Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * abituguru.c Copyright (c) 2005-2006 Hans de Goede <hdegoede@redhat.com>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5/*
   6 * This driver supports the sensor part of the first and second revision of
   7 * the custom Abit uGuru chip found on Abit uGuru motherboards. Note: because
   8 * of lack of specs the CPU/RAM voltage & frequency control is not supported!
   9 */
  10
  11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  12
  13#include <linux/module.h>
  14#include <linux/sched.h>
  15#include <linux/init.h>
  16#include <linux/slab.h>
  17#include <linux/jiffies.h>
  18#include <linux/mutex.h>
  19#include <linux/err.h>
  20#include <linux/delay.h>
  21#include <linux/platform_device.h>
  22#include <linux/hwmon.h>
  23#include <linux/hwmon-sysfs.h>
  24#include <linux/dmi.h>
  25#include <linux/io.h>
  26
  27/* Banks */
  28#define ABIT_UGURU_ALARM_BANK			0x20 /* 1x 3 bytes */
  29#define ABIT_UGURU_SENSOR_BANK1			0x21 /* 16x volt and temp */
  30#define ABIT_UGURU_FAN_PWM			0x24 /* 3x 5 bytes */
  31#define ABIT_UGURU_SENSOR_BANK2			0x26 /* fans */
  32/* max nr of sensors in bank1, a bank1 sensor can be in, temp or nc */
  33#define ABIT_UGURU_MAX_BANK1_SENSORS		16
  34/*
  35 * Warning if you increase one of the 2 MAX defines below to 10 or higher you
  36 * should adjust the belonging _NAMES_LENGTH macro for the 2 digit number!
  37 */
  38/* max nr of sensors in bank2, currently mb's with max 6 fans are known */
  39#define ABIT_UGURU_MAX_BANK2_SENSORS		6
  40/* max nr of pwm outputs, currently mb's with max 5 pwm outputs are known */
  41#define ABIT_UGURU_MAX_PWMS			5
  42/* uGuru sensor bank 1 flags */			     /* Alarm if: */
  43#define ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE	0x01 /*  temp over warn */
  44#define ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE	0x02 /*  volt over max */
  45#define ABIT_UGURU_VOLT_LOW_ALARM_ENABLE	0x04 /*  volt under min */
  46#define ABIT_UGURU_TEMP_HIGH_ALARM_FLAG		0x10 /* temp is over warn */
  47#define ABIT_UGURU_VOLT_HIGH_ALARM_FLAG		0x20 /* volt is over max */
  48#define ABIT_UGURU_VOLT_LOW_ALARM_FLAG		0x40 /* volt is under min */
  49/* uGuru sensor bank 2 flags */			     /* Alarm if: */
  50#define ABIT_UGURU_FAN_LOW_ALARM_ENABLE		0x01 /*   fan under min */
  51/* uGuru sensor bank common flags */
  52#define ABIT_UGURU_BEEP_ENABLE			0x08 /* beep if alarm */
  53#define ABIT_UGURU_SHUTDOWN_ENABLE		0x80 /* shutdown if alarm */
  54/* uGuru fan PWM (speed control) flags */
  55#define ABIT_UGURU_FAN_PWM_ENABLE		0x80 /* enable speed control */
  56/* Values used for conversion */
  57#define ABIT_UGURU_FAN_MAX			15300 /* RPM */
  58/* Bank1 sensor types */
  59#define ABIT_UGURU_IN_SENSOR			0
  60#define ABIT_UGURU_TEMP_SENSOR			1
  61#define ABIT_UGURU_NC				2
  62/*
  63 * In many cases we need to wait for the uGuru to reach a certain status, most
  64 * of the time it will reach this status within 30 - 90 ISA reads, and thus we
  65 * can best busy wait. This define gives the total amount of reads to try.
  66 */
  67#define ABIT_UGURU_WAIT_TIMEOUT			125
  68/*
  69 * However sometimes older versions of the uGuru seem to be distracted and they
  70 * do not respond for a long time. To handle this we sleep before each of the
  71 * last ABIT_UGURU_WAIT_TIMEOUT_SLEEP tries.
  72 */
  73#define ABIT_UGURU_WAIT_TIMEOUT_SLEEP		5
  74/*
  75 * Normally all expected status in abituguru_ready, are reported after the
  76 * first read, but sometimes not and we need to poll.
  77 */
  78#define ABIT_UGURU_READY_TIMEOUT		5
  79/* Maximum 3 retries on timedout reads/writes, delay 200 ms before retrying */
  80#define ABIT_UGURU_MAX_RETRIES			3
  81#define ABIT_UGURU_RETRY_DELAY			(HZ/5)
  82/* Maximum 2 timeouts in abituguru_update_device, iow 3 in a row is an error */
  83#define ABIT_UGURU_MAX_TIMEOUTS			2
  84/* utility macros */
  85#define ABIT_UGURU_NAME				"abituguru"
  86#define ABIT_UGURU_DEBUG(level, format, arg...)		\
  87	do {						\
  88		if (level <= verbose)			\
  89			pr_debug(format , ## arg);	\
  90	} while (0)
  91
  92/* Macros to help calculate the sysfs_names array length */
  93/*
  94 * sum of strlen of: in??_input\0, in??_{min,max}\0, in??_{min,max}_alarm\0,
  95 * in??_{min,max}_alarm_enable\0, in??_beep\0, in??_shutdown\0
  96 */
  97#define ABITUGURU_IN_NAMES_LENGTH	(11 + 2 * 9 + 2 * 15 + 2 * 22 + 10 + 14)
  98/*
  99 * sum of strlen of: temp??_input\0, temp??_max\0, temp??_crit\0,
 100 * temp??_alarm\0, temp??_alarm_enable\0, temp??_beep\0, temp??_shutdown\0
 101 */
 102#define ABITUGURU_TEMP_NAMES_LENGTH	(13 + 11 + 12 + 13 + 20 + 12 + 16)
 103/*
 104 * sum of strlen of: fan?_input\0, fan?_min\0, fan?_alarm\0,
 105 * fan?_alarm_enable\0, fan?_beep\0, fan?_shutdown\0
 106 */
 107#define ABITUGURU_FAN_NAMES_LENGTH	(11 + 9 + 11 + 18 + 10 + 14)
 108/*
 109 * sum of strlen of: pwm?_enable\0, pwm?_auto_channels_temp\0,
 110 * pwm?_auto_point{1,2}_pwm\0, pwm?_auto_point{1,2}_temp\0
 111 */
 112#define ABITUGURU_PWM_NAMES_LENGTH	(12 + 24 + 2 * 21 + 2 * 22)
 113/* IN_NAMES_LENGTH > TEMP_NAMES_LENGTH so assume all bank1 sensors are in */
 114#define ABITUGURU_SYSFS_NAMES_LENGTH	( \
 115	ABIT_UGURU_MAX_BANK1_SENSORS * ABITUGURU_IN_NAMES_LENGTH + \
 116	ABIT_UGURU_MAX_BANK2_SENSORS * ABITUGURU_FAN_NAMES_LENGTH + \
 117	ABIT_UGURU_MAX_PWMS * ABITUGURU_PWM_NAMES_LENGTH)
 118
 119/*
 120 * All the macros below are named identical to the oguru and oguru2 programs
 121 * reverse engineered by Olle Sandberg, hence the names might not be 100%
 122 * logical. I could come up with better names, but I prefer keeping the names
 123 * identical so that this driver can be compared with his work more easily.
 124 */
 125/* Two i/o-ports are used by uGuru */
 126#define ABIT_UGURU_BASE				0x00E0
 127/* Used to tell uGuru what to read and to read the actual data */
 128#define ABIT_UGURU_CMD				0x00
 129/* Mostly used to check if uGuru is busy */
 130#define ABIT_UGURU_DATA				0x04
 131#define ABIT_UGURU_REGION_LENGTH		5
 132/* uGuru status' */
 133#define ABIT_UGURU_STATUS_WRITE			0x00 /* Ready to be written */
 134#define ABIT_UGURU_STATUS_READ			0x01 /* Ready to be read */
 135#define ABIT_UGURU_STATUS_INPUT			0x08 /* More input */
 136#define ABIT_UGURU_STATUS_READY			0x09 /* Ready to be written */
 137
 138/* Constants */
 139/* in (Volt) sensors go up to 3494 mV, temp to 255000 millidegrees Celsius */
 140static const int abituguru_bank1_max_value[2] = { 3494, 255000 };
 141/*
 142 * Min / Max allowed values for sensor2 (fan) alarm threshold, these values
 143 * correspond to 300-3000 RPM
 144 */
 145static const u8 abituguru_bank2_min_threshold = 5;
 146static const u8 abituguru_bank2_max_threshold = 50;
 147/*
 148 * Register 0 is a bitfield, 1 and 2 are pwm settings (255 = 100%), 3 and 4
 149 * are temperature trip points.
 150 */
 151static const int abituguru_pwm_settings_multiplier[5] = { 0, 1, 1, 1000, 1000 };
 152/*
 153 * Min / Max allowed values for pwm_settings. Note: pwm1 (CPU fan) is a
 154 * special case the minimum allowed pwm% setting for this is 30% (77) on
 155 * some MB's this special case is handled in the code!
 156 */
 157static const u8 abituguru_pwm_min[5] = { 0, 170, 170, 25, 25 };
 158static const u8 abituguru_pwm_max[5] = { 0, 255, 255, 75, 75 };
 159
 160
 161/* Insmod parameters */
 162static bool force;
 163module_param(force, bool, 0);
 164MODULE_PARM_DESC(force, "Set to one to force detection.");
 165static int bank1_types[ABIT_UGURU_MAX_BANK1_SENSORS] = { -1, -1, -1, -1, -1,
 166	-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 };
 167module_param_array(bank1_types, int, NULL, 0);
 168MODULE_PARM_DESC(bank1_types, "Bank1 sensortype autodetection override:\n"
 169	"   -1 autodetect\n"
 170	"    0 volt sensor\n"
 171	"    1 temp sensor\n"
 172	"    2 not connected");
 173static int fan_sensors;
 174module_param(fan_sensors, int, 0);
 175MODULE_PARM_DESC(fan_sensors, "Number of fan sensors on the uGuru "
 176	"(0 = autodetect)");
 177static int pwms;
 178module_param(pwms, int, 0);
 179MODULE_PARM_DESC(pwms, "Number of PWMs on the uGuru "
 180	"(0 = autodetect)");
 181
 182/* Default verbose is 2, since this driver is still in the testing phase */
 183static int verbose = 2;
 184module_param(verbose, int, 0644);
 185MODULE_PARM_DESC(verbose, "How verbose should the driver be? (0-3):\n"
 186	"   0 normal output\n"
 187	"   1 + verbose error reporting\n"
 188	"   2 + sensors type probing info\n"
 189	"   3 + retryable error reporting");
 190
 191
 192/*
 193 * For the Abit uGuru, we need to keep some data in memory.
 194 * The structure is dynamically allocated, at the same time when a new
 195 * abituguru device is allocated.
 196 */
 197struct abituguru_data {
 198	struct device *hwmon_dev;	/* hwmon registered device */
 199	struct mutex update_lock;	/* protect access to data and uGuru */
 200	unsigned long last_updated;	/* In jiffies */
 201	unsigned short addr;		/* uguru base address */
 202	char uguru_ready;		/* is the uguru in ready state? */
 203	unsigned char update_timeouts;	/*
 204					 * number of update timeouts since last
 205					 * successful update
 206					 */
 207
 208	/*
 209	 * The sysfs attr and their names are generated automatically, for bank1
 210	 * we cannot use a predefined array because we don't know beforehand
 211	 * of a sensor is a volt or a temp sensor, for bank2 and the pwms its
 212	 * easier todo things the same way.  For in sensors we have 9 (temp 7)
 213	 * sysfs entries per sensor, for bank2 and pwms 6.
 214	 */
 215	struct sensor_device_attribute_2 sysfs_attr[
 216		ABIT_UGURU_MAX_BANK1_SENSORS * 9 +
 217		ABIT_UGURU_MAX_BANK2_SENSORS * 6 + ABIT_UGURU_MAX_PWMS * 6];
 218	/* Buffer to store the dynamically generated sysfs names */
 219	char sysfs_names[ABITUGURU_SYSFS_NAMES_LENGTH];
 220
 221	/* Bank 1 data */
 222	/* number of and addresses of [0] in, [1] temp sensors */
 223	u8 bank1_sensors[2];
 224	u8 bank1_address[2][ABIT_UGURU_MAX_BANK1_SENSORS];
 225	u8 bank1_value[ABIT_UGURU_MAX_BANK1_SENSORS];
 226	/*
 227	 * This array holds 3 entries per sensor for the bank 1 sensor settings
 228	 * (flags, min, max for voltage / flags, warn, shutdown for temp).
 229	 */
 230	u8 bank1_settings[ABIT_UGURU_MAX_BANK1_SENSORS][3];
 231	/*
 232	 * Maximum value for each sensor used for scaling in mV/millidegrees
 233	 * Celsius.
 234	 */
 235	int bank1_max_value[ABIT_UGURU_MAX_BANK1_SENSORS];
 236
 237	/* Bank 2 data, ABIT_UGURU_MAX_BANK2_SENSORS entries for bank2 */
 238	u8 bank2_sensors; /* actual number of bank2 sensors found */
 239	u8 bank2_value[ABIT_UGURU_MAX_BANK2_SENSORS];
 240	u8 bank2_settings[ABIT_UGURU_MAX_BANK2_SENSORS][2]; /* flags, min */
 241
 242	/* Alarms 2 bytes for bank1, 1 byte for bank2 */
 243	u8 alarms[3];
 244
 245	/* Fan PWM (speed control) 5 bytes per PWM */
 246	u8 pwms; /* actual number of pwms found */
 247	u8 pwm_settings[ABIT_UGURU_MAX_PWMS][5];
 248};
 249
 250static const char *never_happen = "This should never happen.";
 251static const char *report_this =
 252	"Please report this to the abituguru maintainer (see MAINTAINERS)";
 253
 254/* wait till the uguru is in the specified state */
 255static int abituguru_wait(struct abituguru_data *data, u8 state)
 256{
 257	int timeout = ABIT_UGURU_WAIT_TIMEOUT;
 258
 259	while (inb_p(data->addr + ABIT_UGURU_DATA) != state) {
 260		timeout--;
 261		if (timeout == 0)
 262			return -EBUSY;
 263		/*
 264		 * sleep a bit before our last few tries, see the comment on
 265		 * this where ABIT_UGURU_WAIT_TIMEOUT_SLEEP is defined.
 266		 */
 267		if (timeout <= ABIT_UGURU_WAIT_TIMEOUT_SLEEP)
 268			msleep(0);
 269	}
 270	return 0;
 271}
 272
 273/* Put the uguru in ready for input state */
 274static int abituguru_ready(struct abituguru_data *data)
 275{
 276	int timeout = ABIT_UGURU_READY_TIMEOUT;
 277
 278	if (data->uguru_ready)
 279		return 0;
 280
 281	/* Reset? / Prepare for next read/write cycle */
 282	outb(0x00, data->addr + ABIT_UGURU_DATA);
 283
 284	/* Wait till the uguru is ready */
 285	if (abituguru_wait(data, ABIT_UGURU_STATUS_READY)) {
 286		ABIT_UGURU_DEBUG(1,
 287			"timeout exceeded waiting for ready state\n");
 288		return -EIO;
 289	}
 290
 291	/* Cmd port MUST be read now and should contain 0xAC */
 292	while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) {
 293		timeout--;
 294		if (timeout == 0) {
 295			ABIT_UGURU_DEBUG(1,
 296			   "CMD reg does not hold 0xAC after ready command\n");
 297			return -EIO;
 298		}
 299		msleep(0);
 300	}
 301
 302	/*
 303	 * After this the ABIT_UGURU_DATA port should contain
 304	 * ABIT_UGURU_STATUS_INPUT
 305	 */
 306	timeout = ABIT_UGURU_READY_TIMEOUT;
 307	while (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT) {
 308		timeout--;
 309		if (timeout == 0) {
 310			ABIT_UGURU_DEBUG(1,
 311				"state != more input after ready command\n");
 312			return -EIO;
 313		}
 314		msleep(0);
 315	}
 316
 317	data->uguru_ready = 1;
 318	return 0;
 319}
 320
 321/*
 322 * Send the bank and then sensor address to the uGuru for the next read/write
 323 * cycle. This function gets called as the first part of a read/write by
 324 * abituguru_read and abituguru_write. This function should never be
 325 * called by any other function.
 326 */
 327static int abituguru_send_address(struct abituguru_data *data,
 328	u8 bank_addr, u8 sensor_addr, int retries)
 329{
 330	/*
 331	 * assume the caller does error handling itself if it has not requested
 332	 * any retries, and thus be quiet.
 333	 */
 334	int report_errors = retries;
 335
 336	for (;;) {
 337		/*
 338		 * Make sure the uguru is ready and then send the bank address,
 339		 * after this the uguru is no longer "ready".
