Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1/*
   2 * Support for IDE interfaces on PowerMacs.
   3 *
   4 * These IDE interfaces are memory-mapped and have a DBDMA channel
   5 * for doing DMA.
   6 *
   7 *  Copyright (C) 1998-2003 Paul Mackerras & Ben. Herrenschmidt
   8 *  Copyright (C) 2007-2008 Bartlomiej Zolnierkiewicz
   9 *
  10 *  This program is free software; you can redistribute it and/or
  11 *  modify it under the terms of the GNU General Public License
  12 *  as published by the Free Software Foundation; either version
  13 *  2 of the License, or (at your option) any later version.
  14 *
  15 * Some code taken from drivers/ide/ide-dma.c:
  16 *
  17 *  Copyright (c) 1995-1998  Mark Lord
  18 *
  19 * TODO: - Use pre-calculated (kauai) timing tables all the time and
  20 * get rid of the "rounded" tables used previously, so we have the
  21 * same table format for all controllers and can then just have one
  22 * big table
  23 * 
  24 */
  25#include <linux/types.h>
  26#include <linux/kernel.h>
  27#include <linux/init.h>
  28#include <linux/delay.h>
  29#include <linux/ide.h>
  30#include <linux/notifier.h>
  31#include <linux/module.h>
  32#include <linux/reboot.h>
  33#include <linux/pci.h>
  34#include <linux/adb.h>
  35#include <linux/pmu.h>
  36#include <linux/scatterlist.h>
  37#include <linux/slab.h>
  38
  39#include <asm/prom.h>
  40#include <asm/io.h>
  41#include <asm/dbdma.h>
  42#include <asm/ide.h>
  43#include <asm/machdep.h>
  44#include <asm/pmac_feature.h>
  45#include <asm/sections.h>
  46#include <asm/irq.h>
  47#include <asm/mediabay.h>
  48
  49#define DRV_NAME "ide-pmac"
  50
  51#undef IDE_PMAC_DEBUG
  52
  53#define DMA_WAIT_TIMEOUT	50
  54
  55typedef struct pmac_ide_hwif {
  56	unsigned long			regbase;
  57	int				irq;
  58	int				kind;
  59	int				aapl_bus_id;
  60	unsigned			broken_dma : 1;
  61	unsigned			broken_dma_warn : 1;
  62	struct device_node*		node;
  63	struct macio_dev		*mdev;
  64	u32				timings[4];
  65	volatile u32 __iomem *		*kauai_fcr;
  66	ide_hwif_t			*hwif;
  67
  68	/* Those fields are duplicating what is in hwif. We currently
  69	 * can't use the hwif ones because of some assumptions that are
  70	 * beeing done by the generic code about the kind of dma controller
  71	 * and format of the dma table. This will have to be fixed though.
  72	 */
  73	volatile struct dbdma_regs __iomem *	dma_regs;
  74	struct dbdma_cmd*		dma_table_cpu;
  75} pmac_ide_hwif_t;
  76
  77enum {
  78	controller_ohare,	/* OHare based */
  79	controller_heathrow,	/* Heathrow/Paddington */
  80	controller_kl_ata3,	/* KeyLargo ATA-3 */
  81	controller_kl_ata4,	/* KeyLargo ATA-4 */
  82	controller_un_ata6,	/* UniNorth2 ATA-6 */
  83	controller_k2_ata6,	/* K2 ATA-6 */
  84	controller_sh_ata6,	/* Shasta ATA-6 */
  85};
  86
  87static const char* model_name[] = {
  88	"OHare ATA",		/* OHare based */
  89	"Heathrow ATA",		/* Heathrow/Paddington */
  90	"KeyLargo ATA-3",	/* KeyLargo ATA-3 (MDMA only) */
  91	"KeyLargo ATA-4",	/* KeyLargo ATA-4 (UDMA/66) */
  92	"UniNorth ATA-6",	/* UniNorth2 ATA-6 (UDMA/100) */
  93	"K2 ATA-6",		/* K2 ATA-6 (UDMA/100) */
  94	"Shasta ATA-6",		/* Shasta ATA-6 (UDMA/133) */
  95};
  96
  97/*
  98 * Extra registers, both 32-bit little-endian
  99 */
 100#define IDE_TIMING_CONFIG	0x200
 101#define IDE_INTERRUPT		0x300
 102
 103/* Kauai (U2) ATA has different register setup */
 104#define IDE_KAUAI_PIO_CONFIG	0x200
 105#define IDE_KAUAI_ULTRA_CONFIG	0x210
 106#define IDE_KAUAI_POLL_CONFIG	0x220
 107
 108/*
 109 * Timing configuration register definitions
 110 */
 111
 112/* Number of IDE_SYSCLK_NS ticks, argument is in nanoseconds */
 113#define SYSCLK_TICKS(t)		(((t) + IDE_SYSCLK_NS - 1) / IDE_SYSCLK_NS)
 114#define SYSCLK_TICKS_66(t)	(((t) + IDE_SYSCLK_66_NS - 1) / IDE_SYSCLK_66_NS)
 115#define IDE_SYSCLK_NS		30	/* 33Mhz cell */
 116#define IDE_SYSCLK_66_NS	15	/* 66Mhz cell */
 117
 118/* 133Mhz cell, found in shasta.
 119 * See comments about 100 Mhz Uninorth 2...
 120 * Note that PIO_MASK and MDMA_MASK seem to overlap
 121 */
 122#define TR_133_PIOREG_PIO_MASK		0xff000fff
 123#define TR_133_PIOREG_MDMA_MASK		0x00fff800
 124#define TR_133_UDMAREG_UDMA_MASK	0x0003ffff
 125#define TR_133_UDMAREG_UDMA_EN		0x00000001
 126
 127/* 100Mhz cell, found in Uninorth 2. I don't have much infos about
 128 * this one yet, it appears as a pci device (106b/0033) on uninorth
 129 * internal PCI bus and it's clock is controlled like gem or fw. It
 130 * appears to be an evolution of keylargo ATA4 with a timing register
 131 * extended to 2 32bits registers and a similar DBDMA channel. Other
 132 * registers seem to exist but I can't tell much about them.
 133 * 
 134 * So far, I'm using pre-calculated tables for this extracted from
 135 * the values used by the MacOS X driver.
 136 * 
 137 * The "PIO" register controls PIO and MDMA timings, the "ULTRA"
 138 * register controls the UDMA timings. At least, it seems bit 0
 139 * of this one enables UDMA vs. MDMA, and bits 4..7 are the
 140 * cycle time in units of 10ns. Bits 8..15 are used by I don't
 141 * know their meaning yet
 142 */
 143#define TR_100_PIOREG_PIO_MASK		0xff000fff
 144#define TR_100_PIOREG_MDMA_MASK		0x00fff000
 145#define TR_100_UDMAREG_UDMA_MASK	0x0000ffff
 146#define TR_100_UDMAREG_UDMA_EN		0x00000001
 147
 148
 149/* 66Mhz cell, found in KeyLargo. Can do ultra mode 0 to 2 on
 150 * 40 connector cable and to 4 on 80 connector one.
 151 * Clock unit is 15ns (66Mhz)
 152 * 
 153 * 3 Values can be programmed:
 154 *  - Write data setup, which appears to match the cycle time. They
 155 *    also call it DIOW setup.
 156 *  - Ready to pause time (from spec)
 157 *  - Address setup. That one is weird. I don't see where exactly
 158 *    it fits in UDMA cycles, I got it's name from an obscure piece
 159 *    of commented out code in Darwin. They leave it to 0, we do as
 160 *    well, despite a comment that would lead to think it has a
 161 *    min value of 45ns.
 162 * Apple also add 60ns to the write data setup (or cycle time ?) on
 163 * reads.
