Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Copyright (c) 2011-2016 Synaptics Incorporated
  4 * Copyright (c) 2011 Unixphere
 
 
 
 
  5 */
  6
  7#include <linux/kernel.h>
  8#include <linux/module.h>
  9#include <linux/rmi.h>
 10#include <linux/slab.h>
 11#include <linux/spi/spi.h>
 
 12#include <linux/of.h>
 13#include "rmi_driver.h"
 14
 15#define RMI_SPI_DEFAULT_XFER_BUF_SIZE	64
 16
 17#define RMI_PAGE_SELECT_REGISTER	0x00FF
 18#define RMI_SPI_PAGE(addr)		(((addr) >> 8) & 0x80)
 19#define RMI_SPI_XFER_SIZE_LIMIT		255
 20
 21#define BUFFER_SIZE_INCREMENT 32
 22
 23enum rmi_spi_op {
 24	RMI_SPI_WRITE = 0,
 25	RMI_SPI_READ,
 26	RMI_SPI_V2_READ_UNIFIED,
 27	RMI_SPI_V2_READ_SPLIT,
 28	RMI_SPI_V2_WRITE,
 29};
 30
 31struct rmi_spi_cmd {
 32	enum rmi_spi_op op;
 33	u16 addr;
 34};
 35
 36struct rmi_spi_xport {
 37	struct rmi_transport_dev xport;
 38	struct spi_device *spi;
 39
 40	struct mutex page_mutex;
 41	int page;
 42
 
