Linux Audio

Check our new training course

Yocto distribution development and maintenance

Need a Yocto distribution for your embedded project?
Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* CAN bus driver for Microchip 251x/25625 CAN Controller with SPI Interface
   3 *
   4 * MCP2510 support and bug fixes by Christian Pellegrin
   5 * <chripell@evolware.org>
   6 *
   7 * Copyright 2009 Christian Pellegrin EVOL S.r.l.
   8 *
   9 * Copyright 2007 Raymarine UK, Ltd. All Rights Reserved.
  10 * Written under contract by:
  11 *   Chris Elston, Katalix Systems, Ltd.
  12 *
  13 * Based on Microchip MCP251x CAN controller driver written by
  14 * David Vrabel, Copyright 2006 Arcom Control Systems Ltd.
  15 *
  16 * Based on CAN bus driver for the CCAN controller written by
  17 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix
  18 * - Simon Kallweit, intefo AG
  19 * Copyright 2007
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  20 */
  21
  22#include <linux/bitfield.h>
  23#include <linux/can/core.h>
  24#include <linux/can/dev.h>
 
 
  25#include <linux/clk.h>
  26#include <linux/completion.h>
  27#include <linux/delay.h>
  28#include <linux/device.h>
  29#include <linux/ethtool.h>
  30#include <linux/freezer.h>
  31#include <linux/gpio.h>
  32#include <linux/gpio/driver.h>
  33#include <linux/interrupt.h>
  34#include <linux/io.h>
  35#include <linux/iopoll.h>
  36#include <linux/kernel.h>
  37#include <linux/module.h>
  38#include <linux/netdevice.h>
 
 
  39#include <linux/platform_device.h>
  40#include <linux/property.h>
  41#include <linux/regulator/consumer.h>
  42#include <linux/slab.h>
  43#include <linux/spi/spi.h>
  44#include <linux/uaccess.h>
 
  45
  46/* SPI interface instruction set */
  47#define INSTRUCTION_WRITE	0x02
  48#define INSTRUCTION_READ	0x03
  49#define INSTRUCTION_BIT_MODIFY	0x05
  50#define INSTRUCTION_LOAD_TXB(n)	(0x40 + 2 * (n))
  51#define INSTRUCTION_READ_RXB(n)	(((n) == 0) ? 0x90 : 0x94)
  52#define INSTRUCTION_RESET	0xC0
  53#define RTS_TXB0		0x01
  54#define RTS_TXB1		0x02
  55#define RTS_TXB2		0x04
  56#define INSTRUCTION_RTS(n)	(0x80 | ((n) & 0x07))
  57
 
  58/* MPC251x registers */
  59#define BFPCTRL			0x0c
  60#  define BFPCTRL_B0BFM		BIT(0)
  61#  define BFPCTRL_B1BFM		BIT(1)
  62#  define BFPCTRL_BFM(n)	(BFPCTRL_B0BFM << (n))
  63#  define BFPCTRL_BFM_MASK	GENMASK(1, 0)
  64#  define BFPCTRL_B0BFE		BIT(2)
  65#  define BFPCTRL_B1BFE		BIT(3)
  66#  define BFPCTRL_BFE(n)	(BFPCTRL_B0BFE << (n))
  67#  define BFPCTRL_BFE_MASK	GENMASK(3, 2)
  68#  define BFPCTRL_B0BFS		BIT(4)
  69#  define BFPCTRL_B1BFS		BIT(5)
  70#  define BFPCTRL_BFS(n)	(BFPCTRL_B0BFS << (n))
  71#  define BFPCTRL_BFS_MASK	GENMASK(5, 4)
  72#define TXRTSCTRL		0x0d
  73#  define TXRTSCTRL_B0RTSM	BIT(0)
  74#  define TXRTSCTRL_B1RTSM	BIT(1)
  75#  define TXRTSCTRL_B2RTSM	BIT(2)
  76#  define TXRTSCTRL_RTSM(n)	(TXRTSCTRL_B0RTSM << (n))
  77#  define TXRTSCTRL_RTSM_MASK	GENMASK(2, 0)
  78#  define TXRTSCTRL_B0RTS	BIT(3)
  79#  define TXRTSCTRL_B1RTS	BIT(4)
  80#  define TXRTSCTRL_B2RTS	BIT(5)
  81#  define TXRTSCTRL_RTS(n)	(TXRTSCTRL_B0RTS << (n))
  82#  define TXRTSCTRL_RTS_MASK	GENMASK(5, 3)
  83#define CANSTAT	      0x0e
  84#define CANCTRL	      0x0f
  85#  define CANCTRL_REQOP_MASK	    0xe0
  86#  define CANCTRL_REQOP_CONF	    0x80
  87#  define CANCTRL_REQOP_LISTEN_ONLY 0x60
  88#  define CANCTRL_REQOP_LOOPBACK    0x40
  89#  define CANCTRL_REQOP_SLEEP	    0x20
  90#  define CANCTRL_REQOP_NORMAL	    0x00
  91#  define CANCTRL_OSM		    0x08
  92#  define CANCTRL_ABAT		    0x10
  93#define TEC	      0x1c
  94#define REC	      0x1d
  95#define CNF1	      0x2a
  96#  define CNF1_SJW_SHIFT   6
  97#define CNF2	      0x29
  98#  define CNF2_BTLMODE	   0x80
  99#  define CNF2_SAM         0x40
 100#  define CNF2_PS1_SHIFT   3
 101#define CNF3	      0x28
 102#  define CNF3_SOF	   0x08
 103#  define CNF3_WAKFIL	   0x04
 104#  define CNF3_PHSEG2_MASK 0x07
 105#define CANINTE	      0x2b
 106#  define CANINTE_MERRE 0x80
 107#  define CANINTE_WAKIE 0x40
 108#  define CANINTE_ERRIE 0x20
 109#  define CANINTE_TX2IE 0x10
 110#  define CANINTE_TX1IE 0x08
 111#  define CANINTE_TX0IE 0x04
 112#  define CANINTE_RX1IE 0x02
 113#  define CANINTE_RX0IE 0x01
 114#define CANINTF	      0x2c
 115#  define CANINTF_MERRF 0x80
 116#  define CANINTF_WAKIF 0x40
 117#  define CANINTF_ERRIF 0x20
 118#  define CANINTF_TX2IF 0x10
 119#  define CANINTF_TX1IF 0x08
 120#  define CANINTF_TX0IF 0x04
 121#  define CANINTF_RX1IF 0x02
 122#  define CANINTF_RX0IF 0x01
 123#  define CANINTF_RX (CANINTF_RX0IF | CANINTF_RX1IF)
 124#  define CANINTF_TX (CANINTF_TX2IF | CANINTF_TX1IF | CANINTF_TX0IF)
 125#  define CANINTF_ERR (CANINTF_ERRIF)
 126#define EFLG	      0x2d
 127#  define EFLG_EWARN	0x01
 128#  define EFLG_RXWAR	0x02
 129#  define EFLG_TXWAR	0x04
 130#  define EFLG_RXEP	0x08
 131#  define EFLG_TXEP	0x10
 132#  define EFLG_TXBO	0x20
 133#  define EFLG_RX0OVR	0x40
 134#  define EFLG_RX1OVR	0x80
 135#define TXBCTRL(n)  (((n) * 0x10) + 0x30 + TXBCTRL_OFF)
 136#  define TXBCTRL_ABTF	0x40
 137#  define TXBCTRL_MLOA	0x20
 138#  define TXBCTRL_TXERR 0x10
 139#  define TXBCTRL_TXREQ 0x08
 140#define TXBSIDH(n)  (((n) * 0x10) + 0x30 + TXBSIDH_OFF)
 141#  define SIDH_SHIFT    3
 142#define TXBSIDL(n)  (((n) * 0x10) + 0x30 + TXBSIDL_OFF)
 143#  define SIDL_SID_MASK    7
 144#  define SIDL_SID_SHIFT   5
 145#  define SIDL_EXIDE_SHIFT 3
 146#  define SIDL_EID_SHIFT   16
 147#  define SIDL_EID_MASK    3
 148#define TXBEID8(n)  (((n) * 0x10) + 0x30 + TXBEID8_OFF)
 149#define TXBEID0(n)  (((n) * 0x10) + 0x30 + TXBEID0_OFF)
 150#define TXBDLC(n)   (((n) * 0x10) + 0x30 + TXBDLC_OFF)
 151#  define DLC_RTR_SHIFT    6
 152#define TXBCTRL_OFF 0
 153#define TXBSIDH_OFF 1
 154#define TXBSIDL_OFF 2
 155#define TXBEID8_OFF 3
 156#define TXBEID0_OFF 4
 157#define TXBDLC_OFF  5
 158#define TXBDAT_OFF  6
 159#define RXBCTRL(n)  (((n) * 0x10) + 0x60 + RXBCTRL_OFF)
 160#  define RXBCTRL_BUKT	0x04
 161#  define RXBCTRL_RXM0	0x20
 162#  define RXBCTRL_RXM1	0x40
 163#define RXBSIDH(n)  (((n) * 0x10) + 0x60 + RXBSIDH_OFF)
 164#  define RXBSIDH_SHIFT 3
 165#define RXBSIDL(n)  (((n) * 0x10) + 0x60 + RXBSIDL_OFF)
 166#  define RXBSIDL_IDE   0x08
 167#  define RXBSIDL_SRR   0x10
 168#  define RXBSIDL_EID   3
 169#  define RXBSIDL_SHIFT 5
 170#define RXBEID8(n)  (((n) * 0x10) + 0x60 + RXBEID8_OFF)
 171#define RXBEID0(n)  (((n) * 0x10) + 0x60 + RXBEID0_OFF)
 172#define RXBDLC(n)   (((n) * 0x10) + 0x60 + RXBDLC_OFF)
 173#  define RXBDLC_LEN_MASK  0x0f
 174#  define RXBDLC_RTR       0x40
 175#define RXBCTRL_OFF 0
 176#define RXBSIDH_OFF 1
 177#define RXBSIDL_OFF 2
 178#define RXBEID8_OFF 3
 179#define RXBEID0_OFF 4
 180#define RXBDLC_OFF  5
 181#define RXBDAT_OFF  6
 182#define RXFSID(n) ((n < 3) ? 0 : 4)
 183#define RXFSIDH(n) ((n) * 4 + RXFSID(n))
 184#define RXFSIDL(n) ((n) * 4 + 1 + RXFSID(n))
 185#define RXFEID8(n) ((n) * 4 + 2 + RXFSID(n))
 186#define RXFEID0(n) ((n) * 4 + 3 + RXFSID(n))
 187#define RXMSIDH(n) ((n) * 4 + 0x20)
 188#define RXMSIDL(n) ((n) * 4 + 0x21)
 189#define RXMEID8(n) ((n) * 4 + 0x22)
 190#define RXMEID0(n) ((n) * 4 + 0x23)
 191
 192#define GET_BYTE(val, byte)			\
 193	(((val) >> ((byte) * 8)) & 0xff)
 194#define SET_BYTE(val, byte)			\
 195	(((val) & 0xff) << ((byte) * 8))
 196
 197/* Buffer size required for the largest SPI transfer (i.e., reading a
 
 198 * frame)
 199 */
 200#define CAN_FRAME_MAX_DATA_LEN	8
 201#define SPI_TRANSFER_BUF_LEN	(6 + CAN_FRAME_MAX_DATA_LEN)
 202#define CAN_FRAME_MAX_BITS	128
 203
 204#define TX_ECHO_SKB_MAX	1
 205
 206#define MCP251X_OST_DELAY_MS	(5)
 207
 208#define DEVICE_NAME "mcp251x"
 209
 
 
 
 
 210static const struct can_bittiming_const mcp251x_bittiming_const = {
 211	.name = DEVICE_NAME,
 212	.tseg1_min = 3,
 213	.tseg1_max = 16,
 214	.tseg2_min = 2,
 215	.tseg2_max = 8,
 216	.sjw_max = 4,
 217	.brp_min = 1,
 218	.brp_max = 64,
 219	.brp_inc = 1,
 220};
 221
 222enum mcp251x_model {
 223	CAN_MCP251X_MCP2510	= 0x2510,
 224	CAN_MCP251X_MCP2515	= 0x2515,
 225	CAN_MCP251X_MCP25625	= 0x25625,
 226};
 227
 228struct mcp251x_priv {
 229	struct can_priv	   can;
 230	struct net_device *net;
 231	struct spi_device *spi;
 232	enum mcp251x_model model;
 233
 234	struct mutex mcp_lock; /* SPI device lock */
 235
 236	u8 *spi_tx_buf;
 237	u8 *spi_rx_buf;
 
 
 238
 239	struct sk_buff *tx_skb;
 
 240
 241	struct workqueue_struct *wq;
 242	struct work_struct tx_work;
 243	struct work_struct restart_work;
 244
 245	int force_quit;
 246	int after_suspend;
 247#define AFTER_SUSPEND_UP 1
 248#define AFTER_SUSPEND_DOWN 2
 249#define AFTER_SUSPEND_POWER 4
 250#define AFTER_SUSPEND_RESTART 8
 251	int restart_tx;
 252	bool tx_busy;
 253
 254	struct regulator *power;
 255	struct regulator *transceiver;
 256	struct clk *clk;
 257#ifdef CONFIG_GPIOLIB
 258	struct gpio_chip gpio;
 259	u8 reg_bfpctrl;
 260#endif
 261};
 262
 263#define MCP251X_IS(_model) \
 264static inline int mcp251x_is_##_model(struct spi_device *spi) \
 265{ \
 266	struct mcp251x_priv *priv = spi_get_drvdata(spi); \
 267	return priv->model == CAN_MCP251X_MCP##_model; \
 268}
 269
 270MCP251X_IS(2510);
 
 271
 272static void mcp251x_clean(struct net_device *net)
 273{
 274	struct mcp251x_priv *priv = netdev_priv(net);
 275
 276	if (priv->tx_skb || priv->tx_busy)
 277		net->stats.tx_errors++;
 278	dev_kfree_skb(priv->tx_skb);
 279	if (priv->tx_busy)
 280		can_free_echo_skb(priv->net, 0, NULL);
 