 164 */
 165#define TR_66_UDMA_MASK			0xfff00000
 166#define TR_66_UDMA_EN			0x00100000 /* Enable Ultra mode for DMA */
 167#define TR_66_UDMA_ADDRSETUP_MASK	0xe0000000 /* Address setup */
 168#define TR_66_UDMA_ADDRSETUP_SHIFT	29
 169#define TR_66_UDMA_RDY2PAUS_MASK	0x1e000000 /* Ready 2 pause time */
 170#define TR_66_UDMA_RDY2PAUS_SHIFT	25
 171#define TR_66_UDMA_WRDATASETUP_MASK	0x01e00000 /* Write data setup time */
 172#define TR_66_UDMA_WRDATASETUP_SHIFT	21
 173#define TR_66_MDMA_MASK			0x000ffc00
 174#define TR_66_MDMA_RECOVERY_MASK	0x000f8000
 175#define TR_66_MDMA_RECOVERY_SHIFT	15
 176#define TR_66_MDMA_ACCESS_MASK		0x00007c00
 177#define TR_66_MDMA_ACCESS_SHIFT		10
 178#define TR_66_PIO_MASK			0x000003ff
 179#define TR_66_PIO_RECOVERY_MASK		0x000003e0
 180#define TR_66_PIO_RECOVERY_SHIFT	5
 181#define TR_66_PIO_ACCESS_MASK		0x0000001f
 182#define TR_66_PIO_ACCESS_SHIFT		0
 183
 184/* 33Mhz cell, found in OHare, Heathrow (& Paddington) and KeyLargo
 185 * Can do pio & mdma modes, clock unit is 30ns (33Mhz)
 186 * 
 187 * The access time and recovery time can be programmed. Some older
 188 * Darwin code base limit OHare to 150ns cycle time. I decided to do
 189 * the same here fore safety against broken old hardware ;)
 190 * The HalfTick bit, when set, adds half a clock (15ns) to the access
 191 * time and removes one from recovery. It's not supported on KeyLargo
 192 * implementation afaik. The E bit appears to be set for PIO mode 0 and
 193 * is used to reach long timings used in this mode.
 194 */
 195#define TR_33_MDMA_MASK			0x003ff800
 196#define TR_33_MDMA_RECOVERY_MASK	0x001f0000
 197#define TR_33_MDMA_RECOVERY_SHIFT	16
 198#define TR_33_MDMA_ACCESS_MASK		0x0000f800
 199#define TR_33_MDMA_ACCESS_SHIFT		11
 200#define TR_33_MDMA_HALFTICK		0x00200000
 201#define TR_33_PIO_MASK			0x000007ff
 202#define TR_33_PIO_E			0x00000400
 203#define TR_33_PIO_RECOVERY_MASK		0x000003e0
 204#define TR_33_PIO_RECOVERY_SHIFT	5
 205#define TR_33_PIO_ACCESS_MASK		0x0000001f
 206#define TR_33_PIO_ACCESS_SHIFT		0
 207
 208/*
 209 * Interrupt register definitions
 210 */
 211#define IDE_INTR_DMA			0x80000000
 212#define IDE_INTR_DEVICE			0x40000000
 213
 214/*
 215 * FCR Register on Kauai. Not sure what bit 0x4 is  ...
 216 */
 217#define KAUAI_FCR_UATA_MAGIC		0x00000004
 218#define KAUAI_FCR_UATA_RESET_N		0x00000002
 219#define KAUAI_FCR_UATA_ENABLE		0x00000001
 220
 221/* Rounded Multiword DMA timings
 222 * 
 223 * I gave up finding a generic formula for all controller
 224 * types and instead, built tables based on timing values
 225 * used by Apple in Darwin's implementation.
 226 */
 227struct mdma_timings_t {
 228	int	accessTime;
 229	int	recoveryTime;
 230	int	cycleTime;
 231};
 232
 233struct mdma_timings_t mdma_timings_33[] =
 234{
 235    { 240, 240, 480 },
 236    { 180, 180, 360 },
 237    { 135, 135, 270 },
 238    { 120, 120, 240 },
 239    { 105, 105, 210 },
 240    {  90,  90, 180 },
 241    {  75,  75, 150 },
 242    {  75,  45, 120 },
 243    {   0,   0,   0 }
 244};
 245
 246struct mdma_timings_t mdma_timings_33k[] =
 247{
 248    { 240, 240, 480 },
 249    { 180, 180, 360 },
 250    { 150, 150, 300 },
 251    { 120, 120, 240 },
 252    {  90, 120, 210 },
 253    {  90,  90, 180 },
 254    {  90,  60, 150 },
 255    {  90,  30, 120 },
 256    {   0,   0,   0 }
 257};
 258
 259struct mdma_timings_t mdma_timings_66[] =
 260{
 261    { 240, 240, 480 },
 262    { 180, 180, 360 },
 263    { 135, 135, 270 },
 264    { 120, 120, 240 },
 265    { 105, 105, 210 },
 266    {  90,  90, 180 },
 267    {  90,  75, 165 },
 268    {  75,  45, 120 },
 269    {   0,   0,   0 }
 270};
 271
 272/* KeyLargo ATA-4 Ultra DMA timings (rounded) */
 273struct {
 274	int	addrSetup; /* ??? */
 275	int	rdy2pause;
 276	int	wrDataSetup;
 277} kl66_udma_timings[] =
 278{
 279    {   0, 180,  120 },	/* Mode 0 */
 280    {   0, 150,  90 },	/*      1 */
 281    {   0, 120,  60 },	/*      2 */
 282    {   0, 90,   45 },	/*      3 */
 283    {   0, 90,   30 }	/*      4 */
 284};
 285
 286/* UniNorth 2 ATA/100 timings */
 287struct kauai_timing {
 288	int	cycle_time;
 289	u32	timing_reg;
 290};
 291
 292static struct kauai_timing	kauai_pio_timings[] =
 293{
 294	{ 930	, 0x08000fff },
 295	{ 600	, 0x08000a92 },
 296	{ 383	, 0x0800060f },
 297	{ 360	, 0x08000492 },
 298	{ 330	, 0x0800048f },
 299	{ 300	, 0x080003cf },
 300	{ 270	, 0x080003cc },
 301	{ 240	, 0x0800038b },
 302	{ 239	, 0x0800030c },
 303	{ 180	, 0x05000249 },
 304	{ 120	, 0x04000148 },
 305	{ 0	, 0 },
 306};
 307
 308static struct kauai_timing	kauai_mdma_timings[] =
 309{
 310	{ 1260	, 0x00fff000 },
 311	{ 480	, 0x00618000 },
 312	{ 360	, 0x00492000 },
 313	{ 270	, 0x0038e000 },
 314	{ 240	, 0x0030c000 },
 315	{ 210	, 0x002cb000 },
 316	{ 180	, 0x00249000 },
 317	{ 150	, 0x00209000 },
 318	{ 120	, 0x00148000 },
 319	{ 0	, 0 },
 320};
 321
 322static struct kauai_timing	kauai_udma_timings[] =
 323{
 324	{ 120	, 0x000070c0 },
 325	{ 90	, 0x00005d80 },
 326	{ 60	, 0x00004a60 },
 327	{ 45	, 0x00003a50 },
 328	{ 30	, 0x00002a30 },
 329	{ 20	, 0x00002921 },
 330	{ 0	, 0 },
 331};
 332
 333static struct kauai_timing	shasta_pio_timings[] =
 334{
 335	{ 930	, 0x08000fff },
 336	{ 600	, 0x0A000c97 },
 337	{ 383	, 0x07000712 },
 338	{ 360	, 0x040003cd },
 339	{ 330	, 0x040003cd },
 340	{ 300	, 0x040003cd },
 341	{ 270	, 0x040003cd },
 342	{ 240	, 0x040003cd },
 343	{ 239	, 0x040003cd },
 344	{ 180	, 0x0400028b },
 345	{ 120	, 0x0400010a },
 346	{ 0	, 0 },
 347};
 348
 349static struct kauai_timing	shasta_mdma_timings[] =
 350{
 351	{ 1260	, 0x00fff000 },
 352	{ 480	, 0x00820800 },
 353	{ 360	, 0x00820800 },
 354	{ 270	, 0x00820800 },
 355	{ 240	, 0x00820800 },
 356	{ 210	, 0x00820800 },
 357	{ 180	, 0x00820800 },
 358	{ 150	, 0x0028b000 },
 359	{ 120	, 0x001ca000 },
 360	{ 0	, 0 },
 361};
 362
 363static struct kauai_timing	shasta_udma133_timings[] =
 364{
 365	{ 120   , 0x00035901, },
 366	{ 90    , 0x000348b1, },
 367	{ 60    , 0x00033881, },
 368	{ 45    , 0x00033861, },
 369	{ 30    , 0x00033841, },
 370	{ 20    , 0x00033031, },
 371	{ 15    , 0x00033021, },
 372	{ 0	, 0 },
 373};
 374
 375
 376static inline u32
 377kauai_lookup_timing(struct kauai_timing* table, int cycle_time)
 378{
 379	int i;
 380	
 381	for (i=0; table[i].cycle_time; i++)
 382		if (cycle_time > table[i+1].cycle_time)
 383			return table[i].timing_reg;
 384	BUG();
 385	return 0;
 386}
 387
 388/* allow up to 256 DBDMA commands per xfer */
 389#define MAX_DCMDS		256
 390
 391/* 
 392 * Wait 1s for disk to answer on IDE bus after a hard reset
 393 * of the device (via GPIO/FCR).
