cf->can_id |= (id_xcan & XCAN_IDR_ID2_MASK) >>
807 XCAN_IDR_ID2_SHIFT;
808 cf->can_id |= CAN_EFF_FLAG;
809 if (id_xcan & XCAN_IDR_RTR_MASK)
810 cf->can_id |= CAN_RTR_FLAG;
811 } else {
812 /* The received frame is a standard format frame */
813 cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >>
814 XCAN_IDR_ID1_SHIFT;
815 if (id_xcan & XCAN_IDR_SRR_MASK)
816 cf->can_id |= CAN_RTR_FLAG;
817 }
818
819 /* DW1/DW2 must always be read to remove message from RXFIFO */
820 data[0] = priv->read_reg(priv, XCAN_FRAME_DW1_OFFSET(frame_base));
821 data[1] = priv->read_reg(priv, XCAN_FRAME_DW2_OFFSET(frame_base));
822
823 if (!(cf->can_id & CAN_RTR_FLAG)) {
824 /* Change Xilinx CAN data format to socketCAN data format */
825 if (cf->len > 0)
826 *(__be32 *)(cf->data) = cpu_to_be32(data[0]);
827 if (cf->len > 4)
828 *(__be32 *)(cf->data + 4) = cpu_to_be32(data[1]);
829
830 stats->rx_bytes += cf->len;
831 }
832 stats->rx_packets++;
833
834 netif_receive_skb(skb);
835
836 return 1;
837}
838
839/**
840 * xcanfd_rx - Is called from CAN isr to complete the received
841 * frame processing
842 * @ndev: Pointer to net_device structure
843 * @frame_base: Register offset to the frame to be read
844 *
845 * This function is invoked from the CAN isr(poll) to process the Rx frames. It
846 * does minimal processing and invokes "netif_receive_skb" to complete further
847 * processing.
848 * Return: 1 on success and 0 on failure.
849 */
850static int xcanfd_rx(struct net_device *ndev, int frame_base)
851{
852 struct xcan_priv *priv = netdev_priv(ndev);
853 struct net_device_stats *stats = &ndev->stats;
854 struct canfd_frame *cf;
855 struct sk_buff *skb;
856 u32 id_xcan, dlc, data[2] = {0, 0}, dwindex = 0, i, dw_offset;
857
858 id_xcan = priv->read_reg(priv, XCAN_FRAME_ID_OFFSET(frame_base));
859 dlc = priv->read_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_base));
860 if (dlc & XCAN_DLCR_EDL_MASK)
861 skb = alloc_canfd_skb(ndev, &cf);
862 else
863 skb = alloc_can_skb(ndev, (struct can_frame **)&cf);
864
865 if (unlikely(!skb)) {
866 stats->rx_dropped++;
867 return 0;
868 }
869
870 /* Change Xilinx CANFD data length format to socketCAN data
871 * format
872 */
873 if (dlc & XCAN_DLCR_EDL_MASK)
874 cf->len = can_fd_dlc2len((dlc & XCAN_DLCR_DLC_MASK) >>
875 XCAN_DLCR_DLC_SHIFT);
876 else
877 cf->len = can_cc_dlc2len((dlc & XCAN_DLCR_DLC_MASK) >>
878 XCAN_DLCR_DLC_SHIFT);
879
880 /* Change Xilinx CAN ID format to socketCAN ID format */
881 if (id_xcan & XCAN_IDR_IDE_MASK) {
882 /* The received frame is an Extended format frame */
883 cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >> 3;
884 cf->can_id |= (id_xcan & XCAN_IDR_ID2_MASK) >>
885 XCAN_IDR_ID2_SHIFT;
886 cf->can_id |= CAN_EFF_FLAG;
887 if (id_xcan & XCAN_IDR_RTR_MASK)
888 cf->can_id |= CAN_RTR_FLAG;
889 } else {
890 /* The received frame is a standard format frame */
891 cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >>
892 XCAN_IDR_ID1_SHIFT;
893 if (!(dlc & XCAN_DLCR_EDL_MASK) && (id_xcan &
894 XCAN_IDR_SRR_MASK))
895 cf->can_id |= CAN_RTR_FLAG;
896 }
897
898 /* Check the frame received is FD or not*/
899 if (dlc & XCAN_DLCR_EDL_MASK) {
900 for (i = 0; i < cf->len; i += 4) {
901 dw_offset = XCANFD_FRAME_DW_OFFSET(frame_base) +
902 (dwindex * XCANFD_DW_BYTES);
903 data[0] = priv->read_reg(priv, dw_offset);
904 *(__be32 *)(cf->data + i) = cpu_to_be32(data[0]);
905 dwindex++;
906 }
907 } else {
908 for (i = 0; i < cf->len; i += 4) {
909 dw_offset = XCANFD_FRAME_DW_OFFSET(frame_base);
910 data[0] = priv->read_reg(priv, dw_offset + i);
911 *(__be32 *)(cf->data + i) = cpu_to_be32(data[0]);
912 }
913 }
914
915 if (!(cf->can_id & CAN_RTR_FLAG))
916 stats->rx_bytes += cf->len;
917 stats->rx_packets++;
918
919 netif_receive_skb(skb);
920
921 return 1;
922}
923
924/**
925 * xcan_current_error_state - Get current error state from HW
926 * @ndev: Pointer to net_device structure
927 *
928 * Checks the current CAN error state from the HW. Note that this
929 * only checks for ERROR_PASSIVE and ERROR_WARNING.
930 *
931 * Return:
932 * ERROR_PASSIVE or ERROR_WARNING if either is active, ERROR_ACTIVE
933 * otherwise.
934 */
935static enum can_state xcan_current_error_state(struct net_device *ndev)
936{
937 struct xcan_priv *priv = netdev_priv(ndev);
938 u32 status = priv->read_reg(priv, XCAN_SR_OFFSET);
939
940 if ((status & XCAN_SR_ESTAT_MASK) == XCAN_SR_ESTAT_MASK)
941 return CAN_STATE_ERROR_PASSIVE;
942 else if (status & XCAN_SR_ERRWRN_MASK)
943 return CAN_STATE_ERROR_WARNING;
944 else
945 return CAN_STATE_ERROR_ACTIVE;
946}
947
948/**
949 * xcan_set_error_state - Set new CAN error state
950 * @ndev: Pointer to net_device structure
951 * @new_state: The new CAN state to be set
952 * @cf: Error frame to be populated or NULL
953 *
954 * Set new CAN error state for the device, updating statistics and
955 * populating the error frame if given.
956 */
957static void xcan_set_error_state(struct net_device *ndev,
958 enum can_state new_state,
959 struct can_frame *cf)
960{
961 struct xcan_priv *priv = netdev_priv(ndev);
962 u32 ecr = priv->read_reg(priv, XCAN_ECR_OFFSET);
963 u32 txerr = ecr & XCAN_ECR_TEC_MASK;
964 u32 rxerr = (ecr & XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT;
965 enum can_state tx_state = txerr >= rxerr ? new_state : 0;
966 enum can_state rx_state = txerr <= rxerr ? new_state : 0;
967
968 /* non-ERROR states are handled elsewhere */
969 if (WARN_ON(new_state > CAN_STATE_ERROR_PASSIVE))
970 return;
971
972 can_change_state(ndev, cf, tx_state, rx_state);
973
974 if (cf) {
975 cf->can_id |= CAN_ERR_CNT;
976 cf->data[6] = txerr;
977 cf->data[7] = rxerr;
978 }
979}
980
981/**
982 * xcan_update_error_state_after_rxtx - Update CAN error state after RX/TX
983 * @ndev: Pointer to net_device structure
984 *
985 * If the device is in a ERROR-WARNING or ERROR-PASSIVE state, check if
986 * the performed RX/TX has caused it to drop to a lesser state and set
987 * the interface state accordingly.
988 */
989static void xcan_update_error_state_after_rxtx(struct net_device *ndev)
990{
991 struct xcan_priv *priv = netdev_priv(ndev);
992 enum can_state old_state = priv->can.state;
993 enum can_state new_state;
994
995 /* changing error state due to successful frame RX/TX can only
996 * occur from these states
997 */
998 if (old_state != CAN_STATE_ERROR_WARNING &&
999 old_state != CAN_STATE_ERROR_PASSIVE)
1000 return;
1001
1002 new_state = xcan_current_error_state(ndev);
1003
1004 if (new_state != old_state) {
1005 struct sk_buff *skb;
1006 struct can_frame *cf;
1007
1008 skb = alloc_can_err_skb(ndev, &cf);
1009
1010 xcan_set_error_state(ndev, new_state, skb ? cf : NULL);
1011
1012 if (skb)
1013 netif_rx(skb);
1014 }
1015}
1016
1017/**
1018 * xcan_err_interrupt - error frame Isr
1019 * @ndev: net_device pointer
1020 * @isr: interrupt status register value
1021 *
1022 * This is the CAN error interrupt and it will
1023 * check the type of error and forward the error
1024 * frame to upper layers.
1025 */
1026static void xcan_err_interrupt(struct net_device *ndev, u32 isr)
1027{
1028 struct xcan_priv *priv = netdev_priv(ndev);
1029 struct net_device_stats *stats = &ndev->stats;
1030 struct can_frame cf = { };
1031 u32 err_status;
1032
1033 err_status = priv->read_reg(priv, XCAN_ESR_OFFSET);
1034 priv->write_reg(priv, XCAN_ESR_OFFSET, err_status);
1035
1036 if (isr & XCAN_IXR_BSOFF_MASK) {
1037 priv->can.state = CAN_STATE_BUS_OFF;
1038 priv->can.can_stats.bus_off++;
1039 /* Leave device in Config Mode in bus-off state */
1040 priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
1041 can_bus_off(ndev);
1042 cf.can_id |= CAN_ERR_BUSOFF;
1043 } else {
1044 enum can_state new_state = xcan_current_error_state(ndev);
1045
1046 if (new_state != priv->can.state)
1047 xcan_set_error_state(ndev, new_state, &cf);
1048 }
1049
1050 /* Check for Arbitration lost interrupt */
1051 if (isr & XCAN_IXR_ARBLST_MASK) {
1052 priv->can.can_stats.arbitration_lost++;
1053 cf.can_id |= CAN_ERR_LOSTARB;
1054 cf.data[0] = CAN_ERR_LOSTARB_UNSPEC;
1055 }
1056
1057 /* Check for RX FIFO Overflow interrupt */
1058 if (isr & XCAN_IXR_RXOFLW_MASK) {
1059 stats->rx_over_errors++;
1060 stats->rx_errors++;
1061 cf.can_id |= CAN_ERR_CRTL;
1062 cf.data[1] |= CAN_ERR_CRTL_RX_OVERFLOW;
1063 }
1064
1065 /* Check for RX Match Not Finished interrupt */
1066 if (isr & XCAN_IXR_RXMNF_MASK) {
1067 stats->rx_dropped++;
1068 stats->rx_errors++;
1069 netdev_err(ndev, "RX match not finished, frame discarded\n");
1070 cf.can_id |= CAN_ERR_CRTL;
1071 cf.data[1] |= CAN_ERR_CRTL_UNSPEC;
1072 }
1073
1074 /* Check for error interrupt */
1075 if (isr & XCAN_IXR_ERROR_MASK) {
1076 bool berr_reporting = false;
1077
1078 if (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) {
1079 berr_reporting = true;
1080 cf.can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
1081 }
1082
1083 /* Check for Ack error interrupt */
1084 if (err_status & XCAN_ESR_ACKER_MASK) {
1085 stats->tx_errors++;
1086 if (berr_reporting) {
1087 cf.can_id |= CAN_ERR_ACK;
1088 cf.data[3] = CAN_ERR_PROT_LOC_ACK;
1089 }
1090 }
1091
1092 /* Check for Bit error interrupt */
1093 if (err_status & XCAN_ESR_BERR_MASK) {
1094 stats->tx_errors++;
1095 if (berr_reporting) {
1096 cf.can_id |= CAN_ERR_PROT;
1097 cf.data[2] = CAN_ERR_PROT_BIT;
1098 }
1099 }
1100
1101 /* Check for Stuff error interrupt */
1102 if (err_status & XCAN_ESR_STER_MASK) {
1103 stats->rx_errors++;
1104 if (berr_reporting) {
1105 cf.can_id |= CAN_ERR_PROT;
1106 cf.data[2] = CAN_ERR_PROT_STUFF;
1107 }
1108 }
1109
1110 /* Check for Form error interrupt */
1111 if (err_status & XCAN_ESR_FMER_MASK) {
1112 stats->rx_errors++;
1113 if (berr_reporting) {
1114 cf.can_id |= CAN_ERR_PROT;
1115 cf.data[2] = CAN_ERR_PROT_FORM;
1116 }
1117 }
1118
1119 /* Check for CRC error interrupt */
1120 if (err_status & XCAN_ESR_CRCER_MASK) {
1121 stats->rx_errors++;
1122 if (berr_reporting) {
1123 cf.can_id |= CAN_ERR_PROT;
1124 cf.data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
1125 }
1126 }
1127 priv->can.can_stats.bus_error++;
1128 }
1129
1130 if (cf.can_id) {
1131 struct can_frame *skb_cf;
1132 struct sk_buff *skb = alloc_can_err_skb(ndev, &skb_cf);
1133
1134 if (skb) {
1135 skb_cf->can_id |= cf.can_id;
1136 memcpy(skb_cf->data, cf.data, CAN_ERR_DLC);
1137 netif_rx(skb);
1138 }
1139 }
1140
1141 netdev_dbg(ndev, "%s: error status register:0x%x\n",
1142 __func__, priv->read_reg(priv, XCAN_ESR_OFFSET));
1143}
1144
1145/**
1146 * xcan_state_interrupt - It will check the state of the CAN device
1147 * @ndev: net_device pointer
1148 * @isr: interrupt status register value
1149 *
1150 * This will checks the state of the CAN device
1151 * and puts the device into appropriate state.
