Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
   1// SPDX-License-Identifier: GPL-2.0
   2
   3/* Driver for Theobroma Systems UCAN devices, Protocol Version 3
   4 *
   5 * Copyright (C) 2018 Theobroma Systems Design und Consulting GmbH
   6 *
   7 *
   8 * General Description:
   9 *
  10 * The USB Device uses three Endpoints:
  11 *
  12 *   CONTROL Endpoint: Is used the setup the device (start, stop,
  13 *   info, configure).
  14 *
  15 *   IN Endpoint: The device sends CAN Frame Messages and Device
  16 *   Information using the IN endpoint.
  17 *
  18 *   OUT Endpoint: The driver sends configuration requests, and CAN
  19 *   Frames on the out endpoint.
  20 *
  21 * Error Handling:
  22 *
  23 *   If error reporting is turned on the device encodes error into CAN
  24 *   error frames (see uapi/linux/can/error.h) and sends it using the
  25 *   IN Endpoint. The driver updates statistics and forward it.
  26 */
  27
  28#include <linux/can.h>
  29#include <linux/can/dev.h>
  30#include <linux/can/error.h>
  31#include <linux/ethtool.h>
  32#include <linux/module.h>
  33#include <linux/netdevice.h>
  34#include <linux/signal.h>
  35#include <linux/skbuff.h>
  36#include <linux/slab.h>
  37#include <linux/usb.h>
  38
  39#define UCAN_DRIVER_NAME "ucan"
  40#define UCAN_MAX_RX_URBS 8
  41/* the CAN controller needs a while to enable/disable the bus */
  42#define UCAN_USB_CTL_PIPE_TIMEOUT 1000
  43/* this driver currently supports protocol version 3 only */
  44#define UCAN_PROTOCOL_VERSION_MIN 3
  45#define UCAN_PROTOCOL_VERSION_MAX 3
  46
  47/* UCAN Message Definitions
  48 * ------------------------
  49 *
  50 *  ucan_message_out_t and ucan_message_in_t define the messages
  51 *  transmitted on the OUT and IN endpoint.
  52 *
  53 *  Multibyte fields are transmitted with little endianness
  54 *
  55 *  INTR Endpoint: a single uint32_t storing the current space in the fifo
  56 *
  57 *  OUT Endpoint: single message of type ucan_message_out_t is
  58 *    transmitted on the out endpoint
  59 *
  60 *  IN Endpoint: multiple messages ucan_message_in_t concateted in
  61 *    the following way:
  62 *
  63 *	m[n].len <=> the length if message n(including the header in bytes)
  64 *	m[n] is is aligned to a 4 byte boundary, hence
  65 *	  offset(m[0])	 := 0;
  66 *	  offset(m[n+1]) := offset(m[n]) + (m[n].len + 3) & 3
  67 *
  68 *	this implies that
  69 *	  offset(m[n]) % 4 <=> 0
  70 */
  71
  72/* Device Global Commands */
  73enum {
  74	UCAN_DEVICE_GET_FW_STRING = 0,
  75};
  76
  77/* UCAN Commands */
  78enum {
  79	/* start the can transceiver - val defines the operation mode */
  80	UCAN_COMMAND_START = 0,
  81	/* cancel pending transmissions and stop the can transceiver */
  82	UCAN_COMMAND_STOP = 1,
  83	/* send can transceiver into low-power sleep mode */
  84	UCAN_COMMAND_SLEEP = 2,
  85	/* wake up can transceiver from low-power sleep mode */
  86	UCAN_COMMAND_WAKEUP = 3,
  87	/* reset the can transceiver */
  88	UCAN_COMMAND_RESET = 4,
  89	/* get piece of info from the can transceiver - subcmd defines what
  90	 * piece
  91	 */
  92	UCAN_COMMAND_GET = 5,
  93	/* clear or disable hardware filter - subcmd defines which of the two */
  94	UCAN_COMMAND_FILTER = 6,
  95	/* Setup bittiming */
  96	UCAN_COMMAND_SET_BITTIMING = 7,
  97	/* recover from bus-off state */
  98	UCAN_COMMAND_RESTART = 8,
  99};
 100
 101/* UCAN_COMMAND_START and UCAN_COMMAND_GET_INFO operation modes (bitmap).
 102 * Undefined bits must be set to 0.
 103 */
 104enum {
 105	UCAN_MODE_LOOPBACK = BIT(0),
 106	UCAN_MODE_SILENT = BIT(1),
 107	UCAN_MODE_3_SAMPLES = BIT(2),
 108	UCAN_MODE_ONE_SHOT = BIT(3),
 109	UCAN_MODE_BERR_REPORT = BIT(4),
 110};
 111
 112/* UCAN_COMMAND_GET subcommands */
 113enum {
 114	UCAN_COMMAND_GET_INFO = 0,
 115	UCAN_COMMAND_GET_PROTOCOL_VERSION = 1,
 116};
 117
 118/* UCAN_COMMAND_FILTER subcommands */
 119enum {
 120	UCAN_FILTER_CLEAR = 0,
 121	UCAN_FILTER_DISABLE = 1,
 122	UCAN_FILTER_ENABLE = 2,
 123};
 124
 125/* OUT endpoint message types */
 126enum {
 127	UCAN_OUT_TX = 2,     /* transmit a CAN frame */
 128};
 129
 130/* IN endpoint message types */
 131enum {
 132	UCAN_IN_TX_COMPLETE = 1,  /* CAN frame transmission completed */
 133	UCAN_IN_RX = 2,           /* CAN frame received */
 134};
 135
 136struct ucan_ctl_cmd_start {
 137	__le16 mode;         /* OR-ing any of UCAN_MODE_* */
 138} __packed;
 139
 140struct ucan_ctl_cmd_set_bittiming {
 141	__le32 tq;           /* Time quanta (TQ) in nanoseconds */
 142	__le16 brp;          /* TQ Prescaler */
 143	__le16 sample_point; /* Samplepoint on tenth percent */
 144	u8 prop_seg;         /* Propagation segment in TQs */
 145	u8 phase_seg1;       /* Phase buffer segment 1 in TQs */
 146	u8 phase_seg2;       /* Phase buffer segment 2 in TQs */
 147	u8 sjw;              /* Synchronisation jump width in TQs */
 148} __packed;
 149
 150struct ucan_ctl_cmd_device_info {
 151	__le32 freq;         /* Clock Frequency for tq generation */
 152	u8 tx_fifo;          /* Size of the transmission fifo */
 153	u8 sjw_max;          /* can_bittiming fields... */
 154	u8 tseg1_min;
 155	u8 tseg1_max;
 156	u8 tseg2_min;
 157	u8 tseg2_max;
 158	__le16 brp_inc;
 159	__le32 brp_min;
 160	__le32 brp_max;      /* ...can_bittiming fields */
 161	__le16 ctrlmodes;    /* supported control modes */
 162	__le16 hwfilter;     /* Number of HW filter banks */
 163	__le16 rxmboxes;     /* Number of receive Mailboxes */
 164} __packed;
 165
 166struct ucan_ctl_cmd_get_protocol_version {
 167	__le32 version;
 168} __packed;
 169
 170union ucan_ctl_payload {
 171	/* Setup Bittiming
 172	 * bmRequest == UCAN_COMMAND_START
 173	 */
 174	struct ucan_ctl_cmd_start cmd_start;
 175	/* Setup Bittiming
 176	 * bmRequest == UCAN_COMMAND_SET_BITTIMING
 177	 */
 178	struct ucan_ctl_cmd_set_bittiming cmd_set_bittiming;
 179	/* Get Device Information
 180	 * bmRequest == UCAN_COMMAND_GET; wValue = UCAN_COMMAND_GET_INFO
 181	 */
 182	struct ucan_ctl_cmd_device_info cmd_get_device_info;
 183	/* Get Protocol Version
 184	 * bmRequest == UCAN_COMMAND_GET;
 185	 * wValue = UCAN_COMMAND_GET_PROTOCOL_VERSION
 186	 */
 187	struct ucan_ctl_cmd_get_protocol_version cmd_get_protocol_version;