 340		 */
 341		if (abituguru_ready(data) != 0)
 342			return -EIO;
 343		outb(bank_addr, data->addr + ABIT_UGURU_DATA);
 344		data->uguru_ready = 0;
 345
 346		/*
 347		 * Wait till the uguru is ABIT_UGURU_STATUS_INPUT state again
 348		 * and send the sensor addr
 349		 */
 350		if (abituguru_wait(data, ABIT_UGURU_STATUS_INPUT)) {
 351			if (retries) {
 352				ABIT_UGURU_DEBUG(3, "timeout exceeded "
 353					"waiting for more input state, %d "
 354					"tries remaining\n", retries);
 355				set_current_state(TASK_UNINTERRUPTIBLE);
 356				schedule_timeout(ABIT_UGURU_RETRY_DELAY);
 357				retries--;
 358				continue;
 359			}
 360			if (report_errors)
 361				ABIT_UGURU_DEBUG(1, "timeout exceeded "
 362					"waiting for more input state "
 363					"(bank: %d)\n", (int)bank_addr);
 364			return -EBUSY;
 365		}
 366		outb(sensor_addr, data->addr + ABIT_UGURU_CMD);
 367		return 0;
 368	}
 369}
 370
 371/*
 372 * Read count bytes from sensor sensor_addr in bank bank_addr and store the
 373 * result in buf, retry the send address part of the read retries times.
 374 */
 375static int abituguru_read(struct abituguru_data *data,
 376	u8 bank_addr, u8 sensor_addr, u8 *buf, int count, int retries)
 377{
 378	int i;
 379
 380	/* Send the address */
 381	i = abituguru_send_address(data, bank_addr, sensor_addr, retries);
 382	if (i)
 383		return i;
 384
 385	/* And read the data */
 386	for (i = 0; i < count; i++) {
 387		if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) {
 388			ABIT_UGURU_DEBUG(retries ? 1 : 3,
 389				"timeout exceeded waiting for "
 390				"read state (bank: %d, sensor: %d)\n",
 391				(int)bank_addr, (int)sensor_addr);
 392			break;
 393		}
 394		buf[i] = inb(data->addr + ABIT_UGURU_CMD);
 395	}
 396
 397	/* Last put the chip back in ready state */
 398	abituguru_ready(data);
 399
 400	return i;
 401}
 402
 403/*
 404 * Write count bytes from buf to sensor sensor_addr in bank bank_addr, the send
 405 * address part of the write is always retried ABIT_UGURU_MAX_RETRIES times.
 406 */
 407static int abituguru_write(struct abituguru_data *data,
 408	u8 bank_addr, u8 sensor_addr, u8 *buf, int count)
 409{
 410	/*
 411	 * We use the ready timeout as we have to wait for 0xAC just like the
 412	 * ready function
 413	 */
 414	int i, timeout = ABIT_UGURU_READY_TIMEOUT;
 415
 416	/* Send the address */
 417	i = abituguru_send_address(data, bank_addr, sensor_addr,
 418		ABIT_UGURU_MAX_RETRIES);
 419	if (i)
 420		return i;
 421
 422	/* And write the data */
 423	for (i = 0; i < count; i++) {
 424		if (abituguru_wait(data, ABIT_UGURU_STATUS_WRITE)) {
 425			ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for "
 426				"write state (bank: %d, sensor: %d)\n",
 427				(int)bank_addr, (int)sensor_addr);
 428			break;
 429		}
 430		outb(buf[i], data->addr + ABIT_UGURU_CMD);
 431	}
 432
 433	/*
 434	 * Now we need to wait till the chip is ready to be read again,
 435	 * so that we can read 0xAC as confirmation that our write has
 436	 * succeeded.
 437	 */
 438	if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) {
 439		ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for read state "
 440			"after write (bank: %d, sensor: %d)\n", (int)bank_addr,
 441			(int)sensor_addr);
 442		return -EIO;
 443	}
 444
 445	/* Cmd port MUST be read now and should contain 0xAC */
 446	while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) {
 447		timeout--;
 448		if (timeout == 0) {
 449			ABIT_UGURU_DEBUG(1, "CMD reg does not hold 0xAC after "
 450				"write (bank: %d, sensor: %d)\n",
 451				(int)bank_addr, (int)sensor_addr);
 452			return -EIO;
 453		}
 454		msleep(0);
 455	}
 456
 457	/* Last put the chip back in ready state */
 458	abituguru_ready(data);
 459
 460	return i;
 461}
 462
 463/*
 464 * Detect sensor type. Temp and Volt sensors are enabled with
 465 * different masks and will ignore enable masks not meant for them.
 466 * This enables us to test what kind of sensor we're dealing with.
 467 * By setting the alarm thresholds so that we will always get an
 468 * alarm for sensor type X and then enabling the sensor as sensor type
 469 * X, if we then get an alarm it is a sensor of type X.
 470 */
 471static int
 472abituguru_detect_bank1_sensor_type(struct abituguru_data *data,
 473				   u8 sensor_addr)
 474{
 475	u8 val, test_flag, buf[3];
 476	int i, ret = -ENODEV; /* error is the most common used retval :| */
 477
 478	/* If overriden by the user return the user selected type */
 479	if (bank1_types[sensor_addr] >= ABIT_UGURU_IN_SENSOR &&
 480			bank1_types[sensor_addr] <= ABIT_UGURU_NC) {
 481		ABIT_UGURU_DEBUG(2, "assuming sensor type %d for bank1 sensor "
 482			"%d because of \"bank1_types\" module param\n",
 483			bank1_types[sensor_addr], (int)sensor_addr);
 484		return bank1_types[sensor_addr];
 485	}
 486
 487	/* First read the sensor and the current settings */
 488	if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, sensor_addr, &val,
 489			1, ABIT_UGURU_MAX_RETRIES) != 1)
 490		return -ENODEV;
 491
 492	/* Test val is sane / usable for sensor type detection. */
 493	if ((val < 10u) || (val > 250u)) {
 494		pr_warn("bank1-sensor: %d reading (%d) too close to limits, "
 495			"unable to determine sensor type, skipping sensor\n",
 496			(int)sensor_addr, (int)val);
 497		/*
 498		 * assume no sensor is there for sensors for which we can't
 499		 * determine the sensor type because their reading is too close
 500		 * to their limits, this usually means no sensor is there.
 501		 */
 502		return ABIT_UGURU_NC;
 503	}
 504
 505	ABIT_UGURU_DEBUG(2, "testing bank1 sensor %d\n", (int)sensor_addr);
 506	/*
 507	 * Volt sensor test, enable volt low alarm, set min value ridiculously
 508	 * high, or vica versa if the reading is very high. If its a volt
 509	 * sensor this should always give us an alarm.
 510	 */
 511	if (val <= 240u) {
 512		buf[0] = ABIT_UGURU_VOLT_LOW_ALARM_ENABLE;
 513		buf[1] = 245;
 514		buf[2] = 250;
 515		test_flag = ABIT_UGURU_VOLT_LOW_ALARM_FLAG;
 516	} else {
 517		buf[0] = ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE;
 518		buf[1] = 5;
 519		buf[2] = 10;
 520		test_flag = ABIT_UGURU_VOLT_HIGH_ALARM_FLAG;
 521	}
 522
 523	if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr,
 524			buf, 3) != 3)
 525		goto abituguru_detect_bank1_sensor_type_exit;
 526	/*
 527	 * Now we need 20 ms to give the uguru time to read the sensors
 528	 * and raise a voltage alarm
 529	 */
 530	set_current_state(TASK_UNINTERRUPTIBLE);
 531	schedule_timeout(HZ/50);
 532	/* Check for alarm and check the alarm is a volt low alarm. */
 533	if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3,
 534			ABIT_UGURU_MAX_RETRIES) != 3)
 535		goto abituguru_detect_bank1_sensor_type_exit;
 536	if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) {
 537		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
 538				sensor_addr, buf, 3,
 539				ABIT_UGURU_MAX_RETRIES) != 3)
 540			goto abituguru_detect_bank1_sensor_type_exit;
 541		if (buf[0] & test_flag) {
 542			ABIT_UGURU_DEBUG(2, "  found volt sensor\n");
 543			ret = ABIT_UGURU_IN_SENSOR;
 544			goto abituguru_detect_bank1_sensor_type_exit;
 545		} else
 546			ABIT_UGURU_DEBUG(2, "  alarm raised during volt "
 547				"sensor test, but volt range flag not set\n");
 548	} else
 549		ABIT_UGURU_DEBUG(2, "  alarm not raised during volt sensor "
 550			"test\n");
 551
 552	/*
 553	 * Temp sensor test, enable sensor as a temp sensor, set beep value
 554	 * ridiculously low (but not too low, otherwise uguru ignores it).
 555	 * If its a temp sensor this should always give us an alarm.
 556	 */
 557	buf[0] = ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE;
 558	buf[1] = 5;
 559	buf[2] = 10;
 560	if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr,
 561			buf, 3) != 3)
 562		goto abituguru_detect_bank1_sensor_type_exit;
 563	/*
 564	 * Now we need 50 ms to give the uguru time to read the sensors
 565	 * and raise a temp alarm
 566	 */
 567	set_current_state(TASK_UNINTERRUPTIBLE);
 568	schedule_timeout(HZ/20);
 569	/* Check for alarm and check the alarm is a temp high alarm. */
 570	if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3,
 571			ABIT_UGURU_MAX_RETRIES) != 3)
 572		goto abituguru_detect_bank1_sensor_type_exit;
 573	if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) {
 574		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
 575				sensor_addr, buf, 3,
 576				ABIT_UGURU_MAX_RETRIES) != 3)
 577			goto abituguru_detect_bank1_sensor_type_exit;
 578		if (buf[0] & ABIT_UGURU_TEMP_HIGH_ALARM_FLAG) {
 579			ABIT_UGURU_DEBUG(2, "  found temp sensor\n");
 580			ret = ABIT_UGURU_TEMP_SENSOR;
 581			goto abituguru_detect_bank1_sensor_type_exit;
 582		} else
 583			ABIT_UGURU_DEBUG(2, "  alarm raised during temp "
 584				"sensor test, but temp high flag not set\n");
 585	} else
 586		ABIT_UGURU_DEBUG(2, "  alarm not raised during temp sensor "
 587			"test\n");
 588
 589	ret = ABIT_UGURU_NC;
 590abituguru_detect_bank1_sensor_type_exit:
 591	/*
 592	 * Restore original settings, failing here is really BAD, it has been
 593	 * reported that some BIOS-es hang when entering the uGuru menu with
 594	 * invalid settings present in the uGuru, so we try this 3 times.
 595	 */
 596	for (i = 0; i < 3; i++)
 597		if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2,
 598				sensor_addr, data->bank1_settings[sensor_addr],
 599				3) == 3)
 600			break;
 601	if (i == 3) {
 602		pr_err("Fatal error could not restore original settings. %s %s\n",
 603		       never_happen, report_this);
 604		return -ENODEV;
 605	}
 606	return ret;
 607}
 608
 609/*
 610 * These functions try to find out how many sensors there are in bank2 and how
 611 * many pwms there are. The purpose of this is to make sure that we don't give
 612 * the user the possibility to change settings for non-existent sensors / pwm.
 613 * The uGuru will happily read / write whatever memory happens to be after the
 614 * memory storing the PWM settings when reading/writing to a PWM which is not
 615 * there. Notice even if we detect a PWM which doesn't exist we normally won't
 616 * write to it, unless the user tries to change the settings.
 617 *
 618 * Although the uGuru allows reading (settings) from non existing bank2
 619 * sensors, my version of the uGuru does seem to stop writing to them, the
 620 * write function above aborts in this case with:
 621 * "CMD reg does not hold 0xAC after write"
 622 *
 623 * Notice these 2 tests are non destructive iow read-only tests, otherwise
 624 * they would defeat their purpose. Although for the bank2_sensors detection a
 625 * read/write test would be feasible because of the reaction above, I've
 626 * however opted to stay on the safe side.
 627 */
 628static void
 629abituguru_detect_no_bank2_sensors(struct abituguru_data *data)
 630{
 631	int i;
 632
 633	if (fan_sensors > 0 && fan_sensors <= ABIT_UGURU_MAX_BANK2_SENSORS) {
 634		data->bank2_sensors = fan_sensors;
 635		ABIT_UGURU_DEBUG(2, "assuming %d fan sensors because of "
 636			"\"fan_sensors\" module param\n",
 637			(int)data->bank2_sensors);
 638		return;
 639	}
 640
 641	ABIT_UGURU_DEBUG(2, "detecting number of fan sensors\n");
 642	for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) {
 643		/*
 644		 * 0x89 are the known used bits:
 645		 * -0x80 enable shutdown
 646		 * -0x08 enable beep
 647		 * -0x01 enable alarm
 648		 * All other bits should be 0, but on some motherboards
 649		 * 0x40 (bit 6) is also high for some of the fans??
 650		 */
 651		if (data->bank2_settings[i][0] & ~0xC9) {
 652			ABIT_UGURU_DEBUG(2, "  bank2 sensor %d does not seem "
 653				"to be a fan sensor: settings[0] = %02X\n",
 654				i, (unsigned int)data->bank2_settings[i][0]);
 655			break;
 656		}
 657
 658		/* check if the threshold is within the allowed range */
 659		if (data->bank2_settings[i][1] <
 660				abituguru_bank2_min_threshold) {
 661			ABIT_UGURU_DEBUG(2, "  bank2 sensor %d does not seem "
 662				"to be a fan sensor: the threshold (%d) is "
 663				"below the minimum (%d)\n", i,
 664				(int)data->bank2_settings[i][1],
 665				(int)abituguru_bank2_min_threshold);
 666			break;
 667		}
 668		if (data->bank2_settings[i][1] >
 669				abituguru_bank2_max_threshold) {
 670			ABIT_UGURU_DEBUG(2, "  bank2 sensor %d does not seem "
 671				"to be a fan sensor: the threshold (%d) is "
 672				"above the maximum (%d)\n", i,
 673				(int)data->bank2_settings[i][1],
 674				(int)abituguru_bank2_max_threshold);
 675			break;
 676		}
 677	}
 678
 679	data->bank2_sensors = i;
 680	ABIT_UGURU_DEBUG(2, " found: %d fan sensors\n",
 681		(int)data->bank2_sensors);
 682}
 683
 684static void
 685abituguru_detect_no_pwms(struct abituguru_data *data)
 686{
 687	int i, j;
 688
 689	if (pwms > 0 && pwms <= ABIT_UGURU_MAX_PWMS) {
 690		data->pwms = pwms;
 691		ABIT_UGURU_DEBUG(2, "assuming %d PWM outputs because of "
 692			"\"pwms\" module param\n", (int)data->pwms);
 693		return;
 694	}
 695
 696	ABIT_UGURU_DEBUG(2, "detecting number of PWM outputs\n");
 697	for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) {
 698		/*
 699		 * 0x80 is the enable bit and the low
 700		 * nibble is which temp sensor to use,
 701		 * the other bits should be 0
 702		 */
 703		if (data->pwm_settings[i][0] & ~0x8F) {
 704			ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
 705				"to be a pwm channel: settings[0] = %02X\n",
 706				i, (unsigned int)data->pwm_settings[i][0]);
 707			break;
 708		}
 709
 710		/*
 711		 * the low nibble must correspond to one of the temp sensors
 712		 * we've found
 713		 */
 714		for (j = 0; j < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR];
 715				j++) {
 716			if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][j] ==
 717					(data->pwm_settings[i][0] & 0x0F))
 718				break;
 719		}
 720		if (j == data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]) {
 721			ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
 722				"to be a pwm channel: %d is not a valid temp "
 723				"sensor address\n", i,
 724				data->pwm_settings[i][0] & 0x0F);
 725			break;
 726		}
 727
 728		/* check if all other settings are within the allowed range */
 729		for (j = 1; j < 5; j++) {
 730			u8 min;
 731			/* special case pwm1 min pwm% */
 732			if ((i == 0) && ((j == 1) || (j == 2)))
 733				min = 77;
 734			else
 735				min = abituguru_pwm_min[j];
 736			if (data->pwm_settings[i][j] < min) {
 737				ABIT_UGURU_DEBUG(2, "  pwm channel %d does "
 738					"not seem to be a pwm channel: "
 739					"setting %d (%d) is below the minimum "
 740					"value (%d)\n", i, j,
 741					(int)data->pwm_settings[i][j],
 742					(int)min);
 743				goto abituguru_detect_no_pwms_exit;
 744			}
 745			if (data->pwm_settings[i][j] > abituguru_pwm_max[j]) {
 746				ABIT_UGURU_DEBUG(2, "  pwm channel %d does "
 747					"not seem to be a pwm channel: "
 748					"setting %d (%d) is above the maximum "
 749					"value (%d)\n", i, j,
 750					(int)data->pwm_settings[i][j],
 751					(int)abituguru_pwm_max[j]);
 752				goto abituguru_detect_no_pwms_exit;
 753			}
 754		}
 755
 756		/* check that min temp < max temp and min pwm < max pwm */
 757		if (data->pwm_settings[i][1] >= data->pwm_settings[i][2]) {
 758			ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
 759				"to be a pwm channel: min pwm (%d) >= "
 760				"max pwm (%d)\n", i,
 761				(int)data->pwm_settings[i][1],
 762				(int)data->pwm_settings[i][2]);
 763			break;
 764		}
 765		if (data->pwm_settings[i][3] >= data->pwm_settings[i][4]) {
 766			ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
 767				"to be a pwm channel: min temp (%d) >= "
 768				"max temp (%d)\n", i,
 769				(int)data->pwm_settings[i][3],
 770				(int)data->pwm_settings[i][4]);
 771			break;
 772		}
 773	}
 774
 775abituguru_detect_no_pwms_exit:
 776	data->pwms = i;
 777	ABIT_UGURU_DEBUG(2, " found: %d PWM outputs\n", (int)data->pwms);
 778}
 779
 780/*
 781 * Following are the sysfs callback functions. These functions expect:
 782 * sensor_device_attribute_2->index:   sensor address/offset in the bank
 783 * sensor_device_attribute_2->nr:      register offset, bitmask or NA.
