Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * lm85.c - Part of lm_sensors, Linux kernel modules for hardware
   4 *	    monitoring
   5 * Copyright (c) 1998, 1999  Frodo Looijaard <frodol@dds.nl>
   6 * Copyright (c) 2002, 2003  Philip Pokorny <ppokorny@penguincomputing.com>
   7 * Copyright (c) 2003        Margit Schubert-While <margitsw@t-online.de>
   8 * Copyright (c) 2004        Justin Thiessen <jthiessen@penguincomputing.com>
   9 * Copyright (C) 2007--2014  Jean Delvare <jdelvare@suse.de>
  10 *
  11 * Chip details at	      <http://www.national.com/ds/LM/LM85.pdf>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  12 */
  13
  14#include <linux/module.h>
  15#include <linux/of.h>
  16#include <linux/init.h>
  17#include <linux/slab.h>
  18#include <linux/jiffies.h>
  19#include <linux/i2c.h>
  20#include <linux/hwmon.h>
  21#include <linux/hwmon-vid.h>
  22#include <linux/hwmon-sysfs.h>
  23#include <linux/err.h>
  24#include <linux/mutex.h>
  25#include <linux/util_macros.h>
  26
  27/* Addresses to scan */
  28static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
  29
  30enum chips {
  31	lm85, lm96000,
  32	adm1027, adt7463, adt7468,
  33	emc6d100, emc6d102, emc6d103, emc6d103s
  34};
  35
  36/* The LM85 registers */
  37
  38#define LM85_REG_IN(nr)			(0x20 + (nr))
  39#define LM85_REG_IN_MIN(nr)		(0x44 + (nr) * 2)
  40#define LM85_REG_IN_MAX(nr)		(0x45 + (nr) * 2)
  41
  42#define LM85_REG_TEMP(nr)		(0x25 + (nr))
  43#define LM85_REG_TEMP_MIN(nr)		(0x4e + (nr) * 2)
  44#define LM85_REG_TEMP_MAX(nr)		(0x4f + (nr) * 2)
  45
  46/* Fan speeds are LSB, MSB (2 bytes) */
  47#define LM85_REG_FAN(nr)		(0x28 + (nr) * 2)
  48#define LM85_REG_FAN_MIN(nr)		(0x54 + (nr) * 2)
  49
  50#define LM85_REG_PWM(nr)		(0x30 + (nr))
  51
  52#define LM85_REG_COMPANY		0x3e
  53#define LM85_REG_VERSTEP		0x3f
  54
  55#define ADT7468_REG_CFG5		0x7c
  56#define ADT7468_OFF64			(1 << 0)
  57#define ADT7468_HFPWM			(1 << 1)
  58#define IS_ADT7468_OFF64(data)		\
  59	((data)->type == adt7468 && !((data)->cfg5 & ADT7468_OFF64))
  60#define IS_ADT7468_HFPWM(data)		\
  61	((data)->type == adt7468 && !((data)->cfg5 & ADT7468_HFPWM))
  62
  63/* These are the recognized values for the above regs */
  64#define LM85_COMPANY_NATIONAL		0x01
  65#define LM85_COMPANY_ANALOG_DEV		0x41
  66#define LM85_COMPANY_SMSC		0x5c
  67#define LM85_VERSTEP_LM85C		0x60
  68#define LM85_VERSTEP_LM85B		0x62
  69#define LM85_VERSTEP_LM96000_1		0x68
  70#define LM85_VERSTEP_LM96000_2		0x69
  71#define LM85_VERSTEP_ADM1027		0x60
  72#define LM85_VERSTEP_ADT7463		0x62
  73#define LM85_VERSTEP_ADT7463C		0x6A
  74#define LM85_VERSTEP_ADT7468_1		0x71
  75#define LM85_VERSTEP_ADT7468_2		0x72
  76#define LM85_VERSTEP_EMC6D100_A0        0x60
  77#define LM85_VERSTEP_EMC6D100_A1        0x61
  78#define LM85_VERSTEP_EMC6D102		0x65
  79#define LM85_VERSTEP_EMC6D103_A0	0x68
  80#define LM85_VERSTEP_EMC6D103_A1	0x69
  81#define LM85_VERSTEP_EMC6D103S		0x6A	/* Also known as EMC6D103:A2 */
  82
  83#define LM85_REG_CONFIG			0x40
  84
  85#define LM85_REG_ALARM1			0x41
  86#define LM85_REG_ALARM2			0x42
  87
  88#define LM85_REG_VID			0x43
  89
  90/* Automated FAN control */
  91#define LM85_REG_AFAN_CONFIG(nr)	(0x5c + (nr))
  92#define LM85_REG_AFAN_RANGE(nr)		(0x5f + (nr))
  93#define LM85_REG_AFAN_SPIKE1		0x62
  94#define LM85_REG_AFAN_MINPWM(nr)	(0x64 + (nr))
  95#define LM85_REG_AFAN_LIMIT(nr)		(0x67 + (nr))
  96#define LM85_REG_AFAN_CRITICAL(nr)	(0x6a + (nr))
  97#define LM85_REG_AFAN_HYST1		0x6d
  98#define LM85_REG_AFAN_HYST2		0x6e
  99
 100#define ADM1027_REG_EXTEND_ADC1		0x76
 101#define ADM1027_REG_EXTEND_ADC2		0x77
 102
 103#define EMC6D100_REG_ALARM3             0x7d
 104/* IN5, IN6 and IN7 */
 105#define EMC6D100_REG_IN(nr)             (0x70 + ((nr) - 5))
 106#define EMC6D100_REG_IN_MIN(nr)         (0x73 + ((nr) - 5) * 2)
 107#define EMC6D100_REG_IN_MAX(nr)         (0x74 + ((nr) - 5) * 2)
 108#define EMC6D102_REG_EXTEND_ADC1	0x85
 109#define EMC6D102_REG_EXTEND_ADC2	0x86
 110#define EMC6D102_REG_EXTEND_ADC3	0x87
 111#define EMC6D102_REG_EXTEND_ADC4	0x88
 112
 113/*
 114 * Conversions. Rounding and limit checking is only done on the TO_REG
 115 * variants. Note that you should be a bit careful with which arguments
 116 * these macros are called: arguments may be evaluated more than once.
 117 */
 118
 119/* IN are scaled according to built-in resistors */
 120static const int lm85_scaling[] = {  /* .001 Volts */
 121	2500, 2250, 3300, 5000, 12000,
 122	3300, 1500, 1800 /*EMC6D100*/
 123};
 124#define SCALE(val, from, to)	(((val) * (to) + ((from) / 2)) / (from))
 125
 126#define INS_TO_REG(n, val)	\
 127		SCALE(clamp_val(val, 0, 255 * lm85_scaling[n] / 192), \
 128		      lm85_scaling[n], 192)
 129
 130#define INSEXT_FROM_REG(n, val, ext)	\
 131		SCALE(((val) << 4) + (ext), 192 << 4, lm85_scaling[n])
 132
 133#define INS_FROM_REG(n, val)	SCALE((val), 192, lm85_scaling[n])
 134
 135/* FAN speed is measured using 90kHz clock */
 136static inline u16 FAN_TO_REG(unsigned long val)
 137{
 138	if (!val)
 139		return 0xffff;
 140	return clamp_val(5400000 / val, 1, 0xfffe);
 141}
 142#define FAN_FROM_REG(val)	((val) == 0 ? -1 : (val) == 0xffff ? 0 : \
 143				 5400000 / (val))
 144
 145/* Temperature is reported in .001 degC increments */
 146#define TEMP_TO_REG(val)	\
 147		DIV_ROUND_CLOSEST(clamp_val((val), -127000, 127000), 1000)
 148#define TEMPEXT_FROM_REG(val, ext)	\
 149		SCALE(((val) << 4) + (ext), 16, 1000)
 150#define TEMP_FROM_REG(val)	((val) * 1000)
 151
 152#define PWM_TO_REG(val)			clamp_val(val, 0, 255)
 153#define PWM_FROM_REG(val)		(val)
 154
 
 155/*
 156 * ZONEs have the following parameters:
 157 *    Limit (low) temp,           1. degC
 158 *    Hysteresis (below limit),   1. degC (0-15)
 159 *    Range of speed control,     .1 degC (2-80)
 160 *    Critical (high) temp,       1. degC
 161 *
 162 * FAN PWMs have the following parameters:
 163 *    Reference Zone,                 1, 2, 3, etc.
 164 *    Spinup time,                    .05 sec
 165 *    PWM value at limit/low temp,    1 count
 166 *    PWM Frequency,                  1. Hz
 167 *    PWM is Min or OFF below limit,  flag
 168 *    Invert PWM output,              flag
 169 *
 170 * Some chips filter the temp, others the fan.
 171 *    Filter constant (or disabled)   .1 seconds
 172 */
 173
 174/* These are the zone temperature range encodings in .001 degree C */
 175static const int lm85_range_map[] = {
 176	2000, 2500, 3300, 4000, 5000, 6600, 8000, 10000,
 177	13300, 16000, 20000, 26600, 32000, 40000, 53300, 80000
 178};
 179
 180static int RANGE_TO_REG(long range)
 181{
 182	return find_closest(range, lm85_range_map, ARRAY_SIZE(lm85_range_map));
 183}
 184#define RANGE_FROM_REG(val)	lm85_range_map[(val) & 0x0f]
 185
 186/* These are the PWM frequency encodings */
 187static const int lm85_freq_map[] = { /* 1 Hz */
 188	10, 15, 23, 30, 38, 47, 61, 94
 189};
 190
 191static const int lm96000_freq_map[] = { /* 1 Hz */
 192	10, 15, 23, 30, 38, 47, 61, 94,
 193	22500, 24000, 25700, 25700, 27700, 27700, 30000, 30000
 194};
 195
 196static const int adm1027_freq_map[] = { /* 1 Hz */
 197	11, 15, 22, 29, 35, 44, 59, 88
 198};
 