 188
 189	u8 raw[128];
 190} __packed;
 191
 192enum {
 193	UCAN_TX_COMPLETE_SUCCESS = BIT(0),
 194};
 195
 196/* Transmission Complete within ucan_message_in */
 197struct ucan_tx_complete_entry_t {
 198	u8 echo_index;
 199	u8 flags;
 200} __packed __aligned(0x2);
 201
 202/* CAN Data message format within ucan_message_in/out */
 203struct ucan_can_msg {
 204	/* note DLC is computed by
 205	 *    msg.len - sizeof (msg.len)
 206	 *            - sizeof (msg.type)
 207	 *            - sizeof (msg.can_msg.id)
 208	 */
 209	__le32 id;
 210
 211	union {
 212		u8 data[CAN_MAX_DLEN];  /* Data of CAN frames */
 213		u8 dlc;                 /* RTR dlc */
 214	};
 215} __packed;
 216
 217/* OUT Endpoint, outbound messages */
 218struct ucan_message_out {
 219	__le16 len; /* Length of the content include header */
 220	u8 type;    /* UCAN_OUT_TX and friends */
 221	u8 subtype; /* command sub type */
 222
 223	union {
 224		/* Transmit CAN frame
 225		 * (type == UCAN_TX) && ((msg.can_msg.id & CAN_RTR_FLAG) == 0)
 226		 * subtype stores the echo id
 227		 */
 228		struct ucan_can_msg can_msg;
 229	} msg;
 230} __packed __aligned(0x4);
 231
 232/* IN Endpoint, inbound messages */
 233struct ucan_message_in {
 234	__le16 len; /* Length of the content include header */
 235	u8 type;    /* UCAN_IN_RX and friends */
 236	u8 subtype; /* command sub type */
 237
 238	union {
 239		/* CAN Frame received
 240		 * (type == UCAN_IN_RX)
 241		 * && ((msg.can_msg.id & CAN_RTR_FLAG) == 0)
 242		 */
 243		struct ucan_can_msg can_msg;
 244
 245		/* CAN transmission complete
 246		 * (type == UCAN_IN_TX_COMPLETE)
 247		 */
 248		DECLARE_FLEX_ARRAY(struct ucan_tx_complete_entry_t,
 249				   can_tx_complete_msg);
 250	} __aligned(0x4) msg;
 251} __packed __aligned(0x4);
 252
 253/* Macros to calculate message lengths */
 254#define UCAN_OUT_HDR_SIZE offsetof(struct ucan_message_out, msg)
 255
 256#define UCAN_IN_HDR_SIZE offsetof(struct ucan_message_in, msg)
 257#define UCAN_IN_LEN(member) (UCAN_OUT_HDR_SIZE + sizeof(member))
 258
 259struct ucan_priv;
 260
 261/* Context Information for transmission URBs */
 262struct ucan_urb_context {
 263	struct ucan_priv *up;
 264	bool allocated;
 265};
 266
 267/* Information reported by the USB device */
 268struct ucan_device_info {
 269	struct can_bittiming_const bittiming_const;
 270	u8 tx_fifo;
 271};
 272
 273/* Driver private data */
 274struct ucan_priv {
 275	/* must be the first member */
 276	struct can_priv can;
 277
 278	/* linux USB device structures */
 279	struct usb_device *udev;
 280	struct net_device *netdev;
 281
 282	/* lock for can->echo_skb (used around
 283	 * can_put/get/free_echo_skb
 284	 */
 285	spinlock_t echo_skb_lock;
 286
 287	/* usb device information */
 288	u8 intf_index;
 289	u8 in_ep_addr;
 290	u8 out_ep_addr;
 291	u16 in_ep_size;
 292
 293	/* transmission and reception buffers */
 294	struct usb_anchor rx_urbs;
 295	struct usb_anchor tx_urbs;
 296
 297	union ucan_ctl_payload *ctl_msg_buffer;
 298	struct ucan_device_info device_info;
 299
 300	/* transmission control information and locks */
 301	spinlock_t context_lock;
 302	unsigned int available_tx_urbs;
 303	struct ucan_urb_context *context_array;
 304};
 305
 306static u8 ucan_can_cc_dlc2len(struct ucan_can_msg *msg, u16 len)
 307{
 308	if (le32_to_cpu(msg->id) & CAN_RTR_FLAG)
 309		return can_cc_dlc2len(msg->dlc);
 310	else
 311		return can_cc_dlc2len(len - (UCAN_IN_HDR_SIZE + sizeof(msg->id)));
 312}
 313
 314static void ucan_release_context_array(struct ucan_priv *up)
 315{
 316	if (!up->context_array)
 317		return;
 318
 319	/* lock is not needed because, driver is currently opening or closing */
 320	up->available_tx_urbs = 0;
 321
 322	kfree(up->context_array);
 323	up->context_array = NULL;
 324}
 325
 326static int ucan_alloc_context_array(struct ucan_priv *up)
 327{
 328	int i;
 329
 330	/* release contexts if any */
 331	ucan_release_context_array(up);
 332
 333	up->context_array = kcalloc(up->device_info.tx_fifo,
 334				    sizeof(*up->context_array),
 335				    GFP_KERNEL);
 336	if (!up->context_array) {
 337		netdev_err(up->netdev,
 338			   "Not enough memory to allocate tx contexts\n");
 339		return -ENOMEM;
 340	}
 341
 342	for (i = 0; i < up->device_info.tx_fifo; i++) {
 343		up->context_array[i].allocated = false;
 344		up->context_array[i].up = up;
 345	}
 346
 347	/* lock is not needed because, driver is currently opening */
 348	up->available_tx_urbs = up->device_info.tx_fifo;
 349
 350	return 0;
 351}
 352
 353static struct ucan_urb_context *ucan_alloc_context(struct ucan_priv *up)
 354{
 355	int i;
 356	unsigned long flags;
 357	struct ucan_urb_context *ret = NULL;
 358
 359	if (WARN_ON_ONCE(!up->context_array))
 360		return NULL;
 361
 362	/* execute context operation atomically */
 363	spin_lock_irqsave(&up->context_lock, flags);
 364
 365	for (i = 0; i < up->device_info.tx_fifo; i++) {
 366		if (!up->context_array[i].allocated) {
 367			/* update context */
 368			ret = &up->context_array[i];
 369			up->context_array[i].allocated = true;
 370
 371			/* stop queue if necessary */
 372			up->available_tx_urbs--;
 373			if (!up->available_tx_urbs)
 374				netif_stop_queue(up->netdev);
 375
 376			break;
 377		}
 378	}
 379
 380	spin_unlock_irqrestore(&up->context_lock, flags);
 381	return ret;
 382}
 383
 384static bool ucan_release_context(struct ucan_priv *up,
 385				 struct ucan_urb_context *ctx)
 386{
 387	unsigned long flags;
 388	bool ret = false;
 389
 390	if (WARN_ON_ONCE(!up->context_array))
 391		return false;
 392
 393	/* execute context operation atomically */
 394	spin_lock_irqsave(&up->context_lock, flags);
 395
 396	/* context was not allocated, maybe the device sent garbage */
 397	if (ctx->allocated) {
 398		ctx->allocated = false;
 399
 400		/* check if the queue needs to be woken */
 401		if (!up->available_tx_urbs)
 402			netif_wake_queue(up->netdev);
 403		up->available_tx_urbs++;
 404
 405		ret = true;
 406	}
 407
 408	spin_unlock_irqrestore(&up->context_lock, flags);
 409	return ret;
 410}
 411
 412static int ucan_ctrl_command_out(struct ucan_priv *up,
 413				 u8 cmd, u16 subcmd, u16 datalen)
 414{