 784 */
 785static struct abituguru_data *abituguru_update_device(struct device *dev);
 786
 787static ssize_t show_bank1_value(struct device *dev,
 788	struct device_attribute *devattr, char *buf)
 789{
 790	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 791	struct abituguru_data *data = abituguru_update_device(dev);
 792	if (!data)
 793		return -EIO;
 794	return sprintf(buf, "%d\n", (data->bank1_value[attr->index] *
 795		data->bank1_max_value[attr->index] + 128) / 255);
 796}
 797
 798static ssize_t show_bank1_setting(struct device *dev,
 799	struct device_attribute *devattr, char *buf)
 800{
 801	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 802	struct abituguru_data *data = dev_get_drvdata(dev);
 803	return sprintf(buf, "%d\n",
 804		(data->bank1_settings[attr->index][attr->nr] *
 805		data->bank1_max_value[attr->index] + 128) / 255);
 806}
 807
 808static ssize_t show_bank2_value(struct device *dev,
 809	struct device_attribute *devattr, char *buf)
 810{
 811	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 812	struct abituguru_data *data = abituguru_update_device(dev);
 813	if (!data)
 814		return -EIO;
 815	return sprintf(buf, "%d\n", (data->bank2_value[attr->index] *
 816		ABIT_UGURU_FAN_MAX + 128) / 255);
 817}
 818
 819static ssize_t show_bank2_setting(struct device *dev,
 820	struct device_attribute *devattr, char *buf)
 821{
 822	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 823	struct abituguru_data *data = dev_get_drvdata(dev);
 824	return sprintf(buf, "%d\n",
 825		(data->bank2_settings[attr->index][attr->nr] *
 826		ABIT_UGURU_FAN_MAX + 128) / 255);
 827}
 828
 829static ssize_t store_bank1_setting(struct device *dev, struct device_attribute
 830	*devattr, const char *buf, size_t count)
 831{
 832	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 833	struct abituguru_data *data = dev_get_drvdata(dev);
 834	unsigned long val;
 835	ssize_t ret;
 836
 837	ret = kstrtoul(buf, 10, &val);
 838	if (ret)
 839		return ret;
 840
 841	ret = count;
 842	val = (val * 255 + data->bank1_max_value[attr->index] / 2) /
 843		data->bank1_max_value[attr->index];
 844	if (val > 255)
 845		return -EINVAL;
 846
 847	mutex_lock(&data->update_lock);
 848	if (data->bank1_settings[attr->index][attr->nr] != val) {
 849		u8 orig_val = data->bank1_settings[attr->index][attr->nr];
 850		data->bank1_settings[attr->index][attr->nr] = val;
 851		if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2,
 852				attr->index, data->bank1_settings[attr->index],
 853				3) <= attr->nr) {
 854			data->bank1_settings[attr->index][attr->nr] = orig_val;
 855			ret = -EIO;
 856		}
 857	}
 858	mutex_unlock(&data->update_lock);
 859	return ret;
 860}
 861
 862static ssize_t store_bank2_setting(struct device *dev, struct device_attribute
 863	*devattr, const char *buf, size_t count)
 864{
 865	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 866	struct abituguru_data *data = dev_get_drvdata(dev);
 867	unsigned long val;
 868	ssize_t ret;
 869
 870	ret = kstrtoul(buf, 10, &val);
 871	if (ret)
 872		return ret;
 873
 874	ret = count;
 875	val = (val * 255 + ABIT_UGURU_FAN_MAX / 2) / ABIT_UGURU_FAN_MAX;
 876
 877	/* this check can be done before taking the lock */
 878	if (val < abituguru_bank2_min_threshold ||
 879			val > abituguru_bank2_max_threshold)
 880		return -EINVAL;
 881
 882	mutex_lock(&data->update_lock);
 883	if (data->bank2_settings[attr->index][attr->nr] != val) {
 884		u8 orig_val = data->bank2_settings[attr->index][attr->nr];
 885		data->bank2_settings[attr->index][attr->nr] = val;
 886		if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK2 + 2,
 887				attr->index, data->bank2_settings[attr->index],
 888				2) <= attr->nr) {
 889			data->bank2_settings[attr->index][attr->nr] = orig_val;
 890			ret = -EIO;
 891		}
 892	}
 893	mutex_unlock(&data->update_lock);
 894	return ret;
 895}
 896
 897static ssize_t show_bank1_alarm(struct device *dev,
 898	struct device_attribute *devattr, char *buf)
 899{
 900	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 901	struct abituguru_data *data = abituguru_update_device(dev);
 902	if (!data)
 903		return -EIO;
 904	/*
 905	 * See if the alarm bit for this sensor is set, and if the
 906	 * alarm matches the type of alarm we're looking for (for volt
 907	 * it can be either low or high). The type is stored in a few
 908	 * readonly bits in the settings part of the relevant sensor.
 909	 * The bitmask of the type is passed to us in attr->nr.
 910	 */
 911	if ((data->alarms[attr->index / 8] & (0x01 << (attr->index % 8))) &&
 912			(data->bank1_settings[attr->index][0] & attr->nr))
 913		return sprintf(buf, "1\n");
 914	else
 915		return sprintf(buf, "0\n");
 916}
 917
 918static ssize_t show_bank2_alarm(struct device *dev,
 919	struct device_attribute *devattr, char *buf)
 920{
 921	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 922	struct abituguru_data *data = abituguru_update_device(dev);
 923	if (!data)
 924		return -EIO;
 925	if (data->alarms[2] & (0x01 << attr->index))
 926		return sprintf(buf, "1\n");
 927	else
 928		return sprintf(buf, "0\n");
 929}
 930
 931static ssize_t show_bank1_mask(struct device *dev,
 932	struct device_attribute *devattr, char *buf)
 933{
 934	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 935	struct abituguru_data *data = dev_get_drvdata(dev);
 936	if (data->bank1_settings[attr->index][0] & attr->nr)
 937		return sprintf(buf, "1\n");
 938	else
 939		return sprintf(buf, "0\n");
 940}
 941
 942static ssize_t show_bank2_mask(struct device *dev,
 943	struct device_attribute *devattr, char *buf)
 944{
 945	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 946	struct abituguru_data *data = dev_get_drvdata(dev);
 947	if (data->bank2_settings[attr->index][0] & attr->nr)
 948		return sprintf(buf, "1\n");
 949	else
 950		return sprintf(buf, "0\n");
 951}
 952
 953static ssize_t store_bank1_mask(struct device *dev,
 954	struct device_attribute *devattr, const char *buf, size_t count)
 955{
 956	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 957	struct abituguru_data *data = dev_get_drvdata(dev);
 958	ssize_t ret;
 959	u8 orig_val;
 960	unsigned long mask;
 961
 962	ret = kstrtoul(buf, 10, &mask);
 963	if (ret)
 964		return ret;
 965
 966	ret = count;
 967	mutex_lock(&data->update_lock);
 968	orig_val = data->bank1_settings[attr->index][0];
 969
 970	if (mask)
 971		data->bank1_settings[attr->index][0] |= attr->nr;
 972	else
 973		data->bank1_settings[attr->index][0] &= ~attr->nr;
 974
 975	if ((data->bank1_settings[attr->index][0] != orig_val) &&
 976			(abituguru_write(data,
 977			ABIT_UGURU_SENSOR_BANK1 + 2, attr->index,
 978			data->bank1_settings[attr->index], 3) < 1)) {
 979		data->bank1_settings[attr->index][0] = orig_val;
 980		ret = -EIO;
 981	}
 982	mutex_unlock(&data->update_lock);
 983	return ret;
 984}
 985
 986static ssize_t store_bank2_mask(struct device *dev,
 987	struct device_attribute *devattr, const char *buf, size_t count)
 988{
 989	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 990	struct abituguru_data *data = dev_get_drvdata(dev);
 991	ssize_t ret;
 992	u8 orig_val;
 993	unsigned long mask;
 994
 995	ret = kstrtoul(buf, 10, &mask);
 996	if (ret)
 997		return ret;
 998
 999	ret = count;
1000	mutex_lock(&data->update_lock);
1001	orig_val = data->bank2_settings[attr->index][0];
1002
1003	if (mask)
1004		data->bank2_settings[attr->index][0] |= attr->nr;
1005	else
1006		data->bank2_settings[attr->index][0] &= ~attr->nr;
1007
1008	if ((data->bank2_settings[attr->index][0] != orig_val) &&
1009			(abituguru_write(data,
1010			ABIT_UGURU_SENSOR_BANK2 + 2, attr->index,
1011			data->bank2_settings[attr->index], 2) < 1)) {
1012		data->bank2_settings[attr->index][0] = orig_val;
1013		ret = -EIO;
1014	}
1015	mutex_unlock(&data->update_lock);
1016	return ret;
1017}
1018
1019/* Fan PWM (speed control) */
1020static ssize_t show_pwm_setting(struct device *dev,
1021	struct device_attribute *devattr, char *buf)
1022{
1023	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1024	struct abituguru_data *data = dev_get_drvdata(dev);
1025	return sprintf(buf, "%d\n", data->pwm_settings[attr->index][attr->nr] *
1026		abituguru_pwm_settings_multiplier[attr->nr]);
1027}
1028
1029static ssize_t store_pwm_setting(struct device *dev, struct device_attribute
1030	*devattr, const char *buf, size_t count)
1031{
1032	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1033	struct abituguru_data *data = dev_get_drvdata(dev);
1034	u8 min;
1035	unsigned long val;
1036	ssize_t ret;
1037
1038	ret = kstrtoul(buf, 10, &val);
1039	if (ret)
1040		return ret;
1041
1042	ret = count;
1043	val = (val + abituguru_pwm_settings_multiplier[attr->nr] / 2) /
1044				abituguru_pwm_settings_multiplier[attr->nr];
1045
1046	/* special case pwm1 min pwm% */
1047	if ((attr->index == 0) && ((attr->nr == 1) || (attr->nr == 2)))
1048		min = 77;
1049	else
1050		min = abituguru_pwm_min[attr->nr];
1051
1052	/* this check can be done before taking the lock */
1053	if (val < min || val > abituguru_pwm_max[attr->nr])
1054		return -EINVAL;
1055
1056	mutex_lock(&data->update_lock);
1057	/* this check needs to be done after taking the lock */
1058	if ((attr->nr & 1) &&
1059			(val >= data->pwm_settings[attr->index][attr->nr + 1]))
1060		ret = -EINVAL;
1061	else if (!(attr->nr & 1) &&
1062			(val <= data->pwm_settings[attr->index][attr->nr - 1]))
1063		ret = -EINVAL;
1064	else if (data->pwm_settings[attr->index][attr->nr] != val) {
1065		u8 orig_val = data->pwm_settings[attr->index][attr->nr];
1066		data->pwm_settings[attr->index][attr->nr] = val;
1067		if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1,
1068				attr->index, data->pwm_settings[attr->index],
1069				5) <= attr->nr) {
1070			data->pwm_settings[attr->index][attr->nr] =
1071				orig_val;
1072			ret = -EIO;
1073		}
1074	}
1075	mutex_unlock(&data->update_lock);
1076	return ret;
1077}
1078
1079static ssize_t show_pwm_sensor(struct device *dev,
1080	struct device_attribute *devattr, char *buf)
1081{
1082	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1083	struct abituguru_data *data = dev_get_drvdata(dev);
1084	int i;
1085	/*
1086	 * We need to walk to the temp sensor addresses to find what
1087	 * the userspace id of the configured temp sensor is.
1088	 */
1089	for (i = 0; i < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]; i++)
1090		if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][i] ==
1091				(data->pwm_settings[attr->index][0] & 0x0F))
1092			return sprintf(buf, "%d\n", i+1);
1093
1094	return -ENXIO;
1095}
1096
1097static ssize_t store_pwm_sensor(struct device *dev, struct device_attribute
1098	*devattr, const char *buf, size_t count)
1099{
1100	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1101	struct abituguru_data *data = dev_get_drvdata(dev);
1102	ssize_t ret;
1103	unsigned long val;
1104	u8 orig_val;
1105	u8 address;
1106
1107	ret = kstrtoul(buf, 10, &val);
1108	if (ret)
1109		return ret;
1110
1111	if (val == 0 || val > data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR])
1112		return -EINVAL;
1113
1114	val -= 1;
1115	ret = count;
1116	mutex_lock(&data->update_lock);
1117	orig_val = data->pwm_settings[attr->index][0];
1118	address = data->bank1_address[ABIT_UGURU_TEMP_SENSOR][val];
1119	data->pwm_settings[attr->index][0] &= 0xF0;
1120	data->pwm_settings[attr->index][0] |= address;
1121	if (data->pwm_settings[attr->index][0] != orig_val) {
1122		if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1, attr->index,
1123				    data->pwm_settings[attr->index], 5) < 1) {
1124			data->pwm_settings[attr->index][0] = orig_val;
1125			ret = -EIO;
1126		}
1127	}
1128	mutex_unlock(&data->update_lock);
1129	return ret;
1130}
1131
1132static ssize_t show_pwm_enable(struct device *dev,
1133	struct device_attribute *devattr, char *buf)
1134{
1135	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1136	struct abituguru_data *data = dev_get_drvdata(dev);
1137	int res = 0;
1138	if (data->pwm_settings[attr->index][0] & ABIT_UGURU_FAN_PWM_ENABLE)
1139		res = 2;
1140	return sprintf(buf, "%d\n", res);
1141}
1142
1143static ssize_t store_pwm_enable(struct device *dev, struct device_attribute
1144	*devattr, const char *buf, size_t count)
1145{
1146	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1147	struct abituguru_data *data = dev_get_drvdata(dev);
1148	u8 orig_val;
1149	ssize_t ret;
1150	unsigned long user_val;
1151
1152	ret = kstrtoul(buf, 10, &user_val);
1153	if (ret)
1154		return ret;
1155
1156	ret = count;
1157	mutex_lock(&data->update_lock);
1158	orig_val = data->pwm_settings[attr->index][0];
1159	switch (user_val) {
1160	case 0:
1161		data->pwm_settings[attr->index][0] &=
1162			~ABIT_UGURU_FAN_PWM_ENABLE;
1163		break;
1164	case 2:
1165		data->pwm_settings[attr->index][0] |= ABIT_UGURU_FAN_PWM_ENABLE;
1166		break;
1167	default:
1168		ret = -EINVAL;
1169	}
1170	if ((data->pwm_settings[attr->index][0] != orig_val) &&
1171			(abituguru_write(data, ABIT_UGURU_FAN_PWM + 1,
1172			attr->index, data->pwm_settings[attr->index],
1173			5) < 1)) {
1174		data->pwm_settings[attr->index][0] = orig_val;
1175		ret = -EIO;
1176	}
1177	mutex_unlock(&data->update_lock);
1178	return ret;
1179}
1180
1181static ssize_t show_name(struct device *dev,
1182	struct device_attribute *devattr, char *buf)
1183{
1184	return sprintf(buf, "%s\n", ABIT_UGURU_NAME);
1185}
1186
1187/* Sysfs attr templates, the real entries are generated automatically. */
1188static const
1189struct sensor_device_attribute_2 abituguru_sysfs_bank1_templ[2][9] = {
1190	{
1191	SENSOR_ATTR_2(in%d_input, 0444, show_bank1_value, NULL, 0, 0),
1192	SENSOR_ATTR_2(in%d_min, 0644, show_bank1_setting,
1193		store_bank1_setting, 1, 0),
1194	SENSOR_ATTR_2(in%d_min_alarm, 0444, show_bank1_alarm, NULL,
1195		ABIT_UGURU_VOLT_LOW_ALARM_FLAG, 0),
1196	SENSOR_ATTR_2(in%d_max, 0644, show_bank1_setting,
1197		store_bank1_setting, 2, 0),
1198	SENSOR_ATTR_2(in%d_max_alarm, 0444, show_bank1_alarm, NULL,
1199		ABIT_UGURU_VOLT_HIGH_ALARM_FLAG, 0),
1200	SENSOR_ATTR_2(in%d_beep, 0644, show_bank1_mask,
1201		store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0),
1202	SENSOR_ATTR_2(in%d_shutdown, 0644, show_bank1_mask,
1203		store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
1204	SENSOR_ATTR_2(in%d_min_alarm_enable, 0644, show_bank1_mask,
1205		store_bank1_mask, ABIT_UGURU_VOLT_LOW_ALARM_ENABLE, 0),
1206	SENSOR_ATTR_2(in%d_max_alarm_enable, 0644, show_bank1_mask,
1207		store_bank1_mask, ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE, 0),
1208	}, {
1209	SENSOR_ATTR_2(temp%d_input, 0444, show_bank1_value, NULL, 0, 0),
1210	SENSOR_ATTR_2(temp%d_alarm, 0444, show_bank1_alarm, NULL,
1211		ABIT_UGURU_TEMP_HIGH_ALARM_FLAG, 0),
1212	SENSOR_ATTR_2(temp%d_max, 0644, show_bank1_setting,
1213		store_bank1_setting, 1, 0),
1214	SENSOR_ATTR_2(temp%d_crit, 0644, show_bank1_setting,
1215		store_bank1_setting, 2, 0),
1216	SENSOR_ATTR_2(temp%d_beep, 0644, show_bank1_mask,
1217		store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0),
1218	SENSOR_ATTR_2(temp%d_shutdown, 0644, show_bank1_mask,
1219		store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
1220	SENSOR_ATTR_2(temp%d_alarm_enable, 0644, show_bank1_mask,
1221		store_bank1_mask, ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE, 0),
1222	}
1223};
1224
1225static const struct sensor_device_attribute_2 abituguru_sysfs_fan_templ[6] = {
1226	SENSOR_ATTR_2(fan%d_input, 0444, show_bank2_value, NULL, 0, 0),
1227	SENSOR_ATTR_2(fan%d_alarm, 0444, show_bank2_alarm, NULL, 0, 0),
1228	SENSOR_ATTR_2(fan%d_min, 0644, show_bank2_setting,
1229		store_bank2_setting, 1, 0),
1230	SENSOR_ATTR_2(fan%d_beep, 0644, show_bank2_mask,
1231		store_bank2_mask, ABIT_UGURU_BEEP_ENABLE, 0),
1232	SENSOR_ATTR_2(fan%d_shutdown, 0644, show_bank2_mask,
1233		store_bank2_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
1234	SENSOR_ATTR_2(fan%d_alarm_enable, 0644, show_bank2_mask,
1235		store_bank2_mask, ABIT_UGURU_FAN_LOW_ALARM_ENABLE, 0),
1236};
1237
1238static const struct sensor_device_attribute_2 abituguru_sysfs_pwm_templ[6] = {
1239	SENSOR_ATTR_2(pwm%d_enable, 0644, show_pwm_enable,
1240		store_pwm_enable, 0, 0),
1241	SENSOR_ATTR_2(pwm%d_auto_channels_temp, 0644, show_pwm_sensor,
1242		store_pwm_sensor, 0, 0),
1243	SENSOR_ATTR_2(pwm%d_auto_point1_pwm, 0644, show_pwm_setting,
1244		store_pwm_setting, 1, 0),
1245	SENSOR_ATTR_2(pwm%d_auto_point2_pwm, 0644, show_pwm_setting,
1246		store_pwm_setting, 2, 0),
1247	SENSOR_ATTR_2(pwm%d_auto_point1_temp, 0644, show_pwm_setting,
1248		store_pwm_setting, 3, 0),
1249	SENSOR_ATTR_2(pwm%d_auto_point2_temp, 0644, show_pwm_setting,
1250		store_pwm_setting, 4, 0),
1251};
1252
1253static struct sensor_device_attribute_2 abituguru_sysfs_attr[] = {
1254	SENSOR_ATTR_2(name, 0444, show_name, NULL, 0, 0),
1255};
1256
1257static int abituguru_probe(struct platform_device *pdev)
1258{
1259	struct abituguru_data *data;
1260	int i, j, used, sysfs_names_free, sysfs_attr_i, res = -ENODEV;
1261	char *sysfs_filename;
1262
1263	/*
1264	 * El weirdo probe order, to keep the sysfs order identical to the
1265	 * BIOS and window-appliction listing order.