 281	priv->tx_skb = NULL;
 282	priv->tx_busy = false;
 283}
 284
 285/* Note about handling of error return of mcp251x_spi_trans: accessing
 
 286 * registers via SPI is not really different conceptually than using
 287 * normal I/O assembler instructions, although it's much more
 288 * complicated from a practical POV. So it's not advisable to always
 289 * check the return value of this function. Imagine that every
 290 * read{b,l}, write{b,l} and friends would be bracketed in "if ( < 0)
 291 * error();", it would be a great mess (well there are some situation
 292 * when exception handling C++ like could be useful after all). So we
 293 * just check that transfers are OK at the beginning of our
 294 * conversation with the chip and to avoid doing really nasty things
 295 * (like injecting bogus packets in the network stack).
 296 */
 297static int mcp251x_spi_trans(struct spi_device *spi, int len)
 298{
 299	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 300	struct spi_transfer t = {
 301		.tx_buf = priv->spi_tx_buf,
 302		.rx_buf = priv->spi_rx_buf,
 303		.len = len,
 304		.cs_change = 0,
 305	};
 306	struct spi_message m;
 307	int ret;
 308
 309	spi_message_init(&m);
 
 
 
 
 
 
 
 310	spi_message_add_tail(&t, &m);
 311
 312	ret = spi_sync(spi, &m);
 313	if (ret)
 314		dev_err(&spi->dev, "spi transfer failed: ret = %d\n", ret);
 315	return ret;
 316}
 317
 318static int mcp251x_spi_write(struct spi_device *spi, int len)
 319{
 320	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 321	int ret;
 322
 323	ret = spi_write(spi, priv->spi_tx_buf, len);
 324	if (ret)
 325		dev_err(&spi->dev, "spi write failed: ret = %d\n", ret);
 326
 327	return ret;
 328}
 329
 330static u8 mcp251x_read_reg(struct spi_device *spi, u8 reg)
 331{
 332	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 333	u8 val = 0;
 334
 335	priv->spi_tx_buf[0] = INSTRUCTION_READ;
 336	priv->spi_tx_buf[1] = reg;
 337
 338	if (spi->controller->flags & SPI_CONTROLLER_HALF_DUPLEX) {
 339		spi_write_then_read(spi, priv->spi_tx_buf, 2, &val, 1);
 340	} else {
 341		mcp251x_spi_trans(spi, 3);
 342		val = priv->spi_rx_buf[2];
 343	}
 344
 345	return val;
 346}
 347
 348static void mcp251x_read_2regs(struct spi_device *spi, u8 reg, u8 *v1, u8 *v2)
 
 349{
 350	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 351
 352	priv->spi_tx_buf[0] = INSTRUCTION_READ;
 353	priv->spi_tx_buf[1] = reg;
 354
 355	if (spi->controller->flags & SPI_CONTROLLER_HALF_DUPLEX) {
 356		u8 val[2] = { 0 };
 357
 358		spi_write_then_read(spi, priv->spi_tx_buf, 2, val, 2);
 359		*v1 = val[0];
 360		*v2 = val[1];
 361	} else {
 362		mcp251x_spi_trans(spi, 4);
 363
 364		*v1 = priv->spi_rx_buf[2];
 365		*v2 = priv->spi_rx_buf[3];
 366	}
 367}
 368
 369static void mcp251x_write_reg(struct spi_device *spi, u8 reg, u8 val)
 370{
 371	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 372
 373	priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
 374	priv->spi_tx_buf[1] = reg;
 375	priv->spi_tx_buf[2] = val;
 376
 377	mcp251x_spi_write(spi, 3);
 378}
 379
 380static void mcp251x_write_2regs(struct spi_device *spi, u8 reg, u8 v1, u8 v2)
 381{
 382	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 383
 384	priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
 385	priv->spi_tx_buf[1] = reg;
 386	priv->spi_tx_buf[2] = v1;
 387	priv->spi_tx_buf[3] = v2;
 388
 389	mcp251x_spi_write(spi, 4);
 390}
 391
 392static void mcp251x_write_bits(struct spi_device *spi, u8 reg,
 393			       u8 mask, u8 val)
 394{
 395	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 396
 397	priv->spi_tx_buf[0] = INSTRUCTION_BIT_MODIFY;
 398	priv->spi_tx_buf[1] = reg;
 399	priv->spi_tx_buf[2] = mask;
 400	priv->spi_tx_buf[3] = val;
 401
 402	mcp251x_spi_write(spi, 4);
 403}
 404
 405static u8 mcp251x_read_stat(struct spi_device *spi)
 406{
 407	return mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK;
 408}
 409
 410#define mcp251x_read_stat_poll_timeout(addr, val, cond, delay_us, timeout_us) \
 411	readx_poll_timeout(mcp251x_read_stat, addr, val, cond, \
 412			   delay_us, timeout_us)
 413
 414#ifdef CONFIG_GPIOLIB
 415enum {
 416	MCP251X_GPIO_TX0RTS = 0,		/* inputs */
 417	MCP251X_GPIO_TX1RTS,
 418	MCP251X_GPIO_TX2RTS,
 419	MCP251X_GPIO_RX0BF,			/* outputs */
 420	MCP251X_GPIO_RX1BF,
 421};
 422
 423#define MCP251X_GPIO_INPUT_MASK \
 424	GENMASK(MCP251X_GPIO_TX2RTS, MCP251X_GPIO_TX0RTS)
 425#define MCP251X_GPIO_OUTPUT_MASK \
 426	GENMASK(MCP251X_GPIO_RX1BF, MCP251X_GPIO_RX0BF)
 427
 428static const char * const mcp251x_gpio_names[] = {
 429	[MCP251X_GPIO_TX0RTS] = "TX0RTS",	/* inputs */
 430	[MCP251X_GPIO_TX1RTS] = "TX1RTS",
 431	[MCP251X_GPIO_TX2RTS] = "TX2RTS",
 432	[MCP251X_GPIO_RX0BF] = "RX0BF",		/* outputs */
 433	[MCP251X_GPIO_RX1BF] = "RX1BF",
 434};
 435
 436static inline bool mcp251x_gpio_is_input(unsigned int offset)
 437{
 438	return offset <= MCP251X_GPIO_TX2RTS;
 439}
 440
 441static int mcp251x_gpio_request(struct gpio_chip *chip,
 442				unsigned int offset)
 443{
 444	struct mcp251x_priv *priv = gpiochip_get_data(chip);
 445	u8 val;
 446
 447	/* nothing to be done for inputs */
 448	if (mcp251x_gpio_is_input(offset))
 449		return 0;
 450
 451	val = BFPCTRL_BFE(offset - MCP251X_GPIO_RX0BF);
 452
 453	mutex_lock(&priv->mcp_lock);
 454	mcp251x_write_bits(priv->spi, BFPCTRL, val, val);
 455	mutex_unlock(&priv->mcp_lock);
 456
 457	priv->reg_bfpctrl |= val;
 458
 459	return 0;
 460}
 461
 462static void mcp251x_gpio_free(struct gpio_chip *chip,
 463			      unsigned int offset)
 464{
 465	struct mcp251x_priv *priv = gpiochip_get_data(chip);
 466	u8 val;
 467
 468	/* nothing to be done for inputs */
 469	if (mcp251x_gpio_is_input(offset))
 470		return;
 471
 472	val = BFPCTRL_BFE(offset - MCP251X_GPIO_RX0BF);
 473
 474	mutex_lock(&priv->mcp_lock);
 475	mcp251x_write_bits(priv->spi, BFPCTRL, val, 0);
 476	mutex_unlock(&priv->mcp_lock);
 477
 478	priv->reg_bfpctrl &= ~val;
 479}
 480
 481static int mcp251x_gpio_get_direction(struct gpio_chip *chip,
 482				      unsigned int offset)
 483{
 484	if (mcp251x_gpio_is_input(offset))
 485		return GPIOF_DIR_IN;
 486
 487	return GPIOF_DIR_OUT;
 488}
 489
 490static int mcp251x_gpio_get(struct gpio_chip *chip, unsigned int offset)
 491{
 492	struct mcp251x_priv *priv = gpiochip_get_data(chip);
 493	u8 reg, mask, val;
 494
 495	if (mcp251x_gpio_is_input(offset)) {
 496		reg = TXRTSCTRL;
 497		mask = TXRTSCTRL_RTS(offset);
 498	} else {
 499		reg = BFPCTRL;
 500		mask = BFPCTRL_BFS(offset - MCP251X_GPIO_RX0BF);
 501	}
 502
 503	mutex_lock(&priv->mcp_lock);
 504	val = mcp251x_read_reg(priv->spi, reg);
 505	mutex_unlock(&priv->mcp_lock);
 506
 507	return !!(val & mask);
 508}
 509
 510static int mcp251x_gpio_get_multiple(struct gpio_chip *chip,
 511				     unsigned long *maskp, unsigned long *bitsp)
 512{
 513	struct mcp251x_priv *priv = gpiochip_get_data(chip);
 514	unsigned long bits = 0;
 515	u8 val;
 516
 517	mutex_lock(&priv->mcp_lock);
 518	if (maskp[0] & MCP251X_GPIO_INPUT_MASK) {
 519		val = mcp251x_read_reg(priv->spi, TXRTSCTRL);
 520		val = FIELD_GET(TXRTSCTRL_RTS_MASK, val);
 521		bits |= FIELD_PREP(MCP251X_GPIO_INPUT_MASK, val);
 522	}
 523	if (maskp[0] & MCP251X_GPIO_OUTPUT_MASK) {
 524		val = mcp251x_read_reg(priv->spi, BFPCTRL);
 525		val = FIELD_GET(BFPCTRL_BFS_MASK, val);
 526		bits |= FIELD_PREP(MCP251X_GPIO_OUTPUT_MASK, val);
 527	}
 528	mutex_unlock(&priv->mcp_lock);
 529
 530	bitsp[0] = bits;
 531	return 0;
 532}
 533
 534static void mcp251x_gpio_set(struct gpio_chip *chip, unsigned int offset,
 535			     int value)
 536{
 537	struct mcp251x_priv *priv = gpiochip_get_data(chip);
 538	u8 mask, val;
 539
 540	mask = BFPCTRL_BFS(offset - MCP251X_GPIO_RX0BF);
 541	val = value ? mask : 0;
 542
 543	mutex_lock(&priv->mcp_lock);
 544	mcp251x_write_bits(priv->spi, BFPCTRL, mask, val);
 545	mutex_unlock(&priv->mcp_lock);
 546
 547	priv->reg_bfpctrl &= ~mask;
 548	priv->reg_bfpctrl |= val;
 549}
 550
 551static void
 552mcp251x_gpio_set_multiple(struct gpio_chip *chip,
 553			  unsigned long *maskp, unsigned long *bitsp)
 554{
 555	struct mcp251x_priv *priv = gpiochip_get_data(chip);
 556	u8 mask, val;
 557
 558	mask = FIELD_GET(MCP251X_GPIO_OUTPUT_MASK, maskp[0]);
 559	mask = FIELD_PREP(BFPCTRL_BFS_MASK, mask);
 560
 561	val = FIELD_GET(MCP251X_GPIO_OUTPUT_MASK, bitsp[0]);
 562	val = FIELD_PREP(BFPCTRL_BFS_MASK, val);
 563
 564	if (!mask)
 565		return;
 566
 567	mutex_lock(&priv->mcp_lock);
 568	mcp251x_write_bits(priv->spi, BFPCTRL, mask, val);
 569	mutex_unlock(&priv->mcp_lock);
 570
 571	priv->reg_bfpctrl &= ~mask;
 572	priv->reg_bfpctrl |= val;
 573}
 574
 575static void mcp251x_gpio_restore(struct spi_device *spi)
 576{
 577	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 578
 579	mcp251x_write_reg(spi, BFPCTRL, priv->reg_bfpctrl);
 580}
 581
 582static int mcp251x_gpio_setup(struct mcp251x_priv *priv)
 583{
 584	struct gpio_chip *gpio = &priv->gpio;
 585
 586	if (!device_property_present(&priv->spi->dev, "gpio-controller"))
 587		return 0;
 588
 589	/* gpiochip handles TX[0..2]RTS and RX[0..1]BF */
 590	gpio->label = priv->spi->modalias;
 591	gpio->parent = &priv->spi->dev;
 592	gpio->owner = THIS_MODULE;
 593	gpio->request = mcp251x_gpio_request;
 594	gpio->free = mcp251x_gpio_free;
 595	gpio->get_direction = mcp251x_gpio_get_direction;
 596	gpio->get = mcp251x_gpio_get;
 597	gpio->get_multiple = mcp251x_gpio_get_multiple;
 598	gpio->set = mcp251x_gpio_set;
 599	gpio->set_multiple = mcp251x_gpio_set_multiple;
 600	gpio->base = -1;
 601	gpio->ngpio = ARRAY_SIZE(mcp251x_gpio_names);
 602	gpio->names = mcp251x_gpio_names;
 603	gpio->can_sleep = true;
 604
 605	return devm_gpiochip_add_data(&priv->spi->dev, gpio, priv);
 606}
 607#else
 608static inline void mcp251x_gpio_restore(struct spi_device *spi)
 609{
 610}
 611
 612static inline int mcp251x_gpio_setup(struct mcp251x_priv *priv)
 613{
 614	return 0;
 615}
 616#endif
 617
 618static void mcp251x_hw_tx_frame(struct spi_device *spi, u8 *buf,
 619				int len, int tx_buf_idx)
 620{
 621	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 622
 623	if (mcp251x_is_2510(spi)) {
 624		int i;
 625
 626		for (i = 1; i < TXBDAT_OFF + len; i++)
 627			mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + i,
 628					  buf[i]);
 629	} else {
 630		memcpy(priv->spi_tx_buf, buf, TXBDAT_OFF + len);
 631		mcp251x_spi_write(spi, TXBDAT_OFF + len);
 632	}
 633}
 634
 635static void mcp251x_hw_tx(struct spi_device *spi, struct can_frame *frame,
 636			  int tx_buf_idx)
 637{
 638	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 639	u32 sid, eid, exide, rtr;
 640	u8 buf[SPI_TRANSFER_BUF_LEN];
 641
 642	exide = (frame->can_id & CAN_EFF_FLAG) ? 1 : 0; /* Extended ID Enable */
 643	if (exide)
 644		sid = (frame->can_id & CAN_EFF_MASK) >> 18;
 645	else
 646		sid = frame->can_id & CAN_SFF_MASK; /* Standard ID */
 647	eid = frame->can_id & CAN_EFF_MASK; /* Extended ID */
 648	rtr = (frame->can_id & CAN_RTR_FLAG) ? 1 : 0; /* Remote transmission */
 649
 650	buf[TXBCTRL_OFF] = INSTRUCTION_LOAD_TXB(tx_buf_idx);
 651	buf[TXBSIDH_OFF] = sid >> SIDH_SHIFT;
 652	buf[TXBSIDL_OFF] = ((sid & SIDL_SID_MASK) << SIDL_SID_SHIFT) |
 653		(exide << SIDL_EXIDE_SHIFT) |
 654		((eid >> SIDL_EID_SHIFT) & SIDL_EID_MASK);
 655	buf[TXBEID8_OFF] = GET_BYTE(eid, 1);
 656	buf[TXBEID0_OFF] = GET_BYTE(eid, 0);
 657	buf[TXBDLC_OFF] = (rtr << DLC_RTR_SHIFT) | frame->len;
 658	memcpy(buf + TXBDAT_OFF, frame->data, frame->len);
 659	mcp251x_hw_tx_frame(spi, buf, frame->len, tx_buf_idx);
 660
 661	/* use INSTRUCTION_RTS, to avoid "repeated frame problem" */
 662	priv->spi_tx_buf[0] = INSTRUCTION_RTS(1 << tx_buf_idx);
 663	mcp251x_spi_write(priv->spi, 1);
 664}
 665
 666static void mcp251x_hw_rx_frame(struct spi_device *spi, u8 *buf,
 667				int buf_idx)
 668{
 669	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 670
 671	if (mcp251x_is_2510(spi)) {
 672		int i, len;
 673
 674		for (i = 1; i < RXBDAT_OFF; i++)
 675			buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
 676
 677		len = can_cc_dlc2len(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
 678		for (; i < (RXBDAT_OFF + len); i++)
 679			buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
 680	} else {
 681		priv->spi_tx_buf[RXBCTRL_OFF] = INSTRUCTION_READ_RXB(buf_idx);
 682		if (spi->controller->flags & SPI_CONTROLLER_HALF_DUPLEX) {
 683			spi_write_then_read(spi, priv->spi_tx_buf, 1,
 684					    priv->spi_rx_buf,
 685					    SPI_TRANSFER_BUF_LEN);
 686			memcpy(buf + 1, priv->spi_rx_buf,
 687			       SPI_TRANSFER_BUF_LEN - 1);
 688		} else {
 689			mcp251x_spi_trans(spi, SPI_TRANSFER_BUF_LEN);
 690			memcpy(buf, priv->spi_rx_buf, SPI_TRANSFER_BUF_LEN);
 691		}
 692	}
 693}
 694
 695static void mcp251x_hw_rx(struct spi_device *spi, int buf_idx)
 696{
 697	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 698	struct sk_buff *skb;
 699	struct can_frame *frame;
 700	u8 buf[SPI_TRANSFER_BUF_LEN];
 701
 702	skb = alloc_can_skb(priv->net, &frame);
 703	if (!skb) {
 704		dev_err(&spi->dev, "cannot allocate RX skb\n");
 705		priv->net->stats.rx_dropped++;
 706		return;
 707	}
 708
 709	mcp251x_hw_rx_frame(spi, buf, buf_idx);
 710	if (buf[RXBSIDL_OFF] & RXBSIDL_IDE) {
 711		/* Extended ID format */
 712		frame->can_id = CAN_EFF_FLAG;
 713		frame->can_id |=
 714			/* Extended ID part */
 715			SET_BYTE(buf[RXBSIDL_OFF] & RXBSIDL_EID, 2) |
 716			SET_BYTE(buf[RXBEID8_OFF], 1) |
 717			SET_BYTE(buf[RXBEID0_OFF], 0) |
 718			/* Standard ID part */
 719			(((buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
 720			  (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT)) << 18);
 721		/* Remote transmission request */
 722		if (buf[RXBDLC_OFF] & RXBDLC_RTR)
 723			frame->can_id |= CAN_RTR_FLAG;
 724	} else {
 725		/* Standard ID format */
 726		frame->can_id =
 727			(buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
 728			(buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT);
 729		if (buf[RXBSIDL_OFF] & RXBSIDL_SRR)
 730			frame->can_id |= CAN_RTR_FLAG;
 731	}
 732	/* Data length */
 733	frame->len = can_cc_dlc2len(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
 734	if (!(frame->can_id & CAN_RTR_FLAG)) {
 735		memcpy(frame->data, buf + RXBDAT_OFF, frame->len);
 736
 737		priv->net->stats.rx_bytes += frame->len;
 738	}
 739	priv->net->stats.rx_packets++;
 