 199
 200static int FREQ_TO_REG(const int *map,
 201		       unsigned int map_size, unsigned long freq)
 202{
 203	return find_closest(freq, map, map_size);
 204}
 205
 206static int FREQ_FROM_REG(const int *map, unsigned int map_size, u8 reg)
 207{
 208	return map[reg % map_size];
 209}
 210
 211/*
 212 * Since we can't use strings, I'm abusing these numbers
 213 *   to stand in for the following meanings:
 214 *      1 -- PWM responds to Zone 1
 215 *      2 -- PWM responds to Zone 2
 216 *      3 -- PWM responds to Zone 3
 217 *     23 -- PWM responds to the higher temp of Zone 2 or 3
 218 *    123 -- PWM responds to highest of Zone 1, 2, or 3
 219 *      0 -- PWM is always at 0% (ie, off)
 220 *     -1 -- PWM is always at 100%
 221 *     -2 -- PWM responds to manual control
 222 */
 223
 224static const int lm85_zone_map[] = { 1, 2, 3, -1, 0, 23, 123, -2 };
 225#define ZONE_FROM_REG(val)	lm85_zone_map[(val) >> 5]
 226
 227static int ZONE_TO_REG(int zone)
 228{
 229	int i;
 230
 231	for (i = 0; i <= 7; ++i)
 232		if (zone == lm85_zone_map[i])
 233			break;
 234	if (i > 7)   /* Not found. */
 235		i = 3;  /* Always 100% */
 236	return i << 5;
 237}
 238
 239#define HYST_TO_REG(val)	clamp_val(((val) + 500) / 1000, 0, 15)
 240#define HYST_FROM_REG(val)	((val) * 1000)
 241
 242/*
 243 * Chip sampling rates
 244 *
 245 * Some sensors are not updated more frequently than once per second
 246 *    so it doesn't make sense to read them more often than that.
 247 *    We cache the results and return the saved data if the driver
 248 *    is called again before a second has elapsed.
 249 *
 250 * Also, there is significant configuration data for this chip
 251 *    given the automatic PWM fan control that is possible.  There
 252 *    are about 47 bytes of config data to only 22 bytes of actual
 253 *    readings.  So, we keep the config data up to date in the cache
 254 *    when it is written and only sample it once every 1 *minute*
 255 */
 256#define LM85_DATA_INTERVAL  (HZ + HZ / 2)
 257#define LM85_CONFIG_INTERVAL  (1 * 60 * HZ)
 258
 259/*
 260 * LM85 can automatically adjust fan speeds based on temperature
 261 * This structure encapsulates an entire Zone config.  There are
 262 * three zones (one for each temperature input) on the lm85
 263 */
 264struct lm85_zone {
 265	s8 limit;	/* Low temp limit */
 266	u8 hyst;	/* Low limit hysteresis. (0-15) */
 267	u8 range;	/* Temp range, encoded */
 268	s8 critical;	/* "All fans ON" temp limit */
 269	u8 max_desired; /*
 270			 * Actual "max" temperature specified.  Preserved
 271			 * to prevent "drift" as other autofan control
 272			 * values change.
 273			 */
 274};
 275
 276struct lm85_autofan {
 277	u8 config;	/* Register value */
 278	u8 min_pwm;	/* Minimum PWM value, encoded */
 279	u8 min_off;	/* Min PWM or OFF below "limit", flag */
 280};
 281
 282/*
 283 * For each registered chip, we need to keep some data in memory.
 284 * The structure is dynamically allocated.
 285 */
 286struct lm85_data {
 287	struct i2c_client *client;
 288	const struct attribute_group *groups[6];
 289	const int *freq_map;
 290	unsigned int freq_map_size;
 291
 292	enum chips type;
 293
 294	bool has_vid5;	/* true if VID5 is configured for ADT7463 or ADT7468 */
 295
 296	struct mutex update_lock;
 297	bool valid;		/* true if following fields are valid */
 298	unsigned long last_reading;	/* In jiffies */
 299	unsigned long last_config;	/* In jiffies */
 300
 301	u8 in[8];		/* Register value */
 302	u8 in_max[8];		/* Register value */
 303	u8 in_min[8];		/* Register value */
 304	s8 temp[3];		/* Register value */
 305	s8 temp_min[3];		/* Register value */
 306	s8 temp_max[3];		/* Register value */
 307	u16 fan[4];		/* Register value */
 308	u16 fan_min[4];		/* Register value */
 309	u8 pwm[3];		/* Register value */
 310	u8 pwm_freq[3];		/* Register encoding */
 311	u8 temp_ext[3];		/* Decoded values */
 312	u8 in_ext[8];		/* Decoded values */
 313	u8 vid;			/* Register value */
 314	u8 vrm;			/* VRM version */
 315	u32 alarms;		/* Register encoding, combined */
 316	u8 cfg5;		/* Config Register 5 on ADT7468 */
 317	struct lm85_autofan autofan[3];
 318	struct lm85_zone zone[3];
 319};
 320
 321static int lm85_read_value(struct i2c_client *client, u8 reg)
 322{
 323	int res;
 324
 325	/* What size location is it? */
 326	switch (reg) {
 327	case LM85_REG_FAN(0):  /* Read WORD data */
 328	case LM85_REG_FAN(1):
 329	case LM85_REG_FAN(2):
 330	case LM85_REG_FAN(3):
 331	case LM85_REG_FAN_MIN(0):
 332	case LM85_REG_FAN_MIN(1):
 333	case LM85_REG_FAN_MIN(2):
 334	case LM85_REG_FAN_MIN(3):
 335	case LM85_REG_ALARM1:	/* Read both bytes at once */
 336		res = i2c_smbus_read_byte_data(client, reg) & 0xff;
 337		res |= i2c_smbus_read_byte_data(client, reg + 1) << 8;
 338		break;
 339	default:	/* Read BYTE data */
 340		res = i2c_smbus_read_byte_data(client, reg);
 341		break;
 342	}
 343
 344	return res;
 345}
 346
 347static void lm85_write_value(struct i2c_client *client, u8 reg, int value)
 348{
 349	switch (reg) {
 350	case LM85_REG_FAN(0):  /* Write WORD data */
 351	case LM85_REG_FAN(1):
 352	case LM85_REG_FAN(2):
 353	case LM85_REG_FAN(3):
 354	case LM85_REG_FAN_MIN(0):
 355	case LM85_REG_FAN_MIN(1):
 356	case LM85_REG_FAN_MIN(2):
 357	case LM85_REG_FAN_MIN(3):
 358	/* NOTE: ALARM is read only, so not included here */
 359		i2c_smbus_write_byte_data(client, reg, value & 0xff);
 360		i2c_smbus_write_byte_data(client, reg + 1, value >> 8);
 361		break;
 362	default:	/* Write BYTE data */
 363		i2c_smbus_write_byte_data(client, reg, value);
 364		break;
 365	}
 366}
 367
 368static struct lm85_data *lm85_update_device(struct device *dev)
 369{
 370	struct lm85_data *data = dev_get_drvdata(dev);
 371	struct i2c_client *client = data->client;
 372	int i;
 373
 374	mutex_lock(&data->update_lock);
 375
 376	if (!data->valid ||
 377	     time_after(jiffies, data->last_reading + LM85_DATA_INTERVAL)) {
 378		/* Things that change quickly */
 379		dev_dbg(&client->dev, "Reading sensor values\n");
 380
 381		/*
 382		 * Have to read extended bits first to "freeze" the
 383		 * more significant bits that are read later.
 384		 * There are 2 additional resolution bits per channel and we
 385		 * have room for 4, so we shift them to the left.
 386		 */
 387		if (data->type == adm1027 || data->type == adt7463 ||
 388		    data->type == adt7468) {
 389			int ext1 = lm85_read_value(client,
 390						   ADM1027_REG_EXTEND_ADC1);
 391			int ext2 =  lm85_read_value(client,
 392						    ADM1027_REG_EXTEND_ADC2);
 393			int val = (ext1 << 8) + ext2;
 394
 395			for (i = 0; i <= 4; i++)
 396				data->in_ext[i] =
 397					((val >> (i * 2)) & 0x03) << 2;
 398
 399			for (i = 0; i <= 2; i++)
 400				data->temp_ext[i] =
 401					(val >> ((i + 4) * 2)) & 0x0c;
 402		}
 403
 404		data->vid = lm85_read_value(client, LM85_REG_VID);
 405
 406		for (i = 0; i <= 3; ++i) {
 407			data->in[i] =
 408			    lm85_read_value(client, LM85_REG_IN(i));
 409			data->fan[i] =
 410			    lm85_read_value(client, LM85_REG_FAN(i));
 411		}
 412
 413		if (!data->has_vid5)
 414			data->in[4] = lm85_read_value(client, LM85_REG_IN(4));
 415
 416		if (data->type == adt7468)
 417			data->cfg5 = lm85_read_value(client, ADT7468_REG_CFG5);
 418
 419		for (i = 0; i <= 2; ++i) {
 420			data->temp[i] =
 421			    lm85_read_value(client, LM85_REG_TEMP(i));
 422			data->pwm[i] =
 423			    lm85_read_value(client, LM85_REG_PWM(i));
 424
 425			if (IS_ADT7468_OFF64(data))
 426				data->temp[i] -= 64;
 427		}
 428
 429		data->alarms = lm85_read_value(client, LM85_REG_ALARM1);
 430
 431		if (data->type == emc6d100) {
 432			/* Three more voltage sensors */
 433			for (i = 5; i <= 7; ++i) {
 434				data->in[i] = lm85_read_value(client,
 435							EMC6D100_REG_IN(i));
 436			}
 437			/* More alarm bits */
 438			data->alarms |= lm85_read_value(client,
 439						EMC6D100_REG_ALARM3) << 16;
 440		} else if (data->type == emc6d102 || data->type == emc6d103 ||
 441			   data->type == emc6d103s) {
 442			/*
 443			 * Have to read LSB bits after the MSB ones because
 444			 * the reading of the MSB bits has frozen the
 445			 * LSBs (backward from the ADM1027).
 446			 */
 447			int ext1 = lm85_read_value(client,
 448						   EMC6D102_REG_EXTEND_ADC1);
 449			int ext2 = lm85_read_value(client,
 450						   EMC6D102_REG_EXTEND_ADC2);
 451			int ext3 = lm85_read_value(client,
 452						   EMC6D102_REG_EXTEND_ADC3);
 453			int ext4 = lm85_read_value(client,
 454						   EMC6D102_REG_EXTEND_ADC4);
 455			data->in_ext[0] = ext3 & 0x0f;
 456			data->in_ext[1] = ext4 & 0x0f;
 457			data->in_ext[2] = ext4 >> 4;
 458			data->in_ext[3] = ext3 >> 4;
 459			data->in_ext[4] = ext2 >> 4;
 460
 461			data->temp_ext[0] = ext1 & 0x0f;
 462			data->temp_ext[1] = ext2 & 0x0f;
 463			data->temp_ext[2] = ext1 >> 4;
 464		}
 465
 466		data->last_reading = jiffies;
 467	}  /* last_reading */
 468
 469	if (!data->valid ||
 470	     time_after(jiffies, data->last_config + LM85_CONFIG_INTERVAL)) {
 471		/* Things that don't change often */
 472		dev_dbg(&client->dev, "Reading config values\n");
 473
 474		for (i = 0; i <= 3; ++i) {
 475			data->in_min[i] =
 476			    lm85_read_value(client, LM85_REG_IN_MIN(i));
 477			data->in_max[i] =
 478			    lm85_read_value(client, LM85_REG_IN_MAX(i));
 479			data->fan_min[i] =
 480			    lm85_read_value(client, LM85_REG_FAN_MIN(i));
 481		}
 482
 483		if (!data->has_vid5)  {
 484			data->in_min[4] = lm85_read_value(client,
 485					  LM85_REG_IN_MIN(4));
 486			data->in_max[4] = lm85_read_value(client,
 487					  LM85_REG_IN_MAX(4));
 488		}
 489
 490		if (data->type == emc6d100) {
 491			for (i = 5; i <= 7; ++i) {
 492				data->in_min[i] = lm85_read_value(client,
 493						EMC6D100_REG_IN_MIN(i));
 494				data->in_max[i] = lm85_read_value(client,
 495						EMC6D100_REG_IN_MAX(i));
 496			}
 497		}
 498
 499		for (i = 0; i <= 2; ++i) {
 500			int val;
 501
 502			data->temp_min[i] =
 503			    lm85_read_value(client, LM85_REG_TEMP_MIN(i));
 504			data->temp_max[i] =
 505			    lm85_read_value(client, LM85_REG_TEMP_MAX(i));
 506
 507			data->autofan[i].config =
 508			    lm85_read_value(client, LM85_REG_AFAN_CONFIG(i));
 509			val = lm85_read_value(client, LM85_REG_AFAN_RANGE(i));
 510			data->pwm_freq[i] = val % data->freq_map_size;
 511			data->zone[i].range = val >> 4;
 512			data->autofan[i].min_pwm =
 513			    lm85_read_value(client, LM85_REG_AFAN_MINPWM(i));
 514			data->zone[i].limit =
 515			    lm85_read_value(client, LM85_REG_AFAN_LIMIT(i));
 516			data->zone[i].critical =
 517			    lm85_read_value(client, LM85_REG_AFAN_CRITICAL(i));
 518
 519			if (IS_ADT7468_OFF64(data)) {
 520				data->temp_min[i] -= 64;
 521				data->temp_max[i] -= 64;
 522				data->zone[i].limit -= 64;
 523				data->zone[i].critical -= 64;
 524			}
 525		}
 526
 527		if (data->type != emc6d103s) {
 528			i = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
 529			data->autofan[0].min_off = (i & 0x20) != 0;
 530			data->autofan[1].min_off = (i & 0x40) != 0;
 531			data->autofan[2].min_off = (i & 0x80) != 0;
 532
 533			i = lm85_read_value(client, LM85_REG_AFAN_HYST1);
 534			data->zone[0].hyst = i >> 4;
 535			data->zone[1].hyst = i & 0x0f;
 536
 537			i = lm85_read_value(client, LM85_REG_AFAN_HYST2);
 538			data->zone[2].hyst = i >> 4;
 539		}
 540
 541		data->last_config = jiffies;
 542	}  /* last_config */
 543
 544	data->valid = true;
 545
 546	mutex_unlock(&data->update_lock);
 547
 548	return data;
 549}
 550
 551/* 4 Fans */
 552static ssize_t fan_show(struct device *dev, struct device_attribute *attr,
 553			char *buf)
 554{
 555	int nr = to_sensor_dev_attr(attr)->index;
 556	struct lm85_data *data = lm85_update_device(dev);
 557	return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr]));
 558}
 559
 560static ssize_t fan_min_show(struct device *dev, struct device_attribute *attr,
 561			    char *buf)
 562{
 563	int nr = to_sensor_dev_attr(attr)->index;
 564	struct lm85_data *data = lm85_update_device(dev);
 565	return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr]));
 566}
 567
 568static ssize_t fan_min_store(struct device *dev,
 569			     struct device_attribute *attr, const char *buf,
 570			     size_t count)
 571{
 572	int nr = to_sensor_dev_attr(attr)->index;
 573	struct lm85_data *data = dev_get_drvdata(dev);
 574	struct i2c_client *client = data->client;
 575	unsigned long val;
 576	int err;
 577
 578	err = kstrtoul(buf, 10, &val);
 579	if (err)
 580		return err;
 581
 582	mutex_lock(&data->update_lock);
 583	data->fan_min[nr] = FAN_TO_REG(val);
 584	lm85_write_value(client, LM85_REG_FAN_MIN(nr), data->fan_min[nr]);
 585	mutex_unlock(&data->update_lock);
 586	return count;
 587}
 588
 589static SENSOR_DEVICE_ATTR_RO(fan1_input, fan, 0);
 590static SENSOR_DEVICE_ATTR_RW(fan1_min, fan_min, 0);
 591static SENSOR_DEVICE_ATTR_RO(fan2_input, fan, 1);
 592static SENSOR_DEVICE_ATTR_RW(fan2_min, fan_min, 1);
 593static SENSOR_DEVICE_ATTR_RO(fan3_input, fan, 2);
 594static SENSOR_DEVICE_ATTR_RW(fan3_min, fan_min, 2);
 595static SENSOR_DEVICE_ATTR_RO(fan4_input, fan, 3);
 596static SENSOR_DEVICE_ATTR_RW(fan4_min, fan_min, 3);
 
 
 597
 598/* vid, vrm, alarms */
 599
 600static ssize_t cpu0_vid_show(struct device *dev,
 601			     struct device_attribute *attr, char *buf)
 602{
 603	struct lm85_data *data = lm85_update_device(dev);
 604	int vid;
 605
 606	if (data->has_vid5) {
 607		/* 6-pin VID (VRM 10) */
 608		vid = vid_from_reg(data->vid & 0x3f, data->vrm);
 609	} else {
 610		/* 5-pin VID (VRM 9) */
 611		vid = vid_from_reg(data->vid & 0x1f, data->vrm);
 612	}
 613
 614	return sprintf(buf, "%d\n", vid);
 615}
 616
 617static DEVICE_ATTR_RO(cpu0_vid);
 618
 619static ssize_t vrm_show(struct device *dev, struct device_attribute *attr,
 620			char *buf)
 621{
 622	struct lm85_data *data = dev_get_drvdata(dev);
 623	return sprintf(buf, "%ld\n", (long) data->vrm);
 624}
 625
 626static ssize_t vrm_store(struct device *dev, struct device_attribute *attr,
 627			 const char *buf, size_t count)
 628{
 629	struct lm85_data *data = dev_get_drvdata(dev);
 630	unsigned long val;
 631	int err;
 632
 633	err = kstrtoul(buf, 10, &val);
 634	if (err)
 635		return err;
 636
 637	if (val > 255)
 638		return -EINVAL;
 639
 640	data->vrm = val;
 641	return count;
 642}
 643
 644static DEVICE_ATTR_RW(vrm);
 645
 646static ssize_t alarms_show(struct device *dev, struct device_attribute *attr,
 647			   char *buf)
 648{
 649	struct lm85_data *data = lm85_update_device(dev);
 650	return sprintf(buf, "%u\n", data->alarms);
 651}
 652
 653static DEVICE_ATTR_RO(alarms);
 654
 655static ssize_t alarm_show(struct device *dev, struct device_attribute *attr,
 656			  char *buf)
 657{
 658	int nr = to_sensor_dev_attr(attr)->index;
 659	struct lm85_data *data = lm85_update_device(dev);
 660	return sprintf(buf, "%u\n", (data->alarms >> nr) & 1);
 661}
 662
 663static SENSOR_DEVICE_ATTR_RO(in0_alarm, alarm, 0);
 664static SENSOR_DEVICE_ATTR_RO(in1_alarm, alarm, 1);
 665static SENSOR_DEVICE_ATTR_RO(in2_alarm, alarm, 2);
 666static SENSOR_DEVICE_ATTR_RO(in3_alarm, alarm, 3);
 667static SENSOR_DEVICE_ATTR_RO(in4_alarm, alarm, 8);
 668static SENSOR_DEVICE_ATTR_RO(in5_alarm, alarm, 18);
 669static SENSOR_DEVICE_ATTR_RO(in6_alarm, alarm, 16);
 670static SENSOR_DEVICE_ATTR_RO(in7_alarm, alarm, 17);
 671static SENSOR_DEVICE_ATTR_RO(temp1_alarm, alarm, 4);
 672static SENSOR_DEVICE_ATTR_RO(temp1_fault, alarm, 14);
 673static SENSOR_DEVICE_ATTR_RO(temp2_alarm, alarm, 5);
 674static SENSOR_DEVICE_ATTR_RO(temp3_alarm, alarm, 6);
 675static SENSOR_DEVICE_ATTR_RO(temp3_fault, alarm, 15);
 676static SENSOR_DEVICE_ATTR_RO(fan1_alarm, alarm, 10);
 677static SENSOR_DEVICE_ATTR_RO(fan2_alarm, alarm, 11);
 678static SENSOR_DEVICE_ATTR_RO(fan3_alarm, alarm, 12);
 679static SENSOR_DEVICE_ATTR_RO(fan4_alarm, alarm, 13);
 680
 681/* pwm */
 682
 683static ssize_t pwm_show(struct device *dev, struct device_attribute *attr,
 684			char *buf)
 685{
 686	int nr = to_sensor_dev_attr(attr)->index;
 687	struct lm85_data *data = lm85_update_device(dev);
 688	return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
 689}
 690
 691static ssize_t pwm_store(struct device *dev, struct device_attribute *attr,
 692			 const char *buf, size_t count)
 693{
 694	int nr = to_sensor_dev_attr(attr)->index;
 695	struct lm85_data *data = dev_get_drvdata(dev);
 696	struct i2c_client *client = data->client;
 697	unsigned long val;
 698	int err;
 699
 700	err = kstrtoul(buf, 10, &val);
 701	if (err)
 702		return err;
 703
 704	mutex_lock(&data->update_lock);
 705	data->pwm[nr] = PWM_TO_REG(val);
 706	lm85_write_value(client, LM85_REG_PWM(nr), data->pwm[nr]);
 707	mutex_unlock(&data->update_lock);
 708	return count;
 709}
 710
 711static ssize_t pwm_enable_show(struct device *dev,
 712			       struct device_attribute *attr, char *buf)
 713{
 714	int nr = to_sensor_dev_attr(attr)->index;
 715	struct lm85_data *data = lm85_update_device(dev);
 716	int pwm_zone, enable;
 717
 718	pwm_zone = ZONE_FROM_REG(data->autofan[nr].config);
 719	switch (pwm_zone) {
 720	case -1:	/* PWM is always at 100% */
 721		enable = 0;
 722		break;
 723	case 0:		/* PWM is always at 0% */
 724	case -2:	/* PWM responds to manual control */
 725		enable = 1;
 726		break;
 727	default:	/* PWM in automatic mode */
 728		enable = 2;
 729	}
 730	return sprintf(buf, "%d\n", enable);
 731}
 732
 733static ssize_t pwm_enable_store(struct device *dev,
 734				struct device_attribute *attr,
 735				const char *buf, size_t count)
 736{
 737	int nr = to_sensor_dev_attr(attr)->index;
 738	struct lm85_data *data = dev_get_drvdata(dev);
 739	struct i2c_client *client = data->client;
 740	u8 config;
 741	unsigned long val;
 742	int err;
 743
 744	err = kstrtoul(buf, 10, &val);
 745	if (err)
 746		return err;
 747
 748	switch (val) {
 749	case 0:
 750		config = 3;
 751		break;
 752	case 1:
 753		config = 7;
 754		break;
 755	case 2:
 756		/*
 757		 * Here we have to choose arbitrarily one of the 5 possible
 758		 * configurations; I go for the safest
 759		 */
 760		config = 6;
 761		break;
 762	default:
 763		return -EINVAL;
 764	}
 765
 766	mutex_lock(&data->update_lock);
 767	data->autofan[nr].config = lm85_read_value(client,
 768		LM85_REG_AFAN_CONFIG(nr));
 769	data->autofan[nr].config = (data->autofan[nr].config & ~0xe0)
 770		| (config << 5);
 771	lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
 772		data->autofan[nr].config);
 773	mutex_unlock(&data->update_lock);
 774	return count;
 775}
 776
 777static ssize_t pwm_freq_show(struct device *dev,
 778			     struct device_attribute *attr, char *buf)
 779{
 780	int nr = to_sensor_dev_attr(attr)->index;
 781	struct lm85_data *data = lm85_update_device(dev);
 782	int freq;
 783
 784	if (IS_ADT7468_HFPWM(data))
 785		freq = 22500;
 786	else
 787		freq = FREQ_FROM_REG(data->freq_map, data->freq_map_size,
 788				     data->pwm_freq[nr]);
 789
 790	return sprintf(buf, "%d\n", freq);
 791}
 792
 793static ssize_t pwm_freq_store(struct device *dev,
 794			      struct device_attribute *attr, const char *buf,
 795			      size_t count)
 796{
 797	int nr = to_sensor_dev_attr(attr)->index;
 798	struct lm85_data *data = dev_get_drvdata(dev);
 799	struct i2c_client *client = data->client;
 800	unsigned long val;
 801	int err;
 802
 803	err = kstrtoul(buf, 10, &val);
 804	if (err)
 805		return err;
 806
 807	mutex_lock(&data->update_lock);
 808	/*
 809	 * The ADT7468 has a special high-frequency PWM output mode,
 810	 * where all PWM outputs are driven by a 22.5 kHz clock.
 811	 * This might confuse the user, but there's not much we can do.
 812	 */
 813	if (data->type == adt7468 && val >= 11300) {	/* High freq. mode */
 814		data->cfg5 &= ~ADT7468_HFPWM;
 815		lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
 816	} else {					/* Low freq. mode */
 817		data->pwm_freq[nr] = FREQ_TO_REG(data->freq_map,
 818						 data->freq_map_size, val);
 819		lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
 820				 (data->zone[nr].range << 4)
 821				 | data->pwm_freq[nr]);
 822		if (data->type == adt7468) {
 823			data->cfg5 |= ADT7468_HFPWM;
 824			lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
 825		}
 826	}
 827	mutex_unlock(&data->update_lock);
 828	return count;
 829}
 830
 831static SENSOR_DEVICE_ATTR_RW(pwm1, pwm, 0);
 832static SENSOR_DEVICE_ATTR_RW(pwm1_enable, pwm_enable, 0);
 833static SENSOR_DEVICE_ATTR_RW(pwm1_freq, pwm_freq, 0);
 834static SENSOR_DEVICE_ATTR_RW(pwm2, pwm, 1);
 835static SENSOR_DEVICE_ATTR_RW(pwm2_enable, pwm_enable, 1);
 836static SENSOR_DEVICE_ATTR_RW(pwm2_freq, pwm_freq, 1);
 837static SENSOR_DEVICE_ATTR_RW(pwm3, pwm, 2);
 838static SENSOR_DEVICE_ATTR_RW(pwm3_enable, pwm_enable, 2);
 839static SENSOR_DEVICE_ATTR_RW(pwm3_freq, pwm_freq, 2);
 