1152 */
1153static void xcan_state_interrupt(struct net_device *ndev, u32 isr)
1154{
1155 struct xcan_priv *priv = netdev_priv(ndev);
1156
1157 /* Check for Sleep interrupt if set put CAN device in sleep state */
1158 if (isr & XCAN_IXR_SLP_MASK)
1159 priv->can.state = CAN_STATE_SLEEPING;
1160
1161 /* Check for Wake up interrupt if set put CAN device in Active state */
1162 if (isr & XCAN_IXR_WKUP_MASK)
1163 priv->can.state = CAN_STATE_ERROR_ACTIVE;
1164}
1165
1166/**
1167 * xcan_rx_fifo_get_next_frame - Get register offset of next RX frame
1168 * @priv: Driver private data structure
1169 *
1170 * Return: Register offset of the next frame in RX FIFO.
1171 */
1172static int xcan_rx_fifo_get_next_frame(struct xcan_priv *priv)
1173{
1174 int offset;
1175
1176 if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI) {
1177 u32 fsr, mask;
1178
1179 /* clear RXOK before the is-empty check so that any newly
1180 * received frame will reassert it without a race
1181 */
1182 priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_RXOK_MASK);
1183
1184 fsr = priv->read_reg(priv, XCAN_FSR_OFFSET);
1185
1186 /* check if RX FIFO is empty */
1187 if (priv->devtype.flags & XCAN_FLAG_CANFD_2)
1188 mask = XCAN_2_FSR_FL_MASK;
1189 else
1190 mask = XCAN_FSR_FL_MASK;
1191
1192 if (!(fsr & mask))
1193 return -ENOENT;
1194
1195 if (priv->devtype.flags & XCAN_FLAG_CANFD_2)
1196 offset =
1197 XCAN_RXMSG_2_FRAME_OFFSET(fsr & XCAN_2_FSR_RI_MASK);
1198 else
1199 offset =
1200 XCAN_RXMSG_FRAME_OFFSET(fsr & XCAN_FSR_RI_MASK);
1201
1202 } else {
1203 /* check if RX FIFO is empty */
1204 if (!(priv->read_reg(priv, XCAN_ISR_OFFSET) &
1205 XCAN_IXR_RXNEMP_MASK))
1206 return -ENOENT;
1207
1208 /* frames are read from a static offset */
1209 offset = XCAN_RXFIFO_OFFSET;
1210 }
1211
1212 return offset;
1213}
1214
1215/**
1216 * xcan_rx_poll - Poll routine for rx packets (NAPI)
1217 * @napi: napi structure pointer
1218 * @quota: Max number of rx packets to be processed.
1219 *
1220 * This is the poll routine for rx part.
1221 * It will process the packets maximux quota value.
1222 *
1223 * Return: number of packets received
1224 */
1225static int xcan_rx_poll(struct napi_struct *napi, int quota)
1226{
1227 struct net_device *ndev = napi->dev;
1228 struct xcan_priv *priv = netdev_priv(ndev);
1229 u32 ier;
1230 int work_done = 0;
1231 int frame_offset;
1232
1233 while ((frame_offset = xcan_rx_fifo_get_next_frame(priv)) >= 0 &&
1234 (work_done < quota)) {
1235 if (xcan_rx_int_mask(priv) & XCAN_IXR_RXOK_MASK)
1236 work_done += xcanfd_rx(ndev, frame_offset);
1237 else
1238 work_done += xcan_rx(ndev, frame_offset);
1239
1240 if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI)
1241 /* increment read index */
1242 priv->write_reg(priv, XCAN_FSR_OFFSET,
1243 XCAN_FSR_IRI_MASK);
1244 else
1245 /* clear rx-not-empty (will actually clear only if
1246 * empty)
1247 */
1248 priv->write_reg(priv, XCAN_ICR_OFFSET,
1249 XCAN_IXR_RXNEMP_MASK);
1250 }
1251
1252 if (work_done)
1253 xcan_update_error_state_after_rxtx(ndev);
1254
1255 if (work_done < quota) {
1256 if (napi_complete_done(napi, work_done)) {
1257 ier = priv->read_reg(priv, XCAN_IER_OFFSET);
1258 ier |= xcan_rx_int_mask(priv);
1259 priv->write_reg(priv, XCAN_IER_OFFSET, ier);
1260 }
1261 }
1262 return work_done;
1263}
1264
1265/**
1266 * xcan_tx_interrupt - Tx Done Isr
1267 * @ndev: net_device pointer
1268 * @isr: Interrupt status register value
1269 */
1270static void xcan_tx_interrupt(struct net_device *ndev, u32 isr)
1271{
1272 struct xcan_priv *priv = netdev_priv(ndev);
1273 struct net_device_stats *stats = &ndev->stats;
1274 unsigned int frames_in_fifo;
1275 int frames_sent = 1; /* TXOK => at least 1 frame was sent */
1276 unsigned long flags;
1277 int retries = 0;
1278
1279 /* Synchronize with xmit as we need to know the exact number
1280 * of frames in the FIFO to stay in sync due to the TXFEMP
1281 * handling.
1282 * This also prevents a race between netif_wake_queue() and
1283 * netif_stop_queue().
1284 */
1285 spin_lock_irqsave(&priv->tx_lock, flags);
1286
1287 frames_in_fifo = priv->tx_head - priv->tx_tail;
1288
1289 if (WARN_ON_ONCE(frames_in_fifo == 0)) {
1290 /* clear TXOK anyway to avoid getting back here */
1291 priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK);
1292 spin_unlock_irqrestore(&priv->tx_lock, flags);
1293 return;
1294 }
1295
1296 /* Check if 2 frames were sent (TXOK only means that at least 1
1297 * frame was sent).
1298 */
1299 if (frames_in_fifo > 1) {
1300 WARN_ON(frames_in_fifo > priv->tx_max);
1301
1302 /* Synchronize TXOK and isr so that after the loop:
1303 * (1) isr variable is up-to-date at least up to TXOK clear
1304 * time. This avoids us clearing a TXOK of a second frame
1305 * but not noticing that the FIFO is now empty and thus
1306 * marking only a single frame as sent.
1307 * (2) No TXOK is left. Having one could mean leaving a
1308 * stray TXOK as we might process the associated frame
1309 * via TXFEMP handling as we read TXFEMP *after* TXOK
1310 * clear to satisfy (1).
1311 */
1312 while ((isr & XCAN_IXR_TXOK_MASK) &&
1313 !WARN_ON(++retries == 100)) {
1314 priv->write_reg(priv, XCAN_ICR_OFFSET,
1315 XCAN_IXR_TXOK_MASK);
1316 isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
1317 }
1318
1319 if (isr & XCAN_IXR_TXFEMP_MASK) {
1320 /* nothing in FIFO anymore */
1321 frames_sent = frames_in_fifo;
1322 }
1323 } else {
1324 /* single frame in fifo, just clear TXOK */
1325 priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK);
1326 }
1327
1328 while (frames_sent--) {
1329 stats->tx_bytes += can_get_echo_skb(ndev, priv->tx_tail %
1330 priv->tx_max, NULL);
1331 priv->tx_tail++;
1332 stats->tx_packets++;
1333 }
1334
1335 netif_wake_queue(ndev);
1336
1337 spin_unlock_irqrestore(&priv->tx_lock, flags);
1338
1339 xcan_update_error_state_after_rxtx(ndev);
1340}
1341
1342/**
1343 * xcan_interrupt - CAN Isr
1344 * @irq: irq number
1345 * @dev_id: device id pointer
1346 *
1347 * This is the xilinx CAN Isr. It checks for the type of interrupt
1348 * and invokes the corresponding ISR.
1349 *
1350 * Return:
1351 * IRQ_NONE - If CAN device is in sleep mode, IRQ_HANDLED otherwise
1352 */
1353static irqreturn_t xcan_interrupt(int irq, void *dev_id)
1354{
1355 struct net_device *ndev = (struct net_device *)dev_id;
1356 struct xcan_priv *priv = netdev_priv(ndev);
1357 u32 isr, ier;
1358 u32 isr_errors;
1359 u32 rx_int_mask = xcan_rx_int_mask(priv);
1360
1361 /* Get the interrupt status from Xilinx CAN */
1362 isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
1363 if (!isr)
1364 return IRQ_NONE;
1365
1366 /* Check for the type of interrupt and Processing it */
1367 if (isr & (XCAN_IXR_SLP_MASK | XCAN_IXR_WKUP_MASK)) {
1368 priv->write_reg(priv, XCAN_ICR_OFFSET, (XCAN_IXR_SLP_MASK |
1369 XCAN_IXR_WKUP_MASK));
1370 xcan_state_interrupt(ndev, isr);
1371 }
1372
1373 /* Check for Tx interrupt and Processing it */
1374 if (isr & XCAN_IXR_TXOK_MASK)
1375 xcan_tx_interrupt(ndev, isr);
1376
1377 /* Check for the type of error interrupt and Processing it */
1378 isr_errors = isr & (XCAN_IXR_ERROR_MASK | XCAN_IXR_RXOFLW_MASK |
1379 XCAN_IXR_BSOFF_MASK | XCAN_IXR_ARBLST_MASK |
1380 XCAN_IXR_RXMNF_MASK);
1381 if (isr_errors) {
1382 priv->write_reg(priv, XCAN_ICR_OFFSET, isr_errors);
1383 xcan_err_interrupt(ndev, isr);
1384 }
1385
1386 /* Check for the type of receive interrupt and Processing it */
1387 if (isr & rx_int_mask) {
1388 ier = priv->read_reg(priv, XCAN_IER_OFFSET);
1389 ier &= ~rx_int_mask;
1390 priv->write_reg(priv, XCAN_IER_OFFSET, ier);
1391 napi_schedule(&priv->napi);
1392 }
1393 return IRQ_HANDLED;
1394}
1395
1396/**
1397 * xcan_chip_stop - Driver stop routine
1398 * @ndev: Pointer to net_device structure
1399 *
1400 * This is the drivers stop routine. It will disable the
1401 * interrupts and put the device into configuration mode.