 415	return usb_control_msg(up->udev,
 416			       usb_sndctrlpipe(up->udev, 0),
 417			       cmd,
 418			       USB_DIR_OUT | USB_TYPE_VENDOR |
 419						USB_RECIP_INTERFACE,
 420			       subcmd,
 421			       up->intf_index,
 422			       up->ctl_msg_buffer,
 423			       datalen,
 424			       UCAN_USB_CTL_PIPE_TIMEOUT);
 425}
 426
 427static int ucan_device_request_in(struct ucan_priv *up,
 428				  u8 cmd, u16 subcmd, u16 datalen)
 429{
 430	return usb_control_msg(up->udev,
 431			       usb_rcvctrlpipe(up->udev, 0),
 432			       cmd,
 433			       USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
 434			       subcmd,
 435			       0,
 436			       up->ctl_msg_buffer,
 437			       datalen,
 438			       UCAN_USB_CTL_PIPE_TIMEOUT);
 439}
 440
 441/* Parse the device information structure reported by the device and
 442 * setup private variables accordingly
 443 */
 444static void ucan_parse_device_info(struct ucan_priv *up,
 445				   struct ucan_ctl_cmd_device_info *device_info)
 446{
 447	struct can_bittiming_const *bittiming =
 448		&up->device_info.bittiming_const;
 449	u16 ctrlmodes;
 450
 451	/* store the data */
 452	up->can.clock.freq = le32_to_cpu(device_info->freq);
 453	up->device_info.tx_fifo = device_info->tx_fifo;
 454	strcpy(bittiming->name, "ucan");
 455	bittiming->tseg1_min = device_info->tseg1_min;
 456	bittiming->tseg1_max = device_info->tseg1_max;
 457	bittiming->tseg2_min = device_info->tseg2_min;
 458	bittiming->tseg2_max = device_info->tseg2_max;
 459	bittiming->sjw_max = device_info->sjw_max;
 460	bittiming->brp_min = le32_to_cpu(device_info->brp_min);
 461	bittiming->brp_max = le32_to_cpu(device_info->brp_max);
 462	bittiming->brp_inc = le16_to_cpu(device_info->brp_inc);
 463
 464	ctrlmodes = le16_to_cpu(device_info->ctrlmodes);
 465
 466	up->can.ctrlmode_supported = 0;
 467
 468	if (ctrlmodes & UCAN_MODE_LOOPBACK)
 469		up->can.ctrlmode_supported |= CAN_CTRLMODE_LOOPBACK;
 470	if (ctrlmodes & UCAN_MODE_SILENT)
 471		up->can.ctrlmode_supported |= CAN_CTRLMODE_LISTENONLY;
 472	if (ctrlmodes & UCAN_MODE_3_SAMPLES)
 473		up->can.ctrlmode_supported |= CAN_CTRLMODE_3_SAMPLES;
 474	if (ctrlmodes & UCAN_MODE_ONE_SHOT)
 475		up->can.ctrlmode_supported |= CAN_CTRLMODE_ONE_SHOT;
 476	if (ctrlmodes & UCAN_MODE_BERR_REPORT)
 477		up->can.ctrlmode_supported |= CAN_CTRLMODE_BERR_REPORTING;
 478}
 479
 480/* Handle a CAN error frame that we have received from the device.
 481 * Returns true if the can state has changed.
 482 */
 483static bool ucan_handle_error_frame(struct ucan_priv *up,
 484				    struct ucan_message_in *m,
 485				    canid_t canid)
 486{
 487	enum can_state new_state = up->can.state;
 488	struct net_device_stats *net_stats = &up->netdev->stats;
 489	struct can_device_stats *can_stats = &up->can.can_stats;
 490
 491	if (canid & CAN_ERR_LOSTARB)
 492		can_stats->arbitration_lost++;
 493
 494	if (canid & CAN_ERR_BUSERROR)
 495		can_stats->bus_error++;
 496
 497	if (canid & CAN_ERR_ACK)
 498		net_stats->tx_errors++;
 499
 500	if (canid & CAN_ERR_BUSOFF)
 501		new_state = CAN_STATE_BUS_OFF;
 502
 503	/* controller problems, details in data[1] */
 504	if (canid & CAN_ERR_CRTL) {
 505		u8 d1 = m->msg.can_msg.data[1];
 506
 507		if (d1 & CAN_ERR_CRTL_RX_OVERFLOW)
 508			net_stats->rx_over_errors++;
 509
 510		/* controller state bits: if multiple are set the worst wins */
 511		if (d1 & CAN_ERR_CRTL_ACTIVE)
 512			new_state = CAN_STATE_ERROR_ACTIVE;
 513
 514		if (d1 & (CAN_ERR_CRTL_RX_WARNING | CAN_ERR_CRTL_TX_WARNING))
 515			new_state = CAN_STATE_ERROR_WARNING;
 516
 517		if (d1 & (CAN_ERR_CRTL_RX_PASSIVE | CAN_ERR_CRTL_TX_PASSIVE))
 518			new_state = CAN_STATE_ERROR_PASSIVE;
 519	}
 520
 521	/* protocol error, details in data[2] */
 522	if (canid & CAN_ERR_PROT) {
 523		u8 d2 = m->msg.can_msg.data[2];
 524
 525		if (d2 & CAN_ERR_PROT_TX)
 526			net_stats->tx_errors++;
 527		else
 528			net_stats->rx_errors++;
 529	}
 530
 531	/* no state change - we are done */
 532	if (up->can.state == new_state)
 533		return false;
 534
 535	/* we switched into a better state */
 536	if (up->can.state > new_state) {
 537		up->can.state = new_state;
 538		return true;
 539	}
 540
 541	/* we switched into a worse state */
 542	up->can.state = new_state;
 543	switch (new_state) {
 544	case CAN_STATE_BUS_OFF:
 545		can_stats->bus_off++;
 546		can_bus_off(up->netdev);
 547		break;
 548	case CAN_STATE_ERROR_PASSIVE:
 549		can_stats->error_passive++;
 550		break;
 551	case CAN_STATE_ERROR_WARNING:
 552		can_stats->error_warning++;
 553		break;
 554	default:
 555		break;
 556	}
 557	return true;
 558}
 559
 560/* Callback on reception of a can frame via the IN endpoint
 561 *
 562 * This function allocates an skb and transferres it to the Linux
 563 * network stack
 564 */
 565static void ucan_rx_can_msg(struct ucan_priv *up, struct ucan_message_in *m)
 566{
 567	int len;
 568	canid_t canid;
 569	struct can_frame *cf;
 570	struct sk_buff *skb;
 571	struct net_device_stats *stats = &up->netdev->stats;
 572
 573	/* get the contents of the length field */
 574	len = le16_to_cpu(m->len);
 575
 576	/* check sanity */
 577	if (len < UCAN_IN_HDR_SIZE + sizeof(m->msg.can_msg.id)) {
 578		netdev_warn(up->netdev, "invalid input message len: %d\n", len);
 579		return;
 580	}
 581
 582	/* handle error frames */
 583	canid = le32_to_cpu(m->msg.can_msg.id);
 584	if (canid & CAN_ERR_FLAG) {
 585		bool busstate_changed = ucan_handle_error_frame(up, m, canid);
 586
 587		/* if berr-reporting is off only state changes get through */
 588		if (!(up->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
 589		    !busstate_changed)
 590			return;
 591	} else {
 592		canid_t canid_mask;
 593		/* compute the mask for canid */
 594		canid_mask = CAN_RTR_FLAG;
 595		if (canid & CAN_EFF_FLAG)
 596			canid_mask |= CAN_EFF_MASK | CAN_EFF_FLAG;
 597		else
 598			canid_mask |= CAN_SFF_MASK;
 599
 600		if (canid & ~canid_mask)
 601			netdev_warn(up->netdev,
 602				    "unexpected bits set (canid %x, mask %x)",
 603				    canid, canid_mask);
 604
 605		canid &= canid_mask;
 606	}
 607
 608	/* allocate skb */
 609	skb = alloc_can_skb(up->netdev, &cf);
 610	if (!skb)
 611		return;
 612
 613	/* fill the can frame */
