Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
   3 *
   4 * This driver supports the memory controllers found on the Intel
   5 * processor family Sandy Bridge.
   6 *
 
 
 
   7 * Copyright (c) 2011 by:
   8 *	 Mauro Carvalho Chehab
   9 */
  10
  11#include <linux/module.h>
  12#include <linux/init.h>
  13#include <linux/pci.h>
  14#include <linux/pci_ids.h>
  15#include <linux/slab.h>
  16#include <linux/delay.h>
  17#include <linux/edac.h>
  18#include <linux/mmzone.h>
  19#include <linux/smp.h>
  20#include <linux/bitmap.h>
  21#include <linux/math64.h>
  22#include <linux/mod_devicetable.h>
  23#include <asm/cpu_device_id.h>
  24#include <asm/intel-family.h>
  25#include <asm/processor.h>
  26#include <asm/mce.h>
  27
  28#include "edac_module.h"
  29
  30/* Static vars */
  31static LIST_HEAD(sbridge_edac_list);
 
 
  32
  33/*
  34 * Alter this version for the module when modifications are made
  35 */
  36#define SBRIDGE_REVISION    " Ver: 1.1.2 "
  37#define EDAC_MOD_STR	    "sb_edac"
  38
  39/*
  40 * Debug macros
  41 */
  42#define sbridge_printk(level, fmt, arg...)			\
  43	edac_printk(level, "sbridge", fmt, ##arg)
  44
  45#define sbridge_mc_printk(mci, level, fmt, arg...)		\
  46	edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
  47
  48/*
  49 * Get a bit field at register value <v>, from bit <lo> to bit <hi>
  50 */
  51#define GET_BITFIELD(v, lo, hi)	\
  52	(((v) & GENMASK_ULL(hi, lo)) >> (lo))
  53
  54/* Devices 12 Function 6, Offsets 0x80 to 0xcc */
  55static const u32 sbridge_dram_rule[] = {
  56	0x80, 0x88, 0x90, 0x98, 0xa0,
  57	0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
  58};
  59
  60static const u32 ibridge_dram_rule[] = {
  61	0x60, 0x68, 0x70, 0x78, 0x80,
  62	0x88, 0x90, 0x98, 0xa0,	0xa8,
  63	0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
  64	0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
  65};
  66
  67static const u32 knl_dram_rule[] = {
  68	0x60, 0x68, 0x70, 0x78, 0x80, /* 0-4 */
  69	0x88, 0x90, 0x98, 0xa0, 0xa8, /* 5-9 */
  70	0xb0, 0xb8, 0xc0, 0xc8, 0xd0, /* 10-14 */
  71	0xd8, 0xe0, 0xe8, 0xf0, 0xf8, /* 15-19 */
  72	0x100, 0x108, 0x110, 0x118,   /* 20-23 */
  73};
  74
  75#define DRAM_RULE_ENABLE(reg)	GET_BITFIELD(reg, 0,  0)
  76#define A7MODE(reg)		GET_BITFIELD(reg, 26, 26)
  77
  78static char *show_dram_attr(u32 attr)
  79{
  80	switch (attr) {
  81		case 0:
  82			return "DRAM";
  83		case 1:
  84			return "MMCFG";
  85		case 2:
  86			return "NXM";
  87		default:
  88			return "unknown";
  89	}
  90}
  91
  92static const u32 sbridge_interleave_list[] = {
  93	0x84, 0x8c, 0x94, 0x9c, 0xa4,
  94	0xac, 0xb4, 0xbc, 0xc4, 0xcc,
  95};
  96
  97static const u32 ibridge_interleave_list[] = {
  98	0x64, 0x6c, 0x74, 0x7c, 0x84,
  99	0x8c, 0x94, 0x9c, 0xa4, 0xac,
 100	0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
 101	0xdc, 0xe4, 0xec, 0xf4, 0xfc,
 102};
 103
 104static const u32 knl_interleave_list[] = {
 105	0x64, 0x6c, 0x74, 0x7c, 0x84, /* 0-4 */
 106	0x8c, 0x94, 0x9c, 0xa4, 0xac, /* 5-9 */
 107	0xb4, 0xbc, 0xc4, 0xcc, 0xd4, /* 10-14 */
 108	0xdc, 0xe4, 0xec, 0xf4, 0xfc, /* 15-19 */
 109	0x104, 0x10c, 0x114, 0x11c,   /* 20-23 */
 110};
 111#define MAX_INTERLEAVE							\
 112	(max_t(unsigned int, ARRAY_SIZE(sbridge_interleave_list),	\
 113	       max_t(unsigned int, ARRAY_SIZE(ibridge_interleave_list),	\
 114		     ARRAY_SIZE(knl_interleave_list))))
 115
 116struct interleave_pkg {
 117	unsigned char start;
 118	unsigned char end;
 119};
 120
 121static const struct interleave_pkg sbridge_interleave_pkg[] = {
 122	{ 0, 2 },
 123	{ 3, 5 },
 124	{ 8, 10 },
 125	{ 11, 13 },
 126	{ 16, 18 },
 127	{ 19, 21 },
 128	{ 24, 26 },
 129	{ 27, 29 },
 130};
 131
 132static const struct interleave_pkg ibridge_interleave_pkg[] = {
 133	{ 0, 3 },
 134	{ 4, 7 },
 135	{ 8, 11 },
 136	{ 12, 15 },
 137	{ 16, 19 },
 138	{ 20, 23 },
 139	{ 24, 27 },
 140	{ 28, 31 },
 141};
 142
 143static inline int sad_pkg(const struct interleave_pkg *table, u32 reg,
 144			  int interleave)
 145{
 146	return GET_BITFIELD(reg, table[interleave].start,
 147			    table[interleave].end);
 148}
 149
 150/* Devices 12 Function 7 */
 151
 152#define TOLM		0x80
 153#define TOHM		0x84
 154#define HASWELL_TOLM	0xd0
 155#define HASWELL_TOHM_0	0xd4
 156#define HASWELL_TOHM_1	0xd8
 157#define KNL_TOLM	0xd0
 158#define KNL_TOHM_0	0xd4
 159#define KNL_TOHM_1	0xd8
 160
 161#define GET_TOLM(reg)		((GET_BITFIELD(reg, 0,  3) << 28) | 0x3ffffff)
 162#define GET_TOHM(reg)		((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
 163
 164/* Device 13 Function 6 */
 165
 166#define SAD_TARGET	0xf0
 167
 168#define SOURCE_ID(reg)		GET_BITFIELD(reg, 9, 11)
 169
 170#define SOURCE_ID_KNL(reg)	GET_BITFIELD(reg, 12, 14)
 171
 172#define SAD_CONTROL	0xf4
 173
 174/* Device 14 function 0 */
 175
 176static const u32 tad_dram_rule[] = {
 177	0x40, 0x44, 0x48, 0x4c,
 178	0x50, 0x54, 0x58, 0x5c,
 179	0x60, 0x64, 0x68, 0x6c,
 180};
 181#define MAX_TAD	ARRAY_SIZE(tad_dram_rule)
 182
 183#define TAD_LIMIT(reg)		((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
 184#define TAD_SOCK(reg)		GET_BITFIELD(reg, 10, 11)
 185#define TAD_CH(reg)		GET_BITFIELD(reg,  8,  9)
 186#define TAD_TGT3(reg)		GET_BITFIELD(reg,  6,  7)
 187#define TAD_TGT2(reg)		GET_BITFIELD(reg,  4,  5)
 188#define TAD_TGT1(reg)		GET_BITFIELD(reg,  2,  3)
 189#define TAD_TGT0(reg)		GET_BITFIELD(reg,  0,  1)
 190
 191/* Device 15, function 0 */
 192
 193#define MCMTR			0x7c
 194#define KNL_MCMTR		0x624
 195
 196#define IS_ECC_ENABLED(mcmtr)		GET_BITFIELD(mcmtr, 2, 2)
 197#define IS_LOCKSTEP_ENABLED(mcmtr)	GET_BITFIELD(mcmtr, 1, 1)
 198#define IS_CLOSE_PG(mcmtr)		GET_BITFIELD(mcmtr, 0, 0)
 199
 200/* Device 15, function 1 */
 201
 202#define RASENABLES		0xac
 203#define IS_MIRROR_ENABLED(reg)		GET_BITFIELD(reg, 0, 0)
 204
 205/* Device 15, functions 2-5 */
 206
 207static const int mtr_regs[] = {
 208	0x80, 0x84, 0x88,
 209};
 210
 211static const int knl_mtr_reg = 0xb60;
 212
 213#define RANK_DISABLE(mtr)		GET_BITFIELD(mtr, 16, 19)
 214#define IS_DIMM_PRESENT(mtr)		GET_BITFIELD(mtr, 14, 14)
 215#define RANK_CNT_BITS(mtr)		GET_BITFIELD(mtr, 12, 13)
 216#define RANK_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 2, 4)
 217#define COL_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 0, 1)
 218
 219static const u32 tad_ch_nilv_offset[] = {
 220	0x90, 0x94, 0x98, 0x9c,
 221	0xa0, 0xa4, 0xa8, 0xac,
 222	0xb0, 0xb4, 0xb8, 0xbc,
 223};
 224#define CHN_IDX_OFFSET(reg)		GET_BITFIELD(reg, 28, 29)
 225#define TAD_OFFSET(reg)			(GET_BITFIELD(reg,  6, 25) << 26)
 226
 227static const u32 rir_way_limit[] = {
 228	0x108, 0x10c, 0x110, 0x114, 0x118,
 229};
 230#define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
 231
 232#define IS_RIR_VALID(reg)	GET_BITFIELD(reg, 31, 31)
 233#define RIR_WAY(reg)		GET_BITFIELD(reg, 28, 29)
 234
 235#define MAX_RIR_WAY	8
 236
 237static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
 238	{ 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
 239	{ 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
 240	{ 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
 241	{ 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
 242	{ 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
 243};
 244
 245#define RIR_RNK_TGT(type, reg) (((type) == BROADWELL) ? \
 246	GET_BITFIELD(reg, 20, 23) : GET_BITFIELD(reg, 16, 19))
 247
 248#define RIR_OFFSET(type, reg) (((type) == HASWELL || (type) == BROADWELL) ? \
 249	GET_BITFIELD(reg,  2, 15) : GET_BITFIELD(reg,  2, 14))
 250
 251/* Device 16, functions 2-7 */
 252
 253/*
 254 * FIXME: Implement the error count reads directly
 255 */
 256
 
 
 
 
 257#define RANK_ODD_OV(reg)		GET_BITFIELD(reg, 31, 31)
 258#define RANK_ODD_ERR_CNT(reg)		GET_BITFIELD(reg, 16, 30)
 259#define RANK_EVEN_OV(reg)		GET_BITFIELD(reg, 15, 15)
 260#define RANK_EVEN_ERR_CNT(reg)		GET_BITFIELD(reg,  0, 14)
 261
 262#if 0 /* Currently unused*/
 263static const u32 correrrcnt[] = {
 264	0x104, 0x108, 0x10c, 0x110,
 265};
 266
 267static const u32 correrrthrsld[] = {
 268	0x11c, 0x120, 0x124, 0x128,
 269};
 270#endif
 271
 272#define RANK_ODD_ERR_THRSLD(reg)	GET_BITFIELD(reg, 16, 30)
 273#define RANK_EVEN_ERR_THRSLD(reg)	GET_BITFIELD(reg,  0, 14)
 274
 275
 276/* Device 17, function 0 */
 277
 278#define SB_RANK_CFG_A		0x0328
 279
 280#define IB_RANK_CFG_A		0x0320
 281
 282/*
 283 * sbridge structs
 284 */
 285
 286#define NUM_CHANNELS		6	/* Max channels per MC */
 287#define MAX_DIMMS		3	/* Max DIMMS per channel */
 288#define KNL_MAX_CHAS		38	/* KNL max num. of Cache Home Agents */
 289#define KNL_MAX_CHANNELS	6	/* KNL max num. of PCI channels */
 290#define KNL_MAX_EDCS		8	/* Embedded DRAM controllers */
 291#define CHANNEL_UNSPECIFIED	0xf	/* Intel IA32 SDM 15-14 */
 292
 293enum type {
 294	SANDY_BRIDGE,
 295	IVY_BRIDGE,
 296	HASWELL,
 297	BROADWELL,
 298	KNIGHTS_LANDING,
 299};
 300
 301enum domain {
 302	IMC0 = 0,
 303	IMC1,
 304	SOCK,
 305};
 306
 307enum mirroring_mode {
 308	NON_MIRRORING,
 309	ADDR_RANGE_MIRRORING,
 310	FULL_MIRRORING,
 311};
 312
 313struct sbridge_pvt;
 314struct sbridge_info {
 315	enum type	type;
 316	u32		mcmtr;
 317	u32		rankcfgr;
 318	u64		(*get_tolm)(struct sbridge_pvt *pvt);
 319	u64		(*get_tohm)(struct sbridge_pvt *pvt);
 320	u64		(*rir_limit)(u32 reg);
 321	u64		(*sad_limit)(u32 reg);
 322	u32		(*interleave_mode)(u32 reg);
 
 323	u32		(*dram_attr)(u32 reg);
 324	const u32	*dram_rule;
 325	const u32	*interleave_list;
 326	const struct interleave_pkg *interleave_pkg;
 327	u8		max_sad;
 
 328	u8		(*get_node_id)(struct sbridge_pvt *pvt);
 329	u8		(*get_ha)(u8 bank);
 330	enum mem_type	(*get_memory_type)(struct sbridge_pvt *pvt);
 331	enum dev_type	(*get_width)(struct sbridge_pvt *pvt, u32 mtr);
 332	struct pci_dev	*pci_vtd;
 333};
 334
 335struct sbridge_channel {
 336	u32		ranks;
 337	u32		dimms;
 338	struct dimm {
 339		u32 rowbits;
 340		u32 colbits;
 341		u32 bank_xor_enable;
 342		u32 amap_fine;
 343	} dimm[MAX_DIMMS];
 344};
 345
 346struct pci_id_descr {
 347	int			dev_id;
 348	int			optional;
 349	enum domain		dom;
 350};
 351
 352struct pci_id_table {
 353	const struct pci_id_descr	*descr;
 354	int				n_devs_per_imc;
 355	int				n_devs_per_sock;
 356	int				n_imcs_per_sock;
 357	enum type			type;
 358};
 359
 360struct sbridge_dev {
 361	struct list_head	list;
 362	int			seg;
 363	u8			bus, mc;
 364	u8			node_id, source_id;
 365	struct pci_dev		**pdev;
 366	enum domain		dom;
 367	int			n_devs;
 368	int			i_devs;
 369	struct mem_ctl_info	*mci;
 370};
 371
 372struct knl_pvt {
 373	struct pci_dev          *pci_cha[KNL_MAX_CHAS];
 374	struct pci_dev          *pci_channel[KNL_MAX_CHANNELS];
 375	struct pci_dev          *pci_mc0;
 376	struct pci_dev          *pci_mc1;
 377	struct pci_dev          *pci_mc0_misc;
 378	struct pci_dev          *pci_mc1_misc;
 379	struct pci_dev          *pci_mc_info; /* tolm, tohm */
 380};
 381
 382struct sbridge_pvt {
 383	/* Devices per socket */
 384	struct pci_dev		*pci_ddrio;
 385	struct pci_dev		*pci_sad0, *pci_sad1;
 
 386	struct pci_dev		*pci_br0, *pci_br1;
 387	/* Devices per memory controller */
 388	struct pci_dev		*pci_ha, *pci_ta, *pci_ras;
 389	struct pci_dev		*pci_tad[NUM_CHANNELS];
 390
 391	struct sbridge_dev	*sbridge_dev;
 392
 393	struct sbridge_info	info;
 394	struct sbridge_channel	channel[NUM_CHANNELS];
 395
 396	/* Memory type detection */
 397	bool			is_cur_addr_mirrored, is_lockstep, is_close_pg;
 398	bool			is_chan_hash;
 399	enum mirroring_mode	mirror_mode;
 
 
 
 
 
 
 
 
 
 400
 401	/* Memory description */
 402	u64			tolm, tohm;
 403	struct knl_pvt knl;
 404};
 405
 406#define PCI_DESCR(device_id, opt, domain)	\
 407	.dev_id = (device_id),		\
 408	.optional = opt,	\
 409	.dom = domain
 410
 411static const struct pci_id_descr pci_dev_descr_sbridge[] = {
 412		/* Processor Home Agent */
 413	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0,   0, IMC0) },
 414
 415		/* Memory controller */
 416	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA,    0, IMC0) },
 417	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS,   0, IMC0) },
 418	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0,  0, IMC0) },
 419	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1,  0, IMC0) },
 420	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2,  0, IMC0) },
 421	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3,  0, IMC0) },
 422	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1, SOCK) },
 423
 424		/* System Address Decoder */
 425	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0,      0, SOCK) },
 426	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1,      0, SOCK) },
 427
 428		/* Broadcast Registers */
 429	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR,        0, SOCK) },
 430};
 431
 432#define PCI_ID_TABLE_ENTRY(A, N, M, T) {	\
 433	.descr = A,			\
 434	.n_devs_per_imc = N,	\
 435	.n_devs_per_sock = ARRAY_SIZE(A),	\
 436	.n_imcs_per_sock = M,	\
 437	.type = T			\
 438}
 439
 440static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
 441	PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge, ARRAY_SIZE(pci_dev_descr_sbridge), 1, SANDY_BRIDGE),
 442	{ NULL, }
 443};
 444
 445/* This changes depending if 1HA or 2HA:
 446 * 1HA:
 447 *	0x0eb8 (17.0) is DDRIO0
 448 * 2HA:
 449 *	0x0ebc (17.4) is DDRIO0
 450 */
 451#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0	0x0eb8
 452#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0	0x0ebc
 453
 454/* pci ids */
 455#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0		0x0ea0
 456#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA		0x0ea8
 457#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS		0x0e71
 458#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0	0x0eaa
 459#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1	0x0eab
 460#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2	0x0eac
 461#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3	0x0ead
 462#define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD			0x0ec8
 463#define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0			0x0ec9
 464#define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1			0x0eca
 465#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1		0x0e60
 466#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA		0x0e68
 467#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS		0x0e79
 468#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0	0x0e6a
 469#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1	0x0e6b
 470#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2	0x0e6c
 471#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3	0x0e6d
 472
 473static const struct pci_id_descr pci_dev_descr_ibridge[] = {
 474		/* Processor Home Agent */
 475	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0,        0, IMC0) },
 476	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1,        1, IMC1) },
 477
 478		/* Memory controller */
 479	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA,     0, IMC0) },
 480	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS,    0, IMC0) },
 481	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0,   0, IMC0) },
 482	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1,   0, IMC0) },
 483	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2,   0, IMC0) },
 484	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3,   0, IMC0) },
 485
 486		/* Optional, mode 2HA */
 487	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA,     1, IMC1) },
 488	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS,    1, IMC1) },
 489	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0,   1, IMC1) },
 490	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1,   1, IMC1) },
 491	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2,   1, IMC1) },
 492	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3,   1, IMC1) },
 493
 494	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0, 1, SOCK) },
 495	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0, 1, SOCK) },
 496
 497		/* System Address Decoder */
 498	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD,            0, SOCK) },
 499
 500		/* Broadcast Registers */
 501	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0,            1, SOCK) },
 502	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1,            0, SOCK) },
 503
 