 
 43	u8 *rx_buf;
 44	u8 *tx_buf;
 45	int xfer_buf_size;
 46
 47	struct spi_transfer *rx_xfers;
 48	struct spi_transfer *tx_xfers;
 49	int rx_xfer_count;
 50	int tx_xfer_count;
 51};
 52
 53static int rmi_spi_manage_pools(struct rmi_spi_xport *rmi_spi, int len)
 54{
 55	struct spi_device *spi = rmi_spi->spi;
 56	int buf_size = rmi_spi->xfer_buf_size
 57		? rmi_spi->xfer_buf_size : RMI_SPI_DEFAULT_XFER_BUF_SIZE;
 58	struct spi_transfer *xfer_buf;
 59	void *buf;
 60	void *tmp;
 61
 62	while (buf_size < len)
 63		buf_size *= 2;
 64
 65	if (buf_size > RMI_SPI_XFER_SIZE_LIMIT)
 66		buf_size = RMI_SPI_XFER_SIZE_LIMIT;
 67
 68	tmp = rmi_spi->rx_buf;
 69	buf = devm_kcalloc(&spi->dev, buf_size, 2,
 70				GFP_KERNEL | GFP_DMA);
 71	if (!buf)
 72		return -ENOMEM;
 73
 74	rmi_spi->rx_buf = buf;
 75	rmi_spi->tx_buf = &rmi_spi->rx_buf[buf_size];
 76	rmi_spi->xfer_buf_size = buf_size;
 77
 78	if (tmp)
 79		devm_kfree(&spi->dev, tmp);
 80
 81	if (rmi_spi->xport.pdata.spi_data.read_delay_us)
 82		rmi_spi->rx_xfer_count = buf_size;
 83	else
 84		rmi_spi->rx_xfer_count = 1;
 85
 86	if (rmi_spi->xport.pdata.spi_data.write_delay_us)
 87		rmi_spi->tx_xfer_count = buf_size;
 88	else
 89		rmi_spi->tx_xfer_count = 1;
 90
 91	/*
 92	 * Allocate a pool of spi_transfer buffers for devices which need
 93	 * per byte delays.
 94	 */
 95	tmp = rmi_spi->rx_xfers;
 96	xfer_buf = devm_kcalloc(&spi->dev,
 97		rmi_spi->rx_xfer_count + rmi_spi->tx_xfer_count,
 98		sizeof(struct spi_transfer),
 99		GFP_KERNEL);
100	if (!xfer_buf)
101		return -ENOMEM;
102
103	rmi_spi->rx_xfers = xfer_buf;
104	rmi_spi->tx_xfers = &xfer_buf[rmi_spi->rx_xfer_count];
105
106	if (tmp)
107		devm_kfree(&spi->dev, tmp);
108
109	return 0;
110}
111
112static int rmi_spi_xfer(struct rmi_spi_xport *rmi_spi,
113			const struct rmi_spi_cmd *cmd, const u8 *tx_buf,
114			int tx_len, u8 *rx_buf, int rx_len)
115{
116	struct spi_device *spi = rmi_spi->spi;
117	struct rmi_device_platform_data_spi *spi_data =
118					&rmi_spi->xport.pdata.spi_data;
119	struct spi_message msg;
120	struct spi_transfer *xfer;
121	int ret = 0;
122	int len;
123	int cmd_len = 0;
124	int total_tx_len;
125	int i;
126	u16 addr = cmd->addr;
127
128	spi_message_init(&msg);
129
130	switch (cmd->op) {
131	case RMI_SPI_WRITE:
132	case RMI_SPI_READ:
133		cmd_len += 2;
134		break;
135	case RMI_SPI_V2_READ_UNIFIED:
136	case RMI_SPI_V2_READ_SPLIT:
137	case RMI_SPI_V2_WRITE:
138		cmd_len += 4;
139		break;
140	}
141
142	total_tx_len = cmd_len + tx_len;
143	len = max(total_tx_len, rx_len);
144
145	if (len > RMI_SPI_XFER_SIZE_LIMIT)
146		return -EINVAL;
147
148	if (rmi_spi->xfer_buf_size < len) {
149		ret = rmi_spi_manage_pools(rmi_spi, len);
150		if (ret < 0)
151			return ret;
152	}
153
154	if (addr == 0)
155		/*
156		 * SPI needs an address. Use 0x7FF if we want to keep
157		 * reading from the last position of the register pointer.
158		 */
159		addr = 0x7FF;
160
161	switch (cmd->op) {
162	case RMI_SPI_WRITE:
163		rmi_spi->tx_buf[0] = (addr >> 8);
164		rmi_spi->tx_buf[1] = addr & 0xFF;
165		break;
166	case RMI_SPI_READ:
167		rmi_spi->tx_buf[0] = (addr >> 8) | 0x80;
168		rmi_spi->tx_buf[1] = addr & 0xFF;
169		break;
170	case RMI_SPI_V2_READ_UNIFIED:
171		break;
172	case RMI_SPI_V2_READ_SPLIT:
173		break;
174	case RMI_SPI_V2_WRITE:
175		rmi_spi->tx_buf[0] = 0x40;
176		rmi_spi->tx_buf[1] = (addr >> 8) & 0xFF;
177		rmi_spi->tx_buf[2] = addr & 0xFF;
178		rmi_spi->tx_buf[3] = tx_len;
179		break;
180	}
181
182	if (tx_buf)
183		memcpy(&rmi_spi->tx_buf[cmd_len], tx_buf, tx_len);
184
185	if (rmi_spi->tx_xfer_count > 1) {
186		for (i = 0; i < total_tx_len; i++) {
187			xfer = &rmi_spi->tx_xfers[i];
188			memset(xfer, 0,	sizeof(struct spi_transfer));
189			xfer->tx_buf = &rmi_spi->tx_buf[i];
190			xfer->len = 1;
191			xfer->delay.value = spi_data->write_delay_us;
192			xfer->delay.unit = SPI_DELAY_UNIT_USECS;
193			spi_message_add_tail(xfer, &msg);
194		}
195	} else {
196		xfer = rmi_spi->tx_xfers;
197		memset(xfer, 0, sizeof(struct spi_transfer));
198		xfer->tx_buf = rmi_spi->tx_buf;
199		xfer->len = total_tx_len;
200		spi_message_add_tail(xfer, &msg);
201	}
202
203	rmi_dbg(RMI_DEBUG_XPORT, &spi->dev, "%s: cmd: %s tx_buf len: %d tx_buf: %*ph\n",
204		__func__, cmd->op == RMI_SPI_WRITE ? "WRITE" : "READ",
205		total_tx_len, total_tx_len, rmi_spi->tx_buf);
206
207	if (rx_buf) {
208		if (rmi_spi->rx_xfer_count > 1) {
209			for (i = 0; i < rx_len; i++) {
210				xfer = &rmi_spi->rx_xfers[i];
211				memset(xfer, 0, sizeof(struct spi_transfer));
212				xfer->rx_buf = &rmi_spi->rx_buf[i];
213				xfer->len = 1;
214				xfer->delay.value = spi_data->read_delay_us;
215				xfer->delay.unit = SPI_DELAY_UNIT_USECS;
216				spi_message_add_tail(xfer, &msg);
217			}
218		} else {
219			xfer = rmi_spi->rx_xfers;
220			memset(xfer, 0, sizeof(struct spi_transfer));
221			xfer->rx_buf = rmi_spi->rx_buf;
222			xfer->len = rx_len;
223			spi_message_add_tail(xfer, &msg);
224		}
225	}
226
227	ret = spi_sync(spi, &msg);
228	if (ret < 0) {
229		dev_err(&spi->dev, "spi xfer failed: %d\n", ret);
230		return ret;
231	}
232
233	if (rx_buf) {
234		memcpy(rx_buf, rmi_spi->rx_buf, rx_len);
235		rmi_dbg(RMI_DEBUG_XPORT, &spi->dev, "%s: (%d) %*ph\n",
236			__func__, rx_len, rx_len, rx_buf);
237	}
238
239	return 0;
240}
241
242/*
243 * rmi_set_page - Set RMI page
244 * @xport: The pointer to the rmi_transport_dev struct
245 * @page: The new page address.
246 *
247 * RMI devices have 16-bit addressing, but some of the transport
248 * implementations (like SMBus) only have 8-bit addressing. So RMI implements
249 * a page address at 0xff of every page so we can reliable page addresses
250 * every 256 registers.
251 *
252 * The page_mutex lock must be held when this function is entered.
253 *
254 * Returns zero on success, non-zero on failure.
255 */
256static int rmi_set_page(struct rmi_spi_xport *rmi_spi, u8 page)
257{
258	struct rmi_spi_cmd cmd;
259	int ret;
260
261	cmd.op = RMI_SPI_WRITE;
262	cmd.addr = RMI_PAGE_SELECT_REGISTER;
263
264	ret = rmi_spi_xfer(rmi_spi, &cmd, &page, 1, NULL, 0);
265
266	if (ret)
267		rmi_spi->page = page;
268
269	return ret;
270}
271
272static int rmi_spi_write_block(struct rmi_transport_dev *xport, u16 addr,
273			       const void *buf, size_t len)
274{
275	struct rmi_spi_xport *rmi_spi =
276		container_of(xport, struct rmi_spi_xport, xport);
277	struct rmi_spi_cmd cmd;
278	int ret;
279
280	mutex_lock(&rmi_spi->page_mutex);
281
282	if (RMI_SPI_PAGE(addr) != rmi_spi->page) {
283		ret = rmi_set_page(rmi_spi, RMI_SPI_PAGE(addr));
284		if (ret)
285			goto exit;
286	}
287
288	cmd.op = RMI_SPI_WRITE;
289	cmd.addr = addr;
290
291	ret = rmi_spi_xfer(rmi_spi, &cmd, buf, len, NULL, 0);
292
293exit:
294	mutex_unlock(&rmi_spi->page_mutex);
295	return ret;
296}
297
298static int rmi_spi_read_block(struct rmi_transport_dev *xport, u16 addr,
299			      void *buf, size_t len)
300{
301	struct rmi_spi_xport *rmi_spi =
302		container_of(xport, struct rmi_spi_xport, xport);
303	struct rmi_spi_cmd cmd;
304	int ret;
305
306	mutex_lock(&rmi_spi->page_mutex);
307
308	if (RMI_SPI_PAGE(addr) != rmi_spi->page) {
309		ret = rmi_set_page(rmi_spi, RMI_SPI_PAGE(addr));
310		if (ret)
311			goto exit;
312	}
313
314	cmd.op = RMI_SPI_READ;
315	cmd.addr = addr;
316
317	ret = rmi_spi_xfer(rmi_spi, &cmd, NULL, 0, buf, len);
318
319exit:
320	mutex_unlock(&rmi_spi->page_mutex);
321	return ret;
322}
323
324static const struct rmi_transport_ops rmi_spi_ops = {
325	.write_block	= rmi_spi_write_block,
326	.read_block	= rmi_spi_read_block,
327};
328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
329#ifdef CONFIG_OF
330static int rmi_spi_of_probe(struct spi_device *spi,
331			struct rmi_device_platform_data *pdata)
332{
333	struct device *dev = &spi->dev;
334	int retval;
335
336	retval = rmi_of_property_read_u32(dev,
337			&pdata->spi_data.read_delay_us,
338			"spi-rx-delay-us", 1);
339	if (retval)
340		return retval;
341
342	retval = rmi_of_property_read_u32(dev,
343			&pdata->spi_data.write_delay_us,
344			"spi-tx-delay-us", 1);
345	if (retval)
346		return retval;
347
348	return 0;
349}
350
351static const struct of_device_id rmi_spi_of_match[] = {
352	{ .compatible = "syna,rmi4-spi" },
353	{},
354};
355MODULE_DEVICE_TABLE(of, rmi_spi_of_match);
356#else
357static inline int rmi_spi_of_probe(struct spi_device *spi,
358				struct rmi_device_platform_data *pdata)
359{
360	return -ENODEV;
361}
362#endif
363
364static void rmi_spi_unregister_transport(void *data)
365{
366	struct rmi_spi_xport *rmi_spi = data;
367
368	rmi_unregister_transport_device(&rmi_spi->xport);
369}
370
371static int rmi_spi_probe(struct spi_device *spi)
372{
373	struct rmi_spi_xport *rmi_spi;
374	struct rmi_device_platform_data *pdata;
375	struct rmi_device_platform_data *spi_pdata = spi->dev.platform_data;
376	int error;
377
378	if (spi->master->flags & SPI_CONTROLLER_HALF_DUPLEX)
379		return -EINVAL;
380
381	rmi_spi = devm_kzalloc(&spi->dev, sizeof(struct rmi_spi_xport),
382			GFP_KERNEL);
383	if (!rmi_spi)
384		return -ENOMEM;
385
386	pdata = &rmi_spi->xport.pdata;
387
388	if (spi->dev.of_node) {
389		error = rmi_spi_of_probe(spi, pdata);
390		if (error)
391			return error;
392	} else if (spi_pdata) {
393		*pdata = *spi_pdata;
394	}
395
396	if (pdata->spi_data.bits_per_word)
397		spi->bits_per_word = pdata->spi_data.bits_per_word;
398
399	if (pdata->spi_data.mode)
400		spi->mode = pdata->spi_data.mode;
401
402	error = spi_setup(spi);
403	if (error < 0) {
404		dev_err(&spi->dev, "spi_setup failed!\n");
405		return error;
406	}
407
408	pdata->irq = spi->irq;
 