 
 840
 841/* Voltages */
 842
 843static ssize_t in_show(struct device *dev, struct device_attribute *attr,
 844		       char *buf)
 845{
 846	int nr = to_sensor_dev_attr(attr)->index;
 847	struct lm85_data *data = lm85_update_device(dev);
 848	return sprintf(buf, "%d\n", INSEXT_FROM_REG(nr, data->in[nr],
 849						    data->in_ext[nr]));
 850}
 851
 852static ssize_t in_min_show(struct device *dev, struct device_attribute *attr,
 853			   char *buf)
 854{
 855	int nr = to_sensor_dev_attr(attr)->index;
 856	struct lm85_data *data = lm85_update_device(dev);
 857	return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_min[nr]));
 858}
 859
 860static ssize_t in_min_store(struct device *dev, struct device_attribute *attr,
 861			    const char *buf, size_t count)
 862{
 863	int nr = to_sensor_dev_attr(attr)->index;
 864	struct lm85_data *data = dev_get_drvdata(dev);
 865	struct i2c_client *client = data->client;
 866	long val;
 867	int err;
 868
 869	err = kstrtol(buf, 10, &val);
 870	if (err)
 871		return err;
 872
 873	mutex_lock(&data->update_lock);
 874	data->in_min[nr] = INS_TO_REG(nr, val);
 875	lm85_write_value(client, LM85_REG_IN_MIN(nr), data->in_min[nr]);
 876	mutex_unlock(&data->update_lock);
 877	return count;
 878}
 879
 880static ssize_t in_max_show(struct device *dev, struct device_attribute *attr,
 881			   char *buf)
 882{
 883	int nr = to_sensor_dev_attr(attr)->index;
 884	struct lm85_data *data = lm85_update_device(dev);
 885	return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_max[nr]));
 886}
 887
 888static ssize_t in_max_store(struct device *dev, struct device_attribute *attr,
 889			    const char *buf, size_t count)
 890{
 891	int nr = to_sensor_dev_attr(attr)->index;
 892	struct lm85_data *data = dev_get_drvdata(dev);
 893	struct i2c_client *client = data->client;
 894	long val;
 895	int err;
 896
 897	err = kstrtol(buf, 10, &val);
 898	if (err)
 899		return err;
 900
 901	mutex_lock(&data->update_lock);
 902	data->in_max[nr] = INS_TO_REG(nr, val);
 903	lm85_write_value(client, LM85_REG_IN_MAX(nr), data->in_max[nr]);
 904	mutex_unlock(&data->update_lock);
 905	return count;
 906}
 907
 908static SENSOR_DEVICE_ATTR_RO(in0_input, in, 0);
 909static SENSOR_DEVICE_ATTR_RW(in0_min, in_min, 0);
 910static SENSOR_DEVICE_ATTR_RW(in0_max, in_max, 0);
 911static SENSOR_DEVICE_ATTR_RO(in1_input, in, 1);
 912static SENSOR_DEVICE_ATTR_RW(in1_min, in_min, 1);
 913static SENSOR_DEVICE_ATTR_RW(in1_max, in_max, 1);
 914static SENSOR_DEVICE_ATTR_RO(in2_input, in, 2);
 915static SENSOR_DEVICE_ATTR_RW(in2_min, in_min, 2);
 916static SENSOR_DEVICE_ATTR_RW(in2_max, in_max, 2);
 917static SENSOR_DEVICE_ATTR_RO(in3_input, in, 3);
 918static SENSOR_DEVICE_ATTR_RW(in3_min, in_min, 3);
 919static SENSOR_DEVICE_ATTR_RW(in3_max, in_max, 3);
 920static SENSOR_DEVICE_ATTR_RO(in4_input, in, 4);
 921static SENSOR_DEVICE_ATTR_RW(in4_min, in_min, 4);
 922static SENSOR_DEVICE_ATTR_RW(in4_max, in_max, 4);
 923static SENSOR_DEVICE_ATTR_RO(in5_input, in, 5);
 924static SENSOR_DEVICE_ATTR_RW(in5_min, in_min, 5);
 925static SENSOR_DEVICE_ATTR_RW(in5_max, in_max, 5);
 926static SENSOR_DEVICE_ATTR_RO(in6_input, in, 6);
 927static SENSOR_DEVICE_ATTR_RW(in6_min, in_min, 6);
 928static SENSOR_DEVICE_ATTR_RW(in6_max, in_max, 6);
 929static SENSOR_DEVICE_ATTR_RO(in7_input, in, 7);
 930static SENSOR_DEVICE_ATTR_RW(in7_min, in_min, 7);
 931static SENSOR_DEVICE_ATTR_RW(in7_max, in_max, 7);
 932
 933/* Temps */
 934
 935static ssize_t temp_show(struct device *dev, struct device_attribute *attr,
 936			 char *buf)
 937{
 938	int nr = to_sensor_dev_attr(attr)->index;
 939	struct lm85_data *data = lm85_update_device(dev);
 940	return sprintf(buf, "%d\n", TEMPEXT_FROM_REG(data->temp[nr],
 941						     data->temp_ext[nr]));
 942}
 943
 944static ssize_t temp_min_show(struct device *dev,
 945			     struct device_attribute *attr, char *buf)
 946{
 947	int nr = to_sensor_dev_attr(attr)->index;
 948	struct lm85_data *data = lm85_update_device(dev);
 949	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
 950}
 951
 952static ssize_t temp_min_store(struct device *dev,
 953			      struct device_attribute *attr, const char *buf,
 954			      size_t count)
 955{
 956	int nr = to_sensor_dev_attr(attr)->index;
 957	struct lm85_data *data = dev_get_drvdata(dev);
 958	struct i2c_client *client = data->client;
 959	long val;
 960	int err;
 961
 962	err = kstrtol(buf, 10, &val);
 963	if (err)
 964		return err;
 965
 966	if (IS_ADT7468_OFF64(data))
 967		val += 64;
 968
 969	mutex_lock(&data->update_lock);
 970	data->temp_min[nr] = TEMP_TO_REG(val);
 971	lm85_write_value(client, LM85_REG_TEMP_MIN(nr), data->temp_min[nr]);
 972	mutex_unlock(&data->update_lock);
 973	return count;
 974}
 975
 976static ssize_t temp_max_show(struct device *dev,
 977			     struct device_attribute *attr, char *buf)
 978{
 979	int nr = to_sensor_dev_attr(attr)->index;
 980	struct lm85_data *data = lm85_update_device(dev);
 981	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
 982}
 983
 984static ssize_t temp_max_store(struct device *dev,
 985			      struct device_attribute *attr, const char *buf,
 986			      size_t count)
 987{
 988	int nr = to_sensor_dev_attr(attr)->index;
 989	struct lm85_data *data = dev_get_drvdata(dev);
 990	struct i2c_client *client = data->client;
 991	long val;
 992	int err;
 993
 994	err = kstrtol(buf, 10, &val);
 995	if (err)
 996		return err;
 997
 998	if (IS_ADT7468_OFF64(data))
 999		val += 64;
1000
1001	mutex_lock(&data->update_lock);
1002	data->temp_max[nr] = TEMP_TO_REG(val);
1003	lm85_write_value(client, LM85_REG_TEMP_MAX(nr), data->temp_max[nr]);
1004	mutex_unlock(&data->update_lock);
1005	return count;
1006}
1007
1008static SENSOR_DEVICE_ATTR_RO(temp1_input, temp, 0);
1009static SENSOR_DEVICE_ATTR_RW(temp1_min, temp_min, 0);
1010static SENSOR_DEVICE_ATTR_RW(temp1_max, temp_max, 0);
1011static SENSOR_DEVICE_ATTR_RO(temp2_input, temp, 1);
1012static SENSOR_DEVICE_ATTR_RW(temp2_min, temp_min, 1);
1013static SENSOR_DEVICE_ATTR_RW(temp2_max, temp_max, 1);
1014static SENSOR_DEVICE_ATTR_RO(temp3_input, temp, 2);
1015static SENSOR_DEVICE_ATTR_RW(temp3_min, temp_min, 2);
1016static SENSOR_DEVICE_ATTR_RW(temp3_max, temp_max, 2);
 
 
 
1017
1018/* Automatic PWM control */
1019
1020static ssize_t pwm_auto_channels_show(struct device *dev,
1021				      struct device_attribute *attr,
1022				      char *buf)
1023{
1024	int nr = to_sensor_dev_attr(attr)->index;
1025	struct lm85_data *data = lm85_update_device(dev);
1026	return sprintf(buf, "%d\n", ZONE_FROM_REG(data->autofan[nr].config));
1027}
1028
1029static ssize_t pwm_auto_channels_store(struct device *dev,
1030				       struct device_attribute *attr,
1031				       const char *buf, size_t count)
1032{
1033	int nr = to_sensor_dev_attr(attr)->index;
1034	struct lm85_data *data = dev_get_drvdata(dev);
1035	struct i2c_client *client = data->client;
1036	long val;
1037	int err;
1038
1039	err = kstrtol(buf, 10, &val);
1040	if (err)
1041		return err;
1042
1043	mutex_lock(&data->update_lock);
1044	data->autofan[nr].config = (data->autofan[nr].config & (~0xe0))
1045		| ZONE_TO_REG(val);
1046	lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
1047		data->autofan[nr].config);
1048	mutex_unlock(&data->update_lock);
1049	return count;
1050}
1051
1052static ssize_t pwm_auto_pwm_min_show(struct device *dev,
1053				     struct device_attribute *attr, char *buf)
1054{
1055	int nr = to_sensor_dev_attr(attr)->index;
1056	struct lm85_data *data = lm85_update_device(dev);
1057	return sprintf(buf, "%d\n", PWM_FROM_REG(data->autofan[nr].min_pwm));
1058}
1059
1060static ssize_t pwm_auto_pwm_min_store(struct device *dev,
1061				      struct device_attribute *attr,
1062				      const char *buf, size_t count)
1063{
1064	int nr = to_sensor_dev_attr(attr)->index;
1065	struct lm85_data *data = dev_get_drvdata(dev);
1066	struct i2c_client *client = data->client;
1067	unsigned long val;
1068	int err;
1069
1070	err = kstrtoul(buf, 10, &val);
1071	if (err)
1072		return err;
1073
1074	mutex_lock(&data->update_lock);
1075	data->autofan[nr].min_pwm = PWM_TO_REG(val);
1076	lm85_write_value(client, LM85_REG_AFAN_MINPWM(nr),
1077		data->autofan[nr].min_pwm);
1078	mutex_unlock(&data->update_lock);
1079	return count;
1080}
1081
1082static ssize_t pwm_auto_pwm_minctl_show(struct device *dev,
1083					struct device_attribute *attr,
1084					char *buf)
1085{
1086	int nr = to_sensor_dev_attr(attr)->index;
1087	struct lm85_data *data = lm85_update_device(dev);
1088	return sprintf(buf, "%d\n", data->autofan[nr].min_off);
1089}
1090
1091static ssize_t pwm_auto_pwm_minctl_store(struct device *dev,
1092					 struct device_attribute *attr,
1093					 const char *buf, size_t count)
1094{
1095	int nr = to_sensor_dev_attr(attr)->index;
1096	struct lm85_data *data = dev_get_drvdata(dev);
1097	struct i2c_client *client = data->client;
1098	u8 tmp;
1099	long val;
1100	int err;
1101
1102	err = kstrtol(buf, 10, &val);
1103	if (err)
1104		return err;
1105
1106	mutex_lock(&data->update_lock);
1107	data->autofan[nr].min_off = val;
1108	tmp = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
1109	tmp &= ~(0x20 << nr);
1110	if (data->autofan[nr].min_off)
1111		tmp |= 0x20 << nr;
1112	lm85_write_value(client, LM85_REG_AFAN_SPIKE1, tmp);
1113	mutex_unlock(&data->update_lock);
1114	return count;
1115}
1116
1117static SENSOR_DEVICE_ATTR_RW(pwm1_auto_channels, pwm_auto_channels, 0);
1118static SENSOR_DEVICE_ATTR_RW(pwm1_auto_pwm_min, pwm_auto_pwm_min, 0);
1119static SENSOR_DEVICE_ATTR_RW(pwm1_auto_pwm_minctl, pwm_auto_pwm_minctl, 0);
1120static SENSOR_DEVICE_ATTR_RW(pwm2_auto_channels, pwm_auto_channels, 1);
1121static SENSOR_DEVICE_ATTR_RW(pwm2_auto_pwm_min, pwm_auto_pwm_min, 1);
1122static SENSOR_DEVICE_ATTR_RW(pwm2_auto_pwm_minctl, pwm_auto_pwm_minctl, 1);
1123static SENSOR_DEVICE_ATTR_RW(pwm3_auto_channels, pwm_auto_channels, 2);
1124static SENSOR_DEVICE_ATTR_RW(pwm3_auto_pwm_min, pwm_auto_pwm_min, 2);
1125static SENSOR_DEVICE_ATTR_RW(pwm3_auto_pwm_minctl, pwm_auto_pwm_minctl, 2);
 
 
 
 
 
1126
1127/* Temperature settings for automatic PWM control */
1128
1129static ssize_t temp_auto_temp_off_show(struct device *dev,
1130				       struct device_attribute *attr,
1131				       char *buf)
1132{
1133	int nr = to_sensor_dev_attr(attr)->index;
1134	struct lm85_data *data = lm85_update_device(dev);
1135	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) -
1136		HYST_FROM_REG(data->zone[nr].hyst));
1137}
1138
1139static ssize_t temp_auto_temp_off_store(struct device *dev,
1140					struct device_attribute *attr,
1141					const char *buf, size_t count)
1142{
1143	int nr = to_sensor_dev_attr(attr)->index;
1144	struct lm85_data *data = dev_get_drvdata(dev);
1145	struct i2c_client *client = data->client;
1146	int min;
1147	long val;
1148	int err;
1149
1150	err = kstrtol(buf, 10, &val);
1151	if (err)
1152		return err;
1153
1154	mutex_lock(&data->update_lock);
1155	min = TEMP_FROM_REG(data->zone[nr].limit);
1156	data->zone[nr].hyst = HYST_TO_REG(min - val);
1157	if (nr == 0 || nr == 1) {
1158		lm85_write_value(client, LM85_REG_AFAN_HYST1,
1159			(data->zone[0].hyst << 4)
1160			| data->zone[1].hyst);
1161	} else {
1162		lm85_write_value(client, LM85_REG_AFAN_HYST2,
1163			(data->zone[2].hyst << 4));
1164	}
1165	mutex_unlock(&data->update_lock);
1166	return count;
1167}
1168
1169static ssize_t temp_auto_temp_min_show(struct device *dev,
1170				       struct device_attribute *attr,
1171				       char *buf)
1172{
1173	int nr = to_sensor_dev_attr(attr)->index;
1174	struct lm85_data *data = lm85_update_device(dev);
1175	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit));
1176}
1177
1178static ssize_t temp_auto_temp_min_store(struct device *dev,
1179					struct device_attribute *attr,
1180					const char *buf, size_t count)
1181{
1182	int nr = to_sensor_dev_attr(attr)->index;
1183	struct lm85_data *data = dev_get_drvdata(dev);
1184	struct i2c_client *client = data->client;
1185	long val;
1186	int err;
1187
1188	err = kstrtol(buf, 10, &val);
1189	if (err)
1190		return err;
1191
1192	mutex_lock(&data->update_lock);
1193	data->zone[nr].limit = TEMP_TO_REG(val);
1194	lm85_write_value(client, LM85_REG_AFAN_LIMIT(nr),
1195		data->zone[nr].limit);
1196
1197/* Update temp_auto_max and temp_auto_range */
1198	data->zone[nr].range = RANGE_TO_REG(
1199		TEMP_FROM_REG(data->zone[nr].max_desired) -
1200		TEMP_FROM_REG(data->zone[nr].limit));
1201	lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
1202		((data->zone[nr].range & 0x0f) << 4)
1203		| data->pwm_freq[nr]);
1204
1205	mutex_unlock(&data->update_lock);
1206	return count;
1207}
1208
1209static ssize_t temp_auto_temp_max_show(struct device *dev,
1210				       struct device_attribute *attr,
1211				       char *buf)
1212{
1213	int nr = to_sensor_dev_attr(attr)->index;
1214	struct lm85_data *data = lm85_update_device(dev);
1215	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) +
1216		RANGE_FROM_REG(data->zone[nr].range));
1217}
1218
1219static ssize_t temp_auto_temp_max_store(struct device *dev,
1220					struct device_attribute *attr,
1221					const char *buf, size_t count)
1222{
1223	int nr = to_sensor_dev_attr(attr)->index;
1224	struct lm85_data *data = dev_get_drvdata(dev);
1225	struct i2c_client *client = data->client;
1226	int min;
1227	long val;
1228	int err;
1229
1230	err = kstrtol(buf, 10, &val);
1231	if (err)
1232		return err;
1233
1234	mutex_lock(&data->update_lock);
1235	min = TEMP_FROM_REG(data->zone[nr].limit);
1236	data->zone[nr].max_desired = TEMP_TO_REG(val);
1237	data->zone[nr].range = RANGE_TO_REG(
1238		val - min);
1239	lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
1240		((data->zone[nr].range & 0x0f) << 4)
1241		| data->pwm_freq[nr]);
1242	mutex_unlock(&data->update_lock);
1243	return count;
1244}
1245
1246static ssize_t temp_auto_temp_crit_show(struct device *dev,
1247					struct device_attribute *attr,
1248					char *buf)
1249{
1250	int nr = to_sensor_dev_attr(attr)->index;
1251	struct lm85_data *data = lm85_update_device(dev);
1252	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].critical));
1253}
1254
1255static ssize_t temp_auto_temp_crit_store(struct device *dev,
1256					 struct device_attribute *attr,
1257					 const char *buf, size_t count)
1258{
1259	int nr = to_sensor_dev_attr(attr)->index;
1260	struct lm85_data *data = dev_get_drvdata(dev);
1261	struct i2c_client *client = data->client;
1262	long val;
1263	int err;
1264
1265	err = kstrtol(buf, 10, &val);
1266	if (err)
1267		return err;
1268
1269	mutex_lock(&data->update_lock);
1270	data->zone[nr].critical = TEMP_TO_REG(val);
1271	lm85_write_value(client, LM85_REG_AFAN_CRITICAL(nr),
1272		data->zone[nr].critical);
1273	mutex_unlock(&data->update_lock);
1274	return count;
1275}
1276
1277static SENSOR_DEVICE_ATTR_RW(temp1_auto_temp_off, temp_auto_temp_off, 0);
1278static SENSOR_DEVICE_ATTR_RW(temp1_auto_temp_min, temp_auto_temp_min, 0);
1279static SENSOR_DEVICE_ATTR_RW(temp1_auto_temp_max, temp_auto_temp_max, 0);
1280static SENSOR_DEVICE_ATTR_RW(temp1_auto_temp_crit, temp_auto_temp_crit, 0);
1281static SENSOR_DEVICE_ATTR_RW(temp2_auto_temp_off, temp_auto_temp_off, 1);
1282static SENSOR_DEVICE_ATTR_RW(temp2_auto_temp_min, temp_auto_temp_min, 1);
1283static SENSOR_DEVICE_ATTR_RW(temp2_auto_temp_max, temp_auto_temp_max, 1);
1284static SENSOR_DEVICE_ATTR_RW(temp2_auto_temp_crit, temp_auto_temp_crit, 1);
1285static SENSOR_DEVICE_ATTR_RW(temp3_auto_temp_off, temp_auto_temp_off, 2);
1286static SENSOR_DEVICE_ATTR_RW(temp3_auto_temp_min, temp_auto_temp_min, 2);
1287static SENSOR_DEVICE_ATTR_RW(temp3_auto_temp_max, temp_auto_temp_max, 2);
1288static SENSOR_DEVICE_ATTR_RW(temp3_auto_temp_crit, temp_auto_temp_crit, 2);
 
