Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
  1/* Renesas R-Car CAN device driver
  2 *
  3 * Copyright (C) 2013 Cogent Embedded, Inc. <source@cogentembedded.com>
  4 * Copyright (C) 2013 Renesas Solutions Corp.
  5 *
  6 * This program is free software; you can redistribute  it and/or modify it
  7 * under  the terms of  the GNU General  Public License as published by the
  8 * Free Software Foundation;  either version 2 of the  License, or (at your
  9 * option) any later version.
 10 */
 11
 12#include <linux/module.h>
 13#include <linux/kernel.h>
 14#include <linux/types.h>
 15#include <linux/interrupt.h>
 16#include <linux/errno.h>
 17#include <linux/netdevice.h>
 18#include <linux/platform_device.h>
 19#include <linux/can/led.h>
 20#include <linux/can/dev.h>
 21#include <linux/clk.h>
 22#include <linux/can/platform/rcar_can.h>
 23#include <linux/of.h>
 24
 25#define RCAR_CAN_DRV_NAME	"rcar_can"
 26
 27/* Mailbox configuration:
 28 * mailbox 60 - 63 - Rx FIFO mailboxes
 29 * mailbox 56 - 59 - Tx FIFO mailboxes
 30 * non-FIFO mailboxes are not used
 31 */
 32#define RCAR_CAN_N_MBX		64 /* Number of mailboxes in non-FIFO mode */
 33#define RCAR_CAN_RX_FIFO_MBX	60 /* Mailbox - window to Rx FIFO */
 34#define RCAR_CAN_TX_FIFO_MBX	56 /* Mailbox - window to Tx FIFO */
 35#define RCAR_CAN_FIFO_DEPTH	4
 36
 37/* Mailbox registers structure */
 38struct rcar_can_mbox_regs {
 39	u32 id;		/* IDE and RTR bits, SID and EID */
 40	u8 stub;	/* Not used */
 41	u8 dlc;		/* Data Length Code - bits [0..3] */
 42	u8 data[8];	/* Data Bytes */
 43	u8 tsh;		/* Time Stamp Higher Byte */
 44	u8 tsl;		/* Time Stamp Lower Byte */
 45};
 46
 47struct rcar_can_regs {
 48	struct rcar_can_mbox_regs mb[RCAR_CAN_N_MBX]; /* Mailbox registers */
 49	u32 mkr_2_9[8];	/* Mask Registers 2-9 */
 50	u32 fidcr[2];	/* FIFO Received ID Compare Register */
 51	u32 mkivlr1;	/* Mask Invalid Register 1 */
 52	u32 mier1;	/* Mailbox Interrupt Enable Register 1 */
 53	u32 mkr_0_1[2];	/* Mask Registers 0-1 */
 54	u32 mkivlr0;    /* Mask Invalid Register 0*/
 55	u32 mier0;      /* Mailbox Interrupt Enable Register 0 */
 56	u8 pad_440[0x3c0];
 57	u8 mctl[64];	/* Message Control Registers */
 58	u16 ctlr;	/* Control Register */
 59	u16 str;	/* Status register */
 60	u8 bcr[3];	/* Bit Configuration Register */
 61	u8 clkr;	/* Clock Select Register */
 62	u8 rfcr;	/* Receive FIFO Control Register */
 63	u8 rfpcr;	/* Receive FIFO Pointer Control Register */
 64	u8 tfcr;	/* Transmit FIFO Control Register */
 65	u8 tfpcr;       /* Transmit FIFO Pointer Control Register */
 66	u8 eier;	/* Error Interrupt Enable Register */
 67	u8 eifr;	/* Error Interrupt Factor Judge Register */
 68	u8 recr;	/* Receive Error Count Register */
 69	u8 tecr;        /* Transmit Error Count Register */
 70	u8 ecsr;	/* Error Code Store Register */
 71	u8 cssr;	/* Channel Search Support Register */
 72	u8 mssr;	/* Mailbox Search Status Register */
 73	u8 msmr;	/* Mailbox Search Mode Register */
 74	u16 tsr;	/* Time Stamp Register */
 75	u8 afsr;	/* Acceptance Filter Support Register */
 76	u8 pad_857;
 77	u8 tcr;		/* Test Control Register */
 78	u8 pad_859[7];
 79	u8 ier;		/* Interrupt Enable Register */
 80	u8 isr;		/* Interrupt Status Register */
 81	u8 pad_862;
 82	u8 mbsmr;	/* Mailbox Search Mask Register */
 83};
 84
 85struct rcar_can_priv {
 86	struct can_priv can;	/* Must be the first member! */
 87	struct net_device *ndev;
 88	struct napi_struct napi;
 89	struct rcar_can_regs __iomem *regs;
 90	struct clk *clk;
 91	struct clk *can_clk;
 92	u8 tx_dlc[RCAR_CAN_FIFO_DEPTH];
 93	u32 tx_head;
 94	u32 tx_tail;
 95	u8 clock_select;
 96	u8 ier;
 97};
 98
 99static const struct can_bittiming_const rcar_can_bittiming_const = {
100	.name = RCAR_CAN_DRV_NAME,
101	.tseg1_min = 4,
102	.tseg1_max = 16,
103	.tseg2_min = 2,
104	.tseg2_max = 8,
105	.sjw_max = 4,
106	.brp_min = 1,
107	.brp_max = 1024,
108	.brp_inc = 1,
109};
110
111/* Control Register bits */