 
 
 
 
 
 
 
 
 
 
 
 
 504};
 505
 506static const struct pci_id_table pci_dev_descr_ibridge_table[] = {
 507	PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge, 12, 2, IVY_BRIDGE),
 508	{ NULL, }
 509};
 510
 511/* Haswell support */
 512/* EN processor:
 513 *	- 1 IMC
 514 *	- 3 DDR3 channels, 2 DPC per channel
 515 * EP processor:
 516 *	- 1 or 2 IMC
 517 *	- 4 DDR4 channels, 3 DPC per channel
 518 * EP 4S processor:
 519 *	- 2 IMC
 520 *	- 4 DDR4 channels, 3 DPC per channel
 521 * EX processor:
 522 *	- 2 IMC
 523 *	- each IMC interfaces with a SMI 2 channel
 524 *	- each SMI channel interfaces with a scalable memory buffer
 525 *	- each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
 526 */
 527#define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */
 528#define HASWELL_HASYSDEFEATURE2 0x84
 529#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
 530#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0	0x2fa0
 531#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1	0x2f60
 532#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA	0x2fa8
 533#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM	0x2f71
 534#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA	0x2f68
 535#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM	0x2f79
 536#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
 537#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
 538#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
 539#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
 540#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
 541#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
 542#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
 543#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
 544#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
 545#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
 546#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
 547#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1 0x2fbf
 548#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2 0x2fb9
 549#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3 0x2fbb
 550static const struct pci_id_descr pci_dev_descr_haswell[] = {
 551	/* first item must be the HA */
 552	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0,      0, IMC0) },
 553	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1,      1, IMC1) },
 
 
 554
 555	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA,   0, IMC0) },
 556	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM,   0, IMC0) },
 557	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0, 0, IMC0) },
 558	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1, 0, IMC0) },
 559	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2, 1, IMC0) },
 560	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3, 1, IMC0) },
 561
 562	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA,   1, IMC1) },
 563	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM,   1, IMC1) },
 564	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0, 1, IMC1) },
 565	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1, 1, IMC1) },
 566	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2, 1, IMC1) },
 567	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3, 1, IMC1) },
 568
 569	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0, 0, SOCK) },
 570	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1, 0, SOCK) },
 571	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0,   1, SOCK) },
 572	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1,   1, SOCK) },
 573	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2,   1, SOCK) },
 574	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3,   1, SOCK) },
 575};
 576
 577static const struct pci_id_table pci_dev_descr_haswell_table[] = {
 578	PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell, 13, 2, HASWELL),
 579	{ NULL, }
 580};
 581
 582/* Knight's Landing Support */
 583/*
 584 * KNL's memory channels are swizzled between memory controllers.
 585 * MC0 is mapped to CH3,4,5 and MC1 is mapped to CH0,1,2
 586 */
 587#define knl_channel_remap(mc, chan) ((mc) ? (chan) : (chan) + 3)
 588
 589/* Memory controller, TAD tables, error injection - 2-8-0, 2-9-0 (2 of these) */
 590#define PCI_DEVICE_ID_INTEL_KNL_IMC_MC       0x7840
 591/* DRAM channel stuff; bank addrs, dimmmtr, etc.. 2-8-2 - 2-9-4 (6 of these) */
 592#define PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN     0x7843
 593/* kdrwdbu TAD limits/offsets, MCMTR - 2-10-1, 2-11-1 (2 of these) */
 594#define PCI_DEVICE_ID_INTEL_KNL_IMC_TA       0x7844
 595/* CHA broadcast registers, dram rules - 1-29-0 (1 of these) */
 596#define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0     0x782a
 597/* SAD target - 1-29-1 (1 of these) */
 598#define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1     0x782b
 599/* Caching / Home Agent */
 600#define PCI_DEVICE_ID_INTEL_KNL_IMC_CHA      0x782c
 601/* Device with TOLM and TOHM, 0-5-0 (1 of these) */
 602#define PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM    0x7810
 603
 604/*
 605 * KNL differs from SB, IB, and Haswell in that it has multiple
 606 * instances of the same device with the same device ID, so we handle that
 607 * by creating as many copies in the table as we expect to find.
 608 * (Like device ID must be grouped together.)
 609 */
 610
 611static const struct pci_id_descr pci_dev_descr_knl[] = {
 612	[0 ... 1]   = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_MC,    0, IMC0)},
 613	[2 ... 7]   = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN,  0, IMC0) },
 614	[8]	    = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TA,    0, IMC0) },
 615	[9]	    = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM, 0, IMC0) },
 616	[10]	    = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0,  0, SOCK) },
 617	[11]	    = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1,  0, SOCK) },
 618	[12 ... 49] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHA,   0, SOCK) },
 619};
 620
 621static const struct pci_id_table pci_dev_descr_knl_table[] = {
 622	PCI_ID_TABLE_ENTRY(pci_dev_descr_knl, ARRAY_SIZE(pci_dev_descr_knl), 1, KNIGHTS_LANDING),
 623	{ NULL, }
 624};
 625
 626/*
 627 * Broadwell support
 628 *
 629 * DE processor:
 630 *	- 1 IMC
 631 *	- 2 DDR3 channels, 2 DPC per channel
 632 * EP processor:
 633 *	- 1 or 2 IMC
 634 *	- 4 DDR4 channels, 3 DPC per channel
 635 * EP 4S processor:
 636 *	- 2 IMC
 637 *	- 4 DDR4 channels, 3 DPC per channel
 638 * EX processor:
 639 *	- 2 IMC
 640 *	- each IMC interfaces with a SMI 2 channel
 641 *	- each SMI channel interfaces with a scalable memory buffer
 642 *	- each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
 643 */
 644#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28
 645#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0	0x6fa0
 646#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1	0x6f60
 647#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA	0x6fa8
 648#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM	0x6f71
 649#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA	0x6f68
 650#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM	0x6f79
 651#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc
 652#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd
 653#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa
 654#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab
 655#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac
 656#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad
 657#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 0x6f6a
 658#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1 0x6f6b
 659#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2 0x6f6c
 660#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3 0x6f6d
 661#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf
 662
 663static const struct pci_id_descr pci_dev_descr_broadwell[] = {
 664	/* first item must be the HA */
 665	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0,      0, IMC0) },
 666	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1,      1, IMC1) },
 
 
 
 
 667
 668	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA,   0, IMC0) },
 669	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM,   0, IMC0) },
 670	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0, 0, IMC0) },
 671	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1, 0, IMC0) },
 672	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2, 1, IMC0) },
 673	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3, 1, IMC0) },
 674
 675	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA,   1, IMC1) },
 676	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM,   1, IMC1) },
 677	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0, 1, IMC1) },
 678	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1, 1, IMC1) },
 679	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2, 1, IMC1) },
 680	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3, 1, IMC1) },
 681
 682	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0, 0, SOCK) },
 683	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1, 0, SOCK) },
 684	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0,   1, SOCK) },
 685};
 686
 687static const struct pci_id_table pci_dev_descr_broadwell_table[] = {
 688	PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell, 10, 2, BROADWELL),
 689	{ NULL, }
 
 
 
 
 
 
 
 
 
 
 
 
 690};
 691
 692
 693/****************************************************************************
 694			Ancillary status routines
 695 ****************************************************************************/
 696
 697static inline int numrank(enum type type, u32 mtr)
 698{
 699	int ranks = (1 << RANK_CNT_BITS(mtr));
 700	int max = 4;
 701
 702	if (type == HASWELL || type == BROADWELL || type == KNIGHTS_LANDING)
 703		max = 8;
 704
 705	if (ranks > max) {
 706		edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
 707			 ranks, max, (unsigned int)RANK_CNT_BITS(mtr), mtr);
 708		return -EINVAL;
 709	}
 710
 711	return ranks;
 712}
 713
 714static inline int numrow(u32 mtr)
 715{
 716	int rows = (RANK_WIDTH_BITS(mtr) + 12);
 717
 718	if (rows < 13 || rows > 18) {
 719		edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
 720			 rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
 721		return -EINVAL;
 722	}
 723
 724	return 1 << rows;
 725}
 726
 727static inline int numcol(u32 mtr)
 728{
 729	int cols = (COL_WIDTH_BITS(mtr) + 10);
 730
 731	if (cols > 12) {
 732		edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
 733			 cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
 734		return -EINVAL;
 735	}
 736
 737	return 1 << cols;
 738}
 739
 740static struct sbridge_dev *get_sbridge_dev(int seg, u8 bus, enum domain dom,
 741					   int multi_bus,
 742					   struct sbridge_dev *prev)
 743{
 744	struct sbridge_dev *sbridge_dev;
 745
 746	/*
 747	 * If we have devices scattered across several busses that pertain
 748	 * to the same memory controller, we'll lump them all together.
 749	 */
 750	if (multi_bus) {
 751		return list_first_entry_or_null(&sbridge_edac_list,
 752				struct sbridge_dev, list);
 753	}
 754
 755	sbridge_dev = list_entry(prev ? prev->list.next
 756				      : sbridge_edac_list.next, struct sbridge_dev, list);
 757
 758	list_for_each_entry_from(sbridge_dev, &sbridge_edac_list, list) {
 759		if ((sbridge_dev->seg == seg) && (sbridge_dev->bus == bus) &&
 760				(dom == SOCK || dom == sbridge_dev->dom))
 761			return sbridge_dev;
 762	}
 763
 764	return NULL;
 765}
 766
 767static struct sbridge_dev *alloc_sbridge_dev(int seg, u8 bus, enum domain dom,
 768					     const struct pci_id_table *table)
 769{
 770	struct sbridge_dev *sbridge_dev;
 771
 772	sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
 773	if (!sbridge_dev)
 774		return NULL;
 775
 776	sbridge_dev->pdev = kcalloc(table->n_devs_per_imc,
 777				    sizeof(*sbridge_dev->pdev),
 778				    GFP_KERNEL);
 779	if (!sbridge_dev->pdev) {
 780		kfree(sbridge_dev);
 781		return NULL;
 782	}
 783
 784	sbridge_dev->seg = seg;
 785	sbridge_dev->bus = bus;
 786	sbridge_dev->dom = dom;
 787	sbridge_dev->n_devs = table->n_devs_per_imc;
 788	list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
 789
 790	return sbridge_dev;
 791}
 792
 793static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
 794{
 795	list_del(&sbridge_dev->list);
 796	kfree(sbridge_dev->pdev);
 797	kfree(sbridge_dev);
 798}
 799
 800static u64 sbridge_get_tolm(struct sbridge_pvt *pvt)
 801{
 802	u32 reg;
 803
 804	/* Address range is 32:28 */
 805	pci_read_config_dword(pvt->pci_sad1, TOLM, &reg);
 806	return GET_TOLM(reg);
 807}
 808
 809static u64 sbridge_get_tohm(struct sbridge_pvt *pvt)
 810{
 811	u32 reg;
 812
 813	pci_read_config_dword(pvt->pci_sad1, TOHM, &reg);
 814	return GET_TOHM(reg);
 815}
 816
 817static u64 ibridge_get_tolm(struct sbridge_pvt *pvt)
 818{
 819	u32 reg;
 820
 821	pci_read_config_dword(pvt->pci_br1, TOLM, &reg);
 822
 823	return GET_TOLM(reg);
 824}
 825
 826static u64 ibridge_get_tohm(struct sbridge_pvt *pvt)
 827{
 828	u32 reg;
 829
 830	pci_read_config_dword(pvt->pci_br1, TOHM, &reg);
 831
 832	return GET_TOHM(reg);
 833}
 834
 835static u64 rir_limit(u32 reg)
 836{
 837	return ((u64)GET_BITFIELD(reg,  1, 10) << 29) | 0x1fffffff;
 838}
 839
 840static u64 sad_limit(u32 reg)
 841{
 842	return (GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff;
 843}
 844
 845static u32 interleave_mode(u32 reg)
 846{
 847	return GET_BITFIELD(reg, 1, 1);
 848}
 849
 
 
 
 
 
 850static u32 dram_attr(u32 reg)
 851{
 852	return GET_BITFIELD(reg, 2, 3);
 853}
 854
 855static u64 knl_sad_limit(u32 reg)
 856{
 857	return (GET_BITFIELD(reg, 7, 26) << 26) | 0x3ffffff;
 858}
 859
 860static u32 knl_interleave_mode(u32 reg)
 861{
 862	return GET_BITFIELD(reg, 1, 2);
 863}
 864
 865static const char * const knl_intlv_mode[] = {
 866	"[8:6]", "[10:8]", "[14:12]", "[32:30]"
 867};
 868
 869static const char *get_intlv_mode_str(u32 reg, enum type t)
 870{
 871	if (t == KNIGHTS_LANDING)
 872		return knl_intlv_mode[knl_interleave_mode(reg)];
 873	else
 874		return interleave_mode(reg) ? "[8:6]" : "[8:6]XOR[18:16]";
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 875}
 876
 877static u32 dram_attr_knl(u32 reg)
 878{
 879	return GET_BITFIELD(reg, 3, 4);
 880}
 881
 882
 883static enum mem_type get_memory_type(struct sbridge_pvt *pvt)
 884{
 885	u32 reg;
 886	enum mem_type mtype;
 887
 888	if (pvt->pci_ddrio) {
 889		pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr,
 890				      &reg);
 891		if (GET_BITFIELD(reg, 11, 11))
 892			/* FIXME: Can also be LRDIMM */
 893			mtype = MEM_RDDR3;
 894		else
 895			mtype = MEM_DDR3;
 896	} else
 897		mtype = MEM_UNKNOWN;
 898
 899	return mtype;
 900}
 901
 902static enum mem_type haswell_get_memory_type(struct sbridge_pvt *pvt)
 903{
 904	u32 reg;
 905	bool registered = false;
 906	enum mem_type mtype = MEM_UNKNOWN;
 907
 908	if (!pvt->pci_ddrio)
 909		goto out;
 910
 911	pci_read_config_dword(pvt->pci_ddrio,
 912			      HASWELL_DDRCRCLKCONTROLS, &reg);
 913	/* Is_Rdimm */
 914	if (GET_BITFIELD(reg, 16, 16))
 915		registered = true;
 916
 917	pci_read_config_dword(pvt->pci_ta, MCMTR, &reg);
 918	if (GET_BITFIELD(reg, 14, 14)) {
 919		if (registered)
 920			mtype = MEM_RDDR4;
 921		else
 922			mtype = MEM_DDR4;
 923	} else {
 924		if (registered)
 925			mtype = MEM_RDDR3;
 926		else
 927			mtype = MEM_DDR3;
 928	}
 929
 930out:
 931	return mtype;
 932}
 933
 934static enum dev_type knl_get_width(struct sbridge_pvt *pvt, u32 mtr)
 935{
 936	/* for KNL value is fixed */
 937	return DEV_X16;
 938}
 939
 940static enum dev_type sbridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
 941{
 942	/* there's no way to figure out */
 943	return DEV_UNKNOWN;
 944}
 945
 946static enum dev_type __ibridge_get_width(u32 mtr)
 947{
 948	enum dev_type type = DEV_UNKNOWN;
 949
 950	switch (mtr) {
 
 
 