 
 
 
 
1289
1290static struct attribute *lm85_attributes[] = {
1291	&sensor_dev_attr_fan1_input.dev_attr.attr,
1292	&sensor_dev_attr_fan2_input.dev_attr.attr,
1293	&sensor_dev_attr_fan3_input.dev_attr.attr,
1294	&sensor_dev_attr_fan4_input.dev_attr.attr,
1295	&sensor_dev_attr_fan1_min.dev_attr.attr,
1296	&sensor_dev_attr_fan2_min.dev_attr.attr,
1297	&sensor_dev_attr_fan3_min.dev_attr.attr,
1298	&sensor_dev_attr_fan4_min.dev_attr.attr,
1299	&sensor_dev_attr_fan1_alarm.dev_attr.attr,
1300	&sensor_dev_attr_fan2_alarm.dev_attr.attr,
1301	&sensor_dev_attr_fan3_alarm.dev_attr.attr,
1302	&sensor_dev_attr_fan4_alarm.dev_attr.attr,
1303
1304	&sensor_dev_attr_pwm1.dev_attr.attr,
1305	&sensor_dev_attr_pwm2.dev_attr.attr,
1306	&sensor_dev_attr_pwm3.dev_attr.attr,
1307	&sensor_dev_attr_pwm1_enable.dev_attr.attr,
1308	&sensor_dev_attr_pwm2_enable.dev_attr.attr,
1309	&sensor_dev_attr_pwm3_enable.dev_attr.attr,
1310	&sensor_dev_attr_pwm1_freq.dev_attr.attr,
1311	&sensor_dev_attr_pwm2_freq.dev_attr.attr,
1312	&sensor_dev_attr_pwm3_freq.dev_attr.attr,
1313
1314	&sensor_dev_attr_in0_input.dev_attr.attr,
1315	&sensor_dev_attr_in1_input.dev_attr.attr,
1316	&sensor_dev_attr_in2_input.dev_attr.attr,
1317	&sensor_dev_attr_in3_input.dev_attr.attr,
1318	&sensor_dev_attr_in0_min.dev_attr.attr,
1319	&sensor_dev_attr_in1_min.dev_attr.attr,
1320	&sensor_dev_attr_in2_min.dev_attr.attr,
1321	&sensor_dev_attr_in3_min.dev_attr.attr,
1322	&sensor_dev_attr_in0_max.dev_attr.attr,
1323	&sensor_dev_attr_in1_max.dev_attr.attr,
1324	&sensor_dev_attr_in2_max.dev_attr.attr,
1325	&sensor_dev_attr_in3_max.dev_attr.attr,
1326	&sensor_dev_attr_in0_alarm.dev_attr.attr,
1327	&sensor_dev_attr_in1_alarm.dev_attr.attr,
1328	&sensor_dev_attr_in2_alarm.dev_attr.attr,
1329	&sensor_dev_attr_in3_alarm.dev_attr.attr,
1330
1331	&sensor_dev_attr_temp1_input.dev_attr.attr,
1332	&sensor_dev_attr_temp2_input.dev_attr.attr,
1333	&sensor_dev_attr_temp3_input.dev_attr.attr,
1334	&sensor_dev_attr_temp1_min.dev_attr.attr,
1335	&sensor_dev_attr_temp2_min.dev_attr.attr,
1336	&sensor_dev_attr_temp3_min.dev_attr.attr,
1337	&sensor_dev_attr_temp1_max.dev_attr.attr,
1338	&sensor_dev_attr_temp2_max.dev_attr.attr,
1339	&sensor_dev_attr_temp3_max.dev_attr.attr,
1340	&sensor_dev_attr_temp1_alarm.dev_attr.attr,
1341	&sensor_dev_attr_temp2_alarm.dev_attr.attr,
1342	&sensor_dev_attr_temp3_alarm.dev_attr.attr,
1343	&sensor_dev_attr_temp1_fault.dev_attr.attr,
1344	&sensor_dev_attr_temp3_fault.dev_attr.attr,
1345
1346	&sensor_dev_attr_pwm1_auto_channels.dev_attr.attr,
1347	&sensor_dev_attr_pwm2_auto_channels.dev_attr.attr,
1348	&sensor_dev_attr_pwm3_auto_channels.dev_attr.attr,
1349	&sensor_dev_attr_pwm1_auto_pwm_min.dev_attr.attr,
1350	&sensor_dev_attr_pwm2_auto_pwm_min.dev_attr.attr,
1351	&sensor_dev_attr_pwm3_auto_pwm_min.dev_attr.attr,
1352
1353	&sensor_dev_attr_temp1_auto_temp_min.dev_attr.attr,
1354	&sensor_dev_attr_temp2_auto_temp_min.dev_attr.attr,
1355	&sensor_dev_attr_temp3_auto_temp_min.dev_attr.attr,
1356	&sensor_dev_attr_temp1_auto_temp_max.dev_attr.attr,
1357	&sensor_dev_attr_temp2_auto_temp_max.dev_attr.attr,
1358	&sensor_dev_attr_temp3_auto_temp_max.dev_attr.attr,
1359	&sensor_dev_attr_temp1_auto_temp_crit.dev_attr.attr,
1360	&sensor_dev_attr_temp2_auto_temp_crit.dev_attr.attr,
1361	&sensor_dev_attr_temp3_auto_temp_crit.dev_attr.attr,
1362
1363	&dev_attr_vrm.attr,
1364	&dev_attr_cpu0_vid.attr,
1365	&dev_attr_alarms.attr,
1366	NULL
1367};
1368
1369static const struct attribute_group lm85_group = {
1370	.attrs = lm85_attributes,
1371};
1372
1373static struct attribute *lm85_attributes_minctl[] = {
1374	&sensor_dev_attr_pwm1_auto_pwm_minctl.dev_attr.attr,
1375	&sensor_dev_attr_pwm2_auto_pwm_minctl.dev_attr.attr,
1376	&sensor_dev_attr_pwm3_auto_pwm_minctl.dev_attr.attr,
1377	NULL
1378};
1379
1380static const struct attribute_group lm85_group_minctl = {
1381	.attrs = lm85_attributes_minctl,
1382};
1383
1384static struct attribute *lm85_attributes_temp_off[] = {
1385	&sensor_dev_attr_temp1_auto_temp_off.dev_attr.attr,
1386	&sensor_dev_attr_temp2_auto_temp_off.dev_attr.attr,
1387	&sensor_dev_attr_temp3_auto_temp_off.dev_attr.attr,
1388	NULL
1389};
1390
1391static const struct attribute_group lm85_group_temp_off = {
1392	.attrs = lm85_attributes_temp_off,
1393};
1394
1395static struct attribute *lm85_attributes_in4[] = {
1396	&sensor_dev_attr_in4_input.dev_attr.attr,
1397	&sensor_dev_attr_in4_min.dev_attr.attr,
1398	&sensor_dev_attr_in4_max.dev_attr.attr,
1399	&sensor_dev_attr_in4_alarm.dev_attr.attr,
1400	NULL
1401};
1402
1403static const struct attribute_group lm85_group_in4 = {
1404	.attrs = lm85_attributes_in4,
1405};
1406
1407static struct attribute *lm85_attributes_in567[] = {
1408	&sensor_dev_attr_in5_input.dev_attr.attr,
1409	&sensor_dev_attr_in6_input.dev_attr.attr,
1410	&sensor_dev_attr_in7_input.dev_attr.attr,
1411	&sensor_dev_attr_in5_min.dev_attr.attr,
1412	&sensor_dev_attr_in6_min.dev_attr.attr,
1413	&sensor_dev_attr_in7_min.dev_attr.attr,
1414	&sensor_dev_attr_in5_max.dev_attr.attr,
1415	&sensor_dev_attr_in6_max.dev_attr.attr,
1416	&sensor_dev_attr_in7_max.dev_attr.attr,
1417	&sensor_dev_attr_in5_alarm.dev_attr.attr,
1418	&sensor_dev_attr_in6_alarm.dev_attr.attr,
1419	&sensor_dev_attr_in7_alarm.dev_attr.attr,
1420	NULL
1421};
1422
1423static const struct attribute_group lm85_group_in567 = {
1424	.attrs = lm85_attributes_in567,
1425};
1426
1427static void lm85_init_client(struct i2c_client *client)
1428{
1429	int value;
1430
1431	/* Start monitoring if needed */
1432	value = lm85_read_value(client, LM85_REG_CONFIG);
1433	if (!(value & 0x01)) {
1434		dev_info(&client->dev, "Starting monitoring\n");
1435		lm85_write_value(client, LM85_REG_CONFIG, value | 0x01);
1436	}
1437
1438	/* Warn about unusual configuration bits */
1439	if (value & 0x02)
1440		dev_warn(&client->dev, "Device configuration is locked\n");
1441	if (!(value & 0x04))
1442		dev_warn(&client->dev, "Device is not ready\n");
1443}
1444
1445static int lm85_is_fake(struct i2c_client *client)
1446{
1447	/*
1448	 * Differenciate between real LM96000 and Winbond WPCD377I. The latter
1449	 * emulate the former except that it has no hardware monitoring function
1450	 * so the readings are always 0.
1451	 */
1452	int i;
1453	u8 in_temp, fan;
1454
1455	for (i = 0; i < 8; i++) {
1456		in_temp = i2c_smbus_read_byte_data(client, 0x20 + i);
1457		fan = i2c_smbus_read_byte_data(client, 0x28 + i);
1458		if (in_temp != 0x00 || fan != 0xff)
1459			return 0;
1460	}
1461
1462	return 1;
1463}
1464
1465/* Return 0 if detection is successful, -ENODEV otherwise */
1466static int lm85_detect(struct i2c_client *client, struct i2c_board_info *info)
1467{
1468	struct i2c_adapter *adapter = client->adapter;
1469	int address = client->addr;
1470	const char *type_name = NULL;
1471	int company, verstep;
1472
1473	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
1474		/* We need to be able to do byte I/O */
1475		return -ENODEV;
1476	}
1477
1478	/* Determine the chip type */
1479	company = lm85_read_value(client, LM85_REG_COMPANY);
1480	verstep = lm85_read_value(client, LM85_REG_VERSTEP);
1481
1482	dev_dbg(&adapter->dev,
1483		"Detecting device at 0x%02x with COMPANY: 0x%02x and VERSTEP: 0x%02x\n",
1484		address, company, verstep);
1485
1486	if (company == LM85_COMPANY_NATIONAL) {
1487		switch (verstep) {
1488		case LM85_VERSTEP_LM85C:
1489			type_name = "lm85c";
1490			break;
1491		case LM85_VERSTEP_LM85B:
1492			type_name = "lm85b";
1493			break;
1494		case LM85_VERSTEP_LM96000_1:
1495		case LM85_VERSTEP_LM96000_2:
1496			/* Check for Winbond WPCD377I */
1497			if (lm85_is_fake(client)) {
1498				dev_dbg(&adapter->dev,
1499					"Found Winbond WPCD377I, ignoring\n");
1500				return -ENODEV;
1501			}
1502			type_name = "lm96000";
1503			break;
1504		}
1505	} else if (company == LM85_COMPANY_ANALOG_DEV) {
1506		switch (verstep) {
1507		case LM85_VERSTEP_ADM1027:
1508			type_name = "adm1027";
1509			break;
1510		case LM85_VERSTEP_ADT7463:
1511		case LM85_VERSTEP_ADT7463C:
1512			type_name = "adt7463";
1513			break;
1514		case LM85_VERSTEP_ADT7468_1:
1515		case LM85_VERSTEP_ADT7468_2:
1516			type_name = "adt7468";
1517			break;
1518		}
1519	} else if (company == LM85_COMPANY_SMSC) {
1520		switch (verstep) {
1521		case LM85_VERSTEP_EMC6D100_A0:
1522		case LM85_VERSTEP_EMC6D100_A1:
1523			/* Note: we can't tell a '100 from a '101 */
1524			type_name = "emc6d100";
1525			break;
1526		case LM85_VERSTEP_EMC6D102:
1527			type_name = "emc6d102";
1528			break;
1529		case LM85_VERSTEP_EMC6D103_A0:
1530		case LM85_VERSTEP_EMC6D103_A1:
1531			type_name = "emc6d103";
1532			break;
1533		case LM85_VERSTEP_EMC6D103S:
1534			type_name = "emc6d103s";
1535			break;
1536		}
1537	}
1538
1539	if (!type_name)
1540		return -ENODEV;
1541
1542	strscpy(info->type, type_name, I2C_NAME_SIZE);
1543
1544	return 0;
1545}
1546
1547static const struct i2c_device_id lm85_id[];
1548
1549static int lm85_probe(struct i2c_client *client)
1550{
1551	struct device *dev = &client->dev;
1552	struct device *hwmon_dev;
1553	struct lm85_data *data;
1554	int idx = 0;
1555
1556	data = devm_kzalloc(dev, sizeof(struct lm85_data), GFP_KERNEL);
1557	if (!data)
1558		return -ENOMEM;
1559
1560	data->client = client;
1561	if (client->dev.of_node)
1562		data->type = (uintptr_t)of_device_get_match_data(&client->dev);
1563	else
1564		data->type = i2c_match_id(lm85_id, client)->driver_data;
1565	mutex_init(&data->update_lock);
1566
1567	/* Fill in the chip specific driver values */
1568	switch (data->type) {
1569	case adm1027:
1570	case adt7463:
1571	case adt7468:
1572	case emc6d100:
1573	case emc6d102:
1574	case emc6d103:
1575	case emc6d103s:
1576		data->freq_map = adm1027_freq_map;
1577		data->freq_map_size = ARRAY_SIZE(adm1027_freq_map);
1578		break;
1579	case lm96000:
1580		data->freq_map = lm96000_freq_map;
1581		data->freq_map_size = ARRAY_SIZE(lm96000_freq_map);
1582		break;
1583	default:
1584		data->freq_map = lm85_freq_map;
1585		data->freq_map_size = ARRAY_SIZE(lm85_freq_map);
1586	}
1587
1588	/* Set the VRM version */
1589	data->vrm = vid_which_vrm();
1590
1591	/* Initialize the LM85 chip */
1592	lm85_init_client(client);
1593
1594	/* sysfs hooks */
1595	data->groups[idx++] = &lm85_group;
1596
1597	/* minctl and temp_off exist on all chips except emc6d103s */
1598	if (data->type != emc6d103s) {
1599		data->groups[idx++] = &lm85_group_minctl;
1600		data->groups[idx++] = &lm85_group_temp_off;
1601	}
1602
1603	/*
1604	 * The ADT7463/68 have an optional VRM 10 mode where pin 21 is used
1605	 * as a sixth digital VID input rather than an analog input.
1606	 */
1607	if (data->type == adt7463 || data->type == adt7468) {
1608		u8 vid = lm85_read_value(client, LM85_REG_VID);
1609		if (vid & 0x80)
1610			data->has_vid5 = true;
1611	}
1612
1613	if (!data->has_vid5)
1614		data->groups[idx++] = &lm85_group_in4;
1615
1616	/* The EMC6D100 has 3 additional voltage inputs */
1617	if (data->type == emc6d100)
1618		data->groups[idx++] = &lm85_group_in567;
1619
1620	hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
1621							   data, data->groups);
1622	return PTR_ERR_OR_ZERO(hwmon_dev);
1623}
1624
1625static const struct i2c_device_id lm85_id[] = {
1626	{ "adm1027", adm1027 },
1627	{ "adt7463", adt7463 },
1628	{ "adt7468", adt7468 },
1629	{ "lm85", lm85 },
1630	{ "lm85b", lm85 },
1631	{ "lm85c", lm85 },
1632	{ "lm96000", lm96000 },
1633	{ "emc6d100", emc6d100 },
1634	{ "emc6d101", emc6d100 },
1635	{ "emc6d102", emc6d102 },
1636	{ "emc6d103", emc6d103 },
1637	{ "emc6d103s", emc6d103s },
1638	{ }
1639};
1640MODULE_DEVICE_TABLE(i2c, lm85_id);
1641
1642static const struct of_device_id __maybe_unused lm85_of_match[] = {
1643	{
1644		.compatible = "adi,adm1027",
1645		.data = (void *)adm1027
1646	},
1647	{
1648		.compatible = "adi,adt7463",
1649		.data = (void *)adt7463
1650	},
1651	{
1652		.compatible = "adi,adt7468",
1653		.data = (void *)adt7468
1654	},
1655	{
1656		.compatible = "national,lm85",
1657		.data = (void *)lm85
1658	},
1659	{
1660		.compatible = "national,lm85b",
1661		.data = (void *)lm85
1662	},
1663	{
1664		.compatible = "national,lm85c",
1665		.data = (void *)lm85
1666	},
1667	{
1668		.compatible = "ti,lm96000",
1669		.data = (void *)lm96000
1670	},
1671	{
1672		.compatible = "smsc,emc6d100",
1673		.data = (void *)emc6d100
1674	},
1675	{
1676		.compatible = "smsc,emc6d101",
1677		.data = (void *)emc6d100
1678	},
1679	{
1680		.compatible = "smsc,emc6d102",
1681		.data = (void *)emc6d102
1682	},
1683	{
1684		.compatible = "smsc,emc6d103",
1685		.data = (void *)emc6d103
1686	},
1687	{
1688		.compatible = "smsc,emc6d103s",
1689		.data = (void *)emc6d103s
1690	},
1691	{ },
1692};
1693MODULE_DEVICE_TABLE(of, lm85_of_match);
1694
1695static struct i2c_driver lm85_driver = {
1696	.class		= I2C_CLASS_HWMON,
1697	.driver = {
1698		.name   = "lm85",
1699		.of_match_table = of_match_ptr(lm85_of_match),
1700	},
1701	.probe		= lm85_probe,
1702	.id_table	= lm85_id,
1703	.detect		= lm85_detect,
1704	.address_list	= normal_i2c,
1705};
1706
1707module_i2c_driver(lm85_driver);
1708
1709MODULE_LICENSE("GPL");
1710MODULE_AUTHOR("Philip Pokorny <ppokorny@penguincomputing.com>, "
1711	"Margit Schubert-While <margitsw@t-online.de>, "
1712	"Justin Thiessen <jthiessen@penguincomputing.com>");
1713MODULE_DESCRIPTION("LM85-B, LM85-C driver");
v4.6
 