112#define RCAR_CAN_CTLR_BOM	(3 << 11) /* Bus-Off Recovery Mode Bits */
113#define RCAR_CAN_CTLR_BOM_ENT	(1 << 11) /* Entry to halt mode */
114					/* at bus-off entry */
115#define RCAR_CAN_CTLR_SLPM	(1 << 10)
116#define RCAR_CAN_CTLR_CANM	(3 << 8) /* Operating Mode Select Bit */
117#define RCAR_CAN_CTLR_CANM_HALT	(1 << 9)
118#define RCAR_CAN_CTLR_CANM_RESET (1 << 8)
119#define RCAR_CAN_CTLR_CANM_FORCE_RESET (3 << 8)
120#define RCAR_CAN_CTLR_MLM	(1 << 3) /* Message Lost Mode Select */
121#define RCAR_CAN_CTLR_IDFM	(3 << 1) /* ID Format Mode Select Bits */
122#define RCAR_CAN_CTLR_IDFM_MIXED (1 << 2) /* Mixed ID mode */
123#define RCAR_CAN_CTLR_MBM	(1 << 0) /* Mailbox Mode select */
124
125/* Status Register bits */
126#define RCAR_CAN_STR_RSTST	(1 << 8) /* Reset Status Bit */
127
128/* FIFO Received ID Compare Registers 0 and 1 bits */
129#define RCAR_CAN_FIDCR_IDE	(1 << 31) /* ID Extension Bit */
130#define RCAR_CAN_FIDCR_RTR	(1 << 30) /* Remote Transmission Request Bit */
131
132/* Receive FIFO Control Register bits */
133#define RCAR_CAN_RFCR_RFEST	(1 << 7) /* Receive FIFO Empty Status Flag */
134#define RCAR_CAN_RFCR_RFE	(1 << 0) /* Receive FIFO Enable */
135
136/* Transmit FIFO Control Register bits */
137#define RCAR_CAN_TFCR_TFUST	(7 << 1) /* Transmit FIFO Unsent Message */
138					/* Number Status Bits */
139#define RCAR_CAN_TFCR_TFUST_SHIFT 1	/* Offset of Transmit FIFO Unsent */
140					/* Message Number Status Bits */
141#define RCAR_CAN_TFCR_TFE	(1 << 0) /* Transmit FIFO Enable */
142
143#define RCAR_CAN_N_RX_MKREGS1	2	/* Number of mask registers */
144					/* for Rx mailboxes 0-31 */
145#define RCAR_CAN_N_RX_MKREGS2	8
146
147/* Bit Configuration Register settings */
148#define RCAR_CAN_BCR_TSEG1(x)	(((x) & 0x0f) << 20)
149#define RCAR_CAN_BCR_BPR(x)	(((x) & 0x3ff) << 8)
150#define RCAR_CAN_BCR_SJW(x)	(((x) & 0x3) << 4)
151#define RCAR_CAN_BCR_TSEG2(x)	((x) & 0x07)
152
153/* Mailbox and Mask Registers bits */
154#define RCAR_CAN_IDE		(1 << 31)
155#define RCAR_CAN_RTR		(1 << 30)
156#define RCAR_CAN_SID_SHIFT	18
157
158/* Mailbox Interrupt Enable Register 1 bits */
159#define RCAR_CAN_MIER1_RXFIE	(1 << 28) /* Receive  FIFO Interrupt Enable */
160#define RCAR_CAN_MIER1_TXFIE	(1 << 24) /* Transmit FIFO Interrupt Enable */
161
162/* Interrupt Enable Register bits */
163#define RCAR_CAN_IER_ERSIE	(1 << 5) /* Error (ERS) Interrupt Enable Bit */
164#define RCAR_CAN_IER_RXFIE	(1 << 4) /* Reception FIFO Interrupt */
165					/* Enable Bit */
166#define RCAR_CAN_IER_TXFIE	(1 << 3) /* Transmission FIFO Interrupt */
167					/* Enable Bit */
168/* Interrupt Status Register bits */
169#define RCAR_CAN_ISR_ERSF	(1 << 5) /* Error (ERS) Interrupt Status Bit */
170#define RCAR_CAN_ISR_RXFF	(1 << 4) /* Reception FIFO Interrupt */
171					/* Status Bit */
172#define RCAR_CAN_ISR_TXFF	(1 << 3) /* Transmission FIFO Interrupt */
173					/* Status Bit */
174
175/* Error Interrupt Enable Register bits */
176#define RCAR_CAN_EIER_BLIE	(1 << 7) /* Bus Lock Interrupt Enable */
177#define RCAR_CAN_EIER_OLIE	(1 << 6) /* Overload Frame Transmit */
178					/* Interrupt Enable */
179#define RCAR_CAN_EIER_ORIE	(1 << 5) /* Receive Overrun  Interrupt Enable */
180#define RCAR_CAN_EIER_BORIE	(1 << 4) /* Bus-Off Recovery Interrupt Enable */
181#define RCAR_CAN_EIER_BOEIE	(1 << 3) /* Bus-Off Entry Interrupt Enable */
182#define RCAR_CAN_EIER_EPIE	(1 << 2) /* Error Passive Interrupt Enable */
183#define RCAR_CAN_EIER_EWIE	(1 << 1) /* Error Warning Interrupt Enable */
184#define RCAR_CAN_EIER_BEIE	(1 << 0) /* Bus Error Interrupt Enable */
185
186/* Error Interrupt Factor Judge Register bits */
187#define RCAR_CAN_EIFR_BLIF	(1 << 7) /* Bus Lock Detect Flag */
188#define RCAR_CAN_EIFR_OLIF	(1 << 6) /* Overload Frame Transmission */
189					 /* Detect Flag */
190#define RCAR_CAN_EIFR_ORIF	(1 << 5) /* Receive Overrun Detect Flag */
191#define RCAR_CAN_EIFR_BORIF	(1 << 4) /* Bus-Off Recovery Detect Flag */