 951	case 2:
 952		type = DEV_X16;
 953		break;
 954	case 1:
 955		type = DEV_X8;
 956		break;
 957	case 0:
 958		type = DEV_X4;
 959		break;
 960	}
 961
 962	return type;
 963}
 964
 965static enum dev_type ibridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
 966{
 967	/*
 968	 * ddr3_width on the documentation but also valid for DDR4 on
 969	 * Haswell
 970	 */
 971	return __ibridge_get_width(GET_BITFIELD(mtr, 7, 8));
 972}
 973
 974static enum dev_type broadwell_get_width(struct sbridge_pvt *pvt, u32 mtr)
 975{
 976	/* ddr3_width on the documentation but also valid for DDR4 */
 977	return __ibridge_get_width(GET_BITFIELD(mtr, 8, 9));
 978}
 979
 980static enum mem_type knl_get_memory_type(struct sbridge_pvt *pvt)
 981{
 982	/* DDR4 RDIMMS and LRDIMMS are supported */
 983	return MEM_RDDR4;
 984}
 985
 986static u8 get_node_id(struct sbridge_pvt *pvt)
 987{
 988	u32 reg;
 989	pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, &reg);
 990	return GET_BITFIELD(reg, 0, 2);
 991}
 992
 993static u8 haswell_get_node_id(struct sbridge_pvt *pvt)
 994{
 995	u32 reg;
 996
 997	pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
 998	return GET_BITFIELD(reg, 0, 3);
 999}
1000
1001static u8 knl_get_node_id(struct sbridge_pvt *pvt)
1002{
1003	u32 reg;
1004
1005	pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
1006	return GET_BITFIELD(reg, 0, 2);
1007}
1008
1009/*
1010 * Use the reporting bank number to determine which memory
1011 * controller (also known as "ha" for "home agent"). Sandy
1012 * Bridge only has one memory controller per socket, so the
1013 * answer is always zero.
1014 */
1015static u8 sbridge_get_ha(u8 bank)
1016{
1017	return 0;
1018}
1019
1020/*
1021 * On Ivy Bridge, Haswell and Broadwell the error may be in a
1022 * home agent bank (7, 8), or one of the per-channel memory
1023 * controller banks (9 .. 16).
1024 */
1025static u8 ibridge_get_ha(u8 bank)
1026{
1027	switch (bank) {
1028	case 7 ... 8:
1029		return bank - 7;
1030	case 9 ... 16:
1031		return (bank - 9) / 4;
1032	default:
1033		return 0xff;
1034	}
1035}
1036
1037/* Not used, but included for safety/symmetry */
1038static u8 knl_get_ha(u8 bank)
1039{
1040	return 0xff;
1041}
1042
1043static u64 haswell_get_tolm(struct sbridge_pvt *pvt)
1044{
1045	u32 reg;
1046
1047	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOLM, &reg);
1048	return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
1049}
1050
1051static u64 haswell_get_tohm(struct sbridge_pvt *pvt)
1052{
1053	u64 rc;
1054	u32 reg;
1055
1056	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_0, &reg);
1057	rc = GET_BITFIELD(reg, 26, 31);
1058	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_1, &reg);
1059	rc = ((reg << 6) | rc) << 26;
1060
1061	return rc | 0x3ffffff;
1062}
1063
1064static u64 knl_get_tolm(struct sbridge_pvt *pvt)
1065{
1066	u32 reg;
1067
1068	pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOLM, &reg);
1069	return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
1070}
1071
1072static u64 knl_get_tohm(struct sbridge_pvt *pvt)
1073{
1074	u64 rc;
1075	u32 reg_lo, reg_hi;
1076
1077	pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_0, &reg_lo);
1078	pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_1, &reg_hi);
1079	rc = ((u64)reg_hi << 32) | reg_lo;
1080	return rc | 0x3ffffff;
1081}
1082
1083
1084static u64 haswell_rir_limit(u32 reg)
1085{
1086	return (((u64)GET_BITFIELD(reg,  1, 11) + 1) << 29) - 1;
1087}
1088
1089static inline u8 sad_pkg_socket(u8 pkg)
1090{
1091	/* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
1092	return ((pkg >> 3) << 2) | (pkg & 0x3);
1093}
1094
1095static inline u8 sad_pkg_ha(u8 pkg)
1096{
1097	return (pkg >> 2) & 0x1;
1098}
1099
1100static int haswell_chan_hash(int idx, u64 addr)
1101{
1102	int i;
1103
1104	/*
1105	 * XOR even bits from 12:26 to bit0 of idx,
1106	 *     odd bits from 13:27 to bit1
1107	 */
1108	for (i = 12; i < 28; i += 2)
1109		idx ^= (addr >> i) & 3;
1110
1111	return idx;
1112}
1113
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1114/* Low bits of TAD limit, and some metadata. */
1115static const u32 knl_tad_dram_limit_lo[] = {
1116	0x400, 0x500, 0x600, 0x700,
1117	0x800, 0x900, 0xa00, 0xb00,
1118};
1119
1120/* Low bits of TAD offset. */
1121static const u32 knl_tad_dram_offset_lo[] = {
1122	0x404, 0x504, 0x604, 0x704,
1123	0x804, 0x904, 0xa04, 0xb04,
1124};
1125
1126/* High 16 bits of TAD limit and offset. */
1127static const u32 knl_tad_dram_hi[] = {
1128	0x408, 0x508, 0x608, 0x708,
1129	0x808, 0x908, 0xa08, 0xb08,
1130};
1131
1132/* Number of ways a tad entry is interleaved. */
1133static const u32 knl_tad_ways[] = {
1134	8, 6, 4, 3, 2, 1,
1135};
1136
1137/*
1138 * Retrieve the n'th Target Address Decode table entry
1139 * from the memory controller's TAD table.
1140 *
1141 * @pvt:	driver private data
1142 * @entry:	which entry you want to retrieve
1143 * @mc:		which memory controller (0 or 1)
1144 * @offset:	output tad range offset
1145 * @limit:	output address of first byte above tad range
1146 * @ways:	output number of interleave ways
1147 *
1148 * The offset value has curious semantics.  It's a sort of running total
1149 * of the sizes of all the memory regions that aren't mapped in this
1150 * tad table.
1151 */
1152static int knl_get_tad(const struct sbridge_pvt *pvt,
1153		const int entry,
1154		const int mc,
1155		u64 *offset,
1156		u64 *limit,
1157		int *ways)
1158{
1159	u32 reg_limit_lo, reg_offset_lo, reg_hi;
1160	struct pci_dev *pci_mc;
1161	int way_id;
1162
1163	switch (mc) {
1164	case 0:
1165		pci_mc = pvt->knl.pci_mc0;
1166		break;
1167	case 1:
1168		pci_mc = pvt->knl.pci_mc1;
1169		break;
1170	default:
1171		WARN_ON(1);
1172		return -EINVAL;
1173	}
1174
1175	pci_read_config_dword(pci_mc,
1176			knl_tad_dram_limit_lo[entry], &reg_limit_lo);
1177	pci_read_config_dword(pci_mc,
1178			knl_tad_dram_offset_lo[entry], &reg_offset_lo);
1179	pci_read_config_dword(pci_mc,
1180			knl_tad_dram_hi[entry], &reg_hi);
1181
1182	/* Is this TAD entry enabled? */
1183	if (!GET_BITFIELD(reg_limit_lo, 0, 0))
1184		return -ENODEV;
1185
1186	way_id = GET_BITFIELD(reg_limit_lo, 3, 5);
1187
1188	if (way_id < ARRAY_SIZE(knl_tad_ways)) {
1189		*ways = knl_tad_ways[way_id];
1190	} else {
1191		*ways = 0;
1192		sbridge_printk(KERN_ERR,
1193				"Unexpected value %d in mc_tad_limit_lo wayness field\n",
1194				way_id);
1195		return -ENODEV;
1196	}
1197
1198	/*
1199	 * The least significant 6 bits of base and limit are truncated.
1200	 * For limit, we fill the missing bits with 1s.
1201	 */
1202	*offset = ((u64) GET_BITFIELD(reg_offset_lo, 6, 31) << 6) |
1203				((u64) GET_BITFIELD(reg_hi, 0,  15) << 32);
1204	*limit = ((u64) GET_BITFIELD(reg_limit_lo,  6, 31) << 6) | 63 |
1205				((u64) GET_BITFIELD(reg_hi, 16, 31) << 32);
1206
1207	return 0;
1208}
1209
1210/* Determine which memory controller is responsible for a given channel. */
1211static int knl_channel_mc(int channel)
1212{
1213	WARN_ON(channel < 0 || channel >= 6);
1214
1215	return channel < 3 ? 1 : 0;
1216}
1217
1218/*
1219 * Get the Nth entry from EDC_ROUTE_TABLE register.
1220 * (This is the per-tile mapping of logical interleave targets to
1221 *  physical EDC modules.)
1222 *
1223 * entry 0: 0:2
1224 *       1: 3:5
1225 *       2: 6:8
1226 *       3: 9:11
1227 *       4: 12:14
1228 *       5: 15:17
1229 *       6: 18:20
1230 *       7: 21:23
1231 * reserved: 24:31
1232 */
1233static u32 knl_get_edc_route(int entry, u32 reg)
1234{
1235	WARN_ON(entry >= KNL_MAX_EDCS);
1236	return GET_BITFIELD(reg, entry*3, (entry*3)+2);
1237}
1238
1239/*
1240 * Get the Nth entry from MC_ROUTE_TABLE register.
1241 * (This is the per-tile mapping of logical interleave targets to
1242 *  physical DRAM channels modules.)
1243 *
1244 * entry 0: mc 0:2   channel 18:19
1245 *       1: mc 3:5   channel 20:21
1246 *       2: mc 6:8   channel 22:23
1247 *       3: mc 9:11  channel 24:25
1248 *       4: mc 12:14 channel 26:27
1249 *       5: mc 15:17 channel 28:29
1250 * reserved: 30:31
1251 *
1252 * Though we have 3 bits to identify the MC, we should only see
1253 * the values 0 or 1.
1254 */
1255
1256static u32 knl_get_mc_route(int entry, u32 reg)
1257{
1258	int mc, chan;
1259
1260	WARN_ON(entry >= KNL_MAX_CHANNELS);
1261
1262	mc = GET_BITFIELD(reg, entry*3, (entry*3)+2);
1263	chan = GET_BITFIELD(reg, (entry*2) + 18, (entry*2) + 18 + 1);
1264
1265	return knl_channel_remap(mc, chan);
1266}
1267
1268/*
1269 * Render the EDC_ROUTE register in human-readable form.
1270 * Output string s should be at least KNL_MAX_EDCS*2 bytes.
1271 */
1272static void knl_show_edc_route(u32 reg, char *s)
1273{
1274	int i;
1275
1276	for (i = 0; i < KNL_MAX_EDCS; i++) {
1277		s[i*2] = knl_get_edc_route(i, reg) + '0';
1278		s[i*2+1] = '-';
1279	}
1280
1281	s[KNL_MAX_EDCS*2 - 1] = '\0';
1282}
1283
1284/*
1285 * Render the MC_ROUTE register in human-readable form.
1286 * Output string s should be at least KNL_MAX_CHANNELS*2 bytes.
1287 */
1288static void knl_show_mc_route(u32 reg, char *s)
1289{
1290	int i;
1291
1292	for (i = 0; i < KNL_MAX_CHANNELS; i++) {
1293		s[i*2] = knl_get_mc_route(i, reg) + '0';
1294		s[i*2+1] = '-';
1295	}
1296
1297	s[KNL_MAX_CHANNELS*2 - 1] = '\0';
1298}
1299
1300#define KNL_EDC_ROUTE 0xb8
1301#define KNL_MC_ROUTE 0xb4
1302
1303/* Is this dram rule backed by regular DRAM in flat mode? */
1304#define KNL_EDRAM(reg) GET_BITFIELD(reg, 29, 29)
1305
1306/* Is this dram rule cached? */
1307#define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1308
1309/* Is this rule backed by edc ? */
1310#define KNL_EDRAM_ONLY(reg) GET_BITFIELD(reg, 29, 29)
1311
1312/* Is this rule backed by DRAM, cacheable in EDRAM? */
1313#define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1314
1315/* Is this rule mod3? */
1316#define KNL_MOD3(reg) GET_BITFIELD(reg, 27, 27)
1317
1318/*
1319 * Figure out how big our RAM modules are.
1320 *
1321 * The DIMMMTR register in KNL doesn't tell us the size of the DIMMs, so we
1322 * have to figure this out from the SAD rules, interleave lists, route tables,
1323 * and TAD rules.
1324 *
1325 * SAD rules can have holes in them (e.g. the 3G-4G hole), so we have to
1326 * inspect the TAD rules to figure out how large the SAD regions really are.
1327 *
1328 * When we know the real size of a SAD region and how many ways it's
1329 * interleaved, we know the individual contribution of each channel to
1330 * TAD is size/ways.
1331 *
1332 * Finally, we have to check whether each channel participates in each SAD
1333 * region.
1334 *
1335 * Fortunately, KNL only supports one DIMM per channel, so once we know how
1336 * much memory the channel uses, we know the DIMM is at least that large.
1337 * (The BIOS might possibly choose not to map all available memory, in which
1338 * case we will underreport the size of the DIMM.)
1339 *
1340 * In theory, we could try to determine the EDC sizes as well, but that would
1341 * only work in flat mode, not in cache mode.
1342 *
1343 * @mc_sizes: Output sizes of channels (must have space for KNL_MAX_CHANNELS
1344 *            elements)
1345 */
1346static int knl_get_dimm_capacity(struct sbridge_pvt *pvt, u64 *mc_sizes)
1347{
1348	u64 sad_base, sad_limit = 0;
1349	u64 tad_base, tad_size, tad_limit, tad_deadspace, tad_livespace;
1350	int sad_rule = 0;
1351	int tad_rule = 0;
1352	int intrlv_ways, tad_ways;
1353	u32 first_pkg, pkg;
1354	int i;
1355	u64 sad_actual_size[2]; /* sad size accounting for holes, per mc */
1356	u32 dram_rule, interleave_reg;
1357	u32 mc_route_reg[KNL_MAX_CHAS];
1358	u32 edc_route_reg[KNL_MAX_CHAS];
1359	int edram_only;
1360	char edc_route_string[KNL_MAX_EDCS*2];
1361	char mc_route_string[KNL_MAX_CHANNELS*2];
1362	int cur_reg_start;
1363	int mc;
1364	int channel;
 
1365	int participants[KNL_MAX_CHANNELS];
 
1366
1367	for (i = 0; i < KNL_MAX_CHANNELS; i++)
1368		mc_sizes[i] = 0;
1369
1370	/* Read the EDC route table in each CHA. */
1371	cur_reg_start = 0;
1372	for (i = 0; i < KNL_MAX_CHAS; i++) {
1373		pci_read_config_dword(pvt->knl.pci_cha[i],
1374				KNL_EDC_ROUTE, &edc_route_reg[i]);
1375
1376		if (i > 0 && edc_route_reg[i] != edc_route_reg[i-1]) {
1377			knl_show_edc_route(edc_route_reg[i-1],
1378					edc_route_string);
1379			if (cur_reg_start == i-1)
1380				edac_dbg(0, "edc route table for CHA %d: %s\n",
1381					cur_reg_start, edc_route_string);
1382			else
1383				edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1384					cur_reg_start, i-1, edc_route_string);
1385			cur_reg_start = i;
1386		}
1387	}
1388	knl_show_edc_route(edc_route_reg[i-1], edc_route_string);
1389	if (cur_reg_start == i-1)
1390		edac_dbg(0, "edc route table for CHA %d: %s\n",
1391			cur_reg_start, edc_route_string);
1392	else
1393		edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1394			cur_reg_start, i-1, edc_route_string);
1395
1396	/* Read the MC route table in each CHA. */
1397	cur_reg_start = 0;
1398	for (i = 0; i < KNL_MAX_CHAS; i++) {
1399		pci_read_config_dword(pvt->knl.pci_cha[i],
1400			KNL_MC_ROUTE, &mc_route_reg[i]);
1401
1402		if (i > 0 && mc_route_reg[i] != mc_route_reg[i-1]) {
1403			knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
1404			if (cur_reg_start == i-1)
1405				edac_dbg(0, "mc route table for CHA %d: %s\n",
1406					cur_reg_start, mc_route_string);
1407			else
1408				edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1409					cur_reg_start, i-1, mc_route_string);
1410			cur_reg_start = i;
1411		}
1412	}
1413	knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
1414	if (cur_reg_start == i-1)
1415		edac_dbg(0, "mc route table for CHA %d: %s\n",
1416			cur_reg_start, mc_route_string);
1417	else
1418		edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1419			cur_reg_start, i-1, mc_route_string);
1420
1421	/* Process DRAM rules */
1422	for (sad_rule = 0; sad_rule < pvt->info.max_sad; sad_rule++) {
1423		/* previous limit becomes the new base */
1424		sad_base = sad_limit;
1425
1426		pci_read_config_dword(pvt->pci_sad0,
1427			pvt->info.dram_rule[sad_rule], &dram_rule);
1428
1429		if (!DRAM_RULE_ENABLE(dram_rule))
1430			break;
1431
1432		edram_only = KNL_EDRAM_ONLY(dram_rule);
1433
1434		sad_limit = pvt->info.sad_limit(dram_rule)+1;
 
1435
1436		pci_read_config_dword(pvt->pci_sad0,
1437			pvt->info.interleave_list[sad_rule], &interleave_reg);
1438
1439		/*
1440		 * Find out how many ways this dram rule is interleaved.
1441		 * We stop when we see the first channel again.
1442		 */
1443		first_pkg = sad_pkg(pvt->info.interleave_pkg,
1444						interleave_reg, 0);
1445		for (intrlv_ways = 1; intrlv_ways < 8; intrlv_ways++) {
1446			pkg = sad_pkg(pvt->info.interleave_pkg,
1447						interleave_reg, intrlv_ways);
1448
1449			if ((pkg & 0x8) == 0) {
1450				/*
1451				 * 0 bit means memory is non-local,
1452				 * which KNL doesn't support
1453				 */
1454				edac_dbg(0, "Unexpected interleave target %d\n",
1455					pkg);
1456				return -1;
1457			}
1458
1459			if (pkg == first_pkg)
1460				break;
1461		}
1462		if (KNL_MOD3(dram_rule))
1463			intrlv_ways *= 3;
1464
1465		edac_dbg(3, "dram rule %d (base 0x%llx, limit 0x%llx), %d way interleave%s\n",
1466			sad_rule,
1467			sad_base,
1468			sad_limit,
1469			intrlv_ways,
1470			edram_only ? ", EDRAM" : "");
1471
1472		/*
1473		 * Find out how big the SAD region really is by iterating
1474		 * over TAD tables (SAD regions may contain holes).
1475		 * Each memory controller might have a different TAD table, so
1476		 * we have to look at both.
1477		 *
1478		 * Livespace is the memory that's mapped in this TAD table,
1479		 * deadspace is the holes (this could be the MMIO hole, or it
1480		 * could be memory that's mapped by the other TAD table but
1481		 * not this one).
1482		 */
1483		for (mc = 0; mc < 2; mc++) {
1484			sad_actual_size[mc] = 0;
1485			tad_livespace = 0;
1486			for (tad_rule = 0;
1487					tad_rule < ARRAY_SIZE(
1488						knl_tad_dram_limit_lo);
1489					tad_rule++) {
1490				if (knl_get_tad(pvt,
1491						tad_rule,
1492						mc,
1493						&tad_deadspace,
1494						&tad_limit,
1495						&tad_ways))
1496					break;
1497
1498				tad_size = (tad_limit+1) -
1499					(tad_livespace + tad_deadspace);
1500				tad_livespace += tad_size;
1501				tad_base = (tad_limit+1) - tad_size;
1502
1503				if (tad_base < sad_base) {
1504					if (tad_limit > sad_base)
1505						edac_dbg(0, "TAD region overlaps lower SAD boundary -- TAD tables may be configured incorrectly.\n");
1506				} else if (tad_base < sad_limit) {
1507					if (tad_limit+1 > sad_limit) {
1508						edac_dbg(0, "TAD region overlaps upper SAD boundary -- TAD tables may be configured incorrectly.\n");
1509					} else {
1510						/* TAD region is completely inside SAD region */
1511						edac_dbg(3, "TAD region %d 0x%llx - 0x%llx (%lld bytes) table%d\n",
1512							tad_rule, tad_base,
1513							tad_limit, tad_size,
1514							mc);
1515						sad_actual_size[mc] += tad_size;
1516					}
1517				}
 
1518			}
1519		}
1520
1521		for (mc = 0; mc < 2; mc++) {
1522			edac_dbg(3, " total TAD DRAM footprint in table%d : 0x%llx (%lld bytes)\n",
1523				mc, sad_actual_size[mc], sad_actual_size[mc]);
1524		}
1525
1526		/* Ignore EDRAM rule */
1527		if (edram_only)
1528			continue;
1529
1530		/* Figure out which channels participate in interleave. */
1531		for (channel = 0; channel < KNL_MAX_CHANNELS; channel++)
1532			participants[channel] = 0;
1533
1534		/* For each channel, does at least one CHA have
1535		 * this channel mapped to the given target?
1536		 */
1537		for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
1538			int target;
1539			int cha;
 
 
 
 
 
 
 