   1/*
   2 * lm85.c - Part of lm_sensors, Linux kernel modules for hardware
   3 *	    monitoring
   4 * Copyright (c) 1998, 1999  Frodo Looijaard <frodol@dds.nl>
   5 * Copyright (c) 2002, 2003  Philip Pokorny <ppokorny@penguincomputing.com>
   6 * Copyright (c) 2003        Margit Schubert-While <margitsw@t-online.de>
   7 * Copyright (c) 2004        Justin Thiessen <jthiessen@penguincomputing.com>
   8 * Copyright (C) 2007--2014  Jean Delvare <jdelvare@suse.de>
   9 *
  10 * Chip details at	      <http://www.national.com/ds/LM/LM85.pdf>
  11 *
  12 * This program is free software; you can redistribute it and/or modify
  13 * it under the terms of the GNU General Public License as published by
  14 * the Free Software Foundation; either version 2 of the License, or
  15 * (at your option) any later version.
  16 *
  17 * This program is distributed in the hope that it will be useful,
  18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  20 * GNU General Public License for more details.
  21 *
  22 * You should have received a copy of the GNU General Public License
  23 * along with this program; if not, write to the Free Software
  24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25 */
  26
  27#include <linux/module.h>
 
  28#include <linux/init.h>
  29#include <linux/slab.h>
  30#include <linux/jiffies.h>
  31#include <linux/i2c.h>
  32#include <linux/hwmon.h>
  33#include <linux/hwmon-vid.h>
  34#include <linux/hwmon-sysfs.h>
  35#include <linux/err.h>
  36#include <linux/mutex.h>
  37#include <linux/util_macros.h>
  38
  39/* Addresses to scan */
  40static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
  41
  42enum chips {
  43	lm85,
  44	adm1027, adt7463, adt7468,
  45	emc6d100, emc6d102, emc6d103, emc6d103s
  46};
  47
  48/* The LM85 registers */
  49
  50#define LM85_REG_IN(nr)			(0x20 + (nr))
  51#define LM85_REG_IN_MIN(nr)		(0x44 + (nr) * 2)
  52#define LM85_REG_IN_MAX(nr)		(0x45 + (nr) * 2)
  53
  54#define LM85_REG_TEMP(nr)		(0x25 + (nr))
  55#define LM85_REG_TEMP_MIN(nr)		(0x4e + (nr) * 2)
  56#define LM85_REG_TEMP_MAX(nr)		(0x4f + (nr) * 2)
  57
  58/* Fan speeds are LSB, MSB (2 bytes) */
  59#define LM85_REG_FAN(nr)		(0x28 + (nr) * 2)
  60#define LM85_REG_FAN_MIN(nr)		(0x54 + (nr) * 2)
  61
  62#define LM85_REG_PWM(nr)		(0x30 + (nr))
  63
  64#define LM85_REG_COMPANY		0x3e
  65#define LM85_REG_VERSTEP		0x3f
  66
  67#define ADT7468_REG_CFG5		0x7c
  68#define ADT7468_OFF64			(1 << 0)
  69#define ADT7468_HFPWM			(1 << 1)
  70#define IS_ADT7468_OFF64(data)		\
  71	((data)->type == adt7468 && !((data)->cfg5 & ADT7468_OFF64))
  72#define IS_ADT7468_HFPWM(data)		\
  73	((data)->type == adt7468 && !((data)->cfg5 & ADT7468_HFPWM))
  74
  75/* These are the recognized values for the above regs */
  76#define LM85_COMPANY_NATIONAL		0x01
  77#define LM85_COMPANY_ANALOG_DEV		0x41
  78#define LM85_COMPANY_SMSC		0x5c
  79#define LM85_VERSTEP_LM85C		0x60
  80#define LM85_VERSTEP_LM85B		0x62
  81#define LM85_VERSTEP_LM96000_1		0x68
  82#define LM85_VERSTEP_LM96000_2		0x69
  83#define LM85_VERSTEP_ADM1027		0x60
  84#define LM85_VERSTEP_ADT7463		0x62
  85#define LM85_VERSTEP_ADT7463C		0x6A
  86#define LM85_VERSTEP_ADT7468_1		0x71
  87#define LM85_VERSTEP_ADT7468_2		0x72
  88#define LM85_VERSTEP_EMC6D100_A0        0x60
  89#define LM85_VERSTEP_EMC6D100_A1        0x61
  90#define LM85_VERSTEP_EMC6D102		0x65
  91#define LM85_VERSTEP_EMC6D103_A0	0x68
  92#define LM85_VERSTEP_EMC6D103_A1	0x69
  93#define LM85_VERSTEP_EMC6D103S		0x6A	/* Also known as EMC6D103:A2 */
  94
  95#define LM85_REG_CONFIG			0x40
  96
  97#define LM85_REG_ALARM1			0x41
  98#define LM85_REG_ALARM2			0x42
  99
 100#define LM85_REG_VID			0x43
 101
 102/* Automated FAN control */
 103#define LM85_REG_AFAN_CONFIG(nr)	(0x5c + (nr))
 104#define LM85_REG_AFAN_RANGE(nr)		(0x5f + (nr))
 105#define LM85_REG_AFAN_SPIKE1		0x62
 106#define LM85_REG_AFAN_MINPWM(nr)	(0x64 + (nr))
 107#define LM85_REG_AFAN_LIMIT(nr)		(0x67 + (nr))
 108#define LM85_REG_AFAN_CRITICAL(nr)	(0x6a + (nr))
 109#define LM85_REG_AFAN_HYST1		0x6d
 110#define LM85_REG_AFAN_HYST2		0x6e
 111
 112#define ADM1027_REG_EXTEND_ADC1		0x76
 113#define ADM1027_REG_EXTEND_ADC2		0x77
 114
 115#define EMC6D100_REG_ALARM3             0x7d
 116/* IN5, IN6 and IN7 */
 117#define EMC6D100_REG_IN(nr)             (0x70 + ((nr) - 5))
 118#define EMC6D100_REG_IN_MIN(nr)         (0x73 + ((nr) - 5) * 2)
 119#define EMC6D100_REG_IN_MAX(nr)         (0x74 + ((nr) - 5) * 2)
 120#define EMC6D102_REG_EXTEND_ADC1	0x85
 121#define EMC6D102_REG_EXTEND_ADC2	0x86
 122#define EMC6D102_REG_EXTEND_ADC3	0x87
 123#define EMC6D102_REG_EXTEND_ADC4	0x88
 124
 125/*
 126 * Conversions. Rounding and limit checking is only done on the TO_REG
 127 * variants. Note that you should be a bit careful with which arguments
 128 * these macros are called: arguments may be evaluated more than once.
 129 */
 130
 131/* IN are scaled according to built-in resistors */
 132static const int lm85_scaling[] = {  /* .001 Volts */
 133	2500, 2250, 3300, 5000, 12000,
 134	3300, 1500, 1800 /*EMC6D100*/
 135};
 136#define SCALE(val, from, to)	(((val) * (to) + ((from) / 2)) / (from))
 137
 138#define INS_TO_REG(n, val)	\
 139		clamp_val(SCALE(val, lm85_scaling[n], 192), 0, 255)
 
 140
 141#define INSEXT_FROM_REG(n, val, ext)	\
 142		SCALE(((val) << 4) + (ext), 192 << 4, lm85_scaling[n])
 143
 144#define INS_FROM_REG(n, val)	SCALE((val), 192, lm85_scaling[n])
 145
 146/* FAN speed is measured using 90kHz clock */
 147static inline u16 FAN_TO_REG(unsigned long val)
 148{
 149	if (!val)
 150		return 0xffff;
 151	return clamp_val(5400000 / val, 1, 0xfffe);
 152}
 153#define FAN_FROM_REG(val)	((val) == 0 ? -1 : (val) == 0xffff ? 0 : \
 154				 5400000 / (val))
 155
 156/* Temperature is reported in .001 degC increments */
 157#define TEMP_TO_REG(val)	\
 158		DIV_ROUND_CLOSEST(clamp_val((val), -127000, 127000), 1000)
 159#define TEMPEXT_FROM_REG(val, ext)	\
 160		SCALE(((val) << 4) + (ext), 16, 1000)
 161#define TEMP_FROM_REG(val)	((val) * 1000)
 162
 163#define PWM_TO_REG(val)			clamp_val(val, 0, 255)
 164#define PWM_FROM_REG(val)		(val)
 165
 166
 167/*
 168 * ZONEs have the following parameters:
 169 *    Limit (low) temp,           1. degC
 170 *    Hysteresis (below limit),   1. degC (0-15)
 171 *    Range of speed control,     .1 degC (2-80)
 172 *    Critical (high) temp,       1. degC
 173 *
 174 * FAN PWMs have the following parameters:
 175 *    Reference Zone,                 1, 2, 3, etc.
 176 *    Spinup time,                    .05 sec
 177 *    PWM value at limit/low temp,    1 count
 178 *    PWM Frequency,                  1. Hz
 179 *    PWM is Min or OFF below limit,  flag
 180 *    Invert PWM output,              flag
 181 *
 182 * Some chips filter the temp, others the fan.
 183 *    Filter constant (or disabled)   .1 seconds
 184 */
 185
 186/* These are the zone temperature range encodings in .001 degree C */
 187static const int lm85_range_map[] = {
 188	2000, 2500, 3300, 4000, 5000, 6600, 8000, 10000,
 189	13300, 16000, 20000, 26600, 32000, 40000, 53300, 80000
 190};
 191
 192static int RANGE_TO_REG(long range)
 193{
 194	return find_closest(range, lm85_range_map, ARRAY_SIZE(lm85_range_map));
 195}
 196#define RANGE_FROM_REG(val)	lm85_range_map[(val) & 0x0f]
 197
 198/* These are the PWM frequency encodings */
 199static const int lm85_freq_map[8] = { /* 1 Hz */
 200	10, 15, 23, 30, 38, 47, 61, 94
 201};
 202static const int adm1027_freq_map[8] = { /* 1 Hz */
 
 
 
 
 
 
 203	11, 15, 22, 29, 35, 44, 59, 88
 204};
 205#define FREQ_MAP_LEN	8
 206
 207static int FREQ_TO_REG(const int *map,
 208		       unsigned int map_size, unsigned long freq)
 209{
 210	return find_closest(freq, map, map_size);
 211}
 212
 213static int FREQ_FROM_REG(const int *map, u8 reg)
 214{
 215	return map[reg & 0x07];
 216}
 217
 218/*
 219 * Since we can't use strings, I'm abusing these numbers
 220 *   to stand in for the following meanings:
 221 *      1 -- PWM responds to Zone 1
 222 *      2 -- PWM responds to Zone 2
 223 *      3 -- PWM responds to Zone 3
 224 *     23 -- PWM responds to the higher temp of Zone 2 or 3
 225 *    123 -- PWM responds to highest of Zone 1, 2, or 3
 226 *      0 -- PWM is always at 0% (ie, off)
 227 *     -1 -- PWM is always at 100%
 228 *     -2 -- PWM responds to manual control
 229 */
 230
 231static const int lm85_zone_map[] = { 1, 2, 3, -1, 0, 23, 123, -2 };
 232#define ZONE_FROM_REG(val)	lm85_zone_map[(val) >> 5]
 233
 234static int ZONE_TO_REG(int zone)
 235{
 236	int i;
 237
 238	for (i = 0; i <= 7; ++i)
 239		if (zone == lm85_zone_map[i])
 240			break;
 241	if (i > 7)   /* Not found. */
 242		i = 3;  /* Always 100% */
 243	return i << 5;
 244}
 245
 246#define HYST_TO_REG(val)	clamp_val(((val) + 500) / 1000, 0, 15)
 247#define HYST_FROM_REG(val)	((val) * 1000)
 248
 249/*
 250 * Chip sampling rates
 251 *
 252 * Some sensors are not updated more frequently than once per second
 253 *    so it doesn't make sense to read them more often than that.
 254 *    We cache the results and return the saved data if the driver
 255 *    is called again before a second has elapsed.
 256 *
 257 * Also, there is significant configuration data for this chip
 258 *    given the automatic PWM fan control that is possible.  There
 259 *    are about 47 bytes of config data to only 22 bytes of actual
 260 *    readings.  So, we keep the config data up to date in the cache
 261 *    when it is written and only sample it once every 1 *minute*
 262 */
 263#define LM85_DATA_INTERVAL  (HZ + HZ / 2)
 264#define LM85_CONFIG_INTERVAL  (1 * 60 * HZ)
 265
 266/*
 267 * LM85 can automatically adjust fan speeds based on temperature
 268 * This structure encapsulates an entire Zone config.  There are
 269 * three zones (one for each temperature input) on the lm85
 270 */
 271struct lm85_zone {
 272	s8 limit;	/* Low temp limit */
 273	u8 hyst;	/* Low limit hysteresis. (0-15) */
 274	u8 range;	/* Temp range, encoded */
 275	s8 critical;	/* "All fans ON" temp limit */
 276	u8 max_desired; /*
 277			 * Actual "max" temperature specified.  Preserved
 278			 * to prevent "drift" as other autofan control
 279			 * values change.
 280			 */
 281};
 282
 283struct lm85_autofan {
 284	u8 config;	/* Register value */
 285	u8 min_pwm;	/* Minimum PWM value, encoded */
 286	u8 min_off;	/* Min PWM or OFF below "limit", flag */
 287};
 288
 289/*
 290 * For each registered chip, we need to keep some data in memory.
 291 * The structure is dynamically allocated.
 292 */
 293struct lm85_data {
 294	struct i2c_client *client;
 295	const struct attribute_group *groups[6];
 296	const int *freq_map;
 