 394 * 
 395 * Some devices seem to "pollute" the bus even after dropping
 396 * the BSY bit (typically some combo drives slave on the UDMA
 397 * bus) after a hard reset. Since we hard reset all drives on
 398 * KeyLargo ATA66, we have to keep that delay around. I may end
 399 * up not hard resetting anymore on these and keep the delay only
 400 * for older interfaces instead (we have to reset when coming
 401 * from MacOS...) --BenH. 
 402 */
 403#define IDE_WAKEUP_DELAY	(1*HZ)
 404
 405static int pmac_ide_init_dma(ide_hwif_t *, const struct ide_port_info *);
 406
 407#define PMAC_IDE_REG(x) \
 408	((void __iomem *)((drive)->hwif->io_ports.data_addr + (x)))
 409
 410/*
 411 * Apply the timings of the proper unit (master/slave) to the shared
 412 * timing register when selecting that unit. This version is for
 413 * ASICs with a single timing register
 414 */
 415static void pmac_ide_apply_timings(ide_drive_t *drive)
 416{
 417	ide_hwif_t *hwif = drive->hwif;
 418	pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
 419
 420	if (drive->dn & 1)
 421		writel(pmif->timings[1], PMAC_IDE_REG(IDE_TIMING_CONFIG));
 422	else
 423		writel(pmif->timings[0], PMAC_IDE_REG(IDE_TIMING_CONFIG));
 424	(void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
 425}
 426
 427/*
 428 * Apply the timings of the proper unit (master/slave) to the shared
 429 * timing register when selecting that unit. This version is for
 430 * ASICs with a dual timing register (Kauai)
 431 */
 432static void pmac_ide_kauai_apply_timings(ide_drive_t *drive)
 433{
 434	ide_hwif_t *hwif = drive->hwif;
 435	pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
 436
 437	if (drive->dn & 1) {
 438		writel(pmif->timings[1], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
 439		writel(pmif->timings[3], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
 440	} else {
 441		writel(pmif->timings[0], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
 442		writel(pmif->timings[2], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
 443	}
 444	(void)readl(PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
 445}
 446
 447/*
 448 * Force an update of controller timing values for a given drive
 449 */
 450static void
 451pmac_ide_do_update_timings(ide_drive_t *drive)
 452{
 453	ide_hwif_t *hwif = drive->hwif;
 454	pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
 455
 456	if (pmif->kind == controller_sh_ata6 ||
 457	    pmif->kind == controller_un_ata6 ||
 458	    pmif->kind == controller_k2_ata6)
 459		pmac_ide_kauai_apply_timings(drive);
 460	else
 461		pmac_ide_apply_timings(drive);
 462}
 463
 464static void pmac_dev_select(ide_drive_t *drive)
 465{
 466	pmac_ide_apply_timings(drive);
 467
 468	writeb(drive->select | ATA_DEVICE_OBS,
 469	       (void __iomem *)drive->hwif->io_ports.device_addr);
 470}
 471
 472static void pmac_kauai_dev_select(ide_drive_t *drive)
 473{
 474	pmac_ide_kauai_apply_timings(drive);
 475
 476	writeb(drive->select | ATA_DEVICE_OBS,
 477	       (void __iomem *)drive->hwif->io_ports.device_addr);
 478}
 479
 480static void pmac_exec_command(ide_hwif_t *hwif, u8 cmd)
 481{
 482	writeb(cmd, (void __iomem *)hwif->io_ports.command_addr);
 483	(void)readl((void __iomem *)(hwif->io_ports.data_addr
 484				     + IDE_TIMING_CONFIG));
 485}
 486
 487static void pmac_write_devctl(ide_hwif_t *hwif, u8 ctl)
 488{
 489	writeb(ctl, (void __iomem *)hwif->io_ports.ctl_addr);
 490	(void)readl((void __iomem *)(hwif->io_ports.data_addr
 491				     + IDE_TIMING_CONFIG));
 492}
 493
 494/*
 495 * Old tuning functions (called on hdparm -p), sets up drive PIO timings
 496 */
 497static void pmac_ide_set_pio_mode(ide_hwif_t *hwif, ide_drive_t *drive)
 498{
 499	pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
 500	const u8 pio = drive->pio_mode - XFER_PIO_0;
 501	struct ide_timing *tim = ide_timing_find_mode(XFER_PIO_0 + pio);
 502	u32 *timings, t;
 503	unsigned accessTicks, recTicks;
 504	unsigned accessTime, recTime;
 505	unsigned int cycle_time;
 506
 507	/* which drive is it ? */
 508	timings = &pmif->timings[drive->dn & 1];
 509	t = *timings;
 510
 511	cycle_time = ide_pio_cycle_time(drive, pio);
 512
 513	switch (pmif->kind) {
 514	case controller_sh_ata6: {
 515		/* 133Mhz cell */
 516		u32 tr = kauai_lookup_timing(shasta_pio_timings, cycle_time);
 517		t = (t & ~TR_133_PIOREG_PIO_MASK) | tr;
 518		break;
 519		}
 520	case controller_un_ata6:
 521	case controller_k2_ata6: {
 522		/* 100Mhz cell */
 523		u32 tr = kauai_lookup_timing(kauai_pio_timings, cycle_time);
 524		t = (t & ~TR_100_PIOREG_PIO_MASK) | tr;
 525		break;
 526		}
 527	case controller_kl_ata4:
 528		/* 66Mhz cell */
 529		recTime = cycle_time - tim->active - tim->setup;
 530		recTime = max(recTime, 150U);
 531		accessTime = tim->active;
 532		accessTime = max(accessTime, 150U);
 533		accessTicks = SYSCLK_TICKS_66(accessTime);
 534		accessTicks = min(accessTicks, 0x1fU);
 535		recTicks = SYSCLK_TICKS_66(recTime);
 536		recTicks = min(recTicks, 0x1fU);
 537		t = (t & ~TR_66_PIO_MASK) |
 538			(accessTicks << TR_66_PIO_ACCESS_SHIFT) |
 539			(recTicks << TR_66_PIO_RECOVERY_SHIFT);
 540		break;
 541	default: {
 542		/* 33Mhz cell */
 543		int ebit = 0;
 544		recTime = cycle_time - tim->active - tim->setup;
 545		recTime = max(recTime, 150U);
 546		accessTime = tim->active;
 547		accessTime = max(accessTime, 150U);
 548		accessTicks = SYSCLK_TICKS(accessTime);
 549		accessTicks = min(accessTicks, 0x1fU);
 550		accessTicks = max(accessTicks, 4U);
 551		recTicks = SYSCLK_TICKS(recTime);
 552		recTicks = min(recTicks, 0x1fU);
 553		recTicks = max(recTicks, 5U) - 4;
 554		if (recTicks > 9) {
 555			recTicks--; /* guess, but it's only for PIO0, so... */
 556			ebit = 1;
 557		}
 558		t = (t & ~TR_33_PIO_MASK) |
 559				(accessTicks << TR_33_PIO_ACCESS_SHIFT) |
 560				(recTicks << TR_33_PIO_RECOVERY_SHIFT);
 561		if (ebit)
 562			t |= TR_33_PIO_E;
 563		break;
 564		}
 565	}
 566
 567#ifdef IDE_PMAC_DEBUG
 568	printk(KERN_ERR "%s: Set PIO timing for mode %d, reg: 0x%08x\n",
 569		drive->name, pio,  *timings);
 570#endif	
 571
 572	*timings = t;
 573	pmac_ide_do_update_timings(drive);
 574}
 575
 576/*
 577 * Calculate KeyLargo ATA/66 UDMA timings
 578 */
 579static int
 580set_timings_udma_ata4(u32 *timings, u8 speed)
 581{
 582	unsigned rdyToPauseTicks, wrDataSetupTicks, addrTicks;
 583
 584	if (speed > XFER_UDMA_4)
 585		return 1;
 586
 587	rdyToPauseTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].rdy2pause);
 588	wrDataSetupTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].wrDataSetup);
 589	addrTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].addrSetup);
 590