1540
1541			for (target = 0; target < KNL_MAX_CHANNELS; target++) {
1542				for (cha = 0; cha < KNL_MAX_CHAS; cha++) {
1543					if (knl_get_mc_route(target,
1544						mc_route_reg[cha]) == channel
1545						&& !participants[channel]) {
 
1546						participants[channel] = 1;
1547						break;
1548					}
1549				}
1550			}
1551		}
1552
 
 
 
 
1553		for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
1554			mc = knl_channel_mc(channel);
1555			if (participants[channel]) {
1556				edac_dbg(4, "mc channel %d contributes %lld bytes via sad entry %d\n",
1557					channel,
1558					sad_actual_size[mc]/intrlv_ways,
1559					sad_rule);
1560				mc_sizes[channel] +=
1561					sad_actual_size[mc]/intrlv_ways;
1562			}
1563		}
1564	}
1565
1566	return 0;
1567}
1568
1569static void get_source_id(struct mem_ctl_info *mci)
1570{
1571	struct sbridge_pvt *pvt = mci->pvt_info;
 
 
 
1572	u32 reg;
 
 
 
 
 
1573
 
 
 
 
1574	if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL ||
1575	    pvt->info.type == KNIGHTS_LANDING)
1576		pci_read_config_dword(pvt->pci_sad1, SAD_TARGET, &reg);
1577	else
1578		pci_read_config_dword(pvt->pci_br0, SAD_TARGET, &reg);
1579
1580	if (pvt->info.type == KNIGHTS_LANDING)
1581		pvt->sbridge_dev->source_id = SOURCE_ID_KNL(reg);
1582	else
1583		pvt->sbridge_dev->source_id = SOURCE_ID(reg);
1584}
1585
1586static int __populate_dimms(struct mem_ctl_info *mci,
1587			    u64 knl_mc_sizes[KNL_MAX_CHANNELS],
1588			    enum edac_type mode)
1589{
1590	struct sbridge_pvt *pvt = mci->pvt_info;
1591	int channels = pvt->info.type == KNIGHTS_LANDING ? KNL_MAX_CHANNELS
1592							 : NUM_CHANNELS;
1593	unsigned int i, j, banks, ranks, rows, cols, npages;
1594	struct dimm_info *dimm;
1595	enum mem_type mtype;
1596	u64 size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1597
1598	mtype = pvt->info.get_memory_type(pvt);
1599	if (mtype == MEM_RDDR3 || mtype == MEM_RDDR4)
1600		edac_dbg(0, "Memory is registered\n");
1601	else if (mtype == MEM_UNKNOWN)
1602		edac_dbg(0, "Cannot determine memory type\n");
1603	else
1604		edac_dbg(0, "Memory is unregistered\n");
1605
1606	if (mtype == MEM_DDR4 || mtype == MEM_RDDR4)
1607		banks = 16;
1608	else
1609		banks = 8;
1610
1611	for (i = 0; i < channels; i++) {
1612		u32 mtr, amap = 0;
1613
1614		int max_dimms_per_channel;
1615
1616		if (pvt->info.type == KNIGHTS_LANDING) {
1617			max_dimms_per_channel = 1;
1618			if (!pvt->knl.pci_channel[i])
1619				continue;
1620		} else {
1621			max_dimms_per_channel = ARRAY_SIZE(mtr_regs);
1622			if (!pvt->pci_tad[i])
1623				continue;
1624			pci_read_config_dword(pvt->pci_tad[i], 0x8c, &amap);
1625		}
1626
1627		for (j = 0; j < max_dimms_per_channel; j++) {
1628			dimm = edac_get_dimm(mci, i, j, 0);
 
1629			if (pvt->info.type == KNIGHTS_LANDING) {
1630				pci_read_config_dword(pvt->knl.pci_channel[i],
1631					knl_mtr_reg, &mtr);
1632			} else {
1633				pci_read_config_dword(pvt->pci_tad[i],
1634					mtr_regs[j], &mtr);
1635			}
1636			edac_dbg(4, "Channel #%d  MTR%d = %x\n", i, j, mtr);
1637
1638			if (IS_DIMM_PRESENT(mtr)) {
1639				if (!IS_ECC_ENABLED(pvt->info.mcmtr)) {
1640					sbridge_printk(KERN_ERR, "CPU SrcID #%d, Ha #%d, Channel #%d has DIMMs, but ECC is disabled\n",
1641						       pvt->sbridge_dev->source_id,
1642						       pvt->sbridge_dev->dom, i);
1643					return -ENODEV;
1644				}
1645				pvt->channel[i].dimms++;
1646
1647				ranks = numrank(pvt->info.type, mtr);
1648
1649				if (pvt->info.type == KNIGHTS_LANDING) {
1650					/* For DDR4, this is fixed. */
1651					cols = 1 << 10;
1652					rows = knl_mc_sizes[i] /
1653						((u64) cols * ranks * banks * 8);
1654				} else {
1655					rows = numrow(mtr);
1656					cols = numcol(mtr);
1657				}
1658
1659				size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
1660				npages = MiB_TO_PAGES(size);
1661
1662				edac_dbg(0, "mc#%d: ha %d channel %d, dimm %d, %lld MiB (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
1663					 pvt->sbridge_dev->mc, pvt->sbridge_dev->dom, i, j,
1664					 size, npages,
1665					 banks, ranks, rows, cols);
1666
1667				dimm->nr_pages = npages;
1668				dimm->grain = 32;
1669				dimm->dtype = pvt->info.get_width(pvt, mtr);
1670				dimm->mtype = mtype;
1671				dimm->edac_mode = mode;
1672				pvt->channel[i].dimm[j].rowbits = order_base_2(rows);
1673				pvt->channel[i].dimm[j].colbits = order_base_2(cols);
1674				pvt->channel[i].dimm[j].bank_xor_enable =
1675						GET_BITFIELD(pvt->info.mcmtr, 9, 9);
1676				pvt->channel[i].dimm[j].amap_fine = GET_BITFIELD(amap, 0, 0);
1677				snprintf(dimm->label, sizeof(dimm->label),
1678						 "CPU_SrcID#%u_Ha#%u_Chan#%u_DIMM#%u",
1679						 pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom, i, j);
1680			}
1681		}
1682	}
1683
1684	return 0;
1685}
1686
1687static int get_dimm_config(struct mem_ctl_info *mci)
1688{
1689	struct sbridge_pvt *pvt = mci->pvt_info;
1690	u64 knl_mc_sizes[KNL_MAX_CHANNELS];
1691	enum edac_type mode;
1692	u32 reg;
1693
1694	pvt->sbridge_dev->node_id = pvt->info.get_node_id(pvt);
1695	edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
1696		 pvt->sbridge_dev->mc,
1697		 pvt->sbridge_dev->node_id,
1698		 pvt->sbridge_dev->source_id);
1699
1700	/* KNL doesn't support mirroring or lockstep,
1701	 * and is always closed page
1702	 */
1703	if (pvt->info.type == KNIGHTS_LANDING) {
1704		mode = EDAC_S4ECD4ED;
1705		pvt->mirror_mode = NON_MIRRORING;
1706		pvt->is_cur_addr_mirrored = false;
1707
1708		if (knl_get_dimm_capacity(pvt, knl_mc_sizes) != 0)
1709			return -1;
1710		if (pci_read_config_dword(pvt->pci_ta, KNL_MCMTR, &pvt->info.mcmtr)) {
1711			edac_dbg(0, "Failed to read KNL_MCMTR register\n");
1712			return -ENODEV;
1713		}
1714	} else {
1715		if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
1716			if (pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, &reg)) {
1717				edac_dbg(0, "Failed to read HASWELL_HASYSDEFEATURE2 register\n");
1718				return -ENODEV;
1719			}
1720			pvt->is_chan_hash = GET_BITFIELD(reg, 21, 21);
1721			if (GET_BITFIELD(reg, 28, 28)) {
1722				pvt->mirror_mode = ADDR_RANGE_MIRRORING;
1723				edac_dbg(0, "Address range partial memory mirroring is enabled\n");
1724				goto next;
1725			}
1726		}
1727		if (pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg)) {
1728			edac_dbg(0, "Failed to read RASENABLES register\n");
1729			return -ENODEV;
1730		}
1731		if (IS_MIRROR_ENABLED(reg)) {
1732			pvt->mirror_mode = FULL_MIRRORING;
1733			edac_dbg(0, "Full memory mirroring is enabled\n");
1734		} else {
1735			pvt->mirror_mode = NON_MIRRORING;
1736			edac_dbg(0, "Memory mirroring is disabled\n");
1737		}
1738
1739next:
1740		if (pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr)) {
1741			edac_dbg(0, "Failed to read MCMTR register\n");
1742			return -ENODEV;
1743		}
1744		if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
1745			edac_dbg(0, "Lockstep is enabled\n");
1746			mode = EDAC_S8ECD8ED;
1747			pvt->is_lockstep = true;
1748		} else {
1749			edac_dbg(0, "Lockstep is disabled\n");
1750			mode = EDAC_S4ECD4ED;
1751			pvt->is_lockstep = false;
1752		}
1753		if (IS_CLOSE_PG(pvt->info.mcmtr)) {
1754			edac_dbg(0, "address map is on closed page mode\n");
1755			pvt->is_close_pg = true;
1756		} else {
1757			edac_dbg(0, "address map is on open page mode\n");
1758			pvt->is_close_pg = false;
1759		}
1760	}
1761
1762	return __populate_dimms(mci, knl_mc_sizes, mode);
1763}
1764
1765static void get_memory_layout(const struct mem_ctl_info *mci)
1766{
1767	struct sbridge_pvt *pvt = mci->pvt_info;
1768	int i, j, k, n_sads, n_tads, sad_interl;
1769	u32 reg;
1770	u64 limit, prv = 0;
1771	u64 tmp_mb;
1772	u32 gb, mb;
1773	u32 rir_way;
1774
1775	/*
1776	 * Step 1) Get TOLM/TOHM ranges
1777	 */
1778
1779	pvt->tolm = pvt->info.get_tolm(pvt);
1780	tmp_mb = (1 + pvt->tolm) >> 20;
1781
1782	gb = div_u64_rem(tmp_mb, 1024, &mb);
1783	edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n",
1784		gb, (mb*1000)/1024, (u64)pvt->tolm);
1785
1786	/* Address range is already 45:25 */
1787	pvt->tohm = pvt->info.get_tohm(pvt);
1788	tmp_mb = (1 + pvt->tohm) >> 20;
1789
1790	gb = div_u64_rem(tmp_mb, 1024, &mb);
1791	edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n",
1792		gb, (mb*1000)/1024, (u64)pvt->tohm);
1793
1794	/*
1795	 * Step 2) Get SAD range and SAD Interleave list
1796	 * TAD registers contain the interleave wayness. However, it
1797	 * seems simpler to just discover it indirectly, with the
1798	 * algorithm bellow.
1799	 */
1800	prv = 0;
1801	for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1802		/* SAD_LIMIT Address range is 45:26 */
1803		pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1804				      &reg);
1805		limit = pvt->info.sad_limit(reg);
1806
1807		if (!DRAM_RULE_ENABLE(reg))
1808			continue;
1809
1810		if (limit <= prv)
1811			break;
1812
1813		tmp_mb = (limit + 1) >> 20;
1814		gb = div_u64_rem(tmp_mb, 1024, &mb);
1815		edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
1816			 n_sads,
1817			 show_dram_attr(pvt->info.dram_attr(reg)),
1818			 gb, (mb*1000)/1024,
1819			 ((u64)tmp_mb) << 20L,
1820			 get_intlv_mode_str(reg, pvt->info.type),
1821			 reg);
1822		prv = limit;
1823
1824		pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1825				      &reg);
1826		sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1827		for (j = 0; j < 8; j++) {
1828			u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, j);
1829			if (j > 0 && sad_interl == pkg)
1830				break;
1831
1832			edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
1833				 n_sads, j, pkg);
1834		}
1835	}
1836
1837	if (pvt->info.type == KNIGHTS_LANDING)
1838		return;
1839
1840	/*
1841	 * Step 3) Get TAD range
1842	 */
1843	prv = 0;
1844	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
1845		pci_read_config_dword(pvt->pci_ha, tad_dram_rule[n_tads], &reg);
 
1846		limit = TAD_LIMIT(reg);
1847		if (limit <= prv)
1848			break;
1849		tmp_mb = (limit + 1) >> 20;
1850
1851		gb = div_u64_rem(tmp_mb, 1024, &mb);
1852		edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
1853			 n_tads, gb, (mb*1000)/1024,
1854			 ((u64)tmp_mb) << 20L,
1855			 (u32)(1 << TAD_SOCK(reg)),
1856			 (u32)TAD_CH(reg) + 1,
1857			 (u32)TAD_TGT0(reg),
1858			 (u32)TAD_TGT1(reg),
1859			 (u32)TAD_TGT2(reg),
1860			 (u32)TAD_TGT3(reg),
1861			 reg);
1862		prv = limit;
1863	}
1864
1865	/*
1866	 * Step 4) Get TAD offsets, per each channel
1867	 */
1868	for (i = 0; i < NUM_CHANNELS; i++) {
1869		if (!pvt->channel[i].dimms)
1870			continue;
1871		for (j = 0; j < n_tads; j++) {
1872			pci_read_config_dword(pvt->pci_tad[i],
1873					      tad_ch_nilv_offset[j],
1874					      &reg);
1875			tmp_mb = TAD_OFFSET(reg) >> 20;
1876			gb = div_u64_rem(tmp_mb, 1024, &mb);
1877			edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
1878				 i, j,
1879				 gb, (mb*1000)/1024,
1880				 ((u64)tmp_mb) << 20L,
1881				 reg);
1882		}
1883	}
1884
1885	/*
1886	 * Step 6) Get RIR Wayness/Limit, per each channel
1887	 */
1888	for (i = 0; i < NUM_CHANNELS; i++) {
1889		if (!pvt->channel[i].dimms)
1890			continue;
1891		for (j = 0; j < MAX_RIR_RANGES; j++) {
1892			pci_read_config_dword(pvt->pci_tad[i],
1893					      rir_way_limit[j],
1894					      &reg);
1895
1896			if (!IS_RIR_VALID(reg))
1897				continue;
1898
1899			tmp_mb = pvt->info.rir_limit(reg) >> 20;
1900			rir_way = 1 << RIR_WAY(reg);
1901			gb = div_u64_rem(tmp_mb, 1024, &mb);
1902			edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
1903				 i, j,
1904				 gb, (mb*1000)/1024,
1905				 ((u64)tmp_mb) << 20L,
1906				 rir_way,
1907				 reg);
1908
1909			for (k = 0; k < rir_way; k++) {
1910				pci_read_config_dword(pvt->pci_tad[i],
1911						      rir_offset[j][k],
1912						      &reg);
1913				tmp_mb = RIR_OFFSET(pvt->info.type, reg) << 6;
1914
1915				gb = div_u64_rem(tmp_mb, 1024, &mb);
1916				edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
1917					 i, j, k,
1918					 gb, (mb*1000)/1024,
1919					 ((u64)tmp_mb) << 20L,
1920					 (u32)RIR_RNK_TGT(pvt->info.type, reg),
1921					 reg);
1922			}
1923		}
1924	}
1925}
1926
1927static struct mem_ctl_info *get_mci_for_node_id(u8 node_id, u8 ha)
1928{
1929	struct sbridge_dev *sbridge_dev;
1930
1931	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
1932		if (sbridge_dev->node_id == node_id && sbridge_dev->dom == ha)
1933			return sbridge_dev->mci;
1934	}
1935	return NULL;
1936}
1937
1938static u8 sb_close_row[] = {
1939	15, 16, 17, 18, 20, 21, 22, 28, 10, 11, 12, 13, 29, 30, 31, 32, 33
1940};
1941
1942static u8 sb_close_column[] = {
1943	3, 4, 5, 14, 19, 23, 24, 25, 26, 27
1944};
1945
1946static u8 sb_open_row[] = {
1947	14, 15, 16, 20, 28, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33
1948};
1949
1950static u8 sb_open_column[] = {
1951	3, 4, 5, 6, 7, 8, 9, 10, 11, 12
1952};
1953
1954static u8 sb_open_fine_column[] = {
1955	3, 4, 5, 7, 8, 9, 10, 11, 12, 13
1956};
1957
1958static int sb_bits(u64 addr, int nbits, u8 *bits)
1959{
1960	int i, res = 0;
1961
1962	for (i = 0; i < nbits; i++)
1963		res |= ((addr >> bits[i]) & 1) << i;
1964	return res;
1965}
1966
1967static int sb_bank_bits(u64 addr, int b0, int b1, int do_xor, int x0, int x1)
1968{
1969	int ret = GET_BITFIELD(addr, b0, b0) | (GET_BITFIELD(addr, b1, b1) << 1);
1970
1971	if (do_xor)
1972		ret ^= GET_BITFIELD(addr, x0, x0) | (GET_BITFIELD(addr, x1, x1) << 1);
1973
1974	return ret;
1975}
1976
1977static bool sb_decode_ddr4(struct mem_ctl_info *mci, int ch, u8 rank,
1978			   u64 rank_addr, char *msg)
1979{
1980	int dimmno = 0;
1981	int row, col, bank_address, bank_group;
1982	struct sbridge_pvt *pvt;
1983	u32 bg0 = 0, rowbits = 0, colbits = 0;
1984	u32 amap_fine = 0, bank_xor_enable = 0;
1985
1986	dimmno = (rank < 12) ? rank / 4 : 2;
1987	pvt = mci->pvt_info;
1988	amap_fine =  pvt->channel[ch].dimm[dimmno].amap_fine;
1989	bg0 = amap_fine ? 6 : 13;
1990	rowbits = pvt->channel[ch].dimm[dimmno].rowbits;
1991	colbits = pvt->channel[ch].dimm[dimmno].colbits;
1992	bank_xor_enable = pvt->channel[ch].dimm[dimmno].bank_xor_enable;
1993
1994	if (pvt->is_lockstep) {
1995		pr_warn_once("LockStep row/column decode is not supported yet!\n");
1996		msg[0] = '\0';
1997		return false;
1998	}
1999
2000	if (pvt->is_close_pg) {
2001		row = sb_bits(rank_addr, rowbits, sb_close_row);
2002		col = sb_bits(rank_addr, colbits, sb_close_column);
2003		col |= 0x400; /* C10 is autoprecharge, always set */
2004		bank_address = sb_bank_bits(rank_addr, 8, 9, bank_xor_enable, 22, 28);
2005		bank_group = sb_bank_bits(rank_addr, 6, 7, bank_xor_enable, 20, 21);
2006	} else {
2007		row = sb_bits(rank_addr, rowbits, sb_open_row);
2008		if (amap_fine)
2009			col = sb_bits(rank_addr, colbits, sb_open_fine_column);
2010		else
2011			col = sb_bits(rank_addr, colbits, sb_open_column);
2012		bank_address = sb_bank_bits(rank_addr, 18, 19, bank_xor_enable, 22, 23);
2013		bank_group = sb_bank_bits(rank_addr, bg0, 17, bank_xor_enable, 20, 21);
2014	}
2015
2016	row &= (1u << rowbits) - 1;
2017
2018	sprintf(msg, "row:0x%x col:0x%x bank_addr:%d bank_group:%d",
2019		row, col, bank_address, bank_group);
2020	return true;
2021}
2022
2023static bool sb_decode_ddr3(struct mem_ctl_info *mci, int ch, u8 rank,
2024			   u64 rank_addr, char *msg)
2025{
2026	pr_warn_once("DDR3 row/column decode not support yet!\n");
2027	msg[0] = '\0';
2028	return false;
2029}
2030
2031static int get_memory_error_data(struct mem_ctl_info *mci,
2032				 u64 addr,
2033				 u8 *socket, u8 *ha,
2034				 long *channel_mask,
2035				 u8 *rank,
2036				 char **area_type, char *msg)
2037{
2038	struct mem_ctl_info	*new_mci;
2039	struct sbridge_pvt *pvt = mci->pvt_info;
2040	struct pci_dev		*pci_ha;
2041	int			n_rir, n_sads, n_tads, sad_way, sck_xch;
2042	int			sad_interl, idx, base_ch;
2043	int			interleave_mode, shiftup = 0;
2044	unsigned int		sad_interleave[MAX_INTERLEAVE];
2045	u32			reg, dram_rule;
2046	u8			ch_way, sck_way, pkg, sad_ha = 0, rankid = 0;
2047	u32			tad_offset;
2048	u32			rir_way;
2049	u32			mb, gb;
2050	u64			ch_addr, offset, limit = 0, prv = 0;
2051	u64			rank_addr;
2052	enum mem_type		mtype;
2053
2054	/*
2055	 * Step 0) Check if the address is at special memory ranges
2056	 * The check bellow is probably enough to fill all cases where
2057	 * the error is not inside a memory, except for the legacy
2058	 * range (e. g. VGA addresses). It is unlikely, however, that the
2059	 * memory controller would generate an error on that range.
2060	 */
2061	if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
2062		sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
2063		return -EINVAL;
2064	}
2065	if (addr >= (u64)pvt->tohm) {
2066		sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
2067		return -EINVAL;
2068	}
2069
2070	/*
2071	 * Step 1) Get socket
2072	 */
2073	for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
2074		pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
2075				      &reg);
2076
2077		if (!DRAM_RULE_ENABLE(reg))
2078			continue;
2079
2080		limit = pvt->info.sad_limit(reg);
2081		if (limit <= prv) {
2082			sprintf(msg, "Can't discover the memory socket");
2083			return -EINVAL;
2084		}
2085		if  (addr <= limit)
2086			break;
2087		prv = limit;
2088	}
2089	if (n_sads == pvt->info.max_sad) {
2090		sprintf(msg, "Can't discover the memory socket");
2091		return -EINVAL;
2092	}
2093	dram_rule = reg;
2094	*area_type = show_dram_attr(pvt->info.dram_attr(dram_rule));
2095	interleave_mode = pvt->info.interleave_mode(dram_rule);
2096
2097	pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
2098			      &reg);
2099
2100	if (pvt->info.type == SANDY_BRIDGE) {
2101		sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
2102		for (sad_way = 0; sad_way < 8; sad_way++) {
2103			u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, sad_way);
2104			if (sad_way > 0 && sad_interl == pkg)
2105				break;
2106			sad_interleave[sad_way] = pkg;
2107			edac_dbg(0, "SAD interleave #%d: %d\n",
2108				 sad_way, sad_interleave[sad_way]);
2109		}
2110		edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
2111			 pvt->sbridge_dev->mc,
2112			 n_sads,
2113			 addr,
2114			 limit,
2115			 sad_way + 7,
2116			 !interleave_mode ? "" : "XOR[18:16]");
2117		if (interleave_mode)
2118			idx = ((addr >> 6) ^ (addr >> 16)) & 7;
2119		else
2120			idx = (addr >> 6) & 7;
2121		switch (sad_way) {
2122		case 1:
2123			idx = 0;
2124			break;
2125		case 2:
2126			idx = idx & 1;
2127			break;
2128		case 4:
2129			idx = idx & 3;
2130			break;
2131		case 8:
2132			break;
2133		default:
2134			sprintf(msg, "Can't discover socket interleave");
2135			return -EINVAL;
2136		}
2137		*socket = sad_interleave[idx];
2138		edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
2139			 idx, sad_way, *socket);
2140	} else if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
2141		int bits, a7mode = A7MODE(dram_rule);
2142
2143		if (a7mode) {
2144			/* A7 mode swaps P9 with P6 */
2145			bits = GET_BITFIELD(addr, 7, 8) << 1;
2146			bits |= GET_BITFIELD(addr, 9, 9);
2147		} else
2148			bits = GET_BITFIELD(addr, 6, 8);
2149
2150		if (interleave_mode == 0) {
2151			/* interleave mode will XOR {8,7,6} with {18,17,16} */
2152			idx = GET_BITFIELD(addr, 16, 18);
2153			idx ^= bits;
2154		} else
2155			idx = bits;
2156
2157		pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
2158		*socket = sad_pkg_socket(pkg);
2159		sad_ha = sad_pkg_ha(pkg);
 