 614	cf->can_id = canid;
 615
 616	/* compute DLC taking RTR_FLAG into account */
 617	cf->len = ucan_can_cc_dlc2len(&m->msg.can_msg, len);
 618
 619	/* copy the payload of non RTR frames */
 620	if (!(cf->can_id & CAN_RTR_FLAG) || (cf->can_id & CAN_ERR_FLAG))
 621		memcpy(cf->data, m->msg.can_msg.data, cf->len);
 622
 623	/* don't count error frames as real packets */
 624	if (!(cf->can_id & CAN_ERR_FLAG)) {
 625		stats->rx_packets++;
 626		if (!(cf->can_id & CAN_RTR_FLAG))
 627			stats->rx_bytes += cf->len;
 628	}
 629
 630	/* pass it to Linux */
 631	netif_rx(skb);
 632}
 633
 634/* callback indicating completed transmission */
 635static void ucan_tx_complete_msg(struct ucan_priv *up,
 636				 struct ucan_message_in *m)
 637{
 638	unsigned long flags;
 639	u16 count, i;
 640	u8 echo_index;
 641	u16 len = le16_to_cpu(m->len);
 642
 643	struct ucan_urb_context *context;
 644
 645	if (len < UCAN_IN_HDR_SIZE || (len % 2 != 0)) {
 646		netdev_err(up->netdev, "invalid tx complete length\n");
 647		return;
 648	}
 649
 650	count = (len - UCAN_IN_HDR_SIZE) / 2;
 651	for (i = 0; i < count; i++) {
 652		/* we did not submit such echo ids */
 653		echo_index = m->msg.can_tx_complete_msg[i].echo_index;
 654		if (echo_index >= up->device_info.tx_fifo) {
 655			up->netdev->stats.tx_errors++;
 656			netdev_err(up->netdev,
 657				   "invalid echo_index %d received\n",
 658				   echo_index);
 659			continue;
 660		}
 661
 662		/* gather information from the context */
 663		context = &up->context_array[echo_index];
 664
 665		/* Release context and restart queue if necessary.
 666		 * Also check if the context was allocated
 667		 */
 668		if (!ucan_release_context(up, context))
 669			continue;
 670
 671		spin_lock_irqsave(&up->echo_skb_lock, flags);
 672		if (m->msg.can_tx_complete_msg[i].flags &
 673		    UCAN_TX_COMPLETE_SUCCESS) {
 674			/* update statistics */
 675			up->netdev->stats.tx_packets++;
 676			up->netdev->stats.tx_bytes +=
 677				can_get_echo_skb(up->netdev, echo_index, NULL);
 678		} else {
 679			up->netdev->stats.tx_dropped++;
 680			can_free_echo_skb(up->netdev, echo_index, NULL);
 681		}
 682		spin_unlock_irqrestore(&up->echo_skb_lock, flags);
 683	}
 684}
 685
 686/* callback on reception of a USB message */
 687static void ucan_read_bulk_callback(struct urb *urb)
 688{
 689	int ret;
 690	int pos;
 691	struct ucan_priv *up = urb->context;
 692	struct net_device *netdev = up->netdev;
 693	struct ucan_message_in *m;
 694
 695	/* the device is not up and the driver should not receive any
 696	 * data on the bulk in pipe
 697	 */
 698	if (WARN_ON(!up->context_array)) {
 699		usb_free_coherent(up->udev,
 700				  up->in_ep_size,
 701				  urb->transfer_buffer,
 702				  urb->transfer_dma);
 703		return;
 704	}
 705
 706	/* check URB status */
 707	switch (urb->status) {
 708	case 0:
 709		break;
 710	case -ENOENT:
 711	case -EPIPE:
 712	case -EPROTO:
 713	case -ESHUTDOWN:
 714	case -ETIME:
 715		/* urb is not resubmitted -> free dma data */
 716		usb_free_coherent(up->udev,
 717				  up->in_ep_size,
 718				  urb->transfer_buffer,
 719				  urb->transfer_dma);
 720		netdev_dbg(up->netdev, "not resubmitting urb; status: %d\n",
 721			   urb->status);
 722		return;
 723	default:
 724		goto resubmit;
 725	}
 726
 727	/* sanity check */
 728	if (!netif_device_present(netdev))
 729		return;
 730
 731	/* iterate over input */
 732	pos = 0;
 733	while (pos < urb->actual_length) {
 734		int len;
 735
 736		/* check sanity (length of header) */
 737		if ((urb->actual_length - pos) < UCAN_IN_HDR_SIZE) {
 738			netdev_warn(up->netdev,
 739				    "invalid message (short; no hdr; l:%d)\n",
 740				    urb->actual_length);
 741			goto resubmit;
 742		}
 743
 744		/* setup the message address */
 745		m = (struct ucan_message_in *)
 746			((u8 *)urb->transfer_buffer + pos);
 747		len = le16_to_cpu(m->len);
 748
 749		/* check sanity (length of content) */
 750		if (urb->actual_length - pos < len) {
 751			netdev_warn(up->netdev,
 752				    "invalid message (short; no data; l:%d)\n",
 753				    urb->actual_length);
 754			print_hex_dump(KERN_WARNING,
 755				       "raw data: ",
 756				       DUMP_PREFIX_ADDRESS,
 757				       16,
 758				       1,
 759				       urb->transfer_buffer,
 760				       urb->actual_length,
 761				       true);
 762
 763			goto resubmit;
 764		}
 765
 766		switch (m->type) {
 767		case UCAN_IN_RX:
 768			ucan_rx_can_msg(up, m);
 769			break;
 770		case UCAN_IN_TX_COMPLETE:
 771			ucan_tx_complete_msg(up, m);
 772			break;
 773		default:
 774			netdev_warn(up->netdev,
 775				    "invalid message (type; t:%d)\n",
 776				    m->type);
 777			break;
 778		}
 779
 780		/* proceed to next message */
 781		pos += len;
 782		/* align to 4 byte boundary */
 783		pos = round_up(pos, 4);
 784	}
 785
 786resubmit:
 787	/* resubmit urb when done */
 788	usb_fill_bulk_urb(urb, up->udev,
 789			  usb_rcvbulkpipe(up->udev,
 790					  up->in_ep_addr),
 791			  urb->transfer_buffer,
 792			  up->in_ep_size,
 793			  ucan_read_bulk_callback,
 794			  up);
 795
 796	usb_anchor_urb(urb, &up->rx_urbs);
 797	ret = usb_submit_urb(urb, GFP_ATOMIC);
 798
 799	if (ret < 0) {
 800		netdev_err(up->netdev,
 801			   "failed resubmitting read bulk urb: %d\n",
 802			   ret);
 803
 804		usb_unanchor_urb(urb);
 805		usb_free_coherent(up->udev,
 806				  up->in_ep_size,
 807				  urb->transfer_buffer,
 808				  urb->transfer_dma);
 809
 810		if (ret == -ENODEV)
 811			netif_device_detach(netdev);
 812	}
 813}
 814
 815/* callback after transmission of a USB message */
 816static void ucan_write_bulk_callback(struct urb *urb)
 817{
 818	unsigned long flags;
 819	struct ucan_priv *up;
 820	struct ucan_urb_context *context = urb->context;
 821
 822	/* get the urb context */
 823	if (WARN_ON_ONCE(!context))
 824		return;
 825
 826	/* free up our allocated buffer */
 827	usb_free_coherent(urb->dev,
 828			  sizeof(struct ucan_message_out),
 829			  urb->transfer_buffer,
 830			  urb->transfer_dma);
 831
 832	up = context->up;
 833	if (WARN_ON_ONCE(!up))
 834		return;
 835
 836	/* sanity check */
 837	if (!netif_device_present(up->netdev))
 838		return;
 839