409
410	rmi_spi->spi = spi;
411	mutex_init(&rmi_spi->page_mutex);
412
413	rmi_spi->xport.dev = &spi->dev;
414	rmi_spi->xport.proto_name = "spi";
415	rmi_spi->xport.ops = &rmi_spi_ops;
416
417	spi_set_drvdata(spi, rmi_spi);
418
419	error = rmi_spi_manage_pools(rmi_spi, RMI_SPI_DEFAULT_XFER_BUF_SIZE);
420	if (error)
421		return error;
422
423	/*
424	 * Setting the page to zero will (a) make sure the PSR is in a
425	 * known state, and (b) make sure we can talk to the device.
426	 */
427	error = rmi_set_page(rmi_spi, 0);
428	if (error) {
429		dev_err(&spi->dev, "Failed to set page select to 0.\n");
430		return error;
431	}
432
433	dev_info(&spi->dev, "registering SPI-connected sensor\n");
434
435	error = rmi_register_transport_device(&rmi_spi->xport);
436	if (error) {
437		dev_err(&spi->dev, "failed to register sensor: %d\n", error);
438		return error;
439	}
440
441	error = devm_add_action_or_reset(&spi->dev,
442					  rmi_spi_unregister_transport,
443					  rmi_spi);
444	if (error)
445		return error;
446
 
