Linux Audio

Check our new training course

Buildroot integration, development and maintenance

Need a Buildroot system for your embedded project?
Loading...
Note: File does not exist in v4.6.
   1/*
   2 * CAN bus driver for Bosch C_CAN controller
   3 *
   4 * Copyright (C) 2010 ST Microelectronics
   5 * Bhupesh Sharma <bhupesh.sharma@st.com>
   6 *
   7 * Borrowed heavily from the C_CAN driver originally written by:
   8 * Copyright (C) 2007
   9 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix <s.hauer@pengutronix.de>
  10 * - Simon Kallweit, intefo AG <simon.kallweit@intefo.ch>
  11 *
  12 * TX and RX NAPI implementation has been borrowed from at91 CAN driver
  13 * written by:
  14 * Copyright
  15 * (C) 2007 by Hans J. Koch <hjk@hansjkoch.de>
  16 * (C) 2008, 2009 by Marc Kleine-Budde <kernel@pengutronix.de>
  17 *
  18 * Bosch C_CAN controller is compliant to CAN protocol version 2.0 part A and B.
  19 * Bosch C_CAN user manual can be obtained from:
  20 * http://www.semiconductors.bosch.de/media/en/pdf/ipmodules_1/c_can/
  21 * users_manual_c_can.pdf
  22 *
  23 * This file is licensed under the terms of the GNU General Public
  24 * License version 2. This program is licensed "as is" without any
  25 * warranty of any kind, whether express or implied.
  26 */
  27
  28#include <linux/kernel.h>
  29#include <linux/module.h>
  30#include <linux/interrupt.h>
  31#include <linux/delay.h>
  32#include <linux/netdevice.h>
  33#include <linux/if_arp.h>
  34#include <linux/if_ether.h>
  35#include <linux/list.h>
  36#include <linux/io.h>
  37#include <linux/pm_runtime.h>
  38#include <linux/pinctrl/consumer.h>
  39
  40#include <linux/can.h>
  41#include <linux/can/dev.h>
  42#include <linux/can/error.h>
  43
  44#include "c_can.h"
  45
  46/* Number of interface registers */
  47#define IF_ENUM_REG_LEN		11
  48#define C_CAN_IFACE(reg, iface)	(C_CAN_IF1_##reg + (iface) * IF_ENUM_REG_LEN)
  49
  50/* control extension register D_CAN specific */
  51#define CONTROL_EX_PDR		BIT(8)
  52
  53/* control register */
  54#define CONTROL_SWR		BIT(15)
  55#define CONTROL_TEST		BIT(7)
  56#define CONTROL_CCE		BIT(6)
  57#define CONTROL_DISABLE_AR	BIT(5)
  58#define CONTROL_ENABLE_AR	(0 << 5)
  59#define CONTROL_EIE		BIT(3)
  60#define CONTROL_SIE		BIT(2)
  61#define CONTROL_IE		BIT(1)
  62#define CONTROL_INIT		BIT(0)
  63
  64#define CONTROL_IRQMSK		(CONTROL_EIE | CONTROL_IE | CONTROL_SIE)
  65
  66/* test register */
  67#define TEST_RX			BIT(7)
  68#define TEST_TX1		BIT(6)
  69#define TEST_TX2		BIT(5)
  70#define TEST_LBACK		BIT(4)
  71#define TEST_SILENT		BIT(3)
  72#define TEST_BASIC		BIT(2)
  73
  74/* status register */
  75#define STATUS_PDA		BIT(10)
  76#define STATUS_BOFF		BIT(7)
  77#define STATUS_EWARN		BIT(6)
  78#define STATUS_EPASS		BIT(5)
  79#define STATUS_RXOK		BIT(4)
  80#define STATUS_TXOK		BIT(3)
  81
  82/* error counter register */
  83#define ERR_CNT_TEC_MASK	0xff
  84#define ERR_CNT_TEC_SHIFT	0
  85#define ERR_CNT_REC_SHIFT	8
  86#define ERR_CNT_REC_MASK	(0x7f << ERR_CNT_REC_SHIFT)
  87#define ERR_CNT_RP_SHIFT	15
  88#define ERR_CNT_RP_MASK		(0x1 << ERR_CNT_RP_SHIFT)
  89
  90/* bit-timing register */
  91#define BTR_BRP_MASK		0x3f
  92#define BTR_BRP_SHIFT		0
  93#define BTR_SJW_SHIFT		6
  94#define BTR_SJW_MASK		(0x3 << BTR_SJW_SHIFT)
  95#define BTR_TSEG1_SHIFT		8
  96#define BTR_TSEG1_MASK		(0xf << BTR_TSEG1_SHIFT)
  97#define BTR_TSEG2_SHIFT		12
  98#define BTR_TSEG2_MASK		(0x7 << BTR_TSEG2_SHIFT)
  99
 100/* interrupt register */
 101#define INT_STS_PENDING		0x8000
 102
 103/* brp extension register */
 104#define BRP_EXT_BRPE_MASK	0x0f
 105#define BRP_EXT_BRPE_SHIFT	0
 106
 107/* IFx command request */
 108#define IF_COMR_BUSY		BIT(15)
 109
 110/* IFx command mask */
 111#define IF_COMM_WR		BIT(7)
 112#define IF_COMM_MASK		BIT(6)
 113#define IF_COMM_ARB		BIT(5)
 114#define IF_COMM_CONTROL		BIT(4)
 115#define IF_COMM_CLR_INT_PND	BIT(3)
 116#define IF_COMM_TXRQST		BIT(2)
 117#define IF_COMM_CLR_NEWDAT	IF_COMM_TXRQST
 118#define IF_COMM_DATAA		BIT(1)
 119#define IF_COMM_DATAB		BIT(0)
 120
 121/* TX buffer setup */
 122#define IF_COMM_TX		(IF_COMM_ARB | IF_COMM_CONTROL | \
 123				 IF_COMM_TXRQST |		 \
 124				 IF_COMM_DATAA | IF_COMM_DATAB)
 125
 126/* For the low buffers we clear the interrupt bit, but keep newdat */
 127#define IF_COMM_RCV_LOW		(IF_COMM_MASK | IF_COMM_ARB | \
 128				 IF_COMM_CONTROL | IF_COMM_CLR_INT_PND | \
 129				 IF_COMM_DATAA | IF_COMM_DATAB)
 130
 131/* For the high buffers we clear the interrupt bit and newdat */
 132#define IF_COMM_RCV_HIGH	(IF_COMM_RCV_LOW | IF_COMM_CLR_NEWDAT)
 133
 134/* Receive setup of message objects */
 135#define IF_COMM_RCV_SETUP	(IF_COMM_MASK | IF_COMM_ARB | IF_COMM_CONTROL)
 136
 137/* Invalidation of message objects */
 138#define IF_COMM_INVAL		(IF_COMM_ARB | IF_COMM_CONTROL)