1402 */
1403static void xcan_chip_stop(struct net_device *ndev)
1404{
1405 struct xcan_priv *priv = netdev_priv(ndev);
1406 int ret;
1407
1408 /* Disable interrupts and leave the can in configuration mode */
1409 ret = set_reset_mode(ndev);
1410 if (ret < 0)
1411 netdev_dbg(ndev, "set_reset_mode() Failed\n");
1412
1413 priv->can.state = CAN_STATE_STOPPED;
1414}
1415
1416/**
1417 * xcan_open - Driver open routine
1418 * @ndev: Pointer to net_device structure
1419 *
1420 * This is the driver open routine.
1421 * Return: 0 on success and failure value on error
1422 */
1423static int xcan_open(struct net_device *ndev)
1424{
1425 struct xcan_priv *priv = netdev_priv(ndev);
1426 int ret;
1427
1428 ret = phy_power_on(priv->transceiver);
1429 if (ret)
1430 return ret;
1431
1432 ret = pm_runtime_get_sync(priv->dev);
1433 if (ret < 0) {
1434 netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1435 __func__, ret);
1436 goto err;
1437 }
1438
1439 ret = request_irq(ndev->irq, xcan_interrupt, priv->irq_flags,
1440 ndev->name, ndev);
1441 if (ret < 0) {
1442 netdev_err(ndev, "irq allocation for CAN failed\n");
1443 goto err;
1444 }
1445
1446 /* Set chip into reset mode */
1447 ret = set_reset_mode(ndev);
1448 if (ret < 0) {
1449 netdev_err(ndev, "mode resetting failed!\n");
1450 goto err_irq;
1451 }
1452
1453 /* Common open */
1454 ret = open_candev(ndev);
1455 if (ret)
1456 goto err_irq;
1457
1458 ret = xcan_chip_start(ndev);
1459 if (ret < 0) {
1460 netdev_err(ndev, "xcan_chip_start failed!\n");
1461 goto err_candev;
1462 }
1463
1464 napi_enable(&priv->napi);
1465 netif_start_queue(ndev);
1466
1467 return 0;
1468
1469err_candev:
1470 close_candev(ndev);
1471err_irq:
1472 free_irq(ndev->irq, ndev);
1473err:
1474 pm_runtime_put(priv->dev);
1475 phy_power_off(priv->transceiver);
1476
1477 return ret;
1478}
1479
1480/**
1481 * xcan_close - Driver close routine
1482 * @ndev: Pointer to net_device structure
1483 *
1484 * Return: 0 always
1485 */
1486static int xcan_close(struct net_device *ndev)
1487{
1488 struct xcan_priv *priv = netdev_priv(ndev);
1489
1490 netif_stop_queue(ndev);
1491 napi_disable(&priv->napi);
1492 xcan_chip_stop(ndev);
1493 free_irq(ndev->irq, ndev);
1494 close_candev(ndev);
1495
1496 pm_runtime_put(priv->dev);
1497 phy_power_off(priv->transceiver);
1498
1499 return 0;
1500}
1501
1502/**
1503 * xcan_get_berr_counter - error counter routine
1504 * @ndev: Pointer to net_device structure
1505 * @bec: Pointer to can_berr_counter structure
1506 *
1507 * This is the driver error counter routine.
1508 * Return: 0 on success and failure value on error
1509 */
1510static int xcan_get_berr_counter(const struct net_device *ndev,
1511 struct can_berr_counter *bec)
1512{
1513 struct xcan_priv *priv = netdev_priv(ndev);
1514 int ret;
1515
1516 ret = pm_runtime_get_sync(priv->dev);
1517 if (ret < 0) {
1518 netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1519 __func__, ret);
1520 pm_runtime_put(priv->dev);
1521 return ret;
1522 }
1523
1524 bec->txerr = priv->read_reg(priv, XCAN_ECR_OFFSET) & XCAN_ECR_TEC_MASK;
1525 bec->rxerr = ((priv->read_reg(priv, XCAN_ECR_OFFSET) &
1526 XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT);
1527
1528 pm_runtime_put(priv->dev);
1529
1530 return 0;
1531}
1532
1533/**
1534 * xcan_get_auto_tdcv - Get Transmitter Delay Compensation Value
1535 * @ndev: Pointer to net_device structure
1536 * @tdcv: Pointer to TDCV value
1537 *
1538 * Return: 0 on success
1539 */
1540static int xcan_get_auto_tdcv(const struct net_device *ndev, u32 *tdcv)
1541{
1542 struct xcan_priv *priv = netdev_priv(ndev);
1543
1544 *tdcv = FIELD_GET(XCAN_SR_TDCV_MASK, priv->read_reg(priv, XCAN_SR_OFFSET));
1545
1546 return 0;
1547}
1548
1549static const struct net_device_ops xcan_netdev_ops = {
1550 .ndo_open = xcan_open,
1551 .ndo_stop = xcan_close,
1552 .ndo_start_xmit = xcan_start_xmit,
1553 .ndo_change_mtu = can_change_mtu,
1554};
1555
1556static const struct ethtool_ops xcan_ethtool_ops = {
1557 .get_ts_info = ethtool_op_get_ts_info,
1558};
1559
1560/**
1561 * xcan_suspend - Suspend method for the driver
1562 * @dev: Address of the device structure
1563 *
1564 * Put the driver into low power mode.
1565 * Return: 0 on success and failure value on error
1566 */
1567static int __maybe_unused xcan_suspend(struct device *dev)
1568{
1569 struct net_device *ndev = dev_get_drvdata(dev);
1570
1571 if (netif_running(ndev)) {
1572 netif_stop_queue(ndev);
1573 netif_device_detach(ndev);
1574 xcan_chip_stop(ndev);
1575 }
1576
1577 return pm_runtime_force_suspend(dev);
1578}
1579
1580/**
1581 * xcan_resume - Resume from suspend
1582 * @dev: Address of the device structure
1583 *
1584 * Resume operation after suspend.
1585 * Return: 0 on success and failure value on error
1586 */
1587static int __maybe_unused xcan_resume(struct device *dev)
1588{
1589 struct net_device *ndev = dev_get_drvdata(dev);
1590 int ret;
1591
1592 ret = pm_runtime_force_resume(dev);
1593 if (ret) {
1594 dev_err(dev, "pm_runtime_force_resume failed on resume\n");
1595 return ret;
1596 }
1597
1598 if (netif_running(ndev)) {
1599 ret = xcan_chip_start(ndev);
1600 if (ret) {
1601 dev_err(dev, "xcan_chip_start failed on resume\n");
1602 return ret;
1603 }
1604
1605 netif_device_attach(ndev);
1606 netif_start_queue(ndev);
1607 }
1608
1609 return 0;
1610}
1611
1612/**
1613 * xcan_runtime_suspend - Runtime suspend method for the driver
1614 * @dev: Address of the device structure
1615 *
1616 * Put the driver into low power mode.
1617 * Return: 0 always
1618 */
1619static int __maybe_unused xcan_runtime_suspend(struct device *dev)
1620{
1621 struct net_device *ndev = dev_get_drvdata(dev);
1622 struct xcan_priv *priv = netdev_priv(ndev);
1623
1624 clk_disable_unprepare(priv->bus_clk);
1625 clk_disable_unprepare(priv->can_clk);
1626
1627 return 0;
1628}
1629
1630/**
1631 * xcan_runtime_resume - Runtime resume from suspend
1632 * @dev: Address of the device structure
1633 *
1634 * Resume operation after suspend.
1635 * Return: 0 on success and failure value on error
1636 */
1637static int __maybe_unused xcan_runtime_resume(struct device *dev)
1638{
1639 struct net_device *ndev = dev_get_drvdata(dev);
1640 struct xcan_priv *priv = netdev_priv(ndev);
1641 int ret;
1642
1643 ret = clk_prepare_enable(priv->bus_clk);
1644 if (ret) {
1645 dev_err(dev, "Cannot enable clock.\n");
1646 return ret;
1647 }
1648 ret = clk_prepare_enable(priv->can_clk);
1649 if (ret) {
1650 dev_err(dev, "Cannot enable clock.\n");
1651 clk_disable_unprepare(priv->bus_clk);
1652 return ret;
1653 }
1654
1655 return 0;
1656}
1657
1658static const struct dev_pm_ops xcan_dev_pm_ops = {
1659 SET_SYSTEM_SLEEP_PM_OPS(xcan_suspend, xcan_resume)
1660 SET_RUNTIME_PM_OPS(xcan_runtime_suspend, xcan_runtime_resume, NULL)
1661};
1662
1663static const struct xcan_devtype_data xcan_zynq_data = {
1664 .cantype = XZYNQ_CANPS,
1665 .flags = XCAN_FLAG_TXFEMP,
1666 .bittiming_const = &xcan_bittiming_const,
1667 .btr_ts2_shift = XCAN_BTR_TS2_SHIFT,
1668 .btr_sjw_shift = XCAN_BTR_SJW_SHIFT,
1669 .bus_clk_name = "pclk",
1670};
1671
1672static const struct xcan_devtype_data xcan_axi_data = {
1673 .cantype = XAXI_CAN,
1674 .bittiming_const = &xcan_bittiming_const,
1675 .btr_ts2_shift = XCAN_BTR_TS2_SHIFT,
1676 .btr_sjw_shift = XCAN_BTR_SJW_SHIFT,
1677 .bus_clk_name = "s_axi_aclk",
1678};
1679
1680static const struct xcan_devtype_data xcan_canfd_data = {
1681 .cantype = XAXI_CANFD,
1682 .flags = XCAN_FLAG_EXT_FILTERS |
1683 XCAN_FLAG_RXMNF |
1684 XCAN_FLAG_TX_MAILBOXES |
1685 XCAN_FLAG_RX_FIFO_MULTI,
1686 .bittiming_const = &xcan_bittiming_const_canfd,
1687 .btr_ts2_shift = XCAN_BTR_TS2_SHIFT_CANFD,
1688 .btr_sjw_shift = XCAN_BTR_SJW_SHIFT_CANFD,
1689 .bus_clk_name = "s_axi_aclk",
1690};
1691
1692static const struct xcan_devtype_data xcan_canfd2_data = {
1693 .cantype = XAXI_CANFD_2_0,
1694 .flags = XCAN_FLAG_EXT_FILTERS |
1695 XCAN_FLAG_RXMNF |
1696 XCAN_FLAG_TX_MAILBOXES |
1697 XCAN_FLAG_CANFD_2 |
1698 XCAN_FLAG_RX_FIFO_MULTI,
1699 .bittiming_const = &xcan_bittiming_const_canfd2,
1700 .btr_ts2_shift = XCAN_BTR_TS2_SHIFT_CANFD,
1701 .btr_sjw_shift = XCAN_BTR_SJW_SHIFT_CANFD,
1702 .bus_clk_name = "s_axi_aclk",
1703};
1704
1705/* Match table for OF platform binding */
1706static const struct of_device_id xcan_of_match[] = {
1707 { .compatible = "xlnx,zynq-can-1.0", .data = &xcan_zynq_data },
1708 { .compatible = "xlnx,axi-can-1.00.a", .data = &xcan_axi_data },
1709 { .compatible = "xlnx,canfd-1.0", .data = &xcan_canfd_data },
1710 { .compatible = "xlnx,canfd-2.0", .data = &xcan_canfd2_data },
1711 { /* end of list */ },
1712};
1713MODULE_DEVICE_TABLE(of, xcan_of_match);
1714
1715/**
1716 * xcan_probe - Platform registration call
1717 * @pdev: Handle to the platform device structure
1718 *
1719 * This function does all the memory allocation and registration for the CAN
1720 * device.