 740
 741	netif_rx(skb);
 
 
 742}
 743
 744static void mcp251x_hw_sleep(struct spi_device *spi)
 745{
 746	mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_SLEEP);
 747}
 748
 749/* May only be called when device is sleeping! */
 750static int mcp251x_hw_wake(struct spi_device *spi)
 751{
 752	u8 value;
 753	int ret;
 754
 755	/* Force wakeup interrupt to wake device, but don't execute IST */
 756	disable_irq(spi->irq);
 757	mcp251x_write_2regs(spi, CANINTE, CANINTE_WAKIE, CANINTF_WAKIF);
 758
 759	/* Wait for oscillator startup timer after wake up */
 760	mdelay(MCP251X_OST_DELAY_MS);
 761
 762	/* Put device into config mode */
 763	mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_CONF);
 764
 765	/* Wait for the device to enter config mode */
 766	ret = mcp251x_read_stat_poll_timeout(spi, value, value == CANCTRL_REQOP_CONF,
 767					     MCP251X_OST_DELAY_MS * 1000,
 768					     USEC_PER_SEC);
 769	if (ret) {
 770		dev_err(&spi->dev, "MCP251x didn't enter in config mode\n");
 771		return ret;
 772	}
 773
 774	/* Disable and clear pending interrupts */
 775	mcp251x_write_2regs(spi, CANINTE, 0x00, 0x00);
 776	enable_irq(spi->irq);
 777
 778	return 0;
 779}
 780
 781static netdev_tx_t mcp251x_hard_start_xmit(struct sk_buff *skb,
 782					   struct net_device *net)
 783{
 784	struct mcp251x_priv *priv = netdev_priv(net);
 785	struct spi_device *spi = priv->spi;
 786
 787	if (priv->tx_skb || priv->tx_busy) {
 788		dev_warn(&spi->dev, "hard_xmit called while tx busy\n");
 789		return NETDEV_TX_BUSY;
 790	}
 791
 792	if (can_dev_dropped_skb(net, skb))
 793		return NETDEV_TX_OK;
 794
 795	netif_stop_queue(net);
 796	priv->tx_skb = skb;
 797	queue_work(priv->wq, &priv->tx_work);
 798
 799	return NETDEV_TX_OK;
 800}
 801
 802static int mcp251x_do_set_mode(struct net_device *net, enum can_mode mode)
 803{
 804	struct mcp251x_priv *priv = netdev_priv(net);
 805
 806	switch (mode) {
 807	case CAN_MODE_START:
 808		mcp251x_clean(net);
 809		/* We have to delay work since SPI I/O may sleep */
 810		priv->can.state = CAN_STATE_ERROR_ACTIVE;
 811		priv->restart_tx = 1;
 812		if (priv->can.restart_ms == 0)
 813			priv->after_suspend = AFTER_SUSPEND_RESTART;
 814		queue_work(priv->wq, &priv->restart_work);
 815		break;
 816	default:
 817		return -EOPNOTSUPP;
 818	}
 819
 820	return 0;
 821}
 822
 823static int mcp251x_set_normal_mode(struct spi_device *spi)
 824{
 825	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 826	u8 value;
 827	int ret;
 828
 829	/* Enable interrupts */
 830	mcp251x_write_reg(spi, CANINTE,
 831			  CANINTE_ERRIE | CANINTE_TX2IE | CANINTE_TX1IE |
 832			  CANINTE_TX0IE | CANINTE_RX1IE | CANINTE_RX0IE);
 833
 834	if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
 835		/* Put device into loopback mode */
 836		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LOOPBACK);
 837	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
 838		/* Put device into listen-only mode */
 839		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LISTEN_ONLY);
 840	} else {
 841		/* Put device into normal mode */
 842		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_NORMAL);
 843
 844		/* Wait for the device to enter normal mode */
 845		ret = mcp251x_read_stat_poll_timeout(spi, value, value == 0,
 846						     MCP251X_OST_DELAY_MS * 1000,
 847						     USEC_PER_SEC);
 848		if (ret) {
 849			dev_err(&spi->dev, "MCP251x didn't enter in normal mode\n");
 850			return ret;
 
 
 851		}
 852	}
 853	priv->can.state = CAN_STATE_ERROR_ACTIVE;
 854	return 0;
 855}
 856
 857static int mcp251x_do_set_bittiming(struct net_device *net)
 858{
 859	struct mcp251x_priv *priv = netdev_priv(net);
 860	struct can_bittiming *bt = &priv->can.bittiming;
 861	struct spi_device *spi = priv->spi;
 862
 863	mcp251x_write_reg(spi, CNF1, ((bt->sjw - 1) << CNF1_SJW_SHIFT) |
 864			  (bt->brp - 1));
 865	mcp251x_write_reg(spi, CNF2, CNF2_BTLMODE |
 866			  (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES ?
 867			   CNF2_SAM : 0) |
 868			  ((bt->phase_seg1 - 1) << CNF2_PS1_SHIFT) |
 869			  (bt->prop_seg - 1));
 870	mcp251x_write_bits(spi, CNF3, CNF3_PHSEG2_MASK,
 871			   (bt->phase_seg2 - 1));
 872	dev_dbg(&spi->dev, "CNF: 0x%02x 0x%02x 0x%02x\n",
 873		mcp251x_read_reg(spi, CNF1),
 874		mcp251x_read_reg(spi, CNF2),
 875		mcp251x_read_reg(spi, CNF3));
 876
 877	return 0;
 878}
 879
 880static int mcp251x_setup(struct net_device *net, struct spi_device *spi)
 
 881{
 882	mcp251x_do_set_bittiming(net);
 883
 884	mcp251x_write_reg(spi, RXBCTRL(0),
 885			  RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1);
 886	mcp251x_write_reg(spi, RXBCTRL(1),
 887			  RXBCTRL_RXM0 | RXBCTRL_RXM1);
 888	return 0;
 889}
 890
 891static int mcp251x_hw_reset(struct spi_device *spi)
 892{
 893	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 894	u8 value;
 895	int ret;
 896
 897	/* Wait for oscillator startup timer after power up */
 898	mdelay(MCP251X_OST_DELAY_MS);
 899
 900	priv->spi_tx_buf[0] = INSTRUCTION_RESET;
 901	ret = mcp251x_spi_write(spi, 1);
 902	if (ret)
 903		return ret;
 904
 905	/* Wait for oscillator startup timer after reset */
 906	mdelay(MCP251X_OST_DELAY_MS);
 
 
 
 
 907
 908	/* Wait for reset to finish */
 909	ret = mcp251x_read_stat_poll_timeout(spi, value, value == CANCTRL_REQOP_CONF,
 910					     MCP251X_OST_DELAY_MS * 1000,
 911					     USEC_PER_SEC);
 912	if (ret)
 913		dev_err(&spi->dev, "MCP251x didn't enter in conf mode after reset\n");
 914	return ret;
 915}
 916
 917static int mcp251x_hw_probe(struct spi_device *spi)
 918{
 919	u8 ctrl;
 920	int ret;
 921
 922	ret = mcp251x_hw_reset(spi);
 923	if (ret)
 924		return ret;
 925
 926	ctrl = mcp251x_read_reg(spi, CANCTRL);
 927
 928	dev_dbg(&spi->dev, "CANCTRL 0x%02x\n", ctrl);
 929
 930	/* Check for power up default value */
 931	if ((ctrl & 0x17) != 0x07)
 932		return -ENODEV;
 933
 934	return 0;
 935}
 936
 937static int mcp251x_power_enable(struct regulator *reg, int enable)
 938{
 939	if (IS_ERR_OR_NULL(reg))
 940		return 0;
 941
 942	if (enable)
 943		return regulator_enable(reg);
 944	else
 945		return regulator_disable(reg);
 946}
 947
 
 
 
 
 
 
 
 
 
 
 
 948static int mcp251x_stop(struct net_device *net)
 949{
 950	struct mcp251x_priv *priv = netdev_priv(net);
 951	struct spi_device *spi = priv->spi;
 952
 953	close_candev(net);
 954
 955	priv->force_quit = 1;
 956	free_irq(spi->irq, priv);
 
 
 957
 958	mutex_lock(&priv->mcp_lock);
 959
 960	/* Disable and clear pending interrupts */
 961	mcp251x_write_2regs(spi, CANINTE, 0x00, 0x00);
 
 962
 963	mcp251x_write_reg(spi, TXBCTRL(0), 0);
 964	mcp251x_clean(net);
 965
 966	mcp251x_hw_sleep(spi);
 967
 968	mcp251x_power_enable(priv->transceiver, 0);
 969
 970	priv->can.state = CAN_STATE_STOPPED;
 971
 972	mutex_unlock(&priv->mcp_lock);
 973
 