 840	/* transmission failed (USB - the device will not send a TX complete) */
 841	if (urb->status) {
 842		netdev_warn(up->netdev,
 843			    "failed to transmit USB message to device: %d\n",
 844			     urb->status);
 845
 846		/* update counters an cleanup */
 847		spin_lock_irqsave(&up->echo_skb_lock, flags);
 848		can_free_echo_skb(up->netdev, context - up->context_array, NULL);
 849		spin_unlock_irqrestore(&up->echo_skb_lock, flags);
 850
 851		up->netdev->stats.tx_dropped++;
 852
 853		/* release context and restart the queue if necessary */
 854		if (!ucan_release_context(up, context))
 855			netdev_err(up->netdev,
 856				   "urb failed, failed to release context\n");
 857	}
 858}
 859
 860static void ucan_cleanup_rx_urbs(struct ucan_priv *up, struct urb **urbs)
 861{
 862	int i;
 863
 864	for (i = 0; i < UCAN_MAX_RX_URBS; i++) {
 865		if (urbs[i]) {
 866			usb_unanchor_urb(urbs[i]);
 867			usb_free_coherent(up->udev,
 868					  up->in_ep_size,
 869					  urbs[i]->transfer_buffer,
 870					  urbs[i]->transfer_dma);
 871			usb_free_urb(urbs[i]);
 872		}
 873	}
 874
 875	memset(urbs, 0, sizeof(*urbs) * UCAN_MAX_RX_URBS);
 876}
 877
 878static int ucan_prepare_and_anchor_rx_urbs(struct ucan_priv *up,
 879					   struct urb **urbs)
 880{
 881	int i;
 882
 883	memset(urbs, 0, sizeof(*urbs) * UCAN_MAX_RX_URBS);
 884
 885	for (i = 0; i < UCAN_MAX_RX_URBS; i++) {
 886		void *buf;
 887
 888		urbs[i] = usb_alloc_urb(0, GFP_KERNEL);
 889		if (!urbs[i])
 890			goto err;
 891
 892		buf = usb_alloc_coherent(up->udev,
 893					 up->in_ep_size,
 894					 GFP_KERNEL, &urbs[i]->transfer_dma);
 895		if (!buf) {
 896			/* cleanup this urb */
 897			usb_free_urb(urbs[i]);
 898			urbs[i] = NULL;
 899			goto err;
 900		}
 901
 902		usb_fill_bulk_urb(urbs[i], up->udev,
 903				  usb_rcvbulkpipe(up->udev,
 904						  up->in_ep_addr),
 905				  buf,
 906				  up->in_ep_size,
 907				  ucan_read_bulk_callback,
 908				  up);
 909
 910		urbs[i]->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
 911
 912		usb_anchor_urb(urbs[i], &up->rx_urbs);
 913	}
 914	return 0;
 915
 916err:
 917	/* cleanup other unsubmitted urbs */
 918	ucan_cleanup_rx_urbs(up, urbs);
 919	return -ENOMEM;
 920}
 921
 922/* Submits rx urbs with the semantic: Either submit all, or cleanup
 923 * everything. I case of errors submitted urbs are killed and all urbs in
 924 * the array are freed. I case of no errors every entry in the urb
 925 * array is set to NULL.
 926 */
 927static int ucan_submit_rx_urbs(struct ucan_priv *up, struct urb **urbs)
 928{
 929	int i, ret;
 930
 931	/* Iterate over all urbs to submit. On success remove the urb
 932	 * from the list.
 933	 */
 934	for (i = 0; i < UCAN_MAX_RX_URBS; i++) {
 935		ret = usb_submit_urb(urbs[i], GFP_KERNEL);
 936		if (ret) {
 937			netdev_err(up->netdev,
 938				   "could not submit urb; code: %d\n",
 939				   ret);
 940			goto err;
 941		}
 942
 943		/* Anchor URB and drop reference, USB core will take
 944		 * care of freeing it
 945		 */
 946		usb_free_urb(urbs[i]);
 947		urbs[i] = NULL;
 948	}
 949	return 0;
 950
 951err:
 952	/* Cleanup unsubmitted urbs */
 953	ucan_cleanup_rx_urbs(up, urbs);
 954
 955	/* Kill urbs that are already submitted */
 956	usb_kill_anchored_urbs(&up->rx_urbs);
 957
 958	return ret;
 959}
 960
 961/* Open the network device */
 962static int ucan_open(struct net_device *netdev)
 963{
 964	int ret, ret_cleanup;
 965	u16 ctrlmode;
 966	struct urb *urbs[UCAN_MAX_RX_URBS];
 967	struct ucan_priv *up = netdev_priv(netdev);
 968
 969	ret = ucan_alloc_context_array(up);
 970	if (ret)
 971		return ret;
 972
 973	/* Allocate and prepare IN URBS - allocated and anchored
 974	 * urbs are stored in urbs[] for clean
 975	 */
 976	ret = ucan_prepare_and_anchor_rx_urbs(up, urbs);
 977	if (ret)
 978		goto err_contexts;
 979
 980	/* Check the control mode */
 981	ctrlmode = 0;
 982	if (up->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)
 983		ctrlmode |= UCAN_MODE_LOOPBACK;
 984	if (up->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
 985		ctrlmode |= UCAN_MODE_SILENT;
 986	if (up->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES)
 987		ctrlmode |= UCAN_MODE_3_SAMPLES;
 988	if (up->can.ctrlmode & CAN_CTRLMODE_ONE_SHOT)
 989		ctrlmode |= UCAN_MODE_ONE_SHOT;
 990
 991	/* Enable this in any case - filtering is down within the
 992	 * receive path
 993	 */
 994	ctrlmode |= UCAN_MODE_BERR_REPORT;
 995	up->ctl_msg_buffer->cmd_start.mode = cpu_to_le16(ctrlmode);
 996
 997	/* Driver is ready to receive data - start the USB device */
 998	ret = ucan_ctrl_command_out(up, UCAN_COMMAND_START, 0, 2);
 999	if (ret < 0) {
1000		netdev_err(up->netdev,
1001			   "could not start device, code: %d\n",
1002			   ret);
1003		goto err_reset;
1004	}
1005
1006	/* Call CAN layer open */
1007	ret = open_candev(netdev);
1008	if (ret)
1009		goto err_stop;
1010
1011	/* Driver is ready to receive data. Submit RX URBS */
1012	ret = ucan_submit_rx_urbs(up, urbs);
1013	if (ret)
1014		goto err_stop;
1015
1016	up->can.state = CAN_STATE_ERROR_ACTIVE;
1017
1018	/* Start the network queue */
1019	netif_start_queue(netdev);
1020
1021	return 0;
1022
1023err_stop:
1024	/* The device have started already stop it */
1025	ret_cleanup = ucan_ctrl_command_out(up, UCAN_COMMAND_STOP, 0, 0);
1026	if (ret_cleanup < 0)
1027		netdev_err(up->netdev,
1028			   "could not stop device, code: %d\n",
1029			   ret_cleanup);
1030
1031err_reset:
1032	/* The device might have received data, reset it for
1033	 * consistent state
1034	 */
1035	ret_cleanup = ucan_ctrl_command_out(up, UCAN_COMMAND_RESET, 0, 0);
1036	if (ret_cleanup < 0)
1037		netdev_err(up->netdev,
1038			   "could not reset device, code: %d\n",
1039			   ret_cleanup);
1040
1041	/* clean up unsubmitted urbs */
1042	ucan_cleanup_rx_urbs(up, urbs);
1043
1044err_contexts:
1045	ucan_release_context_array(up);
1046	return ret;
1047}
1048
1049static struct urb *ucan_prepare_tx_urb(struct ucan_priv *up,
1050				       struct ucan_urb_context *context,
1051				       struct can_frame *cf,
1052				       u8 echo_index)
1053{
1054	int mlen;
1055	struct urb *urb;
1056	struct ucan_message_out *m;
1057
1058	/* create a URB, and a buffer for it, and copy the data to the URB */