192#define RCAR_CAN_EIFR_BOEIF	(1 << 3) /* Bus-Off Entry Detect Flag */
193#define RCAR_CAN_EIFR_EPIF	(1 << 2) /* Error Passive Detect Flag */
194#define RCAR_CAN_EIFR_EWIF	(1 << 1) /* Error Warning Detect Flag */
195#define RCAR_CAN_EIFR_BEIF	(1 << 0) /* Bus Error Detect Flag */
196
197/* Error Code Store Register bits */
198#define RCAR_CAN_ECSR_EDPM	(1 << 7) /* Error Display Mode Select Bit */
199#define RCAR_CAN_ECSR_ADEF	(1 << 6) /* ACK Delimiter Error Flag */
200#define RCAR_CAN_ECSR_BE0F	(1 << 5) /* Bit Error (dominant) Flag */
201#define RCAR_CAN_ECSR_BE1F	(1 << 4) /* Bit Error (recessive) Flag */
202#define RCAR_CAN_ECSR_CEF	(1 << 3) /* CRC Error Flag */
203#define RCAR_CAN_ECSR_AEF	(1 << 2) /* ACK Error Flag */
204#define RCAR_CAN_ECSR_FEF	(1 << 1) /* Form Error Flag */
205#define RCAR_CAN_ECSR_SEF	(1 << 0) /* Stuff Error Flag */
206
207#define RCAR_CAN_NAPI_WEIGHT	4
208#define MAX_STR_READS		0x100
209
210static void tx_failure_cleanup(struct net_device *ndev)
211{
212	int i;
213
214	for (i = 0; i < RCAR_CAN_FIFO_DEPTH; i++)
215		can_free_echo_skb(ndev, i);
216}
217
218static void rcar_can_error(struct net_device *ndev)
219{
220	struct rcar_can_priv *priv = netdev_priv(ndev);
221	struct net_device_stats *stats = &ndev->stats;
222	struct can_frame *cf;
223	struct sk_buff *skb;
224	u8 eifr, txerr = 0, rxerr = 0;
225
226	/* Propagate the error condition to the CAN stack */
227	skb = alloc_can_err_skb(ndev, &cf);
228
229	eifr = readb(&priv->regs->eifr);
230	if (eifr & (RCAR_CAN_EIFR_EWIF | RCAR_CAN_EIFR_EPIF)) {
231		txerr = readb(&priv->regs->tecr);
232		rxerr = readb(&priv->regs->recr);
233		if (skb) {
234			cf->can_id |= CAN_ERR_CRTL;
235			cf->data[6] = txerr;
236			cf->data[7] = rxerr;
237		}
238	}
239	if (eifr & RCAR_CAN_EIFR_BEIF) {
240		int rx_errors = 0, tx_errors = 0;
241		u8 ecsr;
242
243		netdev_dbg(priv->ndev, "Bus error interrupt:\n");
244		if (skb)
245			cf->can_id |= CAN_ERR_BUSERROR | CAN_ERR_PROT;
246
247		ecsr = readb(&priv->regs->ecsr);
248		if (ecsr & RCAR_CAN_ECSR_ADEF) {
249			netdev_dbg(priv->ndev, "ACK Delimiter Error\n");
250			tx_errors++;
251			writeb(~RCAR_CAN_ECSR_ADEF, &priv->regs->ecsr);
252			if (skb)
253				cf->data[3] = CAN_ERR_PROT_LOC_ACK_DEL;
254		}
255		if (ecsr & RCAR_CAN_ECSR_BE0F) {
256			netdev_dbg(priv->ndev, "Bit Error (dominant)\n");
257			tx_errors++;
258			writeb(~RCAR_CAN_ECSR_BE0F, &priv->regs->ecsr);
259			if (skb)
260				cf->data[2] |= CAN_ERR_PROT_BIT0;
261		}
262		if (ecsr & RCAR_CAN_ECSR_BE1F) {
263			netdev_dbg(priv->ndev, "Bit Error (recessive)\n");
264			tx_errors++;
265			writeb(~RCAR_CAN_ECSR_BE1F, &priv->regs->ecsr);
266			if (skb)
267				cf->data[2] |= CAN_ERR_PROT_BIT1;
268		}
269		if (ecsr & RCAR_CAN_ECSR_CEF) {
270			netdev_dbg(priv->ndev, "CRC Error\n");
271			rx_errors++;
272			writeb(~RCAR_CAN_ECSR_CEF, &priv->regs->ecsr);
273			if (skb)
274				cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
275		}
276		if (ecsr & RCAR_CAN_ECSR_AEF) {
277			netdev_dbg(priv->ndev, "ACK Error\n");
278			tx_errors++;
279			writeb(~RCAR_CAN_ECSR_AEF, &priv->regs->ecsr);
280			if (skb) {
281				cf->can_id |= CAN_ERR_ACK;
282				cf->data[3] = CAN_ERR_PROT_LOC_ACK;
283			}
284		}
285		if (ecsr & RCAR_CAN_ECSR_FEF) {
286			netdev_dbg(priv->ndev, "Form Error\n");
287			rx_errors++;
288			writeb(~RCAR_CAN_ECSR_FEF, &priv->regs->ecsr);
289			if (skb)
290				cf->data[2] |= CAN_ERR_PROT_FORM;
291		}
292		if (ecsr & RCAR_CAN_ECSR_SEF) {
293			netdev_dbg(priv->ndev, "Stuff Error\n");
294			rx_errors++;
295			writeb(~RCAR_CAN_ECSR_SEF, &priv->regs->ecsr);
296			if (skb)
297				cf->data[2] |= CAN_ERR_PROT_STUFF;
298		}
299
300		priv->can.can_stats.bus_error++;
301		ndev->stats.rx_errors += rx_errors;
302		ndev->stats.tx_errors += tx_errors;
303		writeb(~RCAR_CAN_EIFR_BEIF, &priv->regs->eifr);
304	}
305	if (eifr & RCAR_CAN_EIFR_EWIF) {
306		netdev_dbg(priv->ndev, "Error warning interrupt\n");