 139
 140/* IFx arbitration */
 141#define IF_ARB_MSGVAL		BIT(31)
 142#define IF_ARB_MSGXTD		BIT(30)
 143#define IF_ARB_TRANSMIT		BIT(29)
 144
 145/* IFx message control */
 146#define IF_MCONT_NEWDAT		BIT(15)
 147#define IF_MCONT_MSGLST		BIT(14)
 148#define IF_MCONT_INTPND		BIT(13)
 149#define IF_MCONT_UMASK		BIT(12)
 150#define IF_MCONT_TXIE		BIT(11)
 151#define IF_MCONT_RXIE		BIT(10)
 152#define IF_MCONT_RMTEN		BIT(9)
 153#define IF_MCONT_TXRQST		BIT(8)
 154#define IF_MCONT_EOB		BIT(7)
 155#define IF_MCONT_DLC_MASK	0xf
 156
 157#define IF_MCONT_RCV		(IF_MCONT_RXIE | IF_MCONT_UMASK)
 158#define IF_MCONT_RCV_EOB	(IF_MCONT_RCV | IF_MCONT_EOB)
 159
 160#define IF_MCONT_TX		(IF_MCONT_TXIE | IF_MCONT_EOB)
 161
 162/* Use IF1 in NAPI path and IF2 in TX path */
 163#define IF_NAPI			0
 164#define IF_TX			1
 165
 166/* minimum timeout for checking BUSY status */
 167#define MIN_TIMEOUT_VALUE	6
 168
 169/* Wait for ~1 sec for INIT bit */
 170#define INIT_WAIT_MS		1000
 171
 172/* c_can lec values */
 173enum c_can_lec_type {
 174	LEC_NO_ERROR = 0,
 175	LEC_STUFF_ERROR,
 176	LEC_FORM_ERROR,
 177	LEC_ACK_ERROR,
 178	LEC_BIT1_ERROR,
 179	LEC_BIT0_ERROR,
 180	LEC_CRC_ERROR,
 181	LEC_UNUSED,
 182	LEC_MASK = LEC_UNUSED,
 183};
 184
 185/* c_can error types:
 186 * Bus errors (BUS_OFF, ERROR_WARNING, ERROR_PASSIVE) are supported
 187 */
 188enum c_can_bus_error_types {
 189	C_CAN_NO_ERROR = 0,
 190	C_CAN_BUS_OFF,
 191	C_CAN_ERROR_WARNING,
 192	C_CAN_ERROR_PASSIVE,
 193};
 194
 195static const struct can_bittiming_const c_can_bittiming_const = {
 196	.name = KBUILD_MODNAME,
 197	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
 198	.tseg1_max = 16,
 199	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
 200	.tseg2_max = 8,
 201	.sjw_max = 4,
 202	.brp_min = 1,
 203	.brp_max = 1024,	/* 6-bit BRP field + 4-bit BRPE field*/
 204	.brp_inc = 1,
 205};
 206
 207static inline void c_can_pm_runtime_get_sync(const struct c_can_priv *priv)
 208{
 209	if (priv->device)
 210		pm_runtime_get_sync(priv->device);
 211}
 212
 213static inline void c_can_pm_runtime_put_sync(const struct c_can_priv *priv)
 214{
 215	if (priv->device)
 216		pm_runtime_put_sync(priv->device);
 217}
 218
 219static inline void c_can_reset_ram(const struct c_can_priv *priv, bool enable)
 220{
 221	if (priv->raminit)
 222		priv->raminit(priv, enable);
 223}
 224
 225static void c_can_irq_control(struct c_can_priv *priv, bool enable)
 226{
 227	u32 ctrl = priv->read_reg(priv,	C_CAN_CTRL_REG) & ~CONTROL_IRQMSK;
 228
 229	if (enable)
 230		ctrl |= CONTROL_IRQMSK;
 231
 232	priv->write_reg(priv, C_CAN_CTRL_REG, ctrl);
 233}
 234
 235static void c_can_obj_update(struct net_device *dev, int iface, u32 cmd, u32 obj)
 236{
 237	struct c_can_priv *priv = netdev_priv(dev);
 238	int cnt, reg = C_CAN_IFACE(COMREQ_REG, iface);
 239
 240	priv->write_reg32(priv, reg, (cmd << 16) | obj);
 241
 242	for (cnt = MIN_TIMEOUT_VALUE; cnt; cnt--) {
 243		if (!(priv->read_reg(priv, reg) & IF_COMR_BUSY))
 244			return;
 245		udelay(1);
 246	}
 247	netdev_err(dev, "Updating object timed out\n");
 248}
 249
 250static inline void c_can_object_get(struct net_device *dev, int iface,
 251				    u32 obj, u32 cmd)
 252{
 253	c_can_obj_update(dev, iface, cmd, obj);
 254}
 255
 256static inline void c_can_object_put(struct net_device *dev, int iface,
 257				    u32 obj, u32 cmd)
 258{
 259	c_can_obj_update(dev, iface, cmd | IF_COMM_WR, obj);
 260}
 261
 262/* Note: According to documentation clearing TXIE while MSGVAL is set
 263 * is not allowed, but works nicely on C/DCAN. And that lowers the I/O
 264 * load significantly.
 265 */
 266static void c_can_inval_tx_object(struct net_device *dev, int iface, int obj)
 267{
 268	struct c_can_priv *priv = netdev_priv(dev);
 269
 270	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), 0);
 271	c_can_object_put(dev, iface, obj, IF_COMM_INVAL);
 272}
 273
 274static void c_can_inval_msg_object(struct net_device *dev, int iface, int obj)
 275{
 276	struct c_can_priv *priv = netdev_priv(dev);
 277
 278	priv->write_reg32(priv, C_CAN_IFACE(ARB1_REG, iface), 0);
 279	c_can_inval_tx_object(dev, iface, obj);
 280}
 281
 282static void c_can_setup_tx_object(struct net_device *dev, int iface,
 283				  struct can_frame *frame, int idx)
 284{
 285	struct c_can_priv *priv = netdev_priv(dev);
 286	u16 ctrl = IF_MCONT_TX | frame->len;
 287	bool rtr = frame->can_id & CAN_RTR_FLAG;
 288	u32 arb = IF_ARB_MSGVAL;
 289	int i;
 290
 291	if (frame->can_id & CAN_EFF_FLAG) {
 292		arb |= frame->can_id & CAN_EFF_MASK;
 293		arb |= IF_ARB_MSGXTD;
 294	} else {
 295		arb |= (frame->can_id & CAN_SFF_MASK) << 18;
 296	}
 297
 298	if (!rtr)
 299		arb |= IF_ARB_TRANSMIT;
 300
 301	/* If we change the DIR bit, we need to invalidate the buffer
 302	 * first, i.e. clear the MSGVAL flag in the arbiter.