1059	urb = usb_alloc_urb(0, GFP_ATOMIC);
1060	if (!urb) {
1061		netdev_err(up->netdev, "no memory left for URBs\n");
1062		return NULL;
1063	}
1064
1065	m = usb_alloc_coherent(up->udev,
1066			       sizeof(struct ucan_message_out),
1067			       GFP_ATOMIC,
1068			       &urb->transfer_dma);
1069	if (!m) {
1070		netdev_err(up->netdev, "no memory left for USB buffer\n");
1071		usb_free_urb(urb);
1072		return NULL;
1073	}
1074
1075	/* build the USB message */
1076	m->type = UCAN_OUT_TX;
1077	m->msg.can_msg.id = cpu_to_le32(cf->can_id);
1078
1079	if (cf->can_id & CAN_RTR_FLAG) {
1080		mlen = UCAN_OUT_HDR_SIZE +
1081			offsetof(struct ucan_can_msg, dlc) +
1082			sizeof(m->msg.can_msg.dlc);
1083		m->msg.can_msg.dlc = cf->len;
1084	} else {
1085		mlen = UCAN_OUT_HDR_SIZE +
1086			sizeof(m->msg.can_msg.id) + cf->len;
1087		memcpy(m->msg.can_msg.data, cf->data, cf->len);
1088	}
1089	m->len = cpu_to_le16(mlen);
1090
1091	m->subtype = echo_index;
1092
1093	/* build the urb */
1094	usb_fill_bulk_urb(urb, up->udev,
1095			  usb_sndbulkpipe(up->udev,
1096					  up->out_ep_addr),
1097			  m, mlen, ucan_write_bulk_callback, context);
1098	urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
1099
1100	return urb;
1101}
1102
1103static void ucan_clean_up_tx_urb(struct ucan_priv *up, struct urb *urb)
1104{
1105	usb_free_coherent(up->udev, sizeof(struct ucan_message_out),
1106			  urb->transfer_buffer, urb->transfer_dma);
1107	usb_free_urb(urb);
1108}
1109
1110/* callback when Linux needs to send a can frame */
1111static netdev_tx_t ucan_start_xmit(struct sk_buff *skb,
1112				   struct net_device *netdev)
1113{
1114	unsigned long flags;
1115	int ret;
1116	u8 echo_index;
1117	struct urb *urb;
1118	struct ucan_urb_context *context;
1119	struct ucan_priv *up = netdev_priv(netdev);
1120	struct can_frame *cf = (struct can_frame *)skb->data;
1121
1122	/* check skb */
1123	if (can_dev_dropped_skb(netdev, skb))
1124		return NETDEV_TX_OK;
1125
1126	/* allocate a context and slow down tx path, if fifo state is low */
1127	context = ucan_alloc_context(up);
1128	echo_index = context - up->context_array;
1129
1130	if (WARN_ON_ONCE(!context))
1131		return NETDEV_TX_BUSY;
1132
1133	/* prepare urb for transmission */
1134	urb = ucan_prepare_tx_urb(up, context, cf, echo_index);
1135	if (!urb)
1136		goto drop;
1137
1138	/* put the skb on can loopback stack */
1139	spin_lock_irqsave(&up->echo_skb_lock, flags);
1140	can_put_echo_skb(skb, up->netdev, echo_index, 0);
1141	spin_unlock_irqrestore(&up->echo_skb_lock, flags);
1142
1143	/* transmit it */
1144	usb_anchor_urb(urb, &up->tx_urbs);
1145	ret = usb_submit_urb(urb, GFP_ATOMIC);
1146
1147	/* cleanup urb */
1148	if (ret) {
1149		/* on error, clean up */
1150		usb_unanchor_urb(urb);
1151		ucan_clean_up_tx_urb(up, urb);
1152		if (!ucan_release_context(up, context))
1153			netdev_err(up->netdev,
1154				   "xmit err: failed to release context\n");
1155
1156		/* remove the skb from the echo stack - this also
1157		 * frees the skb
1158		 */
1159		spin_lock_irqsave(&up->echo_skb_lock, flags);
1160		can_free_echo_skb(up->netdev, echo_index, NULL);
1161		spin_unlock_irqrestore(&up->echo_skb_lock, flags);
1162
1163		if (ret == -ENODEV) {
1164			netif_device_detach(up->netdev);
1165		} else {
1166			netdev_warn(up->netdev,
1167				    "xmit err: failed to submit urb %d\n",
1168				    ret);
1169			up->netdev->stats.tx_dropped++;
1170		}
1171		return NETDEV_TX_OK;
1172	}
1173
1174	netif_trans_update(netdev);
1175
1176	/* release ref, as we do not need the urb anymore */
1177	usb_free_urb(urb);
1178
1179	return NETDEV_TX_OK;
1180
1181drop:
1182	if (!ucan_release_context(up, context))
1183		netdev_err(up->netdev,
1184			   "xmit drop: failed to release context\n");
1185	dev_kfree_skb(skb);
1186	up->netdev->stats.tx_dropped++;
1187
1188	return NETDEV_TX_OK;
1189}
1190
1191/* Device goes down
1192 *
1193 * Clean up used resources
1194 */
1195static int ucan_close(struct net_device *netdev)
1196{
1197	int ret;
1198	struct ucan_priv *up = netdev_priv(netdev);
1199
1200	up->can.state = CAN_STATE_STOPPED;
1201
1202	/* stop sending data */
1203	usb_kill_anchored_urbs(&up->tx_urbs);
1204
1205	/* stop receiving data */
1206	usb_kill_anchored_urbs(&up->rx_urbs);
1207
1208	/* stop and reset can device */
1209	ret = ucan_ctrl_command_out(up, UCAN_COMMAND_STOP, 0, 0);
1210	if (ret < 0)
1211		netdev_err(up->netdev,
1212			   "could not stop device, code: %d\n",
1213			   ret);
1214
1215	ret = ucan_ctrl_command_out(up, UCAN_COMMAND_RESET, 0, 0);
1216	if (ret < 0)
1217		netdev_err(up->netdev,
1218			   "could not reset device, code: %d\n",
1219			   ret);
1220
1221	netif_stop_queue(netdev);
1222
1223	ucan_release_context_array(up);
1224
1225	close_candev(up->netdev);
1226	return 0;
1227}
1228
1229/* CAN driver callbacks */
1230static const struct net_device_ops ucan_netdev_ops = {
1231	.ndo_open = ucan_open,
1232	.ndo_stop = ucan_close,
1233	.ndo_start_xmit = ucan_start_xmit,
1234	.ndo_change_mtu = can_change_mtu,
1235};
1236
1237static const struct ethtool_ops ucan_ethtool_ops = {
1238	.get_ts_info = ethtool_op_get_ts_info,
1239};
1240
1241/* Request to set bittiming
1242 *
1243 * This function generates an USB set bittiming message and transmits
1244 * it to the device
1245 */
1246static int ucan_set_bittiming(struct net_device *netdev)
1247{
1248	int ret;
1249	struct ucan_priv *up = netdev_priv(netdev);
1250	struct ucan_ctl_cmd_set_bittiming *cmd_set_bittiming;
1251
1252	cmd_set_bittiming = &up->ctl_msg_buffer->cmd_set_bittiming;
1253	cmd_set_bittiming->tq = cpu_to_le32(up->can.bittiming.tq);
1254	cmd_set_bittiming->brp = cpu_to_le16(up->can.bittiming.brp);
1255	cmd_set_bittiming->sample_point =
1256	    cpu_to_le16(up->can.bittiming.sample_point);
1257	cmd_set_bittiming->prop_seg = up->can.bittiming.prop_seg;
1258	cmd_set_bittiming->phase_seg1 = up->can.bittiming.phase_seg1;
1259	cmd_set_bittiming->phase_seg2 = up->can.bittiming.phase_seg2;
1260	cmd_set_bittiming->sjw = up->can.bittiming.sjw;
1261
1262	ret = ucan_ctrl_command_out(up, UCAN_COMMAND_SET_BITTIMING, 0,
1263				    sizeof(*cmd_set_bittiming));
1264	return (ret < 0) ? ret : 0;
1265}
1266
1267/* Restart the device to get it out of BUS-OFF state.
