Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1/*
   2 * Copyright (C) ST-Ericsson SA 2010
   3 *
   4 * License Terms: GNU General Public License v2
   5 * Author: Arun R Murthy <arun.murthy@stericsson.com>
   6 * Author: Daniel Willerud <daniel.willerud@stericsson.com>
   7 * Author: Johan Palsson <johan.palsson@stericsson.com>
   8 */
   9#include <linux/init.h>
  10#include <linux/module.h>
  11#include <linux/device.h>
  12#include <linux/interrupt.h>
  13#include <linux/spinlock.h>
  14#include <linux/delay.h>
  15#include <linux/pm_runtime.h>
  16#include <linux/platform_device.h>
  17#include <linux/completion.h>
  18#include <linux/regulator/consumer.h>
  19#include <linux/err.h>
  20#include <linux/slab.h>
  21#include <linux/list.h>
  22#include <linux/mfd/abx500.h>
  23#include <linux/mfd/abx500/ab8500.h>
  24#include <linux/mfd/abx500/ab8500-gpadc.h>
  25
  26/*
  27 * GPADC register offsets
  28 * Bank : 0x0A
  29 */
  30#define AB8500_GPADC_CTRL1_REG		0x00
  31#define AB8500_GPADC_CTRL2_REG		0x01
  32#define AB8500_GPADC_CTRL3_REG		0x02
  33#define AB8500_GPADC_AUTO_TIMER_REG	0x03
  34#define AB8500_GPADC_STAT_REG		0x04
  35#define AB8500_GPADC_MANDATAL_REG	0x05
  36#define AB8500_GPADC_MANDATAH_REG	0x06
  37#define AB8500_GPADC_AUTODATAL_REG	0x07
  38#define AB8500_GPADC_AUTODATAH_REG	0x08
  39#define AB8500_GPADC_MUX_CTRL_REG	0x09
  40#define AB8540_GPADC_MANDATA2L_REG	0x09
  41#define AB8540_GPADC_MANDATA2H_REG	0x0A
  42#define AB8540_GPADC_APEAAX_REG		0x10
  43#define AB8540_GPADC_APEAAT_REG		0x11
  44#define AB8540_GPADC_APEAAM_REG		0x12
  45#define AB8540_GPADC_APEAAH_REG		0x13
  46#define AB8540_GPADC_APEAAL_REG		0x14
  47
  48/*
  49 * OTP register offsets
  50 * Bank : 0x15
  51 */
  52#define AB8500_GPADC_CAL_1	0x0F
  53#define AB8500_GPADC_CAL_2	0x10
  54#define AB8500_GPADC_CAL_3	0x11
  55#define AB8500_GPADC_CAL_4	0x12
  56#define AB8500_GPADC_CAL_5	0x13
  57#define AB8500_GPADC_CAL_6	0x14
  58#define AB8500_GPADC_CAL_7	0x15
  59/* New calibration for 8540 */
  60#define AB8540_GPADC_OTP4_REG_7	0x38
  61#define AB8540_GPADC_OTP4_REG_6	0x39
  62#define AB8540_GPADC_OTP4_REG_5	0x3A
  63
  64/* gpadc constants */
  65#define EN_VINTCORE12		0x04
  66#define EN_VTVOUT		0x02
  67#define EN_GPADC		0x01
  68#define DIS_GPADC		0x00
  69#define AVG_1			0x00
  70#define AVG_4			0x20
  71#define AVG_8			0x40
  72#define AVG_16			0x60
  73#define ADC_SW_CONV		0x04
  74#define EN_ICHAR		0x80
  75#define BTEMP_PULL_UP		0x08
  76#define EN_BUF			0x40
  77#define DIS_ZERO		0x00
  78#define GPADC_BUSY		0x01
  79#define EN_FALLING		0x10
  80#define EN_TRIG_EDGE		0x02
  81#define EN_VBIAS_XTAL_TEMP	0x02
  82
  83/* GPADC constants from AB8500 spec, UM0836 */
  84#define ADC_RESOLUTION		1024
  85#define ADC_CH_BTEMP_MIN	0
  86#define ADC_CH_BTEMP_MAX	1350
  87#define ADC_CH_DIETEMP_MIN	0
  88#define ADC_CH_DIETEMP_MAX	1350
  89#define ADC_CH_CHG_V_MIN	0
  90#define ADC_CH_CHG_V_MAX	20030
  91#define ADC_CH_ACCDET2_MIN	0
  92#define ADC_CH_ACCDET2_MAX	2500
  93#define ADC_CH_VBAT_MIN		2300
  94#define ADC_CH_VBAT_MAX		4800
  95#define ADC_CH_CHG_I_MIN	0
  96#define ADC_CH_CHG_I_MAX	1500
  97#define ADC_CH_BKBAT_MIN	0
  98#define ADC_CH_BKBAT_MAX	3200
  99
 100/* GPADC constants from AB8540 spec */
 101#define ADC_CH_IBAT_MIN		(-6000) /* mA range measured by ADC for ibat */
 102#define ADC_CH_IBAT_MAX		6000
 103#define ADC_CH_IBAT_MIN_V	(-60)	/* mV range measured by ADC for ibat */
 104#define ADC_CH_IBAT_MAX_V	60
 105#define IBAT_VDROP_L		(-56)  /* mV */
 106#define IBAT_VDROP_H		56
 107
 108/* This is used to not lose precision when dividing to get gain and offset */
 109#define CALIB_SCALE		1000
 110/*
 111 * Number of bits shift used to not lose precision
 112 * when dividing to get ibat gain.