 303	 */
 304	if (rtr != (bool)test_bit(idx, &priv->tx_dir)) {
 305		u32 obj = idx + priv->msg_obj_tx_first;
 306
 307		c_can_inval_msg_object(dev, iface, obj);
 308		change_bit(idx, &priv->tx_dir);
 309	}
 310
 311	priv->write_reg32(priv, C_CAN_IFACE(ARB1_REG, iface), arb);
 312
 313	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
 314
 315	if (priv->type == BOSCH_D_CAN) {
 316		u32 data = 0, dreg = C_CAN_IFACE(DATA1_REG, iface);
 317
 318		for (i = 0; i < frame->len; i += 4, dreg += 2) {
 319			data = (u32)frame->data[i];
 320			data |= (u32)frame->data[i + 1] << 8;
 321			data |= (u32)frame->data[i + 2] << 16;
 322			data |= (u32)frame->data[i + 3] << 24;
 323			priv->write_reg32(priv, dreg, data);
 324		}
 325	} else {
 326		for (i = 0; i < frame->len; i += 2) {
 327			priv->write_reg(priv,
 328					C_CAN_IFACE(DATA1_REG, iface) + i / 2,
 329					frame->data[i] |
 330					(frame->data[i + 1] << 8));
 331		}
 332	}
 333}
 334
 335static int c_can_handle_lost_msg_obj(struct net_device *dev,
 336				     int iface, int objno, u32 ctrl)
 337{
 338	struct net_device_stats *stats = &dev->stats;
 339	struct c_can_priv *priv = netdev_priv(dev);
 340	struct can_frame *frame;
 341	struct sk_buff *skb;
 342
 343	ctrl &= ~(IF_MCONT_MSGLST | IF_MCONT_INTPND | IF_MCONT_NEWDAT);
 344	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
 345	c_can_object_put(dev, iface, objno, IF_COMM_CONTROL);
 346
 347	stats->rx_errors++;
 348	stats->rx_over_errors++;
 349
 350	/* create an error msg */
 351	skb = alloc_can_err_skb(dev, &frame);
 352	if (unlikely(!skb))
 353		return 0;
 354
 355	frame->can_id |= CAN_ERR_CRTL;
 356	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
 357
 358	netif_receive_skb(skb);
 359	return 1;
 360}
 361
 362static int c_can_read_msg_object(struct net_device *dev, int iface, u32 ctrl)
 363{
 364	struct net_device_stats *stats = &dev->stats;
 365	struct c_can_priv *priv = netdev_priv(dev);
 366	struct can_frame *frame;
 367	struct sk_buff *skb;
 368	u32 arb, data;
 369
 370	skb = alloc_can_skb(dev, &frame);
 371	if (!skb) {
 372		stats->rx_dropped++;
 373		return -ENOMEM;
 374	}
 375
 376	frame->len = can_cc_dlc2len(ctrl & 0x0F);
 377
 378	arb = priv->read_reg32(priv, C_CAN_IFACE(ARB1_REG, iface));
 379
 380	if (arb & IF_ARB_MSGXTD)
 381		frame->can_id = (arb & CAN_EFF_MASK) | CAN_EFF_FLAG;
 382	else
 383		frame->can_id = (arb >> 18) & CAN_SFF_MASK;
 384
 385	if (arb & IF_ARB_TRANSMIT) {
 386		frame->can_id |= CAN_RTR_FLAG;
 387	} else {
 388		int i, dreg = C_CAN_IFACE(DATA1_REG, iface);
 389
 390		if (priv->type == BOSCH_D_CAN) {
 391			for (i = 0; i < frame->len; i += 4, dreg += 2) {
 392				data = priv->read_reg32(priv, dreg);
 393				frame->data[i] = data;
 394				frame->data[i + 1] = data >> 8;
 395				frame->data[i + 2] = data >> 16;
 396				frame->data[i + 3] = data >> 24;
 397			}
 398		} else {
 399			for (i = 0; i < frame->len; i += 2, dreg++) {
 400				data = priv->read_reg(priv, dreg);
 401				frame->data[i] = data;
 402				frame->data[i + 1] = data >> 8;
 403			}
 404		}
 405
 406		stats->rx_bytes += frame->len;
 407	}
 408	stats->rx_packets++;
 409
 410	netif_receive_skb(skb);
 411	return 0;
 412}
 413
 414static void c_can_setup_receive_object(struct net_device *dev, int iface,
 415				       u32 obj, u32 mask, u32 id, u32 mcont)
 416{
 417	struct c_can_priv *priv = netdev_priv(dev);
 418
 419	mask |= BIT(29);
 420	priv->write_reg32(priv, C_CAN_IFACE(MASK1_REG, iface), mask);
 421
 422	id |= IF_ARB_MSGVAL;
 423	priv->write_reg32(priv, C_CAN_IFACE(ARB1_REG, iface), id);
 424
 425	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), mcont);
 426	c_can_object_put(dev, iface, obj, IF_COMM_RCV_SETUP);
 427}
 428
 429static bool c_can_tx_busy(const struct c_can_priv *priv,
 430			  const struct c_can_tx_ring *tx_ring)
 431{
 432	if (c_can_get_tx_free(priv, tx_ring) > 0)
 433		return false;
 434
 435	netif_stop_queue(priv->dev);
 436
 437	/* Memory barrier before checking tx_free (head and tail) */
 438	smp_mb();
 439
 440	if (c_can_get_tx_free(priv, tx_ring) == 0) {
 441		netdev_dbg(priv->dev,
 442			   "Stopping tx-queue (tx_head=0x%08x, tx_tail=0x%08x, len=%d).\n",
 443			   tx_ring->head, tx_ring->tail,
 444			   tx_ring->head - tx_ring->tail);
 445		return true;
 446	}
 447
 448	netif_start_queue(priv->dev);
 449	return false;
 450}
 451
 452static netdev_tx_t c_can_start_xmit(struct sk_buff *skb,
 453				    struct net_device *dev)
 454{
 455	struct can_frame *frame = (struct can_frame *)skb->data;
 456	struct c_can_priv *priv = netdev_priv(dev);
 457	struct c_can_tx_ring *tx_ring = &priv->tx;
 458	u32 idx, obj, cmd = IF_COMM_TX;
 459
 460	if (can_dev_dropped_skb(dev, skb))
 461		return NETDEV_TX_OK;
 462
 463	if (c_can_tx_busy(priv, tx_ring))
 464		return NETDEV_TX_BUSY;
 465
 466	idx = c_can_get_tx_head(tx_ring);
 467	tx_ring->head++;
 468	if (c_can_get_tx_free(priv, tx_ring) == 0)
 469		netif_stop_queue(dev);
 470
 471	if (idx < c_can_get_tx_tail(tx_ring))
 472		cmd &= ~IF_COMM_TXRQST; /* Cache the message */
 473
 474	/* Store the message in the interface so we can call
 475	 * can_put_echo_skb(). We must do this before we enable
 476	 * transmit as we might race against do_tx().