 
 974	return 0;
 975}
 976
 977static void mcp251x_error_skb(struct net_device *net, int can_id, int data1)
 978{
 979	struct sk_buff *skb;
 980	struct can_frame *frame;
 981
 982	skb = alloc_can_err_skb(net, &frame);
 983	if (skb) {
 984		frame->can_id |= can_id;
 985		frame->data[1] = data1;
 986		netif_rx(skb);
 987	} else {
 988		netdev_err(net, "cannot allocate error skb\n");
 989	}
 990}
 991
 992static void mcp251x_tx_work_handler(struct work_struct *ws)
 993{
 994	struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
 995						 tx_work);
 996	struct spi_device *spi = priv->spi;
 997	struct net_device *net = priv->net;
 998	struct can_frame *frame;
 999
1000	mutex_lock(&priv->mcp_lock);
1001	if (priv->tx_skb) {
1002		if (priv->can.state == CAN_STATE_BUS_OFF) {
1003			mcp251x_clean(net);
1004		} else {
1005			frame = (struct can_frame *)priv->tx_skb->data;
1006
1007			if (frame->len > CAN_FRAME_MAX_DATA_LEN)
1008				frame->len = CAN_FRAME_MAX_DATA_LEN;
1009			mcp251x_hw_tx(spi, frame, 0);
1010			priv->tx_busy = true;
1011			can_put_echo_skb(priv->tx_skb, net, 0, 0);
1012			priv->tx_skb = NULL;
1013		}
1014	}
1015	mutex_unlock(&priv->mcp_lock);
1016}
1017
1018static void mcp251x_restart_work_handler(struct work_struct *ws)
1019{
1020	struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
1021						 restart_work);
1022	struct spi_device *spi = priv->spi;
1023	struct net_device *net = priv->net;
1024
1025	mutex_lock(&priv->mcp_lock);
1026	if (priv->after_suspend) {
1027		if (priv->after_suspend & AFTER_SUSPEND_POWER) {
1028			mcp251x_hw_reset(spi);
1029			mcp251x_setup(net, spi);
1030			mcp251x_gpio_restore(spi);
1031		} else {
1032			mcp251x_hw_wake(spi);
1033		}
1034		priv->force_quit = 0;
1035		if (priv->after_suspend & AFTER_SUSPEND_RESTART) {
1036			mcp251x_set_normal_mode(spi);
1037		} else if (priv->after_suspend & AFTER_SUSPEND_UP) {
1038			netif_device_attach(net);
1039			mcp251x_clean(net);
1040			mcp251x_set_normal_mode(spi);
1041			netif_wake_queue(net);
1042		} else {
1043			mcp251x_hw_sleep(spi);
1044		}
1045		priv->after_suspend = 0;
 
1046	}
1047
1048	if (priv->restart_tx) {
1049		priv->restart_tx = 0;
1050		mcp251x_write_reg(spi, TXBCTRL(0), 0);
1051		mcp251x_clean(net);
1052		netif_wake_queue(net);
1053		mcp251x_error_skb(net, CAN_ERR_RESTARTED, 0);
1054	}
1055	mutex_unlock(&priv->mcp_lock);
1056}
1057
1058static irqreturn_t mcp251x_can_ist(int irq, void *dev_id)
1059{
1060	struct mcp251x_priv *priv = dev_id;
1061	struct spi_device *spi = priv->spi;
1062	struct net_device *net = priv->net;
1063
1064	mutex_lock(&priv->mcp_lock);
1065	while (!priv->force_quit) {
1066		enum can_state new_state;
1067		u8 intf, eflag;
1068		u8 clear_intf = 0;
1069		int can_id = 0, data1 = 0;
1070
1071		mcp251x_read_2regs(spi, CANINTF, &intf, &eflag);
1072
 
 
 
1073		/* receive buffer 0 */
1074		if (intf & CANINTF_RX0IF) {
1075			mcp251x_hw_rx(spi, 0);
1076			/* Free one buffer ASAP
1077			 * (The MCP2515/25625 does this automatically.)
 
1078			 */
1079			if (mcp251x_is_2510(spi))
1080				mcp251x_write_bits(spi, CANINTF,
1081						   CANINTF_RX0IF, 0x00);
1082
1083			/* check if buffer 1 is already known to be full, no need to re-read */
1084			if (!(intf & CANINTF_RX1IF)) {
1085				u8 intf1, eflag1;
1086
1087				/* intf needs to be read again to avoid a race condition */
1088				mcp251x_read_2regs(spi, CANINTF, &intf1, &eflag1);
1089
1090				/* combine flags from both operations for error handling */
1091				intf |= intf1;
1092				eflag |= eflag1;
1093			}
1094		}
1095
1096		/* receive buffer 1 */
1097		if (intf & CANINTF_RX1IF) {
1098			mcp251x_hw_rx(spi, 1);
1099			/* The MCP2515/25625 does this automatically. */
1100			if (mcp251x_is_2510(spi))
1101				clear_intf |= CANINTF_RX1IF;
1102		}
1103
1104		/* mask out flags we don't care about */
1105		intf &= CANINTF_RX | CANINTF_TX | CANINTF_ERR;
1106
1107		/* any error or tx interrupt we need to clear? */
1108		if (intf & (CANINTF_ERR | CANINTF_TX))
1109			clear_intf |= intf & (CANINTF_ERR | CANINTF_TX);
1110		if (clear_intf)
1111			mcp251x_write_bits(spi, CANINTF, clear_intf, 0x00);
1112
1113		if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR))
1114			mcp251x_write_bits(spi, EFLG, eflag, 0x00);
1115
1116		/* Update can state */
1117		if (eflag & EFLG_TXBO) {
1118			new_state = CAN_STATE_BUS_OFF;
1119			can_id |= CAN_ERR_BUSOFF;
1120		} else if (eflag & EFLG_TXEP) {
1121			new_state = CAN_STATE_ERROR_PASSIVE;
1122			can_id |= CAN_ERR_CRTL;
1123			data1 |= CAN_ERR_CRTL_TX_PASSIVE;
1124		} else if (eflag & EFLG_RXEP) {
1125			new_state = CAN_STATE_ERROR_PASSIVE;
1126			can_id |= CAN_ERR_CRTL;
1127			data1 |= CAN_ERR_CRTL_RX_PASSIVE;
1128		} else if (eflag & EFLG_TXWAR) {
1129			new_state = CAN_STATE_ERROR_WARNING;
1130			can_id |= CAN_ERR_CRTL;
1131			data1 |= CAN_ERR_CRTL_TX_WARNING;
1132		} else if (eflag & EFLG_RXWAR) {
1133			new_state = CAN_STATE_ERROR_WARNING;
1134			can_id |= CAN_ERR_CRTL;
1135			data1 |= CAN_ERR_CRTL_RX_WARNING;
1136		} else {
1137			new_state = CAN_STATE_ERROR_ACTIVE;
1138		}
1139
1140		/* Update can state statistics */
1141		switch (priv->can.state) {
1142		case CAN_STATE_ERROR_ACTIVE:
1143			if (new_state >= CAN_STATE_ERROR_WARNING &&
1144			    new_state <= CAN_STATE_BUS_OFF)
1145				priv->can.can_stats.error_warning++;
1146			fallthrough;
1147		case CAN_STATE_ERROR_WARNING:
1148			if (new_state >= CAN_STATE_ERROR_PASSIVE &&
1149			    new_state <= CAN_STATE_BUS_OFF)
1150				priv->can.can_stats.error_passive++;
1151			break;
1152		default:
1153			break;
1154		}
1155		priv->can.state = new_state;
1156
1157		if (intf & CANINTF_ERRIF) {
1158			/* Handle overflow counters */
1159			if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR)) {
1160				if (eflag & EFLG_RX0OVR) {
1161					net->stats.rx_over_errors++;
1162					net->stats.rx_errors++;
1163				}
1164				if (eflag & EFLG_RX1OVR) {
1165					net->stats.rx_over_errors++;
1166					net->stats.rx_errors++;
1167				}
1168				can_id |= CAN_ERR_CRTL;
1169				data1 |= CAN_ERR_CRTL_RX_OVERFLOW;
1170			}
1171			mcp251x_error_skb(net, can_id, data1);
1172		}
1173
1174		if (priv->can.state == CAN_STATE_BUS_OFF) {
1175			if (priv->can.restart_ms == 0) {
1176				priv->force_quit = 1;
1177				priv->can.can_stats.bus_off++;
1178				can_bus_off(net);
1179				mcp251x_hw_sleep(spi);
1180				break;
1181			}
1182		}
1183
1184		if (intf == 0)
1185			break;
1186
1187		if (intf & CANINTF_TX) {
1188			if (priv->tx_busy) {
1189				net->stats.tx_packets++;
1190				net->stats.tx_bytes += can_get_echo_skb(net, 0,
1191									NULL);
1192				priv->tx_busy = false;
 
1193			}
1194			netif_wake_queue(net);
1195		}
 
1196	}
1197	mutex_unlock(&priv->mcp_lock);
1198	return IRQ_HANDLED;
1199}
1200
1201static int mcp251x_open(struct net_device *net)
1202{
1203	struct mcp251x_priv *priv = netdev_priv(net);
1204	struct spi_device *spi = priv->spi;
1205	unsigned long flags = 0;
1206	int ret;
1207
1208	ret = open_candev(net);
1209	if (ret) {
1210		dev_err(&spi->dev, "unable to set initial baudrate!\n");
1211		return ret;
1212	}
1213
1214	mutex_lock(&priv->mcp_lock);
1215	mcp251x_power_enable(priv->transceiver, 1);
1216
1217	priv->force_quit = 0;
1218	priv->tx_skb = NULL;
1219	priv->tx_busy = false;
1220
1221	if (!dev_fwnode(&spi->dev))
1222		flags = IRQF_TRIGGER_FALLING;
1223
1224	ret = request_threaded_irq(spi->irq, NULL, mcp251x_can_ist,
1225				   flags | IRQF_ONESHOT, dev_name(&spi->dev),
1226				   priv);
1227	if (ret) {
1228		dev_err(&spi->dev, "failed to acquire irq %d\n", spi->irq);
1229		goto out_close;
 
 
1230	}
1231
1232	ret = mcp251x_hw_wake(spi);
1233	if (ret)
1234		goto out_free_irq;
1235	ret = mcp251x_setup(net, spi);
1236	if (ret)
1237		goto out_free_irq;
 
 
 
 
 
 
 
 
1238	ret = mcp251x_set_normal_mode(spi);
1239	if (ret)
1240		goto out_free_irq;
 
 
1241
1242	netif_wake_queue(net);
1243	mutex_unlock(&priv->mcp_lock);
1244
1245	return 0;
1246
1247out_free_irq:
1248	free_irq(spi->irq, priv);
1249	mcp251x_hw_sleep(spi);
1250out_close:
1251	mcp251x_power_enable(priv->transceiver, 0);
1252	close_candev(net);
1253	mutex_unlock(&priv->mcp_lock);
1254	return ret;
1255}
1256
1257static const struct net_device_ops mcp251x_netdev_ops = {
1258	.ndo_open = mcp251x_open,
1259	.ndo_stop = mcp251x_stop,
1260	.ndo_start_xmit = mcp251x_hard_start_xmit,
1261	.ndo_change_mtu = can_change_mtu,
1262};
1263
1264static const struct ethtool_ops mcp251x_ethtool_ops = {
1265	.get_ts_info = ethtool_op_get_ts_info,
1266};
1267
1268static const struct of_device_id mcp251x_of_match[] = {
1269	{
1270		.compatible	= "microchip,mcp2510",
1271		.data		= (void *)CAN_MCP251X_MCP2510,
1272	},
1273	{
1274		.compatible	= "microchip,mcp2515",
1275		.data		= (void *)CAN_MCP251X_MCP2515,
1276	},
1277	{
1278		.compatible	= "microchip,mcp25625",
1279		.data		= (void *)CAN_MCP251X_MCP25625,
1280	},
1281	{ }
1282};
1283MODULE_DEVICE_TABLE(of, mcp251x_of_match);
1284
1285static const struct spi_device_id mcp251x_id_table[] = {
1286	{
1287		.name		= "mcp2510",
1288		.driver_data	= (kernel_ulong_t)CAN_MCP251X_MCP2510,
1289	},
1290	{
1291		.name		= "mcp2515",
1292		.driver_data	= (kernel_ulong_t)CAN_MCP251X_MCP2515,
1293	},
1294	{
1295		.name		= "mcp25625",
1296		.driver_data	= (kernel_ulong_t)CAN_MCP251X_MCP25625,
1297	},
1298	{ }
1299};
1300MODULE_DEVICE_TABLE(spi, mcp251x_id_table);
1301
1302static int mcp251x_can_probe(struct spi_device *spi)
1303{
1304	const void *match = device_get_match_data(&spi->dev);
 
 
1305	struct net_device *net;
1306	struct mcp251x_priv *priv;
1307	struct clk *clk;
1308	u32 freq;
1309	int ret;
1310
1311	clk = devm_clk_get_optional(&spi->dev, NULL);
1312	if (IS_ERR(clk))
1313		return PTR_ERR(clk);
1314
1315	freq = clk_get_rate(clk);
1316	if (freq == 0)
1317		device_property_read_u32(&spi->dev, "clock-frequency", &freq);
 
 
1318
1319	/* Sanity check */
1320	if (freq < 1000000 || freq > 25000000)
1321		return -ERANGE;
1322
1323	/* Allocate can/net device */
1324	net = alloc_candev(sizeof(struct mcp251x_priv), TX_ECHO_SKB_MAX);
1325	if (!net)
1326		return -ENOMEM;
1327
1328	ret = clk_prepare_enable(clk);
1329	if (ret)
1330		goto out_free;
 