 
 297	enum chips type;
 298
 299	bool has_vid5;	/* true if VID5 is configured for ADT7463 or ADT7468 */
 300
 301	struct mutex update_lock;
 302	int valid;		/* !=0 if following fields are valid */
 303	unsigned long last_reading;	/* In jiffies */
 304	unsigned long last_config;	/* In jiffies */
 305
 306	u8 in[8];		/* Register value */
 307	u8 in_max[8];		/* Register value */
 308	u8 in_min[8];		/* Register value */
 309	s8 temp[3];		/* Register value */
 310	s8 temp_min[3];		/* Register value */
 311	s8 temp_max[3];		/* Register value */
 312	u16 fan[4];		/* Register value */
 313	u16 fan_min[4];		/* Register value */
 314	u8 pwm[3];		/* Register value */
 315	u8 pwm_freq[3];		/* Register encoding */
 316	u8 temp_ext[3];		/* Decoded values */
 317	u8 in_ext[8];		/* Decoded values */
 318	u8 vid;			/* Register value */
 319	u8 vrm;			/* VRM version */
 320	u32 alarms;		/* Register encoding, combined */
 321	u8 cfg5;		/* Config Register 5 on ADT7468 */
 322	struct lm85_autofan autofan[3];
 323	struct lm85_zone zone[3];
 324};
 325
 326static int lm85_read_value(struct i2c_client *client, u8 reg)
 327{
 328	int res;
 329
 330	/* What size location is it? */
 331	switch (reg) {
 332	case LM85_REG_FAN(0):  /* Read WORD data */
 333	case LM85_REG_FAN(1):
 334	case LM85_REG_FAN(2):
 335	case LM85_REG_FAN(3):
 336	case LM85_REG_FAN_MIN(0):
 337	case LM85_REG_FAN_MIN(1):
 338	case LM85_REG_FAN_MIN(2):
 339	case LM85_REG_FAN_MIN(3):
 340	case LM85_REG_ALARM1:	/* Read both bytes at once */
 341		res = i2c_smbus_read_byte_data(client, reg) & 0xff;
 342		res |= i2c_smbus_read_byte_data(client, reg + 1) << 8;
 343		break;
 344	default:	/* Read BYTE data */
 345		res = i2c_smbus_read_byte_data(client, reg);
 346		break;
 347	}
 348
 349	return res;
 350}
 351
 352static void lm85_write_value(struct i2c_client *client, u8 reg, int value)
 353{
 354	switch (reg) {
 355	case LM85_REG_FAN(0):  /* Write WORD data */
 356	case LM85_REG_FAN(1):
 357	case LM85_REG_FAN(2):
 358	case LM85_REG_FAN(3):
 359	case LM85_REG_FAN_MIN(0):
 360	case LM85_REG_FAN_MIN(1):
 361	case LM85_REG_FAN_MIN(2):
 362	case LM85_REG_FAN_MIN(3):
 363	/* NOTE: ALARM is read only, so not included here */
 364		i2c_smbus_write_byte_data(client, reg, value & 0xff);
 365		i2c_smbus_write_byte_data(client, reg + 1, value >> 8);
 366		break;
 367	default:	/* Write BYTE data */
 368		i2c_smbus_write_byte_data(client, reg, value);
 369		break;
 370	}
 371}
 372
 373static struct lm85_data *lm85_update_device(struct device *dev)
 374{
 375	struct lm85_data *data = dev_get_drvdata(dev);
 376	struct i2c_client *client = data->client;
 377	int i;
 378
 379	mutex_lock(&data->update_lock);
 380
 381	if (!data->valid ||
 382	     time_after(jiffies, data->last_reading + LM85_DATA_INTERVAL)) {
 383		/* Things that change quickly */
 384		dev_dbg(&client->dev, "Reading sensor values\n");
 385
 386		/*
 387		 * Have to read extended bits first to "freeze" the
 388		 * more significant bits that are read later.
 389		 * There are 2 additional resolution bits per channel and we
 390		 * have room for 4, so we shift them to the left.
 391		 */
 392		if (data->type == adm1027 || data->type == adt7463 ||
 393		    data->type == adt7468) {
 394			int ext1 = lm85_read_value(client,
 395						   ADM1027_REG_EXTEND_ADC1);
 396			int ext2 =  lm85_read_value(client,
 397						    ADM1027_REG_EXTEND_ADC2);
 398			int val = (ext1 << 8) + ext2;
 399
 400			for (i = 0; i <= 4; i++)
 401				data->in_ext[i] =
 402					((val >> (i * 2)) & 0x03) << 2;
 403
 404			for (i = 0; i <= 2; i++)
 405				data->temp_ext[i] =
 406					(val >> ((i + 4) * 2)) & 0x0c;
 407		}
 408
 409		data->vid = lm85_read_value(client, LM85_REG_VID);
 410
 411		for (i = 0; i <= 3; ++i) {
 412			data->in[i] =
 413			    lm85_read_value(client, LM85_REG_IN(i));
 414			data->fan[i] =
 415			    lm85_read_value(client, LM85_REG_FAN(i));
 416		}
 417
 418		if (!data->has_vid5)
 419			data->in[4] = lm85_read_value(client, LM85_REG_IN(4));
 420
 421		if (data->type == adt7468)
 422			data->cfg5 = lm85_read_value(client, ADT7468_REG_CFG5);
 423
 424		for (i = 0; i <= 2; ++i) {
 425			data->temp[i] =
 426			    lm85_read_value(client, LM85_REG_TEMP(i));
 427			data->pwm[i] =
 428			    lm85_read_value(client, LM85_REG_PWM(i));
 429
 430			if (IS_ADT7468_OFF64(data))
 431				data->temp[i] -= 64;
 432		}
 433
 434		data->alarms = lm85_read_value(client, LM85_REG_ALARM1);
 435
 436		if (data->type == emc6d100) {
 437			/* Three more voltage sensors */
 438			for (i = 5; i <= 7; ++i) {
 439				data->in[i] = lm85_read_value(client,
 440							EMC6D100_REG_IN(i));
 441			}
 442			/* More alarm bits */
 443			data->alarms |= lm85_read_value(client,
 444						EMC6D100_REG_ALARM3) << 16;
 445		} else if (data->type == emc6d102 || data->type == emc6d103 ||
 446			   data->type == emc6d103s) {
 447			/*
 448			 * Have to read LSB bits after the MSB ones because
 449			 * the reading of the MSB bits has frozen the
 450			 * LSBs (backward from the ADM1027).
 451			 */
 452			int ext1 = lm85_read_value(client,
 453						   EMC6D102_REG_EXTEND_ADC1);
 454			int ext2 = lm85_read_value(client,
 455						   EMC6D102_REG_EXTEND_ADC2);
 456			int ext3 = lm85_read_value(client,
 457						   EMC6D102_REG_EXTEND_ADC3);
 458			int ext4 = lm85_read_value(client,
 459						   EMC6D102_REG_EXTEND_ADC4);
 460			data->in_ext[0] = ext3 & 0x0f;
 461			data->in_ext[1] = ext4 & 0x0f;
 462			data->in_ext[2] = ext4 >> 4;
 463			data->in_ext[3] = ext3 >> 4;
 464			data->in_ext[4] = ext2 >> 4;
 465
 466			data->temp_ext[0] = ext1 & 0x0f;
 467			data->temp_ext[1] = ext2 & 0x0f;
 468			data->temp_ext[2] = ext1 >> 4;
 469		}
 470
 471		data->last_reading = jiffies;
 472	}  /* last_reading */
 473
 474	if (!data->valid ||
 475	     time_after(jiffies, data->last_config + LM85_CONFIG_INTERVAL)) {
 476		/* Things that don't change often */
 477		dev_dbg(&client->dev, "Reading config values\n");
 478
 479		for (i = 0; i <= 3; ++i) {
 480			data->in_min[i] =
 481			    lm85_read_value(client, LM85_REG_IN_MIN(i));
 482			data->in_max[i] =
 483			    lm85_read_value(client, LM85_REG_IN_MAX(i));
 484			data->fan_min[i] =
 485			    lm85_read_value(client, LM85_REG_FAN_MIN(i));
 486		}
 487
 488		if (!data->has_vid5)  {
 489			data->in_min[4] = lm85_read_value(client,
 490					  LM85_REG_IN_MIN(4));
 491			data->in_max[4] = lm85_read_value(client,
 492					  LM85_REG_IN_MAX(4));
 493		}
 494
 495		if (data->type == emc6d100) {
 496			for (i = 5; i <= 7; ++i) {
 497				data->in_min[i] = lm85_read_value(client,
 498						EMC6D100_REG_IN_MIN(i));
 499				data->in_max[i] = lm85_read_value(client,
 500						EMC6D100_REG_IN_MAX(i));
 501			}
 502		}
 503
 504		for (i = 0; i <= 2; ++i) {
 505			int val;
 506
 507			data->temp_min[i] =
 508			    lm85_read_value(client, LM85_REG_TEMP_MIN(i));
 509			data->temp_max[i] =
 510			    lm85_read_value(client, LM85_REG_TEMP_MAX(i));
 511
 512			data->autofan[i].config =
 513			    lm85_read_value(client, LM85_REG_AFAN_CONFIG(i));
 514			val = lm85_read_value(client, LM85_REG_AFAN_RANGE(i));
 515			data->pwm_freq[i] = val & 0x07;
 516			data->zone[i].range = val >> 4;
 517			data->autofan[i].min_pwm =
 518			    lm85_read_value(client, LM85_REG_AFAN_MINPWM(i));
 519			data->zone[i].limit =
 520			    lm85_read_value(client, LM85_REG_AFAN_LIMIT(i));
 521			data->zone[i].critical =
 522			    lm85_read_value(client, LM85_REG_AFAN_CRITICAL(i));
 523
 524			if (IS_ADT7468_OFF64(data)) {
 525				data->temp_min[i] -= 64;
 526				data->temp_max[i] -= 64;
 527				data->zone[i].limit -= 64;
 528				data->zone[i].critical -= 64;
 529			}
 530		}
 531
 532		if (data->type != emc6d103s) {
 533			i = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
 534			data->autofan[0].min_off = (i & 0x20) != 0;
 535			data->autofan[1].min_off = (i & 0x40) != 0;
 536			data->autofan[2].min_off = (i & 0x80) != 0;
 537
 538			i = lm85_read_value(client, LM85_REG_AFAN_HYST1);
 539			data->zone[0].hyst = i >> 4;
 540			data->zone[1].hyst = i & 0x0f;
 541
 542			i = lm85_read_value(client, LM85_REG_AFAN_HYST2);
 543			data->zone[2].hyst = i >> 4;
 544		}
 545
 546		data->last_config = jiffies;
 547	}  /* last_config */
 548
 549	data->valid = 1;
 550
 551	mutex_unlock(&data->update_lock);
 552
 553	return data;
 554}
 555
 556/* 4 Fans */
 557static ssize_t show_fan(struct device *dev, struct device_attribute *attr,
 558		char *buf)
 559{
 560	int nr = to_sensor_dev_attr(attr)->index;
 561	struct lm85_data *data = lm85_update_device(dev);
 562	return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr]));
 563}
 564
 565static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr,
 566		char *buf)
 567{
 568	int nr = to_sensor_dev_attr(attr)->index;
 569	struct lm85_data *data = lm85_update_device(dev);
 570	return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr]));
 571}
 572
 573static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
 574		const char *buf, size_t count)
 
 575{
 576	int nr = to_sensor_dev_attr(attr)->index;
 577	struct lm85_data *data = dev_get_drvdata(dev);
 578	struct i2c_client *client = data->client;
 579	unsigned long val;
 580	int err;
 581
 582	err = kstrtoul(buf, 10, &val);
 583	if (err)
 584		return err;
 585
 586	mutex_lock(&data->update_lock);
 587	data->fan_min[nr] = FAN_TO_REG(val);
 588	lm85_write_value(client, LM85_REG_FAN_MIN(nr), data->fan_min[nr]);
 589	mutex_unlock(&data->update_lock);
 590	return count;
 591}
 592
 593#define show_fan_offset(offset)						\
 594static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO,			\
 595		show_fan, NULL, offset - 1);				\
 596static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR,		\
 597		show_fan_min, set_fan_min, offset - 1)
 598
 599show_fan_offset(1);
 600show_fan_offset(2);
 601show_fan_offset(3);
 602show_fan_offset(4);
 603
 604/* vid, vrm, alarms */
 605
 606static ssize_t show_vid_reg(struct device *dev, struct device_attribute *attr,
 607		char *buf)
 608{
 609	struct lm85_data *data = lm85_update_device(dev);
 610	int vid;
 611
 612	if (data->has_vid5) {
 613		/* 6-pin VID (VRM 10) */
 614		vid = vid_from_reg(data->vid & 0x3f, data->vrm);
 615	} else {
 616		/* 5-pin VID (VRM 9) */
 617		vid = vid_from_reg(data->vid & 0x1f, data->vrm);
 618	}
 619
 620	return sprintf(buf, "%d\n", vid);
 621}
 622
 623static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid_reg, NULL);
 624
 625static ssize_t show_vrm_reg(struct device *dev, struct device_attribute *attr,
 626		char *buf)
 627{
 628	struct lm85_data *data = dev_get_drvdata(dev);
 629	return sprintf(buf, "%ld\n", (long) data->vrm);
 630}
 631
 632static ssize_t store_vrm_reg(struct device *dev, struct device_attribute *attr,
 633		const char *buf, size_t count)
 634{
 635	struct lm85_data *data = dev_get_drvdata(dev);
 636	unsigned long val;
 637	int err;
 638
 639	err = kstrtoul(buf, 10, &val);
 640	if (err)
 641		return err;
 642
 643	if (val > 255)
 644		return -EINVAL;
 645
 646	data->vrm = val;
 647	return count;
 648}
 649
 650static DEVICE_ATTR(vrm, S_IRUGO | S_IWUSR, show_vrm_reg, store_vrm_reg);
 651
 652static ssize_t show_alarms_reg(struct device *dev, struct device_attribute
 653		*attr, char *buf)
 654{
 655	struct lm85_data *data = lm85_update_device(dev);
 656	return sprintf(buf, "%u\n", data->alarms);
 657}
 658
 659static DEVICE_ATTR(alarms, S_IRUGO, show_alarms_reg, NULL);
 660
 661static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
 662		char *buf)
 663{
 664	int nr = to_sensor_dev_attr(attr)->index;
 665	struct lm85_data *data = lm85_update_device(dev);
 666	return sprintf(buf, "%u\n", (data->alarms >> nr) & 1);
 667}
 668
 669static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0);
 670static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1);
 671static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2);
 672static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3);
 673static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8);
 674static SENSOR_DEVICE_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 18);
 675static SENSOR_DEVICE_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 16);
 676static SENSOR_DEVICE_ATTR(in7_alarm, S_IRUGO, show_alarm, NULL, 17);
 677static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4);
 678static SENSOR_DEVICE_ATTR(temp1_fault, S_IRUGO, show_alarm, NULL, 14);
 679static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5);
 680static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 6);
 681static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_alarm, NULL, 15);
 682static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 10);
 683static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 11);
 684static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 12);
 685static SENSOR_DEVICE_ATTR(fan4_alarm, S_IRUGO, show_alarm, NULL, 13);
 686
 687/* pwm */
 688
 689static ssize_t show_pwm(struct device *dev, struct device_attribute *attr,
 690		char *buf)
 691{
 692	int nr = to_sensor_dev_attr(attr)->index;
 693	struct lm85_data *data = lm85_update_device(dev);
 694	return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
 695}
 696
 697static ssize_t set_pwm(struct device *dev, struct device_attribute *attr,
 698		const char *buf, size_t count)
 699{
 700	int nr = to_sensor_dev_attr(attr)->index;
 701	struct lm85_data *data = dev_get_drvdata(dev);
 702	struct i2c_client *client = data->client;
 703	unsigned long val;
 704	int err;
 705
 706	err = kstrtoul(buf, 10, &val);
 707	if (err)
 708		return err;
 709
 710	mutex_lock(&data->update_lock);
 711	data->pwm[nr] = PWM_TO_REG(val);
 712	lm85_write_value(client, LM85_REG_PWM(nr), data->pwm[nr]);
 713	mutex_unlock(&data->update_lock);
 714	return count;
 715}
 716
 717static ssize_t show_pwm_enable(struct device *dev, struct device_attribute
 718		*attr, char *buf)
 719{
 720	int nr = to_sensor_dev_attr(attr)->index;
 721	struct lm85_data *data = lm85_update_device(dev);
 722	int pwm_zone, enable;
 723
 724	pwm_zone = ZONE_FROM_REG(data->autofan[nr].config);
 725	switch (pwm_zone) {
 726	case -1:	/* PWM is always at 100% */
 727		enable = 0;
 728		break;
 729	case 0:		/* PWM is always at 0% */
 730	case -2:	/* PWM responds to manual control */
 731		enable = 1;
 732		break;
 733	default:	/* PWM in automatic mode */
 734		enable = 2;
 735	}
 736	return sprintf(buf, "%d\n", enable);
 737}
 738
 739static ssize_t set_pwm_enable(struct device *dev, struct device_attribute
 740		*attr, const char *buf, size_t count)
 
 741{
 742	int nr = to_sensor_dev_attr(attr)->index;
 743	struct lm85_data *data = dev_get_drvdata(dev);
 744	struct i2c_client *client = data->client;
 745	u8 config;
 746	unsigned long val;
 747	int err;
 748
 749	err = kstrtoul(buf, 10, &val);
 750	if (err)
 751		return err;
 752
 753	switch (val) {
 754	case 0:
 755		config = 3;
 756		break;
 757	case 1:
 758		config = 7;
 759		break;
 760	case 2:
 761		/*
 762		 * Here we have to choose arbitrarily one of the 5 possible
 763		 * configurations; I go for the safest
 764		 */
 765		config = 6;
 766		break;
 767	default:
 768		return -EINVAL;
 769	}
 770
 771	mutex_lock(&data->update_lock);
 772	data->autofan[nr].config = lm85_read_value(client,
 773		LM85_REG_AFAN_CONFIG(nr));
 774	data->autofan[nr].config = (data->autofan[nr].config & ~0xe0)
 775		| (config << 5);
 776	lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
 777		data->autofan[nr].config);
 778	mutex_unlock(&data->update_lock);
 779	return count;
 780}
 781
 782static ssize_t show_pwm_freq(struct device *dev,
 783		struct device_attribute *attr, char *buf)
 784{
 785	int nr = to_sensor_dev_attr(attr)->index;
 786	struct lm85_data *data = lm85_update_device(dev);
 787	int freq;
 788
 789	if (IS_ADT7468_HFPWM(data))
 790		freq = 22500;
 791	else
 792		freq = FREQ_FROM_REG(data->freq_map, data->pwm_freq[nr]);
 