1266	 */
1267	static const u8 probe_order[ABIT_UGURU_MAX_BANK1_SENSORS] = {
1268		0x00, 0x01, 0x03, 0x04, 0x0A, 0x08, 0x0E, 0x02,
1269		0x09, 0x06, 0x05, 0x0B, 0x0F, 0x0D, 0x07, 0x0C };
1270
1271	data = devm_kzalloc(&pdev->dev, sizeof(struct abituguru_data),
1272			    GFP_KERNEL);
1273	if (!data)
1274		return -ENOMEM;
1275
1276	data->addr = platform_get_resource(pdev, IORESOURCE_IO, 0)->start;
1277	mutex_init(&data->update_lock);
1278	platform_set_drvdata(pdev, data);
1279
1280	/* See if the uGuru is ready */
1281	if (inb_p(data->addr + ABIT_UGURU_DATA) == ABIT_UGURU_STATUS_INPUT)
1282		data->uguru_ready = 1;
1283
1284	/*
1285	 * Completely read the uGuru this has 2 purposes:
1286	 * - testread / see if one really is there.
1287	 * - make an in memory copy of all the uguru settings for future use.
1288	 */
1289	if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0,
1290			data->alarms, 3, ABIT_UGURU_MAX_RETRIES) != 3)
1291		goto abituguru_probe_error;
1292
1293	for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
1294		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, i,
1295				&data->bank1_value[i], 1,
1296				ABIT_UGURU_MAX_RETRIES) != 1)
1297			goto abituguru_probe_error;
1298		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1+1, i,
1299				data->bank1_settings[i], 3,
1300				ABIT_UGURU_MAX_RETRIES) != 3)
1301			goto abituguru_probe_error;
1302	}
1303	/*
1304	 * Note: We don't know how many bank2 sensors / pwms there really are,
1305	 * but in order to "detect" this we need to read the maximum amount
1306	 * anyways. If we read sensors/pwms not there we'll just read crap
1307	 * this can't hurt. We need the detection because we don't want
1308	 * unwanted writes, which will hurt!
1309	 */
1310	for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) {
1311		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i,
1312				&data->bank2_value[i], 1,
1313				ABIT_UGURU_MAX_RETRIES) != 1)
1314			goto abituguru_probe_error;
1315		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2+1, i,
1316				data->bank2_settings[i], 2,
1317				ABIT_UGURU_MAX_RETRIES) != 2)
1318			goto abituguru_probe_error;
1319	}
1320	for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) {
1321		if (abituguru_read(data, ABIT_UGURU_FAN_PWM, i,
1322				data->pwm_settings[i], 5,
1323				ABIT_UGURU_MAX_RETRIES) != 5)
1324			goto abituguru_probe_error;
1325	}
1326	data->last_updated = jiffies;
1327
1328	/* Detect sensor types and fill the sysfs attr for bank1 */
1329	sysfs_attr_i = 0;
1330	sysfs_filename = data->sysfs_names;
1331	sysfs_names_free = ABITUGURU_SYSFS_NAMES_LENGTH;
1332	for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
1333		res = abituguru_detect_bank1_sensor_type(data, probe_order[i]);
1334		if (res < 0)
1335			goto abituguru_probe_error;
1336		if (res == ABIT_UGURU_NC)
1337			continue;
1338
1339		/* res 1 (temp) sensors have 7 sysfs entries, 0 (in) 9 */
1340		for (j = 0; j < (res ? 7 : 9); j++) {
1341			used = snprintf(sysfs_filename, sysfs_names_free,
1342				abituguru_sysfs_bank1_templ[res][j].dev_attr.
1343				attr.name, data->bank1_sensors[res] + res)
1344				+ 1;
1345			data->sysfs_attr[sysfs_attr_i] =
1346				abituguru_sysfs_bank1_templ[res][j];
1347			data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
1348				sysfs_filename;
1349			data->sysfs_attr[sysfs_attr_i].index = probe_order[i];
1350			sysfs_filename += used;
1351			sysfs_names_free -= used;
1352			sysfs_attr_i++;
1353		}
1354		data->bank1_max_value[probe_order[i]] =
1355			abituguru_bank1_max_value[res];
1356		data->bank1_address[res][data->bank1_sensors[res]] =
1357			probe_order[i];
1358		data->bank1_sensors[res]++;
1359	}
1360	/* Detect number of sensors and fill the sysfs attr for bank2 (fans) */
1361	abituguru_detect_no_bank2_sensors(data);
1362	for (i = 0; i < data->bank2_sensors; i++) {
1363		for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_fan_templ); j++) {
1364			used = snprintf(sysfs_filename, sysfs_names_free,
1365				abituguru_sysfs_fan_templ[j].dev_attr.attr.name,
1366				i + 1) + 1;
1367			data->sysfs_attr[sysfs_attr_i] =
1368				abituguru_sysfs_fan_templ[j];
1369			data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
1370				sysfs_filename;
1371			data->sysfs_attr[sysfs_attr_i].index = i;
1372			sysfs_filename += used;
1373			sysfs_names_free -= used;
1374			sysfs_attr_i++;
1375		}
1376	}
1377	/* Detect number of sensors and fill the sysfs attr for pwms */
1378	abituguru_detect_no_pwms(data);
1379	for (i = 0; i < data->pwms; i++) {
1380		for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_pwm_templ); j++) {
1381			used = snprintf(sysfs_filename, sysfs_names_free,
1382				abituguru_sysfs_pwm_templ[j].dev_attr.attr.name,
1383				i + 1) + 1;
1384			data->sysfs_attr[sysfs_attr_i] =
1385				abituguru_sysfs_pwm_templ[j];
1386			data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
1387				sysfs_filename;
1388			data->sysfs_attr[sysfs_attr_i].index = i;
1389			sysfs_filename += used;
1390			sysfs_names_free -= used;
1391			sysfs_attr_i++;
1392		}
1393	}
1394	/* Fail safe check, this should never happen! */
1395	if (sysfs_names_free < 0) {
1396		pr_err("Fatal error ran out of space for sysfs attr names. %s %s",
1397		       never_happen, report_this);
1398		res = -ENAMETOOLONG;
1399		goto abituguru_probe_error;
1400	}
1401	pr_info("found Abit uGuru\n");
1402
1403	/* Register sysfs hooks */
1404	for (i = 0; i < sysfs_attr_i; i++) {
1405		res = device_create_file(&pdev->dev,
1406					 &data->sysfs_attr[i].dev_attr);
1407		if (res)
1408			goto abituguru_probe_error;
1409	}
1410	for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++) {
1411		res = device_create_file(&pdev->dev,
1412					 &abituguru_sysfs_attr[i].dev_attr);
1413		if (res)
1414			goto abituguru_probe_error;
1415	}
1416
1417	data->hwmon_dev = hwmon_device_register(&pdev->dev);
1418	if (!IS_ERR(data->hwmon_dev))
1419		return 0; /* success */
1420
1421	res = PTR_ERR(data->hwmon_dev);
1422abituguru_probe_error:
1423	for (i = 0; data->sysfs_attr[i].dev_attr.attr.name; i++)
1424		device_remove_file(&pdev->dev, &data->sysfs_attr[i].dev_attr);
1425	for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++)
1426		device_remove_file(&pdev->dev,
1427			&abituguru_sysfs_attr[i].dev_attr);
1428	return res;
1429}
1430
1431static void abituguru_remove(struct platform_device *pdev)
1432{
1433	int i;
1434	struct abituguru_data *data = platform_get_drvdata(pdev);
1435
1436	hwmon_device_unregister(data->hwmon_dev);
1437	for (i = 0; data->sysfs_attr[i].dev_attr.attr.name; i++)
1438		device_remove_file(&pdev->dev, &data->sysfs_attr[i].dev_attr);
1439	for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++)
1440		device_remove_file(&pdev->dev,
1441			&abituguru_sysfs_attr[i].dev_attr);
 
 
1442}
1443
1444static struct abituguru_data *abituguru_update_device(struct device *dev)
1445{
1446	int i, err;
1447	struct abituguru_data *data = dev_get_drvdata(dev);
1448	/* fake a complete successful read if no update necessary. */
1449	char success = 1;
1450
1451	mutex_lock(&data->update_lock);
1452	if (time_after(jiffies, data->last_updated + HZ)) {
1453		success = 0;
1454		err = abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0,
1455				     data->alarms, 3, 0);
1456		if (err != 3)
1457			goto LEAVE_UPDATE;
1458		for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
1459			err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK1,
1460					     i, &data->bank1_value[i], 1, 0);
1461			if (err != 1)
1462				goto LEAVE_UPDATE;
1463			err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
1464					     i, data->bank1_settings[i], 3, 0);
1465			if (err != 3)
1466				goto LEAVE_UPDATE;
1467		}
1468		for (i = 0; i < data->bank2_sensors; i++) {
1469			err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i,
1470					     &data->bank2_value[i], 1, 0);
1471			if (err != 1)
1472				goto LEAVE_UPDATE;
1473		}
1474		/* success! */
1475		success = 1;
1476		data->update_timeouts = 0;
1477LEAVE_UPDATE:
1478		/* handle timeout condition */
1479		if (!success && (err == -EBUSY || err >= 0)) {
1480			/* No overflow please */
1481			if (data->update_timeouts < 255u)
1482				data->update_timeouts++;
1483			if (data->update_timeouts <= ABIT_UGURU_MAX_TIMEOUTS) {
1484				ABIT_UGURU_DEBUG(3, "timeout exceeded, will "
1485					"try again next update\n");
1486				/* Just a timeout, fake a successful read */
1487				success = 1;
1488			} else
1489				ABIT_UGURU_DEBUG(1, "timeout exceeded %d "
1490					"times waiting for more input state\n",
1491					(int)data->update_timeouts);
1492		}
1493		/* On success set last_updated */
1494		if (success)
1495			data->last_updated = jiffies;
1496	}
1497	mutex_unlock(&data->update_lock);
1498
1499	if (success)
1500		return data;
1501	else
1502		return NULL;
1503}
1504
 
1505static int abituguru_suspend(struct device *dev)
1506{
1507	struct abituguru_data *data = dev_get_drvdata(dev);
1508	/*
1509	 * make sure all communications with the uguru are done and no new
1510	 * ones are started
1511	 */
1512	mutex_lock(&data->update_lock);
1513	return 0;
1514}
1515
1516static int abituguru_resume(struct device *dev)
1517{
1518	struct abituguru_data *data = dev_get_drvdata(dev);
1519	/* See if the uGuru is still ready */
1520	if (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT)
1521		data->uguru_ready = 0;
1522	mutex_unlock(&data->update_lock);
1523	return 0;
1524}
1525
1526static DEFINE_SIMPLE_DEV_PM_OPS(abituguru_pm, abituguru_suspend, abituguru_resume);
 
 
 
 
1527
1528static struct platform_driver abituguru_driver = {
1529	.driver = {
1530		.name	= ABIT_UGURU_NAME,
1531		.pm	= pm_sleep_ptr(&abituguru_pm),
1532	},
1533	.probe		= abituguru_probe,
1534	.remove_new	= abituguru_remove,
1535};
1536
1537static int __init abituguru_detect(void)
1538{
1539	/*
1540	 * See if there is an uguru there. After a reboot uGuru will hold 0x00
1541	 * at DATA and 0xAC, when this driver has already been loaded once
1542	 * DATA will hold 0x08. For most uGuru's CMD will hold 0xAC in either
1543	 * scenario but some will hold 0x00.
1544	 * Some uGuru's initially hold 0x09 at DATA and will only hold 0x08
1545	 * after reading CMD first, so CMD must be read first!
1546	 */
1547	u8 cmd_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_CMD);
1548	u8 data_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_DATA);
1549	if (((data_val == 0x00) || (data_val == 0x08)) &&
1550	    ((cmd_val == 0x00) || (cmd_val == 0xAC)))
1551		return ABIT_UGURU_BASE;
1552
1553	ABIT_UGURU_DEBUG(2, "no Abit uGuru found, data = 0x%02X, cmd = "
1554		"0x%02X\n", (unsigned int)data_val, (unsigned int)cmd_val);
1555
1556	if (force) {
1557		pr_info("Assuming Abit uGuru is present because of \"force\" parameter\n");
1558		return ABIT_UGURU_BASE;
1559	}
1560
1561	/* No uGuru found */
1562	return -ENODEV;
1563}
1564
1565static struct platform_device *abituguru_pdev;
1566
1567static int __init abituguru_init(void)
1568{
1569	int address, err;
1570	struct resource res = { .flags = IORESOURCE_IO };
1571	const char *board_vendor = dmi_get_system_info(DMI_BOARD_VENDOR);
1572
1573	/* safety check, refuse to load on non Abit motherboards */
1574	if (!force && (!board_vendor ||
1575			strcmp(board_vendor, "http://www.abit.com.tw/")))
1576		return -ENODEV;
1577
1578	address = abituguru_detect();
1579	if (address < 0)
1580		return address;
1581
1582	err = platform_driver_register(&abituguru_driver);
1583	if (err)
1584		goto exit;
1585
1586	abituguru_pdev = platform_device_alloc(ABIT_UGURU_NAME, address);
1587	if (!abituguru_pdev) {
1588		pr_err("Device allocation failed\n");
1589		err = -ENOMEM;
1590		goto exit_driver_unregister;
1591	}
1592
1593	res.start = address;
1594	res.end = address + ABIT_UGURU_REGION_LENGTH - 1;
1595	res.name = ABIT_UGURU_NAME;
1596
1597	err = platform_device_add_resources(abituguru_pdev, &res, 1);
1598	if (err) {
1599		pr_err("Device resource addition failed (%d)\n", err);
1600		goto exit_device_put;
1601	}
1602
1603	err = platform_device_add(abituguru_pdev);
1604	if (err) {
1605		pr_err("Device addition failed (%d)\n", err);
1606		goto exit_device_put;
1607	}
1608
1609	return 0;
1610
1611exit_device_put:
1612	platform_device_put(abituguru_pdev);
1613exit_driver_unregister:
1614	platform_driver_unregister(&abituguru_driver);
1615exit:
1616	return err;
1617}
1618
1619static void __exit abituguru_exit(void)
1620{
1621	platform_device_unregister(abituguru_pdev);
1622	platform_driver_unregister(&abituguru_driver);
1623}
1624
1625MODULE_AUTHOR("Hans de Goede <hdegoede@redhat.com>");
1626MODULE_DESCRIPTION("Abit uGuru Sensor device");
1627MODULE_LICENSE("GPL");
1628
1629module_init(abituguru_init);
1630module_exit(abituguru_exit);
v4.6
 
   1/*
   2 * abituguru.c Copyright (c) 2005-2006 Hans de Goede <hdegoede@redhat.com>
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  17 */
  18/*
  19 * This driver supports the sensor part of the first and second revision of
  20 * the custom Abit uGuru chip found on Abit uGuru motherboards. Note: because
  21 * of lack of specs the CPU/RAM voltage & frequency control is not supported!