307		priv->can.state = CAN_STATE_ERROR_WARNING;
308		priv->can.can_stats.error_warning++;
309		/* Clear interrupt condition */
310		writeb(~RCAR_CAN_EIFR_EWIF, &priv->regs->eifr);
311		if (skb)
312			cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_WARNING :
313					      CAN_ERR_CRTL_RX_WARNING;
314	}
315	if (eifr & RCAR_CAN_EIFR_EPIF) {
316		netdev_dbg(priv->ndev, "Error passive interrupt\n");
317		priv->can.state = CAN_STATE_ERROR_PASSIVE;
318		priv->can.can_stats.error_passive++;
319		/* Clear interrupt condition */
320		writeb(~RCAR_CAN_EIFR_EPIF, &priv->regs->eifr);
321		if (skb)
322			cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_PASSIVE :
323					      CAN_ERR_CRTL_RX_PASSIVE;
324	}
325	if (eifr & RCAR_CAN_EIFR_BOEIF) {
326		netdev_dbg(priv->ndev, "Bus-off entry interrupt\n");
327		tx_failure_cleanup(ndev);
328		priv->ier = RCAR_CAN_IER_ERSIE;
329		writeb(priv->ier, &priv->regs->ier);
330		priv->can.state = CAN_STATE_BUS_OFF;
331		/* Clear interrupt condition */
332		writeb(~RCAR_CAN_EIFR_BOEIF, &priv->regs->eifr);
333		priv->can.can_stats.bus_off++;
334		can_bus_off(ndev);
335		if (skb)
336			cf->can_id |= CAN_ERR_BUSOFF;
337	}
338	if (eifr & RCAR_CAN_EIFR_ORIF) {
339		netdev_dbg(priv->ndev, "Receive overrun error interrupt\n");
340		ndev->stats.rx_over_errors++;
341		ndev->stats.rx_errors++;
342		writeb(~RCAR_CAN_EIFR_ORIF, &priv->regs->eifr);
343		if (skb) {
344			cf->can_id |= CAN_ERR_CRTL;
345			cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
346		}
347	}
348	if (eifr & RCAR_CAN_EIFR_OLIF) {
349		netdev_dbg(priv->ndev,
350			   "Overload Frame Transmission error interrupt\n");
351		ndev->stats.rx_over_errors++;
352		ndev->stats.rx_errors++;
353		writeb(~RCAR_CAN_EIFR_OLIF, &priv->regs->eifr);
354		if (skb) {
355			cf->can_id |= CAN_ERR_PROT;
356			cf->data[2] |= CAN_ERR_PROT_OVERLOAD;
357		}
358	}
359
360	if (skb) {
361		stats->rx_packets++;
362		stats->rx_bytes += cf->can_dlc;
363		netif_rx(skb);
364	}
365}
366
367static void rcar_can_tx_done(struct net_device *ndev)
368{
369	struct rcar_can_priv *priv = netdev_priv(ndev);
370	struct net_device_stats *stats = &ndev->stats;
371	u8 isr;
372
373	while (1) {
374		u8 unsent = readb(&priv->regs->tfcr);
375
376		unsent = (unsent & RCAR_CAN_TFCR_TFUST) >>
377			  RCAR_CAN_TFCR_TFUST_SHIFT;
378		if (priv->tx_head - priv->tx_tail <= unsent)
379			break;
380		stats->tx_packets++;
381		stats->tx_bytes += priv->tx_dlc[priv->tx_tail %
382						RCAR_CAN_FIFO_DEPTH];
383		priv->tx_dlc[priv->tx_tail % RCAR_CAN_FIFO_DEPTH] = 0;
384		can_get_echo_skb(ndev, priv->tx_tail % RCAR_CAN_FIFO_DEPTH);
385		priv->tx_tail++;
386		netif_wake_queue(ndev);
387	}
388	/* Clear interrupt */
389	isr = readb(&priv->regs->isr);
390	writeb(isr & ~RCAR_CAN_ISR_TXFF, &priv->regs->isr);
391	can_led_event(ndev, CAN_LED_EVENT_TX);
392}
393
394static irqreturn_t rcar_can_interrupt(int irq, void *dev_id)
395{
396	struct net_device *ndev = dev_id;
397	struct rcar_can_priv *priv = netdev_priv(ndev);
398	u8 isr;
399
400	isr = readb(&priv->regs->isr);
401	if (!(isr & priv->ier))
402		return IRQ_NONE;
403
404	if (isr & RCAR_CAN_ISR_ERSF)
405		rcar_can_error(ndev);
406
407	if (isr & RCAR_CAN_ISR_TXFF)
408		rcar_can_tx_done(ndev);
409
410	if (isr & RCAR_CAN_ISR_RXFF) {
411		if (napi_schedule_prep(&priv->napi)) {
412			/* Disable Rx FIFO interrupts */
413			priv->ier &= ~RCAR_CAN_IER_RXFIE;
414			writeb(priv->ier, &priv->regs->ier);
415			__napi_schedule(&priv->napi);
416		}
417	}
418
419	return IRQ_HANDLED;
420}
421
422static void rcar_can_set_bittiming(struct net_device *dev)
423{
424	struct rcar_can_priv *priv = netdev_priv(dev);
425	struct can_bittiming *bt = &priv->can.bittiming;
426	u32 bcr;
427
428	bcr = RCAR_CAN_BCR_TSEG1(bt->phase_seg1 + bt->prop_seg - 1) |
429	      RCAR_CAN_BCR_BPR(bt->brp - 1) | RCAR_CAN_BCR_SJW(bt->sjw - 1) |
430	      RCAR_CAN_BCR_TSEG2(bt->phase_seg2 - 1);
431	/* Don't overwrite CLKR with 32-bit BCR access; CLKR has 8-bit access.