 591	*timings = ((*timings) & ~(TR_66_UDMA_MASK | TR_66_MDMA_MASK)) |
 592			(wrDataSetupTicks << TR_66_UDMA_WRDATASETUP_SHIFT) | 
 593			(rdyToPauseTicks << TR_66_UDMA_RDY2PAUS_SHIFT) |
 594			(addrTicks <<TR_66_UDMA_ADDRSETUP_SHIFT) |
 595			TR_66_UDMA_EN;
 596#ifdef IDE_PMAC_DEBUG
 597	printk(KERN_ERR "ide_pmac: Set UDMA timing for mode %d, reg: 0x%08x\n",
 598		speed & 0xf,  *timings);
 599#endif	
 600
 601	return 0;
 602}
 603
 604/*
 605 * Calculate Kauai ATA/100 UDMA timings
 606 */
 607static int
 608set_timings_udma_ata6(u32 *pio_timings, u32 *ultra_timings, u8 speed)
 609{
 610	struct ide_timing *t = ide_timing_find_mode(speed);
 611	u32 tr;
 612
 613	if (speed > XFER_UDMA_5 || t == NULL)
 614		return 1;
 615	tr = kauai_lookup_timing(kauai_udma_timings, (int)t->udma);
 616	*ultra_timings = ((*ultra_timings) & ~TR_100_UDMAREG_UDMA_MASK) | tr;
 617	*ultra_timings = (*ultra_timings) | TR_100_UDMAREG_UDMA_EN;
 618
 619	return 0;
 620}
 621
 622/*
 623 * Calculate Shasta ATA/133 UDMA timings
 624 */
 625static int
 626set_timings_udma_shasta(u32 *pio_timings, u32 *ultra_timings, u8 speed)
 627{
 628	struct ide_timing *t = ide_timing_find_mode(speed);
 629	u32 tr;
 630
 631	if (speed > XFER_UDMA_6 || t == NULL)
 632		return 1;
 633	tr = kauai_lookup_timing(shasta_udma133_timings, (int)t->udma);
 634	*ultra_timings = ((*ultra_timings) & ~TR_133_UDMAREG_UDMA_MASK) | tr;
 635	*ultra_timings = (*ultra_timings) | TR_133_UDMAREG_UDMA_EN;
 636
 637	return 0;
 638}
 639
 640/*
 641 * Calculate MDMA timings for all cells
 642 */
 643static void
 644set_timings_mdma(ide_drive_t *drive, int intf_type, u32 *timings, u32 *timings2,
 645		 	u8 speed)
 646{
 647	u16 *id = drive->id;
 648	int cycleTime, accessTime = 0, recTime = 0;
 649	unsigned accessTicks, recTicks;
 650	struct mdma_timings_t* tm = NULL;
 651	int i;
 652
 653	/* Get default cycle time for mode */
 654	switch(speed & 0xf) {
 655		case 0: cycleTime = 480; break;
 656		case 1: cycleTime = 150; break;
 657		case 2: cycleTime = 120; break;
 658		default:
 659			BUG();
 660			break;
 661	}
 662
 663	/* Check if drive provides explicit DMA cycle time */
 664	if ((id[ATA_ID_FIELD_VALID] & 2) && id[ATA_ID_EIDE_DMA_TIME])
 665		cycleTime = max_t(int, id[ATA_ID_EIDE_DMA_TIME], cycleTime);
 666
 667	/* OHare limits according to some old Apple sources */	
 668	if ((intf_type == controller_ohare) && (cycleTime < 150))
 669		cycleTime = 150;
 670	/* Get the proper timing array for this controller */
 671	switch(intf_type) {
 672	        case controller_sh_ata6:
 673		case controller_un_ata6:
 674		case controller_k2_ata6:
 675			break;
 676		case controller_kl_ata4:
 677			tm = mdma_timings_66;
 678			break;
 679		case controller_kl_ata3:
 680			tm = mdma_timings_33k;
 681			break;
 682		default:
 683			tm = mdma_timings_33;
 684			break;
 685	}
 686	if (tm != NULL) {
 687		/* Lookup matching access & recovery times */
 688		i = -1;
 689		for (;;) {
 690			if (tm[i+1].cycleTime < cycleTime)
 691				break;
 692			i++;
 693		}
 694		cycleTime = tm[i].cycleTime;
 695		accessTime = tm[i].accessTime;
 696		recTime = tm[i].recoveryTime;
 697
 698#ifdef IDE_PMAC_DEBUG
 699		printk(KERN_ERR "%s: MDMA, cycleTime: %d, accessTime: %d, recTime: %d\n",
 700			drive->name, cycleTime, accessTime, recTime);
 701#endif
 702	}
 703	switch(intf_type) {
 704	case controller_sh_ata6: {
 705		/* 133Mhz cell */
 706		u32 tr = kauai_lookup_timing(shasta_mdma_timings, cycleTime);
 707		*timings = ((*timings) & ~TR_133_PIOREG_MDMA_MASK) | tr;
 708		*timings2 = (*timings2) & ~TR_133_UDMAREG_UDMA_EN;
 709		}
 710	case controller_un_ata6:
 711	case controller_k2_ata6: {
 712		/* 100Mhz cell */
 713		u32 tr = kauai_lookup_timing(kauai_mdma_timings, cycleTime);
 714		*timings = ((*timings) & ~TR_100_PIOREG_MDMA_MASK) | tr;
 715		*timings2 = (*timings2) & ~TR_100_UDMAREG_UDMA_EN;
 716		}
 717		break;
 718	case controller_kl_ata4:
 719		/* 66Mhz cell */
 720		accessTicks = SYSCLK_TICKS_66(accessTime);
 721		accessTicks = min(accessTicks, 0x1fU);
 722		accessTicks = max(accessTicks, 0x1U);
 723		recTicks = SYSCLK_TICKS_66(recTime);
 724		recTicks = min(recTicks, 0x1fU);
 725		recTicks = max(recTicks, 0x3U);
 726		/* Clear out mdma bits and disable udma */
 727		*timings = ((*timings) & ~(TR_66_MDMA_MASK | TR_66_UDMA_MASK)) |
 728			(accessTicks << TR_66_MDMA_ACCESS_SHIFT) |
 729			(recTicks << TR_66_MDMA_RECOVERY_SHIFT);
 730		break;
 731	case controller_kl_ata3:
 732		/* 33Mhz cell on KeyLargo */
 733		accessTicks = SYSCLK_TICKS(accessTime);
 734		accessTicks = max(accessTicks, 1U);
 735		accessTicks = min(accessTicks, 0x1fU);
 736		accessTime = accessTicks * IDE_SYSCLK_NS;
 737		recTicks = SYSCLK_TICKS(recTime);
 738		recTicks = max(recTicks, 1U);
 739		recTicks = min(recTicks, 0x1fU);
 740		*timings = ((*timings) & ~TR_33_MDMA_MASK) |
 741				(accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
 742				(recTicks << TR_33_MDMA_RECOVERY_SHIFT);
 743		break;
 744	default: {
 745		/* 33Mhz cell on others */
 746		int halfTick = 0;
 747		int origAccessTime = accessTime;
 748		int origRecTime = recTime;
 749		
 750		accessTicks = SYSCLK_TICKS(accessTime);
 751		accessTicks = max(accessTicks, 1U);
 752		accessTicks = min(accessTicks, 0x1fU);
 753		accessTime = accessTicks * IDE_SYSCLK_NS;
 754		recTicks = SYSCLK_TICKS(recTime);
 755		recTicks = max(recTicks, 2U) - 1;
 756		recTicks = min(recTicks, 0x1fU);
 757		recTime = (recTicks + 1) * IDE_SYSCLK_NS;
 758		if ((accessTicks > 1) &&
 759		    ((accessTime - IDE_SYSCLK_NS/2) >= origAccessTime) &&
 760		    ((recTime - IDE_SYSCLK_NS/2) >= origRecTime)) {
 761            		halfTick = 1;
 762			accessTicks--;
 763		}
 764		*timings = ((*timings) & ~TR_33_MDMA_MASK) |
 765				(accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
 766				(recTicks << TR_33_MDMA_RECOVERY_SHIFT);
 767		if (halfTick)
 768			*timings |= TR_33_MDMA_HALFTICK;
 769		}
 770	}
 771#ifdef IDE_PMAC_DEBUG
 772	printk(KERN_ERR "%s: Set MDMA timing for mode %d, reg: 0x%08x\n",
 773		drive->name, speed & 0xf,  *timings);
 774#endif	
 775}
 776
 777static void pmac_ide_set_dma_mode(ide_hwif_t *hwif, ide_drive_t *drive)
 778{
 779	pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
 780	int ret = 0;
 781	u32 *timings, *timings2, tl[2];
 782	u8 unit = drive->dn & 1;
 783	const u8 speed = drive->dma_mode;
 784
 785	timings = &pmif->timings[unit];
 786	timings2 = &pmif->timings[unit+2];
 787
 788	/* Copy timings to local image */
 789	tl[0] = *timings;
 790	tl[1] = *timings2;
 791
 792	if (speed >= XFER_UDMA_0) {
 793		if (pmif->kind == controller_kl_ata4)
 794			ret = set_timings_udma_ata4(&tl[0], speed);
 795		else if (pmif->kind == controller_un_ata6