 477	 */
 478	c_can_setup_tx_object(dev, IF_TX, frame, idx);
 479	can_put_echo_skb(skb, dev, idx, 0);
 480	obj = idx + priv->msg_obj_tx_first;
 481	c_can_object_put(dev, IF_TX, obj, cmd);
 482
 483	return NETDEV_TX_OK;
 484}
 485
 486static int c_can_wait_for_ctrl_init(struct net_device *dev,
 487				    struct c_can_priv *priv, u32 init)
 488{
 489	int retry = 0;
 490
 491	while (init != (priv->read_reg(priv, C_CAN_CTRL_REG) & CONTROL_INIT)) {
 492		udelay(10);
 493		if (retry++ > 1000) {
 494			netdev_err(dev, "CCTRL: set CONTROL_INIT failed\n");
 495			return -EIO;
 496		}
 497	}
 498	return 0;
 499}
 500
 501static int c_can_set_bittiming(struct net_device *dev)
 502{
 503	unsigned int reg_btr, reg_brpe, ctrl_save;
 504	u8 brp, brpe, sjw, tseg1, tseg2;
 505	u32 ten_bit_brp;
 506	struct c_can_priv *priv = netdev_priv(dev);
 507	const struct can_bittiming *bt = &priv->can.bittiming;
 508	int res;
 509
 510	/* c_can provides a 6-bit brp and 4-bit brpe fields */
 511	ten_bit_brp = bt->brp - 1;
 512	brp = ten_bit_brp & BTR_BRP_MASK;
 513	brpe = ten_bit_brp >> 6;
 514
 515	sjw = bt->sjw - 1;
 516	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
 517	tseg2 = bt->phase_seg2 - 1;
 518	reg_btr = brp | (sjw << BTR_SJW_SHIFT) | (tseg1 << BTR_TSEG1_SHIFT) |
 519			(tseg2 << BTR_TSEG2_SHIFT);
 520	reg_brpe = brpe & BRP_EXT_BRPE_MASK;
 521
 522	netdev_info(dev,
 523		    "setting BTR=%04x BRPE=%04x\n", reg_btr, reg_brpe);
 524
 525	ctrl_save = priv->read_reg(priv, C_CAN_CTRL_REG);
 526	ctrl_save &= ~CONTROL_INIT;
 527	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_CCE | CONTROL_INIT);
 528	res = c_can_wait_for_ctrl_init(dev, priv, CONTROL_INIT);
 529	if (res)
 530		return res;
 531
 532	priv->write_reg(priv, C_CAN_BTR_REG, reg_btr);
 533	priv->write_reg(priv, C_CAN_BRPEXT_REG, reg_brpe);
 534	priv->write_reg(priv, C_CAN_CTRL_REG, ctrl_save);
 535
 536	return c_can_wait_for_ctrl_init(dev, priv, 0);
 537}
 538
 539/* Configure C_CAN message objects for Tx and Rx purposes:
 540 * C_CAN provides a total of 32 message objects that can be configured
 541 * either for Tx or Rx purposes. Here the first 16 message objects are used as
 542 * a reception FIFO. The end of reception FIFO is signified by the EoB bit
 543 * being SET. The remaining 16 message objects are kept aside for Tx purposes.
 544 * See user guide document for further details on configuring message
 545 * objects.
 546 */
 547static void c_can_configure_msg_objects(struct net_device *dev)
 548{
 549	struct c_can_priv *priv = netdev_priv(dev);
 550	int i;
 551
 552	/* first invalidate all message objects */
 553	for (i = priv->msg_obj_rx_first; i <= priv->msg_obj_num; i++)
 554		c_can_inval_msg_object(dev, IF_NAPI, i);
 555
 556	/* setup receive message objects */
 557	for (i = priv->msg_obj_rx_first; i < priv->msg_obj_rx_last; i++)
 558		c_can_setup_receive_object(dev, IF_NAPI, i, 0, 0, IF_MCONT_RCV);
 559
 560	c_can_setup_receive_object(dev, IF_NAPI, priv->msg_obj_rx_last, 0, 0,
 561				   IF_MCONT_RCV_EOB);
 562}
 563
 564static int c_can_software_reset(struct net_device *dev)
 565{
 566	struct c_can_priv *priv = netdev_priv(dev);
 567	int retry = 0;
 568
 569	if (priv->type != BOSCH_D_CAN)
 570		return 0;
 571
 572	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_SWR | CONTROL_INIT);
 573	while (priv->read_reg(priv, C_CAN_CTRL_REG) & CONTROL_SWR) {
 574		msleep(20);
 575		if (retry++ > 100) {
 576			netdev_err(dev, "CCTRL: software reset failed\n");
 577			return -EIO;
 578		}
 579	}
 580
 581	return 0;
 582}
 583
 584/* Configure C_CAN chip:
 585 * - enable/disable auto-retransmission
 586 * - set operating mode
 587 * - configure message objects
 588 */
 589static int c_can_chip_config(struct net_device *dev)
 590{
 591	struct c_can_priv *priv = netdev_priv(dev);
 592	struct c_can_tx_ring *tx_ring = &priv->tx;
 593	int err;
 594
 595	err = c_can_software_reset(dev);
 596	if (err)
 597		return err;
 598
 599	/* enable automatic retransmission */
 600	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_ENABLE_AR);
 601
 602	if ((priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) &&
 603	    (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)) {
 604		/* loopback + silent mode : useful for hot self-test */
 605		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
 606		priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK | TEST_SILENT);
 607	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
 608		/* loopback mode : useful for self-test function */
 609		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
 610		priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK);
 611	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
 612		/* silent mode : bus-monitoring mode */
 613		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
 614		priv->write_reg(priv, C_CAN_TEST_REG, TEST_SILENT);
 615	}
 616
 617	/* configure message objects */
 618	c_can_configure_msg_objects(dev);
 619
 620	/* set a `lec` value so that we can check for updates later */
 621	priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
 622
 623	/* Clear all internal status */
 624	tx_ring->head = 0;
 625	tx_ring->tail = 0;
 626	priv->tx_dir = 0;
 627
 628	/* set bittiming params */
 629	return c_can_set_bittiming(dev);
 630}
 631
 632static int c_can_start(struct net_device *dev)
 633{
 634	struct c_can_priv *priv = netdev_priv(dev);
 635	int err;
 636	struct pinctrl *p;
 637
 638	/* basic c_can configuration */
 639	err = c_can_chip_config(dev);
 640	if (err)
 641		return err;
 642
 643	/* Setup the command for new messages */
 644	priv->comm_rcv_high = priv->type != BOSCH_D_CAN ?