 793
 794	return sprintf(buf, "%d\n", freq);
 795}
 796
 797static ssize_t set_pwm_freq(struct device *dev,
 798		struct device_attribute *attr, const char *buf, size_t count)
 
 799{
 800	int nr = to_sensor_dev_attr(attr)->index;
 801	struct lm85_data *data = dev_get_drvdata(dev);
 802	struct i2c_client *client = data->client;
 803	unsigned long val;
 804	int err;
 805
 806	err = kstrtoul(buf, 10, &val);
 807	if (err)
 808		return err;
 809
 810	mutex_lock(&data->update_lock);
 811	/*
 812	 * The ADT7468 has a special high-frequency PWM output mode,
 813	 * where all PWM outputs are driven by a 22.5 kHz clock.
 814	 * This might confuse the user, but there's not much we can do.
 815	 */
 816	if (data->type == adt7468 && val >= 11300) {	/* High freq. mode */
 817		data->cfg5 &= ~ADT7468_HFPWM;
 818		lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
 819	} else {					/* Low freq. mode */
 820		data->pwm_freq[nr] = FREQ_TO_REG(data->freq_map,
 821						 FREQ_MAP_LEN, val);
 822		lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
 823				 (data->zone[nr].range << 4)
 824				 | data->pwm_freq[nr]);
 825		if (data->type == adt7468) {
 826			data->cfg5 |= ADT7468_HFPWM;
 827			lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
 828		}
 829	}
 830	mutex_unlock(&data->update_lock);
 831	return count;
 832}
 833
 834#define show_pwm_reg(offset)						\
 835static SENSOR_DEVICE_ATTR(pwm##offset, S_IRUGO | S_IWUSR,		\
 836		show_pwm, set_pwm, offset - 1);				\
 837static SENSOR_DEVICE_ATTR(pwm##offset##_enable, S_IRUGO | S_IWUSR,	\
 838		show_pwm_enable, set_pwm_enable, offset - 1);		\
 839static SENSOR_DEVICE_ATTR(pwm##offset##_freq, S_IRUGO | S_IWUSR,	\
 840		show_pwm_freq, set_pwm_freq, offset - 1)
 841
 842show_pwm_reg(1);
 843show_pwm_reg(2);
 844show_pwm_reg(3);
 845
 846/* Voltages */
 847
 848static ssize_t show_in(struct device *dev, struct device_attribute *attr,
 849		char *buf)
 850{
 851	int nr = to_sensor_dev_attr(attr)->index;
 852	struct lm85_data *data = lm85_update_device(dev);
 853	return sprintf(buf, "%d\n", INSEXT_FROM_REG(nr, data->in[nr],
 854						    data->in_ext[nr]));
 855}
 856
 857static ssize_t show_in_min(struct device *dev, struct device_attribute *attr,
 858		char *buf)
 859{
 860	int nr = to_sensor_dev_attr(attr)->index;
 861	struct lm85_data *data = lm85_update_device(dev);
 862	return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_min[nr]));
 863}
 864
 865static ssize_t set_in_min(struct device *dev, struct device_attribute *attr,
 866		const char *buf, size_t count)
 867{
 868	int nr = to_sensor_dev_attr(attr)->index;
 869	struct lm85_data *data = dev_get_drvdata(dev);
 870	struct i2c_client *client = data->client;
 871	long val;
 872	int err;
 873
 874	err = kstrtol(buf, 10, &val);
 875	if (err)
 876		return err;
 877
 878	mutex_lock(&data->update_lock);
 879	data->in_min[nr] = INS_TO_REG(nr, val);
 880	lm85_write_value(client, LM85_REG_IN_MIN(nr), data->in_min[nr]);
 881	mutex_unlock(&data->update_lock);
 882	return count;
 883}
 884
 885static ssize_t show_in_max(struct device *dev, struct device_attribute *attr,
 886		char *buf)
 887{
 888	int nr = to_sensor_dev_attr(attr)->index;
 889	struct lm85_data *data = lm85_update_device(dev);
 890	return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_max[nr]));
 891}
 892
 893static ssize_t set_in_max(struct device *dev, struct device_attribute *attr,
 894		const char *buf, size_t count)
 895{
 896	int nr = to_sensor_dev_attr(attr)->index;
 897	struct lm85_data *data = dev_get_drvdata(dev);
 898	struct i2c_client *client = data->client;
 899	long val;
 900	int err;
 901
 902	err = kstrtol(buf, 10, &val);
 903	if (err)
 904		return err;
 905
 906	mutex_lock(&data->update_lock);
 907	data->in_max[nr] = INS_TO_REG(nr, val);
 908	lm85_write_value(client, LM85_REG_IN_MAX(nr), data->in_max[nr]);
 909	mutex_unlock(&data->update_lock);
 910	return count;
 911}
 912
 913#define show_in_reg(offset)						\
 914static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO,			\
 915		show_in, NULL, offset);					\
 916static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR,		\
 917		show_in_min, set_in_min, offset);			\
 918static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR,		\
 919		show_in_max, set_in_max, offset)
 920
 921show_in_reg(0);
 922show_in_reg(1);
 923show_in_reg(2);
 924show_in_reg(3);
 925show_in_reg(4);
 926show_in_reg(5);
 927show_in_reg(6);
 928show_in_reg(7);
 
 
 
 
 
 
 
 
 929
 930/* Temps */
 931
 932static ssize_t show_temp(struct device *dev, struct device_attribute *attr,
 933		char *buf)
 934{
 935	int nr = to_sensor_dev_attr(attr)->index;
 936	struct lm85_data *data = lm85_update_device(dev);
 937	return sprintf(buf, "%d\n", TEMPEXT_FROM_REG(data->temp[nr],
 938						     data->temp_ext[nr]));
 939}
 940
 941static ssize_t show_temp_min(struct device *dev, struct device_attribute *attr,
 942		char *buf)
 943{
 944	int nr = to_sensor_dev_attr(attr)->index;
 945	struct lm85_data *data = lm85_update_device(dev);
 946	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
 947}
 948
 949static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr,
 950		const char *buf, size_t count)
 
 951{
 952	int nr = to_sensor_dev_attr(attr)->index;
 953	struct lm85_data *data = dev_get_drvdata(dev);
 954	struct i2c_client *client = data->client;
 955	long val;
 956	int err;
 957
 958	err = kstrtol(buf, 10, &val);
 959	if (err)
 960		return err;
 961
 962	if (IS_ADT7468_OFF64(data))
 963		val += 64;
 964
 965	mutex_lock(&data->update_lock);
 966	data->temp_min[nr] = TEMP_TO_REG(val);
 967	lm85_write_value(client, LM85_REG_TEMP_MIN(nr), data->temp_min[nr]);
 968	mutex_unlock(&data->update_lock);
 969	return count;
 970}
 971
 972static ssize_t show_temp_max(struct device *dev, struct device_attribute *attr,
 973		char *buf)
 974{
 975	int nr = to_sensor_dev_attr(attr)->index;
 976	struct lm85_data *data = lm85_update_device(dev);
 977	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
 978}
 979
 980static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr,
 981		const char *buf, size_t count)
 
 982{
 983	int nr = to_sensor_dev_attr(attr)->index;
 984	struct lm85_data *data = dev_get_drvdata(dev);
 985	struct i2c_client *client = data->client;
 986	long val;
 987	int err;
 988
 989	err = kstrtol(buf, 10, &val);
 990	if (err)
 991		return err;
 992
 993	if (IS_ADT7468_OFF64(data))
 994		val += 64;
 995
 996	mutex_lock(&data->update_lock);
 997	data->temp_max[nr] = TEMP_TO_REG(val);
 998	lm85_write_value(client, LM85_REG_TEMP_MAX(nr), data->temp_max[nr]);
 999	mutex_unlock(&data->update_lock);
1000	return count;
1001}
1002
1003#define show_temp_reg(offset)						\
1004static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO,		\
1005		show_temp, NULL, offset - 1);				\
1006static SENSOR_DEVICE_ATTR(temp##offset##_min, S_IRUGO | S_IWUSR,	\
1007		show_temp_min, set_temp_min, offset - 1);		\
1008static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR,	\
1009		show_temp_max, set_temp_max, offset - 1);
1010
1011show_temp_reg(1);
1012show_temp_reg(2);
1013show_temp_reg(3);
1014
1015
1016/* Automatic PWM control */
1017
1018static ssize_t show_pwm_auto_channels(struct device *dev,
1019		struct device_attribute *attr, char *buf)
 
1020{
1021	int nr = to_sensor_dev_attr(attr)->index;
1022	struct lm85_data *data = lm85_update_device(dev);
1023	return sprintf(buf, "%d\n", ZONE_FROM_REG(data->autofan[nr].config));
1024}
1025
1026static ssize_t set_pwm_auto_channels(struct device *dev,
1027		struct device_attribute *attr, const char *buf, size_t count)
 
1028{
1029	int nr = to_sensor_dev_attr(attr)->index;
1030	struct lm85_data *data = dev_get_drvdata(dev);
1031	struct i2c_client *client = data->client;
1032	long val;
1033	int err;
1034
1035	err = kstrtol(buf, 10, &val);
1036	if (err)
1037		return err;
1038
1039	mutex_lock(&data->update_lock);
1040	data->autofan[nr].config = (data->autofan[nr].config & (~0xe0))
1041		| ZONE_TO_REG(val);
1042	lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
1043		data->autofan[nr].config);
1044	mutex_unlock(&data->update_lock);
1045	return count;
1046}
1047
1048static ssize_t show_pwm_auto_pwm_min(struct device *dev,
1049		struct device_attribute *attr, char *buf)
1050{
1051	int nr = to_sensor_dev_attr(attr)->index;
1052	struct lm85_data *data = lm85_update_device(dev);
1053	return sprintf(buf, "%d\n", PWM_FROM_REG(data->autofan[nr].min_pwm));
1054}
1055
1056static ssize_t set_pwm_auto_pwm_min(struct device *dev,
1057		struct device_attribute *attr, const char *buf, size_t count)
 
1058{
1059	int nr = to_sensor_dev_attr(attr)->index;
1060	struct lm85_data *data = dev_get_drvdata(dev);
1061	struct i2c_client *client = data->client;
1062	unsigned long val;
1063	int err;
1064
1065	err = kstrtoul(buf, 10, &val);
1066	if (err)
1067		return err;
1068
1069	mutex_lock(&data->update_lock);
1070	data->autofan[nr].min_pwm = PWM_TO_REG(val);
1071	lm85_write_value(client, LM85_REG_AFAN_MINPWM(nr),
1072		data->autofan[nr].min_pwm);
1073	mutex_unlock(&data->update_lock);
1074	return count;
1075}
1076
1077static ssize_t show_pwm_auto_pwm_minctl(struct device *dev,
1078		struct device_attribute *attr, char *buf)
 
1079{
1080	int nr = to_sensor_dev_attr(attr)->index;
1081	struct lm85_data *data = lm85_update_device(dev);
1082	return sprintf(buf, "%d\n", data->autofan[nr].min_off);
1083}
1084
1085static ssize_t set_pwm_auto_pwm_minctl(struct device *dev,
1086		struct device_attribute *attr, const char *buf, size_t count)
 
1087{
1088	int nr = to_sensor_dev_attr(attr)->index;
1089	struct lm85_data *data = dev_get_drvdata(dev);
1090	struct i2c_client *client = data->client;
1091	u8 tmp;
1092	long val;
1093	int err;
1094
1095	err = kstrtol(buf, 10, &val);
1096	if (err)
1097		return err;
1098
1099	mutex_lock(&data->update_lock);
1100	data->autofan[nr].min_off = val;
1101	tmp = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
1102	tmp &= ~(0x20 << nr);
1103	if (data->autofan[nr].min_off)
1104		tmp |= 0x20 << nr;
1105	lm85_write_value(client, LM85_REG_AFAN_SPIKE1, tmp);
1106	mutex_unlock(&data->update_lock);
1107	return count;
1108}
1109
1110#define pwm_auto(offset)						\
1111static SENSOR_DEVICE_ATTR(pwm##offset##_auto_channels,			\
1112		S_IRUGO | S_IWUSR, show_pwm_auto_channels,		\
1113		set_pwm_auto_channels, offset - 1);			\
1114static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_min,			\
1115		S_IRUGO | S_IWUSR, show_pwm_auto_pwm_min,		\
1116		set_pwm_auto_pwm_min, offset - 1);			\
1117static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_minctl,		\
1118		S_IRUGO | S_IWUSR, show_pwm_auto_pwm_minctl,		\
1119		set_pwm_auto_pwm_minctl, offset - 1)
1120
1121pwm_auto(1);
1122pwm_auto(2);
1123pwm_auto(3);
1124
1125/* Temperature settings for automatic PWM control */
1126
1127static ssize_t show_temp_auto_temp_off(struct device *dev,
1128		struct device_attribute *attr, char *buf)
 
1129{
1130	int nr = to_sensor_dev_attr(attr)->index;
1131	struct lm85_data *data = lm85_update_device(dev);
1132	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) -
1133		HYST_FROM_REG(data->zone[nr].hyst));
1134}
1135
1136static ssize_t set_temp_auto_temp_off(struct device *dev,
1137		struct device_attribute *attr, const char *buf, size_t count)
 
1138{
1139	int nr = to_sensor_dev_attr(attr)->index;
1140	struct lm85_data *data = dev_get_drvdata(dev);
1141	struct i2c_client *client = data->client;
1142	int min;
1143	long val;
1144	int err;
1145
1146	err = kstrtol(buf, 10, &val);
1147	if (err)
1148		return err;
1149
1150	mutex_lock(&data->update_lock);
1151	min = TEMP_FROM_REG(data->zone[nr].limit);
1152	data->zone[nr].hyst = HYST_TO_REG(min - val);
1153	if (nr == 0 || nr == 1) {
1154		lm85_write_value(client, LM85_REG_AFAN_HYST1,
1155			(data->zone[0].hyst << 4)
1156			| data->zone[1].hyst);
1157	} else {
1158		lm85_write_value(client, LM85_REG_AFAN_HYST2,
1159			(data->zone[2].hyst << 4));
1160	}
1161	mutex_unlock(&data->update_lock);
1162	return count;
1163}
1164
1165static ssize_t show_temp_auto_temp_min(struct device *dev,
1166		struct device_attribute *attr, char *buf)
 
1167{
1168	int nr = to_sensor_dev_attr(attr)->index;
1169	struct lm85_data *data = lm85_update_device(dev);
1170	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit));
1171}
1172
1173static ssize_t set_temp_auto_temp_min(struct device *dev,
1174		struct device_attribute *attr, const char *buf, size_t count)
 
1175{
1176	int nr = to_sensor_dev_attr(attr)->index;
1177	struct lm85_data *data = dev_get_drvdata(dev);
1178	struct i2c_client *client = data->client;
1179	long val;
1180	int err;
1181
1182	err = kstrtol(buf, 10, &val);
1183	if (err)
1184		return err;
1185
1186	mutex_lock(&data->update_lock);
1187	data->zone[nr].limit = TEMP_TO_REG(val);
1188	lm85_write_value(client, LM85_REG_AFAN_LIMIT(nr),
1189		data->zone[nr].limit);
1190
1191/* Update temp_auto_max and temp_auto_range */
1192	data->zone[nr].range = RANGE_TO_REG(
1193		TEMP_FROM_REG(data->zone[nr].max_desired) -
1194		TEMP_FROM_REG(data->zone[nr].limit));
1195	lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
1196		((data->zone[nr].range & 0x0f) << 4)
1197		| (data->pwm_freq[nr] & 0x07));
1198
1199	mutex_unlock(&data->update_lock);
1200	return count;
1201}
1202
1203static ssize_t show_temp_auto_temp_max(struct device *dev,
1204		struct device_attribute *attr, char *buf)
 
1205{
1206	int nr = to_sensor_dev_attr(attr)->index;
1207	struct lm85_data *data = lm85_update_device(dev);
1208	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) +
1209		RANGE_FROM_REG(data->zone[nr].range));
1210}
1211
1212static ssize_t set_temp_auto_temp_max(struct device *dev,
1213		struct device_attribute *attr, const char *buf, size_t count)
 
1214{
1215	int nr = to_sensor_dev_attr(attr)->index;
1216	struct lm85_data *data = dev_get_drvdata(dev);
1217	struct i2c_client *client = data->client;
1218	int min;
1219	long val;
1220	int err;
1221
1222	err = kstrtol(buf, 10, &val);
1223	if (err)
1224		return err;
1225
1226	mutex_lock(&data->update_lock);
1227	min = TEMP_FROM_REG(data->zone[nr].limit);
1228	data->zone[nr].max_desired = TEMP_TO_REG(val);
1229	data->zone[nr].range = RANGE_TO_REG(
1230		val - min);
1231	lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
1232		((data->zone[nr].range & 0x0f) << 4)
1233		| (data->pwm_freq[nr] & 0x07));
1234	mutex_unlock(&data->update_lock);
1235	return count;
1236}
1237
1238static ssize_t show_temp_auto_temp_crit(struct device *dev,
1239		struct device_attribute *attr, char *buf)
 
1240{
1241	int nr = to_sensor_dev_attr(attr)->index;
1242	struct lm85_data *data = lm85_update_device(dev);
1243	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].critical));
1244}
1245
1246static ssize_t set_temp_auto_temp_crit(struct device *dev,
1247		struct device_attribute *attr, const char *buf, size_t count)
 