 796			 || pmif->kind == controller_k2_ata6)
 797			ret = set_timings_udma_ata6(&tl[0], &tl[1], speed);
 798		else if (pmif->kind == controller_sh_ata6)
 799			ret = set_timings_udma_shasta(&tl[0], &tl[1], speed);
 800		else
 801			ret = -1;
 802	} else
 803		set_timings_mdma(drive, pmif->kind, &tl[0], &tl[1], speed);
 804
 805	if (ret)
 806		return;
 807
 808	/* Apply timings to controller */
 809	*timings = tl[0];
 810	*timings2 = tl[1];
 811
 812	pmac_ide_do_update_timings(drive);	
 813}
 814
 815/*
 816 * Blast some well known "safe" values to the timing registers at init or
 817 * wakeup from sleep time, before we do real calculation
 818 */
 819static void
 820sanitize_timings(pmac_ide_hwif_t *pmif)
 821{
 822	unsigned int value, value2 = 0;
 823	
 824	switch(pmif->kind) {
 825		case controller_sh_ata6:
 826			value = 0x0a820c97;
 827			value2 = 0x00033031;
 828			break;
 829		case controller_un_ata6:
 830		case controller_k2_ata6:
 831			value = 0x08618a92;
 832			value2 = 0x00002921;
 833			break;
 834		case controller_kl_ata4:
 835			value = 0x0008438c;
 836			break;
 837		case controller_kl_ata3:
 838			value = 0x00084526;
 839			break;
 840		case controller_heathrow:
 841		case controller_ohare:
 842		default:
 843			value = 0x00074526;
 844			break;
 845	}
 846	pmif->timings[0] = pmif->timings[1] = value;
 847	pmif->timings[2] = pmif->timings[3] = value2;
 848}
 849
 850static int on_media_bay(pmac_ide_hwif_t *pmif)
 851{
 852	return pmif->mdev && pmif->mdev->media_bay != NULL;
 853}
 854
 855/* Suspend call back, should be called after the child devices
 856 * have actually been suspended
 857 */
 858static int pmac_ide_do_suspend(pmac_ide_hwif_t *pmif)
 859{
 860	/* We clear the timings */
 861	pmif->timings[0] = 0;
 862	pmif->timings[1] = 0;
 863	
 864	disable_irq(pmif->irq);
 865
 866	/* The media bay will handle itself just fine */
 867	if (on_media_bay(pmif))
 868		return 0;
 869	
 870	/* Kauai has bus control FCRs directly here */
 871	if (pmif->kauai_fcr) {
 872		u32 fcr = readl(pmif->kauai_fcr);
 873		fcr &= ~(KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE);
 874		writel(fcr, pmif->kauai_fcr);
 875	}
 876
 877	/* Disable the bus on older machines and the cell on kauai */
 878	ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id,
 879			    0);
 880
 881	return 0;
 882}
 883
 884/* Resume call back, should be called before the child devices
 885 * are resumed
 886 */
 887static int pmac_ide_do_resume(pmac_ide_hwif_t *pmif)
 888{
 889	/* Hard reset & re-enable controller (do we really need to reset ? -BenH) */
 890	if (!on_media_bay(pmif)) {
 891		ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 1);
 892		ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id, 1);
 893		msleep(10);
 894		ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 0);
 895
 896		/* Kauai has it different */
 897		if (pmif->kauai_fcr) {
 898			u32 fcr = readl(pmif->kauai_fcr);
 899			fcr |= KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE;
 900			writel(fcr, pmif->kauai_fcr);
 901		}
 902
 903		msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
 904	}
 905
 906	/* Sanitize drive timings */
 907	sanitize_timings(pmif);
 908
 909	enable_irq(pmif->irq);
 910
 911	return 0;
 912}
 913
 914static u8 pmac_ide_cable_detect(ide_hwif_t *hwif)
 915{
 916	pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
 917	struct device_node *np = pmif->node;
 918	const char *cable = of_get_property(np, "cable-type", NULL);
 919	struct device_node *root = of_find_node_by_path("/");
 920	const char *model = of_get_property(root, "model", NULL);
 921
 922	/* Get cable type from device-tree. */
 923	if (cable && !strncmp(cable, "80-", 3)) {
 924		/* Some drives fail to detect 80c cable in PowerBook */
 925		/* These machine use proprietary short IDE cable anyway */
 926		if (!strncmp(model, "PowerBook", 9))
 927			return ATA_CBL_PATA40_SHORT;
 928		else
 929			return ATA_CBL_PATA80;
 930	}
 931
 932	/*
 933	 * G5's seem to have incorrect cable type in device-tree.
 934	 * Let's assume they have a 80 conductor cable, this seem
 935	 * to be always the case unless the user mucked around.
 936	 */
 937	if (of_device_is_compatible(np, "K2-UATA") ||
 938	    of_device_is_compatible(np, "shasta-ata"))
 939		return ATA_CBL_PATA80;
 940
 941	return ATA_CBL_PATA40;
 942}
 943
 944static void pmac_ide_init_dev(ide_drive_t *drive)
 945{
 946	ide_hwif_t *hwif = drive->hwif;
 947	pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
 948
 949	if (on_media_bay(pmif)) {
 950		if (check_media_bay(pmif->mdev->media_bay) == MB_CD) {
 951			drive->dev_flags &= ~IDE_DFLAG_NOPROBE;
 952			return;
 953		}
 954		drive->dev_flags |= IDE_DFLAG_NOPROBE;
 955	}
 956}
 957
 958static const struct ide_tp_ops pmac_tp_ops = {
 959	.exec_command		= pmac_exec_command,
 960	.read_status		= ide_read_status,
 961	.read_altstatus		= ide_read_altstatus,
 962	.write_devctl		= pmac_write_devctl,
 963
 964	.dev_select		= pmac_dev_select,
 965	.tf_load		= ide_tf_load,
 966	.tf_read		= ide_tf_read,
 967
 968	.input_data		= ide_input_data,
 969	.output_data		= ide_output_data,
 970};
 971
 972static const struct ide_tp_ops pmac_ata6_tp_ops = {
 973	.exec_command		= pmac_exec_command,
 974	.read_status		= ide_read_status,
 975	.read_altstatus		= ide_read_altstatus,
 976	.write_devctl		= pmac_write_devctl,
 977
 978	.dev_select		= pmac_kauai_dev_select,
 979	.tf_load		= ide_tf_load,
 980	.tf_read		= ide_tf_read,
 981
 982	.input_data		= ide_input_data,
 983	.output_data		= ide_output_data,
 984};
 985
 986static const struct ide_port_ops pmac_ide_ata4_port_ops = {
 987	.init_dev		= pmac_ide_init_dev,
 988	.set_pio_mode		= pmac_ide_set_pio_mode,
 989	.set_dma_mode		= pmac_ide_set_dma_mode,
 990	.cable_detect		= pmac_ide_cable_detect,
 991};
 992
 993static const struct ide_port_ops pmac_ide_port_ops = {
 994	.init_dev		= pmac_ide_init_dev,
 995	.set_pio_mode		= pmac_ide_set_pio_mode,
 996	.set_dma_mode		= pmac_ide_set_dma_mode,
 997};
 998
 999static const struct ide_dma_ops pmac_dma_ops;
1000
1001static const struct ide_port_info pmac_port_info = {
1002	.name			= DRV_NAME,
1003	.init_dma		= pmac_ide_init_dma,
1004	.chipset		= ide_pmac,
1005	.tp_ops			= &pmac_tp_ops,
1006	.port_ops		= &pmac_ide_port_ops,
1007	.dma_ops		= &pmac_dma_ops,
1008	.host_flags		= IDE_HFLAG_SET_PIO_MODE_KEEP_DMA |
1009				  IDE_HFLAG_POST_SET_MODE |
1010				  IDE_HFLAG_MMIO |
1011				  IDE_HFLAG_UNMASK_IRQS,
1012	.pio_mask		= ATA_PIO4,
1013	.mwdma_mask		= ATA_MWDMA2,
1014};
1015
1016/*
1017 * Setup, register & probe an IDE channel driven by this driver, this is
1018 * called by one of the 2 probe functions (macio or PCI).