432	 * All the registers are big-endian but they get byte-swapped on 32-bit
433	 * read/write (but not on 8-bit, contrary to the manuals)...
434	 */
435	writel((bcr << 8) | priv->clock_select, &priv->regs->bcr);
436}
437
438static void rcar_can_start(struct net_device *ndev)
439{
440	struct rcar_can_priv *priv = netdev_priv(ndev);
441	u16 ctlr;
442	int i;
443
444	/* Set controller to known mode:
445	 * - FIFO mailbox mode
446	 * - accept all messages
447	 * - overrun mode
448	 * CAN is in sleep mode after MCU hardware or software reset.
449	 */
450	ctlr = readw(&priv->regs->ctlr);
451	ctlr &= ~RCAR_CAN_CTLR_SLPM;
452	writew(ctlr, &priv->regs->ctlr);
453	/* Go to reset mode */
454	ctlr |= RCAR_CAN_CTLR_CANM_FORCE_RESET;
455	writew(ctlr, &priv->regs->ctlr);
456	for (i = 0; i < MAX_STR_READS; i++) {
457		if (readw(&priv->regs->str) & RCAR_CAN_STR_RSTST)
458			break;
459	}
460	rcar_can_set_bittiming(ndev);
461	ctlr |= RCAR_CAN_CTLR_IDFM_MIXED; /* Select mixed ID mode */
462	ctlr |= RCAR_CAN_CTLR_BOM_ENT;	/* Entry to halt mode automatically */
463					/* at bus-off */
464	ctlr |= RCAR_CAN_CTLR_MBM;	/* Select FIFO mailbox mode */
465	ctlr |= RCAR_CAN_CTLR_MLM;	/* Overrun mode */
466	writew(ctlr, &priv->regs->ctlr);
467
468	/* Accept all SID and EID */
469	writel(0, &priv->regs->mkr_2_9[6]);
470	writel(0, &priv->regs->mkr_2_9[7]);
471	/* In FIFO mailbox mode, write "0" to bits 24 to 31 */
472	writel(0, &priv->regs->mkivlr1);
473	/* Accept all frames */
474	writel(0, &priv->regs->fidcr[0]);
475	writel(RCAR_CAN_FIDCR_IDE | RCAR_CAN_FIDCR_RTR, &priv->regs->fidcr[1]);
476	/* Enable and configure FIFO mailbox interrupts */
477	writel(RCAR_CAN_MIER1_RXFIE | RCAR_CAN_MIER1_TXFIE, &priv->regs->mier1);
478
479	priv->ier = RCAR_CAN_IER_ERSIE | RCAR_CAN_IER_RXFIE |
480		    RCAR_CAN_IER_TXFIE;
481	writeb(priv->ier, &priv->regs->ier);
482
483	/* Accumulate error codes */
484	writeb(RCAR_CAN_ECSR_EDPM, &priv->regs->ecsr);
485	/* Enable error interrupts */
486	writeb(RCAR_CAN_EIER_EWIE | RCAR_CAN_EIER_EPIE | RCAR_CAN_EIER_BOEIE |
487	       (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING ?