1721 *
1722 * Return: 0 on success and failure value on error
1723 */
1724static int xcan_probe(struct platform_device *pdev)
1725{
1726 struct net_device *ndev;
1727 struct xcan_priv *priv;
1728 struct phy *transceiver;
1729 const struct xcan_devtype_data *devtype;
1730 void __iomem *addr;
1731 int ret;
1732 int rx_max, tx_max;
1733 u32 hw_tx_max = 0, hw_rx_max = 0;
1734 const char *hw_tx_max_property;
1735
1736 /* Get the virtual base address for the device */
1737 addr = devm_platform_ioremap_resource(pdev, 0);
1738 if (IS_ERR(addr)) {
1739 ret = PTR_ERR(addr);
1740 goto err;
1741 }
1742
1743 devtype = device_get_match_data(&pdev->dev);
1744
1745 hw_tx_max_property = devtype->flags & XCAN_FLAG_TX_MAILBOXES ?
1746 "tx-mailbox-count" : "tx-fifo-depth";
1747
1748 ret = of_property_read_u32(pdev->dev.of_node, hw_tx_max_property,
1749 &hw_tx_max);
1750 if (ret < 0) {
1751 dev_err(&pdev->dev, "missing %s property\n",
1752 hw_tx_max_property);
1753 goto err;
1754 }
1755
1756 ret = of_property_read_u32(pdev->dev.of_node, "rx-fifo-depth",
1757 &hw_rx_max);
1758 if (ret < 0) {
1759 dev_err(&pdev->dev,
1760 "missing rx-fifo-depth property (mailbox mode is not supported)\n");
1761 goto err;
1762 }
1763
1764 /* With TX FIFO:
1765 *
1766 * There is no way to directly figure out how many frames have been
1767 * sent when the TXOK interrupt is processed. If TXFEMP
1768 * is supported, we can have 2 frames in the FIFO and use TXFEMP
1769 * to determine if 1 or 2 frames have been sent.
1770 * Theoretically we should be able to use TXFWMEMP to determine up
1771 * to 3 frames, but it seems that after putting a second frame in the
1772 * FIFO, with watermark at 2 frames, it can happen that TXFWMEMP (less
1773 * than 2 frames in FIFO) is set anyway with no TXOK (a frame was
1774 * sent), which is not a sensible state - possibly TXFWMEMP is not
1775 * completely synchronized with the rest of the bits?
1776 *
1777 * With TX mailboxes:
1778 *
1779 * HW sends frames in CAN ID priority order. To preserve FIFO ordering
1780 * we submit frames one at a time.
1781 */
1782 if (!(devtype->flags & XCAN_FLAG_TX_MAILBOXES) &&
1783 (devtype->flags & XCAN_FLAG_TXFEMP))
1784 tx_max = min(hw_tx_max, 2U);
1785 else
1786 tx_max = 1;
1787
1788 rx_max = hw_rx_max;
1789
1790 /* Create a CAN device instance */
1791 ndev = alloc_candev(sizeof(struct xcan_priv), tx_max);
1792 if (!ndev)
1793 return -ENOMEM;
1794
1795 priv = netdev_priv(ndev);
1796 priv->dev = &pdev->dev;
1797 priv->can.bittiming_const = devtype->bittiming_const;
1798 priv->can.do_set_mode = xcan_do_set_mode;
1799 priv->can.do_get_berr_counter = xcan_get_berr_counter;
1800 priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1801 CAN_CTRLMODE_BERR_REPORTING;
1802 priv->rstc = devm_reset_control_get_optional_exclusive(&pdev->dev, NULL);
1803 if (IS_ERR(priv->rstc)) {
1804 dev_err(&pdev->dev, "Cannot get CAN reset.\n");
1805 ret = PTR_ERR(priv->rstc);
1806 goto err_free;
1807 }
1808
1809 ret = reset_control_reset(priv->rstc);
1810 if (ret)
1811 goto err_free;
1812
1813 if (devtype->cantype == XAXI_CANFD) {
1814 priv->can.data_bittiming_const =
1815 &xcan_data_bittiming_const_canfd;
1816 priv->can.tdc_const = &xcan_tdc_const_canfd;
1817 }
1818
1819 if (devtype->cantype == XAXI_CANFD_2_0) {
1820 priv->can.data_bittiming_const =
1821 &xcan_data_bittiming_const_canfd2;
1822 priv->can.tdc_const = &xcan_tdc_const_canfd2;
1823 }
1824
1825 if (devtype->cantype == XAXI_CANFD ||
1826 devtype->cantype == XAXI_CANFD_2_0) {
1827 priv->can.ctrlmode_supported |= CAN_CTRLMODE_FD |
1828 CAN_CTRLMODE_TDC_AUTO;
1829 priv->can.do_get_auto_tdcv = xcan_get_auto_tdcv;
1830 }
1831
1832 priv->reg_base = addr;
1833 priv->tx_max = tx_max;
1834 priv->devtype = *devtype;
1835 spin_lock_init(&priv->tx_lock);
1836
1837 /* Get IRQ for the device */
1838 ret = platform_get_irq(pdev, 0);
1839 if (ret < 0)
1840 goto err_reset;
1841
1842 ndev->irq = ret;
1843
1844 ndev->flags |= IFF_ECHO; /* We support local echo */
1845
1846 platform_set_drvdata(pdev, ndev);
1847 SET_NETDEV_DEV(ndev, &pdev->dev);
1848 ndev->netdev_ops = &xcan_netdev_ops;
1849 ndev->ethtool_ops = &xcan_ethtool_ops;
1850
1851 /* Getting the CAN can_clk info */
1852 priv->can_clk = devm_clk_get(&pdev->dev, "can_clk");
1853 if (IS_ERR(priv->can_clk)) {
1854 ret = dev_err_probe(&pdev->dev, PTR_ERR(priv->can_clk),
1855 "device clock not found\n");
1856 goto err_reset;
1857 }
1858
1859 priv->bus_clk = devm_clk_get(&pdev->dev, devtype->bus_clk_name);
1860 if (IS_ERR(priv->bus_clk)) {
1861 ret = dev_err_probe(&pdev->dev, PTR_ERR(priv->bus_clk),
1862 "bus clock not found\n");
1863 goto err_reset;
1864 }
1865
1866 transceiver = devm_phy_optional_get(&pdev->dev, NULL);
1867 if (IS_ERR(transceiver)) {
1868 ret = PTR_ERR(transceiver);
1869 dev_err_probe(&pdev->dev, ret, "failed to get phy\n");
1870 goto err_reset;
1871 }
1872 priv->transceiver = transceiver;
1873
1874 priv->write_reg = xcan_write_reg_le;
1875 priv->read_reg = xcan_read_reg_le;
1876
1877 pm_runtime_enable(&pdev->dev);
1878 ret = pm_runtime_get_sync(&pdev->dev);
1879 if (ret < 0) {
1880 netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1881 __func__, ret);
1882 goto err_disableclks;
1883 }
1884
1885 if (priv->read_reg(priv, XCAN_SR_OFFSET) != XCAN_SR_CONFIG_MASK) {
1886 priv->write_reg = xcan_write_reg_be;
1887 priv->read_reg = xcan_read_reg_be;
1888 }
1889
1890 priv->can.clock.freq = clk_get_rate(priv->can_clk);
1891
1892 netif_napi_add_weight(ndev, &priv->napi, xcan_rx_poll, rx_max);
1893
1894 ret = register_candev(ndev);
1895 if (ret) {
1896 dev_err(&pdev->dev, "fail to register failed (err=%d)\n", ret);
1897 goto err_disableclks;
1898 }
1899
1900 of_can_transceiver(ndev);
1901 pm_runtime_put(&pdev->dev);
1902
1903 if (priv->devtype.flags & XCAN_FLAG_CANFD_2) {
1904 priv->write_reg(priv, XCAN_AFR_2_ID_OFFSET, 0x00000000);
1905 priv->write_reg(priv, XCAN_AFR_2_MASK_OFFSET, 0x00000000);
1906 }
1907
1908 netdev_dbg(ndev, "reg_base=0x%p irq=%d clock=%d, tx buffers: actual %d, using %d\n",
1909 priv->reg_base, ndev->irq, priv->can.clock.freq,
1910 hw_tx_max, priv->tx_max);
1911
1912 return 0;
1913
1914err_disableclks:
1915 pm_runtime_put(priv->dev);
1916 pm_runtime_disable(&pdev->dev);
1917err_reset:
1918 reset_control_assert(priv->rstc);
1919err_free:
1920 free_candev(ndev);
1921err:
1922 return ret;
1923}
1924
1925/**
1926 * xcan_remove - Unregister the device after releasing the resources
1927 * @pdev: Handle to the platform device structure
1928 *
1929 * This function frees all the resources allocated to the device.
1930 * Return: 0 always
1931 */
1932static void xcan_remove(struct platform_device *pdev)
1933{
1934 struct net_device *ndev = platform_get_drvdata(pdev);
1935 struct xcan_priv *priv = netdev_priv(ndev);
1936
1937 unregister_candev(ndev);
1938 pm_runtime_disable(&pdev->dev);
1939 reset_control_assert(priv->rstc);
1940 free_candev(ndev);
1941}
1942
1943static struct platform_driver xcan_driver = {
1944 .probe = xcan_probe,
1945 .remove_new = xcan_remove,
1946 .driver = {
1947 .name = DRIVER_NAME,
1948 .pm = &xcan_dev_pm_ops,
1949 .of_match_table = xcan_of_match,
1950 },
1951};
1952
1953module_platform_driver(xcan_driver);
1954
1955MODULE_LICENSE("GPL");
1956MODULE_AUTHOR("Xilinx Inc");
1957MODULE_DESCRIPTION("Xilinx CAN interface");
1/* Xilinx CAN device driver
2 *
3 * Copyright (C) 2012 - 2014 Xilinx, Inc.
4 * Copyright (C) 2009 PetaLogix. All rights reserved.
5 *
6 * Description:
7 * This driver is developed for Axi CAN IP and for Zynq CANPS Controller.