 645		IF_COMM_RCV_LOW : IF_COMM_RCV_HIGH;
 646
 647	priv->can.state = CAN_STATE_ERROR_ACTIVE;
 648
 649	/* Attempt to use "active" if available else use "default" */
 650	p = pinctrl_get_select(priv->device, "active");
 651	if (!IS_ERR(p))
 652		pinctrl_put(p);
 653	else
 654		pinctrl_pm_select_default_state(priv->device);
 655
 656	return 0;
 657}
 658
 659static void c_can_stop(struct net_device *dev)
 660{
 661	struct c_can_priv *priv = netdev_priv(dev);
 662
 663	c_can_irq_control(priv, false);
 664
 665	/* put ctrl to init on stop to end ongoing transmission */
 666	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_INIT);
 667
 668	/* deactivate pins */
 669	pinctrl_pm_select_sleep_state(dev->dev.parent);
 670	priv->can.state = CAN_STATE_STOPPED;
 671}
 672
 673static int c_can_set_mode(struct net_device *dev, enum can_mode mode)
 674{
 675	struct c_can_priv *priv = netdev_priv(dev);
 676	int err;
 677
 678	switch (mode) {
 679	case CAN_MODE_START:
 680		err = c_can_start(dev);
 681		if (err)
 682			return err;
 683		netif_wake_queue(dev);
 684		c_can_irq_control(priv, true);
 685		break;
 686	default:
 687		return -EOPNOTSUPP;
 688	}
 689
 690	return 0;
 691}
 692
 693static int __c_can_get_berr_counter(const struct net_device *dev,
 694				    struct can_berr_counter *bec)
 695{
 696	unsigned int reg_err_counter;
 697	struct c_can_priv *priv = netdev_priv(dev);
 698
 699	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
 700	bec->rxerr = (reg_err_counter & ERR_CNT_REC_MASK) >>
 701				ERR_CNT_REC_SHIFT;
 702	bec->txerr = reg_err_counter & ERR_CNT_TEC_MASK;
 703
 704	return 0;
 705}
 706
 707static int c_can_get_berr_counter(const struct net_device *dev,
 708				  struct can_berr_counter *bec)
 709{
 710	struct c_can_priv *priv = netdev_priv(dev);
 711	int err;
 712
 713	c_can_pm_runtime_get_sync(priv);
 714	err = __c_can_get_berr_counter(dev, bec);
 715	c_can_pm_runtime_put_sync(priv);
 716
 717	return err;
 718}
 719
 720static void c_can_do_tx(struct net_device *dev)
 721{
 722	struct c_can_priv *priv = netdev_priv(dev);
 723	struct c_can_tx_ring *tx_ring = &priv->tx;
 724	struct net_device_stats *stats = &dev->stats;
 725	u32 idx, obj, pkts = 0, bytes = 0, pend;
 726	u8 tail;
 727
 728	if (priv->msg_obj_tx_last > 32)
 729		pend = priv->read_reg32(priv, C_CAN_INTPND3_REG);
 730	else
 731		pend = priv->read_reg(priv, C_CAN_INTPND2_REG);
 732
 733	while ((idx = ffs(pend))) {
 734		idx--;
 735		pend &= ~BIT(idx);
 736		obj = idx + priv->msg_obj_tx_first;
 737
 738		/* We use IF_NAPI interface instead of IF_TX because we
 739		 * are called from c_can_poll(), which runs inside
 740		 * NAPI. We are not transmitting.
 741		 */
 742		c_can_inval_tx_object(dev, IF_NAPI, obj);
 743		bytes += can_get_echo_skb(dev, idx, NULL);
 744		pkts++;
 745	}
 746
 747	if (!pkts)
 748		return;
 749
 750	tx_ring->tail += pkts;
 751	if (c_can_get_tx_free(priv, tx_ring)) {
 752		/* Make sure that anybody stopping the queue after
 753		 * this sees the new tx_ring->tail.
 754		 */
 755		smp_mb();
 756		netif_wake_queue(priv->dev);
 757	}
 758
 759	stats->tx_bytes += bytes;
 760	stats->tx_packets += pkts;
 761
 762	tail = c_can_get_tx_tail(tx_ring);
 763	if (priv->type == BOSCH_D_CAN && tail == 0) {
 764		u8 head = c_can_get_tx_head(tx_ring);
 765
 766		/* Start transmission for all cached messages */
 767		for (idx = tail; idx < head; idx++) {
 768			obj = idx + priv->msg_obj_tx_first;
 769			c_can_object_put(dev, IF_NAPI, obj, IF_COMM_TXRQST);
 770		}
 771	}
 772}
 773
 774/* If we have a gap in the pending bits, that means we either
 775 * raced with the hardware or failed to readout all upper
 776 * objects in the last run due to quota limit.
 777 */
 778static u32 c_can_adjust_pending(u32 pend, u32 rx_mask)
 779{
 780	u32 weight, lasts;
 781
 782	if (pend == rx_mask)
 783		return pend;
 784
 785	/* If the last set bit is larger than the number of pending
 786	 * bits we have a gap.
 787	 */
 788	weight = hweight32(pend);
 789	lasts = fls(pend);
 790
 791	/* If the bits are linear, nothing to do */
 792	if (lasts == weight)
 793		return pend;
 794
 795	/* Find the first set bit after the gap. We walk backwards
 796	 * from the last set bit.
 797	 */
 798	for (lasts--; pend & BIT(lasts - 1); lasts--)
 799		;
 800
 801	return pend & ~GENMASK(lasts - 1, 0);
 802}
 803
 804static inline void c_can_rx_object_get(struct net_device *dev,
 805				       struct c_can_priv *priv, u32 obj)
 806{
 807	c_can_object_get(dev, IF_NAPI, obj, priv->comm_rcv_high);
 808}
 809
 810static inline void c_can_rx_finalize(struct net_device *dev,
 811				     struct c_can_priv *priv, u32 obj)
 812{
 813	if (priv->type != BOSCH_D_CAN)
 814		c_can_object_get(dev, IF_NAPI, obj, IF_COMM_CLR_NEWDAT);
 815}
 816
 817static int c_can_read_objects(struct net_device *dev, struct c_can_priv *priv,
 818			      u32 pend, int quota)
 819{
 820	u32 pkts = 0, ctrl, obj;
 821
 822	while ((obj = ffs(pend)) && quota > 0) {
 823		pend &= ~BIT(obj - 1);
 824
 825		c_can_rx_object_get(dev, priv, obj);
 826		ctrl = priv->read_reg(priv, C_CAN_IFACE(MSGCTRL_REG, IF_NAPI));
 827
 828		if (ctrl & IF_MCONT_MSGLST) {
 829			int n;
 830
 831			n = c_can_handle_lost_msg_obj(dev, IF_NAPI, obj, ctrl);
 832
 833			pkts += n;
 834			quota -= n;
 835			continue;
 836		}
 837
 838		/* This really should not happen, but this covers some
 839		 * odd HW behaviour. Do not remove that unless you
 840		 * want to brick your machine.