 113 */
 114#define CALIB_SHIFT_IBAT	20
 115
 116/* Time in ms before disabling regulator */
 117#define GPADC_AUDOSUSPEND_DELAY		1
 118
 119#define CONVERSION_TIME			500 /* ms */
 120
 121enum cal_channels {
 122	ADC_INPUT_VMAIN = 0,
 123	ADC_INPUT_BTEMP,
 124	ADC_INPUT_VBAT,
 125	ADC_INPUT_IBAT,
 126	NBR_CAL_INPUTS,
 127};
 128
 129/**
 130 * struct adc_cal_data - Table for storing gain and offset for the calibrated
 131 * ADC channels
 132 * @gain:		Gain of the ADC channel
 133 * @offset:		Offset of the ADC channel
 134 */
 135struct adc_cal_data {
 136	s64 gain;
 137	s64 offset;
 138	u16 otp_calib_hi;
 139	u16 otp_calib_lo;
 140};
 141
 142/**
 143 * struct ab8500_gpadc - AB8500 GPADC device information
 144 * @dev:			pointer to the struct device
 145 * @node:			a list of AB8500 GPADCs, hence prepared for
 146				reentrance
 147 * @parent:			pointer to the struct ab8500
 148 * @ab8500_gpadc_complete:	pointer to the struct completion, to indicate
 149 *				the completion of gpadc conversion
 150 * @ab8500_gpadc_lock:		structure of type mutex
 151 * @regu:			pointer to the struct regulator
 152 * @irq_sw:			interrupt number that is used by gpadc for Sw
 153 *				conversion
 154 * @irq_hw:			interrupt number that is used by gpadc for Hw
 155 *				conversion
 156 * @cal_data			array of ADC calibration data structs
 157 */
 158struct ab8500_gpadc {
 159	struct device *dev;
 160	struct list_head node;
 161	struct ab8500 *parent;
 162	struct completion ab8500_gpadc_complete;
 163	struct mutex ab8500_gpadc_lock;
 164	struct regulator *regu;
 165	int irq_sw;
 166	int irq_hw;
 167	struct adc_cal_data cal_data[NBR_CAL_INPUTS];
 168};
 169
 170static LIST_HEAD(ab8500_gpadc_list);
 171
 172/**
 173 * ab8500_gpadc_get() - returns a reference to the primary AB8500 GPADC
 174 * (i.e. the first GPADC in the instance list)
 175 */
 176struct ab8500_gpadc *ab8500_gpadc_get(char *name)
 177{
 178	struct ab8500_gpadc *gpadc;
 179
 180	list_for_each_entry(gpadc, &ab8500_gpadc_list, node) {
 181		if (!strcmp(name, dev_name(gpadc->dev)))
 182			return gpadc;
 183	}
 184
 185	return ERR_PTR(-ENOENT);
 186}
 187EXPORT_SYMBOL(ab8500_gpadc_get);
 188
 189/**
 190 * ab8500_gpadc_ad_to_voltage() - Convert a raw ADC value to a voltage
 191 */
 192int ab8500_gpadc_ad_to_voltage(struct ab8500_gpadc *gpadc, u8 channel,
 193	int ad_value)
 194{
 195	int res;
 196
 197	switch (channel) {
 198	case MAIN_CHARGER_V:
 199		/* For some reason we don't have calibrated data */
 200		if (!gpadc->cal_data[ADC_INPUT_VMAIN].gain) {
 201			res = ADC_CH_CHG_V_MIN + (ADC_CH_CHG_V_MAX -
 202				ADC_CH_CHG_V_MIN) * ad_value /
 203				ADC_RESOLUTION;
 204			break;
 205		}
 206		/* Here we can use the calibrated data */
 207		res = (int) (ad_value * gpadc->cal_data[ADC_INPUT_VMAIN].gain +
 208			gpadc->cal_data[ADC_INPUT_VMAIN].offset) / CALIB_SCALE;
 209		break;
 210
 211	case XTAL_TEMP:
 212	case BAT_CTRL:
 213	case BTEMP_BALL:
 214	case ACC_DETECT1:
 215	case ADC_AUX1:
 216	case ADC_AUX2:
 217		/* For some reason we don't have calibrated data */
 218		if (!gpadc->cal_data[ADC_INPUT_BTEMP].gain) {
 219			res = ADC_CH_BTEMP_MIN + (ADC_CH_BTEMP_MAX -
 220				ADC_CH_BTEMP_MIN) * ad_value /
 221				ADC_RESOLUTION;
 222			break;
 223		}
 224		/* Here we can use the calibrated data */
 225		res = (int) (ad_value * gpadc->cal_data[ADC_INPUT_BTEMP].gain +
 226			gpadc->cal_data[ADC_INPUT_BTEMP].offset) / CALIB_SCALE;
 227		break;
 228
 229	case MAIN_BAT_V:
 230	case VBAT_TRUE_MEAS:
 231		/* For some reason we don't have calibrated data */
 232		if (!gpadc->cal_data[ADC_INPUT_VBAT].gain) {
 233			res = ADC_CH_VBAT_MIN + (ADC_CH_VBAT_MAX -
 234				ADC_CH_VBAT_MIN) * ad_value /
 235				ADC_RESOLUTION;
 236			break;
 237		}
 238		/* Here we can use the calibrated data */
 239		res = (int) (ad_value * gpadc->cal_data[ADC_INPUT_VBAT].gain +
 240			gpadc->cal_data[ADC_INPUT_VBAT].offset) / CALIB_SCALE;
 241		break;
 242
 243	case DIE_TEMP:
 244		res = ADC_CH_DIETEMP_MIN +
 245			(ADC_CH_DIETEMP_MAX - ADC_CH_DIETEMP_MIN) * ad_value /
 246			ADC_RESOLUTION;
 247		break;
 248
 249	case ACC_DETECT2:
 250		res = ADC_CH_ACCDET2_MIN +
 251			(ADC_CH_ACCDET2_MAX - ADC_CH_ACCDET2_MIN) * ad_value /
 252			ADC_RESOLUTION;
 253		break;
 254
 255	case VBUS_V:
 256		res = ADC_CH_CHG_V_MIN +
 257			(ADC_CH_CHG_V_MAX - ADC_CH_CHG_V_MIN) * ad_value /
 258			ADC_RESOLUTION;
 259		break;
 260
 261	case MAIN_CHARGER_C:
 262	case USB_CHARGER_C:
 263		res = ADC_CH_CHG_I_MIN +
 264			(ADC_CH_CHG_I_MAX - ADC_CH_CHG_I_MIN) * ad_value /
 265			ADC_RESOLUTION;
 266		break;
 267
 268	case BK_BAT_V:
 269		res = ADC_CH_BKBAT_MIN +
 270			(ADC_CH_BKBAT_MAX - ADC_CH_BKBAT_MIN) * ad_value /
 271			ADC_RESOLUTION;
 272		break;
 273
 274	case IBAT_VIRTUAL_CHANNEL:
 275		/* For some reason we don't have calibrated data */
 276		if (!gpadc->cal_data[ADC_INPUT_IBAT].gain) {
 277			res = ADC_CH_IBAT_MIN + (ADC_CH_IBAT_MAX -
 278				ADC_CH_IBAT_MIN) * ad_value /
 279				ADC_RESOLUTION;
 280			break;
 281		}
 282		/* Here we can use the calibrated data */
 283		res = (int) (ad_value * gpadc->cal_data[ADC_INPUT_IBAT].gain +
 284				gpadc->cal_data[ADC_INPUT_IBAT].offset)
 285				>> CALIB_SHIFT_IBAT;
 286		break;
 287
 288	default:
 289		dev_err(gpadc->dev,
 290			"unknown channel, not possible to convert\n");
 291		res = -EINVAL;
 292		break;
 293
 294	}
 295	return res;
 296}
 297EXPORT_SYMBOL(ab8500_gpadc_ad_to_voltage);
 298
 299/**
 300 * ab8500_gpadc_sw_hw_convert() - gpadc conversion
 301 * @channel:	analog channel to be converted to digital data
 302 * @avg_sample:  number of ADC sample to average
 303 * @trig_egde:  selected ADC trig edge
 304 * @trig_timer: selected ADC trigger delay timer
 305 * @conv_type: selected conversion type (HW or SW conversion)
 306 *
 307 * This function converts the selected analog i/p to digital
 308 * data.