8 * This program is free software: you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 */
18
19#include <linux/clk.h>
20#include <linux/errno.h>
21#include <linux/init.h>
22#include <linux/interrupt.h>
23#include <linux/io.h>
24#include <linux/kernel.h>
25#include <linux/module.h>
26#include <linux/netdevice.h>
27#include <linux/of.h>
28#include <linux/platform_device.h>
29#include <linux/skbuff.h>
30#include <linux/string.h>
31#include <linux/types.h>
32#include <linux/can/dev.h>
33#include <linux/can/error.h>
34#include <linux/can/led.h>
35#include <linux/pm_runtime.h>
36
37#define DRIVER_NAME "xilinx_can"
38
39/* CAN registers set */
40enum xcan_reg {
41 XCAN_SRR_OFFSET = 0x00, /* Software reset */
42 XCAN_MSR_OFFSET = 0x04, /* Mode select */
43 XCAN_BRPR_OFFSET = 0x08, /* Baud rate prescaler */
44 XCAN_BTR_OFFSET = 0x0C, /* Bit timing */
45 XCAN_ECR_OFFSET = 0x10, /* Error counter */
46 XCAN_ESR_OFFSET = 0x14, /* Error status */
47 XCAN_SR_OFFSET = 0x18, /* Status */
48 XCAN_ISR_OFFSET = 0x1C, /* Interrupt status */
49 XCAN_IER_OFFSET = 0x20, /* Interrupt enable */
50 XCAN_ICR_OFFSET = 0x24, /* Interrupt clear */
51 XCAN_TXFIFO_ID_OFFSET = 0x30,/* TX FIFO ID */
52 XCAN_TXFIFO_DLC_OFFSET = 0x34, /* TX FIFO DLC */
53 XCAN_TXFIFO_DW1_OFFSET = 0x38, /* TX FIFO Data Word 1 */
54 XCAN_TXFIFO_DW2_OFFSET = 0x3C, /* TX FIFO Data Word 2 */
55 XCAN_RXFIFO_ID_OFFSET = 0x50, /* RX FIFO ID */
56 XCAN_RXFIFO_DLC_OFFSET = 0x54, /* RX FIFO DLC */
57 XCAN_RXFIFO_DW1_OFFSET = 0x58, /* RX FIFO Data Word 1 */
58 XCAN_RXFIFO_DW2_OFFSET = 0x5C, /* RX FIFO Data Word 2 */
59};
60
61/* CAN register bit masks - XCAN_<REG>_<BIT>_MASK */
62#define XCAN_SRR_CEN_MASK 0x00000002 /* CAN enable */
63#define XCAN_SRR_RESET_MASK 0x00000001 /* Soft Reset the CAN core */
64#define XCAN_MSR_LBACK_MASK 0x00000002 /* Loop back mode select */
65#define XCAN_MSR_SLEEP_MASK 0x00000001 /* Sleep mode select */
66#define XCAN_BRPR_BRP_MASK 0x000000FF /* Baud rate prescaler */
67#define XCAN_BTR_SJW_MASK 0x00000180 /* Synchronous jump width */
68#define XCAN_BTR_TS2_MASK 0x00000070 /* Time segment 2 */
69#define XCAN_BTR_TS1_MASK 0x0000000F /* Time segment 1 */
70#define XCAN_ECR_REC_MASK 0x0000FF00 /* Receive error counter */
71#define XCAN_ECR_TEC_MASK 0x000000FF /* Transmit error counter */
72#define XCAN_ESR_ACKER_MASK 0x00000010 /* ACK error */
73#define XCAN_ESR_BERR_MASK 0x00000008 /* Bit error */
74#define XCAN_ESR_STER_MASK 0x00000004 /* Stuff error */
75#define XCAN_ESR_FMER_MASK 0x00000002 /* Form error */
76#define XCAN_ESR_CRCER_MASK 0x00000001 /* CRC error */
77#define XCAN_SR_TXFLL_MASK 0x00000400 /* TX FIFO is full */
78#define XCAN_SR_ESTAT_MASK 0x00000180 /* Error status */
79#define XCAN_SR_ERRWRN_MASK 0x00000040 /* Error warning */
80#define XCAN_SR_NORMAL_MASK 0x00000008 /* Normal mode */
81#define XCAN_SR_LBACK_MASK 0x00000002 /* Loop back mode */
82#define XCAN_SR_CONFIG_MASK 0x00000001 /* Configuration mode */
83#define XCAN_IXR_TXFEMP_MASK 0x00004000 /* TX FIFO Empty */
84#define XCAN_IXR_WKUP_MASK 0x00000800 /* Wake up interrupt */
85#define XCAN_IXR_SLP_MASK 0x00000400 /* Sleep interrupt */
86#define XCAN_IXR_BSOFF_MASK 0x00000200 /* Bus off interrupt */
87#define XCAN_IXR_ERROR_MASK 0x00000100 /* Error interrupt */
88#define XCAN_IXR_RXNEMP_MASK 0x00000080 /* RX FIFO NotEmpty intr */
89#define XCAN_IXR_RXOFLW_MASK 0x00000040 /* RX FIFO Overflow intr */
90#define XCAN_IXR_RXOK_MASK 0x00000010 /* Message received intr */
91#define XCAN_IXR_TXFLL_MASK 0x00000004 /* Tx FIFO Full intr */
92#define XCAN_IXR_TXOK_MASK 0x00000002 /* TX successful intr */
93#define XCAN_IXR_ARBLST_MASK 0x00000001 /* Arbitration lost intr */
94#define XCAN_IDR_ID1_MASK 0xFFE00000 /* Standard msg identifier */
95#define XCAN_IDR_SRR_MASK 0x00100000 /* Substitute remote TXreq */
96#define XCAN_IDR_IDE_MASK 0x00080000 /* Identifier extension */
97#define XCAN_IDR_ID2_MASK 0x0007FFFE /* Extended message ident */
98#define XCAN_IDR_RTR_MASK 0x00000001 /* Remote TX request */
99#define XCAN_DLCR_DLC_MASK 0xF0000000 /* Data length code */
100
101#define XCAN_INTR_ALL (XCAN_IXR_TXOK_MASK | XCAN_IXR_BSOFF_MASK |\
102 XCAN_IXR_WKUP_MASK | XCAN_IXR_SLP_MASK | \
103 XCAN_IXR_RXNEMP_MASK | XCAN_IXR_ERROR_MASK | \
104 XCAN_IXR_ARBLST_MASK | XCAN_IXR_RXOK_MASK)
105
106/* CAN register bit shift - XCAN_<REG>_<BIT>_SHIFT */
107#define XCAN_BTR_SJW_SHIFT 7 /* Synchronous jump width */
108#define XCAN_BTR_TS2_SHIFT 4 /* Time segment 2 */
109#define XCAN_IDR_ID1_SHIFT 21 /* Standard Messg Identifier */
110#define XCAN_IDR_ID2_SHIFT 1 /* Extended Message Identifier */
111#define XCAN_DLCR_DLC_SHIFT 28 /* Data length code */
112#define XCAN_ESR_REC_SHIFT 8 /* Rx Error Count */
113
114/* CAN frame length constants */
115#define XCAN_FRAME_MAX_DATA_LEN 8
116#define XCAN_TIMEOUT (1 * HZ)
117
118/**
119 * struct xcan_priv - This definition define CAN driver instance
120 * @can: CAN private data structure.
121 * @tx_head: Tx CAN packets ready to send on the queue
122 * @tx_tail: Tx CAN packets successfully sended on the queue
123 * @tx_max: Maximum number packets the driver can send
124 * @napi: NAPI structure
125 * @read_reg: For reading data from CAN registers
126 * @write_reg: For writing data to CAN registers
127 * @dev: Network device data structure
128 * @reg_base: Ioremapped address to registers
129 * @irq_flags: For request_irq()
130 * @bus_clk: Pointer to struct clk
131 * @can_clk: Pointer to struct clk
132 */
133struct xcan_priv {
134 struct can_priv can;
135 unsigned int tx_head;
136 unsigned int tx_tail;
137 unsigned int tx_max;
138 struct napi_struct napi;
139 u32 (*read_reg)(const struct xcan_priv *priv, enum xcan_reg reg);
140 void (*write_reg)(const struct xcan_priv *priv, enum xcan_reg reg,
141 u32 val);
142 struct device *dev;
143 void __iomem *reg_base;
144 unsigned long irq_flags;
145 struct clk *bus_clk;
146 struct clk *can_clk;
147};
148
149/* CAN Bittiming constants as per Xilinx CAN specs */
150static const struct can_bittiming_const xcan_bittiming_const = {
151 .name = DRIVER_NAME,
152 .tseg1_min = 1,
153 .tseg1_max = 16,
154 .tseg2_min = 1,
155 .tseg2_max = 8,
156 .sjw_max = 4,
157 .brp_min = 1,
158 .brp_max = 256,
159 .brp_inc = 1,
160};
161
162/**
163 * xcan_write_reg_le - Write a value to the device register little endian
164 * @priv: Driver private data structure
165 * @reg: Register offset
166 * @val: Value to write at the Register offset
167 *
168 * Write data to the paricular CAN register
169 */
170static void xcan_write_reg_le(const struct xcan_priv *priv, enum xcan_reg reg,
171 u32 val)
172{
173 iowrite32(val, priv->reg_base + reg);
174}
175
176/**
177 * xcan_read_reg_le - Read a value from the device register little endian
178 * @priv: Driver private data structure
179 * @reg: Register offset
180 *
181 * Read data from the particular CAN register
182 * Return: value read from the CAN register
183 */
184static u32 xcan_read_reg_le(const struct xcan_priv *priv, enum xcan_reg reg)
185{
186 return ioread32(priv->reg_base + reg);
187}
188
189/**
190 * xcan_write_reg_be - Write a value to the device register big endian
191 * @priv: Driver private data structure
192 * @reg: Register offset
193 * @val: Value to write at the Register offset
194 *
195 * Write data to the paricular CAN register
196 */
197static void xcan_write_reg_be(const struct xcan_priv *priv, enum xcan_reg reg,
198 u32 val)
199{
200 iowrite32be(val, priv->reg_base + reg);
201}
202
203/**
204 * xcan_read_reg_be - Read a value from the device register big endian
205 * @priv: Driver private data structure
206 * @reg: Register offset
207 *
208 * Read data from the particular CAN register
209 * Return: value read from the CAN register
210 */
211static u32 xcan_read_reg_be(const struct xcan_priv *priv, enum xcan_reg reg)
212{
213 return ioread32be(priv->reg_base + reg);
214}
215
216/**
217 * set_reset_mode - Resets the CAN device mode
218 * @ndev: Pointer to net_device structure
219 *
220 * This is the driver reset mode routine.The driver
221 * enters into configuration mode.
222 *
223 * Return: 0 on success and failure value on error
224 */
225static int set_reset_mode(struct net_device *ndev)
226{
227 struct xcan_priv *priv = netdev_priv(ndev);
228 unsigned long timeout;
229
230 priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
231
232 timeout = jiffies + XCAN_TIMEOUT;
233 while (!(priv->read_reg(priv, XCAN_SR_OFFSET) & XCAN_SR_CONFIG_MASK)) {
234 if (time_after(jiffies, timeout)) {
235 netdev_warn(ndev, "timed out for config mode\n");
236 return -ETIMEDOUT;
237 }
238 usleep_range(500, 10000);
239 }
240
241 return 0;
242}
243
244/**
245 * xcan_set_bittiming - CAN set bit timing routine
246 * @ndev: Pointer to net_device structure
247 *
248 * This is the driver set bittiming routine.
249 * Return: 0 on success and failure value on error
250 */
251static int xcan_set_bittiming(struct net_device *ndev)
252{
253 struct xcan_priv *priv = netdev_priv(ndev);
254 struct can_bittiming *bt = &priv->can.bittiming;
255 u32 btr0, btr1;
256 u32 is_config_mode;
257
258 /* Check whether Xilinx CAN is in configuration mode.
259 * It cannot set bit timing if Xilinx CAN is not in configuration mode.
260 */
261 is_config_mode = priv->read_reg(priv, XCAN_SR_OFFSET) &
262 XCAN_SR_CONFIG_MASK;
263 if (!is_config_mode) {
264 netdev_alert(ndev,
265 "BUG! Cannot set bittiming - CAN is not in config mode\n");
266 return -EPERM;
267 }
268
269 /* Setting Baud Rate prescalar value in BRPR Register */
270 btr0 = (bt->brp - 1);
271
272 /* Setting Time Segment 1 in BTR Register */
273 btr1 = (bt->prop_seg + bt->phase_seg1 - 1);
274
275 /* Setting Time Segment 2 in BTR Register */
276 btr1 |= (bt->phase_seg2 - 1) << XCAN_BTR_TS2_SHIFT;
277
278 /* Setting Synchronous jump width in BTR Register */
279 btr1 |= (bt->sjw - 1) << XCAN_BTR_SJW_SHIFT;
280
281 priv->write_reg(priv, XCAN_BRPR_OFFSET, btr0);
282 priv->write_reg(priv, XCAN_BTR_OFFSET, btr1);
283
284 netdev_dbg(ndev, "BRPR=0x%08x, BTR=0x%08x\n",
285 priv->read_reg(priv, XCAN_BRPR_OFFSET),
286 priv->read_reg(priv, XCAN_BTR_OFFSET));
287
288 return 0;
289}
290
291/**
292 * xcan_chip_start - This the drivers start routine
293 * @ndev: Pointer to net_device structure
294 *
295 * This is the drivers start routine.