447	return 0;
448}
449
 
 
 
 
 
 
 
 
 
 
450static int rmi_spi_suspend(struct device *dev)
451{
452	struct spi_device *spi = to_spi_device(dev);
453	struct rmi_spi_xport *rmi_spi = spi_get_drvdata(spi);
454	int ret;
455
456	ret = rmi_driver_suspend(rmi_spi->xport.rmi_dev, true);
457	if (ret)
458		dev_warn(dev, "Failed to resume device: %d\n", ret);
459
 
 
 
 
 
 
 
460	return ret;
461}
462
463static int rmi_spi_resume(struct device *dev)
464{
465	struct spi_device *spi = to_spi_device(dev);
466	struct rmi_spi_xport *rmi_spi = spi_get_drvdata(spi);
467	int ret;
468
469	ret = rmi_driver_resume(rmi_spi->xport.rmi_dev, true);
 
 
 
 
 
 
 
 
470	if (ret)
471		dev_warn(dev, "Failed to resume device: %d\n", ret);
472
473	return ret;
474}
 
475
 
476static int rmi_spi_runtime_suspend(struct device *dev)
477{
478	struct spi_device *spi = to_spi_device(dev);
479	struct rmi_spi_xport *rmi_spi = spi_get_drvdata(spi);
480	int ret;
481
482	ret = rmi_driver_suspend(rmi_spi->xport.rmi_dev, false);
483	if (ret)
484		dev_warn(dev, "Failed to resume device: %d\n", ret);
485
 
 
486	return 0;
487}
488
489static int rmi_spi_runtime_resume(struct device *dev)
490{
491	struct spi_device *spi = to_spi_device(dev);
492	struct rmi_spi_xport *rmi_spi = spi_get_drvdata(spi);
493	int ret;
494
495	ret = rmi_driver_resume(rmi_spi->xport.rmi_dev, false);
 
 
496	if (ret)
497		dev_warn(dev, "Failed to resume device: %d\n", ret);
498
499	return 0;
500}
 
501
502static const struct dev_pm_ops rmi_spi_pm = {
503	SYSTEM_SLEEP_PM_OPS(rmi_spi_suspend, rmi_spi_resume)
504	RUNTIME_PM_OPS(rmi_spi_runtime_suspend, rmi_spi_runtime_resume, NULL)
 
505};
506
507static const struct spi_device_id rmi_id[] = {
508	{ "rmi4-spi", 0 },
509	{ }
510};
511MODULE_DEVICE_TABLE(spi, rmi_id);
512
513static struct spi_driver rmi_spi_driver = {
514	.driver = {
515		.name	= "rmi4_spi",
516		.pm	= pm_ptr(&rmi_spi_pm),
517		.of_match_table = of_match_ptr(rmi_spi_of_match),
518	},
519	.id_table	= rmi_id,
520	.probe		= rmi_spi_probe,
 
521};
522
523module_spi_driver(rmi_spi_driver);
524
525MODULE_AUTHOR("Christopher Heiny <cheiny@synaptics.com>");
526MODULE_AUTHOR("Andrew Duggan <aduggan@synaptics.com>");
527MODULE_DESCRIPTION("RMI SPI driver");
528MODULE_LICENSE("GPL");
v4.6
 