 
2160
2161		if (a7mode) {
2162			/* MCChanShiftUpEnable */
2163			pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, &reg);
 
2164			shiftup = GET_BITFIELD(reg, 22, 22);
2165		}
2166
2167		edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
2168			 idx, *socket, sad_ha, shiftup);
2169	} else {
2170		/* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
2171		idx = (addr >> 6) & 7;
2172		pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
2173		*socket = sad_pkg_socket(pkg);
2174		sad_ha = sad_pkg_ha(pkg);
 
 
2175		edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
2176			 idx, *socket, sad_ha);
2177	}
2178
2179	*ha = sad_ha;
2180
2181	/*
2182	 * Move to the proper node structure, in order to access the
2183	 * right PCI registers
2184	 */
2185	new_mci = get_mci_for_node_id(*socket, sad_ha);
2186	if (!new_mci) {
2187		sprintf(msg, "Struct for socket #%u wasn't initialized",
2188			*socket);
2189		return -EINVAL;
2190	}
2191	mci = new_mci;
2192	pvt = mci->pvt_info;
2193
2194	/*
2195	 * Step 2) Get memory channel
2196	 */
2197	prv = 0;
2198	pci_ha = pvt->pci_ha;
 
 
 
 
 
 
 
2199	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
2200		pci_read_config_dword(pci_ha, tad_dram_rule[n_tads], &reg);
2201		limit = TAD_LIMIT(reg);
2202		if (limit <= prv) {
2203			sprintf(msg, "Can't discover the memory channel");
2204			return -EINVAL;
2205		}
2206		if  (addr <= limit)
2207			break;
2208		prv = limit;
2209	}
2210	if (n_tads == MAX_TAD) {
2211		sprintf(msg, "Can't discover the memory channel");
2212		return -EINVAL;
2213	}
2214
2215	ch_way = TAD_CH(reg) + 1;
2216	sck_way = TAD_SOCK(reg);
2217
2218	if (ch_way == 3)
2219		idx = addr >> 6;
2220	else {
2221		idx = (addr >> (6 + sck_way + shiftup)) & 0x3;
2222		if (pvt->is_chan_hash)
2223			idx = haswell_chan_hash(idx, addr);
2224	}
2225	idx = idx % ch_way;
2226
2227	/*
2228	 * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
2229	 */
2230	switch (idx) {
2231	case 0:
2232		base_ch = TAD_TGT0(reg);
2233		break;
2234	case 1:
2235		base_ch = TAD_TGT1(reg);
2236		break;
2237	case 2:
2238		base_ch = TAD_TGT2(reg);
2239		break;
2240	case 3:
2241		base_ch = TAD_TGT3(reg);
2242		break;
2243	default:
2244		sprintf(msg, "Can't discover the TAD target");
2245		return -EINVAL;
2246	}
2247	*channel_mask = 1 << base_ch;
2248
2249	pci_read_config_dword(pvt->pci_tad[base_ch], tad_ch_nilv_offset[n_tads], &tad_offset);
 
 
2250
2251	if (pvt->mirror_mode == FULL_MIRRORING ||
2252	    (pvt->mirror_mode == ADDR_RANGE_MIRRORING && n_tads == 0)) {
2253		*channel_mask |= 1 << ((base_ch + 2) % 4);
2254		switch(ch_way) {
2255		case 2:
2256		case 4:
2257			sck_xch = (1 << sck_way) * (ch_way >> 1);
2258			break;
2259		default:
2260			sprintf(msg, "Invalid mirror set. Can't decode addr");
2261			return -EINVAL;
2262		}
2263
2264		pvt->is_cur_addr_mirrored = true;
2265	} else {
2266		sck_xch = (1 << sck_way) * ch_way;
2267		pvt->is_cur_addr_mirrored = false;
2268	}
2269
2270	if (pvt->is_lockstep)
2271		*channel_mask |= 1 << ((base_ch + 1) % 4);
2272
2273	offset = TAD_OFFSET(tad_offset);
2274
2275	edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
2276		 n_tads,
2277		 addr,
2278		 limit,
2279		 sck_way,
2280		 ch_way,
2281		 offset,
2282		 idx,
2283		 base_ch,
2284		 *channel_mask);
2285
2286	/* Calculate channel address */
2287	/* Remove the TAD offset */
2288
2289	if (offset > addr) {
2290		sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
2291			offset, addr);
2292		return -EINVAL;
2293	}
2294
2295	ch_addr = addr - offset;
2296	ch_addr >>= (6 + shiftup);
2297	ch_addr /= sck_xch;
2298	ch_addr <<= (6 + shiftup);
2299	ch_addr |= addr & ((1 << (6 + shiftup)) - 1);
2300
2301	/*
2302	 * Step 3) Decode rank
2303	 */
2304	for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
2305		pci_read_config_dword(pvt->pci_tad[base_ch], rir_way_limit[n_rir], &reg);
 
 
2306
2307		if (!IS_RIR_VALID(reg))
2308			continue;
2309
2310		limit = pvt->info.rir_limit(reg);
2311		gb = div_u64_rem(limit >> 20, 1024, &mb);
2312		edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
2313			 n_rir,
2314			 gb, (mb*1000)/1024,
2315			 limit,
2316			 1 << RIR_WAY(reg));
2317		if  (ch_addr <= limit)
2318			break;
2319	}
2320	if (n_rir == MAX_RIR_RANGES) {
2321		sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
2322			ch_addr);
2323		return -EINVAL;
2324	}
2325	rir_way = RIR_WAY(reg);
2326
2327	if (pvt->is_close_pg)
2328		idx = (ch_addr >> 6);
2329	else
2330		idx = (ch_addr >> 13);	/* FIXME: Datasheet says to shift by 15 */
2331	idx %= 1 << rir_way;
2332
2333	pci_read_config_dword(pvt->pci_tad[base_ch], rir_offset[n_rir][idx], &reg);
2334	*rank = RIR_RNK_TGT(pvt->info.type, reg);
2335
2336	if (pvt->info.type == BROADWELL) {
2337		if (pvt->is_close_pg)
2338			shiftup = 6;
2339		else
2340			shiftup = 13;
2341
2342		rank_addr = ch_addr >> shiftup;
2343		rank_addr /= (1 << rir_way);
2344		rank_addr <<= shiftup;
2345		rank_addr |= ch_addr & GENMASK_ULL(shiftup - 1, 0);
2346		rank_addr -= RIR_OFFSET(pvt->info.type, reg);
2347
2348		mtype = pvt->info.get_memory_type(pvt);
2349		rankid = *rank;
2350		if (mtype == MEM_DDR4 || mtype == MEM_RDDR4)
2351			sb_decode_ddr4(mci, base_ch, rankid, rank_addr, msg);
2352		else
2353			sb_decode_ddr3(mci, base_ch, rankid, rank_addr, msg);
2354	} else {
2355		msg[0] = '\0';
2356	}
2357
2358	edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
2359		 n_rir,
2360		 ch_addr,
2361		 limit,
2362		 rir_way,
2363		 idx);
2364
2365	return 0;
2366}
2367
2368static int get_memory_error_data_from_mce(struct mem_ctl_info *mci,
2369					  const struct mce *m, u8 *socket,
2370					  u8 *ha, long *channel_mask,
2371					  char *msg)
2372{
2373	u32 reg, channel = GET_BITFIELD(m->status, 0, 3);
2374	struct mem_ctl_info *new_mci;
2375	struct sbridge_pvt *pvt;
2376	struct pci_dev *pci_ha;
2377	bool tad0;
2378
2379	if (channel >= NUM_CHANNELS) {
2380		sprintf(msg, "Invalid channel 0x%x", channel);
2381		return -EINVAL;
2382	}
2383
2384	pvt = mci->pvt_info;
2385	if (!pvt->info.get_ha) {
2386		sprintf(msg, "No get_ha()");
2387		return -EINVAL;
2388	}
2389	*ha = pvt->info.get_ha(m->bank);
2390	if (*ha != 0 && *ha != 1) {
2391		sprintf(msg, "Impossible bank %d", m->bank);
2392		return -EINVAL;
2393	}
2394
2395	*socket = m->socketid;
2396	new_mci = get_mci_for_node_id(*socket, *ha);
2397	if (!new_mci) {
2398		strcpy(msg, "mci socket got corrupted!");
2399		return -EINVAL;
2400	}
2401
2402	pvt = new_mci->pvt_info;
2403	pci_ha = pvt->pci_ha;
2404	pci_read_config_dword(pci_ha, tad_dram_rule[0], &reg);
2405	tad0 = m->addr <= TAD_LIMIT(reg);
2406
2407	*channel_mask = 1 << channel;
2408	if (pvt->mirror_mode == FULL_MIRRORING ||
2409	    (pvt->mirror_mode == ADDR_RANGE_MIRRORING && tad0)) {
2410		*channel_mask |= 1 << ((channel + 2) % 4);
2411		pvt->is_cur_addr_mirrored = true;
2412	} else {
2413		pvt->is_cur_addr_mirrored = false;
2414	}
2415
2416	if (pvt->is_lockstep)
2417		*channel_mask |= 1 << ((channel + 1) % 4);
2418
2419	return 0;
2420}
2421
2422/****************************************************************************
2423	Device initialization routines: put/get, init/exit
2424 ****************************************************************************/
2425
2426/*
2427 *	sbridge_put_all_devices	'put' all the devices that we have
2428 *				reserved via 'get'
2429 */
2430static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
2431{
2432	int i;
2433
2434	edac_dbg(0, "\n");
2435	for (i = 0; i < sbridge_dev->n_devs; i++) {
2436		struct pci_dev *pdev = sbridge_dev->pdev[i];
2437		if (!pdev)
2438			continue;
2439		edac_dbg(0, "Removing dev %02x:%02x.%d\n",
2440			 pdev->bus->number,
2441			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
2442		pci_dev_put(pdev);
2443	}
2444}
2445
2446static void sbridge_put_all_devices(void)
2447{
2448	struct sbridge_dev *sbridge_dev, *tmp;
2449
2450	list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
2451		sbridge_put_devices(sbridge_dev);
2452		free_sbridge_dev(sbridge_dev);
2453	}
2454}
2455
2456static int sbridge_get_onedevice(struct pci_dev **prev,
2457				 u8 *num_mc,
2458				 const struct pci_id_table *table,
2459				 const unsigned devno,
2460				 const int multi_bus)
2461{
2462	struct sbridge_dev *sbridge_dev = NULL;
2463	const struct pci_id_descr *dev_descr = &table->descr[devno];
2464	struct pci_dev *pdev = NULL;
2465	int seg = 0;
2466	u8 bus = 0;
2467	int i = 0;
2468
2469	sbridge_printk(KERN_DEBUG,
2470		"Seeking for: PCI ID %04x:%04x\n",
2471		PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2472
2473	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
2474			      dev_descr->dev_id, *prev);
2475
2476	if (!pdev) {
2477		if (*prev) {
2478			*prev = pdev;
2479			return 0;
2480		}
2481
2482		if (dev_descr->optional)
2483			return 0;
2484
2485		/* if the HA wasn't found */
2486		if (devno == 0)
2487			return -ENODEV;
2488
2489		sbridge_printk(KERN_INFO,
2490			"Device not found: %04x:%04x\n",
2491			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2492
2493		/* End of list, leave */
2494		return -ENODEV;
2495	}
2496	seg = pci_domain_nr(pdev->bus);
2497	bus = pdev->bus->number;
2498
2499next_imc:
2500	sbridge_dev = get_sbridge_dev(seg, bus, dev_descr->dom,
2501				      multi_bus, sbridge_dev);
2502	if (!sbridge_dev) {
2503		/* If the HA1 wasn't found, don't create EDAC second memory controller */
2504		if (dev_descr->dom == IMC1 && devno != 1) {
2505			edac_dbg(0, "Skip IMC1: %04x:%04x (since HA1 was absent)\n",
2506				 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2507			pci_dev_put(pdev);
2508			return 0;
2509		}
2510
2511		if (dev_descr->dom == SOCK)
2512			goto out_imc;
2513
2514		sbridge_dev = alloc_sbridge_dev(seg, bus, dev_descr->dom, table);
2515		if (!sbridge_dev) {
2516			pci_dev_put(pdev);
2517			return -ENOMEM;
2518		}
2519		(*num_mc)++;
2520	}
2521
2522	if (sbridge_dev->pdev[sbridge_dev->i_devs]) {
2523		sbridge_printk(KERN_ERR,
2524			"Duplicated device for %04x:%04x\n",
2525			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2526		pci_dev_put(pdev);
2527		return -ENODEV;
2528	}
2529
2530	sbridge_dev->pdev[sbridge_dev->i_devs++] = pdev;
2531
2532	/* pdev belongs to more than one IMC, do extra gets */
2533	if (++i > 1)
2534		pci_dev_get(pdev);
2535
2536	if (dev_descr->dom == SOCK && i < table->n_imcs_per_sock)
2537		goto next_imc;
2538
2539out_imc:
2540	/* Be sure that the device is enabled */
2541	if (unlikely(pci_enable_device(pdev) < 0)) {
2542		sbridge_printk(KERN_ERR,
2543			"Couldn't enable %04x:%04x\n",
2544			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2545		return -ENODEV;
2546	}
2547
2548	edac_dbg(0, "Detected %04x:%04x\n",
2549		 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2550
2551	/*
2552	 * As stated on drivers/pci/search.c, the reference count for
2553	 * @from is always decremented if it is not %NULL. So, as we need
2554	 * to get all devices up to null, we need to do a get for the device
2555	 */
2556	pci_dev_get(pdev);
2557
2558	*prev = pdev;
2559
2560	return 0;
2561}
2562
2563/*
2564 * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
2565 *			     devices we want to reference for this driver.
2566 * @num_mc: pointer to the memory controllers count, to be incremented in case
2567 *	    of success.
2568 * @table: model specific table
 