1019 */
1020static int pmac_ide_setup_device(pmac_ide_hwif_t *pmif, struct ide_hw *hw)
1021{
1022	struct device_node *np = pmif->node;
1023	const int *bidp;
1024	struct ide_host *host;
1025	ide_hwif_t *hwif;
1026	struct ide_hw *hws[] = { hw };
1027	struct ide_port_info d = pmac_port_info;
1028	int rc;
1029
1030	pmif->broken_dma = pmif->broken_dma_warn = 0;
1031	if (of_device_is_compatible(np, "shasta-ata")) {
1032		pmif->kind = controller_sh_ata6;
1033		d.tp_ops = &pmac_ata6_tp_ops;
1034		d.port_ops = &pmac_ide_ata4_port_ops;
1035		d.udma_mask = ATA_UDMA6;
1036	} else if (of_device_is_compatible(np, "kauai-ata")) {
1037		pmif->kind = controller_un_ata6;
1038		d.tp_ops = &pmac_ata6_tp_ops;
1039		d.port_ops = &pmac_ide_ata4_port_ops;
1040		d.udma_mask = ATA_UDMA5;
1041	} else if (of_device_is_compatible(np, "K2-UATA")) {
1042		pmif->kind = controller_k2_ata6;
1043		d.tp_ops = &pmac_ata6_tp_ops;
1044		d.port_ops = &pmac_ide_ata4_port_ops;
1045		d.udma_mask = ATA_UDMA5;
1046	} else if (of_device_is_compatible(np, "keylargo-ata")) {
1047		if (strcmp(np->name, "ata-4") == 0) {
1048			pmif->kind = controller_kl_ata4;
1049			d.port_ops = &pmac_ide_ata4_port_ops;
1050			d.udma_mask = ATA_UDMA4;
1051		} else
1052			pmif->kind = controller_kl_ata3;
1053	} else if (of_device_is_compatible(np, "heathrow-ata")) {
1054		pmif->kind = controller_heathrow;
1055	} else {
1056		pmif->kind = controller_ohare;
1057		pmif->broken_dma = 1;
1058	}
1059
1060	bidp = of_get_property(np, "AAPL,bus-id", NULL);
1061	pmif->aapl_bus_id =  bidp ? *bidp : 0;
1062
1063	/* On Kauai-type controllers, we make sure the FCR is correct */
1064	if (pmif->kauai_fcr)
1065		writel(KAUAI_FCR_UATA_MAGIC |
1066		       KAUAI_FCR_UATA_RESET_N |
1067		       KAUAI_FCR_UATA_ENABLE, pmif->kauai_fcr);
1068	
1069	/* Make sure we have sane timings */
1070	sanitize_timings(pmif);
1071
1072	/* If we are on a media bay, wait for it to settle and lock it */
1073	if (pmif->mdev)
1074		lock_media_bay(pmif->mdev->media_bay);
1075
1076	host = ide_host_alloc(&d, hws, 1);
1077	if (host == NULL) {
1078		rc = -ENOMEM;
1079		goto bail;
1080	}
1081	hwif = pmif->hwif = host->ports[0];
1082
1083	if (on_media_bay(pmif)) {
1084		/* Fixup bus ID for media bay */
1085		if (!bidp)
1086			pmif->aapl_bus_id = 1;
1087	} else if (pmif->kind == controller_ohare) {
1088		/* The code below is having trouble on some ohare machines
1089		 * (timing related ?). Until I can put my hand on one of these
1090		 * units, I keep the old way
1091		 */
1092		ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, 0, 1);
1093	} else {
1094 		/* This is necessary to enable IDE when net-booting */
1095		ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 1);
1096		ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, pmif->aapl_bus_id, 1);
1097		msleep(10);
1098		ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 0);
1099		msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
1100	}
1101
1102	printk(KERN_INFO DRV_NAME ": Found Apple %s controller (%s), "
1103	       "bus ID %d%s, irq %d\n", model_name[pmif->kind],
1104	       pmif->mdev ? "macio" : "PCI", pmif->aapl_bus_id,
1105	       on_media_bay(pmif) ? " (mediabay)" : "", hw->irq);
1106
1107	rc = ide_host_register(host, &d, hws);
1108	if (rc)
1109		pmif->hwif = NULL;
1110
1111	if (pmif->mdev)
1112		unlock_media_bay(pmif->mdev->media_bay);
1113
1114 bail:
1115	if (rc && host)
1116		ide_host_free(host);
1117	return rc;
1118}
1119
1120static void pmac_ide_init_ports(struct ide_hw *hw, unsigned long base)
1121{
1122	int i;
1123
1124	for (i = 0; i < 8; ++i)
1125		hw->io_ports_array[i] = base + i * 0x10;
1126
1127	hw->io_ports.ctl_addr = base + 0x160;
1128}
1129
1130/*
1131 * Attach to a macio probed interface
1132 */
1133static int pmac_ide_macio_attach(struct macio_dev *mdev,
1134				 const struct of_device_id *match)
1135{
1136	void __iomem *base;
1137	unsigned long regbase;
1138	pmac_ide_hwif_t *pmif;
1139	int irq, rc;
1140	struct ide_hw hw;
1141
1142	pmif = kzalloc(sizeof(*pmif), GFP_KERNEL);
1143	if (pmif == NULL)
1144		return -ENOMEM;
1145
1146	if (macio_resource_count(mdev) == 0) {
1147		printk(KERN_WARNING "ide-pmac: no address for %s\n",
1148				    mdev->ofdev.dev.of_node->full_name);
1149		rc = -ENXIO;
1150		goto out_free_pmif;
1151	}
1152
1153	/* Request memory resource for IO ports */
1154	if (macio_request_resource(mdev, 0, "ide-pmac (ports)")) {
1155		printk(KERN_ERR "ide-pmac: can't request MMIO resource for "
1156				"%s!\n", mdev->ofdev.dev.of_node->full_name);
1157		rc = -EBUSY;
1158		goto out_free_pmif;
1159	}
1160			
1161	/* XXX This is bogus. Should be fixed in the registry by checking
1162	 * the kind of host interrupt controller, a bit like gatwick
1163	 * fixes in irq.c. That works well enough for the single case
1164	 * where that happens though...
1165	 */
1166	if (macio_irq_count(mdev) == 0) {
1167		printk(KERN_WARNING "ide-pmac: no intrs for device %s, using "
1168				    "13\n", mdev->ofdev.dev.of_node->full_name);
1169		irq = irq_create_mapping(NULL, 13);
1170	} else
1171		irq = macio_irq(mdev, 0);
1172
1173	base = ioremap(macio_resource_start(mdev, 0), 0x400);
1174	regbase = (unsigned long) base;
1175
1176	pmif->mdev = mdev;
1177	pmif->node = mdev->ofdev.dev.of_node;
1178	pmif->regbase = regbase;
1179	pmif->irq = irq;
1180	pmif->kauai_fcr = NULL;
1181
1182	if (macio_resource_count(mdev) >= 2) {
1183		if (macio_request_resource(mdev, 1, "ide-pmac (dma)"))
1184			printk(KERN_WARNING "ide-pmac: can't request DMA "
1185					    "resource for %s!\n",
1186					    mdev->ofdev.dev.of_node->full_name);
1187		else
1188			pmif->dma_regs = ioremap(macio_resource_start(mdev, 1), 0x1000);
1189	} else
1190		pmif->dma_regs = NULL;
1191
1192	dev_set_drvdata(&mdev->ofdev.dev, pmif);
1193
1194	memset(&hw, 0, sizeof(hw));
1195	pmac_ide_init_ports(&hw, pmif->regbase);
1196	hw.irq = irq;
1197	hw.dev = &mdev->bus->pdev->dev;
1198	hw.parent = &mdev->ofdev.dev;
1199
1200	rc = pmac_ide_setup_device(pmif, &hw);
1201	if (rc != 0) {
1202		/* The inteface is released to the common IDE layer */
1203		dev_set_drvdata(&mdev->ofdev.dev, NULL);
1204		iounmap(base);
1205		if (pmif->dma_regs) {
1206			iounmap(pmif->dma_regs);
1207			macio_release_resource(mdev, 1);