 
1331
1332	net->netdev_ops = &mcp251x_netdev_ops;
1333	net->ethtool_ops = &mcp251x_ethtool_ops;
1334	net->flags |= IFF_ECHO;
1335
1336	priv = netdev_priv(net);
1337	priv->can.bittiming_const = &mcp251x_bittiming_const;
1338	priv->can.do_set_mode = mcp251x_do_set_mode;
1339	priv->can.clock.freq = freq / 2;
1340	priv->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES |
1341		CAN_CTRLMODE_LOOPBACK | CAN_CTRLMODE_LISTENONLY;
1342	if (match)
1343		priv->model = (enum mcp251x_model)(uintptr_t)match;
1344	else
1345		priv->model = spi_get_device_id(spi)->driver_data;
1346	priv->net = net;
1347	priv->clk = clk;
1348
1349	spi_set_drvdata(spi, priv);
1350
1351	/* Configure the SPI bus */
1352	spi->bits_per_word = 8;
1353	if (mcp251x_is_2510(spi))
1354		spi->max_speed_hz = spi->max_speed_hz ? : 5 * 1000 * 1000;
1355	else
1356		spi->max_speed_hz = spi->max_speed_hz ? : 10 * 1000 * 1000;
1357	ret = spi_setup(spi);
1358	if (ret)
1359		goto out_clk;
1360
1361	priv->power = devm_regulator_get_optional(&spi->dev, "vdd");
1362	priv->transceiver = devm_regulator_get_optional(&spi->dev, "xceiver");
1363	if ((PTR_ERR(priv->power) == -EPROBE_DEFER) ||
1364	    (PTR_ERR(priv->transceiver) == -EPROBE_DEFER)) {
1365		ret = -EPROBE_DEFER;
1366		goto out_clk;
1367	}
1368
1369	ret = mcp251x_power_enable(priv->power, 1);
1370	if (ret)
1371		goto out_clk;
1372
1373	priv->wq = alloc_workqueue("mcp251x_wq", WQ_FREEZABLE | WQ_MEM_RECLAIM,
1374				   0);
1375	if (!priv->wq) {
1376		ret = -ENOMEM;
1377		goto out_clk;
1378	}
1379	INIT_WORK(&priv->tx_work, mcp251x_tx_work_handler);
1380	INIT_WORK(&priv->restart_work, mcp251x_restart_work_handler);
1381
1382	priv->spi = spi;
1383	mutex_init(&priv->mcp_lock);
1384
1385	priv->spi_tx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
1386					GFP_KERNEL);
1387	if (!priv->spi_tx_buf) {
1388		ret = -ENOMEM;
1389		goto error_probe;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1390	}
1391
1392	priv->spi_rx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
1393					GFP_KERNEL);
1394	if (!priv->spi_rx_buf) {
1395		ret = -ENOMEM;
1396		goto error_probe;
 
 
 
 
 
 
 
 
 
1397	}
1398
1399	SET_NETDEV_DEV(net, &spi->dev);
1400
1401	/* Here is OK to not lock the MCP, no one knows about it yet */
1402	ret = mcp251x_hw_probe(spi);
1403	if (ret) {
1404		if (ret == -ENODEV)
1405			dev_err(&spi->dev, "Cannot initialize MCP%x. Wrong wiring?\n",
1406				priv->model);
1407		goto error_probe;
1408	}
1409
1410	mcp251x_hw_sleep(spi);
1411
1412	ret = register_candev(net);
1413	if (ret)
1414		goto error_probe;
1415
1416	ret = mcp251x_gpio_setup(priv);
1417	if (ret)
1418		goto out_unregister_candev;
1419
1420	netdev_info(net, "MCP%x successfully initialized.\n", priv->model);
1421	return 0;
1422
1423out_unregister_candev:
1424	unregister_candev(net);
1425
1426error_probe:
1427	destroy_workqueue(priv->wq);
1428	priv->wq = NULL;
1429	mcp251x_power_enable(priv->power, 0);
1430
1431out_clk:
1432	clk_disable_unprepare(clk);
 
1433
1434out_free:
1435	free_candev(net);
1436
1437	dev_err(&spi->dev, "Probe failed, err=%d\n", -ret);
1438	return ret;
1439}
1440
1441static void mcp251x_can_remove(struct spi_device *spi)
1442{
1443	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1444	struct net_device *net = priv->net;
1445
1446	unregister_candev(net);
1447
1448	mcp251x_power_enable(priv->power, 0);
1449
1450	destroy_workqueue(priv->wq);
1451	priv->wq = NULL;
1452
1453	clk_disable_unprepare(priv->clk);
1454
1455	free_candev(net);
 
 
1456}
1457
1458static int __maybe_unused mcp251x_can_suspend(struct device *dev)
1459{
1460	struct spi_device *spi = to_spi_device(dev);
1461	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1462	struct net_device *net = priv->net;
1463
1464	priv->force_quit = 1;
1465	disable_irq(spi->irq);
1466	/* Note: at this point neither IST nor workqueues are running.
 
1467	 * open/stop cannot be called anyway so locking is not needed
1468	 */
1469	if (netif_running(net)) {
1470		netif_device_detach(net);
1471
1472		mcp251x_hw_sleep(spi);
1473		mcp251x_power_enable(priv->transceiver, 0);
1474		priv->after_suspend = AFTER_SUSPEND_UP;
1475	} else {
1476		priv->after_suspend = AFTER_SUSPEND_DOWN;
1477	}
1478
1479	mcp251x_power_enable(priv->power, 0);
1480	priv->after_suspend |= AFTER_SUSPEND_POWER;
 
 
1481
1482	return 0;
1483}
1484
1485static int __maybe_unused mcp251x_can_resume(struct device *dev)
1486{
1487	struct spi_device *spi = to_spi_device(dev);
1488	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1489
1490	if (priv->after_suspend & AFTER_SUSPEND_POWER)
1491		mcp251x_power_enable(priv->power, 1);
1492	if (priv->after_suspend & AFTER_SUSPEND_UP)
1493		mcp251x_power_enable(priv->transceiver, 1);
1494
1495	if (priv->after_suspend & (AFTER_SUSPEND_POWER | AFTER_SUSPEND_UP))
 
1496		queue_work(priv->wq, &priv->restart_work);
1497	else
1498		priv->after_suspend = 0;
 
1499
1500	priv->force_quit = 0;
1501	enable_irq(spi->irq);
1502	return 0;
1503}
1504
1505static SIMPLE_DEV_PM_OPS(mcp251x_can_pm_ops, mcp251x_can_suspend,
1506	mcp251x_can_resume);
1507
1508static struct spi_driver mcp251x_can_driver = {
1509	.driver = {
1510		.name = DEVICE_NAME,
1511		.of_match_table = mcp251x_of_match,
1512		.pm = &mcp251x_can_pm_ops,
1513	},
1514	.id_table = mcp251x_id_table,
1515	.probe = mcp251x_can_probe,
1516	.remove = mcp251x_can_remove,
1517};
1518module_spi_driver(mcp251x_can_driver);
1519
1520MODULE_AUTHOR("Chris Elston <celston@katalix.com>, "
1521	      "Christian Pellegrin <chripell@evolware.org>");
1522MODULE_DESCRIPTION("Microchip 251x/25625 CAN driver");
1523MODULE_LICENSE("GPL v2");
v4.6
   1/*
   2 * CAN bus driver for Microchip 251x CAN Controller with SPI Interface
   3 *
   4 * MCP2510 support and bug fixes by Christian Pellegrin
   5 * <chripell@evolware.org>
   6 *
   7 * Copyright 2009 Christian Pellegrin EVOL S.r.l.
   8 *
   9 * Copyright 2007 Raymarine UK, Ltd. All Rights Reserved.
  10 * Written under contract by:
  11 *   Chris Elston, Katalix Systems, Ltd.
  12 *
  13 * Based on Microchip MCP251x CAN controller driver written by
  14 * David Vrabel, Copyright 2006 Arcom Control Systems Ltd.
  15 *
  16 * Based on CAN bus driver for the CCAN controller written by
  17 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix
  18 * - Simon Kallweit, intefo AG
  19 * Copyright 2007
  20 *
  21 * This program is free software; you can redistribute it and/or modify
  22 * it under the terms of the version 2 of the GNU General Public License
  23 * as published by the Free Software Foundation
  24 *
  25 * This program is distributed in the hope that it will be useful,
  26 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  27 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  28 * GNU General Public License for more details.
  29 *
  30 * You should have received a copy of the GNU General Public License
  31 * along with this program; if not, see <http://www.gnu.org/licenses/>.
  32 *
  33 *
  34 *
  35 * Your platform definition file should specify something like:
  36 *
  37 * static struct mcp251x_platform_data mcp251x_info = {
  38 *         .oscillator_frequency = 8000000,
  39 * };
  40 *
  41 * static struct spi_board_info spi_board_info[] = {
  42 *         {
  43 *                 .modalias = "mcp2510",
  44 *			// or "mcp2515" depending on your controller
  45 *                 .platform_data = &mcp251x_info,
  46 *                 .irq = IRQ_EINT13,
  47 *                 .max_speed_hz = 2*1000*1000,
  48 *                 .chip_select = 2,
  49 *         },
  50 * };
  51 *
  52 * Please see mcp251x.h for a description of the fields in
  53 * struct mcp251x_platform_data.
  54 *
  55 */
  56
 
  57#include <linux/can/core.h>
  58#include <linux/can/dev.h>
  59#include <linux/can/led.h>
  60#include <linux/can/platform/mcp251x.h>
  61#include <linux/clk.h>
  62#include <linux/completion.h>
  63#include <linux/delay.h>
  64#include <linux/device.h>
  65#include <linux/dma-mapping.h>
  66#include <linux/freezer.h>
 
 
  67#include <linux/interrupt.h>
  68#include <linux/io.h>
 
  69#include <linux/kernel.h>
  70#include <linux/module.h>
  71#include <linux/netdevice.h>
  72#include <linux/of.h>
  73#include <linux/of_device.h>
  74#include <linux/platform_device.h>
 
 
  75#include <linux/slab.h>
  76#include <linux/spi/spi.h>
  77#include <linux/uaccess.h>
  78#include <linux/regulator/consumer.h>
  79
  80/* SPI interface instruction set */
  81#define INSTRUCTION_WRITE	0x02
  82#define INSTRUCTION_READ	0x03
  83#define INSTRUCTION_BIT_MODIFY	0x05
  84#define INSTRUCTION_LOAD_TXB(n)	(0x40 + 2 * (n))
  85#define INSTRUCTION_READ_RXB(n)	(((n) == 0) ? 0x90 : 0x94)
  86#define INSTRUCTION_RESET	0xC0
  87#define RTS_TXB0		0x01
  88#define RTS_TXB1		0x02
  89#define RTS_TXB2		0x04
  90#define INSTRUCTION_RTS(n)	(0x80 | ((n) & 0x07))
  91
  92
  93/* MPC251x registers */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  94#define CANSTAT	      0x0e
  95#define CANCTRL	      0x0f
  96#  define CANCTRL_REQOP_MASK	    0xe0
  97#  define CANCTRL_REQOP_CONF	    0x80
  98#  define CANCTRL_REQOP_LISTEN_ONLY 0x60
  99#  define CANCTRL_REQOP_LOOPBACK    0x40
 100#  define CANCTRL_REQOP_SLEEP	    0x20
 101#  define CANCTRL_REQOP_NORMAL	    0x00
 102#  define CANCTRL_OSM		    0x08
 103#  define CANCTRL_ABAT		    0x10
 104#define TEC	      0x1c
 105#define REC	      0x1d
 106#define CNF1	      0x2a
 107#  define CNF1_SJW_SHIFT   6
 108#define CNF2	      0x29
 109#  define CNF2_BTLMODE	   0x80
 110#  define CNF2_SAM         0x40
 111#  define CNF2_PS1_SHIFT   3
 112#define CNF3	      0x28
 113#  define CNF3_SOF	   0x08
 114#  define CNF3_WAKFIL	   0x04
 115#  define CNF3_PHSEG2_MASK 0x07
 116#define CANINTE	      0x2b
 117#  define CANINTE_MERRE 0x80
 118#  define CANINTE_WAKIE 0x40
 119#  define CANINTE_ERRIE 0x20
 120#  define CANINTE_TX2IE 0x10
 121#  define CANINTE_TX1IE 0x08
 122#  define CANINTE_TX0IE 0x04
 123#  define CANINTE_RX1IE 0x02
 124#  define CANINTE_RX0IE 0x01
 125#define CANINTF	      0x2c
 126#  define CANINTF_MERRF 0x80
 127#  define CANINTF_WAKIF 0x40
 128#  define CANINTF_ERRIF 0x20
 129#  define CANINTF_TX2IF 0x10
 130#  define CANINTF_TX1IF 0x08
 131#  define CANINTF_TX0IF 0x04
 132#  define CANINTF_RX1IF 0x02
 133#  define CANINTF_RX0IF 0x01
 134#  define CANINTF_RX (CANINTF_RX0IF | CANINTF_RX1IF)
 135#  define CANINTF_TX (CANINTF_TX2IF | CANINTF_TX1IF | CANINTF_TX0IF)
 136#  define CANINTF_ERR (CANINTF_ERRIF)
 137#define EFLG	      0x2d
 138#  define EFLG_EWARN	0x01
 139#  define EFLG_RXWAR	0x02
 140#  define EFLG_TXWAR	0x04
 141#  define EFLG_RXEP	0x08
 142#  define EFLG_TXEP	0x10
 143#  define EFLG_TXBO	0x20
 144#  define EFLG_RX0OVR	0x40
 145#  define EFLG_RX1OVR	0x80
 146#define TXBCTRL(n)  (((n) * 0x10) + 0x30 + TXBCTRL_OFF)
 147#  define TXBCTRL_ABTF	0x40
 148#  define TXBCTRL_MLOA	0x20
 149#  define TXBCTRL_TXERR 0x10
 150#  define TXBCTRL_TXREQ 0x08
 151#define TXBSIDH(n)  (((n) * 0x10) + 0x30 + TXBSIDH_OFF)
 152#  define SIDH_SHIFT    3
 153#define TXBSIDL(n)  (((n) * 0x10) + 0x30 + TXBSIDL_OFF)
 154#  define SIDL_SID_MASK    7
 155#  define SIDL_SID_SHIFT   5
 156#  define SIDL_EXIDE_SHIFT 3
 157#  define SIDL_EID_SHIFT   16
 158#  define SIDL_EID_MASK    3
 159#define TXBEID8(n)  (((n) * 0x10) + 0x30 + TXBEID8_OFF)
 160#define TXBEID0(n)  (((n) * 0x10) + 0x30 + TXBEID0_OFF)
 161#define TXBDLC(n)   (((n) * 0x10) + 0x30 + TXBDLC_OFF)
 162#  define DLC_RTR_SHIFT    6
 163#define TXBCTRL_OFF 0
 164#define TXBSIDH_OFF 1
 165#define TXBSIDL_OFF 2
 166#define TXBEID8_OFF 3
 167#define TXBEID0_OFF 4
 168#define TXBDLC_OFF  5
 169#define TXBDAT_OFF  6
 170#define RXBCTRL(n)  (((n) * 0x10) + 0x60 + RXBCTRL_OFF)
 171#  define RXBCTRL_BUKT	0x04
 172#  define RXBCTRL_RXM0	0x20
 173#  define RXBCTRL_RXM1	0x40
 174#define RXBSIDH(n)  (((n) * 0x10) + 0x60 + RXBSIDH_OFF)
 175#  define RXBSIDH_SHIFT 3
 176#define RXBSIDL(n)  (((n) * 0x10) + 0x60 + RXBSIDL_OFF)
 177#  define RXBSIDL_IDE   0x08
 178#  define RXBSIDL_SRR   0x10
 179#  define RXBSIDL_EID   3
 180#  define RXBSIDL_SHIFT 5
 181#define RXBEID8(n)  (((n) * 0x10) + 0x60 + RXBEID8_OFF)
 182#define RXBEID0(n)  (((n) * 0x10) + 0x60 + RXBEID0_OFF)
 183#define RXBDLC(n)   (((n) * 0x10) + 0x60 + RXBDLC_OFF)
 184#  define RXBDLC_LEN_MASK  0x0f
 185#  define RXBDLC_RTR       0x40
 186#define RXBCTRL_OFF 0
 187#define RXBSIDH_OFF 1
 188#define RXBSIDL_OFF 2
 189#define RXBEID8_OFF 3
 190#define RXBEID0_OFF 4
 191#define RXBDLC_OFF  5
 192#define RXBDAT_OFF  6
 193#define RXFSID(n) ((n < 3) ? 0 : 4)
 194#define RXFSIDH(n) ((n) * 4 + RXFSID(n))
 195#define RXFSIDL(n) ((n) * 4 + 1 + RXFSID(n))
 196#define RXFEID8(n) ((n) * 4 + 2 + RXFSID(n))
 197#define RXFEID0(n) ((n) * 4 + 3 + RXFSID(n))
 198#define RXMSIDH(n) ((n) * 4 + 0x20)
 199#define RXMSIDL(n) ((n) * 4 + 0x21)
 200#define RXMEID8(n) ((n) * 4 + 0x22)
 201#define RXMEID0(n) ((n) * 4 + 0x23)
 202
 203#define GET_BYTE(val, byte)			\
 204	(((val) >> ((byte) * 8)) & 0xff)
 205#define SET_BYTE(val, byte)			\
 206	(((val) & 0xff) << ((byte) * 8))
 207
 208/*
 209 * Buffer size required for the largest SPI transfer (i.e., reading a
 210 * frame)
 211 */
 212#define CAN_FRAME_MAX_DATA_LEN	8
 213#define SPI_TRANSFER_BUF_LEN	(6 + CAN_FRAME_MAX_DATA_LEN)
 214#define CAN_FRAME_MAX_BITS	128
 215
 216#define TX_ECHO_SKB_MAX	1
 217
 218#define MCP251X_OST_DELAY_MS	(5)
 219
 220#define DEVICE_NAME "mcp251x"
 221
 222static int mcp251x_enable_dma; /* Enable SPI DMA. Default: 0 (Off) */
 223module_param(mcp251x_enable_dma, int, S_IRUGO);
 224MODULE_PARM_DESC(mcp251x_enable_dma, "Enable SPI DMA. Default: 0 (Off)");
 225
 226static const struct can_bittiming_const mcp251x_bittiming_const = {
 227	.name = DEVICE_NAME,
 228	.tseg1_min = 3,
 229	.tseg1_max = 16,
 230	.tseg2_min = 2,
 231	.tseg2_max = 8,
 232	.sjw_max = 4,
 233	.brp_min = 1,
 234	.brp_max = 64,
 235	.brp_inc = 1,
 236};
 237
 238enum mcp251x_model {
 239	CAN_MCP251X_MCP2510	= 0x2510,
 240	CAN_MCP251X_MCP2515	= 0x2515,
 