 
 
 
 
2569 *
2570 * returns 0 in case of success or error code
2571 */
2572static int sbridge_get_all_devices(u8 *num_mc,
2573					const struct pci_id_table *table)
 
 
2574{
2575	int i, rc;
2576	struct pci_dev *pdev = NULL;
2577	int allow_dups = 0;
2578	int multi_bus = 0;
2579
2580	if (table->type == KNIGHTS_LANDING)
2581		allow_dups = multi_bus = 1;
2582	while (table && table->descr) {
2583		for (i = 0; i < table->n_devs_per_sock; i++) {
2584			if (!allow_dups || i == 0 ||
2585					table->descr[i].dev_id !=
2586						table->descr[i-1].dev_id) {
2587				pdev = NULL;
2588			}
2589			do {
2590				rc = sbridge_get_onedevice(&pdev, num_mc,
2591							   table, i, multi_bus);
2592				if (rc < 0) {
2593					if (i == 0) {
2594						i = table->n_devs_per_sock;
2595						break;
2596					}
2597					sbridge_put_all_devices();
2598					return -ENODEV;
2599				}
2600			} while (pdev && !allow_dups);
2601		}
2602		table++;
2603	}
2604
2605	return 0;
2606}
2607
2608/*
2609 * Device IDs for {SBRIDGE,IBRIDGE,HASWELL,BROADWELL}_IMC_HA0_TAD0 are in
2610 * the format: XXXa. So we can convert from a device to the corresponding
2611 * channel like this
2612 */
2613#define TAD_DEV_TO_CHAN(dev) (((dev) & 0xf) - 0xa)
2614
2615static int sbridge_mci_bind_devs(struct mem_ctl_info *mci,
2616				 struct sbridge_dev *sbridge_dev)
2617{
2618	struct sbridge_pvt *pvt = mci->pvt_info;
2619	struct pci_dev *pdev;
2620	u8 saw_chan_mask = 0;
2621	int i;
2622
2623	for (i = 0; i < sbridge_dev->n_devs; i++) {
2624		pdev = sbridge_dev->pdev[i];
2625		if (!pdev)
2626			continue;
2627
2628		switch (pdev->device) {
2629		case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0:
2630			pvt->pci_sad0 = pdev;
2631			break;
2632		case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1:
2633			pvt->pci_sad1 = pdev;
2634			break;
2635		case PCI_DEVICE_ID_INTEL_SBRIDGE_BR:
2636			pvt->pci_br0 = pdev;
2637			break;
2638		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
2639			pvt->pci_ha = pdev;
2640			break;
2641		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA:
2642			pvt->pci_ta = pdev;
2643			break;
2644		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS:
2645			pvt->pci_ras = pdev;
2646			break;
2647		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0:
2648		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1:
2649		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2:
2650		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3:
2651		{
2652			int id = TAD_DEV_TO_CHAN(pdev->device);
2653			pvt->pci_tad[id] = pdev;
2654			saw_chan_mask |= 1 << id;
2655		}
2656			break;
2657		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO:
2658			pvt->pci_ddrio = pdev;
2659			break;
2660		default:
2661			goto error;
2662		}
2663
2664		edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
2665			 pdev->vendor, pdev->device,
2666			 sbridge_dev->bus,
2667			 pdev);
2668	}
2669
2670	/* Check if everything were registered */
2671	if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha ||
2672	    !pvt->pci_ras || !pvt->pci_ta)
2673		goto enodev;
2674
2675	if (saw_chan_mask != 0x0f)
2676		goto enodev;
2677	return 0;
2678
2679enodev:
2680	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2681	return -ENODEV;
2682
2683error:
2684	sbridge_printk(KERN_ERR, "Unexpected device %02x:%02x\n",
2685		       PCI_VENDOR_ID_INTEL, pdev->device);
2686	return -EINVAL;
2687}
2688
2689static int ibridge_mci_bind_devs(struct mem_ctl_info *mci,
2690				 struct sbridge_dev *sbridge_dev)
2691{
2692	struct sbridge_pvt *pvt = mci->pvt_info;
2693	struct pci_dev *pdev;
2694	u8 saw_chan_mask = 0;
2695	int i;
2696
2697	for (i = 0; i < sbridge_dev->n_devs; i++) {
2698		pdev = sbridge_dev->pdev[i];
2699		if (!pdev)
2700			continue;
2701
2702		switch (pdev->device) {
2703		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0:
2704		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1:
2705			pvt->pci_ha = pdev;
2706			break;
2707		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
2708		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA:
2709			pvt->pci_ta = pdev;
2710			break;
2711		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS:
2712		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS:
2713			pvt->pci_ras = pdev;
2714			break;
2715		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0:
2716		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1:
2717		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2:
2718		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3:
2719		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0:
2720		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1:
2721		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2:
2722		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3:
2723		{
2724			int id = TAD_DEV_TO_CHAN(pdev->device);
2725			pvt->pci_tad[id] = pdev;
2726			saw_chan_mask |= 1 << id;
2727		}
2728			break;
2729		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0:
2730			pvt->pci_ddrio = pdev;
2731			break;
2732		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0:
2733			pvt->pci_ddrio = pdev;
2734			break;
2735		case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD:
2736			pvt->pci_sad0 = pdev;
2737			break;
2738		case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0:
2739			pvt->pci_br0 = pdev;
2740			break;
2741		case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1:
2742			pvt->pci_br1 = pdev;
2743			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
2744		default:
2745			goto error;
2746		}
2747
2748		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2749			 sbridge_dev->bus,
2750			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2751			 pdev);
2752	}
2753
2754	/* Check if everything were registered */
2755	if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_br0 ||
2756	    !pvt->pci_br1 || !pvt->pci_ras || !pvt->pci_ta)
 
2757		goto enodev;
2758
2759	if (saw_chan_mask != 0x0f && /* -EN/-EX */
2760	    saw_chan_mask != 0x03)   /* -EP */
 
2761		goto enodev;
2762	return 0;
2763
2764enodev:
2765	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2766	return -ENODEV;
2767
2768error:
2769	sbridge_printk(KERN_ERR,
2770		       "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL,
2771			pdev->device);
2772	return -EINVAL;
2773}
2774
2775static int haswell_mci_bind_devs(struct mem_ctl_info *mci,
2776				 struct sbridge_dev *sbridge_dev)
2777{
2778	struct sbridge_pvt *pvt = mci->pvt_info;
2779	struct pci_dev *pdev;
2780	u8 saw_chan_mask = 0;
2781	int i;
2782
2783	/* there's only one device per system; not tied to any bus */
2784	if (pvt->info.pci_vtd == NULL)
2785		/* result will be checked later */
2786		pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
2787						   PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC,
2788						   NULL);
2789
2790	for (i = 0; i < sbridge_dev->n_devs; i++) {
2791		pdev = sbridge_dev->pdev[i];
2792		if (!pdev)
2793			continue;
2794
2795		switch (pdev->device) {
2796		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0:
2797			pvt->pci_sad0 = pdev;
2798			break;
2799		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1:
2800			pvt->pci_sad1 = pdev;
2801			break;
2802		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
2803		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1:
2804			pvt->pci_ha = pdev;
2805			break;
2806		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA:
2807		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA:
2808			pvt->pci_ta = pdev;
2809			break;
2810		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM:
2811		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM:
2812			pvt->pci_ras = pdev;
2813			break;
2814		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0:
2815		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1:
2816		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2:
2817		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3:
 
 
 
 
 
 
 
2818		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0:
2819		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1:
2820		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2:
2821		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3:
2822		{
2823			int id = TAD_DEV_TO_CHAN(pdev->device);
 
2824			pvt->pci_tad[id] = pdev;
2825			saw_chan_mask |= 1 << id;
2826		}
2827			break;
2828		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0:
2829		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1:
2830		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2:
2831		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3:
2832			if (!pvt->pci_ddrio)
2833				pvt->pci_ddrio = pdev;
2834			break;
 
 
 
 
 
 
2835		default:
2836			break;
2837		}
2838
2839		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2840			 sbridge_dev->bus,
2841			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2842			 pdev);
2843	}
2844
2845	/* Check if everything were registered */
2846	if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 ||
2847	    !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
2848		goto enodev;
2849
2850	if (saw_chan_mask != 0x0f && /* -EN/-EX */
2851	    saw_chan_mask != 0x03)   /* -EP */
 
2852		goto enodev;
2853	return 0;
2854
2855enodev:
2856	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2857	return -ENODEV;
2858}
2859
2860static int broadwell_mci_bind_devs(struct mem_ctl_info *mci,
2861				 struct sbridge_dev *sbridge_dev)
2862{
2863	struct sbridge_pvt *pvt = mci->pvt_info;
2864	struct pci_dev *pdev;
2865	u8 saw_chan_mask = 0;
2866	int i;
2867
2868	/* there's only one device per system; not tied to any bus */
2869	if (pvt->info.pci_vtd == NULL)
2870		/* result will be checked later */
2871		pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
2872						   PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC,
2873						   NULL);
2874
2875	for (i = 0; i < sbridge_dev->n_devs; i++) {
2876		pdev = sbridge_dev->pdev[i];
2877		if (!pdev)
2878			continue;
2879
2880		switch (pdev->device) {
2881		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0:
2882			pvt->pci_sad0 = pdev;
2883			break;
2884		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1:
2885			pvt->pci_sad1 = pdev;
2886			break;
2887		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
2888		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1:
2889			pvt->pci_ha = pdev;
2890			break;
2891		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA:
2892		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA:
2893			pvt->pci_ta = pdev;
2894			break;
2895		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM:
2896		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM:
2897			pvt->pci_ras = pdev;
2898			break;
2899		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0:
2900		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1:
2901		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2:
2902		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3:
 
 
 
 
 
 
2903		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0:
2904		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1:
2905		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2:
2906		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3:
2907		{
2908			int id = TAD_DEV_TO_CHAN(pdev->device);
2909			pvt->pci_tad[id] = pdev;
2910			saw_chan_mask |= 1 << id;
2911		}
2912			break;
2913		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0:
2914			pvt->pci_ddrio = pdev;
2915			break;
 
 
 
 
 
 
2916		default:
2917			break;
2918		}
2919
2920		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2921			 sbridge_dev->bus,
2922			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2923			 pdev);
2924	}
2925
2926	/* Check if everything were registered */
2927	if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 ||
2928	    !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
2929		goto enodev;
2930
2931	if (saw_chan_mask != 0x0f && /* -EN/-EX */
2932	    saw_chan_mask != 0x03)   /* -EP */
 
2933		goto enodev;
2934	return 0;
2935
2936enodev:
2937	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2938	return -ENODEV;
2939}
2940
2941static int knl_mci_bind_devs(struct mem_ctl_info *mci,
2942			struct sbridge_dev *sbridge_dev)
2943{
2944	struct sbridge_pvt *pvt = mci->pvt_info;
2945	struct pci_dev *pdev;
2946	int dev, func;
2947
2948	int i;
2949	int devidx;
2950
2951	for (i = 0; i < sbridge_dev->n_devs; i++) {
2952		pdev = sbridge_dev->pdev[i];
2953		if (!pdev)
2954			continue;
2955
2956		/* Extract PCI device and function. */
2957		dev = (pdev->devfn >> 3) & 0x1f;
2958		func = pdev->devfn & 0x7;
2959
2960		switch (pdev->device) {
2961		case PCI_DEVICE_ID_INTEL_KNL_IMC_MC:
2962			if (dev == 8)
2963				pvt->knl.pci_mc0 = pdev;
2964			else if (dev == 9)
2965				pvt->knl.pci_mc1 = pdev;
2966			else {
2967				sbridge_printk(KERN_ERR,
2968					"Memory controller in unexpected place! (dev %d, fn %d)\n",
2969					dev, func);
2970				continue;
2971			}
2972			break;
2973
2974		case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0:
2975			pvt->pci_sad0 = pdev;
2976			break;
2977
2978		case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1:
2979			pvt->pci_sad1 = pdev;
2980			break;
2981
2982		case PCI_DEVICE_ID_INTEL_KNL_IMC_CHA:
2983			/* There are one of these per tile, and range from
2984			 * 1.14.0 to 1.18.5.
2985			 */
2986			devidx = ((dev-14)*8)+func;
2987
2988			if (devidx < 0 || devidx >= KNL_MAX_CHAS) {
2989				sbridge_printk(KERN_ERR,
2990					"Caching and Home Agent in unexpected place! (dev %d, fn %d)\n",
2991					dev, func);
2992				continue;
2993			}
2994
2995			WARN_ON(pvt->knl.pci_cha[devidx] != NULL);
2996
2997			pvt->knl.pci_cha[devidx] = pdev;
2998			break;
2999
3000		case PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN:
3001			devidx = -1;
3002
3003			/*
3004			 *  MC0 channels 0-2 are device 9 function 2-4,
3005			 *  MC1 channels 3-5 are device 8 function 2-4.
3006			 */
3007
3008			if (dev == 9)
3009				devidx = func-2;
3010			else if (dev == 8)
3011				devidx = 3 + (func-2);
3012
3013			if (devidx < 0 || devidx >= KNL_MAX_CHANNELS) {
3014				sbridge_printk(KERN_ERR,
3015					"DRAM Channel Registers in unexpected place! (dev %d, fn %d)\n",
3016					dev, func);
3017				continue;
3018			}
3019
3020			WARN_ON(pvt->knl.pci_channel[devidx] != NULL);
3021			pvt->knl.pci_channel[devidx] = pdev;
3022			break;
3023
3024		case PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM:
3025			pvt->knl.pci_mc_info = pdev;
3026			break;
3027
3028		case PCI_DEVICE_ID_INTEL_KNL_IMC_TA:
3029			pvt->pci_ta = pdev;
3030			break;
3031
3032		default:
3033			sbridge_printk(KERN_ERR, "Unexpected device %d\n",
3034				pdev->device);
3035			break;
3036		}
3037	}
3038
3039	if (!pvt->knl.pci_mc0  || !pvt->knl.pci_mc1 ||
3040	    !pvt->pci_sad0     || !pvt->pci_sad1    ||
3041	    !pvt->pci_ta) {
3042		goto enodev;
3043	}
3044
3045	for (i = 0; i < KNL_MAX_CHANNELS; i++) {
3046		if (!pvt->knl.pci_channel[i]) {
3047			sbridge_printk(KERN_ERR, "Missing channel %d\n", i);
3048			goto enodev;
3049		}
3050	}
3051
3052	for (i = 0; i < KNL_MAX_CHAS; i++) {
3053		if (!pvt->knl.pci_cha[i]) {
3054			sbridge_printk(KERN_ERR, "Missing CHA %d\n", i);
3055			goto enodev;
3056		}
3057	}
3058
3059	return 0;
3060
3061enodev:
3062	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
3063	return -ENODEV;
3064}
3065
3066/****************************************************************************
3067			Error check routines
3068 ****************************************************************************/
3069
3070/*
3071 * While Sandy Bridge has error count registers, SMI BIOS read values from
3072 * and resets the counters. So, they are not reliable for the OS to read
3073 * from them. So, we have no option but to just trust on whatever MCE is
3074 * telling us about the errors.
3075 */
3076static void sbridge_mce_output_error(struct mem_ctl_info *mci,
3077				    const struct mce *m)
3078{
3079	struct mem_ctl_info *new_mci;
3080	struct sbridge_pvt *pvt = mci->pvt_info;
3081	enum hw_event_mc_err_type tp_event;
3082	char *optype, msg[256], msg_full[512];
3083	bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
3084	bool overflow = GET_BITFIELD(m->status, 62, 62);
3085	bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
3086	bool recoverable;
3087	u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
3088	u32 mscod = GET_BITFIELD(m->status, 16, 31);
3089	u32 errcode = GET_BITFIELD(m->status, 0, 15);
3090	u32 channel = GET_BITFIELD(m->status, 0, 3);
3091	u32 optypenum = GET_BITFIELD(m->status, 4, 6);
3092	/*
3093	 * Bits 5-0 of MCi_MISC give the least significant bit that is valid.
3094	 * A value 6 is for cache line aligned address, a value 12 is for page
3095	 * aligned address reported by patrol scrubber.
3096	 */
3097	u32 lsb = GET_BITFIELD(m->misc, 0, 5);
3098	long channel_mask, first_channel;
3099	u8  rank = 0xff, socket, ha;
3100	int rc, dimm;
3101	char *area_type = "DRAM";
3102
3103	if (pvt->info.type != SANDY_BRIDGE)
3104		recoverable = true;
3105	else
3106		recoverable = GET_BITFIELD(m->status, 56, 56);
3107
3108	if (uncorrected_error) {
3109		core_err_cnt = 1;
3110		if (ripv) {
3111			tp_event = HW_EVENT_ERR_UNCORRECTED;
3112		} else {
3113			tp_event = HW_EVENT_ERR_FATAL;
 
 
 
3114		}
3115	} else {
 
3116		tp_event = HW_EVENT_ERR_CORRECTED;
3117	}
3118
3119	/*
3120	 * According with Table 15-9 of the Intel Architecture spec vol 3A,
3121	 * memory errors should fit in this mask:
3122	 *	000f 0000 1mmm cccc (binary)
3123	 * where:
3124	 *	f = Correction Report Filtering Bit. If 1, subsequent errors
3125	 *	    won't be shown
3126	 *	mmm = error type
3127	 *	cccc = channel
3128	 * If the mask doesn't match, report an error to the parsing logic
3129	 */
3130	switch (optypenum) {
3131	case 0:
3132		optype = "generic undef request error";
3133		break;
3134	case 1:
3135		optype = "memory read error";
3136		break;
3137	case 2:
3138		optype = "memory write error";
3139		break;
3140	case 3:
3141		optype = "addr/cmd error";
3142		break;
3143	case 4:
3144		optype = "memory scrubbing error";
3145		break;
3146	default:
3147		optype = "reserved";
3148		break;
 
 
 
 
3149	}
3150
 
 
 