 309 */
 310int ab8500_gpadc_sw_hw_convert(struct ab8500_gpadc *gpadc, u8 channel,
 311		u8 avg_sample, u8 trig_edge, u8 trig_timer, u8 conv_type)
 312{
 313	int ad_value;
 314	int voltage;
 315
 316	ad_value = ab8500_gpadc_read_raw(gpadc, channel, avg_sample,
 317			trig_edge, trig_timer, conv_type);
 318
 319	/* On failure retry a second time */
 320	if (ad_value < 0)
 321		ad_value = ab8500_gpadc_read_raw(gpadc, channel, avg_sample,
 322			trig_edge, trig_timer, conv_type);
 323	if (ad_value < 0) {
 324		dev_err(gpadc->dev, "GPADC raw value failed ch: %d\n",
 325				channel);
 326		return ad_value;
 327	}
 328
 329	voltage = ab8500_gpadc_ad_to_voltage(gpadc, channel, ad_value);
 330	if (voltage < 0)
 331		dev_err(gpadc->dev,
 332			"GPADC to voltage conversion failed ch: %d AD: 0x%x\n",
 333			channel, ad_value);
 334
 335	return voltage;
 336}
 337EXPORT_SYMBOL(ab8500_gpadc_sw_hw_convert);
 338
 339/**
 340 * ab8500_gpadc_read_raw() - gpadc read
 341 * @channel:	analog channel to be read
 342 * @avg_sample:  number of ADC sample to average
 343 * @trig_edge:  selected trig edge
 344 * @trig_timer: selected ADC trigger delay timer
 345 * @conv_type: selected conversion type (HW or SW conversion)
 346 *
 347 * This function obtains the raw ADC value for an hardware conversion,
 348 * this then needs to be converted by calling ab8500_gpadc_ad_to_voltage()
 349 */
 350int ab8500_gpadc_read_raw(struct ab8500_gpadc *gpadc, u8 channel,
 351		u8 avg_sample, u8 trig_edge, u8 trig_timer, u8 conv_type)
 352{
 353	return ab8500_gpadc_double_read_raw(gpadc, channel, avg_sample,
 354					    trig_edge, trig_timer, conv_type,
 355					    NULL);
 356}
 357
 358int ab8500_gpadc_double_read_raw(struct ab8500_gpadc *gpadc, u8 channel,
 359		u8 avg_sample, u8 trig_edge, u8 trig_timer, u8 conv_type,
 360		int *ibat)
 361{
 362	int ret;
 363	int looplimit = 0;
 364	unsigned long completion_timeout;
 365	u8 val, low_data, high_data, low_data2, high_data2;
 366	u8 val_reg1 = 0;
 367	unsigned int delay_min = 0;
 368	unsigned int delay_max = 0;
 369	u8 data_low_addr, data_high_addr;
 370
 371	if (!gpadc)
 372		return -ENODEV;
 373
 374	/* check if convertion is supported */
 375	if ((gpadc->irq_sw < 0) && (conv_type == ADC_SW))
 376		return -ENOTSUPP;
 377	if ((gpadc->irq_hw < 0) && (conv_type == ADC_HW))
 378		return -ENOTSUPP;
 379
 380	mutex_lock(&gpadc->ab8500_gpadc_lock);
 381	/* Enable VTVout LDO this is required for GPADC */
 382	pm_runtime_get_sync(gpadc->dev);
 383
 384	/* Check if ADC is not busy, lock and proceed */
 385	do {
 386		ret = abx500_get_register_interruptible(gpadc->dev,
 387			AB8500_GPADC, AB8500_GPADC_STAT_REG, &val);
 388		if (ret < 0)
 389			goto out;
 390		if (!(val & GPADC_BUSY))
 391			break;
 392		msleep(20);
 393	} while (++looplimit < 10);
 394	if (looplimit >= 10 && (val & GPADC_BUSY)) {
 395		dev_err(gpadc->dev, "gpadc_conversion: GPADC busy");
 396		ret = -EINVAL;
 397		goto out;
 398	}
 399
 400	/* Enable GPADC */
 401	val_reg1 |= EN_GPADC;
 402
 403	/* Select the channel source and set average samples */
 404	switch (avg_sample) {
 405	case SAMPLE_1:
 406		val = channel | AVG_1;
 407		break;
 408	case SAMPLE_4:
 409		val = channel | AVG_4;
 410		break;
 411	case SAMPLE_8:
 412		val = channel | AVG_8;
 413		break;
 414	default:
 415		val = channel | AVG_16;
 416		break;
 417	}
 418
 419	if (conv_type == ADC_HW) {
 420		ret = abx500_set_register_interruptible(gpadc->dev,
 421				AB8500_GPADC, AB8500_GPADC_CTRL3_REG, val);
 422		val_reg1 |= EN_TRIG_EDGE;
 423		if (trig_edge)
 424			val_reg1 |= EN_FALLING;
 425	} else
 426		ret = abx500_set_register_interruptible(gpadc->dev,
 427				AB8500_GPADC, AB8500_GPADC_CTRL2_REG, val);
 428	if (ret < 0) {
 429		dev_err(gpadc->dev,
 430			"gpadc_conversion: set avg samples failed\n");
 431		goto out;
 432	}
 433
 434	/*
 435	 * Enable ADC, buffering, select rising edge and enable ADC path
 436	 * charging current sense if it needed, ABB 3.0 needs some special
 437	 * treatment too.