 241};
 242
 243struct mcp251x_priv {
 244	struct can_priv	   can;
 245	struct net_device *net;
 246	struct spi_device *spi;
 247	enum mcp251x_model model;
 248
 249	struct mutex mcp_lock; /* SPI device lock */
 250
 251	u8 *spi_tx_buf;
 252	u8 *spi_rx_buf;
 253	dma_addr_t spi_tx_dma;
 254	dma_addr_t spi_rx_dma;
 255
 256	struct sk_buff *tx_skb;
 257	int tx_len;
 258
 259	struct workqueue_struct *wq;
 260	struct work_struct tx_work;
 261	struct work_struct restart_work;
 262
 263	int force_quit;
 264	int after_suspend;
 265#define AFTER_SUSPEND_UP 1
 266#define AFTER_SUSPEND_DOWN 2
 267#define AFTER_SUSPEND_POWER 4
 268#define AFTER_SUSPEND_RESTART 8
 269	int restart_tx;
 
 
 270	struct regulator *power;
 271	struct regulator *transceiver;
 272	struct clk *clk;
 
 
 
 
 273};
 274
 275#define MCP251X_IS(_model) \
 276static inline int mcp251x_is_##_model(struct spi_device *spi) \
 277{ \
 278	struct mcp251x_priv *priv = spi_get_drvdata(spi); \
 279	return priv->model == CAN_MCP251X_MCP##_model; \
 280}
 281
 282MCP251X_IS(2510);
 283MCP251X_IS(2515);
 284
 285static void mcp251x_clean(struct net_device *net)
 286{
 287	struct mcp251x_priv *priv = netdev_priv(net);
 288
 289	if (priv->tx_skb || priv->tx_len)
 290		net->stats.tx_errors++;
 291	if (priv->tx_skb)
 292		dev_kfree_skb(priv->tx_skb);
 293	if (priv->tx_len)
 294		can_free_echo_skb(priv->net, 0);
 295	priv->tx_skb = NULL;
 296	priv->tx_len = 0;
 297}
 298
 299/*
 300 * Note about handling of error return of mcp251x_spi_trans: accessing
 301 * registers via SPI is not really different conceptually than using
 302 * normal I/O assembler instructions, although it's much more
 303 * complicated from a practical POV. So it's not advisable to always
 304 * check the return value of this function. Imagine that every
 305 * read{b,l}, write{b,l} and friends would be bracketed in "if ( < 0)
 306 * error();", it would be a great mess (well there are some situation
 307 * when exception handling C++ like could be useful after all). So we
 308 * just check that transfers are OK at the beginning of our
 309 * conversation with the chip and to avoid doing really nasty things
 310 * (like injecting bogus packets in the network stack).
 311 */
 312static int mcp251x_spi_trans(struct spi_device *spi, int len)
 313{
 314	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 315	struct spi_transfer t = {
 316		.tx_buf = priv->spi_tx_buf,
 317		.rx_buf = priv->spi_rx_buf,
 318		.len = len,
 319		.cs_change = 0,
 320	};
 321	struct spi_message m;
 322	int ret;
 323
 324	spi_message_init(&m);
 325
 326	if (mcp251x_enable_dma) {
 327		t.tx_dma = priv->spi_tx_dma;
 328		t.rx_dma = priv->spi_rx_dma;
 329		m.is_dma_mapped = 1;
 330	}
 331
 332	spi_message_add_tail(&t, &m);
 333
 334	ret = spi_sync(spi, &m);
 335	if (ret)
 336		dev_err(&spi->dev, "spi transfer failed: ret = %d\n", ret);
 337	return ret;
 338}
 339
 340static u8 mcp251x_read_reg(struct spi_device *spi, uint8_t reg)
 
 
 
 
 
 
 
 
 
 
 
 
 341{
 342	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 343	u8 val = 0;
 344
 345	priv->spi_tx_buf[0] = INSTRUCTION_READ;
 346	priv->spi_tx_buf[1] = reg;
 347
 348	mcp251x_spi_trans(spi, 3);
 349	val = priv->spi_rx_buf[2];
 
 
 
 
 350
 351	return val;
 352}
 353
 354static void mcp251x_read_2regs(struct spi_device *spi, uint8_t reg,
 355		uint8_t *v1, uint8_t *v2)
 356{
 357	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 358
 359	priv->spi_tx_buf[0] = INSTRUCTION_READ;
 360	priv->spi_tx_buf[1] = reg;
 361
 362	mcp251x_spi_trans(spi, 4);
 
 
 
 
 
 
 
 363
 364	*v1 = priv->spi_rx_buf[2];
 365	*v2 = priv->spi_rx_buf[3];
 
 366}
 367
 368static void mcp251x_write_reg(struct spi_device *spi, u8 reg, uint8_t val)
 369{
 370	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 371
 372	priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
 373	priv->spi_tx_buf[1] = reg;
 374	priv->spi_tx_buf[2] = val;
 375
 376	mcp251x_spi_trans(spi, 3);
 
 
 
 
 
 
 
 
 
 
 
 
 377}
 378
 379static void mcp251x_write_bits(struct spi_device *spi, u8 reg,
 380			       u8 mask, uint8_t val)
 381{
 382	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 383
 384	priv->spi_tx_buf[0] = INSTRUCTION_BIT_MODIFY;
 385	priv->spi_tx_buf[1] = reg;
 386	priv->spi_tx_buf[2] = mask;
 387	priv->spi_tx_buf[3] = val;
 388
 389	mcp251x_spi_trans(spi, 4);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 390}
 
 391
 392static void mcp251x_hw_tx_frame(struct spi_device *spi, u8 *buf,
 393				int len, int tx_buf_idx)
 394{
 395	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 396
 397	if (mcp251x_is_2510(spi)) {
 398		int i;
 399
 400		for (i = 1; i < TXBDAT_OFF + len; i++)
 401			mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + i,
 402					  buf[i]);
 403	} else {
 404		memcpy(priv->spi_tx_buf, buf, TXBDAT_OFF + len);
 405		mcp251x_spi_trans(spi, TXBDAT_OFF + len);
 406	}
 407}
 408
 409static void mcp251x_hw_tx(struct spi_device *spi, struct can_frame *frame,
 410			  int tx_buf_idx)
 411{
 412	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 413	u32 sid, eid, exide, rtr;
 414	u8 buf[SPI_TRANSFER_BUF_LEN];
 415
 416	exide = (frame->can_id & CAN_EFF_FLAG) ? 1 : 0; /* Extended ID Enable */
 417	if (exide)
 418		sid = (frame->can_id & CAN_EFF_MASK) >> 18;
 419	else
 420		sid = frame->can_id & CAN_SFF_MASK; /* Standard ID */
 421	eid = frame->can_id & CAN_EFF_MASK; /* Extended ID */
 422	rtr = (frame->can_id & CAN_RTR_FLAG) ? 1 : 0; /* Remote transmission */
 423
 424	buf[TXBCTRL_OFF] = INSTRUCTION_LOAD_TXB(tx_buf_idx);
 425	buf[TXBSIDH_OFF] = sid >> SIDH_SHIFT;
 426	buf[TXBSIDL_OFF] = ((sid & SIDL_SID_MASK) << SIDL_SID_SHIFT) |
 427		(exide << SIDL_EXIDE_SHIFT) |
 428		((eid >> SIDL_EID_SHIFT) & SIDL_EID_MASK);
 429	buf[TXBEID8_OFF] = GET_BYTE(eid, 1);
 430	buf[TXBEID0_OFF] = GET_BYTE(eid, 0);
 431	buf[TXBDLC_OFF] = (rtr << DLC_RTR_SHIFT) | frame->can_dlc;
 432	memcpy(buf + TXBDAT_OFF, frame->data, frame->can_dlc);
 433	mcp251x_hw_tx_frame(spi, buf, frame->can_dlc, tx_buf_idx);
 434
 435	/* use INSTRUCTION_RTS, to avoid "repeated frame problem" */
 436	priv->spi_tx_buf[0] = INSTRUCTION_RTS(1 << tx_buf_idx);
 437	mcp251x_spi_trans(priv->spi, 1);
 438}
 439
 440static void mcp251x_hw_rx_frame(struct spi_device *spi, u8 *buf,
 441				int buf_idx)
 442{
 443	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 444
 445	if (mcp251x_is_2510(spi)) {
 446		int i, len;
 447
 448		for (i = 1; i < RXBDAT_OFF; i++)
 449			buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
 450
 451		len = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
 452		for (; i < (RXBDAT_OFF + len); i++)
 453			buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
 454	} else {
 455		priv->spi_tx_buf[RXBCTRL_OFF] = INSTRUCTION_READ_RXB(buf_idx);
 456		mcp251x_spi_trans(spi, SPI_TRANSFER_BUF_LEN);
 457		memcpy(buf, priv->spi_rx_buf, SPI_TRANSFER_BUF_LEN);
 
 
 
 
 
 
 
 
 458	}
 459}
 460
 461static void mcp251x_hw_rx(struct spi_device *spi, int buf_idx)
 462{
 463	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 464	struct sk_buff *skb;
 465	struct can_frame *frame;
 466	u8 buf[SPI_TRANSFER_BUF_LEN];
 467
 468	skb = alloc_can_skb(priv->net, &frame);
 469	if (!skb) {
 470		dev_err(&spi->dev, "cannot allocate RX skb\n");
 471		priv->net->stats.rx_dropped++;
 472		return;
 473	}
 474
 475	mcp251x_hw_rx_frame(spi, buf, buf_idx);
 476	if (buf[RXBSIDL_OFF] & RXBSIDL_IDE) {
 477		/* Extended ID format */
 478		frame->can_id = CAN_EFF_FLAG;
 479		frame->can_id |=
 480			/* Extended ID part */
 481			SET_BYTE(buf[RXBSIDL_OFF] & RXBSIDL_EID, 2) |
 482			SET_BYTE(buf[RXBEID8_OFF], 1) |
 483			SET_BYTE(buf[RXBEID0_OFF], 0) |
 484			/* Standard ID part */
 485			(((buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
 486			  (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT)) << 18);
 487		/* Remote transmission request */
 488		if (buf[RXBDLC_OFF] & RXBDLC_RTR)
 489			frame->can_id |= CAN_RTR_FLAG;
 490	} else {
 491		/* Standard ID format */
 492		frame->can_id =
 493			(buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
 494			(buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT);
 495		if (buf[RXBSIDL_OFF] & RXBSIDL_SRR)
 496			frame->can_id |= CAN_RTR_FLAG;
 497	}
 498	/* Data length */
 499	frame->can_dlc = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
 500	memcpy(frame->data, buf + RXBDAT_OFF, frame->can_dlc);
 