 841		 */
 842		if (!(ctrl & IF_MCONT_NEWDAT))
 843			continue;
 844
 845		/* read the data from the message object */
 846		c_can_read_msg_object(dev, IF_NAPI, ctrl);
 847
 848		c_can_rx_finalize(dev, priv, obj);
 849
 850		pkts++;
 851		quota--;
 852	}
 853
 854	return pkts;
 855}
 856
 857static inline u32 c_can_get_pending(struct c_can_priv *priv)
 858{
 859	u32 pend;
 860
 861	if (priv->msg_obj_rx_last > 16)
 862		pend = priv->read_reg32(priv, C_CAN_NEWDAT1_REG);
 863	else
 864		pend = priv->read_reg(priv, C_CAN_NEWDAT1_REG);
 865
 866	return pend;
 867}
 868
 869/* theory of operation:
 870 *
 871 * c_can core saves a received CAN message into the first free message
 872 * object it finds free (starting with the lowest). Bits NEWDAT and
 873 * INTPND are set for this message object indicating that a new message
 874 * has arrived.
 875 *
 876 * We clear the newdat bit right away.
 877 *
 878 * This can result in packet reordering when the readout is slow.
 879 */
 880static int c_can_do_rx_poll(struct net_device *dev, int quota)
 881{
 882	struct c_can_priv *priv = netdev_priv(dev);
 883	u32 pkts = 0, pend = 0, toread, n;
 884
 885	while (quota > 0) {
 886		if (!pend) {
 887			pend = c_can_get_pending(priv);
 888			if (!pend)
 889				break;
 890			/* If the pending field has a gap, handle the
 891			 * bits above the gap first.
 892			 */
 893			toread = c_can_adjust_pending(pend,
 894						      priv->msg_obj_rx_mask);
 895		} else {
 896			toread = pend;
 897		}
 898		/* Remove the bits from pend */
 899		pend &= ~toread;
 900		/* Read the objects */
 901		n = c_can_read_objects(dev, priv, toread, quota);
 902		pkts += n;
 903		quota -= n;
 904	}
 905
 906	return pkts;
 907}
 908
 909static int c_can_handle_state_change(struct net_device *dev,
 910				     enum c_can_bus_error_types error_type)
 911{
 912	unsigned int reg_err_counter;
 913	unsigned int rx_err_passive;
 914	struct c_can_priv *priv = netdev_priv(dev);
 915	struct can_frame *cf;
 916	struct sk_buff *skb;
 917	struct can_berr_counter bec;
 918
 919	switch (error_type) {
 920	case C_CAN_NO_ERROR:
 921		priv->can.state = CAN_STATE_ERROR_ACTIVE;
 922		break;
 923	case C_CAN_ERROR_WARNING:
 924		/* error warning state */
 925		priv->can.can_stats.error_warning++;
 926		priv->can.state = CAN_STATE_ERROR_WARNING;
 927		break;
 928	case C_CAN_ERROR_PASSIVE:
 929		/* error passive state */
 930		priv->can.can_stats.error_passive++;
 931		priv->can.state = CAN_STATE_ERROR_PASSIVE;
 932		break;
 933	case C_CAN_BUS_OFF:
 934		/* bus-off state */
 935		priv->can.state = CAN_STATE_BUS_OFF;
 936		priv->can.can_stats.bus_off++;
 937		break;
 938	default:
 939		break;
 940	}
 941
 942	/* propagate the error condition to the CAN stack */
 943	skb = alloc_can_err_skb(dev, &cf);
 944	if (unlikely(!skb))
 945		return 0;
 946
 947	__c_can_get_berr_counter(dev, &bec);
 948	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
 949	rx_err_passive = (reg_err_counter & ERR_CNT_RP_MASK) >>
 950				ERR_CNT_RP_SHIFT;
 951
 952	switch (error_type) {
 953	case C_CAN_NO_ERROR:
 954		cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
 955		cf->data[1] = CAN_ERR_CRTL_ACTIVE;
 956		cf->data[6] = bec.txerr;
 957		cf->data[7] = bec.rxerr;
 958		break;
 959	case C_CAN_ERROR_WARNING:
 960		/* error warning state */
 961		cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
 962		cf->data[1] = (bec.txerr > bec.rxerr) ?
 963			CAN_ERR_CRTL_TX_WARNING :
 964			CAN_ERR_CRTL_RX_WARNING;
 965		cf->data[6] = bec.txerr;
 966		cf->data[7] = bec.rxerr;
 967
 968		break;
 969	case C_CAN_ERROR_PASSIVE:
 970		/* error passive state */
 971		cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
 972		if (rx_err_passive)
 973			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
 974		if (bec.txerr > 127)
 975			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
 976
 977		cf->data[6] = bec.txerr;
 978		cf->data[7] = bec.rxerr;
 979		break;
 980	case C_CAN_BUS_OFF:
 981		/* bus-off state */
 982		cf->can_id |= CAN_ERR_BUSOFF;
 983		can_bus_off(dev);
 984		break;
 985	default:
 986		break;
 987	}
 988
 989	netif_receive_skb(skb);
 990
 991	return 1;
 992}
 993
 994static int c_can_handle_bus_err(struct net_device *dev,
 995				enum c_can_lec_type lec_type)
 996{
 997	struct c_can_priv *priv = netdev_priv(dev);
 998	struct net_device_stats *stats = &dev->stats;
 999	struct can_frame *cf;
1000	struct sk_buff *skb;
1001
1002	/* early exit if no lec update or no error.
1003	 * no lec update means that no CAN bus event has been detected
1004	 * since CPU wrote 0x7 value to status reg.