296 * Based on the State of the CAN device it puts
297 * the CAN device into a proper mode.
298 *
299 * Return: 0 on success and failure value on error
300 */
301static int xcan_chip_start(struct net_device *ndev)
302{
303 struct xcan_priv *priv = netdev_priv(ndev);
304 u32 reg_msr, reg_sr_mask;
305 int err;
306 unsigned long timeout;
307
308 /* Check if it is in reset mode */
309 err = set_reset_mode(ndev);
310 if (err < 0)
311 return err;
312
313 err = xcan_set_bittiming(ndev);
314 if (err < 0)
315 return err;
316
317 /* Enable interrupts */
318 priv->write_reg(priv, XCAN_IER_OFFSET, XCAN_INTR_ALL);
319
320 /* Check whether it is loopback mode or normal mode */
321 if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
322 reg_msr = XCAN_MSR_LBACK_MASK;
323 reg_sr_mask = XCAN_SR_LBACK_MASK;
324 } else {
325 reg_msr = 0x0;
326 reg_sr_mask = XCAN_SR_NORMAL_MASK;
327 }
328
329 priv->write_reg(priv, XCAN_MSR_OFFSET, reg_msr);
330 priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_CEN_MASK);
331
332 timeout = jiffies + XCAN_TIMEOUT;
333 while (!(priv->read_reg(priv, XCAN_SR_OFFSET) & reg_sr_mask)) {
334 if (time_after(jiffies, timeout)) {
335 netdev_warn(ndev,
336 "timed out for correct mode\n");
337 return -ETIMEDOUT;
338 }
339 }
340 netdev_dbg(ndev, "status:#x%08x\n",
341 priv->read_reg(priv, XCAN_SR_OFFSET));
342
343 priv->can.state = CAN_STATE_ERROR_ACTIVE;
344 return 0;
345}
346
347/**
348 * xcan_do_set_mode - This sets the mode of the driver
349 * @ndev: Pointer to net_device structure
350 * @mode: Tells the mode of the driver
351 *
352 * This check the drivers state and calls the
353 * the corresponding modes to set.
354 *
355 * Return: 0 on success and failure value on error
356 */
357static int xcan_do_set_mode(struct net_device *ndev, enum can_mode mode)
358{
359 int ret;
360
361 switch (mode) {
362 case CAN_MODE_START:
363 ret = xcan_chip_start(ndev);
364 if (ret < 0) {
365 netdev_err(ndev, "xcan_chip_start failed!\n");
366 return ret;
367 }
368 netif_wake_queue(ndev);
369 break;
370 default:
371 ret = -EOPNOTSUPP;
372 break;
373 }
374
375 return ret;
376}
377
378/**
379 * xcan_start_xmit - Starts the transmission
380 * @skb: sk_buff pointer that contains data to be Txed
381 * @ndev: Pointer to net_device structure
382 *
383 * This function is invoked from upper layers to initiate transmission. This
384 * function uses the next available free txbuff and populates their fields to
385 * start the transmission.
386 *
387 * Return: 0 on success and failure value on error
388 */
389static int xcan_start_xmit(struct sk_buff *skb, struct net_device *ndev)
390{
391 struct xcan_priv *priv = netdev_priv(ndev);
392 struct net_device_stats *stats = &ndev->stats;
393 struct can_frame *cf = (struct can_frame *)skb->data;
394 u32 id, dlc, data[2] = {0, 0};
395
396 if (can_dropped_invalid_skb(ndev, skb))
397 return NETDEV_TX_OK;
398
399 /* Check if the TX buffer is full */
400 if (unlikely(priv->read_reg(priv, XCAN_SR_OFFSET) &
401 XCAN_SR_TXFLL_MASK)) {
402 netif_stop_queue(ndev);
403 netdev_err(ndev, "BUG!, TX FIFO full when queue awake!\n");
404 return NETDEV_TX_BUSY;
405 }
406
407 /* Watch carefully on the bit sequence */
408 if (cf->can_id & CAN_EFF_FLAG) {
409 /* Extended CAN ID format */
410 id = ((cf->can_id & CAN_EFF_MASK) << XCAN_IDR_ID2_SHIFT) &
411 XCAN_IDR_ID2_MASK;
412 id |= (((cf->can_id & CAN_EFF_MASK) >>
413 (CAN_EFF_ID_BITS-CAN_SFF_ID_BITS)) <<
414 XCAN_IDR_ID1_SHIFT) & XCAN_IDR_ID1_MASK;
415
416 /* The substibute remote TX request bit should be "1"
417 * for extended frames as in the Xilinx CAN datasheet
418 */
419 id |= XCAN_IDR_IDE_MASK | XCAN_IDR_SRR_MASK;
420
421 if (cf->can_id & CAN_RTR_FLAG)
422 /* Extended frames remote TX request */
423 id |= XCAN_IDR_RTR_MASK;
424 } else {
425 /* Standard CAN ID format */
426 id = ((cf->can_id & CAN_SFF_MASK) << XCAN_IDR_ID1_SHIFT) &
427 XCAN_IDR_ID1_MASK;
428
429 if (cf->can_id & CAN_RTR_FLAG)
430 /* Standard frames remote TX request */
431 id |= XCAN_IDR_SRR_MASK;
432 }
433
434 dlc = cf->can_dlc << XCAN_DLCR_DLC_SHIFT;
435
436 if (cf->can_dlc > 0)
437 data[0] = be32_to_cpup((__be32 *)(cf->data + 0));
438 if (cf->can_dlc > 4)
439 data[1] = be32_to_cpup((__be32 *)(cf->data + 4));
440
441 can_put_echo_skb(skb, ndev, priv->tx_head % priv->tx_max);
442 priv->tx_head++;
443
444 /* Write the Frame to Xilinx CAN TX FIFO */
445 priv->write_reg(priv, XCAN_TXFIFO_ID_OFFSET, id);
446 /* If the CAN frame is RTR frame this write triggers tranmission */
447 priv->write_reg(priv, XCAN_TXFIFO_DLC_OFFSET, dlc);
448 if (!(cf->can_id & CAN_RTR_FLAG)) {
449 priv->write_reg(priv, XCAN_TXFIFO_DW1_OFFSET, data[0]);
450 /* If the CAN frame is Standard/Extended frame this
451 * write triggers tranmission
452 */
453 priv->write_reg(priv, XCAN_TXFIFO_DW2_OFFSET, data[1]);
454 stats->tx_bytes += cf->can_dlc;
455 }
456
457 /* Check if the TX buffer is full */
458 if ((priv->tx_head - priv->tx_tail) == priv->tx_max)
459 netif_stop_queue(ndev);
460
461 return NETDEV_TX_OK;
462}
463
464/**
465 * xcan_rx - Is called from CAN isr to complete the received
466 * frame processing
467 * @ndev: Pointer to net_device structure
468 *
469 * This function is invoked from the CAN isr(poll) to process the Rx frames. It
470 * does minimal processing and invokes "netif_receive_skb" to complete further
471 * processing.
472 * Return: 1 on success and 0 on failure.
473 */
474static int xcan_rx(struct net_device *ndev)
475{
476 struct xcan_priv *priv = netdev_priv(ndev);
477 struct net_device_stats *stats = &ndev->stats;
478 struct can_frame *cf;
479 struct sk_buff *skb;
480 u32 id_xcan, dlc, data[2] = {0, 0};
481
482 skb = alloc_can_skb(ndev, &cf);
483 if (unlikely(!skb)) {
484 stats->rx_dropped++;
485 return 0;
486 }
487
488 /* Read a frame from Xilinx zynq CANPS */
489 id_xcan = priv->read_reg(priv, XCAN_RXFIFO_ID_OFFSET);
490 dlc = priv->read_reg(priv, XCAN_RXFIFO_DLC_OFFSET) >>
491 XCAN_DLCR_DLC_SHIFT;
492
493 /* Change Xilinx CAN data length format to socketCAN data format */
494 cf->can_dlc = get_can_dlc(dlc);
495
496 /* Change Xilinx CAN ID format to socketCAN ID format */
497 if (id_xcan & XCAN_IDR_IDE_MASK) {
498 /* The received frame is an Extended format frame */
499 cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >> 3;
500 cf->can_id |= (id_xcan & XCAN_IDR_ID2_MASK) >>
501 XCAN_IDR_ID2_SHIFT;
502 cf->can_id |= CAN_EFF_FLAG;
503 if (id_xcan & XCAN_IDR_RTR_MASK)
504 cf->can_id |= CAN_RTR_FLAG;
505 } else {
506 /* The received frame is a standard format frame */
507 cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >>
508 XCAN_IDR_ID1_SHIFT;
509 if (id_xcan & XCAN_IDR_SRR_MASK)
510 cf->can_id |= CAN_RTR_FLAG;
511 }
512
513 /* DW1/DW2 must always be read to remove message from RXFIFO */
514 data[0] = priv->read_reg(priv, XCAN_RXFIFO_DW1_OFFSET);
515 data[1] = priv->read_reg(priv, XCAN_RXFIFO_DW2_OFFSET);
516
517 if (!(cf->can_id & CAN_RTR_FLAG)) {
518 /* Change Xilinx CAN data format to socketCAN data format */
519 if (cf->can_dlc > 0)
520 *(__be32 *)(cf->data) = cpu_to_be32(data[0]);
521 if (cf->can_dlc > 4)
522 *(__be32 *)(cf->data + 4) = cpu_to_be32(data[1]);
523 }
524
525 stats->rx_bytes += cf->can_dlc;
526 stats->rx_packets++;
527 netif_receive_skb(skb);
528
529 return 1;
530}
531
532/**
533 * xcan_err_interrupt - error frame Isr
534 * @ndev: net_device pointer
535 * @isr: interrupt status register value
536 *
537 * This is the CAN error interrupt and it will
538 * check the the type of error and forward the error
539 * frame to upper layers.
540 */
541static void xcan_err_interrupt(struct net_device *ndev, u32 isr)
542{
543 struct xcan_priv *priv = netdev_priv(ndev);
544 struct net_device_stats *stats = &ndev->stats;
545 struct can_frame *cf;
546 struct sk_buff *skb;
547 u32 err_status, status, txerr = 0, rxerr = 0;
548
549 skb = alloc_can_err_skb(ndev, &cf);
550
551 err_status = priv->read_reg(priv, XCAN_ESR_OFFSET);
552 priv->write_reg(priv, XCAN_ESR_OFFSET, err_status);
553 txerr = priv->read_reg(priv, XCAN_ECR_OFFSET) & XCAN_ECR_TEC_MASK;
554 rxerr = ((priv->read_reg(priv, XCAN_ECR_OFFSET) &
555 XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT);
556 status = priv->read_reg(priv, XCAN_SR_OFFSET);
557
558 if (isr & XCAN_IXR_BSOFF_MASK) {
559 priv->can.state = CAN_STATE_BUS_OFF;
560 priv->can.can_stats.bus_off++;
561 /* Leave device in Config Mode in bus-off state */
562 priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
563 can_bus_off(ndev);
564 if (skb)
565 cf->can_id |= CAN_ERR_BUSOFF;
566 } else if ((status & XCAN_SR_ESTAT_MASK) == XCAN_SR_ESTAT_MASK) {
567 priv->can.state = CAN_STATE_ERROR_PASSIVE;
568 priv->can.can_stats.error_passive++;
569 if (skb) {
570 cf->can_id |= CAN_ERR_CRTL;
571 cf->data[1] = (rxerr > 127) ?
572 CAN_ERR_CRTL_RX_PASSIVE :
573 CAN_ERR_CRTL_TX_PASSIVE;
574 cf->data[6] = txerr;
575 cf->data[7] = rxerr;
576 }
577 } else if (status & XCAN_SR_ERRWRN_MASK) {
578 priv->can.state = CAN_STATE_ERROR_WARNING;
579 priv->can.can_stats.error_warning++;
580 if (skb) {
581 cf->can_id |= CAN_ERR_CRTL;
582 cf->data[1] |= (txerr > rxerr) ?