 438	 */
 439	switch (channel) {
 440	case MAIN_CHARGER_C:
 441	case USB_CHARGER_C:
 442		val_reg1 |= EN_BUF | EN_ICHAR;
 443		break;
 444	case BTEMP_BALL:
 445		if (!is_ab8500_2p0_or_earlier(gpadc->parent)) {
 446			val_reg1 |= EN_BUF | BTEMP_PULL_UP;
 447			/*
 448			* Delay might be needed for ABB8500 cut 3.0, if not,
 449			* remove when hardware will be availible
 450			*/
 451			delay_min = 1000; /* Delay in micro seconds */
 452			delay_max = 10000; /* large range optimises sleepmode */
 453			break;
 454		}
 455		/* Intentional fallthrough */
 456	default:
 457		val_reg1 |= EN_BUF;
 458		break;
 459	}
 460
 461	/* Write configuration to register */
 462	ret = abx500_set_register_interruptible(gpadc->dev,
 463		AB8500_GPADC, AB8500_GPADC_CTRL1_REG, val_reg1);
 464	if (ret < 0) {
 465		dev_err(gpadc->dev,
 466			"gpadc_conversion: set Control register failed\n");
 467		goto out;
 468	}
 469
 470	if (delay_min != 0)
 471		usleep_range(delay_min, delay_max);
 472
 473	if (conv_type == ADC_HW) {
 474		/* Set trigger delay timer */
 475		ret = abx500_set_register_interruptible(gpadc->dev,
 476			AB8500_GPADC, AB8500_GPADC_AUTO_TIMER_REG, trig_timer);
 477		if (ret < 0) {
 478			dev_err(gpadc->dev,
 479				"gpadc_conversion: trig timer failed\n");
 480			goto out;
 481		}
 482		completion_timeout = 2 * HZ;
 483		data_low_addr = AB8500_GPADC_AUTODATAL_REG;
 484		data_high_addr = AB8500_GPADC_AUTODATAH_REG;
 485	} else {
 486		/* Start SW conversion */
 487		ret = abx500_mask_and_set_register_interruptible(gpadc->dev,
 488			AB8500_GPADC, AB8500_GPADC_CTRL1_REG,
 489			ADC_SW_CONV, ADC_SW_CONV);
 490		if (ret < 0) {
 491			dev_err(gpadc->dev,
 492				"gpadc_conversion: start s/w conv failed\n");
 493			goto out;
 494		}
 495		completion_timeout = msecs_to_jiffies(CONVERSION_TIME);
 496		data_low_addr = AB8500_GPADC_MANDATAL_REG;
 497		data_high_addr = AB8500_GPADC_MANDATAH_REG;
 498	}
 499
 500	/* wait for completion of conversion */
 501	if (!wait_for_completion_timeout(&gpadc->ab8500_gpadc_complete,
 502			completion_timeout)) {
 503		dev_err(gpadc->dev,
 504			"timeout didn't receive GPADC conv interrupt\n");
 505		ret = -EINVAL;
 506		goto out;
 507	}
 508
 509	/* Read the converted RAW data */
 510	ret = abx500_get_register_interruptible(gpadc->dev,
 511			AB8500_GPADC, data_low_addr, &low_data);
 512	if (ret < 0) {
 513		dev_err(gpadc->dev, "gpadc_conversion: read low data failed\n");
 514		goto out;
 515	}
 516
 517	ret = abx500_get_register_interruptible(gpadc->dev,
 518		AB8500_GPADC, data_high_addr, &high_data);
 519	if (ret < 0) {
 520		dev_err(gpadc->dev, "gpadc_conversion: read high data failed\n");
 521		goto out;
 522	}
 523
 524	/* Check if double convertion is required */
 525	if ((channel == BAT_CTRL_AND_IBAT) ||
 526			(channel == VBAT_MEAS_AND_IBAT) ||
 527			(channel == VBAT_TRUE_MEAS_AND_IBAT) ||
 528			(channel == BAT_TEMP_AND_IBAT)) {
 529
 530		if (conv_type == ADC_HW) {
 531			/* not supported */
 532			ret = -ENOTSUPP;
 533			dev_err(gpadc->dev,
 534				"gpadc_conversion: only SW double conversion supported\n");
 535			goto out;
 536		} else {
 537			/* Read the converted RAW data 2 */
 538			ret = abx500_get_register_interruptible(gpadc->dev,
 539				AB8500_GPADC, AB8540_GPADC_MANDATA2L_REG,
 540				&low_data2);
 541			if (ret < 0) {
 542				dev_err(gpadc->dev,
 543					"gpadc_conversion: read sw low data 2 failed\n");
 544				goto out;
 545			}
 546
 547			ret = abx500_get_register_interruptible(gpadc->dev,
 548				AB8500_GPADC, AB8540_GPADC_MANDATA2H_REG,
 549				&high_data2);
 550			if (ret < 0) {
 551				dev_err(gpadc->dev,
 552					"gpadc_conversion: read sw high data 2 failed\n");
 553				goto out;
 554			}
 555			if (ibat != NULL) {
 556				*ibat = (high_data2 << 8) | low_data2;
 557			} else {
 558				dev_warn(gpadc->dev,
 559					"gpadc_conversion: ibat not stored\n");
 560			}
 561
 562		}
 563	}
 564
 565	/* Disable GPADC */
 566	ret = abx500_set_register_interruptible(gpadc->dev, AB8500_GPADC,
 567		AB8500_GPADC_CTRL1_REG, DIS_GPADC);
 568	if (ret < 0) {
 569		dev_err(gpadc->dev, "gpadc_conversion: disable gpadc failed\n");
 570		goto out;
 571	}
 572
 573	/* Disable VTVout LDO this is required for GPADC */
 574	pm_runtime_mark_last_busy(gpadc->dev);
 575	pm_runtime_put_autosuspend(gpadc->dev);
 576
 577	mutex_unlock(&gpadc->ab8500_gpadc_lock);
 578
 579	return (high_data << 8) | low_data;
 580
 581out:
 582	/*
 583	 * It has shown to be needed to turn off the GPADC if an error occurs,
 584	 * otherwise we might have problem when waiting for the busy bit in the
 585	 * GPADC status register to go low. In V1.1 there wait_for_completion
 586	 * seems to timeout when waiting for an interrupt.. Not seen in V2.0
 587	 */
 588	(void) abx500_set_register_interruptible(gpadc->dev, AB8500_GPADC,
 589		AB8500_GPADC_CTRL1_REG, DIS_GPADC);
 590	pm_runtime_put(gpadc->dev);
 591	mutex_unlock(&gpadc->ab8500_gpadc_lock);
 592	dev_err(gpadc->dev,
 593		"gpadc_conversion: Failed to AD convert channel %d\n", channel);
 594	return ret;
 595}
 596EXPORT_SYMBOL(ab8500_gpadc_read_raw);
 597
 598/**
 599 * ab8500_bm_gpadcconvend_handler() - isr for gpadc conversion completion
 600 * @irq:	irq number
 601 * @data:	pointer to the data passed during request irq
 602 *
 603 * This is a interrupt service routine for gpadc conversion completion.