1005	 */
1006	if (lec_type == LEC_UNUSED || lec_type == LEC_NO_ERROR)
1007		return 0;
1008
1009	if (!(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
1010		return 0;
1011
1012	/* common for all type of bus errors */
1013	priv->can.can_stats.bus_error++;
1014	stats->rx_errors++;
1015
1016	/* propagate the error condition to the CAN stack */
1017	skb = alloc_can_err_skb(dev, &cf);
1018	if (unlikely(!skb))
1019		return 0;
1020
1021	/* check for 'last error code' which tells us the
1022	 * type of the last error to occur on the CAN bus
1023	 */
1024	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
1025
1026	switch (lec_type) {
1027	case LEC_STUFF_ERROR:
1028		netdev_dbg(dev, "stuff error\n");
1029		cf->data[2] |= CAN_ERR_PROT_STUFF;
1030		break;
1031	case LEC_FORM_ERROR:
1032		netdev_dbg(dev, "form error\n");
1033		cf->data[2] |= CAN_ERR_PROT_FORM;
1034		break;
1035	case LEC_ACK_ERROR:
1036		netdev_dbg(dev, "ack error\n");
1037		cf->data[3] = CAN_ERR_PROT_LOC_ACK;
1038		break;
1039	case LEC_BIT1_ERROR:
1040		netdev_dbg(dev, "bit1 error\n");
1041		cf->data[2] |= CAN_ERR_PROT_BIT1;
1042		break;
1043	case LEC_BIT0_ERROR:
1044		netdev_dbg(dev, "bit0 error\n");
1045		cf->data[2] |= CAN_ERR_PROT_BIT0;
1046		break;
1047	case LEC_CRC_ERROR:
1048		netdev_dbg(dev, "CRC error\n");
1049		cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
1050		break;
1051	default:
1052		break;
1053	}
1054
1055	netif_receive_skb(skb);
1056	return 1;
1057}
1058
1059static int c_can_poll(struct napi_struct *napi, int quota)
1060{
1061	struct net_device *dev = napi->dev;
1062	struct c_can_priv *priv = netdev_priv(dev);
1063	u16 curr, last = priv->last_status;
1064	int work_done = 0;
1065
1066	/* Only read the status register if a status interrupt was pending */
1067	if (atomic_xchg(&priv->sie_pending, 0)) {
1068		priv->last_status = priv->read_reg(priv, C_CAN_STS_REG);
1069		curr = priv->last_status;
1070		/* Ack status on C_CAN. D_CAN is self clearing */
1071		if (priv->type != BOSCH_D_CAN)
1072			priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
1073	} else {
1074		/* no change detected ... */
1075		curr = last;
1076	}
1077
1078	/* handle state changes */
1079	if ((curr & STATUS_EWARN) && (!(last & STATUS_EWARN))) {
1080		netdev_dbg(dev, "entered error warning state\n");
1081		work_done += c_can_handle_state_change(dev, C_CAN_ERROR_WARNING);
1082	}
1083
1084	if ((curr & STATUS_EPASS) && (!(last & STATUS_EPASS))) {
1085		netdev_dbg(dev, "entered error passive state\n");
1086		work_done += c_can_handle_state_change(dev, C_CAN_ERROR_PASSIVE);
1087	}
1088
1089	if ((curr & STATUS_BOFF) && (!(last & STATUS_BOFF))) {
1090		netdev_dbg(dev, "entered bus off state\n");
1091		work_done += c_can_handle_state_change(dev, C_CAN_BUS_OFF);
1092		goto end;
1093	}
1094
1095	/* handle bus recovery events */
1096	if ((!(curr & STATUS_BOFF)) && (last & STATUS_BOFF)) {
1097		netdev_dbg(dev, "left bus off state\n");
1098		work_done += c_can_handle_state_change(dev, C_CAN_ERROR_PASSIVE);
1099	}
1100
1101	if ((!(curr & STATUS_EPASS)) && (last & STATUS_EPASS)) {
1102		netdev_dbg(dev, "left error passive state\n");
1103		work_done += c_can_handle_state_change(dev, C_CAN_ERROR_WARNING);
1104	}
1105
1106	if ((!(curr & STATUS_EWARN)) && (last & STATUS_EWARN)) {
1107		netdev_dbg(dev, "left error warning state\n");
1108		work_done += c_can_handle_state_change(dev, C_CAN_NO_ERROR);
1109	}
1110
1111	/* handle lec errors on the bus */
1112	work_done += c_can_handle_bus_err(dev, curr & LEC_MASK);
1113
1114	/* Handle Tx/Rx events. We do this unconditionally */
1115	work_done += c_can_do_rx_poll(dev, (quota - work_done));
1116	c_can_do_tx(dev);
1117
1118end:
1119	if (work_done < quota) {
1120		napi_complete_done(napi, work_done);
1121		/* enable all IRQs if we are not in bus off state */
1122		if (priv->can.state != CAN_STATE_BUS_OFF)
1123			c_can_irq_control(priv, true);
1124	}
1125
1126	return work_done;
1127}
1128
1129static irqreturn_t c_can_isr(int irq, void *dev_id)
1130{
1131	struct net_device *dev = (struct net_device *)dev_id;
1132	struct c_can_priv *priv = netdev_priv(dev);
1133	int reg_int;
1134
1135	reg_int = priv->read_reg(priv, C_CAN_INT_REG);
1136	if (!reg_int)
1137		return IRQ_NONE;
1138
1139	/* save for later use */
1140	if (reg_int & INT_STS_PENDING)
1141		atomic_set(&priv->sie_pending, 1);
1142
1143	/* disable all interrupts and schedule the NAPI */
1144	c_can_irq_control(priv, false);
1145	napi_schedule(&priv->napi);
1146
1147	return IRQ_HANDLED;
1148}
1149
1150static int c_can_open(struct net_device *dev)
1151{
1152	int err;
1153	struct c_can_priv *priv = netdev_priv(dev);
1154
1155	c_can_pm_runtime_get_sync(priv);
1156	c_can_reset_ram(priv, true);
1157
1158	/* open the can device */
1159	err = open_candev(dev);
1160	if (err) {
1161		netdev_err(dev, "failed to open can device\n");
1162		goto exit_open_fail;
1163	}
1164
1165	/* register interrupt handler */
1166	err = request_irq(dev->irq, &c_can_isr, IRQF_SHARED, dev->name,
1167			  dev);
1168	if (err < 0) {
1169		netdev_err(dev, "failed to request interrupt\n");
1170		goto exit_irq_fail;
1171	}
1172
1173	/* start the c_can controller */
1174	err = c_can_start(dev);
1175	if (err)
1176		goto exit_start_fail;
1177
1178	napi_enable(&priv->napi);
1179	/* enable status change, error and module interrupts */
1180	c_can_irq_control(priv, true);
1181	netif_start_queue(dev);
1182
1183	return 0;
1184
1185exit_start_fail:
1186	free_irq(dev->irq, dev);
1187exit_irq_fail:
1188	close_candev(dev);
1189exit_open_fail:
1190	c_can_reset_ram(priv, false);
1191	c_can_pm_runtime_put_sync(priv);
1192	return err;
1193}
1194
1195static int c_can_close(struct net_device *dev)
1196{
1197	struct c_can_priv *priv = netdev_priv(dev);
1198
1199	netif_stop_queue(dev);
1200	napi_disable(&priv->napi);
1201	c_can_stop(dev);
1202	free_irq(dev->irq, dev);
1203	close_candev(dev);
1204
1205	c_can_reset_ram(priv, false);
1206	c_can_pm_runtime_put_sync(priv);
1207
1208	return 0;
1209}
1210
1211struct net_device *alloc_c_can_dev(int msg_obj_num)
1212{
1213	struct net_device *dev;
1214	struct c_can_priv *priv;
1215	int msg_obj_tx_num = msg_obj_num / 2;
1216
1217	dev = alloc_candev(sizeof(*priv), msg_obj_tx_num);
1218	if (!dev)
1219		return NULL;
1220
1221	priv = netdev_priv(dev);
1222	priv->msg_obj_num = msg_obj_num;
1223	priv->msg_obj_rx_num = msg_obj_num - msg_obj_tx_num;
1224	priv->msg_obj_rx_first = 1;
1225	priv->msg_obj_rx_last =
1226		priv->msg_obj_rx_first + priv->msg_obj_rx_num - 1;
1227	priv->msg_obj_rx_mask = GENMASK(priv->msg_obj_rx_num - 1, 0);
1228
1229	priv->msg_obj_tx_num = msg_obj_tx_num;
1230	priv->msg_obj_tx_first = priv->msg_obj_rx_last + 1;
1231	priv->msg_obj_tx_last =
1232		priv->msg_obj_tx_first + priv->msg_obj_tx_num - 1;
1233
1234	priv->tx.head = 0;
1235	priv->tx.tail = 0;
1236	priv->tx.obj_num = msg_obj_tx_num;
1237
1238	netif_napi_add_weight(dev, &priv->napi, c_can_poll,
1239			      priv->msg_obj_rx_num);
1240
1241	priv->dev = dev;
1242	priv->can.bittiming_const = &c_can_bittiming_const;
1243	priv->can.do_set_mode = c_can_set_mode;
1244	priv->can.do_get_berr_counter = c_can_get_berr_counter;
1245	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1246					CAN_CTRLMODE_LISTENONLY |
1247					CAN_CTRLMODE_BERR_REPORTING;
1248
1249	return dev;
1250}
1251EXPORT_SYMBOL_GPL(alloc_c_can_dev);
1252
1253#ifdef CONFIG_PM
1254int c_can_power_down(struct net_device *dev)
1255{
1256	u32 val;
1257	unsigned long time_out;
1258	struct c_can_priv *priv = netdev_priv(dev);
1259
1260	if (!(dev->flags & IFF_UP))
1261		return 0;
1262
1263	WARN_ON(priv->type != BOSCH_D_CAN);
1264
1265	/* set PDR value so the device goes to power down mode */
1266	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1267	val |= CONTROL_EX_PDR;
1268	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1269
1270	/* Wait for the PDA bit to get set */
1271	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1272	while (!(priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1273	       time_after(time_out, jiffies))
1274		cpu_relax();
1275
1276	if (time_after(jiffies, time_out))
1277		return -ETIMEDOUT;
1278
1279	c_can_stop(dev);
1280
1281	c_can_reset_ram(priv, false);
1282	c_can_pm_runtime_put_sync(priv);
1283
1284	return 0;
1285}
1286EXPORT_SYMBOL_GPL(c_can_power_down);
1287
1288int c_can_power_up(struct net_device *dev)
1289{
1290	u32 val;
1291	unsigned long time_out;
1292	struct c_can_priv *priv = netdev_priv(dev);
1293	int ret;
1294
1295	if (!(dev->flags & IFF_UP))
1296		return 0;
1297
1298	WARN_ON(priv->type != BOSCH_D_CAN);
1299
1300	c_can_pm_runtime_get_sync(priv);
1301	c_can_reset_ram(priv, true);
1302
1303	/* Clear PDR and INIT bits */
1304	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1305	val &= ~CONTROL_EX_PDR;
1306	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1307	val = priv->read_reg(priv, C_CAN_CTRL_REG);
1308	val &= ~CONTROL_INIT;
1309	priv->write_reg(priv, C_CAN_CTRL_REG, val);
1310
1311	/* Wait for the PDA bit to get clear */
1312	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1313	while ((priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1314	       time_after(time_out, jiffies))
1315		cpu_relax();
1316
1317	if (time_after(jiffies, time_out)) {
1318		ret = -ETIMEDOUT;
1319		goto err_out;
1320	}
1321
1322	ret = c_can_start(dev);
1323	if (ret)
1324		goto err_out;
1325
1326	c_can_irq_control(priv, true);
1327
1328	return 0;
1329
1330err_out:
1331	c_can_reset_ram(priv, false);
1332	c_can_pm_runtime_put_sync(priv);
1333
1334	return ret;
1335}
1336EXPORT_SYMBOL_GPL(c_can_power_up);
1337#endif
1338
1339void free_c_can_dev(struct net_device *dev)
1340{
1341	struct c_can_priv *priv = netdev_priv(dev);
1342
1343	netif_napi_del(&priv->napi);
1344	free_candev(dev);
1345}
1346EXPORT_SYMBOL_GPL(free_c_can_dev);
1347
1348static const struct net_device_ops c_can_netdev_ops = {
1349	.ndo_open = c_can_open,
1350	.ndo_stop = c_can_close,
1351	.ndo_start_xmit = c_can_start_xmit,
1352	.ndo_change_mtu = can_change_mtu,
1353};
1354
1355int register_c_can_dev(struct net_device *dev)
1356{
1357	/* Deactivate pins to prevent DRA7 DCAN IP from being
1358	 * stuck in transition when module is disabled.
1359	 * Pins are activated in c_can_start() and deactivated
1360	 * in c_can_stop()
1361	 */
1362	pinctrl_pm_select_sleep_state(dev->dev.parent);
1363
1364	dev->flags |= IFF_ECHO;	/* we support local echo */
1365	dev->netdev_ops = &c_can_netdev_ops;
1366	dev->ethtool_ops = &c_can_ethtool_ops;
1367
1368	return register_candev(dev);
1369}
1370EXPORT_SYMBOL_GPL(register_c_can_dev);
1371
1372void unregister_c_can_dev(struct net_device *dev)
1373{
1374	unregister_candev(dev);
1375}
1376EXPORT_SYMBOL_GPL(unregister_c_can_dev);
1377
1378MODULE_AUTHOR("Bhupesh Sharma <bhupesh.sharma@st.com>");
1379MODULE_LICENSE("GPL v2");
1380MODULE_DESCRIPTION("CAN bus driver for Bosch C_CAN controller");