1268 * Called when the user runs "ip link set can1 type can restart".
1269 */
1270static int ucan_set_mode(struct net_device *netdev, enum can_mode mode)
1271{
1272	int ret;
1273	unsigned long flags;
1274	struct ucan_priv *up = netdev_priv(netdev);
1275
1276	switch (mode) {
1277	case CAN_MODE_START:
1278		netdev_dbg(up->netdev, "restarting device\n");
1279
1280		ret = ucan_ctrl_command_out(up, UCAN_COMMAND_RESTART, 0, 0);
1281		up->can.state = CAN_STATE_ERROR_ACTIVE;
1282
1283		/* check if queue can be restarted,
1284		 * up->available_tx_urbs must be protected by the
1285		 * lock
1286		 */
1287		spin_lock_irqsave(&up->context_lock, flags);
1288
1289		if (up->available_tx_urbs > 0)
1290			netif_wake_queue(up->netdev);
1291
1292		spin_unlock_irqrestore(&up->context_lock, flags);
1293
1294		return ret;
1295	default:
1296		return -EOPNOTSUPP;
1297	}
1298}
1299
1300/* Probe the device, reset it and gather general device information */
1301static int ucan_probe(struct usb_interface *intf,
1302		      const struct usb_device_id *id)
1303{
1304	int ret;
1305	int i;
1306	u32 protocol_version;
1307	struct usb_device *udev;
1308	struct net_device *netdev;
1309	struct usb_host_interface *iface_desc;
1310	struct ucan_priv *up;
1311	struct usb_endpoint_descriptor *ep;
1312	u16 in_ep_size;
1313	u16 out_ep_size;
1314	u8 in_ep_addr;
1315	u8 out_ep_addr;
1316	union ucan_ctl_payload *ctl_msg_buffer;
1317	char firmware_str[sizeof(union ucan_ctl_payload) + 1];
1318
1319	udev = interface_to_usbdev(intf);
1320
1321	/* Stage 1 - Interface Parsing
1322	 * ---------------------------
1323	 *
1324	 * Identifie the device USB interface descriptor and its
1325	 * endpoints. Probing is aborted on errors.
1326	 */
1327
1328	/* check if the interface is sane */
1329	iface_desc = intf->cur_altsetting;
1330	if (!iface_desc)
1331		return -ENODEV;
1332
1333	dev_info(&udev->dev,
1334		 "%s: probing device on interface #%d\n",
1335		 UCAN_DRIVER_NAME,
1336		 iface_desc->desc.bInterfaceNumber);
1337
1338	/* interface sanity check */
1339	if (iface_desc->desc.bNumEndpoints != 2) {
1340		dev_err(&udev->dev,
1341			"%s: invalid EP count (%d)",
1342			UCAN_DRIVER_NAME, iface_desc->desc.bNumEndpoints);
1343		goto err_firmware_needs_update;
1344	}
1345
1346	/* check interface endpoints */
1347	in_ep_addr = 0;
1348	out_ep_addr = 0;
1349	in_ep_size = 0;
1350	out_ep_size = 0;
1351	for (i = 0; i < iface_desc->desc.bNumEndpoints; i++) {
1352		ep = &iface_desc->endpoint[i].desc;
1353
1354		if (((ep->bEndpointAddress & USB_ENDPOINT_DIR_MASK) != 0) &&
1355		    ((ep->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
1356		     USB_ENDPOINT_XFER_BULK)) {
1357			/* In Endpoint */
1358			in_ep_addr = ep->bEndpointAddress;
1359			in_ep_addr &= USB_ENDPOINT_NUMBER_MASK;
1360			in_ep_size = le16_to_cpu(ep->wMaxPacketSize);
1361		} else if (((ep->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ==
1362			    0) &&
1363			   ((ep->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
1364			    USB_ENDPOINT_XFER_BULK)) {
1365			/* Out Endpoint */
1366			out_ep_addr = ep->bEndpointAddress;
1367			out_ep_addr &= USB_ENDPOINT_NUMBER_MASK;
1368			out_ep_size = le16_to_cpu(ep->wMaxPacketSize);
1369		}
1370	}
1371
1372	/* check if interface is sane */
1373	if (!in_ep_addr || !out_ep_addr) {
1374		dev_err(&udev->dev, "%s: invalid endpoint configuration\n",
1375			UCAN_DRIVER_NAME);
1376		goto err_firmware_needs_update;
1377	}
1378	if (in_ep_size < sizeof(struct ucan_message_in)) {
1379		dev_err(&udev->dev, "%s: invalid in_ep MaxPacketSize\n",
1380			UCAN_DRIVER_NAME);
1381		goto err_firmware_needs_update;
1382	}
1383	if (out_ep_size < sizeof(struct ucan_message_out)) {
1384		dev_err(&udev->dev, "%s: invalid out_ep MaxPacketSize\n",
1385			UCAN_DRIVER_NAME);
1386		goto err_firmware_needs_update;
1387	}
1388
1389	/* Stage 2 - Device Identification
1390	 * -------------------------------
1391	 *
1392	 * The device interface seems to be a ucan device. Do further
1393	 * compatibility checks. On error probing is aborted, on
1394	 * success this stage leaves the ctl_msg_buffer with the
1395	 * reported contents of a GET_INFO command (supported
1396	 * bittimings, tx_fifo depth). This information is used in
1397	 * Stage 3 for the final driver initialisation.