 604 * Notifies the gpadc completion is completed and the converted raw value
 605 * can be read from the registers.
 606 * Returns IRQ status(IRQ_HANDLED)
 607 */
 608static irqreturn_t ab8500_bm_gpadcconvend_handler(int irq, void *_gpadc)
 609{
 610	struct ab8500_gpadc *gpadc = _gpadc;
 611
 612	complete(&gpadc->ab8500_gpadc_complete);
 613
 614	return IRQ_HANDLED;
 615}
 616
 617static int otp_cal_regs[] = {
 618	AB8500_GPADC_CAL_1,
 619	AB8500_GPADC_CAL_2,
 620	AB8500_GPADC_CAL_3,
 621	AB8500_GPADC_CAL_4,
 622	AB8500_GPADC_CAL_5,
 623	AB8500_GPADC_CAL_6,
 624	AB8500_GPADC_CAL_7,
 625};
 626
 627static int otp4_cal_regs[] = {
 628	AB8540_GPADC_OTP4_REG_7,
 629	AB8540_GPADC_OTP4_REG_6,
 630	AB8540_GPADC_OTP4_REG_5,
 631};
 632
 633static void ab8500_gpadc_read_calibration_data(struct ab8500_gpadc *gpadc)
 634{
 635	int i;
 636	int ret[ARRAY_SIZE(otp_cal_regs)];
 637	u8 gpadc_cal[ARRAY_SIZE(otp_cal_regs)];
 638	int ret_otp4[ARRAY_SIZE(otp4_cal_regs)];
 639	u8 gpadc_otp4[ARRAY_SIZE(otp4_cal_regs)];
 640	int vmain_high, vmain_low;
 641	int btemp_high, btemp_low;
 642	int vbat_high, vbat_low;
 643	int ibat_high, ibat_low;
 644	s64 V_gain, V_offset, V2A_gain, V2A_offset;
 645	struct ab8500 *ab8500;
 646
 647	ab8500 = gpadc->parent;
 648
 649	/* First we read all OTP registers and store the error code */
 650	for (i = 0; i < ARRAY_SIZE(otp_cal_regs); i++) {
 651		ret[i] = abx500_get_register_interruptible(gpadc->dev,
 652			AB8500_OTP_EMUL, otp_cal_regs[i],  &gpadc_cal[i]);
 653		if (ret[i] < 0)
 654			dev_err(gpadc->dev, "%s: read otp reg 0x%02x failed\n",
 655				__func__, otp_cal_regs[i]);
 656	}
 657
 658	/*
 659	 * The ADC calibration data is stored in OTP registers.
 660	 * The layout of the calibration data is outlined below and a more
 661	 * detailed description can be found in UM0836
 662	 *
 663	 * vm_h/l = vmain_high/low
 664	 * bt_h/l = btemp_high/low
 665	 * vb_h/l = vbat_high/low
 666	 *
 667	 * Data bits 8500/9540:
 668	 * | 7	   | 6	   | 5	   | 4	   | 3	   | 2	   | 1	   | 0
 669	 * |.......|.......|.......|.......|.......|.......|.......|.......
 670	 * |						   | vm_h9 | vm_h8
 671	 * |.......|.......|.......|.......|.......|.......|.......|.......
 672	 * |		   | vm_h7 | vm_h6 | vm_h5 | vm_h4 | vm_h3 | vm_h2
 673	 * |.......|.......|.......|.......|.......|.......|.......|.......
 674	 * | vm_h1 | vm_h0 | vm_l4 | vm_l3 | vm_l2 | vm_l1 | vm_l0 | bt_h9
 675	 * |.......|.......|.......|.......|.......|.......|.......|.......
 676	 * | bt_h8 | bt_h7 | bt_h6 | bt_h5 | bt_h4 | bt_h3 | bt_h2 | bt_h1
 677	 * |.......|.......|.......|.......|.......|.......|.......|.......
 678	 * | bt_h0 | bt_l4 | bt_l3 | bt_l2 | bt_l1 | bt_l0 | vb_h9 | vb_h8
 679	 * |.......|.......|.......|.......|.......|.......|.......|.......
 680	 * | vb_h7 | vb_h6 | vb_h5 | vb_h4 | vb_h3 | vb_h2 | vb_h1 | vb_h0
 681	 * |.......|.......|.......|.......|.......|.......|.......|.......
 682	 * | vb_l5 | vb_l4 | vb_l3 | vb_l2 | vb_l1 | vb_l0 |
 683	 * |.......|.......|.......|.......|.......|.......|.......|.......
 684	 *
 685	 * Data bits 8540:
 686	 * OTP2
 687	 * | 7	   | 6	   | 5	   | 4	   | 3	   | 2	   | 1	   | 0
 688	 * |.......|.......|.......|.......|.......|.......|.......|.......
 689	 * |
 690	 * |.......|.......|.......|.......|.......|.......|.......|.......
 691	 * | vm_h9 | vm_h8 | vm_h7 | vm_h6 | vm_h5 | vm_h4 | vm_h3 | vm_h2
 692	 * |.......|.......|.......|.......|.......|.......|.......|.......
 693	 * | vm_h1 | vm_h0 | vm_l4 | vm_l3 | vm_l2 | vm_l1 | vm_l0 | bt_h9
 694	 * |.......|.......|.......|.......|.......|.......|.......|.......
 695	 * | bt_h8 | bt_h7 | bt_h6 | bt_h5 | bt_h4 | bt_h3 | bt_h2 | bt_h1
 696	 * |.......|.......|.......|.......|.......|.......|.......|.......
 697	 * | bt_h0 | bt_l4 | bt_l3 | bt_l2 | bt_l1 | bt_l0 | vb_h9 | vb_h8
 698	 * |.......|.......|.......|.......|.......|.......|.......|.......
 699	 * | vb_h7 | vb_h6 | vb_h5 | vb_h4 | vb_h3 | vb_h2 | vb_h1 | vb_h0
 700	 * |.......|.......|.......|.......|.......|.......|.......|.......
 701	 * | vb_l5 | vb_l4 | vb_l3 | vb_l2 | vb_l1 | vb_l0 |
 702	 * |.......|.......|.......|.......|.......|.......|.......|.......
 703	 *
 704	 * Data bits 8540:
 705	 * OTP4
 706	 * | 7	   | 6	   | 5	   | 4	   | 3	   | 2	   | 1	   | 0
 707	 * |.......|.......|.......|.......|.......|.......|.......|.......