  22 */
  23
  24#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  25
  26#include <linux/module.h>
  27#include <linux/sched.h>
  28#include <linux/init.h>
  29#include <linux/slab.h>
  30#include <linux/jiffies.h>
  31#include <linux/mutex.h>
  32#include <linux/err.h>
  33#include <linux/delay.h>
  34#include <linux/platform_device.h>
  35#include <linux/hwmon.h>
  36#include <linux/hwmon-sysfs.h>
  37#include <linux/dmi.h>
  38#include <linux/io.h>
  39
  40/* Banks */
  41#define ABIT_UGURU_ALARM_BANK			0x20 /* 1x 3 bytes */
  42#define ABIT_UGURU_SENSOR_BANK1			0x21 /* 16x volt and temp */
  43#define ABIT_UGURU_FAN_PWM			0x24 /* 3x 5 bytes */
  44#define ABIT_UGURU_SENSOR_BANK2			0x26 /* fans */
  45/* max nr of sensors in bank1, a bank1 sensor can be in, temp or nc */
  46#define ABIT_UGURU_MAX_BANK1_SENSORS		16
  47/*
  48 * Warning if you increase one of the 2 MAX defines below to 10 or higher you
  49 * should adjust the belonging _NAMES_LENGTH macro for the 2 digit number!
  50 */
  51/* max nr of sensors in bank2, currently mb's with max 6 fans are known */
  52#define ABIT_UGURU_MAX_BANK2_SENSORS		6
  53/* max nr of pwm outputs, currently mb's with max 5 pwm outputs are known */
  54#define ABIT_UGURU_MAX_PWMS			5
  55/* uGuru sensor bank 1 flags */			     /* Alarm if: */
  56#define ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE	0x01 /*  temp over warn */
  57#define ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE	0x02 /*  volt over max */
  58#define ABIT_UGURU_VOLT_LOW_ALARM_ENABLE	0x04 /*  volt under min */
  59#define ABIT_UGURU_TEMP_HIGH_ALARM_FLAG		0x10 /* temp is over warn */
  60#define ABIT_UGURU_VOLT_HIGH_ALARM_FLAG		0x20 /* volt is over max */
  61#define ABIT_UGURU_VOLT_LOW_ALARM_FLAG		0x40 /* volt is under min */
  62/* uGuru sensor bank 2 flags */			     /* Alarm if: */
  63#define ABIT_UGURU_FAN_LOW_ALARM_ENABLE		0x01 /*   fan under min */
  64/* uGuru sensor bank common flags */
  65#define ABIT_UGURU_BEEP_ENABLE			0x08 /* beep if alarm */
  66#define ABIT_UGURU_SHUTDOWN_ENABLE		0x80 /* shutdown if alarm */
  67/* uGuru fan PWM (speed control) flags */
  68#define ABIT_UGURU_FAN_PWM_ENABLE		0x80 /* enable speed control */
  69/* Values used for conversion */
  70#define ABIT_UGURU_FAN_MAX			15300 /* RPM */
  71/* Bank1 sensor types */
  72#define ABIT_UGURU_IN_SENSOR			0
  73#define ABIT_UGURU_TEMP_SENSOR			1
  74#define ABIT_UGURU_NC				2
  75/*
  76 * In many cases we need to wait for the uGuru to reach a certain status, most
  77 * of the time it will reach this status within 30 - 90 ISA reads, and thus we
  78 * can best busy wait. This define gives the total amount of reads to try.
  79 */
  80#define ABIT_UGURU_WAIT_TIMEOUT			125
  81/*
  82 * However sometimes older versions of the uGuru seem to be distracted and they
  83 * do not respond for a long time. To handle this we sleep before each of the
  84 * last ABIT_UGURU_WAIT_TIMEOUT_SLEEP tries.
  85 */
  86#define ABIT_UGURU_WAIT_TIMEOUT_SLEEP		5
  87/*
  88 * Normally all expected status in abituguru_ready, are reported after the
  89 * first read, but sometimes not and we need to poll.
  90 */
  91#define ABIT_UGURU_READY_TIMEOUT		5
  92/* Maximum 3 retries on timedout reads/writes, delay 200 ms before retrying */
  93#define ABIT_UGURU_MAX_RETRIES			3
  94#define ABIT_UGURU_RETRY_DELAY			(HZ/5)
  95/* Maximum 2 timeouts in abituguru_update_device, iow 3 in a row is an error */
  96#define ABIT_UGURU_MAX_TIMEOUTS			2
  97/* utility macros */
  98#define ABIT_UGURU_NAME				"abituguru"
  99#define ABIT_UGURU_DEBUG(level, format, arg...)		\
 100	do {						\
 101		if (level <= verbose)			\
 102			pr_debug(format , ## arg);	\
 103	} while (0)
 104
 105/* Macros to help calculate the sysfs_names array length */
 106/*
 107 * sum of strlen of: in??_input\0, in??_{min,max}\0, in??_{min,max}_alarm\0,
 108 * in??_{min,max}_alarm_enable\0, in??_beep\0, in??_shutdown\0
 109 */
 110#define ABITUGURU_IN_NAMES_LENGTH	(11 + 2 * 9 + 2 * 15 + 2 * 22 + 10 + 14)
 111/*
 112 * sum of strlen of: temp??_input\0, temp??_max\0, temp??_crit\0,
 113 * temp??_alarm\0, temp??_alarm_enable\0, temp??_beep\0, temp??_shutdown\0
 114 */
 115#define ABITUGURU_TEMP_NAMES_LENGTH	(13 + 11 + 12 + 13 + 20 + 12 + 16)
 116/*
 117 * sum of strlen of: fan?_input\0, fan?_min\0, fan?_alarm\0,
 118 * fan?_alarm_enable\0, fan?_beep\0, fan?_shutdown\0
 119 */
 120#define ABITUGURU_FAN_NAMES_LENGTH	(11 + 9 + 11 + 18 + 10 + 14)
 121/*
 122 * sum of strlen of: pwm?_enable\0, pwm?_auto_channels_temp\0,
 123 * pwm?_auto_point{1,2}_pwm\0, pwm?_auto_point{1,2}_temp\0
 124 */
 125#define ABITUGURU_PWM_NAMES_LENGTH	(12 + 24 + 2 * 21 + 2 * 22)
 126/* IN_NAMES_LENGTH > TEMP_NAMES_LENGTH so assume all bank1 sensors are in */
 127#define ABITUGURU_SYSFS_NAMES_LENGTH	( \
 128	ABIT_UGURU_MAX_BANK1_SENSORS * ABITUGURU_IN_NAMES_LENGTH + \
 129	ABIT_UGURU_MAX_BANK2_SENSORS * ABITUGURU_FAN_NAMES_LENGTH + \
 130	ABIT_UGURU_MAX_PWMS * ABITUGURU_PWM_NAMES_LENGTH)
 131
 132/*
 133 * All the macros below are named identical to the oguru and oguru2 programs
 134 * reverse engineered by Olle Sandberg, hence the names might not be 100%
 135 * logical. I could come up with better names, but I prefer keeping the names
 136 * identical so that this driver can be compared with his work more easily.
 137 */
 138/* Two i/o-ports are used by uGuru */
 139#define ABIT_UGURU_BASE				0x00E0
 140/* Used to tell uGuru what to read and to read the actual data */
 141#define ABIT_UGURU_CMD				0x00
 142/* Mostly used to check if uGuru is busy */
 143#define ABIT_UGURU_DATA				0x04
 144#define ABIT_UGURU_REGION_LENGTH		5
 145/* uGuru status' */
 146#define ABIT_UGURU_STATUS_WRITE			0x00 /* Ready to be written */
 147#define ABIT_UGURU_STATUS_READ			0x01 /* Ready to be read */
 148#define ABIT_UGURU_STATUS_INPUT			0x08 /* More input */
 149#define ABIT_UGURU_STATUS_READY			0x09 /* Ready to be written */
 150
 151/* Constants */
 152/* in (Volt) sensors go up to 3494 mV, temp to 255000 millidegrees Celsius */
 153static const int abituguru_bank1_max_value[2] = { 3494, 255000 };
 154/*
 155 * Min / Max allowed values for sensor2 (fan) alarm threshold, these values
 156 * correspond to 300-3000 RPM
 157 */
 158static const u8 abituguru_bank2_min_threshold = 5;
 159static const u8 abituguru_bank2_max_threshold = 50;
 160/*
 161 * Register 0 is a bitfield, 1 and 2 are pwm settings (255 = 100%), 3 and 4
 162 * are temperature trip points.
 163 */
 164static const int abituguru_pwm_settings_multiplier[5] = { 0, 1, 1, 1000, 1000 };
 165/*
 166 * Min / Max allowed values for pwm_settings. Note: pwm1 (CPU fan) is a
 167 * special case the minimum allowed pwm% setting for this is 30% (77) on
 168 * some MB's this special case is handled in the code!
 169 */
 170static const u8 abituguru_pwm_min[5] = { 0, 170, 170, 25, 25 };
 171static const u8 abituguru_pwm_max[5] = { 0, 255, 255, 75, 75 };
 172
 173
 174/* Insmod parameters */
 175static bool force;
 176module_param(force, bool, 0);
 177MODULE_PARM_DESC(force, "Set to one to force detection.");
 178static int bank1_types[ABIT_UGURU_MAX_BANK1_SENSORS] = { -1, -1, -1, -1, -1,
 179	-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 };
 180module_param_array(bank1_types, int, NULL, 0);
 181MODULE_PARM_DESC(bank1_types, "Bank1 sensortype autodetection override:\n"
 182	"   -1 autodetect\n"
 183	"    0 volt sensor\n"
 184	"    1 temp sensor\n"
 185	"    2 not connected");
 186static int fan_sensors;
 187module_param(fan_sensors, int, 0);
 188MODULE_PARM_DESC(fan_sensors, "Number of fan sensors on the uGuru "
 189	"(0 = autodetect)");
 190static int pwms;
 191module_param(pwms, int, 0);
 192MODULE_PARM_DESC(pwms, "Number of PWMs on the uGuru "
 193	"(0 = autodetect)");
 194
 195/* Default verbose is 2, since this driver is still in the testing phase */
 196static int verbose = 2;
 197module_param(verbose, int, 0644);
 198MODULE_PARM_DESC(verbose, "How verbose should the driver be? (0-3):\n"
 199	"   0 normal output\n"
 200	"   1 + verbose error reporting\n"
 201	"   2 + sensors type probing info\n"
 202	"   3 + retryable error reporting");
 203
 204
 205/*
 206 * For the Abit uGuru, we need to keep some data in memory.
 207 * The structure is dynamically allocated, at the same time when a new
 208 * abituguru device is allocated.
 209 */
 210struct abituguru_data {
 211	struct device *hwmon_dev;	/* hwmon registered device */
 212	struct mutex update_lock;	/* protect access to data and uGuru */
 213	unsigned long last_updated;	/* In jiffies */
 214	unsigned short addr;		/* uguru base address */
 215	char uguru_ready;		/* is the uguru in ready state? */
 216	unsigned char update_timeouts;	/*
 217					 * number of update timeouts since last
 218					 * successful update
 219					 */
 220
 221	/*
 222	 * The sysfs attr and their names are generated automatically, for bank1
 223	 * we cannot use a predefined array because we don't know beforehand
 224	 * of a sensor is a volt or a temp sensor, for bank2 and the pwms its
 225	 * easier todo things the same way.  For in sensors we have 9 (temp 7)
 226	 * sysfs entries per sensor, for bank2 and pwms 6.
 227	 */
 228	struct sensor_device_attribute_2 sysfs_attr[
 229		ABIT_UGURU_MAX_BANK1_SENSORS * 9 +
 230		ABIT_UGURU_MAX_BANK2_SENSORS * 6 + ABIT_UGURU_MAX_PWMS * 6];
 231	/* Buffer to store the dynamically generated sysfs names */
 232	char sysfs_names[ABITUGURU_SYSFS_NAMES_LENGTH];
 233
 234	/* Bank 1 data */
 235	/* number of and addresses of [0] in, [1] temp sensors */
 236	u8 bank1_sensors[2];
 237	u8 bank1_address[2][ABIT_UGURU_MAX_BANK1_SENSORS];
 238	u8 bank1_value[ABIT_UGURU_MAX_BANK1_SENSORS];
 239	/*
 240	 * This array holds 3 entries per sensor for the bank 1 sensor settings
 241	 * (flags, min, max for voltage / flags, warn, shutdown for temp).
 242	 */
 243	u8 bank1_settings[ABIT_UGURU_MAX_BANK1_SENSORS][3];
 244	/*
 245	 * Maximum value for each sensor used for scaling in mV/millidegrees
 246	 * Celsius.
 247	 */
 248	int bank1_max_value[ABIT_UGURU_MAX_BANK1_SENSORS];
 249
 250	/* Bank 2 data, ABIT_UGURU_MAX_BANK2_SENSORS entries for bank2 */
 251	u8 bank2_sensors; /* actual number of bank2 sensors found */
 252	u8 bank2_value[ABIT_UGURU_MAX_BANK2_SENSORS];
 253	u8 bank2_settings[ABIT_UGURU_MAX_BANK2_SENSORS][2]; /* flags, min */
 254
 255	/* Alarms 2 bytes for bank1, 1 byte for bank2 */
 256	u8 alarms[3];
 257
 258	/* Fan PWM (speed control) 5 bytes per PWM */
 259	u8 pwms; /* actual number of pwms found */
 260	u8 pwm_settings[ABIT_UGURU_MAX_PWMS][5];
 261};
 262
 263static const char *never_happen = "This should never happen.";
 264static const char *report_this =
 265	"Please report this to the abituguru maintainer (see MAINTAINERS)";
 266
 267/* wait till the uguru is in the specified state */
 268static int abituguru_wait(struct abituguru_data *data, u8 state)
 269{
 270	int timeout = ABIT_UGURU_WAIT_TIMEOUT;
 271
 272	while (inb_p(data->addr + ABIT_UGURU_DATA) != state) {
 273		timeout--;
 274		if (timeout == 0)
 275			return -EBUSY;
 276		/*
 277		 * sleep a bit before our last few tries, see the comment on
 278		 * this where ABIT_UGURU_WAIT_TIMEOUT_SLEEP is defined.
 279		 */
 280		if (timeout <= ABIT_UGURU_WAIT_TIMEOUT_SLEEP)
 281			msleep(0);
 282	}
 283	return 0;
 284}
 285
 286/* Put the uguru in ready for input state */
 287static int abituguru_ready(struct abituguru_data *data)
 288{
 289	int timeout = ABIT_UGURU_READY_TIMEOUT;
 290
 291	if (data->uguru_ready)
 292		return 0;
 293
 294	/* Reset? / Prepare for next read/write cycle */
 295	outb(0x00, data->addr + ABIT_UGURU_DATA);
 296
 297	/* Wait till the uguru is ready */
 298	if (abituguru_wait(data, ABIT_UGURU_STATUS_READY)) {
 299		ABIT_UGURU_DEBUG(1,
 300			"timeout exceeded waiting for ready state\n");
 301		return -EIO;
 302	}
 303
 304	/* Cmd port MUST be read now and should contain 0xAC */
 305	while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) {
 306		timeout--;
 307		if (timeout == 0) {
 308			ABIT_UGURU_DEBUG(1,
 309			   "CMD reg does not hold 0xAC after ready command\n");
 310			return -EIO;
 311		}
 312		msleep(0);
 313	}
 314
 315	/*
 316	 * After this the ABIT_UGURU_DATA port should contain
 317	 * ABIT_UGURU_STATUS_INPUT
 318	 */
 319	timeout = ABIT_UGURU_READY_TIMEOUT;
 320	while (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT) {
 321		timeout--;
 322		if (timeout == 0) {
 323			ABIT_UGURU_DEBUG(1,
 324				"state != more input after ready command\n");
 325			return -EIO;
 326		}
 327		msleep(0);
 328	}
 329
 330	data->uguru_ready = 1;
 331	return 0;
 332}
 333
 334/*
 335 * Send the bank and then sensor address to the uGuru for the next read/write
 336 * cycle. This function gets called as the first part of a read/write by
 337 * abituguru_read and abituguru_write. This function should never be
 338 * called by any other function.
 339 */
 340static int abituguru_send_address(struct abituguru_data *data,
 341	u8 bank_addr, u8 sensor_addr, int retries)
 342{
 343	/*
 344	 * assume the caller does error handling itself if it has not requested
 345	 * any retries, and thus be quiet.
 346	 */
 347	int report_errors = retries;
 348
 349	for (;;) {
 350		/*
 351		 * Make sure the uguru is ready and then send the bank address,
 352		 * after this the uguru is no longer "ready".