 501
 
 
 502	priv->net->stats.rx_packets++;
 503	priv->net->stats.rx_bytes += frame->can_dlc;
 504
 505	can_led_event(priv->net, CAN_LED_EVENT_RX);
 506
 507	netif_rx_ni(skb);
 508}
 509
 510static void mcp251x_hw_sleep(struct spi_device *spi)
 511{
 512	mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_SLEEP);
 513}
 514
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 515static netdev_tx_t mcp251x_hard_start_xmit(struct sk_buff *skb,
 516					   struct net_device *net)
 517{
 518	struct mcp251x_priv *priv = netdev_priv(net);
 519	struct spi_device *spi = priv->spi;
 520
 521	if (priv->tx_skb || priv->tx_len) {
 522		dev_warn(&spi->dev, "hard_xmit called while tx busy\n");
 523		return NETDEV_TX_BUSY;
 524	}
 525
 526	if (can_dropped_invalid_skb(net, skb))
 527		return NETDEV_TX_OK;
 528
 529	netif_stop_queue(net);
 530	priv->tx_skb = skb;
 531	queue_work(priv->wq, &priv->tx_work);
 532
 533	return NETDEV_TX_OK;
 534}
 535
 536static int mcp251x_do_set_mode(struct net_device *net, enum can_mode mode)
 537{
 538	struct mcp251x_priv *priv = netdev_priv(net);
 539
 540	switch (mode) {
 541	case CAN_MODE_START:
 542		mcp251x_clean(net);
 543		/* We have to delay work since SPI I/O may sleep */
 544		priv->can.state = CAN_STATE_ERROR_ACTIVE;
 545		priv->restart_tx = 1;
 546		if (priv->can.restart_ms == 0)
 547			priv->after_suspend = AFTER_SUSPEND_RESTART;
 548		queue_work(priv->wq, &priv->restart_work);
 549		break;
 550	default:
 551		return -EOPNOTSUPP;
 552	}
 553
 554	return 0;
 555}
 556
 557static int mcp251x_set_normal_mode(struct spi_device *spi)
 558{
 559	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 560	unsigned long timeout;
 
 561
 562	/* Enable interrupts */
 563	mcp251x_write_reg(spi, CANINTE,
 564			  CANINTE_ERRIE | CANINTE_TX2IE | CANINTE_TX1IE |
 565			  CANINTE_TX0IE | CANINTE_RX1IE | CANINTE_RX0IE);
 566
 567	if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
 568		/* Put device into loopback mode */
 569		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LOOPBACK);
 570	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
 571		/* Put device into listen-only mode */
 572		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LISTEN_ONLY);
 573	} else {
 574		/* Put device into normal mode */
 575		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_NORMAL);
 576
 577		/* Wait for the device to enter normal mode */
 578		timeout = jiffies + HZ;
 579		while (mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK) {
 580			schedule();
 581			if (time_after(jiffies, timeout)) {
 582				dev_err(&spi->dev, "MCP251x didn't"
 583					" enter in normal mode\n");
 584				return -EBUSY;
 585			}
 586		}
 587	}
 588	priv->can.state = CAN_STATE_ERROR_ACTIVE;
 589	return 0;
 590}
 591
 592static int mcp251x_do_set_bittiming(struct net_device *net)
 593{
 594	struct mcp251x_priv *priv = netdev_priv(net);
 595	struct can_bittiming *bt = &priv->can.bittiming;
 596	struct spi_device *spi = priv->spi;
 597
 598	mcp251x_write_reg(spi, CNF1, ((bt->sjw - 1) << CNF1_SJW_SHIFT) |
 599			  (bt->brp - 1));
 600	mcp251x_write_reg(spi, CNF2, CNF2_BTLMODE |
 601			  (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES ?
 602			   CNF2_SAM : 0) |
 603			  ((bt->phase_seg1 - 1) << CNF2_PS1_SHIFT) |
 604			  (bt->prop_seg - 1));
 605	mcp251x_write_bits(spi, CNF3, CNF3_PHSEG2_MASK,
 606			   (bt->phase_seg2 - 1));
 607	dev_dbg(&spi->dev, "CNF: 0x%02x 0x%02x 0x%02x\n",
 608		mcp251x_read_reg(spi, CNF1),
 609		mcp251x_read_reg(spi, CNF2),
 610		mcp251x_read_reg(spi, CNF3));
 611
 612	return 0;
 613}
 614
 615static int mcp251x_setup(struct net_device *net, struct mcp251x_priv *priv,
 616			 struct spi_device *spi)
 617{
 618	mcp251x_do_set_bittiming(net);
 619
 620	mcp251x_write_reg(spi, RXBCTRL(0),
 621			  RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1);
 622	mcp251x_write_reg(spi, RXBCTRL(1),
 623			  RXBCTRL_RXM0 | RXBCTRL_RXM1);
 624	return 0;
 625}
 626
 627static int mcp251x_hw_reset(struct spi_device *spi)
 628{
 629	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 630	u8 reg;
 631	int ret;
 632
 633	/* Wait for oscillator startup timer after power up */
 634	mdelay(MCP251X_OST_DELAY_MS);
 635
 636	priv->spi_tx_buf[0] = INSTRUCTION_RESET;
 637	ret = mcp251x_spi_trans(spi, 1);
 638	if (ret)
 639		return ret;
 640
 641	/* Wait for oscillator startup timer after reset */
 642	mdelay(MCP251X_OST_DELAY_MS);
 643	
 644	reg = mcp251x_read_reg(spi, CANSTAT);
 645	if ((reg & CANCTRL_REQOP_MASK) != CANCTRL_REQOP_CONF)
 646		return -ENODEV;
 647
 648	return 0;
 
 
 
 
 
 
 649}
 650
 651static int mcp251x_hw_probe(struct spi_device *spi)
 652{
 653	u8 ctrl;
 654	int ret;
 655
 656	ret = mcp251x_hw_reset(spi);
 657	if (ret)
 658		return ret;
 659
 660	ctrl = mcp251x_read_reg(spi, CANCTRL);
 661
 662	dev_dbg(&spi->dev, "CANCTRL 0x%02x\n", ctrl);
 663
 664	/* Check for power up default value */
 665	if ((ctrl & 0x17) != 0x07)
 666		return -ENODEV;
 667
 668	return 0;
 669}
 670
 671static int mcp251x_power_enable(struct regulator *reg, int enable)
 672{
 673	if (IS_ERR_OR_NULL(reg))
 674		return 0;
 675
 676	if (enable)
 677		return regulator_enable(reg);
 678	else
 679		return regulator_disable(reg);
 680}
 681
 682static void mcp251x_open_clean(struct net_device *net)
 683{
 684	struct mcp251x_priv *priv = netdev_priv(net);
 685	struct spi_device *spi = priv->spi;
 686
 687	free_irq(spi->irq, priv);
 688	mcp251x_hw_sleep(spi);
 689	mcp251x_power_enable(priv->transceiver, 0);
 690	close_candev(net);
 691}
 692
 693static int mcp251x_stop(struct net_device *net)
 694{
 695	struct mcp251x_priv *priv = netdev_priv(net);
 696	struct spi_device *spi = priv->spi;
 697
 698	close_candev(net);
 699
 700	priv->force_quit = 1;
 701	free_irq(spi->irq, priv);
 702	destroy_workqueue(priv->wq);
 703	priv->wq = NULL;
 704
 705	mutex_lock(&priv->mcp_lock);
 706
 707	/* Disable and clear pending interrupts */
 708	mcp251x_write_reg(spi, CANINTE, 0x00);
 709	mcp251x_write_reg(spi, CANINTF, 0x00);
 710
 711	mcp251x_write_reg(spi, TXBCTRL(0), 0);
 712	mcp251x_clean(net);
 713
 714	mcp251x_hw_sleep(spi);
 715
 716	mcp251x_power_enable(priv->transceiver, 0);
 717
 718	priv->can.state = CAN_STATE_STOPPED;
 719
 720	mutex_unlock(&priv->mcp_lock);
 721
 722	can_led_event(net, CAN_LED_EVENT_STOP);
 723
 724	return 0;
 725}
 726
 727static void mcp251x_error_skb(struct net_device *net, int can_id, int data1)
 728{
 729	struct sk_buff *skb;
 730	struct can_frame *frame;
 731
 732	skb = alloc_can_err_skb(net, &frame);
 733	if (skb) {
 734		frame->can_id |= can_id;
 735		frame->data[1] = data1;
 736		netif_rx_ni(skb);
 737	} else {
 738		netdev_err(net, "cannot allocate error skb\n");
 739	}
 740}
 741
 742static void mcp251x_tx_work_handler(struct work_struct *ws)
 743{
 744	struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
 745						 tx_work);
 746	struct spi_device *spi = priv->spi;
 747	struct net_device *net = priv->net;
 748	struct can_frame *frame;
 749
 750	mutex_lock(&priv->mcp_lock);
 751	if (priv->tx_skb) {
 752		if (priv->can.state == CAN_STATE_BUS_OFF) {
 753			mcp251x_clean(net);
 754		} else {
 755			frame = (struct can_frame *)priv->tx_skb->data;
 756
 757			if (frame->can_dlc > CAN_FRAME_MAX_DATA_LEN)
 758				frame->can_dlc = CAN_FRAME_MAX_DATA_LEN;
 759			mcp251x_hw_tx(spi, frame, 0);
 760			priv->tx_len = 1 + frame->can_dlc;
 761			can_put_echo_skb(priv->tx_skb, net, 0);
 762			priv->tx_skb = NULL;
 763		}
 764	}
 765	mutex_unlock(&priv->mcp_lock);
 766}
 767
 768static void mcp251x_restart_work_handler(struct work_struct *ws)
 769{
 770	struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
 771						 restart_work);
 772	struct spi_device *spi = priv->spi;
 773	struct net_device *net = priv->net;
 774
 775	mutex_lock(&priv->mcp_lock);
 776	if (priv->after_suspend) {
 777		mcp251x_hw_reset(spi);
 778		mcp251x_setup(net, priv, spi);
 
 
 
 
 
 
 779		if (priv->after_suspend & AFTER_SUSPEND_RESTART) {
 780			mcp251x_set_normal_mode(spi);
 781		} else if (priv->after_suspend & AFTER_SUSPEND_UP) {
 782			netif_device_attach(net);
 783			mcp251x_clean(net);
 784			mcp251x_set_normal_mode(spi);
 785			netif_wake_queue(net);
 786		} else {
 787			mcp251x_hw_sleep(spi);
 788		}
 789		priv->after_suspend = 0;
 790		priv->force_quit = 0;
 791	}
 792
 793	if (priv->restart_tx) {
 794		priv->restart_tx = 0;
 795		mcp251x_write_reg(spi, TXBCTRL(0), 0);
 796		mcp251x_clean(net);
 797		netif_wake_queue(net);
 798		mcp251x_error_skb(net, CAN_ERR_RESTARTED, 0);
 799	}
 800	mutex_unlock(&priv->mcp_lock);
 801}
 802
 803static irqreturn_t mcp251x_can_ist(int irq, void *dev_id)
 804{
 805	struct mcp251x_priv *priv = dev_id;
 806	struct spi_device *spi = priv->spi;
 807	struct net_device *net = priv->net;
 808
 809	mutex_lock(&priv->mcp_lock);
 810	while (!priv->force_quit) {
 811		enum can_state new_state;
 812		u8 intf, eflag;
 813		u8 clear_intf = 0;
 814		int can_id = 0, data1 = 0;
 815
 816		mcp251x_read_2regs(spi, CANINTF, &intf, &eflag);
 817
 818		/* mask out flags we don't care about */
 819		intf &= CANINTF_RX | CANINTF_TX | CANINTF_ERR;
 820
 821		/* receive buffer 0 */
 822		if (intf & CANINTF_RX0IF) {
 823			mcp251x_hw_rx(spi, 0);
 824			/*
 825			 * Free one buffer ASAP
 826			 * (The MCP2515 does this automatically.)
 827			 */
 828			if (mcp251x_is_2510(spi))
 829				mcp251x_write_bits(spi, CANINTF, CANINTF_RX0IF, 0x00);
 
 
 
 
 
 
 
 
 
 
 
 
 
 830		}
 831
 832		/* receive buffer 1 */
 833		if (intf & CANINTF_RX1IF) {
 834			mcp251x_hw_rx(spi, 1);
 835			/* the MCP2515 does this automatically */
 836			if (mcp251x_is_2510(spi))
 837				clear_intf |= CANINTF_RX1IF;
 838		}
 839
 
 
 
 840		/* any error or tx interrupt we need to clear? */
 841		if (intf & (CANINTF_ERR | CANINTF_TX))
 842			clear_intf |= intf & (CANINTF_ERR | CANINTF_TX);
 843		if (clear_intf)
 844			mcp251x_write_bits(spi, CANINTF, clear_intf, 0x00);
 845
 846		if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR))
 847			mcp251x_write_bits(spi, EFLG, eflag, 0x00);
 848
 849		/* Update can state */
 850		if (eflag & EFLG_TXBO) {
 851			new_state = CAN_STATE_BUS_OFF;
 852			can_id |= CAN_ERR_BUSOFF;
 853		} else if (eflag & EFLG_TXEP) {
 854			new_state = CAN_STATE_ERROR_PASSIVE;
 855			can_id |= CAN_ERR_CRTL;
 856			data1 |= CAN_ERR_CRTL_TX_PASSIVE;
 857		} else if (eflag & EFLG_RXEP) {
 858			new_state = CAN_STATE_ERROR_PASSIVE;
 859			can_id |= CAN_ERR_CRTL;
 860			data1 |= CAN_ERR_CRTL_RX_PASSIVE;
 861		} else if (eflag & EFLG_TXWAR) {
 862			new_state = CAN_STATE_ERROR_WARNING;
 863			can_id |= CAN_ERR_CRTL;
 864			data1 |= CAN_ERR_CRTL_TX_WARNING;
 865		} else if (eflag & EFLG_RXWAR) {
 866			new_state = CAN_STATE_ERROR_WARNING;
 867			can_id |= CAN_ERR_CRTL;
 868			data1 |= CAN_ERR_CRTL_RX_WARNING;
 869		} else {
 870			new_state = CAN_STATE_ERROR_ACTIVE;
 871		}
 872
 873		/* Update can state statistics */
 874		switch (priv->can.state) {
 875		case CAN_STATE_ERROR_ACTIVE:
 876			if (new_state >= CAN_STATE_ERROR_WARNING &&
 877			    new_state <= CAN_STATE_BUS_OFF)
 878				priv->can.can_stats.error_warning++;
 879		case CAN_STATE_ERROR_WARNING:	/* fallthrough */
 