  1/*
  2 * Copyright (c) 2011-2016 Synaptics Incorporated
  3 * Copyright (c) 2011 Unixphere
  4 *
  5 * This program is free software; you can redistribute it and/or modify it
  6 * under the terms of the GNU General Public License version 2 as published by
  7 * the Free Software Foundation.
  8 */
  9
 10#include <linux/kernel.h>
 11#include <linux/module.h>
 12#include <linux/rmi.h>
 13#include <linux/slab.h>
 14#include <linux/spi/spi.h>
 15#include <linux/irq.h>
 16#include <linux/of.h>
 17#include "rmi_driver.h"
 18
 19#define RMI_SPI_DEFAULT_XFER_BUF_SIZE	64
 20
 21#define RMI_PAGE_SELECT_REGISTER	0x00FF
 22#define RMI_SPI_PAGE(addr)		(((addr) >> 8) & 0x80)
 23#define RMI_SPI_XFER_SIZE_LIMIT		255
 24
 25#define BUFFER_SIZE_INCREMENT 32
 26
 27enum rmi_spi_op {
 28	RMI_SPI_WRITE = 0,
 29	RMI_SPI_READ,
 30	RMI_SPI_V2_READ_UNIFIED,
 31	RMI_SPI_V2_READ_SPLIT,
 32	RMI_SPI_V2_WRITE,
 33};
 34
 35struct rmi_spi_cmd {
 36	enum rmi_spi_op op;
 37	u16 addr;
 38};
 39
 40struct rmi_spi_xport {
 41	struct rmi_transport_dev xport;
 42	struct spi_device *spi;
 43
 44	struct mutex page_mutex;
 45	int page;
 46
 47	int irq;
 48
 49	u8 *rx_buf;
 50	u8 *tx_buf;
 51	int xfer_buf_size;
 52
 53	struct spi_transfer *rx_xfers;
 54	struct spi_transfer *tx_xfers;
 55	int rx_xfer_count;
 56	int tx_xfer_count;
 57};
 58
 59static int rmi_spi_manage_pools(struct rmi_spi_xport *rmi_spi, int len)
 60{
 61	struct spi_device *spi = rmi_spi->spi;
 62	int buf_size = rmi_spi->xfer_buf_size
 63		? rmi_spi->xfer_buf_size : RMI_SPI_DEFAULT_XFER_BUF_SIZE;
 64	struct spi_transfer *xfer_buf;
 65	void *buf;
 66	void *tmp;
 67
 68	while (buf_size < len)
 69		buf_size *= 2;
 70
 71	if (buf_size > RMI_SPI_XFER_SIZE_LIMIT)
 72		buf_size = RMI_SPI_XFER_SIZE_LIMIT;
 73
 74	tmp = rmi_spi->rx_buf;
 75	buf = devm_kzalloc(&spi->dev, buf_size * 2,
 76				GFP_KERNEL | GFP_DMA);
 77	if (!buf)
 78		return -ENOMEM;
 79
 80	rmi_spi->rx_buf = buf;
 81	rmi_spi->tx_buf = &rmi_spi->rx_buf[buf_size];
 82	rmi_spi->xfer_buf_size = buf_size;
 83
 84	if (tmp)
 85		devm_kfree(&spi->dev, tmp);
 86
 87	if (rmi_spi->xport.pdata.spi_data.read_delay_us)
 88		rmi_spi->rx_xfer_count = buf_size;
 89	else
 90		rmi_spi->rx_xfer_count = 1;
 91
 92	if (rmi_spi->xport.pdata.spi_data.write_delay_us)
 93		rmi_spi->tx_xfer_count = buf_size;
 94	else
 95		rmi_spi->tx_xfer_count = 1;
 96
 97	/*
 98	 * Allocate a pool of spi_transfer buffers for devices which need
 99	 * per byte delays.
100	 */
101	tmp = rmi_spi->rx_xfers;
102	xfer_buf = devm_kzalloc(&spi->dev,
103		(rmi_spi->rx_xfer_count + rmi_spi->tx_xfer_count)
104		* sizeof(struct spi_transfer), GFP_KERNEL);
 
105	if (!xfer_buf)
106		return -ENOMEM;
107
108	rmi_spi->rx_xfers = xfer_buf;
109	rmi_spi->tx_xfers = &xfer_buf[rmi_spi->rx_xfer_count];
110
111	if (tmp)
112		devm_kfree(&spi->dev, tmp);
113
114	return 0;
115}
116
117static int rmi_spi_xfer(struct rmi_spi_xport *rmi_spi,
118			const struct rmi_spi_cmd *cmd, const u8 *tx_buf,
119			int tx_len, u8 *rx_buf, int rx_len)
120{
121	struct spi_device *spi = rmi_spi->spi;
122	struct rmi_device_platform_data_spi *spi_data =
123					&rmi_spi->xport.pdata.spi_data;
124	struct spi_message msg;
125	struct spi_transfer *xfer;
126	int ret = 0;
127	int len;
128	int cmd_len = 0;
129	int total_tx_len;
130	int i;
131	u16 addr = cmd->addr;
132
133	spi_message_init(&msg);
134
135	switch (cmd->op) {
136	case RMI_SPI_WRITE:
137	case RMI_SPI_READ:
138		cmd_len += 2;
139		break;
140	case RMI_SPI_V2_READ_UNIFIED:
141	case RMI_SPI_V2_READ_SPLIT:
142	case RMI_SPI_V2_WRITE:
143		cmd_len += 4;
144		break;
145	}
146
147	total_tx_len = cmd_len + tx_len;
148	len = max(total_tx_len, rx_len);
149
150	if (len > RMI_SPI_XFER_SIZE_LIMIT)
151		return -EINVAL;
152
153	if (rmi_spi->xfer_buf_size < len)
154		rmi_spi_manage_pools(rmi_spi, len);
 
 
 