 353		 */
 354		if (abituguru_ready(data) != 0)
 355			return -EIO;
 356		outb(bank_addr, data->addr + ABIT_UGURU_DATA);
 357		data->uguru_ready = 0;
 358
 359		/*
 360		 * Wait till the uguru is ABIT_UGURU_STATUS_INPUT state again
 361		 * and send the sensor addr
 362		 */
 363		if (abituguru_wait(data, ABIT_UGURU_STATUS_INPUT)) {
 364			if (retries) {
 365				ABIT_UGURU_DEBUG(3, "timeout exceeded "
 366					"waiting for more input state, %d "
 367					"tries remaining\n", retries);
 368				set_current_state(TASK_UNINTERRUPTIBLE);
 369				schedule_timeout(ABIT_UGURU_RETRY_DELAY);
 370				retries--;
 371				continue;
 372			}
 373			if (report_errors)
 374				ABIT_UGURU_DEBUG(1, "timeout exceeded "
 375					"waiting for more input state "
 376					"(bank: %d)\n", (int)bank_addr);
 377			return -EBUSY;
 378		}
 379		outb(sensor_addr, data->addr + ABIT_UGURU_CMD);
 380		return 0;
 381	}
 382}
 383
 384/*
 385 * Read count bytes from sensor sensor_addr in bank bank_addr and store the
 386 * result in buf, retry the send address part of the read retries times.
 387 */
 388static int abituguru_read(struct abituguru_data *data,
 389	u8 bank_addr, u8 sensor_addr, u8 *buf, int count, int retries)
 390{
 391	int i;
 392
 393	/* Send the address */
 394	i = abituguru_send_address(data, bank_addr, sensor_addr, retries);
 395	if (i)
 396		return i;
 397
 398	/* And read the data */
 399	for (i = 0; i < count; i++) {
 400		if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) {
 401			ABIT_UGURU_DEBUG(retries ? 1 : 3,
 402				"timeout exceeded waiting for "
 403				"read state (bank: %d, sensor: %d)\n",
 404				(int)bank_addr, (int)sensor_addr);
 405			break;
 406		}
 407		buf[i] = inb(data->addr + ABIT_UGURU_CMD);
 408	}
 409
 410	/* Last put the chip back in ready state */
 411	abituguru_ready(data);
 412
 413	return i;
 414}
 415
 416/*
 417 * Write count bytes from buf to sensor sensor_addr in bank bank_addr, the send
 418 * address part of the write is always retried ABIT_UGURU_MAX_RETRIES times.
 419 */
 420static int abituguru_write(struct abituguru_data *data,
 421	u8 bank_addr, u8 sensor_addr, u8 *buf, int count)
 422{
 423	/*
 424	 * We use the ready timeout as we have to wait for 0xAC just like the
 425	 * ready function
 426	 */
 427	int i, timeout = ABIT_UGURU_READY_TIMEOUT;
 428
 429	/* Send the address */
 430	i = abituguru_send_address(data, bank_addr, sensor_addr,
 431		ABIT_UGURU_MAX_RETRIES);
 432	if (i)
 433		return i;
 434
 435	/* And write the data */
 436	for (i = 0; i < count; i++) {
 437		if (abituguru_wait(data, ABIT_UGURU_STATUS_WRITE)) {
 438			ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for "
 439				"write state (bank: %d, sensor: %d)\n",
 440				(int)bank_addr, (int)sensor_addr);
 441			break;
 442		}
 443		outb(buf[i], data->addr + ABIT_UGURU_CMD);
 444	}
 445
 446	/*
 447	 * Now we need to wait till the chip is ready to be read again,
 448	 * so that we can read 0xAC as confirmation that our write has
 449	 * succeeded.
 450	 */
 451	if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) {
 452		ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for read state "
 453			"after write (bank: %d, sensor: %d)\n", (int)bank_addr,
 454			(int)sensor_addr);
 455		return -EIO;
 456	}
 457
 458	/* Cmd port MUST be read now and should contain 0xAC */
 459	while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) {
 460		timeout--;
 461		if (timeout == 0) {
 462			ABIT_UGURU_DEBUG(1, "CMD reg does not hold 0xAC after "
 463				"write (bank: %d, sensor: %d)\n",
 464				(int)bank_addr, (int)sensor_addr);
 465			return -EIO;
 466		}
 467		msleep(0);
 468	}
 469
 470	/* Last put the chip back in ready state */
 471	abituguru_ready(data);
 472
 473	return i;
 474}
 475
 476/*
 477 * Detect sensor type. Temp and Volt sensors are enabled with
 478 * different masks and will ignore enable masks not meant for them.
 479 * This enables us to test what kind of sensor we're dealing with.
 480 * By setting the alarm thresholds so that we will always get an
 481 * alarm for sensor type X and then enabling the sensor as sensor type
 482 * X, if we then get an alarm it is a sensor of type X.
 483 */
 484static int
 485abituguru_detect_bank1_sensor_type(struct abituguru_data *data,
 486				   u8 sensor_addr)
 487{
 488	u8 val, test_flag, buf[3];
 489	int i, ret = -ENODEV; /* error is the most common used retval :| */
 490
 491	/* If overriden by the user return the user selected type */
 492	if (bank1_types[sensor_addr] >= ABIT_UGURU_IN_SENSOR &&
 493			bank1_types[sensor_addr] <= ABIT_UGURU_NC) {
 494		ABIT_UGURU_DEBUG(2, "assuming sensor type %d for bank1 sensor "
 495			"%d because of \"bank1_types\" module param\n",
 496			bank1_types[sensor_addr], (int)sensor_addr);
 497		return bank1_types[sensor_addr];
 498	}
 499
 500	/* First read the sensor and the current settings */
 501	if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, sensor_addr, &val,
 502			1, ABIT_UGURU_MAX_RETRIES) != 1)
 503		return -ENODEV;
 504
 505	/* Test val is sane / usable for sensor type detection. */
 506	if ((val < 10u) || (val > 250u)) {
 507		pr_warn("bank1-sensor: %d reading (%d) too close to limits, "
 508			"unable to determine sensor type, skipping sensor\n",
 509			(int)sensor_addr, (int)val);
 510		/*
 511		 * assume no sensor is there for sensors for which we can't
 512		 * determine the sensor type because their reading is too close
 513		 * to their limits, this usually means no sensor is there.
 514		 */
 515		return ABIT_UGURU_NC;
 516	}
 517
 518	ABIT_UGURU_DEBUG(2, "testing bank1 sensor %d\n", (int)sensor_addr);
 519	/*
 520	 * Volt sensor test, enable volt low alarm, set min value ridiculously
 521	 * high, or vica versa if the reading is very high. If its a volt
 522	 * sensor this should always give us an alarm.
 523	 */
 524	if (val <= 240u) {
 525		buf[0] = ABIT_UGURU_VOLT_LOW_ALARM_ENABLE;
 526		buf[1] = 245;
 527		buf[2] = 250;
 528		test_flag = ABIT_UGURU_VOLT_LOW_ALARM_FLAG;
 529	} else {
 530		buf[0] = ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE;
 531		buf[1] = 5;
 532		buf[2] = 10;
 533		test_flag = ABIT_UGURU_VOLT_HIGH_ALARM_FLAG;
 534	}
 535
 536	if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr,
 537			buf, 3) != 3)
 538		goto abituguru_detect_bank1_sensor_type_exit;
 539	/*
 540	 * Now we need 20 ms to give the uguru time to read the sensors
 541	 * and raise a voltage alarm
 542	 */
 543	set_current_state(TASK_UNINTERRUPTIBLE);
 544	schedule_timeout(HZ/50);
 545	/* Check for alarm and check the alarm is a volt low alarm. */
 546	if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3,
 547			ABIT_UGURU_MAX_RETRIES) != 3)
 548		goto abituguru_detect_bank1_sensor_type_exit;
 549	if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) {
 550		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
 551				sensor_addr, buf, 3,
 552				ABIT_UGURU_MAX_RETRIES) != 3)
 553			goto abituguru_detect_bank1_sensor_type_exit;
 554		if (buf[0] & test_flag) {
 555			ABIT_UGURU_DEBUG(2, "  found volt sensor\n");
 556			ret = ABIT_UGURU_IN_SENSOR;
 557			goto abituguru_detect_bank1_sensor_type_exit;
 558		} else
 559			ABIT_UGURU_DEBUG(2, "  alarm raised during volt "
 560				"sensor test, but volt range flag not set\n");
 561	} else
 562		ABIT_UGURU_DEBUG(2, "  alarm not raised during volt sensor "
 563			"test\n");
 564
 565	/*
 566	 * Temp sensor test, enable sensor as a temp sensor, set beep value
 567	 * ridiculously low (but not too low, otherwise uguru ignores it).
 568	 * If its a temp sensor this should always give us an alarm.
 569	 */
 570	buf[0] = ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE;
 571	buf[1] = 5;
 572	buf[2] = 10;
 573	if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr,
 574			buf, 3) != 3)
 575		goto abituguru_detect_bank1_sensor_type_exit;
 576	/*
 577	 * Now we need 50 ms to give the uguru time to read the sensors
 578	 * and raise a temp alarm
 579	 */
 580	set_current_state(TASK_UNINTERRUPTIBLE);
 581	schedule_timeout(HZ/20);
 582	/* Check for alarm and check the alarm is a temp high alarm. */
 583	if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3,
 584			ABIT_UGURU_MAX_RETRIES) != 3)
 585		goto abituguru_detect_bank1_sensor_type_exit;
 586	if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) {
 587		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
 588				sensor_addr, buf, 3,
 589				ABIT_UGURU_MAX_RETRIES) != 3)
 590			goto abituguru_detect_bank1_sensor_type_exit;
 591		if (buf[0] & ABIT_UGURU_TEMP_HIGH_ALARM_FLAG) {
 592			ABIT_UGURU_DEBUG(2, "  found temp sensor\n");
 593			ret = ABIT_UGURU_TEMP_SENSOR;
 594			goto abituguru_detect_bank1_sensor_type_exit;
 595		} else
 596			ABIT_UGURU_DEBUG(2, "  alarm raised during temp "
 597				"sensor test, but temp high flag not set\n");
 598	} else
 599		ABIT_UGURU_DEBUG(2, "  alarm not raised during temp sensor "
 600			"test\n");
 601
 602	ret = ABIT_UGURU_NC;
 603abituguru_detect_bank1_sensor_type_exit:
 604	/*
 605	 * Restore original settings, failing here is really BAD, it has been
 606	 * reported that some BIOS-es hang when entering the uGuru menu with
 607	 * invalid settings present in the uGuru, so we try this 3 times.
 608	 */
 609	for (i = 0; i < 3; i++)
 610		if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2,
 611				sensor_addr, data->bank1_settings[sensor_addr],
 612				3) == 3)
 613			break;
 614	if (i == 3) {
 615		pr_err("Fatal error could not restore original settings. %s %s\n",
 616		       never_happen, report_this);
 617		return -ENODEV;
 618	}
 619	return ret;
 620}
 621
 622/*
 623 * These functions try to find out how many sensors there are in bank2 and how
 624 * many pwms there are. The purpose of this is to make sure that we don't give
 625 * the user the possibility to change settings for non-existent sensors / pwm.
 626 * The uGuru will happily read / write whatever memory happens to be after the
 627 * memory storing the PWM settings when reading/writing to a PWM which is not
 628 * there. Notice even if we detect a PWM which doesn't exist we normally won't
 629 * write to it, unless the user tries to change the settings.
 630 *
 631 * Although the uGuru allows reading (settings) from non existing bank2
 632 * sensors, my version of the uGuru does seem to stop writing to them, the
 633 * write function above aborts in this case with:
 634 * "CMD reg does not hold 0xAC after write"
 635 *
 636 * Notice these 2 tests are non destructive iow read-only tests, otherwise
 637 * they would defeat their purpose. Although for the bank2_sensors detection a
 638 * read/write test would be feasible because of the reaction above, I've
 639 * however opted to stay on the safe side.
 640 */
 641static void
 642abituguru_detect_no_bank2_sensors(struct abituguru_data *data)
 643{
 644	int i;
 645
 646	if (fan_sensors > 0 && fan_sensors <= ABIT_UGURU_MAX_BANK2_SENSORS) {
 647		data->bank2_sensors = fan_sensors;
 648		ABIT_UGURU_DEBUG(2, "assuming %d fan sensors because of "
 649			"\"fan_sensors\" module param\n",
 650			(int)data->bank2_sensors);
 651		return;
 652	}
 653
 654	ABIT_UGURU_DEBUG(2, "detecting number of fan sensors\n");
 655	for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) {
 656		/*
 657		 * 0x89 are the known used bits:
 658		 * -0x80 enable shutdown
 659		 * -0x08 enable beep
 660		 * -0x01 enable alarm
 661		 * All other bits should be 0, but on some motherboards
 662		 * 0x40 (bit 6) is also high for some of the fans??
 663		 */
 664		if (data->bank2_settings[i][0] & ~0xC9) {
 665			ABIT_UGURU_DEBUG(2, "  bank2 sensor %d does not seem "
 666				"to be a fan sensor: settings[0] = %02X\n",
 667				i, (unsigned int)data->bank2_settings[i][0]);
 668			break;
 669		}
 670
 671		/* check if the threshold is within the allowed range */
 672		if (data->bank2_settings[i][1] <
 673				abituguru_bank2_min_threshold) {
 674			ABIT_UGURU_DEBUG(2, "  bank2 sensor %d does not seem "
 675				"to be a fan sensor: the threshold (%d) is "
 676				"below the minimum (%d)\n", i,
 677				(int)data->bank2_settings[i][1],
 678				(int)abituguru_bank2_min_threshold);
 679			break;
 680		}
 681		if (data->bank2_settings[i][1] >
 682				abituguru_bank2_max_threshold) {
 683			ABIT_UGURU_DEBUG(2, "  bank2 sensor %d does not seem "
 684				"to be a fan sensor: the threshold (%d) is "
 685				"above the maximum (%d)\n", i,
 686				(int)data->bank2_settings[i][1],
 687				(int)abituguru_bank2_max_threshold);
 688			break;
 689		}
 690	}
 691
 692	data->bank2_sensors = i;
 693	ABIT_UGURU_DEBUG(2, " found: %d fan sensors\n",
 694		(int)data->bank2_sensors);
 695}
 696
 697static void
 698abituguru_detect_no_pwms(struct abituguru_data *data)
 699{
 700	int i, j;
 701
 702	if (pwms > 0 && pwms <= ABIT_UGURU_MAX_PWMS) {
 703		data->pwms = pwms;
 704		ABIT_UGURU_DEBUG(2, "assuming %d PWM outputs because of "
 705			"\"pwms\" module param\n", (int)data->pwms);
 706		return;
 707	}
 708
 709	ABIT_UGURU_DEBUG(2, "detecting number of PWM outputs\n");
 710	for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) {
 711		/*
 712		 * 0x80 is the enable bit and the low
 713		 * nibble is which temp sensor to use,
 714		 * the other bits should be 0
 715		 */
 716		if (data->pwm_settings[i][0] & ~0x8F) {
 717			ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
 718				"to be a pwm channel: settings[0] = %02X\n",
 719				i, (unsigned int)data->pwm_settings[i][0]);
 720			break;
 721		}
 722
 723		/*
 724		 * the low nibble must correspond to one of the temp sensors
 725		 * we've found
 726		 */
 727		for (j = 0; j < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR];
 728				j++) {
 729			if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][j] ==
 730					(data->pwm_settings[i][0] & 0x0F))
 731				break;
 732		}
 733		if (j == data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]) {
 734			ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
 735				"to be a pwm channel: %d is not a valid temp "
 736				"sensor address\n", i,
 737				data->pwm_settings[i][0] & 0x0F);
 738			break;
 739		}
 740
 741		/* check if all other settings are within the allowed range */
 742		for (j = 1; j < 5; j++) {
 743			u8 min;
 744			/* special case pwm1 min pwm% */
 745			if ((i == 0) && ((j == 1) || (j == 2)))
 746				min = 77;
 747			else
 748				min = abituguru_pwm_min[j];
 749			if (data->pwm_settings[i][j] < min) {
 750				ABIT_UGURU_DEBUG(2, "  pwm channel %d does "
 751					"not seem to be a pwm channel: "
 752					"setting %d (%d) is below the minimum "
 753					"value (%d)\n", i, j,
 754					(int)data->pwm_settings[i][j],
 755					(int)min);
 756				goto abituguru_detect_no_pwms_exit;
 757			}
 758			if (data->pwm_settings[i][j] > abituguru_pwm_max[j]) {
 759				ABIT_UGURU_DEBUG(2, "  pwm channel %d does "
 760					"not seem to be a pwm channel: "
 761					"setting %d (%d) is above the maximum "
 762					"value (%d)\n", i, j,
 763					(int)data->pwm_settings[i][j],
 764					(int)abituguru_pwm_max[j]);
 765				goto abituguru_detect_no_pwms_exit;
 766			}
 767		}
 768
 769		/* check that min temp < max temp and min pwm < max pwm */
 770		if (data->pwm_settings[i][1] >= data->pwm_settings[i][2]) {
 771			ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
 772				"to be a pwm channel: min pwm (%d) >= "
 773				"max pwm (%d)\n", i,
 774				(int)data->pwm_settings[i][1],
 775				(int)data->pwm_settings[i][2]);
 776			break;
 777		}
 778		if (data->pwm_settings[i][3] >= data->pwm_settings[i][4]) {
 779			ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
 780				"to be a pwm channel: min temp (%d) >= "
 781				"max temp (%d)\n", i,
 782				(int)data->pwm_settings[i][3],
 783				(int)data->pwm_settings[i][4]);
 784			break;
 785		}
 786	}
 787
 788abituguru_detect_no_pwms_exit:
 789	data->pwms = i;
 790	ABIT_UGURU_DEBUG(2, " found: %d PWM outputs\n", (int)data->pwms);
 791}
 792
 793/*
 794 * Following are the sysfs callback functions. These functions expect:
 795 * sensor_device_attribute_2->index:   sensor address/offset in the bank
 796 * sensor_device_attribute_2->nr:      register offset, bitmask or NA.