488	       RCAR_CAN_EIER_BEIE : 0) | RCAR_CAN_EIER_ORIE |
489	       RCAR_CAN_EIER_OLIE, &priv->regs->eier);
490	priv->can.state = CAN_STATE_ERROR_ACTIVE;
491
492	/* Go to operation mode */
493	writew(ctlr & ~RCAR_CAN_CTLR_CANM, &priv->regs->ctlr);
494	for (i = 0; i < MAX_STR_READS; i++) {
495		if (!(readw(&priv->regs->str) & RCAR_CAN_STR_RSTST))
496			break;
497	}
498	/* Enable Rx and Tx FIFO */
499	writeb(RCAR_CAN_RFCR_RFE, &priv->regs->rfcr);
500	writeb(RCAR_CAN_TFCR_TFE, &priv->regs->tfcr);
501}
502
503static int rcar_can_open(struct net_device *ndev)
504{
505	struct rcar_can_priv *priv = netdev_priv(ndev);
506	int err;
507
508	err = clk_prepare_enable(priv->clk);
509	if (err) {
510		netdev_err(ndev,
511			   "failed to enable peripheral clock, error %d\n",
512			   err);
513		goto out;
514	}
515	err = clk_prepare_enable(priv->can_clk);
516	if (err) {
517		netdev_err(ndev, "failed to enable CAN clock, error %d\n",
518			   err);
519		goto out_clock;
520	}
521	err = open_candev(ndev);
522	if (err) {
523		netdev_err(ndev, "open_candev() failed, error %d\n", err);
524		goto out_can_clock;
525	}
526	napi_enable(&priv->napi);
527	err = request_irq(ndev->irq, rcar_can_interrupt, 0, ndev->name, ndev);
528	if (err) {
529		netdev_err(ndev, "request_irq(%d) failed, error %d\n",
530			   ndev->irq, err);
531		goto out_close;
532	}
533	can_led_event(ndev, CAN_LED_EVENT_OPEN);
534	rcar_can_start(ndev);
535	netif_start_queue(ndev);
536	return 0;
537out_close:
538	napi_disable(&priv->napi);
539	close_candev(ndev);
540out_can_clock:
541	clk_disable_unprepare(priv->can_clk);
542out_clock:
543	clk_disable_unprepare(priv->clk);
544out:
545	return err;
546}
547
548static void rcar_can_stop(struct net_device *ndev)
549{
550	struct rcar_can_priv *priv = netdev_priv(ndev);
551	u16 ctlr;
552	int i;
553
554	/* Go to (force) reset mode */
555	ctlr = readw(&priv->regs->ctlr);
556	ctlr |= RCAR_CAN_CTLR_CANM_FORCE_RESET;
557	writew(ctlr, &priv->regs->ctlr);
558	for (i = 0; i < MAX_STR_READS; i++) {
559		if (readw(&priv->regs->str) & RCAR_CAN_STR_RSTST)
560			break;
561	}
562	writel(0, &priv->regs->mier0);
563	writel(0, &priv->regs->mier1);
564	writeb(0, &priv->regs->ier);
565	writeb(0, &priv->regs->eier);
566	/* Go to sleep mode */
567	ctlr |= RCAR_CAN_CTLR_SLPM;
568	writew(ctlr, &priv->regs->ctlr);
569	priv->can.state = CAN_STATE_STOPPED;
570}
571
572static int rcar_can_close(struct net_device *ndev)
573{
574	struct rcar_can_priv *priv = netdev_priv(ndev);
575
576	netif_stop_queue(ndev);
577	rcar_can_stop(ndev);
578	free_irq(ndev->irq, ndev);
579	napi_disable(&priv->napi);
580	clk_disable_unprepare(priv->can_clk);
581	clk_disable_unprepare(priv->clk);
582	close_candev(ndev);
583	can_led_event(ndev, CAN_LED_EVENT_STOP);
584	return 0;
585}
586
587static netdev_tx_t rcar_can_start_xmit(struct sk_buff *skb,
588				       struct net_device *ndev)
589{
590	struct rcar_can_priv *priv = netdev_priv(ndev);
591	struct can_frame *cf = (struct can_frame *)skb->data;
592	u32 data, i;
593
594	if (can_dropped_invalid_skb(ndev, skb))
595		return NETDEV_TX_OK;
596
597	if (cf->can_id & CAN_EFF_FLAG)	/* Extended frame format */
598		data = (cf->can_id & CAN_EFF_MASK) | RCAR_CAN_IDE;
599	else				/* Standard frame format */
600		data = (cf->can_id & CAN_SFF_MASK) << RCAR_CAN_SID_SHIFT;
601
602	if (cf->can_id & CAN_RTR_FLAG) { /* Remote transmission request */
603		data |= RCAR_CAN_RTR;
604	} else {
605		for (i = 0; i < cf->can_dlc; i++)
606			writeb(cf->data[i],
607			       &priv->regs->mb[RCAR_CAN_TX_FIFO_MBX].data[i]);
608	}
609
610	writel(data, &priv->regs->mb[RCAR_CAN_TX_FIFO_MBX].id);
611
612	writeb(cf->can_dlc, &priv->regs->mb[RCAR_CAN_TX_FIFO_MBX].dlc);
613
614	priv->tx_dlc[priv->tx_head % RCAR_CAN_FIFO_DEPTH] = cf->can_dlc;
615	can_put_echo_skb(skb, ndev, priv->tx_head % RCAR_CAN_FIFO_DEPTH);
616	priv->tx_head++;
617	/* Start Tx: write 0xff to the TFPCR register to increment
618	 * the CPU-side pointer for the transmit FIFO to the next
619	 * mailbox location
620	 */
621	writeb(0xff, &priv->regs->tfpcr);
622	/* Stop the queue if we've filled all FIFO entries */
623	if (priv->tx_head - priv->tx_tail >= RCAR_CAN_FIFO_DEPTH)
624		netif_stop_queue(ndev);
625