 708	 * |					   | ib_h9 | ib_h8 | ib_h7
 709	 * |.......|.......|.......|.......|.......|.......|.......|.......
 710	 * | ib_h6 | ib_h5 | ib_h4 | ib_h3 | ib_h2 | ib_h1 | ib_h0 | ib_l5
 711	 * |.......|.......|.......|.......|.......|.......|.......|.......
 712	 * | ib_l4 | ib_l3 | ib_l2 | ib_l1 | ib_l0 |
 713	 *
 714	 *
 715	 * Ideal output ADC codes corresponding to injected input voltages
 716	 * during manufacturing is:
 717	 *
 718	 * vmain_high: Vin = 19500mV / ADC ideal code = 997
 719	 * vmain_low:  Vin = 315mV   / ADC ideal code = 16
 720	 * btemp_high: Vin = 1300mV  / ADC ideal code = 985
 721	 * btemp_low:  Vin = 21mV    / ADC ideal code = 16
 722	 * vbat_high:  Vin = 4700mV  / ADC ideal code = 982
 723	 * vbat_low:   Vin = 2380mV  / ADC ideal code = 33
 724	 */
 725
 726	if (is_ab8540(ab8500)) {
 727		/* Calculate gain and offset for VMAIN if all reads succeeded*/
 728		if (!(ret[1] < 0 || ret[2] < 0)) {
 729			vmain_high = (((gpadc_cal[1] & 0xFF) << 2) |
 730				((gpadc_cal[2] & 0xC0) >> 6));
 731			vmain_low = ((gpadc_cal[2] & 0x3E) >> 1);
 732
 733			gpadc->cal_data[ADC_INPUT_VMAIN].otp_calib_hi =
 734				(u16)vmain_high;
 735			gpadc->cal_data[ADC_INPUT_VMAIN].otp_calib_lo =
 736				(u16)vmain_low;
 737
 738			gpadc->cal_data[ADC_INPUT_VMAIN].gain = CALIB_SCALE *
 739				(19500 - 315) / (vmain_high - vmain_low);
 740			gpadc->cal_data[ADC_INPUT_VMAIN].offset = CALIB_SCALE *
 741				19500 - (CALIB_SCALE * (19500 - 315) /
 742				(vmain_high - vmain_low)) * vmain_high;
 743		} else {
 744		gpadc->cal_data[ADC_INPUT_VMAIN].gain = 0;
 745		}
 746
 747		/* Read IBAT calibration Data */
 748		for (i = 0; i < ARRAY_SIZE(otp4_cal_regs); i++) {
 749			ret_otp4[i] = abx500_get_register_interruptible(
 750					gpadc->dev, AB8500_OTP_EMUL,
 751					otp4_cal_regs[i],  &gpadc_otp4[i]);
 752			if (ret_otp4[i] < 0)
 753				dev_err(gpadc->dev,
 754					"%s: read otp4 reg 0x%02x failed\n",
 755					__func__, otp4_cal_regs[i]);
 756		}
 757
 758		/* Calculate gain and offset for IBAT if all reads succeeded */
 759		if (!(ret_otp4[0] < 0 || ret_otp4[1] < 0 || ret_otp4[2] < 0)) {
 760			ibat_high = (((gpadc_otp4[0] & 0x07) << 7) |
 761				((gpadc_otp4[1] & 0xFE) >> 1));
 762			ibat_low = (((gpadc_otp4[1] & 0x01) << 5) |
 763				((gpadc_otp4[2] & 0xF8) >> 3));
 764
 765			gpadc->cal_data[ADC_INPUT_IBAT].otp_calib_hi =
 766				(u16)ibat_high;
 767			gpadc->cal_data[ADC_INPUT_IBAT].otp_calib_lo =
 768				(u16)ibat_low;
 769
 770			V_gain = ((IBAT_VDROP_H - IBAT_VDROP_L)
 771				<< CALIB_SHIFT_IBAT) / (ibat_high - ibat_low);
 772
 773			V_offset = (IBAT_VDROP_H << CALIB_SHIFT_IBAT) -
 774				(((IBAT_VDROP_H - IBAT_VDROP_L) <<
 775				CALIB_SHIFT_IBAT) / (ibat_high - ibat_low))
 776				* ibat_high;
 777			/*
 778			 * Result obtained is in mV (at a scale factor),
 779			 * we need to calculate gain and offset to get mA
 780			 */
 781			V2A_gain = (ADC_CH_IBAT_MAX - ADC_CH_IBAT_MIN)/
 782				(ADC_CH_IBAT_MAX_V - ADC_CH_IBAT_MIN_V);
 783			V2A_offset = ((ADC_CH_IBAT_MAX_V * ADC_CH_IBAT_MIN -
 784				ADC_CH_IBAT_MAX * ADC_CH_IBAT_MIN_V)
 785				<< CALIB_SHIFT_IBAT)
 786				/ (ADC_CH_IBAT_MAX_V - ADC_CH_IBAT_MIN_V);
 787
 788			gpadc->cal_data[ADC_INPUT_IBAT].gain =
 789				V_gain * V2A_gain;
 790			gpadc->cal_data[ADC_INPUT_IBAT].offset =
 791				V_offset * V2A_gain + V2A_offset;
 792		} else {
 793			gpadc->cal_data[ADC_INPUT_IBAT].gain = 0;
 794		}
 795
 796		dev_dbg(gpadc->dev, "IBAT gain %llu offset %llu\n",
 797			gpadc->cal_data[ADC_INPUT_IBAT].gain,
 798			gpadc->cal_data[ADC_INPUT_IBAT].offset);
 799	} else {
 800		/* Calculate gain and offset for VMAIN if all reads succeeded */
 801		if (!(ret[0] < 0 || ret[1] < 0 || ret[2] < 0)) {
 802			vmain_high = (((gpadc_cal[0] & 0x03) << 8) |
 803				((gpadc_cal[1] & 0x3F) << 2) |
 804				((gpadc_cal[2] & 0xC0) >> 6));
 805			vmain_low = ((gpadc_cal[2] & 0x3E) >> 1);
 806
 807			gpadc->cal_data[ADC_INPUT_VMAIN].otp_calib_hi =
 808				(u16)vmain_high;
 809			gpadc->cal_data[ADC_INPUT_VMAIN].otp_calib_lo =
 810				(u16)vmain_low;
 811
 812			gpadc->cal_data[ADC_INPUT_VMAIN].gain = CALIB_SCALE *
 813				(19500 - 315) / (vmain_high - vmain_low);
 814
 815			gpadc->cal_data[ADC_INPUT_VMAIN].offset = CALIB_SCALE *
 816				19500 - (CALIB_SCALE * (19500 - 315) /