 797 */
 798static struct abituguru_data *abituguru_update_device(struct device *dev);
 799
 800static ssize_t show_bank1_value(struct device *dev,
 801	struct device_attribute *devattr, char *buf)
 802{
 803	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 804	struct abituguru_data *data = abituguru_update_device(dev);
 805	if (!data)
 806		return -EIO;
 807	return sprintf(buf, "%d\n", (data->bank1_value[attr->index] *
 808		data->bank1_max_value[attr->index] + 128) / 255);
 809}
 810
 811static ssize_t show_bank1_setting(struct device *dev,
 812	struct device_attribute *devattr, char *buf)
 813{
 814	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 815	struct abituguru_data *data = dev_get_drvdata(dev);
 816	return sprintf(buf, "%d\n",
 817		(data->bank1_settings[attr->index][attr->nr] *
 818		data->bank1_max_value[attr->index] + 128) / 255);
 819}
 820
 821static ssize_t show_bank2_value(struct device *dev,
 822	struct device_attribute *devattr, char *buf)
 823{
 824	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 825	struct abituguru_data *data = abituguru_update_device(dev);
 826	if (!data)
 827		return -EIO;
 828	return sprintf(buf, "%d\n", (data->bank2_value[attr->index] *
 829		ABIT_UGURU_FAN_MAX + 128) / 255);
 830}
 831
 832static ssize_t show_bank2_setting(struct device *dev,
 833	struct device_attribute *devattr, char *buf)
 834{
 835	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 836	struct abituguru_data *data = dev_get_drvdata(dev);
 837	return sprintf(buf, "%d\n",
 838		(data->bank2_settings[attr->index][attr->nr] *
 839		ABIT_UGURU_FAN_MAX + 128) / 255);
 840}
 841
 842static ssize_t store_bank1_setting(struct device *dev, struct device_attribute
 843	*devattr, const char *buf, size_t count)
 844{
 845	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 846	struct abituguru_data *data = dev_get_drvdata(dev);
 847	unsigned long val;
 848	ssize_t ret;
 849
 850	ret = kstrtoul(buf, 10, &val);
 851	if (ret)
 852		return ret;
 853
 854	ret = count;
 855	val = (val * 255 + data->bank1_max_value[attr->index] / 2) /
 856		data->bank1_max_value[attr->index];
 857	if (val > 255)
 858		return -EINVAL;
 859
 860	mutex_lock(&data->update_lock);
 861	if (data->bank1_settings[attr->index][attr->nr] != val) {
 862		u8 orig_val = data->bank1_settings[attr->index][attr->nr];
 863		data->bank1_settings[attr->index][attr->nr] = val;
 864		if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2,
 865				attr->index, data->bank1_settings[attr->index],
 866				3) <= attr->nr) {
 867			data->bank1_settings[attr->index][attr->nr] = orig_val;
 868			ret = -EIO;
 869		}
 870	}
 871	mutex_unlock(&data->update_lock);
 872	return ret;
 873}
 874
 875static ssize_t store_bank2_setting(struct device *dev, struct device_attribute
 876	*devattr, const char *buf, size_t count)
 877{
 878	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 879	struct abituguru_data *data = dev_get_drvdata(dev);
 880	unsigned long val;
 881	ssize_t ret;
 882
 883	ret = kstrtoul(buf, 10, &val);
 884	if (ret)
 885		return ret;
 886
 887	ret = count;
 888	val = (val * 255 + ABIT_UGURU_FAN_MAX / 2) / ABIT_UGURU_FAN_MAX;
 889
 890	/* this check can be done before taking the lock */
 891	if (val < abituguru_bank2_min_threshold ||
 892			val > abituguru_bank2_max_threshold)
 893		return -EINVAL;
 894
 895	mutex_lock(&data->update_lock);
 896	if (data->bank2_settings[attr->index][attr->nr] != val) {
 897		u8 orig_val = data->bank2_settings[attr->index][attr->nr];
 898		data->bank2_settings[attr->index][attr->nr] = val;
 899		if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK2 + 2,
 900				attr->index, data->bank2_settings[attr->index],
 901				2) <= attr->nr) {
 902			data->bank2_settings[attr->index][attr->nr] = orig_val;
 903			ret = -EIO;
 904		}
 905	}
 906	mutex_unlock(&data->update_lock);
 907	return ret;
 908}
 909
 910static ssize_t show_bank1_alarm(struct device *dev,
 911	struct device_attribute *devattr, char *buf)
 912{
 913	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 914	struct abituguru_data *data = abituguru_update_device(dev);
 915	if (!data)
 916		return -EIO;
 917	/*
 918	 * See if the alarm bit for this sensor is set, and if the
 919	 * alarm matches the type of alarm we're looking for (for volt
 920	 * it can be either low or high). The type is stored in a few
 921	 * readonly bits in the settings part of the relevant sensor.
 922	 * The bitmask of the type is passed to us in attr->nr.
 923	 */
 924	if ((data->alarms[attr->index / 8] & (0x01 << (attr->index % 8))) &&
 925			(data->bank1_settings[attr->index][0] & attr->nr))
 926		return sprintf(buf, "1\n");
 927	else
 928		return sprintf(buf, "0\n");
 929}
 930
 931static ssize_t show_bank2_alarm(struct device *dev,
 932	struct device_attribute *devattr, char *buf)
 933{
 934	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 935	struct abituguru_data *data = abituguru_update_device(dev);
 936	if (!data)
 937		return -EIO;
 938	if (data->alarms[2] & (0x01 << attr->index))
 939		return sprintf(buf, "1\n");
 940	else
 941		return sprintf(buf, "0\n");
 942}
 943
 944static ssize_t show_bank1_mask(struct device *dev,
 945	struct device_attribute *devattr, char *buf)
 946{
 947	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 948	struct abituguru_data *data = dev_get_drvdata(dev);
 949	if (data->bank1_settings[attr->index][0] & attr->nr)
 950		return sprintf(buf, "1\n");
 951	else
 952		return sprintf(buf, "0\n");
 953}
 954
 955static ssize_t show_bank2_mask(struct device *dev,
 956	struct device_attribute *devattr, char *buf)
 957{
 958	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 959	struct abituguru_data *data = dev_get_drvdata(dev);
 960	if (data->bank2_settings[attr->index][0] & attr->nr)
 961		return sprintf(buf, "1\n");
 962	else
 963		return sprintf(buf, "0\n");
 964}
 965
 966static ssize_t store_bank1_mask(struct device *dev,
 967	struct device_attribute *devattr, const char *buf, size_t count)
 968{
 969	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 970	struct abituguru_data *data = dev_get_drvdata(dev);
 971	ssize_t ret;
 972	u8 orig_val;
 973	unsigned long mask;
 974
 975	ret = kstrtoul(buf, 10, &mask);
 976	if (ret)
 977		return ret;
 978
 979	ret = count;
 980	mutex_lock(&data->update_lock);
 981	orig_val = data->bank1_settings[attr->index][0];
 982
 983	if (mask)
 984		data->bank1_settings[attr->index][0] |= attr->nr;
 985	else
 986		data->bank1_settings[attr->index][0] &= ~attr->nr;
 987
 988	if ((data->bank1_settings[attr->index][0] != orig_val) &&
 989			(abituguru_write(data,
 990			ABIT_UGURU_SENSOR_BANK1 + 2, attr->index,
 991			data->bank1_settings[attr->index], 3) < 1)) {
 992		data->bank1_settings[attr->index][0] = orig_val;
 993		ret = -EIO;
 994	}
 995	mutex_unlock(&data->update_lock);
 996	return ret;
 997}
 998
 999static ssize_t store_bank2_mask(struct device *dev,
1000	struct device_attribute *devattr, const char *buf, size_t count)
1001{
1002	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1003	struct abituguru_data *data = dev_get_drvdata(dev);
1004	ssize_t ret;
1005	u8 orig_val;
1006	unsigned long mask;
1007
1008	ret = kstrtoul(buf, 10, &mask);
1009	if (ret)
1010		return ret;
1011
1012	ret = count;
1013	mutex_lock(&data->update_lock);
1014	orig_val = data->bank2_settings[attr->index][0];
1015
1016	if (mask)
1017		data->bank2_settings[attr->index][0] |= attr->nr;
1018	else
1019		data->bank2_settings[attr->index][0] &= ~attr->nr;
1020
1021	if ((data->bank2_settings[attr->index][0] != orig_val) &&
1022			(abituguru_write(data,
1023			ABIT_UGURU_SENSOR_BANK2 + 2, attr->index,
1024			data->bank2_settings[attr->index], 2) < 1)) {
1025		data->bank2_settings[attr->index][0] = orig_val;
1026		ret = -EIO;
1027	}
1028	mutex_unlock(&data->update_lock);
1029	return ret;
1030}
1031
1032/* Fan PWM (speed control) */
1033static ssize_t show_pwm_setting(struct device *dev,
1034	struct device_attribute *devattr, char *buf)
1035{
1036	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1037	struct abituguru_data *data = dev_get_drvdata(dev);
1038	return sprintf(buf, "%d\n", data->pwm_settings[attr->index][attr->nr] *
1039		abituguru_pwm_settings_multiplier[attr->nr]);
1040}
1041
1042static ssize_t store_pwm_setting(struct device *dev, struct device_attribute
1043	*devattr, const char *buf, size_t count)
1044{
1045	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1046	struct abituguru_data *data = dev_get_drvdata(dev);
1047	u8 min;
1048	unsigned long val;
1049	ssize_t ret;
1050
1051	ret = kstrtoul(buf, 10, &val);
1052	if (ret)
1053		return ret;
1054
1055	ret = count;
1056	val = (val + abituguru_pwm_settings_multiplier[attr->nr] / 2) /
1057				abituguru_pwm_settings_multiplier[attr->nr];
1058
1059	/* special case pwm1 min pwm% */
1060	if ((attr->index == 0) && ((attr->nr == 1) || (attr->nr == 2)))
1061		min = 77;
1062	else
1063		min = abituguru_pwm_min[attr->nr];
1064
1065	/* this check can be done before taking the lock */
1066	if (val < min || val > abituguru_pwm_max[attr->nr])
1067		return -EINVAL;
1068
1069	mutex_lock(&data->update_lock);
1070	/* this check needs to be done after taking the lock */
1071	if ((attr->nr & 1) &&
1072			(val >= data->pwm_settings[attr->index][attr->nr + 1]))
1073		ret = -EINVAL;
1074	else if (!(attr->nr & 1) &&
1075			(val <= data->pwm_settings[attr->index][attr->nr - 1]))
1076		ret = -EINVAL;
1077	else if (data->pwm_settings[attr->index][attr->nr] != val) {
1078		u8 orig_val = data->pwm_settings[attr->index][attr->nr];
1079		data->pwm_settings[attr->index][attr->nr] = val;
1080		if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1,
1081				attr->index, data->pwm_settings[attr->index],
1082				5) <= attr->nr) {
1083			data->pwm_settings[attr->index][attr->nr] =
1084				orig_val;
1085			ret = -EIO;
1086		}
1087	}
1088	mutex_unlock(&data->update_lock);
1089	return ret;
1090}
1091
1092static ssize_t show_pwm_sensor(struct device *dev,
1093	struct device_attribute *devattr, char *buf)
1094{
1095	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1096	struct abituguru_data *data = dev_get_drvdata(dev);
1097	int i;
1098	/*
1099	 * We need to walk to the temp sensor addresses to find what
1100	 * the userspace id of the configured temp sensor is.
1101	 */
1102	for (i = 0; i < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]; i++)
1103		if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][i] ==
1104				(data->pwm_settings[attr->index][0] & 0x0F))
1105			return sprintf(buf, "%d\n", i+1);
1106
1107	return -ENXIO;
1108}
1109
1110static ssize_t store_pwm_sensor(struct device *dev, struct device_attribute
1111	*devattr, const char *buf, size_t count)
1112{
1113	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1114	struct abituguru_data *data = dev_get_drvdata(dev);
1115	ssize_t ret;
1116	unsigned long val;
1117	u8 orig_val;
1118	u8 address;
1119
1120	ret = kstrtoul(buf, 10, &val);
1121	if (ret)
1122		return ret;
1123
1124	if (val == 0 || val > data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR])
1125		return -EINVAL;
1126
1127	val -= 1;
1128	ret = count;
1129	mutex_lock(&data->update_lock);
1130	orig_val = data->pwm_settings[attr->index][0];
1131	address = data->bank1_address[ABIT_UGURU_TEMP_SENSOR][val];
1132	data->pwm_settings[attr->index][0] &= 0xF0;
1133	data->pwm_settings[attr->index][0] |= address;
1134	if (data->pwm_settings[attr->index][0] != orig_val) {
1135		if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1, attr->index,
1136				    data->pwm_settings[attr->index], 5) < 1) {
1137			data->pwm_settings[attr->index][0] = orig_val;
1138			ret = -EIO;
1139		}
1140	}
1141	mutex_unlock(&data->update_lock);
1142	return ret;
1143}
1144
1145static ssize_t show_pwm_enable(struct device *dev,
1146	struct device_attribute *devattr, char *buf)
1147{
1148	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1149	struct abituguru_data *data = dev_get_drvdata(dev);
1150	int res = 0;
1151	if (data->pwm_settings[attr->index][0] & ABIT_UGURU_FAN_PWM_ENABLE)
1152		res = 2;
1153	return sprintf(buf, "%d\n", res);
1154}
1155
1156static ssize_t store_pwm_enable(struct device *dev, struct device_attribute
1157	*devattr, const char *buf, size_t count)
1158{
1159	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1160	struct abituguru_data *data = dev_get_drvdata(dev);
1161	u8 orig_val;
1162	ssize_t ret;
1163	unsigned long user_val;
1164
1165	ret = kstrtoul(buf, 10, &user_val);
1166	if (ret)
1167		return ret;
1168
1169	ret = count;
1170	mutex_lock(&data->update_lock);
1171	orig_val = data->pwm_settings[attr->index][0];
1172	switch (user_val) {
1173	case 0:
1174		data->pwm_settings[attr->index][0] &=
1175			~ABIT_UGURU_FAN_PWM_ENABLE;
1176		break;
1177	case 2:
1178		data->pwm_settings[attr->index][0] |= ABIT_UGURU_FAN_PWM_ENABLE;
1179		break;
1180	default:
1181		ret = -EINVAL;
1182	}
1183	if ((data->pwm_settings[attr->index][0] != orig_val) &&
1184			(abituguru_write(data, ABIT_UGURU_FAN_PWM + 1,
1185			attr->index, data->pwm_settings[attr->index],
1186			5) < 1)) {
1187		data->pwm_settings[attr->index][0] = orig_val;
1188		ret = -EIO;
1189	}
1190	mutex_unlock(&data->update_lock);
1191	return ret;
1192}
1193
1194static ssize_t show_name(struct device *dev,
1195	struct device_attribute *devattr, char *buf)
1196{
1197	return sprintf(buf, "%s\n", ABIT_UGURU_NAME);
1198}
1199
1200/* Sysfs attr templates, the real entries are generated automatically. */
1201static const
1202struct sensor_device_attribute_2 abituguru_sysfs_bank1_templ[2][9] = {
1203	{
1204	SENSOR_ATTR_2(in%d_input, 0444, show_bank1_value, NULL, 0, 0),
1205	SENSOR_ATTR_2(in%d_min, 0644, show_bank1_setting,
1206		store_bank1_setting, 1, 0),
1207	SENSOR_ATTR_2(in%d_min_alarm, 0444, show_bank1_alarm, NULL,
1208		ABIT_UGURU_VOLT_LOW_ALARM_FLAG, 0),
1209	SENSOR_ATTR_2(in%d_max, 0644, show_bank1_setting,
1210		store_bank1_setting, 2, 0),
1211	SENSOR_ATTR_2(in%d_max_alarm, 0444, show_bank1_alarm, NULL,
1212		ABIT_UGURU_VOLT_HIGH_ALARM_FLAG, 0),
1213	SENSOR_ATTR_2(in%d_beep, 0644, show_bank1_mask,
1214		store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0),
1215	SENSOR_ATTR_2(in%d_shutdown, 0644, show_bank1_mask,
1216		store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
1217	SENSOR_ATTR_2(in%d_min_alarm_enable, 0644, show_bank1_mask,
1218		store_bank1_mask, ABIT_UGURU_VOLT_LOW_ALARM_ENABLE, 0),
1219	SENSOR_ATTR_2(in%d_max_alarm_enable, 0644, show_bank1_mask,
1220		store_bank1_mask, ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE, 0),
1221	}, {
1222	SENSOR_ATTR_2(temp%d_input, 0444, show_bank1_value, NULL, 0, 0),
1223	SENSOR_ATTR_2(temp%d_alarm, 0444, show_bank1_alarm, NULL,
1224		ABIT_UGURU_TEMP_HIGH_ALARM_FLAG, 0),
1225	SENSOR_ATTR_2(temp%d_max, 0644, show_bank1_setting,
1226		store_bank1_setting, 1, 0),
1227	SENSOR_ATTR_2(temp%d_crit, 0644, show_bank1_setting,
1228		store_bank1_setting, 2, 0),
1229	SENSOR_ATTR_2(temp%d_beep, 0644, show_bank1_mask,
1230		store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0),
1231	SENSOR_ATTR_2(temp%d_shutdown, 0644, show_bank1_mask,
1232		store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
1233	SENSOR_ATTR_2(temp%d_alarm_enable, 0644, show_bank1_mask,
1234		store_bank1_mask, ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE, 0),
1235	}
1236};
1237
1238static const struct sensor_device_attribute_2 abituguru_sysfs_fan_templ[6] = {
1239	SENSOR_ATTR_2(fan%d_input, 0444, show_bank2_value, NULL, 0, 0),
1240	SENSOR_ATTR_2(fan%d_alarm, 0444, show_bank2_alarm, NULL, 0, 0),
1241	SENSOR_ATTR_2(fan%d_min, 0644, show_bank2_setting,
1242		store_bank2_setting, 1, 0),
1243	SENSOR_ATTR_2(fan%d_beep, 0644, show_bank2_mask,
1244		store_bank2_mask, ABIT_UGURU_BEEP_ENABLE, 0),
1245	SENSOR_ATTR_2(fan%d_shutdown, 0644, show_bank2_mask,
1246		store_bank2_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
1247	SENSOR_ATTR_2(fan%d_alarm_enable, 0644, show_bank2_mask,
1248		store_bank2_mask, ABIT_UGURU_FAN_LOW_ALARM_ENABLE, 0),
1249};
1250
1251static const struct sensor_device_attribute_2 abituguru_sysfs_pwm_templ[6] = {
1252	SENSOR_ATTR_2(pwm%d_enable, 0644, show_pwm_enable,
1253		store_pwm_enable, 0, 0),
1254	SENSOR_ATTR_2(pwm%d_auto_channels_temp, 0644, show_pwm_sensor,
1255		store_pwm_sensor, 0, 0),
1256	SENSOR_ATTR_2(pwm%d_auto_point1_pwm, 0644, show_pwm_setting,
1257		store_pwm_setting, 1, 0),
1258	SENSOR_ATTR_2(pwm%d_auto_point2_pwm, 0644, show_pwm_setting,
1259		store_pwm_setting, 2, 0),
1260	SENSOR_ATTR_2(pwm%d_auto_point1_temp, 0644, show_pwm_setting,
1261		store_pwm_setting, 3, 0),
1262	SENSOR_ATTR_2(pwm%d_auto_point2_temp, 0644, show_pwm_setting,
1263		store_pwm_setting, 4, 0),
1264};
1265
1266static struct sensor_device_attribute_2 abituguru_sysfs_attr[] = {
1267	SENSOR_ATTR_2(name, 0444, show_name, NULL, 0, 0),
1268};
1269
1270static int abituguru_probe(struct platform_device *pdev)
1271{
1272	struct abituguru_data *data;
1273	int i, j, used, sysfs_names_free, sysfs_attr_i, res = -ENODEV;
1274	char *sysfs_filename;
1275
1276	/*
1277	 * El weirdo probe order, to keep the sysfs order identical to the
1278	 * BIOS and window-appliction listing order.