 
3151	if (pvt->info.type == KNIGHTS_LANDING) {
3152		if (channel == 14) {
3153			edac_dbg(0, "%s%s err_code:%04x:%04x EDRAM bank %d\n",
3154				overflow ? " OVERFLOW" : "",
3155				(uncorrected_error && recoverable)
3156				? " recoverable" : "",
3157				mscod, errcode,
3158				m->bank);
3159		} else {
3160			char A = *("A");
3161
3162			/*
3163			 * Reported channel is in range 0-2, so we can't map it
3164			 * back to mc. To figure out mc we check machine check
3165			 * bank register that reported this error.
3166			 * bank15 means mc0 and bank16 means mc1.
3167			 */
3168			channel = knl_channel_remap(m->bank == 16, channel);
3169			channel_mask = 1 << channel;
3170
3171			snprintf(msg, sizeof(msg),
3172				"%s%s err_code:%04x:%04x channel:%d (DIMM_%c)",
3173				overflow ? " OVERFLOW" : "",
3174				(uncorrected_error && recoverable)
3175				? " recoverable" : " ",
3176				mscod, errcode, channel, A + channel);
3177			edac_mc_handle_error(tp_event, mci, core_err_cnt,
3178				m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
3179				channel, 0, -1,
3180				optype, msg);
3181		}
3182		return;
3183	} else if (lsb < 12) {
3184		rc = get_memory_error_data(mci, m->addr, &socket, &ha,
3185					   &channel_mask, &rank,
3186					   &area_type, msg);
3187	} else {
3188		rc = get_memory_error_data_from_mce(mci, m, &socket, &ha,
3189						    &channel_mask, msg);
3190	}
3191
3192	if (rc < 0)
3193		goto err_parsing;
3194	new_mci = get_mci_for_node_id(socket, ha);
3195	if (!new_mci) {
3196		strcpy(msg, "Error: socket got corrupted!");
3197		goto err_parsing;
3198	}
3199	mci = new_mci;
3200	pvt = mci->pvt_info;
3201
3202	first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
3203
3204	if (rank == 0xff)
3205		dimm = -1;
3206	else if (rank < 4)
3207		dimm = 0;
3208	else if (rank < 8)
3209		dimm = 1;
3210	else
3211		dimm = 2;
3212
 
3213	/*
3214	 * FIXME: On some memory configurations (mirror, lockstep), the
3215	 * Memory Controller can't point the error to a single DIMM. The
3216	 * EDAC core should be handling the channel mask, in order to point
3217	 * to the group of dimm's where the error may be happening.
3218	 */
3219	if (!pvt->is_lockstep && !pvt->is_cur_addr_mirrored && !pvt->is_close_pg)
3220		channel = first_channel;
3221	snprintf(msg_full, sizeof(msg_full),
3222		 "%s%s area:%s err_code:%04x:%04x socket:%d ha:%d channel_mask:%ld rank:%d %s",
 
3223		 overflow ? " OVERFLOW" : "",
3224		 (uncorrected_error && recoverable) ? " recoverable" : "",
3225		 area_type,
3226		 mscod, errcode,
3227		 socket, ha,
3228		 channel_mask,
3229		 rank, msg);
3230
3231	edac_dbg(0, "%s\n", msg_full);
3232
3233	/* FIXME: need support for channel mask */
3234
3235	if (channel == CHANNEL_UNSPECIFIED)
3236		channel = -1;
3237
3238	/* Call the helper to output message */
3239	edac_mc_handle_error(tp_event, mci, core_err_cnt,
3240			     m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
3241			     channel, dimm, -1,
3242			     optype, msg_full);
3243	return;
3244err_parsing:
3245	edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
3246			     -1, -1, -1,
3247			     msg, "");
3248
3249}
3250
3251/*
3252 * Check that logging is enabled and that this is the right type
3253 * of error for us to handle.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3254 */
3255static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
3256				   void *data)
3257{
3258	struct mce *mce = (struct mce *)data;
3259	struct mem_ctl_info *mci;
 
3260	char *type;
3261
3262	if (mce->kflags & MCE_HANDLED_CEC)
3263		return NOTIFY_DONE;
3264
 
 
 
 
 
3265	/*
3266	 * Just let mcelog handle it if the error is
3267	 * outside the memory controller. A memory error
3268	 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
3269	 * bit 12 has an special meaning.
3270	 */
3271	if ((mce->status & 0xefff) >> 7 != 1)
3272		return NOTIFY_DONE;
3273
3274	/* Check ADDRV bit in STATUS */
3275	if (!GET_BITFIELD(mce->status, 58, 58))
3276		return NOTIFY_DONE;
3277
3278	/* Check MISCV bit in STATUS */
3279	if (!GET_BITFIELD(mce->status, 59, 59))
3280		return NOTIFY_DONE;
3281
3282	/* Check address type in MISC (physical address only) */
3283	if (GET_BITFIELD(mce->misc, 6, 8) != 2)
3284		return NOTIFY_DONE;
3285
3286	mci = get_mci_for_node_id(mce->socketid, IMC0);
3287	if (!mci)
3288		return NOTIFY_DONE;
3289
3290	if (mce->mcgstatus & MCG_STATUS_MCIP)
3291		type = "Exception";
3292	else
3293		type = "Event";
3294
3295	sbridge_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
3296
3297	sbridge_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
3298			  "Bank %d: %016Lx\n", mce->extcpu, type,
3299			  mce->mcgstatus, mce->bank, mce->status);
3300	sbridge_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
3301	sbridge_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
3302	sbridge_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
3303
3304	sbridge_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
3305			  "%u APIC %x\n", mce->cpuvendor, mce->cpuid,
3306			  mce->time, mce->socketid, mce->apicid);
3307
3308	sbridge_mce_output_error(mci, mce);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3309
3310	/* Advice mcelog that the error were handled */
3311	mce->kflags |= MCE_HANDLED_EDAC;
3312	return NOTIFY_OK;
3313}
3314
3315static struct notifier_block sbridge_mce_dec = {
3316	.notifier_call	= sbridge_mce_check_error,
3317	.priority	= MCE_PRIO_EDAC,
3318};
3319
3320/****************************************************************************
3321			EDAC register/unregister logic
3322 ****************************************************************************/
3323
3324static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
3325{
3326	struct mem_ctl_info *mci = sbridge_dev->mci;
 
3327
3328	if (unlikely(!mci || !mci->pvt_info)) {
3329		edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
3330
3331		sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
3332		return;
3333	}
3334
 
 
3335	edac_dbg(0, "MC: mci = %p, dev = %p\n",
3336		 mci, &sbridge_dev->pdev[0]->dev);
3337
3338	/* Remove MC sysfs nodes */
3339	edac_mc_del_mc(mci->pdev);
3340
3341	edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
3342	kfree(mci->ctl_name);
3343	edac_mc_free(mci);
3344	sbridge_dev->mci = NULL;
3345}
3346
3347static int sbridge_register_mci(struct sbridge_dev *sbridge_dev, enum type type)
3348{
3349	struct mem_ctl_info *mci;
3350	struct edac_mc_layer layers[2];
3351	struct sbridge_pvt *pvt;
3352	struct pci_dev *pdev = sbridge_dev->pdev[0];
3353	int rc;
3354
 
 
 
 
 
3355	/* allocate a new MC control structure */
3356	layers[0].type = EDAC_MC_LAYER_CHANNEL;
3357	layers[0].size = type == KNIGHTS_LANDING ?
3358		KNL_MAX_CHANNELS : NUM_CHANNELS;
3359	layers[0].is_virt_csrow = false;
3360	layers[1].type = EDAC_MC_LAYER_SLOT;
3361	layers[1].size = type == KNIGHTS_LANDING ? 1 : MAX_DIMMS;
3362	layers[1].is_virt_csrow = true;
3363	mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
3364			    sizeof(*pvt));
3365
3366	if (unlikely(!mci))
3367		return -ENOMEM;
3368
3369	edac_dbg(0, "MC: mci = %p, dev = %p\n",
3370		 mci, &pdev->dev);
3371
3372	pvt = mci->pvt_info;
3373	memset(pvt, 0, sizeof(*pvt));
3374
3375	/* Associate sbridge_dev and mci for future usage */
3376	pvt->sbridge_dev = sbridge_dev;
3377	sbridge_dev->mci = mci;
3378
3379	mci->mtype_cap = type == KNIGHTS_LANDING ?
3380		MEM_FLAG_DDR4 : MEM_FLAG_DDR3;
3381	mci->edac_ctl_cap = EDAC_FLAG_NONE;
3382	mci->edac_cap = EDAC_FLAG_NONE;
3383	mci->mod_name = EDAC_MOD_STR;
 
3384	mci->dev_name = pci_name(pdev);
3385	mci->ctl_page_to_phys = NULL;
3386
 
 
 
3387	pvt->info.type = type;
3388	switch (type) {
3389	case IVY_BRIDGE:
3390		pvt->info.rankcfgr = IB_RANK_CFG_A;
3391		pvt->info.get_tolm = ibridge_get_tolm;
3392		pvt->info.get_tohm = ibridge_get_tohm;
3393		pvt->info.dram_rule = ibridge_dram_rule;
3394		pvt->info.get_memory_type = get_memory_type;
3395		pvt->info.get_node_id = get_node_id;
3396		pvt->info.get_ha = ibridge_get_ha;
3397		pvt->info.rir_limit = rir_limit;
3398		pvt->info.sad_limit = sad_limit;
3399		pvt->info.interleave_mode = interleave_mode;
 
3400		pvt->info.dram_attr = dram_attr;
3401		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3402		pvt->info.interleave_list = ibridge_interleave_list;
 
3403		pvt->info.interleave_pkg = ibridge_interleave_pkg;
3404		pvt->info.get_width = ibridge_get_width;
 
3405
3406		/* Store pci devices at mci for faster access */
3407		rc = ibridge_mci_bind_devs(mci, sbridge_dev);
3408		if (unlikely(rc < 0))
3409			goto fail0;
3410		get_source_id(mci);
3411		mci->ctl_name = kasprintf(GFP_KERNEL, "Ivy Bridge SrcID#%d_Ha#%d",
3412			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3413		break;
3414	case SANDY_BRIDGE:
3415		pvt->info.rankcfgr = SB_RANK_CFG_A;
3416		pvt->info.get_tolm = sbridge_get_tolm;
3417		pvt->info.get_tohm = sbridge_get_tohm;
3418		pvt->info.dram_rule = sbridge_dram_rule;
3419		pvt->info.get_memory_type = get_memory_type;
3420		pvt->info.get_node_id = get_node_id;
3421		pvt->info.get_ha = sbridge_get_ha;
3422		pvt->info.rir_limit = rir_limit;
3423		pvt->info.sad_limit = sad_limit;
3424		pvt->info.interleave_mode = interleave_mode;
 
3425		pvt->info.dram_attr = dram_attr;
3426		pvt->info.max_sad = ARRAY_SIZE(sbridge_dram_rule);
3427		pvt->info.interleave_list = sbridge_interleave_list;
 
3428		pvt->info.interleave_pkg = sbridge_interleave_pkg;
3429		pvt->info.get_width = sbridge_get_width;
 
3430
3431		/* Store pci devices at mci for faster access */
3432		rc = sbridge_mci_bind_devs(mci, sbridge_dev);
3433		if (unlikely(rc < 0))
3434			goto fail0;
3435		get_source_id(mci);
3436		mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge SrcID#%d_Ha#%d",
3437			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3438		break;
3439	case HASWELL:
3440		/* rankcfgr isn't used */
3441		pvt->info.get_tolm = haswell_get_tolm;
3442		pvt->info.get_tohm = haswell_get_tohm;
3443		pvt->info.dram_rule = ibridge_dram_rule;
3444		pvt->info.get_memory_type = haswell_get_memory_type;
3445		pvt->info.get_node_id = haswell_get_node_id;
3446		pvt->info.get_ha = ibridge_get_ha;
3447		pvt->info.rir_limit = haswell_rir_limit;
3448		pvt->info.sad_limit = sad_limit;
3449		pvt->info.interleave_mode = interleave_mode;
 
3450		pvt->info.dram_attr = dram_attr;
3451		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3452		pvt->info.interleave_list = ibridge_interleave_list;
 
3453		pvt->info.interleave_pkg = ibridge_interleave_pkg;
3454		pvt->info.get_width = ibridge_get_width;
 
3455
3456		/* Store pci devices at mci for faster access */
3457		rc = haswell_mci_bind_devs(mci, sbridge_dev);
3458		if (unlikely(rc < 0))
3459			goto fail0;
3460		get_source_id(mci);
3461		mci->ctl_name = kasprintf(GFP_KERNEL, "Haswell SrcID#%d_Ha#%d",
3462			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3463		break;
3464	case BROADWELL:
3465		/* rankcfgr isn't used */
3466		pvt->info.get_tolm = haswell_get_tolm;
3467		pvt->info.get_tohm = haswell_get_tohm;
3468		pvt->info.dram_rule = ibridge_dram_rule;
3469		pvt->info.get_memory_type = haswell_get_memory_type;
3470		pvt->info.get_node_id = haswell_get_node_id;
3471		pvt->info.get_ha = ibridge_get_ha;
3472		pvt->info.rir_limit = haswell_rir_limit;
3473		pvt->info.sad_limit = sad_limit;
3474		pvt->info.interleave_mode = interleave_mode;
 
3475		pvt->info.dram_attr = dram_attr;
3476		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3477		pvt->info.interleave_list = ibridge_interleave_list;
 
3478		pvt->info.interleave_pkg = ibridge_interleave_pkg;
3479		pvt->info.get_width = broadwell_get_width;
 
3480
3481		/* Store pci devices at mci for faster access */
3482		rc = broadwell_mci_bind_devs(mci, sbridge_dev);
3483		if (unlikely(rc < 0))
3484			goto fail0;
3485		get_source_id(mci);
3486		mci->ctl_name = kasprintf(GFP_KERNEL, "Broadwell SrcID#%d_Ha#%d",
3487			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3488		break;
3489	case KNIGHTS_LANDING:
3490		/* pvt->info.rankcfgr == ??? */
3491		pvt->info.get_tolm = knl_get_tolm;
3492		pvt->info.get_tohm = knl_get_tohm;
3493		pvt->info.dram_rule = knl_dram_rule;
3494		pvt->info.get_memory_type = knl_get_memory_type;
3495		pvt->info.get_node_id = knl_get_node_id;
3496		pvt->info.get_ha = knl_get_ha;
3497		pvt->info.rir_limit = NULL;
3498		pvt->info.sad_limit = knl_sad_limit;
3499		pvt->info.interleave_mode = knl_interleave_mode;
 
3500		pvt->info.dram_attr = dram_attr_knl;
3501		pvt->info.max_sad = ARRAY_SIZE(knl_dram_rule);
3502		pvt->info.interleave_list = knl_interleave_list;
 
3503		pvt->info.interleave_pkg = ibridge_interleave_pkg;
3504		pvt->info.get_width = knl_get_width;
 
 
3505
3506		rc = knl_mci_bind_devs(mci, sbridge_dev);
3507		if (unlikely(rc < 0))
3508			goto fail0;
3509		get_source_id(mci);
3510		mci->ctl_name = kasprintf(GFP_KERNEL, "Knights Landing SrcID#%d_Ha#%d",
3511			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3512		break;
3513	}
3514
3515	if (!mci->ctl_name) {
3516		rc = -ENOMEM;
3517		goto fail0;
3518	}
3519
3520	/* Get dimm basic config and the memory layout */
3521	rc = get_dimm_config(mci);
3522	if (rc < 0) {
3523		edac_dbg(0, "MC: failed to get_dimm_config()\n");
3524		goto fail;
3525	}
3526	get_memory_layout(mci);
3527
3528	/* record ptr to the generic device */
3529	mci->pdev = &pdev->dev;
3530
3531	/* add this new MC control structure to EDAC's list of MCs */
3532	if (unlikely(edac_mc_add_mc(mci))) {
3533		edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
3534		rc = -EINVAL;
3535		goto fail;
3536	}
3537
3538	return 0;
3539
3540fail:
3541	kfree(mci->ctl_name);
3542fail0:
 
3543	edac_mc_free(mci);
3544	sbridge_dev->mci = NULL;
3545	return rc;
3546}
3547
3548static const struct x86_cpu_id sbridge_cpuids[] = {
3549	X86_MATCH_INTEL_FAM6_MODEL(SANDYBRIDGE_X, &pci_dev_descr_sbridge_table),
3550	X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE_X,	  &pci_dev_descr_ibridge_table),
3551	X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X,	  &pci_dev_descr_haswell_table),
3552	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X,	  &pci_dev_descr_broadwell_table),
3553	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D,	  &pci_dev_descr_broadwell_table),
3554	X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNL,  &pci_dev_descr_knl_table),
3555	X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNM,  &pci_dev_descr_knl_table),
3556	{ }
3557};
3558MODULE_DEVICE_TABLE(x86cpu, sbridge_cpuids);
3559
3560/*
3561 *	sbridge_probe	Get all devices and register memory controllers
3562 *			present.
3563 *	return:
3564 *		0 for FOUND a device
3565 *		< 0 for error code
3566 */
3567
3568static int sbridge_probe(const struct x86_cpu_id *id)
3569{
3570	int rc;
3571	u8 mc, num_mc = 0;
3572	struct sbridge_dev *sbridge_dev;
3573	struct pci_id_table *ptable = (struct pci_id_table *)id->driver_data;
3574
3575	/* get the pci devices we want to reserve for our use */
3576	rc = sbridge_get_all_devices(&num_mc, ptable);
 
 
 
 
 
 
 
 
 
3577
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3578	if (unlikely(rc < 0)) {
3579		edac_dbg(0, "couldn't get all devices\n");
3580		goto fail0;
3581	}
3582
3583	mc = 0;
3584
3585	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
3586		edac_dbg(0, "Registering MC#%d (%d of %d)\n",
3587			 mc, mc + 1, num_mc);
3588
3589		sbridge_dev->mc = mc++;
3590		rc = sbridge_register_mci(sbridge_dev, ptable->type);
3591		if (unlikely(rc < 0))
3592			goto fail1;
3593	}
3594
3595	sbridge_printk(KERN_INFO, "%s\n", SBRIDGE_REVISION);
3596
 
3597	return 0;
3598
3599fail1:
3600	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
3601		sbridge_unregister_mci(sbridge_dev);
3602
3603	sbridge_put_all_devices();
3604fail0:
 
3605	return rc;
3606}
3607
3608/*
3609 *	sbridge_remove	cleanup
3610 *
3611 */
3612static void sbridge_remove(void)
3613{
3614	struct sbridge_dev *sbridge_dev;
3615
3616	edac_dbg(0, "\n");
3617
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3618	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
3619		sbridge_unregister_mci(sbridge_dev);
3620
3621	/* Release PCI resources */
3622	sbridge_put_all_devices();
 