 817				(vmain_high - vmain_low)) * vmain_high;
 818		} else {
 819			gpadc->cal_data[ADC_INPUT_VMAIN].gain = 0;
 820		}
 821	}
 822
 823	/* Calculate gain and offset for BTEMP if all reads succeeded */
 824	if (!(ret[2] < 0 || ret[3] < 0 || ret[4] < 0)) {
 825		btemp_high = (((gpadc_cal[2] & 0x01) << 9) |
 826			(gpadc_cal[3] << 1) | ((gpadc_cal[4] & 0x80) >> 7));
 827		btemp_low = ((gpadc_cal[4] & 0x7C) >> 2);
 828
 829		gpadc->cal_data[ADC_INPUT_BTEMP].otp_calib_hi = (u16)btemp_high;
 830		gpadc->cal_data[ADC_INPUT_BTEMP].otp_calib_lo = (u16)btemp_low;
 831
 832		gpadc->cal_data[ADC_INPUT_BTEMP].gain =
 833			CALIB_SCALE * (1300 - 21) / (btemp_high - btemp_low);
 834		gpadc->cal_data[ADC_INPUT_BTEMP].offset = CALIB_SCALE * 1300 -
 835			(CALIB_SCALE * (1300 - 21) / (btemp_high - btemp_low))
 836			* btemp_high;
 837	} else {
 838		gpadc->cal_data[ADC_INPUT_BTEMP].gain = 0;
 839	}
 840
 841	/* Calculate gain and offset for VBAT if all reads succeeded */
 842	if (!(ret[4] < 0 || ret[5] < 0 || ret[6] < 0)) {
 843		vbat_high = (((gpadc_cal[4] & 0x03) << 8) | gpadc_cal[5]);
 844		vbat_low = ((gpadc_cal[6] & 0xFC) >> 2);
 845
 846		gpadc->cal_data[ADC_INPUT_VBAT].otp_calib_hi = (u16)vbat_high;
 847		gpadc->cal_data[ADC_INPUT_VBAT].otp_calib_lo = (u16)vbat_low;
 848
 849		gpadc->cal_data[ADC_INPUT_VBAT].gain = CALIB_SCALE *
 850			(4700 - 2380) /	(vbat_high - vbat_low);
 851		gpadc->cal_data[ADC_INPUT_VBAT].offset = CALIB_SCALE * 4700 -
 852			(CALIB_SCALE * (4700 - 2380) /
 853			(vbat_high - vbat_low)) * vbat_high;
 854	} else {
 855		gpadc->cal_data[ADC_INPUT_VBAT].gain = 0;
 856	}
 857
 858	dev_dbg(gpadc->dev, "VMAIN gain %llu offset %llu\n",
 859		gpadc->cal_data[ADC_INPUT_VMAIN].gain,
 860		gpadc->cal_data[ADC_INPUT_VMAIN].offset);
 861
 862	dev_dbg(gpadc->dev, "BTEMP gain %llu offset %llu\n",
 863		gpadc->cal_data[ADC_INPUT_BTEMP].gain,
 864		gpadc->cal_data[ADC_INPUT_BTEMP].offset);
 865
 866	dev_dbg(gpadc->dev, "VBAT gain %llu offset %llu\n",
 867		gpadc->cal_data[ADC_INPUT_VBAT].gain,
 868		gpadc->cal_data[ADC_INPUT_VBAT].offset);
 869}
 870
 871#ifdef CONFIG_PM
 872static int ab8500_gpadc_runtime_suspend(struct device *dev)
 873{
 874	struct ab8500_gpadc *gpadc = dev_get_drvdata(dev);
 875
 876	regulator_disable(gpadc->regu);
 877	return 0;
 878}
 879
 880static int ab8500_gpadc_runtime_resume(struct device *dev)
 881{
 882	struct ab8500_gpadc *gpadc = dev_get_drvdata(dev);
 883	int ret;
 884
 885	ret = regulator_enable(gpadc->regu);
 886	if (ret)
 887		dev_err(dev, "Failed to enable vtvout LDO: %d\n", ret);
 888	return ret;
 889}
 890#endif
 891
 892#ifdef CONFIG_PM_SLEEP
 893static int ab8500_gpadc_suspend(struct device *dev)
 894{
 895	struct ab8500_gpadc *gpadc = dev_get_drvdata(dev);
 896
 897	mutex_lock(&gpadc->ab8500_gpadc_lock);
 898
 899	pm_runtime_get_sync(dev);
 900
 901	regulator_disable(gpadc->regu);
 902	return 0;
 903}
 904
 905static int ab8500_gpadc_resume(struct device *dev)
 906{
 907	struct ab8500_gpadc *gpadc = dev_get_drvdata(dev);
 908	int ret;
 909
 910	ret = regulator_enable(gpadc->regu);
 911	if (ret)
 912		dev_err(dev, "Failed to enable vtvout LDO: %d\n", ret);
 913
 914	pm_runtime_mark_last_busy(gpadc->dev);
 915	pm_runtime_put_autosuspend(gpadc->dev);
 916
 917	mutex_unlock(&gpadc->ab8500_gpadc_lock);
 918	return ret;
 919}
 920#endif
 921
 922static int ab8500_gpadc_probe(struct platform_device *pdev)
 923{
 924	int ret = 0;
 925	struct ab8500_gpadc *gpadc;
 926
 927	gpadc = devm_kzalloc(&pdev->dev,
 928			     sizeof(struct ab8500_gpadc), GFP_KERNEL);
 929	if (!gpadc)
 930		return -ENOMEM;
 931
 932	gpadc->irq_sw = platform_get_irq_byname(pdev, "SW_CONV_END");
 933	if (gpadc->irq_sw < 0)
 934		dev_err(gpadc->dev, "failed to get platform sw_conv_end irq\n");
 935
 936	gpadc->irq_hw = platform_get_irq_byname(pdev, "HW_CONV_END");
 937	if (gpadc->irq_hw < 0)
 938		dev_err(gpadc->dev, "failed to get platform hw_conv_end irq\n");
 939
 940	gpadc->dev = &pdev->dev;
 941	gpadc->parent = dev_get_drvdata(pdev->dev.parent);
 942	mutex_init(&gpadc->ab8500_gpadc_lock);
 943
 944	/* Initialize completion used to notify completion of conversion */
 945	init_completion(&gpadc->ab8500_gpadc_complete);
 946
 947	/* Register interrupts */
 948	if (gpadc->irq_sw >= 0) {