1208		}
1209		macio_release_resource(mdev, 0);
1210		kfree(pmif);
1211	}
1212
1213	return rc;
1214
1215out_free_pmif:
1216	kfree(pmif);
1217	return rc;
1218}
1219
1220static int
1221pmac_ide_macio_suspend(struct macio_dev *mdev, pm_message_t mesg)
1222{
1223	pmac_ide_hwif_t *pmif = dev_get_drvdata(&mdev->ofdev.dev);
1224	int rc = 0;
1225
1226	if (mesg.event != mdev->ofdev.dev.power.power_state.event
1227			&& (mesg.event & PM_EVENT_SLEEP)) {
1228		rc = pmac_ide_do_suspend(pmif);
1229		if (rc == 0)
1230			mdev->ofdev.dev.power.power_state = mesg;
1231	}
1232
1233	return rc;
1234}
1235
1236static int
1237pmac_ide_macio_resume(struct macio_dev *mdev)
1238{
1239	pmac_ide_hwif_t *pmif = dev_get_drvdata(&mdev->ofdev.dev);
1240	int rc = 0;
1241
1242	if (mdev->ofdev.dev.power.power_state.event != PM_EVENT_ON) {
1243		rc = pmac_ide_do_resume(pmif);
1244		if (rc == 0)
1245			mdev->ofdev.dev.power.power_state = PMSG_ON;
1246	}
1247
1248	return rc;
1249}
1250
1251/*
1252 * Attach to a PCI probed interface
1253 */
1254static int pmac_ide_pci_attach(struct pci_dev *pdev,
1255			       const struct pci_device_id *id)
1256{
1257	struct device_node *np;
1258	pmac_ide_hwif_t *pmif;
1259	void __iomem *base;
1260	unsigned long rbase, rlen;
1261	int rc;
1262	struct ide_hw hw;
1263
1264	np = pci_device_to_OF_node(pdev);
1265	if (np == NULL) {
1266		printk(KERN_ERR "ide-pmac: cannot find MacIO node for Kauai ATA interface\n");
1267		return -ENODEV;
1268	}
1269
1270	pmif = kzalloc(sizeof(*pmif), GFP_KERNEL);
1271	if (pmif == NULL)
1272		return -ENOMEM;
1273
1274	if (pci_enable_device(pdev)) {
1275		printk(KERN_WARNING "ide-pmac: Can't enable PCI device for "
1276				    "%s\n", np->full_name);
1277		rc = -ENXIO;
1278		goto out_free_pmif;
1279	}
1280	pci_set_master(pdev);
1281			
1282	if (pci_request_regions(pdev, "Kauai ATA")) {
1283		printk(KERN_ERR "ide-pmac: Cannot obtain PCI resources for "
1284				"%s\n", np->full_name);
1285		rc = -ENXIO;
1286		goto out_free_pmif;
1287	}
1288
1289	pmif->mdev = NULL;
1290	pmif->node = np;
1291
1292	rbase = pci_resource_start(pdev, 0);
1293	rlen = pci_resource_len(pdev, 0);
1294
1295	base = ioremap(rbase, rlen);
1296	pmif->regbase = (unsigned long) base + 0x2000;
1297	pmif->dma_regs = base + 0x1000;
1298	pmif->kauai_fcr = base;
1299	pmif->irq = pdev->irq;
1300
1301	pci_set_drvdata(pdev, pmif);
1302
1303	memset(&hw, 0, sizeof(hw));
1304	pmac_ide_init_ports(&hw, pmif->regbase);
1305	hw.irq = pdev->irq;
1306	hw.dev = &pdev->dev;
1307
1308	rc = pmac_ide_setup_device(pmif, &hw);
1309	if (rc != 0) {
1310		/* The inteface is released to the common IDE layer */
1311		iounmap(base);
1312		pci_release_regions(pdev);
1313		kfree(pmif);
1314	}
1315
1316	return rc;
1317
1318out_free_pmif:
1319	kfree(pmif);
1320	return rc;
1321}
1322
1323static int
1324pmac_ide_pci_suspend(struct pci_dev *pdev, pm_message_t mesg)
1325{
1326	pmac_ide_hwif_t *pmif = pci_get_drvdata(pdev);
1327	int rc = 0;
1328
1329	if (mesg.event != pdev->dev.power.power_state.event
1330			&& (mesg.event & PM_EVENT_SLEEP)) {
1331		rc = pmac_ide_do_suspend(pmif);
1332		if (rc == 0)
1333			pdev->dev.power.power_state = mesg;
1334	}
1335
1336	return rc;
1337}
1338
1339static int
1340pmac_ide_pci_resume(struct pci_dev *pdev)
1341{
1342	pmac_ide_hwif_t *pmif = pci_get_drvdata(pdev);
1343	int rc = 0;
1344
1345	if (pdev->dev.power.power_state.event != PM_EVENT_ON) {
1346		rc = pmac_ide_do_resume(pmif);
1347		if (rc == 0)
1348			pdev->dev.power.power_state = PMSG_ON;
1349	}
1350
1351	return rc;
1352}
1353
1354#ifdef CONFIG_PMAC_MEDIABAY
1355static void pmac_ide_macio_mb_event(struct macio_dev* mdev, int mb_state)
1356{
1357	pmac_ide_hwif_t *pmif = dev_get_drvdata(&mdev->ofdev.dev);
1358
1359	switch(mb_state) {
1360	case MB_CD:
1361		if (!pmif->hwif->present)
1362			ide_port_scan(pmif->hwif);
1363		break;
1364	default:
1365		if (pmif->hwif->present)
1366			ide_port_unregister_devices(pmif->hwif);
1367	}
1368}
1369#endif /* CONFIG_PMAC_MEDIABAY */
1370
1371
1372static struct of_device_id pmac_ide_macio_match[] = 
1373{
1374	{
1375	.name 		= "IDE",
1376	},
1377	{
1378	.name 		= "ATA",
1379	},
1380	{
1381	.type		= "ide",
1382	},
1383	{
1384	.type		= "ata",
1385	},
1386	{},
1387};
1388
1389static struct macio_driver pmac_ide_macio_driver = 
1390{
1391	.driver = {
1392		.name 		= "ide-pmac",
1393		.owner		= THIS_MODULE,
1394		.of_match_table	= pmac_ide_macio_match,
1395	},
1396	.probe		= pmac_ide_macio_attach,
1397	.suspend	= pmac_ide_macio_suspend,
1398	.resume		= pmac_ide_macio_resume,
1399#ifdef CONFIG_PMAC_MEDIABAY
1400	.mediabay_event	= pmac_ide_macio_mb_event,
1401#endif
1402};
1403
1404static const struct pci_device_id pmac_ide_pci_match[] = {
1405	{ PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_UNI_N_ATA),	0 },
1406	{ PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_IPID_ATA100),	0 },
1407	{ PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_K2_ATA100),	0 },
1408	{ PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_SH_ATA),	0 },
1409	{ PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_IPID2_ATA),	0 },
1410	{},
1411};
1412
1413static struct pci_driver pmac_ide_pci_driver = {
1414	.name		= "ide-pmac",
1415	.id_table	= pmac_ide_pci_match,
1416	.probe		= pmac_ide_pci_attach,
1417	.suspend	= pmac_ide_pci_suspend,
1418	.resume		= pmac_ide_pci_resume,
1419};
1420MODULE_DEVICE_TABLE(pci, pmac_ide_pci_match);
1421
1422int __init pmac_ide_probe(void)
1423{
1424	int error;
1425
1426	if (!machine_is(powermac))
1427		return -ENODEV;
1428
1429#ifdef CONFIG_BLK_DEV_IDE_PMAC_ATA100FIRST
1430	error = pci_register_driver(&pmac_ide_pci_driver);
1431	if (error)
1432		goto out;
1433	error = macio_register_driver(&pmac_ide_macio_driver);
1434	if (error) {
1435		pci_unregister_driver(&pmac_ide_pci_driver);
1436		goto out;
1437	}
1438#else
1439	error = macio_register_driver(&pmac_ide_macio_driver);
1440	if (error)
1441		goto out;
1442	error = pci_register_driver(&pmac_ide_pci_driver);
1443	if (error) {
1444		macio_unregister_driver(&pmac_ide_macio_driver);
1445		goto out;
1446	}
1447#endif
1448out:
1449	return error;
1450}
1451
1452/*
1453 * pmac_ide_build_dmatable builds the DBDMA command list
1454 * for a transfer and sets the DBDMA channel to point to it.