626	return NETDEV_TX_OK;
627}
628
629static const struct net_device_ops rcar_can_netdev_ops = {
630	.ndo_open = rcar_can_open,
631	.ndo_stop = rcar_can_close,
632	.ndo_start_xmit = rcar_can_start_xmit,
633	.ndo_change_mtu = can_change_mtu,
634};
635
636static void rcar_can_rx_pkt(struct rcar_can_priv *priv)
637{
638	struct net_device_stats *stats = &priv->ndev->stats;
639	struct can_frame *cf;
640	struct sk_buff *skb;
641	u32 data;
642	u8 dlc;
643
644	skb = alloc_can_skb(priv->ndev, &cf);
645	if (!skb) {
646		stats->rx_dropped++;
647		return;
648	}
649
650	data = readl(&priv->regs->mb[RCAR_CAN_RX_FIFO_MBX].id);
651	if (data & RCAR_CAN_IDE)
652		cf->can_id = (data & CAN_EFF_MASK) | CAN_EFF_FLAG;
653	else
654		cf->can_id = (data >> RCAR_CAN_SID_SHIFT) & CAN_SFF_MASK;
655
656	dlc = readb(&priv->regs->mb[RCAR_CAN_RX_FIFO_MBX].dlc);
657	cf->can_dlc = get_can_dlc(dlc);
658	if (data & RCAR_CAN_RTR) {
659		cf->can_id |= CAN_RTR_FLAG;
660	} else {
661		for (dlc = 0; dlc < cf->can_dlc; dlc++)
662			cf->data[dlc] =
663			readb(&priv->regs->mb[RCAR_CAN_RX_FIFO_MBX].data[dlc]);
664	}
665
666	can_led_event(priv->ndev, CAN_LED_EVENT_RX);
667
668	stats->rx_bytes += cf->can_dlc;
669	stats->rx_packets++;
670	netif_receive_skb(skb);
671}
672
673static int rcar_can_rx_poll(struct napi_struct *napi, int quota)
674{
675	struct rcar_can_priv *priv = container_of(napi,
676						  struct rcar_can_priv, napi);
677	int num_pkts;
678
679	for (num_pkts = 0; num_pkts < quota; num_pkts++) {
680		u8 rfcr, isr;
681
682		isr = readb(&priv->regs->isr);
683		/* Clear interrupt bit */
684		if (isr & RCAR_CAN_ISR_RXFF)
685			writeb(isr & ~RCAR_CAN_ISR_RXFF, &priv->regs->isr);
686		rfcr = readb(&priv->regs->rfcr);
687		if (rfcr & RCAR_CAN_RFCR_RFEST)
688			break;
689		rcar_can_rx_pkt(priv);
690		/* Write 0xff to the RFPCR register to increment
691		 * the CPU-side pointer for the receive FIFO
692		 * to the next mailbox location
693		 */
694		writeb(0xff, &priv->regs->rfpcr);
695	}
696	/* All packets processed */
697	if (num_pkts < quota) {
698		napi_complete(napi);
699		priv->ier |= RCAR_CAN_IER_RXFIE;
700		writeb(priv->ier, &priv->regs->ier);
701	}
702	return num_pkts;
703}
704
705static int rcar_can_do_set_mode(struct net_device *ndev, enum can_mode mode)
706{
707	switch (mode) {
708	case CAN_MODE_START:
709		rcar_can_start(ndev);
710		netif_wake_queue(ndev);
711		return 0;
712	default:
713		return -EOPNOTSUPP;
714	}
715}
716
717static int rcar_can_get_berr_counter(const struct net_device *dev,
718				     struct can_berr_counter *bec)
719{
720	struct rcar_can_priv *priv = netdev_priv(dev);
721	int err;
722
723	err = clk_prepare_enable(priv->clk);
724	if (err)
725		return err;
726	bec->txerr = readb(&priv->regs->tecr);
727	bec->rxerr = readb(&priv->regs->recr);
728	clk_disable_unprepare(priv->clk);
729	return 0;
730}
731
732static const char * const clock_names[] = {
733	[CLKR_CLKP1]	= "clkp1",
734	[CLKR_CLKP2]	= "clkp2",
735	[CLKR_CLKEXT]	= "can_clk",
736};
737
738static int rcar_can_probe(struct platform_device *pdev)
739{
740	struct rcar_can_platform_data *pdata;
741	struct rcar_can_priv *priv;
742	struct net_device *ndev;
743	struct resource *mem;
744	void __iomem *addr;
745	u32 clock_select = CLKR_CLKP1;
746	int err = -ENODEV;
747	int irq;
748
749	if (pdev->dev.of_node) {
750		of_property_read_u32(pdev->dev.of_node,
751				     "renesas,can-clock-select", &clock_select);
752	} else {
753		pdata = dev_get_platdata(&pdev->dev);
754		if (!pdata) {
755			dev_err(&pdev->dev, "No platform data provided!\n");
756			goto fail;
757		}
758		clock_select = pdata->clock_select;
759	}
760
761	irq = platform_get_irq(pdev, 0);
762	if (irq < 0) {
763		dev_err(&pdev->dev, "No IRQ resource\n");
764		err = irq;
765		goto fail;
766	}
767
768	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
769	addr = devm_ioremap_resource(&pdev->dev, mem);
770	if (IS_ERR(addr)) {
771		err = PTR_ERR(addr);
772		goto fail;
773	}
774
775	ndev = alloc_candev(sizeof(struct rcar_can_priv), RCAR_CAN_FIFO_DEPTH);
776	if (!ndev) {
777		dev_err(&pdev->dev, "alloc_candev() failed\n");
778		err = -ENOMEM;
779		goto fail;
780	}
781
782	priv = netdev_priv(ndev);
783
784	priv->clk = devm_clk_get(&pdev->dev, "clkp1");