 949		ret = request_threaded_irq(gpadc->irq_sw, NULL,
 950			ab8500_bm_gpadcconvend_handler,
 951			IRQF_NO_SUSPEND | IRQF_SHARED | IRQF_ONESHOT,
 952			"ab8500-gpadc-sw",
 953			gpadc);
 954		if (ret < 0) {
 955			dev_err(gpadc->dev,
 956				"Failed to register interrupt irq: %d\n",
 957				gpadc->irq_sw);
 958			goto fail;
 959		}
 960	}
 961
 962	if (gpadc->irq_hw >= 0) {
 963		ret = request_threaded_irq(gpadc->irq_hw, NULL,
 964			ab8500_bm_gpadcconvend_handler,
 965			IRQF_NO_SUSPEND | IRQF_SHARED | IRQF_ONESHOT,
 966			"ab8500-gpadc-hw",
 967			gpadc);
 968		if (ret < 0) {
 969			dev_err(gpadc->dev,
 970				"Failed to register interrupt irq: %d\n",
 971				gpadc->irq_hw);
 972			goto fail_irq;
 973		}
 974	}
 975
 976	/* VTVout LDO used to power up ab8500-GPADC */
 977	gpadc->regu = devm_regulator_get(&pdev->dev, "vddadc");
 978	if (IS_ERR(gpadc->regu)) {
 979		ret = PTR_ERR(gpadc->regu);
 980		dev_err(gpadc->dev, "failed to get vtvout LDO\n");
 981		goto fail_irq;
 982	}
 983
 984	platform_set_drvdata(pdev, gpadc);
 985
 986	ret = regulator_enable(gpadc->regu);
 987	if (ret) {
 988		dev_err(gpadc->dev, "Failed to enable vtvout LDO: %d\n", ret);
 989		goto fail_enable;
 990	}
 991
 992	pm_runtime_set_autosuspend_delay(gpadc->dev, GPADC_AUDOSUSPEND_DELAY);
 993	pm_runtime_use_autosuspend(gpadc->dev);
 994	pm_runtime_set_active(gpadc->dev);
 995	pm_runtime_enable(gpadc->dev);
 996
 997	ab8500_gpadc_read_calibration_data(gpadc);
 998	list_add_tail(&gpadc->node, &ab8500_gpadc_list);
 999	dev_dbg(gpadc->dev, "probe success\n");
1000
1001	return 0;
1002
1003fail_enable:
1004fail_irq:
1005	free_irq(gpadc->irq_sw, gpadc);
1006	free_irq(gpadc->irq_hw, gpadc);
1007fail:
1008	return ret;
1009}
1010
1011static int ab8500_gpadc_remove(struct platform_device *pdev)
1012{
1013	struct ab8500_gpadc *gpadc = platform_get_drvdata(pdev);
1014
1015	/* remove this gpadc entry from the list */
1016	list_del(&gpadc->node);
1017	/* remove interrupt  - completion of Sw ADC conversion */
1018	if (gpadc->irq_sw >= 0)
1019		free_irq(gpadc->irq_sw, gpadc);
1020	if (gpadc->irq_hw >= 0)
1021		free_irq(gpadc->irq_hw, gpadc);
1022
1023	pm_runtime_get_sync(gpadc->dev);
1024	pm_runtime_disable(gpadc->dev);
1025
1026	regulator_disable(gpadc->regu);
1027
1028	pm_runtime_set_suspended(gpadc->dev);
1029
1030	pm_runtime_put_noidle(gpadc->dev);
1031
1032	return 0;
1033}
1034
1035static const struct dev_pm_ops ab8500_gpadc_pm_ops = {
1036	SET_RUNTIME_PM_OPS(ab8500_gpadc_runtime_suspend,
1037			   ab8500_gpadc_runtime_resume,
1038			   NULL)
1039	SET_SYSTEM_SLEEP_PM_OPS(ab8500_gpadc_suspend,
1040				ab8500_gpadc_resume)
1041
1042};
1043
1044static struct platform_driver ab8500_gpadc_driver = {
1045	.probe = ab8500_gpadc_probe,
1046	.remove = ab8500_gpadc_remove,
1047	.driver = {
1048		.name = "ab8500-gpadc",
1049		.pm = &ab8500_gpadc_pm_ops,
1050	},
1051};
1052
1053static int __init ab8500_gpadc_init(void)
1054{
1055	return platform_driver_register(&ab8500_gpadc_driver);
1056}
1057
1058static void __exit ab8500_gpadc_exit(void)
1059{
1060	platform_driver_unregister(&ab8500_gpadc_driver);
1061}
1062
1063/**
1064 * ab8540_gpadc_get_otp() - returns OTP values
1065 *
1066 */
1067void ab8540_gpadc_get_otp(struct ab8500_gpadc *gpadc,
1068			u16 *vmain_l, u16 *vmain_h, u16 *btemp_l, u16 *btemp_h,
1069			u16 *vbat_l, u16 *vbat_h, u16 *ibat_l, u16 *ibat_h)
1070{
1071	*vmain_l = gpadc->cal_data[ADC_INPUT_VMAIN].otp_calib_lo;
1072	*vmain_h = gpadc->cal_data[ADC_INPUT_VMAIN].otp_calib_hi;
1073	*btemp_l = gpadc->cal_data[ADC_INPUT_BTEMP].otp_calib_lo;
1074	*btemp_h = gpadc->cal_data[ADC_INPUT_BTEMP].otp_calib_hi;
1075	*vbat_l  = gpadc->cal_data[ADC_INPUT_VBAT].otp_calib_lo;
1076	*vbat_h  = gpadc->cal_data[ADC_INPUT_VBAT].otp_calib_hi;
1077	*ibat_l  = gpadc->cal_data[ADC_INPUT_IBAT].otp_calib_lo;
1078	*ibat_h  = gpadc->cal_data[ADC_INPUT_IBAT].otp_calib_hi;
1079}
1080
1081subsys_initcall_sync(ab8500_gpadc_init);
1082module_exit(ab8500_gpadc_exit);
1083
1084MODULE_LICENSE("GPL v2");
1085MODULE_AUTHOR("Arun R Murthy");
1086MODULE_AUTHOR("Daniel Willerud");
1087MODULE_AUTHOR("Johan Palsson");
1088MODULE_AUTHOR("M'boumba Cedric Madianga");
1089MODULE_ALIAS("platform:ab8500_gpadc");
1090MODULE_DESCRIPTION("AB8500 GPADC driver");