1455 */
1456static int pmac_ide_build_dmatable(ide_drive_t *drive, struct ide_cmd *cmd)
1457{
1458	ide_hwif_t *hwif = drive->hwif;
1459	pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
1460	struct dbdma_cmd *table;
1461	volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1462	struct scatterlist *sg;
1463	int wr = !!(cmd->tf_flags & IDE_TFLAG_WRITE);
1464	int i = cmd->sg_nents, count = 0;
1465
1466	/* DMA table is already aligned */
1467	table = (struct dbdma_cmd *) pmif->dma_table_cpu;
1468
1469	/* Make sure DMA controller is stopped (necessary ?) */
1470	writel((RUN|PAUSE|FLUSH|WAKE|DEAD) << 16, &dma->control);
1471	while (readl(&dma->status) & RUN)
1472		udelay(1);
1473
1474	/* Build DBDMA commands list */
1475	sg = hwif->sg_table;
1476	while (i && sg_dma_len(sg)) {
1477		u32 cur_addr;
1478		u32 cur_len;
1479
1480		cur_addr = sg_dma_address(sg);
1481		cur_len = sg_dma_len(sg);
1482
1483		if (pmif->broken_dma && cur_addr & (L1_CACHE_BYTES - 1)) {
1484			if (pmif->broken_dma_warn == 0) {
1485				printk(KERN_WARNING "%s: DMA on non aligned address, "
1486				       "switching to PIO on Ohare chipset\n", drive->name);
1487				pmif->broken_dma_warn = 1;
1488			}
1489			return 0;
1490		}
1491		while (cur_len) {
1492			unsigned int tc = (cur_len < 0xfe00)? cur_len: 0xfe00;
1493
1494			if (count++ >= MAX_DCMDS) {
1495				printk(KERN_WARNING "%s: DMA table too small\n",
1496				       drive->name);
1497				return 0;
1498			}
1499			table->command = cpu_to_le16(wr? OUTPUT_MORE: INPUT_MORE);
1500			table->req_count = cpu_to_le16(tc);
1501			table->phy_addr = cpu_to_le32(cur_addr);
1502			table->cmd_dep = 0;
1503			table->xfer_status = 0;
1504			table->res_count = 0;
1505			cur_addr += tc;
1506			cur_len -= tc;
1507			++table;
1508		}
1509		sg = sg_next(sg);
1510		i--;
1511	}
1512
1513	/* convert the last command to an input/output last command */
1514	if (count) {
1515		table[-1].command = cpu_to_le16(wr? OUTPUT_LAST: INPUT_LAST);
1516		/* add the stop command to the end of the list */
1517		memset(table, 0, sizeof(struct dbdma_cmd));
1518		table->command = cpu_to_le16(DBDMA_STOP);
1519		mb();
1520		writel(hwif->dmatable_dma, &dma->cmdptr);
1521		return 1;
1522	}
1523
1524	printk(KERN_DEBUG "%s: empty DMA table?\n", drive->name);
1525
1526	return 0; /* revert to PIO for this request */
1527}
1528
1529/*
1530 * Prepare a DMA transfer. We build the DMA table, adjust the timings for
1531 * a read on KeyLargo ATA/66 and mark us as waiting for DMA completion
1532 */
1533static int pmac_ide_dma_setup(ide_drive_t *drive, struct ide_cmd *cmd)
1534{
1535	ide_hwif_t *hwif = drive->hwif;
1536	pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
1537	u8 unit = drive->dn & 1, ata4 = (pmif->kind == controller_kl_ata4);
1538	u8 write = !!(cmd->tf_flags & IDE_TFLAG_WRITE);
1539
1540	if (pmac_ide_build_dmatable(drive, cmd) == 0)
1541		return 1;
1542
1543	/* Apple adds 60ns to wrDataSetup on reads */
1544	if (ata4 && (pmif->timings[unit] & TR_66_UDMA_EN)) {
1545		writel(pmif->timings[unit] + (write ? 0 : 0x00800000UL),
1546			PMAC_IDE_REG(IDE_TIMING_CONFIG));
1547		(void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
1548	}
1549
1550	return 0;
1551}
1552
1553/*
1554 * Kick the DMA controller into life after the DMA command has been issued
1555 * to the drive.
1556 */
1557static void
1558pmac_ide_dma_start(ide_drive_t *drive)
1559{
1560	ide_hwif_t *hwif = drive->hwif;
1561	pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
1562	volatile struct dbdma_regs __iomem *dma;
1563
1564	dma = pmif->dma_regs;
1565
1566	writel((RUN << 16) | RUN, &dma->control);
1567	/* Make sure it gets to the controller right now */
1568	(void)readl(&dma->control);
1569}
1570
1571/*
1572 * After a DMA transfer, make sure the controller is stopped
1573 */
1574static int
1575pmac_ide_dma_end (ide_drive_t *drive)
1576{
1577	ide_hwif_t *hwif = drive->hwif;
1578	pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
1579	volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1580	u32 dstat;
1581
1582	dstat = readl(&dma->status);
1583	writel(((RUN|WAKE|DEAD) << 16), &dma->control);
1584
1585	/* verify good dma status. we don't check for ACTIVE beeing 0. We should...
1586	 * in theory, but with ATAPI decices doing buffer underruns, that would
1587	 * cause us to disable DMA, which isn't what we want
1588	 */
1589	return (dstat & (RUN|DEAD)) != RUN;
1590}
1591
1592/*
1593 * Check out that the interrupt we got was for us. We can't always know this
1594 * for sure with those Apple interfaces (well, we could on the recent ones but
1595 * that's not implemented yet), on the other hand, we don't have shared interrupts
1596 * so it's not really a problem
1597 */
1598static int
1599pmac_ide_dma_test_irq (ide_drive_t *drive)
1600{
1601	ide_hwif_t *hwif = drive->hwif;
1602	pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
1603	volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1604	unsigned long status, timeout;
1605
1606	/* We have to things to deal with here:
1607	 * 
1608	 * - The dbdma won't stop if the command was started
1609	 * but completed with an error without transferring all
1610	 * datas. This happens when bad blocks are met during
1611	 * a multi-block transfer.
1612	 * 
1613	 * - The dbdma fifo hasn't yet finished flushing to
1614	 * to system memory when the disk interrupt occurs.
1615	 * 
1616	 */
1617
1618	/* If ACTIVE is cleared, the STOP command have passed and
1619	 * transfer is complete.
1620	 */
1621	status = readl(&dma->status);
1622	if (!(status & ACTIVE))
1623		return 1;
1624
1625	/* If dbdma didn't execute the STOP command yet, the
1626	 * active bit is still set. We consider that we aren't
1627	 * sharing interrupts (which is hopefully the case with
1628	 * those controllers) and so we just try to flush the
1629	 * channel for pending data in the fifo
1630	 */
1631	udelay(1);
1632	writel((FLUSH << 16) | FLUSH, &dma->control);
1633	timeout = 0;
1634	for (;;) {
1635		udelay(1);
1636		status = readl(&dma->status);
1637		if ((status & FLUSH) == 0)
1638			break;
1639		if (++timeout > 100) {
1640			printk(KERN_WARNING "ide%d, ide_dma_test_irq timeout flushing channel\n",
1641			       hwif->index);
1642			break;
1643		}
1644	}	
1645	return 1;
1646}
1647
1648static void pmac_ide_dma_host_set(ide_drive_t *drive, int on)
1649{
1650}
1651
1652static void
1653pmac_ide_dma_lost_irq (ide_drive_t *drive)
1654{
1655	ide_hwif_t *hwif = drive->hwif;
1656	pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
1657	volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1658	unsigned long status = readl(&dma->status);
1659
1660	printk(KERN_ERR "ide-pmac lost interrupt, dma status: %lx\n", status);
1661}
1662
1663static const struct ide_dma_ops pmac_dma_ops = {
1664	.dma_host_set		= pmac_ide_dma_host_set,
1665	.dma_setup		= pmac_ide_dma_setup,
1666	.dma_start		= pmac_ide_dma_start,
1667	.dma_end		= pmac_ide_dma_end,
1668	.dma_test_irq		= pmac_ide_dma_test_irq,
1669	.dma_lost_irq		= pmac_ide_dma_lost_irq,
1670};
1671
1672/*
1673 * Allocate the data structures needed for using DMA with an interface
1674 * and fill the proper list of functions pointers
1675 */
1676static int pmac_ide_init_dma(ide_hwif_t *hwif, const struct ide_port_info *d)
1677{
1678	pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
1679	struct pci_dev *dev = to_pci_dev(hwif->dev);
1680
1681	/* We won't need pci_dev if we switch to generic consistent
1682	 * DMA routines ...
1683	 */
1684	if (dev == NULL || pmif->dma_regs == 0)
1685		return -ENODEV;
1686	/*
1687	 * Allocate space for the DBDMA commands.
1688	 * The +2 is +1 for the stop command and +1 to allow for
1689	 * aligning the start address to a multiple of 16 bytes.
1690	 */
1691	pmif->dma_table_cpu = dma_alloc_coherent(&dev->dev,
1692		(MAX_DCMDS + 2) * sizeof(struct dbdma_cmd),
1693		&hwif->dmatable_dma, GFP_KERNEL);
1694	if (pmif->dma_table_cpu == NULL) {
1695		printk(KERN_ERR "%s: unable to allocate DMA command list\n",
1696		       hwif->name);
1697		return -ENOMEM;
1698	}
1699
1700	hwif->sg_max_nents = MAX_DCMDS;
1701
1702	return 0;
1703}
1704
1705module_init(pmac_ide_probe);
1706
1707MODULE_LICENSE("GPL");