155
156	if (addr == 0)
157		/*
158		 * SPI needs an address. Use 0x7FF if we want to keep
159		 * reading from the last position of the register pointer.
160		 */
161		addr = 0x7FF;
162
163	switch (cmd->op) {
164	case RMI_SPI_WRITE:
165		rmi_spi->tx_buf[0] = (addr >> 8);
166		rmi_spi->tx_buf[1] = addr & 0xFF;
167		break;
168	case RMI_SPI_READ:
169		rmi_spi->tx_buf[0] = (addr >> 8) | 0x80;
170		rmi_spi->tx_buf[1] = addr & 0xFF;
171		break;
172	case RMI_SPI_V2_READ_UNIFIED:
173		break;
174	case RMI_SPI_V2_READ_SPLIT:
175		break;
176	case RMI_SPI_V2_WRITE:
177		rmi_spi->tx_buf[0] = 0x40;
178		rmi_spi->tx_buf[1] = (addr >> 8) & 0xFF;
179		rmi_spi->tx_buf[2] = addr & 0xFF;
180		rmi_spi->tx_buf[3] = tx_len;
181		break;
182	}
183
184	if (tx_buf)
185		memcpy(&rmi_spi->tx_buf[cmd_len], tx_buf, tx_len);
186
187	if (rmi_spi->tx_xfer_count > 1) {
188		for (i = 0; i < total_tx_len; i++) {
189			xfer = &rmi_spi->tx_xfers[i];
190			memset(xfer, 0,	sizeof(struct spi_transfer));
191			xfer->tx_buf = &rmi_spi->tx_buf[i];
192			xfer->len = 1;
193			xfer->delay_usecs = spi_data->write_delay_us;
 
194			spi_message_add_tail(xfer, &msg);
195		}
196	} else {
197		xfer = rmi_spi->tx_xfers;
198		memset(xfer, 0, sizeof(struct spi_transfer));
199		xfer->tx_buf = rmi_spi->tx_buf;
200		xfer->len = total_tx_len;
201		spi_message_add_tail(xfer, &msg);
202	}
203
204	rmi_dbg(RMI_DEBUG_XPORT, &spi->dev, "%s: cmd: %s tx_buf len: %d tx_buf: %*ph\n",
205		__func__, cmd->op == RMI_SPI_WRITE ? "WRITE" : "READ",
206		total_tx_len, total_tx_len, rmi_spi->tx_buf);
207
208	if (rx_buf) {
209		if (rmi_spi->rx_xfer_count > 1) {
210			for (i = 0; i < rx_len; i++) {
211				xfer = &rmi_spi->rx_xfers[i];
212				memset(xfer, 0, sizeof(struct spi_transfer));
213				xfer->rx_buf = &rmi_spi->rx_buf[i];
214				xfer->len = 1;
215				xfer->delay_usecs = spi_data->read_delay_us;
 