1279	 */
1280	const u8 probe_order[ABIT_UGURU_MAX_BANK1_SENSORS] = {
1281		0x00, 0x01, 0x03, 0x04, 0x0A, 0x08, 0x0E, 0x02,
1282		0x09, 0x06, 0x05, 0x0B, 0x0F, 0x0D, 0x07, 0x0C };
1283
1284	data = devm_kzalloc(&pdev->dev, sizeof(struct abituguru_data),
1285			    GFP_KERNEL);
1286	if (!data)
1287		return -ENOMEM;
1288
1289	data->addr = platform_get_resource(pdev, IORESOURCE_IO, 0)->start;
1290	mutex_init(&data->update_lock);
1291	platform_set_drvdata(pdev, data);
1292
1293	/* See if the uGuru is ready */
1294	if (inb_p(data->addr + ABIT_UGURU_DATA) == ABIT_UGURU_STATUS_INPUT)
1295		data->uguru_ready = 1;
1296
1297	/*
1298	 * Completely read the uGuru this has 2 purposes:
1299	 * - testread / see if one really is there.
1300	 * - make an in memory copy of all the uguru settings for future use.
1301	 */
1302	if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0,
1303			data->alarms, 3, ABIT_UGURU_MAX_RETRIES) != 3)
1304		goto abituguru_probe_error;
1305
1306	for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
1307		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, i,
1308				&data->bank1_value[i], 1,
1309				ABIT_UGURU_MAX_RETRIES) != 1)
1310			goto abituguru_probe_error;
1311		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1+1, i,
1312				data->bank1_settings[i], 3,
1313				ABIT_UGURU_MAX_RETRIES) != 3)
1314			goto abituguru_probe_error;
1315	}
1316	/*
1317	 * Note: We don't know how many bank2 sensors / pwms there really are,
1318	 * but in order to "detect" this we need to read the maximum amount
1319	 * anyways. If we read sensors/pwms not there we'll just read crap
1320	 * this can't hurt. We need the detection because we don't want
1321	 * unwanted writes, which will hurt!
1322	 */
1323	for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) {
1324		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i,
1325				&data->bank2_value[i], 1,
1326				ABIT_UGURU_MAX_RETRIES) != 1)
1327			goto abituguru_probe_error;
1328		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2+1, i,
1329				data->bank2_settings[i], 2,
1330				ABIT_UGURU_MAX_RETRIES) != 2)
1331			goto abituguru_probe_error;
1332	}
1333	for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) {
1334		if (abituguru_read(data, ABIT_UGURU_FAN_PWM, i,
1335				data->pwm_settings[i], 5,
1336				ABIT_UGURU_MAX_RETRIES) != 5)
1337			goto abituguru_probe_error;
1338	}
1339	data->last_updated = jiffies;
1340
1341	/* Detect sensor types and fill the sysfs attr for bank1 */
1342	sysfs_attr_i = 0;
1343	sysfs_filename = data->sysfs_names;
1344	sysfs_names_free = ABITUGURU_SYSFS_NAMES_LENGTH;
1345	for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
1346		res = abituguru_detect_bank1_sensor_type(data, probe_order[i]);
1347		if (res < 0)
1348			goto abituguru_probe_error;
1349		if (res == ABIT_UGURU_NC)
1350			continue;
1351
1352		/* res 1 (temp) sensors have 7 sysfs entries, 0 (in) 9 */
1353		for (j = 0; j < (res ? 7 : 9); j++) {
1354			used = snprintf(sysfs_filename, sysfs_names_free,
1355				abituguru_sysfs_bank1_templ[res][j].dev_attr.
1356				attr.name, data->bank1_sensors[res] + res)
1357				+ 1;
1358			data->sysfs_attr[sysfs_attr_i] =
1359				abituguru_sysfs_bank1_templ[res][j];
1360			data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
1361				sysfs_filename;
1362			data->sysfs_attr[sysfs_attr_i].index = probe_order[i];
1363			sysfs_filename += used;
1364			sysfs_names_free -= used;
1365			sysfs_attr_i++;
1366		}
1367		data->bank1_max_value[probe_order[i]] =
1368			abituguru_bank1_max_value[res];
1369		data->bank1_address[res][data->bank1_sensors[res]] =
1370			probe_order[i];
1371		data->bank1_sensors[res]++;
1372	}
1373	/* Detect number of sensors and fill the sysfs attr for bank2 (fans) */
1374	abituguru_detect_no_bank2_sensors(data);
1375	for (i = 0; i < data->bank2_sensors; i++) {
1376		for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_fan_templ); j++) {
1377			used = snprintf(sysfs_filename, sysfs_names_free,
1378				abituguru_sysfs_fan_templ[j].dev_attr.attr.name,
1379				i + 1) + 1;
1380			data->sysfs_attr[sysfs_attr_i] =
1381				abituguru_sysfs_fan_templ[j];
1382			data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
1383				sysfs_filename;
1384			data->sysfs_attr[sysfs_attr_i].index = i;
1385			sysfs_filename += used;
1386			sysfs_names_free -= used;
1387			sysfs_attr_i++;
1388		}
1389	}
1390	/* Detect number of sensors and fill the sysfs attr for pwms */
1391	abituguru_detect_no_pwms(data);
1392	for (i = 0; i < data->pwms; i++) {
1393		for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_pwm_templ); j++) {
1394			used = snprintf(sysfs_filename, sysfs_names_free,
1395				abituguru_sysfs_pwm_templ[j].dev_attr.attr.name,
1396				i + 1) + 1;
1397			data->sysfs_attr[sysfs_attr_i] =
1398				abituguru_sysfs_pwm_templ[j];
1399			data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
1400				sysfs_filename;
1401			data->sysfs_attr[sysfs_attr_i].index = i;
1402			sysfs_filename += used;
1403			sysfs_names_free -= used;
1404			sysfs_attr_i++;
1405		}
1406	}
1407	/* Fail safe check, this should never happen! */
1408	if (sysfs_names_free < 0) {
1409		pr_err("Fatal error ran out of space for sysfs attr names. %s %s",
1410		       never_happen, report_this);
1411		res = -ENAMETOOLONG;
1412		goto abituguru_probe_error;
1413	}
1414	pr_info("found Abit uGuru\n");
1415
1416	/* Register sysfs hooks */
1417	for (i = 0; i < sysfs_attr_i; i++) {
1418		res = device_create_file(&pdev->dev,
1419					 &data->sysfs_attr[i].dev_attr);
1420		if (res)
1421			goto abituguru_probe_error;
1422	}
1423	for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++) {
1424		res = device_create_file(&pdev->dev,
1425					 &abituguru_sysfs_attr[i].dev_attr);
1426		if (res)
1427			goto abituguru_probe_error;
1428	}
1429
1430	data->hwmon_dev = hwmon_device_register(&pdev->dev);
1431	if (!IS_ERR(data->hwmon_dev))
1432		return 0; /* success */
1433
1434	res = PTR_ERR(data->hwmon_dev);
1435abituguru_probe_error:
1436	for (i = 0; data->sysfs_attr[i].dev_attr.attr.name; i++)
1437		device_remove_file(&pdev->dev, &data->sysfs_attr[i].dev_attr);
1438	for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++)
1439		device_remove_file(&pdev->dev,
1440			&abituguru_sysfs_attr[i].dev_attr);
1441	return res;
1442}
1443
1444static int abituguru_remove(struct platform_device *pdev)
1445{
1446	int i;
1447	struct abituguru_data *data = platform_get_drvdata(pdev);
1448
1449	hwmon_device_unregister(data->hwmon_dev);
1450	for (i = 0; data->sysfs_attr[i].dev_attr.attr.name; i++)
1451		device_remove_file(&pdev->dev, &data->sysfs_attr[i].dev_attr);
1452	for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++)
1453		device_remove_file(&pdev->dev,
1454			&abituguru_sysfs_attr[i].dev_attr);
1455
1456	return 0;
1457}
1458
1459static struct abituguru_data *abituguru_update_device(struct device *dev)
1460{
1461	int i, err;
1462	struct abituguru_data *data = dev_get_drvdata(dev);
1463	/* fake a complete successful read if no update necessary. */
1464	char success = 1;
1465
1466	mutex_lock(&data->update_lock);
1467	if (time_after(jiffies, data->last_updated + HZ)) {
1468		success = 0;
1469		err = abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0,
1470				     data->alarms, 3, 0);
1471		if (err != 3)
1472			goto LEAVE_UPDATE;
1473		for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
1474			err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK1,
1475					     i, &data->bank1_value[i], 1, 0);
1476			if (err != 1)
1477				goto LEAVE_UPDATE;
1478			err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
1479					     i, data->bank1_settings[i], 3, 0);
1480			if (err != 3)
1481				goto LEAVE_UPDATE;
1482		}
1483		for (i = 0; i < data->bank2_sensors; i++) {
1484			err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i,
1485					     &data->bank2_value[i], 1, 0);
1486			if (err != 1)
1487				goto LEAVE_UPDATE;
1488		}
1489		/* success! */
1490		success = 1;
1491		data->update_timeouts = 0;
1492LEAVE_UPDATE:
1493		/* handle timeout condition */
1494		if (!success && (err == -EBUSY || err >= 0)) {
1495			/* No overflow please */
1496			if (data->update_timeouts < 255u)
1497				data->update_timeouts++;
1498			if (data->update_timeouts <= ABIT_UGURU_MAX_TIMEOUTS) {
1499				ABIT_UGURU_DEBUG(3, "timeout exceeded, will "
1500					"try again next update\n");
1501				/* Just a timeout, fake a successful read */
1502				success = 1;
1503			} else
1504				ABIT_UGURU_DEBUG(1, "timeout exceeded %d "
1505					"times waiting for more input state\n",
1506					(int)data->update_timeouts);
1507		}
1508		/* On success set last_updated */
1509		if (success)
1510			data->last_updated = jiffies;
1511	}
1512	mutex_unlock(&data->update_lock);
1513
1514	if (success)
1515		return data;
1516	else
1517		return NULL;
1518}
1519
1520#ifdef CONFIG_PM_SLEEP
1521static int abituguru_suspend(struct device *dev)
1522{
1523	struct abituguru_data *data = dev_get_drvdata(dev);
1524	/*
1525	 * make sure all communications with the uguru are done and no new
1526	 * ones are started
1527	 */
1528	mutex_lock(&data->update_lock);
1529	return 0;
1530}
1531
1532static int abituguru_resume(struct device *dev)
1533{
1534	struct abituguru_data *data = dev_get_drvdata(dev);
1535	/* See if the uGuru is still ready */
1536	if (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT)
1537		data->uguru_ready = 0;
1538	mutex_unlock(&data->update_lock);
1539	return 0;
1540}
1541
1542static SIMPLE_DEV_PM_OPS(abituguru_pm, abituguru_suspend, abituguru_resume);
1543#define ABIT_UGURU_PM	(&abituguru_pm)
1544#else
1545#define ABIT_UGURU_PM	NULL
1546#endif /* CONFIG_PM */
1547
1548static struct platform_driver abituguru_driver = {
1549	.driver = {
1550		.name	= ABIT_UGURU_NAME,
1551		.pm	= ABIT_UGURU_PM,
1552	},
1553	.probe		= abituguru_probe,
1554	.remove		= abituguru_remove,
1555};
1556
1557static int __init abituguru_detect(void)
1558{
1559	/*
1560	 * See if there is an uguru there. After a reboot uGuru will hold 0x00
1561	 * at DATA and 0xAC, when this driver has already been loaded once
1562	 * DATA will hold 0x08. For most uGuru's CMD will hold 0xAC in either
1563	 * scenario but some will hold 0x00.
1564	 * Some uGuru's initially hold 0x09 at DATA and will only hold 0x08
1565	 * after reading CMD first, so CMD must be read first!
1566	 */
1567	u8 cmd_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_CMD);
1568	u8 data_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_DATA);
1569	if (((data_val == 0x00) || (data_val == 0x08)) &&
1570	    ((cmd_val == 0x00) || (cmd_val == 0xAC)))
1571		return ABIT_UGURU_BASE;
1572
1573	ABIT_UGURU_DEBUG(2, "no Abit uGuru found, data = 0x%02X, cmd = "
1574		"0x%02X\n", (unsigned int)data_val, (unsigned int)cmd_val);
1575
1576	if (force) {
1577		pr_info("Assuming Abit uGuru is present because of \"force\" parameter\n");
1578		return ABIT_UGURU_BASE;
1579	}
1580
1581	/* No uGuru found */
1582	return -ENODEV;
1583}
1584
1585static struct platform_device *abituguru_pdev;
1586
1587static int __init abituguru_init(void)
1588{
1589	int address, err;
1590	struct resource res = { .flags = IORESOURCE_IO };
1591	const char *board_vendor = dmi_get_system_info(DMI_BOARD_VENDOR);
1592
1593	/* safety check, refuse to load on non Abit motherboards */
1594	if (!force && (!board_vendor ||
1595			strcmp(board_vendor, "http://www.abit.com.tw/")))
1596		return -ENODEV;
1597
1598	address = abituguru_detect();
1599	if (address < 0)
1600		return address;
1601
1602	err = platform_driver_register(&abituguru_driver);
1603	if (err)
1604		goto exit;
1605
1606	abituguru_pdev = platform_device_alloc(ABIT_UGURU_NAME, address);
1607	if (!abituguru_pdev) {
1608		pr_err("Device allocation failed\n");
1609		err = -ENOMEM;
1610		goto exit_driver_unregister;
1611	}
1612
1613	res.start = address;
1614	res.end = address + ABIT_UGURU_REGION_LENGTH - 1;
1615	res.name = ABIT_UGURU_NAME;
1616
1617	err = platform_device_add_resources(abituguru_pdev, &res, 1);
1618	if (err) {
1619		pr_err("Device resource addition failed (%d)\n", err);
1620		goto exit_device_put;
1621	}
1622
1623	err = platform_device_add(abituguru_pdev);
1624	if (err) {
1625		pr_err("Device addition failed (%d)\n", err);
1626		goto exit_device_put;
1627	}
1628
1629	return 0;
1630
1631exit_device_put:
1632	platform_device_put(abituguru_pdev);
1633exit_driver_unregister:
1634	platform_driver_unregister(&abituguru_driver);
1635exit:
1636	return err;
1637}
1638
1639static void __exit abituguru_exit(void)
1640{
1641	platform_device_unregister(abituguru_pdev);
1642	platform_driver_unregister(&abituguru_driver);
1643}
1644
1645MODULE_AUTHOR("Hans de Goede <hdegoede@redhat.com>");
1646MODULE_DESCRIPTION("Abit uGuru Sensor device");
1647MODULE_LICENSE("GPL");
1648
1649module_init(abituguru_init);
1650module_exit(abituguru_exit);