583 CAN_ERR_CRTL_TX_WARNING :
584 CAN_ERR_CRTL_RX_WARNING;
585 cf->data[6] = txerr;
586 cf->data[7] = rxerr;
587 }
588 }
589
590 /* Check for Arbitration lost interrupt */
591 if (isr & XCAN_IXR_ARBLST_MASK) {
592 priv->can.can_stats.arbitration_lost++;
593 if (skb) {
594 cf->can_id |= CAN_ERR_LOSTARB;
595 cf->data[0] = CAN_ERR_LOSTARB_UNSPEC;
596 }
597 }
598
599 /* Check for RX FIFO Overflow interrupt */
600 if (isr & XCAN_IXR_RXOFLW_MASK) {
601 stats->rx_over_errors++;
602 stats->rx_errors++;
603 priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
604 if (skb) {
605 cf->can_id |= CAN_ERR_CRTL;
606 cf->data[1] |= CAN_ERR_CRTL_RX_OVERFLOW;
607 }
608 }
609
610 /* Check for error interrupt */
611 if (isr & XCAN_IXR_ERROR_MASK) {
612 if (skb)
613 cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
614
615 /* Check for Ack error interrupt */
616 if (err_status & XCAN_ESR_ACKER_MASK) {
617 stats->tx_errors++;
618 if (skb) {
619 cf->can_id |= CAN_ERR_ACK;
620 cf->data[3] = CAN_ERR_PROT_LOC_ACK;
621 }
622 }
623
624 /* Check for Bit error interrupt */
625 if (err_status & XCAN_ESR_BERR_MASK) {
626 stats->tx_errors++;
627 if (skb) {
628 cf->can_id |= CAN_ERR_PROT;
629 cf->data[2] = CAN_ERR_PROT_BIT;
630 }
631 }
632
633 /* Check for Stuff error interrupt */
634 if (err_status & XCAN_ESR_STER_MASK) {
635 stats->rx_errors++;
636 if (skb) {
637 cf->can_id |= CAN_ERR_PROT;
638 cf->data[2] = CAN_ERR_PROT_STUFF;
639 }
640 }
641
642 /* Check for Form error interrupt */
643 if (err_status & XCAN_ESR_FMER_MASK) {
644 stats->rx_errors++;
645 if (skb) {
646 cf->can_id |= CAN_ERR_PROT;
647 cf->data[2] = CAN_ERR_PROT_FORM;
648 }
649 }
650
651 /* Check for CRC error interrupt */
652 if (err_status & XCAN_ESR_CRCER_MASK) {
653 stats->rx_errors++;
654 if (skb) {
655 cf->can_id |= CAN_ERR_PROT;
656 cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
657 }
658 }
659 priv->can.can_stats.bus_error++;
660 }
661
662 if (skb) {
663 stats->rx_packets++;
664 stats->rx_bytes += cf->can_dlc;
665 netif_rx(skb);
666 }
667
668 netdev_dbg(ndev, "%s: error status register:0x%x\n",
669 __func__, priv->read_reg(priv, XCAN_ESR_OFFSET));
670}
671
672/**
673 * xcan_state_interrupt - It will check the state of the CAN device
674 * @ndev: net_device pointer
675 * @isr: interrupt status register value
676 *
677 * This will checks the state of the CAN device
678 * and puts the device into appropriate state.
679 */
680static void xcan_state_interrupt(struct net_device *ndev, u32 isr)
681{
682 struct xcan_priv *priv = netdev_priv(ndev);
683
684 /* Check for Sleep interrupt if set put CAN device in sleep state */
685 if (isr & XCAN_IXR_SLP_MASK)
686 priv->can.state = CAN_STATE_SLEEPING;
687
688 /* Check for Wake up interrupt if set put CAN device in Active state */
689 if (isr & XCAN_IXR_WKUP_MASK)
690 priv->can.state = CAN_STATE_ERROR_ACTIVE;
691}
692
693/**
694 * xcan_rx_poll - Poll routine for rx packets (NAPI)
695 * @napi: napi structure pointer
696 * @quota: Max number of rx packets to be processed.
697 *
698 * This is the poll routine for rx part.
699 * It will process the packets maximux quota value.
700 *
701 * Return: number of packets received
702 */
703static int xcan_rx_poll(struct napi_struct *napi, int quota)
704{
705 struct net_device *ndev = napi->dev;
706 struct xcan_priv *priv = netdev_priv(ndev);
707 u32 isr, ier;
708 int work_done = 0;
709
710 isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
711 while ((isr & XCAN_IXR_RXNEMP_MASK) && (work_done < quota)) {
712 if (isr & XCAN_IXR_RXOK_MASK) {
713 priv->write_reg(priv, XCAN_ICR_OFFSET,
714 XCAN_IXR_RXOK_MASK);
715 work_done += xcan_rx(ndev);
716 } else {
717 priv->write_reg(priv, XCAN_ICR_OFFSET,
718 XCAN_IXR_RXNEMP_MASK);
719 break;
720 }
721 priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_RXNEMP_MASK);
722 isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
723 }
724
725 if (work_done)
726 can_led_event(ndev, CAN_LED_EVENT_RX);
727
728 if (work_done < quota) {
729 napi_complete(napi);
730 ier = priv->read_reg(priv, XCAN_IER_OFFSET);
731 ier |= (XCAN_IXR_RXOK_MASK | XCAN_IXR_RXNEMP_MASK);
732 priv->write_reg(priv, XCAN_IER_OFFSET, ier);
733 }
734 return work_done;
735}
736
737/**
738 * xcan_tx_interrupt - Tx Done Isr
739 * @ndev: net_device pointer
740 * @isr: Interrupt status register value
741 */
742static void xcan_tx_interrupt(struct net_device *ndev, u32 isr)
743{
744 struct xcan_priv *priv = netdev_priv(ndev);
745 struct net_device_stats *stats = &ndev->stats;
746
747 while ((priv->tx_head - priv->tx_tail > 0) &&
748 (isr & XCAN_IXR_TXOK_MASK)) {
749 priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK);
750 can_get_echo_skb(ndev, priv->tx_tail %
751 priv->tx_max);
752 priv->tx_tail++;
753 stats->tx_packets++;
754 isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
755 }
756 can_led_event(ndev, CAN_LED_EVENT_TX);
757 netif_wake_queue(ndev);
758}
759
760/**
761 * xcan_interrupt - CAN Isr
762 * @irq: irq number
763 * @dev_id: device id poniter
764 *
765 * This is the xilinx CAN Isr. It checks for the type of interrupt
766 * and invokes the corresponding ISR.
767 *
768 * Return:
769 * IRQ_NONE - If CAN device is in sleep mode, IRQ_HANDLED otherwise
770 */
771static irqreturn_t xcan_interrupt(int irq, void *dev_id)
772{
773 struct net_device *ndev = (struct net_device *)dev_id;
774 struct xcan_priv *priv = netdev_priv(ndev);
775 u32 isr, ier;
776
777 /* Get the interrupt status from Xilinx CAN */
778 isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
779 if (!isr)
780 return IRQ_NONE;
781
782 /* Check for the type of interrupt and Processing it */
783 if (isr & (XCAN_IXR_SLP_MASK | XCAN_IXR_WKUP_MASK)) {
784 priv->write_reg(priv, XCAN_ICR_OFFSET, (XCAN_IXR_SLP_MASK |
785 XCAN_IXR_WKUP_MASK));
786 xcan_state_interrupt(ndev, isr);
787 }
788
789 /* Check for Tx interrupt and Processing it */
790 if (isr & XCAN_IXR_TXOK_MASK)
791 xcan_tx_interrupt(ndev, isr);
792
793 /* Check for the type of error interrupt and Processing it */
794 if (isr & (XCAN_IXR_ERROR_MASK | XCAN_IXR_RXOFLW_MASK |
795 XCAN_IXR_BSOFF_MASK | XCAN_IXR_ARBLST_MASK)) {
796 priv->write_reg(priv, XCAN_ICR_OFFSET, (XCAN_IXR_ERROR_MASK |
797 XCAN_IXR_RXOFLW_MASK | XCAN_IXR_BSOFF_MASK |
798 XCAN_IXR_ARBLST_MASK));
799 xcan_err_interrupt(ndev, isr);
800 }
801
802 /* Check for the type of receive interrupt and Processing it */
803 if (isr & (XCAN_IXR_RXNEMP_MASK | XCAN_IXR_RXOK_MASK)) {
804 ier = priv->read_reg(priv, XCAN_IER_OFFSET);
805 ier &= ~(XCAN_IXR_RXNEMP_MASK | XCAN_IXR_RXOK_MASK);
806 priv->write_reg(priv, XCAN_IER_OFFSET, ier);
807 napi_schedule(&priv->napi);
808 }
809 return IRQ_HANDLED;
810}
811
812/**
813 * xcan_chip_stop - Driver stop routine
814 * @ndev: Pointer to net_device structure
815 *
816 * This is the drivers stop routine. It will disable the
817 * interrupts and put the device into configuration mode.
818 */
819static void xcan_chip_stop(struct net_device *ndev)
820{
821 struct xcan_priv *priv = netdev_priv(ndev);
822 u32 ier;
823
824 /* Disable interrupts and leave the can in configuration mode */
825 ier = priv->read_reg(priv, XCAN_IER_OFFSET);
826 ier &= ~XCAN_INTR_ALL;
827 priv->write_reg(priv, XCAN_IER_OFFSET, ier);
828 priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
829 priv->can.state = CAN_STATE_STOPPED;
830}
831
832/**
833 * xcan_open - Driver open routine
834 * @ndev: Pointer to net_device structure
835 *
836 * This is the driver open routine.
837 * Return: 0 on success and failure value on error
838 */
839static int xcan_open(struct net_device *ndev)
840{
841 struct xcan_priv *priv = netdev_priv(ndev);
842 int ret;
843
844 ret = pm_runtime_get_sync(priv->dev);
845 if (ret < 0) {
846 netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
847 __func__, ret);
848 return ret;
849 }
850
851 ret = request_irq(ndev->irq, xcan_interrupt, priv->irq_flags,
852 ndev->name, ndev);
853 if (ret < 0) {
854 netdev_err(ndev, "irq allocation for CAN failed\n");
855 goto err;
856 }
857
858 /* Set chip into reset mode */
859 ret = set_reset_mode(ndev);
860 if (ret < 0) {
861 netdev_err(ndev, "mode resetting failed!\n");
862 goto err_irq;
863 }
864
865 /* Common open */
866 ret = open_candev(ndev);
867 if (ret)
868 goto err_irq;
869
870 ret = xcan_chip_start(ndev);
871 if (ret < 0) {
872 netdev_err(ndev, "xcan_chip_start failed!\n");
873 goto err_candev;
874 }
875
876 can_led_event(ndev, CAN_LED_EVENT_OPEN);
877 napi_enable(&priv->napi);
878 netif_start_queue(ndev);
879
880 return 0;
881
882err_candev:
883 close_candev(ndev);
884err_irq:
885 free_irq(ndev->irq, ndev);
886err:
887 pm_runtime_put(priv->dev);
888
889 return ret;
890}
891
892/**
893 * xcan_close - Driver close routine
894 * @ndev: Pointer to net_device structure
895 *
896 * Return: 0 always
897 */
898static int xcan_close(struct net_device *ndev)
899{
900 struct xcan_priv *priv = netdev_priv(ndev);
901
902 netif_stop_queue(ndev);
903 napi_disable(&priv->napi);
904 xcan_chip_stop(ndev);
905 free_irq(ndev->irq, ndev);
906 close_candev(ndev);
907
908 can_led_event(ndev, CAN_LED_EVENT_STOP);
909 pm_runtime_put(priv->dev);
910
911 return 0;
912}
913
914/**
915 * xcan_get_berr_counter - error counter routine
916 * @ndev: Pointer to net_device structure
917 * @bec: Pointer to can_berr_counter structure
918 *
919 * This is the driver error counter routine.