 880			if (new_state >= CAN_STATE_ERROR_PASSIVE &&
 881			    new_state <= CAN_STATE_BUS_OFF)
 882				priv->can.can_stats.error_passive++;
 883			break;
 884		default:
 885			break;
 886		}
 887		priv->can.state = new_state;
 888
 889		if (intf & CANINTF_ERRIF) {
 890			/* Handle overflow counters */
 891			if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR)) {
 892				if (eflag & EFLG_RX0OVR) {
 893					net->stats.rx_over_errors++;
 894					net->stats.rx_errors++;
 895				}
 896				if (eflag & EFLG_RX1OVR) {
 897					net->stats.rx_over_errors++;
 898					net->stats.rx_errors++;
 899				}
 900				can_id |= CAN_ERR_CRTL;
 901				data1 |= CAN_ERR_CRTL_RX_OVERFLOW;
 902			}
 903			mcp251x_error_skb(net, can_id, data1);
 904		}
 905
 906		if (priv->can.state == CAN_STATE_BUS_OFF) {
 907			if (priv->can.restart_ms == 0) {
 908				priv->force_quit = 1;
 909				priv->can.can_stats.bus_off++;
 910				can_bus_off(net);
 911				mcp251x_hw_sleep(spi);
 912				break;
 913			}
 914		}
 915
 916		if (intf == 0)
 917			break;
 918
 919		if (intf & CANINTF_TX) {
 920			net->stats.tx_packets++;
 921			net->stats.tx_bytes += priv->tx_len - 1;
 922			can_led_event(net, CAN_LED_EVENT_TX);
 923			if (priv->tx_len) {
 924				can_get_echo_skb(net, 0);
 925				priv->tx_len = 0;
 926			}
 927			netif_wake_queue(net);
 928		}
 929
 930	}
 931	mutex_unlock(&priv->mcp_lock);
 932	return IRQ_HANDLED;
 933}
 934
 935static int mcp251x_open(struct net_device *net)
 936{
 937	struct mcp251x_priv *priv = netdev_priv(net);
 938	struct spi_device *spi = priv->spi;
 939	unsigned long flags = IRQF_ONESHOT | IRQF_TRIGGER_FALLING;
 940	int ret;
 941
 942	ret = open_candev(net);
 943	if (ret) {
 944		dev_err(&spi->dev, "unable to set initial baudrate!\n");
 945		return ret;
 946	}
 947
 948	mutex_lock(&priv->mcp_lock);
 949	mcp251x_power_enable(priv->transceiver, 1);
 950
 951	priv->force_quit = 0;
 952	priv->tx_skb = NULL;
 953	priv->tx_len = 0;
 
 
 
 954
 955	ret = request_threaded_irq(spi->irq, NULL, mcp251x_can_ist,
 956				   flags | IRQF_ONESHOT, DEVICE_NAME, priv);
 
 957	if (ret) {
 958		dev_err(&spi->dev, "failed to acquire irq %d\n", spi->irq);
 959		mcp251x_power_enable(priv->transceiver, 0);
 960		close_candev(net);
 961		goto open_unlock;
 962	}
 963
 964	priv->wq = create_freezable_workqueue("mcp251x_wq");
 965	INIT_WORK(&priv->tx_work, mcp251x_tx_work_handler);
 966	INIT_WORK(&priv->restart_work, mcp251x_restart_work_handler);
 967
 968	ret = mcp251x_hw_reset(spi);
 969	if (ret) {
 970		mcp251x_open_clean(net);
 971		goto open_unlock;
 972	}
 973	ret = mcp251x_setup(net, priv, spi);
 974	if (ret) {
 975		mcp251x_open_clean(net);
 976		goto open_unlock;
 977	}
 978	ret = mcp251x_set_normal_mode(spi);
 979	if (ret) {
 980		mcp251x_open_clean(net);
 981		goto open_unlock;
 982	}
 983
 984	can_led_event(net, CAN_LED_EVENT_OPEN);
 
 985
 986	netif_wake_queue(net);
 987
 988open_unlock:
 
 
 
 
 
 989	mutex_unlock(&priv->mcp_lock);
 990	return ret;
 991}
 992
 993static const struct net_device_ops mcp251x_netdev_ops = {
 994	.ndo_open = mcp251x_open,
 995	.ndo_stop = mcp251x_stop,
 996	.ndo_start_xmit = mcp251x_hard_start_xmit,
 997	.ndo_change_mtu = can_change_mtu,
 998};
 999
 
 
 
 
1000static const struct of_device_id mcp251x_of_match[] = {
1001	{
1002		.compatible	= "microchip,mcp2510",
1003		.data		= (void *)CAN_MCP251X_MCP2510,
1004	},
1005	{
1006		.compatible	= "microchip,mcp2515",
1007		.data		= (void *)CAN_MCP251X_MCP2515,
1008	},
 
 
 
 
1009	{ }
1010};
1011MODULE_DEVICE_TABLE(of, mcp251x_of_match);
1012
1013static const struct spi_device_id mcp251x_id_table[] = {
1014	{
1015		.name		= "mcp2510",
1016		.driver_data	= (kernel_ulong_t)CAN_MCP251X_MCP2510,
1017	},
1018	{
1019		.name		= "mcp2515",
1020		.driver_data	= (kernel_ulong_t)CAN_MCP251X_MCP2515,
1021	},
 
 
 
 
1022	{ }
1023};
1024MODULE_DEVICE_TABLE(spi, mcp251x_id_table);
1025
1026static int mcp251x_can_probe(struct spi_device *spi)
1027{
1028	const struct of_device_id *of_id = of_match_device(mcp251x_of_match,
1029							   &spi->dev);
1030	struct mcp251x_platform_data *pdata = dev_get_platdata(&spi->dev);
1031	struct net_device *net;
1032	struct mcp251x_priv *priv;
1033	struct clk *clk;
1034	int freq, ret;
 
1035
1036	clk = devm_clk_get(&spi->dev, NULL);
1037	if (IS_ERR(clk)) {
1038		if (pdata)
1039			freq = pdata->oscillator_frequency;
1040		else
1041			return PTR_ERR(clk);
1042	} else {
1043		freq = clk_get_rate(clk);
1044	}
1045
1046	/* Sanity check */
1047	if (freq < 1000000 || freq > 25000000)
1048		return -ERANGE;
1049
1050	/* Allocate can/net device */
1051	net = alloc_candev(sizeof(struct mcp251x_priv), TX_ECHO_SKB_MAX);
1052	if (!net)
1053		return -ENOMEM;
1054
1055	if (!IS_ERR(clk)) {
1056		ret = clk_prepare_enable(clk);
1057		if (ret)
1058			goto out_free;
1059	}
1060
1061	net->netdev_ops = &mcp251x_netdev_ops;
 
1062	net->flags |= IFF_ECHO;
1063
1064	priv = netdev_priv(net);
1065	priv->can.bittiming_const = &mcp251x_bittiming_const;
1066	priv->can.do_set_mode = mcp251x_do_set_mode;
1067	priv->can.clock.freq = freq / 2;
1068	priv->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES |
1069		CAN_CTRLMODE_LOOPBACK | CAN_CTRLMODE_LISTENONLY;
1070	if (of_id)
1071		priv->model = (enum mcp251x_model)of_id->data;
1072	else
1073		priv->model = spi_get_device_id(spi)->driver_data;
1074	priv->net = net;
1075	priv->clk = clk;
1076
1077	spi_set_drvdata(spi, priv);
1078
1079	/* Configure the SPI bus */
1080	spi->bits_per_word = 8;
1081	if (mcp251x_is_2510(spi))
1082		spi->max_speed_hz = spi->max_speed_hz ? : 5 * 1000 * 1000;
1083	else
1084		spi->max_speed_hz = spi->max_speed_hz ? : 10 * 1000 * 1000;
1085	ret = spi_setup(spi);
1086	if (ret)
1087		goto out_clk;
1088
1089	priv->power = devm_regulator_get_optional(&spi->dev, "vdd");
1090	priv->transceiver = devm_regulator_get_optional(&spi->dev, "xceiver");
1091	if ((PTR_ERR(priv->power) == -EPROBE_DEFER) ||
1092	    (PTR_ERR(priv->transceiver) == -EPROBE_DEFER)) {
1093		ret = -EPROBE_DEFER;
1094		goto out_clk;
1095	}
1096
1097	ret = mcp251x_power_enable(priv->power, 1);
1098	if (ret)
1099		goto out_clk;
1100
 
 
 
 
 
 
 
 
 
1101	priv->spi = spi;
1102	mutex_init(&priv->mcp_lock);
1103
1104	/* If requested, allocate DMA buffers */
1105	if (mcp251x_enable_dma) {
1106		spi->dev.coherent_dma_mask = ~0;
1107
1108		/*
1109		 * Minimum coherent DMA allocation is PAGE_SIZE, so allocate
1110		 * that much and share it between Tx and Rx DMA buffers.
1111		 */
1112		priv->spi_tx_buf = dmam_alloc_coherent(&spi->dev,
1113						       PAGE_SIZE,
1114						       &priv->spi_tx_dma,
1115						       GFP_DMA);
1116
1117		if (priv->spi_tx_buf) {
1118			priv->spi_rx_buf = (priv->spi_tx_buf + (PAGE_SIZE / 2));
1119			priv->spi_rx_dma = (dma_addr_t)(priv->spi_tx_dma +
1120							(PAGE_SIZE / 2));
1121		} else {
1122			/* Fall back to non-DMA */
1123			mcp251x_enable_dma = 0;
1124		}
1125	}
1126
1127	/* Allocate non-DMA buffers */
1128	if (!mcp251x_enable_dma) {
1129		priv->spi_tx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
1130						GFP_KERNEL);
1131		if (!priv->spi_tx_buf) {
1132			ret = -ENOMEM;
1133			goto error_probe;
1134		}
1135		priv->spi_rx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
1136						GFP_KERNEL);
1137		if (!priv->spi_rx_buf) {
1138			ret = -ENOMEM;
1139			goto error_probe;
1140		}
1141	}
1142
1143	SET_NETDEV_DEV(net, &spi->dev);
1144
1145	/* Here is OK to not lock the MCP, no one knows about it yet */
1146	ret = mcp251x_hw_probe(spi);
1147	if (ret)
 
 
 
1148		goto error_probe;
 
1149
1150	mcp251x_hw_sleep(spi);
1151
1152	ret = register_candev(net);
1153	if (ret)
1154		goto error_probe;
1155
1156	devm_can_led_init(net);
 
 
1157
 
1158	return 0;
1159
 
 
 
1160error_probe:
 
 
1161	mcp251x_power_enable(priv->power, 0);
1162
1163out_clk:
1164	if (!IS_ERR(clk))
1165		clk_disable_unprepare(clk);
1166
1167out_free:
1168	free_candev(net);
1169
 
1170	return ret;
1171}
1172
1173static int mcp251x_can_remove(struct spi_device *spi)
1174{
1175	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1176	struct net_device *net = priv->net;
1177
1178	unregister_candev(net);
1179
1180	mcp251x_power_enable(priv->power, 0);
1181
1182	if (!IS_ERR(priv->clk))
1183		clk_disable_unprepare(priv->clk);
 
 
1184
1185	free_candev(net);
1186
1187	return 0;
1188}
1189
1190static int __maybe_unused mcp251x_can_suspend(struct device *dev)
1191{
1192	struct spi_device *spi = to_spi_device(dev);
1193	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1194	struct net_device *net = priv->net;
1195
1196	priv->force_quit = 1;
1197	disable_irq(spi->irq);
1198	/*
1199	 * Note: at this point neither IST nor workqueues are running.
1200	 * open/stop cannot be called anyway so locking is not needed
1201	 */
1202	if (netif_running(net)) {
1203		netif_device_detach(net);
1204
1205		mcp251x_hw_sleep(spi);
1206		mcp251x_power_enable(priv->transceiver, 0);
1207		priv->after_suspend = AFTER_SUSPEND_UP;
1208	} else {
1209		priv->after_suspend = AFTER_SUSPEND_DOWN;
1210	}
1211
1212	if (!IS_ERR_OR_NULL(priv->power)) {
1213		regulator_disable(priv->power);
1214		priv->after_suspend |= AFTER_SUSPEND_POWER;
1215	}
1216
1217	return 0;
1218}
1219
1220static int __maybe_unused mcp251x_can_resume(struct device *dev)
1221{
1222	struct spi_device *spi = to_spi_device(dev);
1223	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1224
1225	if (priv->after_suspend & AFTER_SUSPEND_POWER)
1226		mcp251x_power_enable(priv->power, 1);
 
 
1227
1228	if (priv->after_suspend & AFTER_SUSPEND_UP) {
1229		mcp251x_power_enable(priv->transceiver, 1);
1230		queue_work(priv->wq, &priv->restart_work);
1231	} else {
1232		priv->after_suspend = 0;
1233	}
1234
1235	priv->force_quit = 0;
1236	enable_irq(spi->irq);
1237	return 0;
1238}
1239
1240static SIMPLE_DEV_PM_OPS(mcp251x_can_pm_ops, mcp251x_can_suspend,
1241	mcp251x_can_resume);
1242
1243static struct spi_driver mcp251x_can_driver = {
1244	.driver = {
1245		.name = DEVICE_NAME,
1246		.of_match_table = mcp251x_of_match,
1247		.pm = &mcp251x_can_pm_ops,
1248	},
1249	.id_table = mcp251x_id_table,
1250	.probe = mcp251x_can_probe,
1251	.remove = mcp251x_can_remove,
1252};
1253module_spi_driver(mcp251x_can_driver);
1254
1255MODULE_AUTHOR("Chris Elston <celston@katalix.com>, "
1256	      "Christian Pellegrin <chripell@evolware.org>");
1257MODULE_DESCRIPTION("Microchip 251x CAN driver");
1258MODULE_LICENSE("GPL v2");