1398	 */
1399
1400	/* Prepare Memory for control transfers */
1401	ctl_msg_buffer = devm_kzalloc(&udev->dev,
1402				      sizeof(union ucan_ctl_payload),
1403				      GFP_KERNEL);
1404	if (!ctl_msg_buffer) {
1405		dev_err(&udev->dev,
1406			"%s: failed to allocate control pipe memory\n",
1407			UCAN_DRIVER_NAME);
1408		return -ENOMEM;
1409	}
1410
1411	/* get protocol version
1412	 *
1413	 * note: ucan_ctrl_command_* wrappers cannot be used yet
1414	 * because `up` is initialised in Stage 3
1415	 */
1416	ret = usb_control_msg(udev,
1417			      usb_rcvctrlpipe(udev, 0),
1418			      UCAN_COMMAND_GET,
1419			      USB_DIR_IN | USB_TYPE_VENDOR |
1420					USB_RECIP_INTERFACE,
1421			      UCAN_COMMAND_GET_PROTOCOL_VERSION,
1422			      iface_desc->desc.bInterfaceNumber,
1423			      ctl_msg_buffer,
1424			      sizeof(union ucan_ctl_payload),
1425			      UCAN_USB_CTL_PIPE_TIMEOUT);
1426
1427	/* older firmware version do not support this command - those
1428	 * are not supported by this drive
1429	 */
1430	if (ret != 4) {
1431		dev_err(&udev->dev,
1432			"%s: could not read protocol version, ret=%d\n",
1433			UCAN_DRIVER_NAME, ret);
1434		if (ret >= 0)
1435			ret = -EINVAL;
1436		goto err_firmware_needs_update;
1437	}
1438
1439	/* this driver currently supports protocol version 3 only */
1440	protocol_version =
1441		le32_to_cpu(ctl_msg_buffer->cmd_get_protocol_version.version);
1442	if (protocol_version < UCAN_PROTOCOL_VERSION_MIN ||
1443	    protocol_version > UCAN_PROTOCOL_VERSION_MAX) {
1444		dev_err(&udev->dev,
1445			"%s: device protocol version %d is not supported\n",
1446			UCAN_DRIVER_NAME, protocol_version);
1447		goto err_firmware_needs_update;
1448	}
1449
1450	/* request the device information and store it in ctl_msg_buffer
1451	 *
1452	 * note: ucan_ctrl_command_* wrappers cannot be used yet
1453	 * because `up` is initialised in Stage 3
1454	 */
1455	ret = usb_control_msg(udev,
1456			      usb_rcvctrlpipe(udev, 0),
1457			      UCAN_COMMAND_GET,
1458			      USB_DIR_IN | USB_TYPE_VENDOR |
1459					USB_RECIP_INTERFACE,
1460			      UCAN_COMMAND_GET_INFO,
1461			      iface_desc->desc.bInterfaceNumber,
1462			      ctl_msg_buffer,
1463			      sizeof(ctl_msg_buffer->cmd_get_device_info),
1464			      UCAN_USB_CTL_PIPE_TIMEOUT);
1465
1466	if (ret < 0) {
1467		dev_err(&udev->dev, "%s: failed to retrieve device info\n",
1468			UCAN_DRIVER_NAME);
1469		goto err_firmware_needs_update;
1470	}
1471	if (ret < sizeof(ctl_msg_buffer->cmd_get_device_info)) {
1472		dev_err(&udev->dev, "%s: device reported invalid device info\n",
1473			UCAN_DRIVER_NAME);
1474		goto err_firmware_needs_update;
1475	}
1476	if (ctl_msg_buffer->cmd_get_device_info.tx_fifo == 0) {
1477		dev_err(&udev->dev,
1478			"%s: device reported invalid tx-fifo size\n",
1479			UCAN_DRIVER_NAME);
1480		goto err_firmware_needs_update;
1481	}
1482
1483	/* Stage 3 - Driver Initialisation
1484	 * -------------------------------
1485	 *
1486	 * Register device to Linux, prepare private structures and
1487	 * reset the device.
1488	 */
1489
1490	/* allocate driver resources */
1491	netdev = alloc_candev(sizeof(struct ucan_priv),
1492			      ctl_msg_buffer->cmd_get_device_info.tx_fifo);
1493	if (!netdev) {
1494		dev_err(&udev->dev,
1495			"%s: cannot allocate candev\n", UCAN_DRIVER_NAME);
1496		return -ENOMEM;
1497	}
1498
1499	up = netdev_priv(netdev);
1500
1501	/* initialize data */
1502	up->udev = udev;
1503	up->netdev = netdev;
1504	up->intf_index = iface_desc->desc.bInterfaceNumber;
1505	up->in_ep_addr = in_ep_addr;
1506	up->out_ep_addr = out_ep_addr;
1507	up->in_ep_size = in_ep_size;
1508	up->ctl_msg_buffer = ctl_msg_buffer;
1509	up->context_array = NULL;
1510	up->available_tx_urbs = 0;
1511
1512	up->can.state = CAN_STATE_STOPPED;
1513	up->can.bittiming_const = &up->device_info.bittiming_const;
1514	up->can.do_set_bittiming = ucan_set_bittiming;
1515	up->can.do_set_mode = &ucan_set_mode;
1516	spin_lock_init(&up->context_lock);
1517	spin_lock_init(&up->echo_skb_lock);
1518	netdev->netdev_ops = &ucan_netdev_ops;
1519	netdev->ethtool_ops = &ucan_ethtool_ops;
1520
1521	usb_set_intfdata(intf, up);
1522	SET_NETDEV_DEV(netdev, &intf->dev);
1523
1524	/* parse device information
1525	 * the data retrieved in Stage 2 is still available in
1526	 * up->ctl_msg_buffer
1527	 */
1528	ucan_parse_device_info(up, &ctl_msg_buffer->cmd_get_device_info);
1529
1530	/* just print some device information - if available */
1531	ret = ucan_device_request_in(up, UCAN_DEVICE_GET_FW_STRING, 0,
1532				     sizeof(union ucan_ctl_payload));
1533	if (ret > 0) {
1534		/* copy string while ensuring zero termination */
1535		strscpy(firmware_str, up->ctl_msg_buffer->raw,
1536			sizeof(union ucan_ctl_payload) + 1);
1537	} else {
1538		strcpy(firmware_str, "unknown");
1539	}
1540
1541	/* device is compatible, reset it */
1542	ret = ucan_ctrl_command_out(up, UCAN_COMMAND_RESET, 0, 0);
1543	if (ret < 0)
1544		goto err_free_candev;
1545
1546	init_usb_anchor(&up->rx_urbs);
1547	init_usb_anchor(&up->tx_urbs);
1548
1549	up->can.state = CAN_STATE_STOPPED;
1550
1551	/* register the device */
1552	ret = register_candev(netdev);
1553	if (ret)
1554		goto err_free_candev;
1555
1556	/* initialisation complete, log device info */
1557	netdev_info(up->netdev, "registered device\n");
1558	netdev_info(up->netdev, "firmware string: %s\n", firmware_str);
1559
1560	/* success */
1561	return 0;
1562
1563err_free_candev:
1564	free_candev(netdev);
1565	return ret;
1566
1567err_firmware_needs_update:
1568	dev_err(&udev->dev,
1569		"%s: probe failed; try to update the device firmware\n",
1570		UCAN_DRIVER_NAME);
1571	return -ENODEV;
1572}
1573
1574/* disconnect the device */
1575static void ucan_disconnect(struct usb_interface *intf)
1576{
1577	struct ucan_priv *up = usb_get_intfdata(intf);
1578
1579	usb_set_intfdata(intf, NULL);
1580
1581	if (up) {
1582		unregister_candev(up->netdev);
1583		free_candev(up->netdev);
1584	}
1585}
1586
1587static struct usb_device_id ucan_table[] = {
1588	/* Mule (soldered onto compute modules) */
1589	{USB_DEVICE_INTERFACE_NUMBER(0x2294, 0x425a, 0)},
1590	/* Seal (standalone USB stick) */
1591	{USB_DEVICE_INTERFACE_NUMBER(0x2294, 0x425b, 0)},
1592	{} /* Terminating entry */
1593};
1594
1595MODULE_DEVICE_TABLE(usb, ucan_table);
1596/* driver callbacks */
1597static struct usb_driver ucan_driver = {
1598	.name = UCAN_DRIVER_NAME,
1599	.probe = ucan_probe,
1600	.disconnect = ucan_disconnect,
1601	.id_table = ucan_table,
1602};
1603
1604module_usb_driver(ucan_driver);
1605
1606MODULE_LICENSE("GPL v2");
1607MODULE_AUTHOR("Martin Elshuber <martin.elshuber@theobroma-systems.com>");
1608MODULE_AUTHOR("Jakob Unterwurzacher <jakob.unterwurzacher@theobroma-systems.com>");
1609MODULE_DESCRIPTION("Driver for Theobroma Systems UCAN devices");