216				spi_message_add_tail(xfer, &msg);
217			}
218		} else {
219			xfer = rmi_spi->rx_xfers;
220			memset(xfer, 0, sizeof(struct spi_transfer));
221			xfer->rx_buf = rmi_spi->rx_buf;
222			xfer->len = rx_len;
223			spi_message_add_tail(xfer, &msg);
224		}
225	}
226
227	ret = spi_sync(spi, &msg);
228	if (ret < 0) {
229		dev_err(&spi->dev, "spi xfer failed: %d\n", ret);
230		return ret;
231	}
232
233	if (rx_buf) {
234		memcpy(rx_buf, rmi_spi->rx_buf, rx_len);
235		rmi_dbg(RMI_DEBUG_XPORT, &spi->dev, "%s: (%d) %*ph\n",
236			__func__, rx_len, rx_len, rx_buf);
237	}
238
239	return 0;
240}
241
242/*
243 * rmi_set_page - Set RMI page
244 * @xport: The pointer to the rmi_transport_dev struct
245 * @page: The new page address.
246 *
247 * RMI devices have 16-bit addressing, but some of the transport
248 * implementations (like SMBus) only have 8-bit addressing. So RMI implements
249 * a page address at 0xff of every page so we can reliable page addresses
250 * every 256 registers.
251 *
252 * The page_mutex lock must be held when this function is entered.
253 *
254 * Returns zero on success, non-zero on failure.
255 */
256static int rmi_set_page(struct rmi_spi_xport *rmi_spi, u8 page)
257{
258	struct rmi_spi_cmd cmd;
259	int ret;
260
261	cmd.op = RMI_SPI_WRITE;
262	cmd.addr = RMI_PAGE_SELECT_REGISTER;
263
264	ret = rmi_spi_xfer(rmi_spi, &cmd, &page, 1, NULL, 0);
265
266	if (ret)
267		rmi_spi->page = page;
268
269	return ret;
270}
271
272static int rmi_spi_write_block(struct rmi_transport_dev *xport, u16 addr,
273			       const void *buf, size_t len)
274{
275	struct rmi_spi_xport *rmi_spi =
276		container_of(xport, struct rmi_spi_xport, xport);
277	struct rmi_spi_cmd cmd;
278	int ret;
279
280	mutex_lock(&rmi_spi->page_mutex);
281
282	if (RMI_SPI_PAGE(addr) != rmi_spi->page) {
283		ret = rmi_set_page(rmi_spi, RMI_SPI_PAGE(addr));
284		if (ret)
285			goto exit;
286	}
287
288	cmd.op = RMI_SPI_WRITE;
289	cmd.addr = addr;
290
291	ret = rmi_spi_xfer(rmi_spi, &cmd, buf, len, NULL, 0);
292
293exit:
294	mutex_unlock(&rmi_spi->page_mutex);
295	return ret;
296}
297
298static int rmi_spi_read_block(struct rmi_transport_dev *xport, u16 addr,
299			      void *buf, size_t len)
300{
301	struct rmi_spi_xport *rmi_spi =
302		container_of(xport, struct rmi_spi_xport, xport);
303	struct rmi_spi_cmd cmd;
304	int ret;
305
306	mutex_lock(&rmi_spi->page_mutex);
307
308	if (RMI_SPI_PAGE(addr) != rmi_spi->page) {
309		ret = rmi_set_page(rmi_spi, RMI_SPI_PAGE(addr));
310		if (ret)
311			goto exit;
312	}
313
314	cmd.op = RMI_SPI_READ;
315	cmd.addr = addr;
316
317	ret = rmi_spi_xfer(rmi_spi, &cmd, NULL, 0, buf, len);
318
319exit:
320	mutex_unlock(&rmi_spi->page_mutex);
321	return ret;
322}
323
324static const struct rmi_transport_ops rmi_spi_ops = {
325	.write_block	= rmi_spi_write_block,
326	.read_block	= rmi_spi_read_block,
327};
328
329static irqreturn_t rmi_spi_irq(int irq, void *dev_id)
330{
331	struct rmi_spi_xport *rmi_spi = dev_id;
332	struct rmi_device *rmi_dev = rmi_spi->xport.rmi_dev;
333	int ret;
334
335	ret = rmi_process_interrupt_requests(rmi_dev);
336	if (ret)
337		rmi_dbg(RMI_DEBUG_XPORT, &rmi_dev->dev,
338			"Failed to process interrupt request: %d\n", ret);
339
340	return IRQ_HANDLED;
341}
342
343static int rmi_spi_init_irq(struct spi_device *spi)
344{
345	struct rmi_spi_xport *rmi_spi = spi_get_drvdata(spi);
346	int irq_flags = irqd_get_trigger_type(irq_get_irq_data(rmi_spi->irq));
347	int ret;
348
349	if (!irq_flags)
350		irq_flags = IRQF_TRIGGER_LOW;
351
352	ret = devm_request_threaded_irq(&spi->dev, rmi_spi->irq, NULL,
353			rmi_spi_irq, irq_flags | IRQF_ONESHOT,
354			dev_name(&spi->dev), rmi_spi);
355	if (ret < 0) {
356		dev_warn(&spi->dev, "Failed to register interrupt %d\n",
357			rmi_spi->irq);
358		return ret;
359	}
360
361	return 0;
362}
363
364#ifdef CONFIG_OF
365static int rmi_spi_of_probe(struct spi_device *spi,
366			struct rmi_device_platform_data *pdata)
367{
368	struct device *dev = &spi->dev;
369	int retval;
370
371	retval = rmi_of_property_read_u32(dev,
372			&pdata->spi_data.read_delay_us,
373			"spi-rx-delay-us", 1);
374	if (retval)
375		return retval;
376
377	retval = rmi_of_property_read_u32(dev,
378			&pdata->spi_data.write_delay_us,
379			"spi-tx-delay-us", 1);
380	if (retval)
381		return retval;
382
383	return 0;
384}
385
386static const struct of_device_id rmi_spi_of_match[] = {
387	{ .compatible = "syna,rmi4-spi" },
388	{},
389};
390MODULE_DEVICE_TABLE(of, rmi_spi_of_match);
391#else
392static inline int rmi_spi_of_probe(struct spi_device *spi,
393				struct rmi_device_platform_data *pdata)
394{
395	return -ENODEV;
396}
397#endif
398
 
 
 
 
 
 
 
399static int rmi_spi_probe(struct spi_device *spi)
400{
401	struct rmi_spi_xport *rmi_spi;
402	struct rmi_device_platform_data *pdata;
403	struct rmi_device_platform_data *spi_pdata = spi->dev.platform_data;
404	int retval;
405
406	if (spi->master->flags & SPI_MASTER_HALF_DUPLEX)
407		return -EINVAL;
408
409	rmi_spi = devm_kzalloc(&spi->dev, sizeof(struct rmi_spi_xport),
410			GFP_KERNEL);
411	if (!rmi_spi)
412		return -ENOMEM;
413
414	pdata = &rmi_spi->xport.pdata;
415
416	if (spi->dev.of_node) {
417		retval = rmi_spi_of_probe(spi, pdata);
418		if (retval)
419			return retval;
420	} else if (spi_pdata) {
421		*pdata = *spi_pdata;
422	}
423
424	if (pdata->spi_data.bits_per_word)
425		spi->bits_per_word = pdata->spi_data.bits_per_word;
426
427	if (pdata->spi_data.mode)
428		spi->mode = pdata->spi_data.mode;
429
430	retval = spi_setup(spi);
431	if (retval < 0) {
432		dev_err(&spi->dev, "spi_setup failed!\n");
433		return retval;
434	}
435
436	if (spi->irq > 0)
437		rmi_spi->irq = spi->irq;
438
439	rmi_spi->spi = spi;
440	mutex_init(&rmi_spi->page_mutex);
441
442	rmi_spi->xport.dev = &spi->dev;
443	rmi_spi->xport.proto_name = "spi";
444	rmi_spi->xport.ops = &rmi_spi_ops;
445
446	spi_set_drvdata(spi, rmi_spi);
447
448	retval = rmi_spi_manage_pools(rmi_spi, RMI_SPI_DEFAULT_XFER_BUF_SIZE);
449	if (retval)
450		return retval;
451
452	/*
453	 * Setting the page to zero will (a) make sure the PSR is in a
454	 * known state, and (b) make sure we can talk to the device.
455	 */
456	retval = rmi_set_page(rmi_spi, 0);
457	if (retval) {
458		dev_err(&spi->dev, "Failed to set page select to 0.\n");
459		return retval;
460	}
461
462	retval = rmi_register_transport_device(&rmi_spi->xport);
463	if (retval) {
464		dev_err(&spi->dev, "failed to register transport.\n");
465		return retval;
 