1248{
1249	int nr = to_sensor_dev_attr(attr)->index;
1250	struct lm85_data *data = dev_get_drvdata(dev);
1251	struct i2c_client *client = data->client;
1252	long val;
1253	int err;
1254
1255	err = kstrtol(buf, 10, &val);
1256	if (err)
1257		return err;
1258
1259	mutex_lock(&data->update_lock);
1260	data->zone[nr].critical = TEMP_TO_REG(val);
1261	lm85_write_value(client, LM85_REG_AFAN_CRITICAL(nr),
1262		data->zone[nr].critical);
1263	mutex_unlock(&data->update_lock);
1264	return count;
1265}
1266
1267#define temp_auto(offset)						\
1268static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_off,			\
1269		S_IRUGO | S_IWUSR, show_temp_auto_temp_off,		\
1270		set_temp_auto_temp_off, offset - 1);			\
1271static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_min,			\
1272		S_IRUGO | S_IWUSR, show_temp_auto_temp_min,		\
1273		set_temp_auto_temp_min, offset - 1);			\
1274static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_max,			\
1275		S_IRUGO | S_IWUSR, show_temp_auto_temp_max,		\
1276		set_temp_auto_temp_max, offset - 1);			\
1277static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_crit,		\
1278		S_IRUGO | S_IWUSR, show_temp_auto_temp_crit,		\
1279		set_temp_auto_temp_crit, offset - 1);
1280
1281temp_auto(1);
1282temp_auto(2);
1283temp_auto(3);
1284
1285static struct attribute *lm85_attributes[] = {
1286	&sensor_dev_attr_fan1_input.dev_attr.attr,
1287	&sensor_dev_attr_fan2_input.dev_attr.attr,
1288	&sensor_dev_attr_fan3_input.dev_attr.attr,
1289	&sensor_dev_attr_fan4_input.dev_attr.attr,
1290	&sensor_dev_attr_fan1_min.dev_attr.attr,
1291	&sensor_dev_attr_fan2_min.dev_attr.attr,
1292	&sensor_dev_attr_fan3_min.dev_attr.attr,
1293	&sensor_dev_attr_fan4_min.dev_attr.attr,
1294	&sensor_dev_attr_fan1_alarm.dev_attr.attr,
1295	&sensor_dev_attr_fan2_alarm.dev_attr.attr,
1296	&sensor_dev_attr_fan3_alarm.dev_attr.attr,
1297	&sensor_dev_attr_fan4_alarm.dev_attr.attr,
1298
1299	&sensor_dev_attr_pwm1.dev_attr.attr,
1300	&sensor_dev_attr_pwm2.dev_attr.attr,
1301	&sensor_dev_attr_pwm3.dev_attr.attr,
1302	&sensor_dev_attr_pwm1_enable.dev_attr.attr,
1303	&sensor_dev_attr_pwm2_enable.dev_attr.attr,
1304	&sensor_dev_attr_pwm3_enable.dev_attr.attr,
1305	&sensor_dev_attr_pwm1_freq.dev_attr.attr,
1306	&sensor_dev_attr_pwm2_freq.dev_attr.attr,
1307	&sensor_dev_attr_pwm3_freq.dev_attr.attr,
1308
1309	&sensor_dev_attr_in0_input.dev_attr.attr,
1310	&sensor_dev_attr_in1_input.dev_attr.attr,
1311	&sensor_dev_attr_in2_input.dev_attr.attr,
1312	&sensor_dev_attr_in3_input.dev_attr.attr,
1313	&sensor_dev_attr_in0_min.dev_attr.attr,
1314	&sensor_dev_attr_in1_min.dev_attr.attr,
1315	&sensor_dev_attr_in2_min.dev_attr.attr,
1316	&sensor_dev_attr_in3_min.dev_attr.attr,
1317	&sensor_dev_attr_in0_max.dev_attr.attr,
1318	&sensor_dev_attr_in1_max.dev_attr.attr,
1319	&sensor_dev_attr_in2_max.dev_attr.attr,
1320	&sensor_dev_attr_in3_max.dev_attr.attr,
1321	&sensor_dev_attr_in0_alarm.dev_attr.attr,
1322	&sensor_dev_attr_in1_alarm.dev_attr.attr,
1323	&sensor_dev_attr_in2_alarm.dev_attr.attr,
1324	&sensor_dev_attr_in3_alarm.dev_attr.attr,
1325
1326	&sensor_dev_attr_temp1_input.dev_attr.attr,
1327	&sensor_dev_attr_temp2_input.dev_attr.attr,
1328	&sensor_dev_attr_temp3_input.dev_attr.attr,
1329	&sensor_dev_attr_temp1_min.dev_attr.attr,
1330	&sensor_dev_attr_temp2_min.dev_attr.attr,
1331	&sensor_dev_attr_temp3_min.dev_attr.attr,
1332	&sensor_dev_attr_temp1_max.dev_attr.attr,
1333	&sensor_dev_attr_temp2_max.dev_attr.attr,
1334	&sensor_dev_attr_temp3_max.dev_attr.attr,
1335	&sensor_dev_attr_temp1_alarm.dev_attr.attr,
1336	&sensor_dev_attr_temp2_alarm.dev_attr.attr,
1337	&sensor_dev_attr_temp3_alarm.dev_attr.attr,
1338	&sensor_dev_attr_temp1_fault.dev_attr.attr,
1339	&sensor_dev_attr_temp3_fault.dev_attr.attr,
1340
1341	&sensor_dev_attr_pwm1_auto_channels.dev_attr.attr,
1342	&sensor_dev_attr_pwm2_auto_channels.dev_attr.attr,
1343	&sensor_dev_attr_pwm3_auto_channels.dev_attr.attr,
1344	&sensor_dev_attr_pwm1_auto_pwm_min.dev_attr.attr,
1345	&sensor_dev_attr_pwm2_auto_pwm_min.dev_attr.attr,
1346	&sensor_dev_attr_pwm3_auto_pwm_min.dev_attr.attr,
1347
1348	&sensor_dev_attr_temp1_auto_temp_min.dev_attr.attr,
1349	&sensor_dev_attr_temp2_auto_temp_min.dev_attr.attr,
1350	&sensor_dev_attr_temp3_auto_temp_min.dev_attr.attr,
1351	&sensor_dev_attr_temp1_auto_temp_max.dev_attr.attr,
1352	&sensor_dev_attr_temp2_auto_temp_max.dev_attr.attr,
1353	&sensor_dev_attr_temp3_auto_temp_max.dev_attr.attr,
1354	&sensor_dev_attr_temp1_auto_temp_crit.dev_attr.attr,
1355	&sensor_dev_attr_temp2_auto_temp_crit.dev_attr.attr,
1356	&sensor_dev_attr_temp3_auto_temp_crit.dev_attr.attr,
1357
1358	&dev_attr_vrm.attr,
1359	&dev_attr_cpu0_vid.attr,
1360	&dev_attr_alarms.attr,
1361	NULL
1362};
1363
1364static const struct attribute_group lm85_group = {
1365	.attrs = lm85_attributes,
1366};
1367
1368static struct attribute *lm85_attributes_minctl[] = {
1369	&sensor_dev_attr_pwm1_auto_pwm_minctl.dev_attr.attr,
1370	&sensor_dev_attr_pwm2_auto_pwm_minctl.dev_attr.attr,
1371	&sensor_dev_attr_pwm3_auto_pwm_minctl.dev_attr.attr,
1372	NULL
1373};
1374
1375static const struct attribute_group lm85_group_minctl = {
1376	.attrs = lm85_attributes_minctl,
1377};
1378
1379static struct attribute *lm85_attributes_temp_off[] = {
1380	&sensor_dev_attr_temp1_auto_temp_off.dev_attr.attr,
1381	&sensor_dev_attr_temp2_auto_temp_off.dev_attr.attr,
1382	&sensor_dev_attr_temp3_auto_temp_off.dev_attr.attr,
1383	NULL
1384};
1385
1386static const struct attribute_group lm85_group_temp_off = {
1387	.attrs = lm85_attributes_temp_off,
1388};
1389
1390static struct attribute *lm85_attributes_in4[] = {
1391	&sensor_dev_attr_in4_input.dev_attr.attr,
1392	&sensor_dev_attr_in4_min.dev_attr.attr,
1393	&sensor_dev_attr_in4_max.dev_attr.attr,
1394	&sensor_dev_attr_in4_alarm.dev_attr.attr,
1395	NULL
1396};
1397
1398static const struct attribute_group lm85_group_in4 = {
1399	.attrs = lm85_attributes_in4,
1400};
1401
1402static struct attribute *lm85_attributes_in567[] = {
1403	&sensor_dev_attr_in5_input.dev_attr.attr,
1404	&sensor_dev_attr_in6_input.dev_attr.attr,
1405	&sensor_dev_attr_in7_input.dev_attr.attr,
1406	&sensor_dev_attr_in5_min.dev_attr.attr,
1407	&sensor_dev_attr_in6_min.dev_attr.attr,
1408	&sensor_dev_attr_in7_min.dev_attr.attr,
1409	&sensor_dev_attr_in5_max.dev_attr.attr,
1410	&sensor_dev_attr_in6_max.dev_attr.attr,
1411	&sensor_dev_attr_in7_max.dev_attr.attr,
1412	&sensor_dev_attr_in5_alarm.dev_attr.attr,
1413	&sensor_dev_attr_in6_alarm.dev_attr.attr,
1414	&sensor_dev_attr_in7_alarm.dev_attr.attr,
1415	NULL
1416};
1417
1418static const struct attribute_group lm85_group_in567 = {
1419	.attrs = lm85_attributes_in567,
1420};
1421
1422static void lm85_init_client(struct i2c_client *client)
1423{
1424	int value;
1425
1426	/* Start monitoring if needed */
1427	value = lm85_read_value(client, LM85_REG_CONFIG);
1428	if (!(value & 0x01)) {
1429		dev_info(&client->dev, "Starting monitoring\n");
1430		lm85_write_value(client, LM85_REG_CONFIG, value | 0x01);
1431	}
1432
1433	/* Warn about unusual configuration bits */
1434	if (value & 0x02)
1435		dev_warn(&client->dev, "Device configuration is locked\n");
1436	if (!(value & 0x04))
1437		dev_warn(&client->dev, "Device is not ready\n");
1438}
1439
1440static int lm85_is_fake(struct i2c_client *client)
1441{
1442	/*
1443	 * Differenciate between real LM96000 and Winbond WPCD377I. The latter
1444	 * emulate the former except that it has no hardware monitoring function
1445	 * so the readings are always 0.
1446	 */
1447	int i;
1448	u8 in_temp, fan;
1449
1450	for (i = 0; i < 8; i++) {
1451		in_temp = i2c_smbus_read_byte_data(client, 0x20 + i);
1452		fan = i2c_smbus_read_byte_data(client, 0x28 + i);
1453		if (in_temp != 0x00 || fan != 0xff)
1454			return 0;
1455	}
1456
1457	return 1;
1458}
1459
1460/* Return 0 if detection is successful, -ENODEV otherwise */
1461static int lm85_detect(struct i2c_client *client, struct i2c_board_info *info)
1462{
1463	struct i2c_adapter *adapter = client->adapter;
1464	int address = client->addr;
1465	const char *type_name = NULL;
1466	int company, verstep;
1467
1468	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
1469		/* We need to be able to do byte I/O */
1470		return -ENODEV;
1471	}
1472
1473	/* Determine the chip type */
1474	company = lm85_read_value(client, LM85_REG_COMPANY);
1475	verstep = lm85_read_value(client, LM85_REG_VERSTEP);
1476
1477	dev_dbg(&adapter->dev,
1478		"Detecting device at 0x%02x with COMPANY: 0x%02x and VERSTEP: 0x%02x\n",
1479		address, company, verstep);
1480
1481	if (company == LM85_COMPANY_NATIONAL) {
1482		switch (verstep) {
1483		case LM85_VERSTEP_LM85C:
1484			type_name = "lm85c";
1485			break;
1486		case LM85_VERSTEP_LM85B:
1487			type_name = "lm85b";
1488			break;
1489		case LM85_VERSTEP_LM96000_1:
1490		case LM85_VERSTEP_LM96000_2:
1491			/* Check for Winbond WPCD377I */
1492			if (lm85_is_fake(client)) {
1493				dev_dbg(&adapter->dev,
1494					"Found Winbond WPCD377I, ignoring\n");
1495				return -ENODEV;
1496			}
1497			type_name = "lm85";
1498			break;
1499		}
1500	} else if (company == LM85_COMPANY_ANALOG_DEV) {
1501		switch (verstep) {
1502		case LM85_VERSTEP_ADM1027:
1503			type_name = "adm1027";
1504			break;
1505		case LM85_VERSTEP_ADT7463:
1506		case LM85_VERSTEP_ADT7463C:
1507			type_name = "adt7463";
1508			break;
1509		case LM85_VERSTEP_ADT7468_1:
1510		case LM85_VERSTEP_ADT7468_2:
1511			type_name = "adt7468";
1512			break;
1513		}
1514	} else if (company == LM85_COMPANY_SMSC) {
1515		switch (verstep) {
1516		case LM85_VERSTEP_EMC6D100_A0:
1517		case LM85_VERSTEP_EMC6D100_A1:
1518			/* Note: we can't tell a '100 from a '101 */
1519			type_name = "emc6d100";
1520			break;
1521		case LM85_VERSTEP_EMC6D102:
1522			type_name = "emc6d102";
1523			break;
1524		case LM85_VERSTEP_EMC6D103_A0:
1525		case LM85_VERSTEP_EMC6D103_A1:
1526			type_name = "emc6d103";
1527			break;
1528		case LM85_VERSTEP_EMC6D103S:
1529			type_name = "emc6d103s";
1530			break;
1531		}
1532	}
1533
1534	if (!type_name)
1535		return -ENODEV;
1536
1537	strlcpy(info->type, type_name, I2C_NAME_SIZE);
1538
1539	return 0;
1540}
1541
1542static int lm85_probe(struct i2c_client *client, const struct i2c_device_id *id)
 
 
1543{
1544	struct device *dev = &client->dev;
1545	struct device *hwmon_dev;
1546	struct lm85_data *data;
1547	int idx = 0;
1548
1549	data = devm_kzalloc(dev, sizeof(struct lm85_data), GFP_KERNEL);
1550	if (!data)
1551		return -ENOMEM;
1552
1553	data->client = client;
1554	data->type = id->driver_data;
 
 
 
1555	mutex_init(&data->update_lock);
1556
1557	/* Fill in the chip specific driver values */
1558	switch (data->type) {
1559	case adm1027:
1560	case adt7463:
1561	case adt7468:
1562	case emc6d100:
1563	case emc6d102:
1564	case emc6d103:
1565	case emc6d103s:
1566		data->freq_map = adm1027_freq_map;
 
 
 
 
 
1567		break;
1568	default:
1569		data->freq_map = lm85_freq_map;
 
1570	}
1571
1572	/* Set the VRM version */
1573	data->vrm = vid_which_vrm();
1574
1575	/* Initialize the LM85 chip */
1576	lm85_init_client(client);
1577
1578	/* sysfs hooks */
1579	data->groups[idx++] = &lm85_group;
1580
1581	/* minctl and temp_off exist on all chips except emc6d103s */
1582	if (data->type != emc6d103s) {
1583		data->groups[idx++] = &lm85_group_minctl;
1584		data->groups[idx++] = &lm85_group_temp_off;
1585	}
1586
1587	/*
1588	 * The ADT7463/68 have an optional VRM 10 mode where pin 21 is used
1589	 * as a sixth digital VID input rather than an analog input.
1590	 */
1591	if (data->type == adt7463 || data->type == adt7468) {
1592		u8 vid = lm85_read_value(client, LM85_REG_VID);
1593		if (vid & 0x80)
1594			data->has_vid5 = true;
1595	}
1596
1597	if (!data->has_vid5)
1598		data->groups[idx++] = &lm85_group_in4;
1599
1600	/* The EMC6D100 has 3 additional voltage inputs */
1601	if (data->type == emc6d100)
1602		data->groups[idx++] = &lm85_group_in567;
1603
1604	hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
1605							   data, data->groups);
1606	return PTR_ERR_OR_ZERO(hwmon_dev);
1607}
1608
1609static const struct i2c_device_id lm85_id[] = {
1610	{ "adm1027", adm1027 },
1611	{ "adt7463", adt7463 },
1612	{ "adt7468", adt7468 },
1613	{ "lm85", lm85 },
1614	{ "lm85b", lm85 },
1615	{ "lm85c", lm85 },
 
1616	{ "emc6d100", emc6d100 },
1617	{ "emc6d101", emc6d100 },
1618	{ "emc6d102", emc6d102 },
1619	{ "emc6d103", emc6d103 },
1620	{ "emc6d103s", emc6d103s },
1621	{ }
1622};
1623MODULE_DEVICE_TABLE(i2c, lm85_id);
1624
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1625static struct i2c_driver lm85_driver = {
1626	.class		= I2C_CLASS_HWMON,
1627	.driver = {
1628		.name   = "lm85",
 
1629	},
1630	.probe		= lm85_probe,
1631	.id_table	= lm85_id,
1632	.detect		= lm85_detect,
1633	.address_list	= normal_i2c,
1634};
1635
1636module_i2c_driver(lm85_driver);
1637
1638MODULE_LICENSE("GPL");
1639MODULE_AUTHOR("Philip Pokorny <ppokorny@penguincomputing.com>, "
1640	"Margit Schubert-While <margitsw@t-online.de>, "
1641	"Justin Thiessen <jthiessen@penguincomputing.com>");
1642MODULE_DESCRIPTION("LM85-B, LM85-C driver");