785	if (IS_ERR(priv->clk)) {
786		err = PTR_ERR(priv->clk);
787		dev_err(&pdev->dev, "cannot get peripheral clock, error %d\n",
788			err);
789		goto fail_clk;
790	}
791
792	if (clock_select >= ARRAY_SIZE(clock_names)) {
793		err = -EINVAL;
794		dev_err(&pdev->dev, "invalid CAN clock selected\n");
795		goto fail_clk;
796	}
797	priv->can_clk = devm_clk_get(&pdev->dev, clock_names[clock_select]);
798	if (IS_ERR(priv->can_clk)) {
799		err = PTR_ERR(priv->can_clk);
800		dev_err(&pdev->dev, "cannot get CAN clock, error %d\n", err);
801		goto fail_clk;
802	}
803
804	ndev->netdev_ops = &rcar_can_netdev_ops;
805	ndev->irq = irq;
806	ndev->flags |= IFF_ECHO;
807	priv->ndev = ndev;
808	priv->regs = addr;
809	priv->clock_select = clock_select;
810	priv->can.clock.freq = clk_get_rate(priv->can_clk);
811	priv->can.bittiming_const = &rcar_can_bittiming_const;
812	priv->can.do_set_mode = rcar_can_do_set_mode;
813	priv->can.do_get_berr_counter = rcar_can_get_berr_counter;
814	priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING;
815	platform_set_drvdata(pdev, ndev);
816	SET_NETDEV_DEV(ndev, &pdev->dev);
817
818	netif_napi_add(ndev, &priv->napi, rcar_can_rx_poll,
819		       RCAR_CAN_NAPI_WEIGHT);
820	err = register_candev(ndev);
821	if (err) {
822		dev_err(&pdev->dev, "register_candev() failed, error %d\n",
823			err);
824		goto fail_candev;
825	}
826
827	devm_can_led_init(ndev);
828
829	dev_info(&pdev->dev, "device registered (regs @ %p, IRQ%d)\n",
830		 priv->regs, ndev->irq);
831
832	return 0;
833fail_candev:
834	netif_napi_del(&priv->napi);
835fail_clk:
836	free_candev(ndev);
837fail:
838	return err;
839}
840
841static int rcar_can_remove(struct platform_device *pdev)
842{
843	struct net_device *ndev = platform_get_drvdata(pdev);
844	struct rcar_can_priv *priv = netdev_priv(ndev);
845
846	unregister_candev(ndev);
847	netif_napi_del(&priv->napi);
848	free_candev(ndev);
849	return 0;
850}
851
852static int __maybe_unused rcar_can_suspend(struct device *dev)
853{
854	struct net_device *ndev = dev_get_drvdata(dev);
855	struct rcar_can_priv *priv = netdev_priv(ndev);
856	u16 ctlr;
857
858	if (netif_running(ndev)) {
859		netif_stop_queue(ndev);
860		netif_device_detach(ndev);
861	}
862	ctlr = readw(&priv->regs->ctlr);
863	ctlr |= RCAR_CAN_CTLR_CANM_HALT;
864	writew(ctlr, &priv->regs->ctlr);
865	ctlr |= RCAR_CAN_CTLR_SLPM;
866	writew(ctlr, &priv->regs->ctlr);
867	priv->can.state = CAN_STATE_SLEEPING;
868
869	clk_disable(priv->clk);
870	return 0;
871}
872
873static int __maybe_unused rcar_can_resume(struct device *dev)
874{
875	struct net_device *ndev = dev_get_drvdata(dev);
876	struct rcar_can_priv *priv = netdev_priv(ndev);
877	u16 ctlr;
878	int err;
879
880	err = clk_enable(priv->clk);
881	if (err) {
882		netdev_err(ndev, "clk_enable() failed, error %d\n", err);
883		return err;
884	}
885
886	ctlr = readw(&priv->regs->ctlr);
887	ctlr &= ~RCAR_CAN_CTLR_SLPM;
888	writew(ctlr, &priv->regs->ctlr);
889	ctlr &= ~RCAR_CAN_CTLR_CANM;
890	writew(ctlr, &priv->regs->ctlr);
891	priv->can.state = CAN_STATE_ERROR_ACTIVE;
892
893	if (netif_running(ndev)) {
894		netif_device_attach(ndev);
895		netif_start_queue(ndev);
896	}
897	return 0;
898}
899
900static SIMPLE_DEV_PM_OPS(rcar_can_pm_ops, rcar_can_suspend, rcar_can_resume);
901
902static const struct of_device_id rcar_can_of_table[] __maybe_unused = {
903	{ .compatible = "renesas,can-r8a7778" },
904	{ .compatible = "renesas,can-r8a7779" },
905	{ .compatible = "renesas,can-r8a7790" },
906	{ .compatible = "renesas,can-r8a7791" },
907	{ .compatible = "renesas,rcar-gen1-can" },
908	{ .compatible = "renesas,rcar-gen2-can" },
909	{ .compatible = "renesas,rcar-gen3-can" },
910	{ }
911};
912MODULE_DEVICE_TABLE(of, rcar_can_of_table);
913
914static struct platform_driver rcar_can_driver = {
915	.driver = {
916		.name = RCAR_CAN_DRV_NAME,
917		.of_match_table = of_match_ptr(rcar_can_of_table),
918		.pm = &rcar_can_pm_ops,
919	},
920	.probe = rcar_can_probe,
921	.remove = rcar_can_remove,
922};
923
924module_platform_driver(rcar_can_driver);
925
926MODULE_AUTHOR("Cogent Embedded, Inc.");
927MODULE_LICENSE("GPL");
928MODULE_DESCRIPTION("CAN driver for Renesas R-Car SoC");
929MODULE_ALIAS("platform:" RCAR_CAN_DRV_NAME);