 
466	}
467
468	retval = rmi_spi_init_irq(spi);
469	if (retval < 0)
470		return retval;
 
 
471
472	dev_info(&spi->dev, "registered RMI SPI driver\n");
473	return 0;
474}
475
476static int rmi_spi_remove(struct spi_device *spi)
477{
478	struct rmi_spi_xport *rmi_spi = spi_get_drvdata(spi);
479
480	rmi_unregister_transport_device(&rmi_spi->xport);
481
482	return 0;
483}
484
485#ifdef CONFIG_PM_SLEEP
486static int rmi_spi_suspend(struct device *dev)
487{
488	struct spi_device *spi = to_spi_device(dev);
489	struct rmi_spi_xport *rmi_spi = spi_get_drvdata(spi);
490	int ret;
491
492	ret = rmi_driver_suspend(rmi_spi->xport.rmi_dev);
493	if (ret)
494		dev_warn(dev, "Failed to resume device: %d\n", ret);
495
496	disable_irq(rmi_spi->irq);
497	if (device_may_wakeup(&spi->dev)) {
498		ret = enable_irq_wake(rmi_spi->irq);
499		if (!ret)
500			dev_warn(dev, "Failed to enable irq for wake: %d\n",
501				ret);
502	}
503	return ret;
504}
505
506static int rmi_spi_resume(struct device *dev)
507{
508	struct spi_device *spi = to_spi_device(dev);
509	struct rmi_spi_xport *rmi_spi = spi_get_drvdata(spi);
510	int ret;
511
512	enable_irq(rmi_spi->irq);
513	if (device_may_wakeup(&spi->dev)) {
514		ret = disable_irq_wake(rmi_spi->irq);
515		if (!ret)
516			dev_warn(dev, "Failed to disable irq for wake: %d\n",
517				ret);
518	}
519
520	ret = rmi_driver_resume(rmi_spi->xport.rmi_dev);
521	if (ret)
522		dev_warn(dev, "Failed to resume device: %d\n", ret);
523
524	return ret;
525}
526#endif
527
528#ifdef CONFIG_PM
529static int rmi_spi_runtime_suspend(struct device *dev)
530{
531	struct spi_device *spi = to_spi_device(dev);
532	struct rmi_spi_xport *rmi_spi = spi_get_drvdata(spi);
533	int ret;
534
535	ret = rmi_driver_suspend(rmi_spi->xport.rmi_dev);
536	if (ret)
537		dev_warn(dev, "Failed to resume device: %d\n", ret);
538
539	disable_irq(rmi_spi->irq);
540
541	return 0;
542}
543
544static int rmi_spi_runtime_resume(struct device *dev)
545{
546	struct spi_device *spi = to_spi_device(dev);
547	struct rmi_spi_xport *rmi_spi = spi_get_drvdata(spi);
548	int ret;
549
550	enable_irq(rmi_spi->irq);
551
552	ret = rmi_driver_resume(rmi_spi->xport.rmi_dev);
553	if (ret)
554		dev_warn(dev, "Failed to resume device: %d\n", ret);
555
556	return 0;
557}
558#endif
559
560static const struct dev_pm_ops rmi_spi_pm = {
561	SET_SYSTEM_SLEEP_PM_OPS(rmi_spi_suspend, rmi_spi_resume)
562	SET_RUNTIME_PM_OPS(rmi_spi_runtime_suspend, rmi_spi_runtime_resume,
563			   NULL)
564};
565
566static const struct spi_device_id rmi_id[] = {
567	{ "rmi4_spi", 0 },
568	{ }
569};
570MODULE_DEVICE_TABLE(spi, rmi_id);
571
572static struct spi_driver rmi_spi_driver = {
573	.driver = {
574		.name	= "rmi4_spi",
575		.pm	= &rmi_spi_pm,
576		.of_match_table = of_match_ptr(rmi_spi_of_match),
577	},
578	.id_table	= rmi_id,
579	.probe		= rmi_spi_probe,
580	.remove		= rmi_spi_remove,
581};
582
583module_spi_driver(rmi_spi_driver);
584
585MODULE_AUTHOR("Christopher Heiny <cheiny@synaptics.com>");
586MODULE_AUTHOR("Andrew Duggan <aduggan@synaptics.com>");
587MODULE_DESCRIPTION("RMI SPI driver");
588MODULE_LICENSE("GPL");
589MODULE_VERSION(RMI_DRIVER_VERSION);