920 * Return: 0 on success and failure value on error
921 */
922static int xcan_get_berr_counter(const struct net_device *ndev,
923 struct can_berr_counter *bec)
924{
925 struct xcan_priv *priv = netdev_priv(ndev);
926 int ret;
927
928 ret = pm_runtime_get_sync(priv->dev);
929 if (ret < 0) {
930 netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
931 __func__, ret);
932 return ret;
933 }
934
935 bec->txerr = priv->read_reg(priv, XCAN_ECR_OFFSET) & XCAN_ECR_TEC_MASK;
936 bec->rxerr = ((priv->read_reg(priv, XCAN_ECR_OFFSET) &
937 XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT);
938
939 pm_runtime_put(priv->dev);
940
941 return 0;
942}
943
944
945static const struct net_device_ops xcan_netdev_ops = {
946 .ndo_open = xcan_open,
947 .ndo_stop = xcan_close,
948 .ndo_start_xmit = xcan_start_xmit,
949 .ndo_change_mtu = can_change_mtu,
950};
951
952/**
953 * xcan_suspend - Suspend method for the driver
954 * @dev: Address of the device structure
955 *
956 * Put the driver into low power mode.
957 * Return: 0 on success and failure value on error
958 */
959static int __maybe_unused xcan_suspend(struct device *dev)
960{
961 if (!device_may_wakeup(dev))
962 return pm_runtime_force_suspend(dev);
963
964 return 0;
965}
966
967/**
968 * xcan_resume - Resume from suspend
969 * @dev: Address of the device structure
970 *
971 * Resume operation after suspend.
972 * Return: 0 on success and failure value on error
973 */
974static int __maybe_unused xcan_resume(struct device *dev)
975{
976 if (!device_may_wakeup(dev))
977 return pm_runtime_force_resume(dev);
978
979 return 0;
980
981}
982
983/**
984 * xcan_runtime_suspend - Runtime suspend method for the driver
985 * @dev: Address of the device structure
986 *
987 * Put the driver into low power mode.
988 * Return: 0 always
989 */
990static int __maybe_unused xcan_runtime_suspend(struct device *dev)
991{
992 struct net_device *ndev = dev_get_drvdata(dev);
993 struct xcan_priv *priv = netdev_priv(ndev);
994
995 if (netif_running(ndev)) {
996 netif_stop_queue(ndev);
997 netif_device_detach(ndev);
998 }
999
1000 priv->write_reg(priv, XCAN_MSR_OFFSET, XCAN_MSR_SLEEP_MASK);
1001 priv->can.state = CAN_STATE_SLEEPING;
1002
1003 clk_disable_unprepare(priv->bus_clk);
1004 clk_disable_unprepare(priv->can_clk);
1005
1006 return 0;
1007}
1008
1009/**
1010 * xcan_runtime_resume - Runtime resume from suspend
1011 * @dev: Address of the device structure
1012 *
1013 * Resume operation after suspend.
1014 * Return: 0 on success and failure value on error
1015 */
1016static int __maybe_unused xcan_runtime_resume(struct device *dev)
1017{
1018 struct net_device *ndev = dev_get_drvdata(dev);
1019 struct xcan_priv *priv = netdev_priv(ndev);
1020 int ret;
1021 u32 isr, status;
1022
1023 ret = clk_prepare_enable(priv->bus_clk);
1024 if (ret) {
1025 dev_err(dev, "Cannot enable clock.\n");
1026 return ret;
1027 }
1028 ret = clk_prepare_enable(priv->can_clk);
1029 if (ret) {
1030 dev_err(dev, "Cannot enable clock.\n");
1031 clk_disable_unprepare(priv->bus_clk);
1032 return ret;
1033 }
1034
1035 priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
1036 isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
1037 status = priv->read_reg(priv, XCAN_SR_OFFSET);
1038
1039 if (netif_running(ndev)) {
1040 if (isr & XCAN_IXR_BSOFF_MASK) {
1041 priv->can.state = CAN_STATE_BUS_OFF;
1042 priv->write_reg(priv, XCAN_SRR_OFFSET,
1043 XCAN_SRR_RESET_MASK);
1044 } else if ((status & XCAN_SR_ESTAT_MASK) ==
1045 XCAN_SR_ESTAT_MASK) {
1046 priv->can.state = CAN_STATE_ERROR_PASSIVE;
1047 } else if (status & XCAN_SR_ERRWRN_MASK) {
1048 priv->can.state = CAN_STATE_ERROR_WARNING;
1049 } else {
1050 priv->can.state = CAN_STATE_ERROR_ACTIVE;
1051 }
1052 netif_device_attach(ndev);
1053 netif_start_queue(ndev);
1054 }
1055
1056 return 0;
1057}
1058
1059static const struct dev_pm_ops xcan_dev_pm_ops = {
1060 SET_SYSTEM_SLEEP_PM_OPS(xcan_suspend, xcan_resume)
1061 SET_RUNTIME_PM_OPS(xcan_runtime_suspend, xcan_runtime_resume, NULL)
1062};
1063
1064/**
1065 * xcan_probe - Platform registration call
1066 * @pdev: Handle to the platform device structure
1067 *
1068 * This function does all the memory allocation and registration for the CAN
1069 * device.
1070 *
1071 * Return: 0 on success and failure value on error
1072 */
1073static int xcan_probe(struct platform_device *pdev)
1074{
1075 struct resource *res; /* IO mem resources */
1076 struct net_device *ndev;
1077 struct xcan_priv *priv;
1078 void __iomem *addr;
1079 int ret, rx_max, tx_max;
1080
1081 /* Get the virtual base address for the device */
1082 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1083 addr = devm_ioremap_resource(&pdev->dev, res);
1084 if (IS_ERR(addr)) {
1085 ret = PTR_ERR(addr);
1086 goto err;
1087 }
1088
1089 ret = of_property_read_u32(pdev->dev.of_node, "tx-fifo-depth", &tx_max);
1090 if (ret < 0)
1091 goto err;
1092
1093 ret = of_property_read_u32(pdev->dev.of_node, "rx-fifo-depth", &rx_max);
1094 if (ret < 0)
1095 goto err;
1096
1097 /* Create a CAN device instance */
1098 ndev = alloc_candev(sizeof(struct xcan_priv), tx_max);
1099 if (!ndev)
1100 return -ENOMEM;
1101
1102 priv = netdev_priv(ndev);
1103 priv->dev = &pdev->dev;
1104 priv->can.bittiming_const = &xcan_bittiming_const;
1105 priv->can.do_set_mode = xcan_do_set_mode;
1106 priv->can.do_get_berr_counter = xcan_get_berr_counter;
1107 priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1108 CAN_CTRLMODE_BERR_REPORTING;
1109 priv->reg_base = addr;
1110 priv->tx_max = tx_max;
1111
1112 /* Get IRQ for the device */
1113 ndev->irq = platform_get_irq(pdev, 0);
1114 ndev->flags |= IFF_ECHO; /* We support local echo */
1115
1116 platform_set_drvdata(pdev, ndev);
1117 SET_NETDEV_DEV(ndev, &pdev->dev);
1118 ndev->netdev_ops = &xcan_netdev_ops;
1119
1120 /* Getting the CAN can_clk info */
1121 priv->can_clk = devm_clk_get(&pdev->dev, "can_clk");
1122 if (IS_ERR(priv->can_clk)) {
1123 dev_err(&pdev->dev, "Device clock not found.\n");
1124 ret = PTR_ERR(priv->can_clk);
1125 goto err_free;
1126 }
1127 /* Check for type of CAN device */
1128 if (of_device_is_compatible(pdev->dev.of_node,
1129 "xlnx,zynq-can-1.0")) {
1130 priv->bus_clk = devm_clk_get(&pdev->dev, "pclk");
1131 if (IS_ERR(priv->bus_clk)) {
1132 dev_err(&pdev->dev, "bus clock not found\n");
1133 ret = PTR_ERR(priv->bus_clk);
1134 goto err_free;
1135 }
1136 } else {
1137 priv->bus_clk = devm_clk_get(&pdev->dev, "s_axi_aclk");
1138 if (IS_ERR(priv->bus_clk)) {
1139 dev_err(&pdev->dev, "bus clock not found\n");
1140 ret = PTR_ERR(priv->bus_clk);
1141 goto err_free;
1142 }
1143 }
1144
1145 priv->write_reg = xcan_write_reg_le;
1146 priv->read_reg = xcan_read_reg_le;
1147
1148 pm_runtime_enable(&pdev->dev);
1149 ret = pm_runtime_get_sync(&pdev->dev);
1150 if (ret < 0) {
1151 netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1152 __func__, ret);
1153 goto err_pmdisable;
1154 }
1155
1156 if (priv->read_reg(priv, XCAN_SR_OFFSET) != XCAN_SR_CONFIG_MASK) {
1157 priv->write_reg = xcan_write_reg_be;
1158 priv->read_reg = xcan_read_reg_be;
1159 }
1160
1161 priv->can.clock.freq = clk_get_rate(priv->can_clk);
1162
1163 netif_napi_add(ndev, &priv->napi, xcan_rx_poll, rx_max);
1164
1165 ret = register_candev(ndev);
1166 if (ret) {
1167 dev_err(&pdev->dev, "fail to register failed (err=%d)\n", ret);
1168 goto err_disableclks;
1169 }
1170
1171 devm_can_led_init(ndev);
1172
1173 pm_runtime_put(&pdev->dev);
1174
1175 netdev_dbg(ndev, "reg_base=0x%p irq=%d clock=%d, tx fifo depth:%d\n",
1176 priv->reg_base, ndev->irq, priv->can.clock.freq,
1177 priv->tx_max);
1178
1179 return 0;
1180
1181err_disableclks:
1182 pm_runtime_put(priv->dev);
1183err_pmdisable:
1184 pm_runtime_disable(&pdev->dev);
1185err_free:
1186 free_candev(ndev);
1187err:
1188 return ret;
1189}
1190
1191/**
1192 * xcan_remove - Unregister the device after releasing the resources
1193 * @pdev: Handle to the platform device structure
1194 *
1195 * This function frees all the resources allocated to the device.
1196 * Return: 0 always
1197 */
1198static int xcan_remove(struct platform_device *pdev)
1199{
1200 struct net_device *ndev = platform_get_drvdata(pdev);
1201 struct xcan_priv *priv = netdev_priv(ndev);
1202
1203 unregister_candev(ndev);
1204 pm_runtime_disable(&pdev->dev);
1205 netif_napi_del(&priv->napi);
1206 free_candev(ndev);
1207
1208 return 0;
1209}
1210
1211/* Match table for OF platform binding */
1212static const struct of_device_id xcan_of_match[] = {
1213 { .compatible = "xlnx,zynq-can-1.0", },
1214 { .compatible = "xlnx,axi-can-1.00.a", },
1215 { /* end of list */ },
1216};
1217MODULE_DEVICE_TABLE(of, xcan_of_match);
1218
1219static struct platform_driver xcan_driver = {
1220 .probe = xcan_probe,
1221 .remove = xcan_remove,
1222 .driver = {
1223 .name = DRIVER_NAME,
1224 .pm = &xcan_dev_pm_ops,
1225 .of_match_table = xcan_of_match,
1226 },
1227};
1228
1229module_platform_driver(xcan_driver);
1230
1231MODULE_LICENSE("GPL");
1232MODULE_AUTHOR("Xilinx Inc");
1233MODULE_DESCRIPTION("Xilinx CAN interface");