 
 
 
3623}
3624
 
 
 
 
 
 
 
 
 
 
 
 
 
3625/*
3626 *	sbridge_init		Module entry function
3627 *			Try to initialize this module for its devices
3628 */
3629static int __init sbridge_init(void)
3630{
3631	const struct x86_cpu_id *id;
3632	const char *owner;
3633	int rc;
3634
3635	edac_dbg(2, "\n");
3636
3637	if (ghes_get_devices())
3638		return -EBUSY;
3639
3640	owner = edac_get_owner();
3641	if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
3642		return -EBUSY;
3643
3644	if (cpu_feature_enabled(X86_FEATURE_HYPERVISOR))
3645		return -ENODEV;
3646
3647	id = x86_match_cpu(sbridge_cpuids);
3648	if (!id)
3649		return -ENODEV;
3650
3651	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
3652	opstate_init();
3653
3654	rc = sbridge_probe(id);
3655
3656	if (rc >= 0) {
3657		mce_register_decode_chain(&sbridge_mce_dec);
 
 
3658		return 0;
3659	}
3660
3661	sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
3662		      rc);
3663
3664	return rc;
3665}
3666
3667/*
3668 *	sbridge_exit()	Module exit function
3669 *			Unregister the driver
3670 */
3671static void __exit sbridge_exit(void)
3672{
3673	edac_dbg(2, "\n");
3674	sbridge_remove();
3675	mce_unregister_decode_chain(&sbridge_mce_dec);
3676}
3677
3678module_init(sbridge_init);
3679module_exit(sbridge_exit);
3680
3681module_param(edac_op_state, int, 0444);
3682MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
3683
3684MODULE_LICENSE("GPL");
3685MODULE_AUTHOR("Mauro Carvalho Chehab");
3686MODULE_AUTHOR("Red Hat Inc. (https://www.redhat.com)");
3687MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "
3688		   SBRIDGE_REVISION);
v4.6
 
   1/* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
   2 *
   3 * This driver supports the memory controllers found on the Intel
   4 * processor family Sandy Bridge.
   5 *
   6 * This file may be distributed under the terms of the
   7 * GNU General Public License version 2 only.
   8 *
   9 * Copyright (c) 2011 by:
  10 *	 Mauro Carvalho Chehab
  11 */
  12
  13#include <linux/module.h>
  14#include <linux/init.h>
  15#include <linux/pci.h>
  16#include <linux/pci_ids.h>
  17#include <linux/slab.h>
  18#include <linux/delay.h>
  19#include <linux/edac.h>
  20#include <linux/mmzone.h>
  21#include <linux/smp.h>
  22#include <linux/bitmap.h>
  23#include <linux/math64.h>
 
 
 
  24#include <asm/processor.h>
  25#include <asm/mce.h>
  26
  27#include "edac_core.h"
  28
  29/* Static vars */
  30static LIST_HEAD(sbridge_edac_list);
  31static DEFINE_MUTEX(sbridge_edac_lock);
  32static int probed;
  33
  34/*
  35 * Alter this version for the module when modifications are made
  36 */
  37#define SBRIDGE_REVISION    " Ver: 1.1.1 "
  38#define EDAC_MOD_STR      "sbridge_edac"
  39
  40/*
  41 * Debug macros
  42 */
  43#define sbridge_printk(level, fmt, arg...)			\
  44	edac_printk(level, "sbridge", fmt, ##arg)
  45
  46#define sbridge_mc_printk(mci, level, fmt, arg...)		\
  47	edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
  48
  49/*
  50 * Get a bit field at register value <v>, from bit <lo> to bit <hi>
  51 */
  52#define GET_BITFIELD(v, lo, hi)	\
  53	(((v) & GENMASK_ULL(hi, lo)) >> (lo))
  54
  55/* Devices 12 Function 6, Offsets 0x80 to 0xcc */
  56static const u32 sbridge_dram_rule[] = {
  57	0x80, 0x88, 0x90, 0x98, 0xa0,
  58	0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
  59};
  60
  61static const u32 ibridge_dram_rule[] = {
  62	0x60, 0x68, 0x70, 0x78, 0x80,
  63	0x88, 0x90, 0x98, 0xa0,	0xa8,
  64	0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
  65	0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
  66};
  67
  68static const u32 knl_dram_rule[] = {
  69	0x60, 0x68, 0x70, 0x78, 0x80, /* 0-4 */
  70	0x88, 0x90, 0x98, 0xa0, 0xa8, /* 5-9 */
  71	0xb0, 0xb8, 0xc0, 0xc8, 0xd0, /* 10-14 */
  72	0xd8, 0xe0, 0xe8, 0xf0, 0xf8, /* 15-19 */
  73	0x100, 0x108, 0x110, 0x118,   /* 20-23 */
  74};
  75
  76#define DRAM_RULE_ENABLE(reg)	GET_BITFIELD(reg, 0,  0)
  77#define A7MODE(reg)		GET_BITFIELD(reg, 26, 26)
  78
  79static char *show_dram_attr(u32 attr)
  80{
  81	switch (attr) {
  82		case 0:
  83			return "DRAM";
  84		case 1:
  85			return "MMCFG";
  86		case 2:
  87			return "NXM";
  88		default:
  89			return "unknown";
  90	}
  91}
  92
  93static const u32 sbridge_interleave_list[] = {
  94	0x84, 0x8c, 0x94, 0x9c, 0xa4,
  95	0xac, 0xb4, 0xbc, 0xc4, 0xcc,
  96};
  97
  98static const u32 ibridge_interleave_list[] = {
  99	0x64, 0x6c, 0x74, 0x7c, 0x84,
 100	0x8c, 0x94, 0x9c, 0xa4, 0xac,
 101	0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
 102	0xdc, 0xe4, 0xec, 0xf4, 0xfc,
 103};
 104
 105static const u32 knl_interleave_list[] = {
 106	0x64, 0x6c, 0x74, 0x7c, 0x84, /* 0-4 */
 107	0x8c, 0x94, 0x9c, 0xa4, 0xac, /* 5-9 */
 108	0xb4, 0xbc, 0xc4, 0xcc, 0xd4, /* 10-14 */
 109	0xdc, 0xe4, 0xec, 0xf4, 0xfc, /* 15-19 */
 110	0x104, 0x10c, 0x114, 0x11c,   /* 20-23 */
 111};
 
 
 
 
 112
 113struct interleave_pkg {
 114	unsigned char start;
 115	unsigned char end;
 116};
 117
 118static const struct interleave_pkg sbridge_interleave_pkg[] = {
 119	{ 0, 2 },
 120	{ 3, 5 },
 121	{ 8, 10 },
 122	{ 11, 13 },
 123	{ 16, 18 },
 124	{ 19, 21 },
 125	{ 24, 26 },
 126	{ 27, 29 },
 127};
 128
 129static const struct interleave_pkg ibridge_interleave_pkg[] = {
 130	{ 0, 3 },
 131	{ 4, 7 },
 132	{ 8, 11 },
 133	{ 12, 15 },
 134	{ 16, 19 },
 135	{ 20, 23 },
 136	{ 24, 27 },
 137	{ 28, 31 },
 138};
 139
 140static inline int sad_pkg(const struct interleave_pkg *table, u32 reg,
 141			  int interleave)
 142{
 143	return GET_BITFIELD(reg, table[interleave].start,
 144			    table[interleave].end);
 145}
 146
 147/* Devices 12 Function 7 */
 148
 149#define TOLM		0x80
 150#define TOHM		0x84
 151#define HASWELL_TOLM	0xd0
 152#define HASWELL_TOHM_0	0xd4
 153#define HASWELL_TOHM_1	0xd8
 154#define KNL_TOLM	0xd0
 155#define KNL_TOHM_0	0xd4
 156#define KNL_TOHM_1	0xd8
 157
 158#define GET_TOLM(reg)		((GET_BITFIELD(reg, 0,  3) << 28) | 0x3ffffff)
 159#define GET_TOHM(reg)		((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
 160
 161/* Device 13 Function 6 */
 162
 163#define SAD_TARGET	0xf0
 164
 165#define SOURCE_ID(reg)		GET_BITFIELD(reg, 9, 11)
 166
 167#define SOURCE_ID_KNL(reg)	GET_BITFIELD(reg, 12, 14)
 168
 169#define SAD_CONTROL	0xf4
 170
 171/* Device 14 function 0 */
 172
 173static const u32 tad_dram_rule[] = {
 174	0x40, 0x44, 0x48, 0x4c,
 175	0x50, 0x54, 0x58, 0x5c,
 176	0x60, 0x64, 0x68, 0x6c,
 177};
 178#define MAX_TAD	ARRAY_SIZE(tad_dram_rule)
 179
 180#define TAD_LIMIT(reg)		((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
 181#define TAD_SOCK(reg)		GET_BITFIELD(reg, 10, 11)
 182#define TAD_CH(reg)		GET_BITFIELD(reg,  8,  9)
 183#define TAD_TGT3(reg)		GET_BITFIELD(reg,  6,  7)
 184#define TAD_TGT2(reg)		GET_BITFIELD(reg,  4,  5)
 185#define TAD_TGT1(reg)		GET_BITFIELD(reg,  2,  3)
 186#define TAD_TGT0(reg)		GET_BITFIELD(reg,  0,  1)
 187
 188/* Device 15, function 0 */
 189
 190#define MCMTR			0x7c
 191#define KNL_MCMTR		0x624
 192
 193#define IS_ECC_ENABLED(mcmtr)		GET_BITFIELD(mcmtr, 2, 2)
 194#define IS_LOCKSTEP_ENABLED(mcmtr)	GET_BITFIELD(mcmtr, 1, 1)
 195#define IS_CLOSE_PG(mcmtr)		GET_BITFIELD(mcmtr, 0, 0)
 196
 197/* Device 15, function 1 */
 198
 199#define RASENABLES		0xac
 200#define IS_MIRROR_ENABLED(reg)		GET_BITFIELD(reg, 0, 0)
 201
 202/* Device 15, functions 2-5 */
 203
 204static const int mtr_regs[] = {
 205	0x80, 0x84, 0x88,
 206};
 207
 208static const int knl_mtr_reg = 0xb60;
 209
 210#define RANK_DISABLE(mtr)		GET_BITFIELD(mtr, 16, 19)
 211#define IS_DIMM_PRESENT(mtr)		GET_BITFIELD(mtr, 14, 14)
 212#define RANK_CNT_BITS(mtr)		GET_BITFIELD(mtr, 12, 13)
 213#define RANK_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 2, 4)
 214#define COL_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 0, 1)
 215
 216static const u32 tad_ch_nilv_offset[] = {
 217	0x90, 0x94, 0x98, 0x9c,
 218	0xa0, 0xa4, 0xa8, 0xac,
 219	0xb0, 0xb4, 0xb8, 0xbc,
 220};
 221#define CHN_IDX_OFFSET(reg)		GET_BITFIELD(reg, 28, 29)
 222#define TAD_OFFSET(reg)			(GET_BITFIELD(reg,  6, 25) << 26)
 223
 224static const u32 rir_way_limit[] = {
 225	0x108, 0x10c, 0x110, 0x114, 0x118,
 226};
 227#define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
 228
 229#define IS_RIR_VALID(reg)	GET_BITFIELD(reg, 31, 31)
 230#define RIR_WAY(reg)		GET_BITFIELD(reg, 28, 29)
 231
 232#define MAX_RIR_WAY	8
 233
 234static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
 235	{ 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
 236	{ 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
 237	{ 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
 238	{ 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
 239	{ 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
 240};
 241
 242#define RIR_RNK_TGT(reg)		GET_BITFIELD(reg, 16, 19)
 243#define RIR_OFFSET(reg)		GET_BITFIELD(reg,  2, 14)
 
 
 
 244
 245/* Device 16, functions 2-7 */
 246
 247/*
 248 * FIXME: Implement the error count reads directly
 249 */
 250
 251static const u32 correrrcnt[] = {
 252	0x104, 0x108, 0x10c, 0x110,
 253};
 254
 255#define RANK_ODD_OV(reg)		GET_BITFIELD(reg, 31, 31)
 256#define RANK_ODD_ERR_CNT(reg)		GET_BITFIELD(reg, 16, 30)
 257#define RANK_EVEN_OV(reg)		GET_BITFIELD(reg, 15, 15)
 258#define RANK_EVEN_ERR_CNT(reg)		GET_BITFIELD(reg,  0, 14)
 259
 
 
 
 
 
 260static const u32 correrrthrsld[] = {
 261	0x11c, 0x120, 0x124, 0x128,
 262};
 
 263
 264#define RANK_ODD_ERR_THRSLD(reg)	GET_BITFIELD(reg, 16, 30)
 265#define RANK_EVEN_ERR_THRSLD(reg)	GET_BITFIELD(reg,  0, 14)
 266
 267
 268/* Device 17, function 0 */
 269
 270#define SB_RANK_CFG_A		0x0328
 271
 272#define IB_RANK_CFG_A		0x0320
 273
 274/*
 275 * sbridge structs
 276 */
 277
 278#define NUM_CHANNELS		8	/* 2MC per socket, four chan per MC */
 279#define MAX_DIMMS		3	/* Max DIMMS per channel */
 280#define KNL_MAX_CHAS		38	/* KNL max num. of Cache Home Agents */
 281#define KNL_MAX_CHANNELS	6	/* KNL max num. of PCI channels */
 282#define KNL_MAX_EDCS		8	/* Embedded DRAM controllers */
 283#define CHANNEL_UNSPECIFIED	0xf	/* Intel IA32 SDM 15-14 */
 284
 285enum type {
 286	SANDY_BRIDGE,
 287	IVY_BRIDGE,
 288	HASWELL,
 289	BROADWELL,
 290	KNIGHTS_LANDING,
 291};
 292
 
 
 
 
 
 
 
 
 
 
 
 
 293struct sbridge_pvt;
 294struct sbridge_info {
 295	enum type	type;
 296	u32		mcmtr;
 297	u32		rankcfgr;
 298	u64		(*get_tolm)(struct sbridge_pvt *pvt);
 299	u64		(*get_tohm)(struct sbridge_pvt *pvt);
 300	u64		(*rir_limit)(u32 reg);
 301	u64		(*sad_limit)(u32 reg);
 302	u32		(*interleave_mode)(u32 reg);
 303	char*		(*show_interleave_mode)(u32 reg);
 304	u32		(*dram_attr)(u32 reg);
 305	const u32	*dram_rule;
 306	const u32	*interleave_list;
 307	const struct interleave_pkg *interleave_pkg;
 308	u8		max_sad;
 309	u8		max_interleave;
 310	u8		(*get_node_id)(struct sbridge_pvt *pvt);
 
 311	enum mem_type	(*get_memory_type)(struct sbridge_pvt *pvt);
 312	enum dev_type	(*get_width)(struct sbridge_pvt *pvt, u32 mtr);
 313	struct pci_dev	*pci_vtd;
 314};
 315
 316struct sbridge_channel {
 317	u32		ranks;
 318	u32		dimms;
 
 
 
 
 
 
 319};
 320
 321struct pci_id_descr {
 322	int			dev_id;
 323	int			optional;
 
 324};
 325
 326struct pci_id_table {
 327	const struct pci_id_descr	*descr;
 328	int				n_devs;
 
 
 
 329};
 330
 331struct sbridge_dev {
 332	struct list_head	list;
 
 333	u8			bus, mc;
 334	u8			node_id, source_id;
 335	struct pci_dev		**pdev;
 
 336	int			n_devs;
 
 337	struct mem_ctl_info	*mci;
 338};
 339
 340struct knl_pvt {
 341	struct pci_dev          *pci_cha[KNL_MAX_CHAS];
 342	struct pci_dev          *pci_channel[KNL_MAX_CHANNELS];
 343	struct pci_dev          *pci_mc0;
 344	struct pci_dev          *pci_mc1;
 345	struct pci_dev          *pci_mc0_misc;
 346	struct pci_dev          *pci_mc1_misc;
 347	struct pci_dev          *pci_mc_info; /* tolm, tohm */
 348};
 349
 350struct sbridge_pvt {
 351	struct pci_dev		*pci_ta, *pci_ddrio, *pci_ras;
 
 352	struct pci_dev		*pci_sad0, *pci_sad1;
 353	struct pci_dev		*pci_ha0, *pci_ha1;
 354	struct pci_dev		*pci_br0, *pci_br1;
 355	struct pci_dev		*pci_ha1_ta;
 
 356	struct pci_dev		*pci_tad[NUM_CHANNELS];
 357
 358	struct sbridge_dev	*sbridge_dev;
 359
 360	struct sbridge_info	info;
 361	struct sbridge_channel	channel[NUM_CHANNELS];
 362
 363	/* Memory type detection */
 364	bool			is_mirrored, is_lockstep, is_close_pg;
 365	bool			is_chan_hash;
 366
 367	/* Fifo double buffers */
 368	struct mce		mce_entry[MCE_LOG_LEN];
 369	struct mce		mce_outentry[MCE_LOG_LEN];
 370
 371	/* Fifo in/out counters */
 372	unsigned		mce_in, mce_out;
 373
 374	/* Count indicator to show errors not got */
 375	unsigned		mce_overrun;
 376
 377	/* Memory description */
 378	u64			tolm, tohm;
 379	struct knl_pvt knl;
 380};
 381
 382#define PCI_DESCR(device_id, opt)	\
 383	.dev_id = (device_id),		\
 384	.optional = opt
 
 385
 386static const struct pci_id_descr pci_dev_descr_sbridge[] = {
 387		/* Processor Home Agent */
 388	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0, 0)	},
 389
 390		/* Memory controller */
 391	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA, 0)	},
 392	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS, 0)	},
 393	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0, 0)	},
 394	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1, 0)	},
 395	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2, 0)	},
 396	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3, 0)	},
 397	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1)	},
 398
 399		/* System Address Decoder */
 400	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0, 0)	},
 401	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1, 0)	},
 402
 403		/* Broadcast Registers */
 404	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR, 0)		},
 405};
 406
 407#define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
 
 
 
 
 
 
 
 408static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
 409	PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge),
 410	{0,}			/* 0 terminated list. */
 411};
 412
 413/* This changes depending if 1HA or 2HA:
 414 * 1HA:
 415 *	0x0eb8 (17.0) is DDRIO0
 416 * 2HA:
 417 *	0x0ebc (17.4) is DDRIO0
 418 */
 419#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0	0x0eb8
 420#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0	0x0ebc
 421
 422/* pci ids */
 423#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0		0x0ea0
 424#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA		0x0ea8
 425#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS		0x0e71
 426#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0	0x0eaa
 427#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1	0x0eab
 428#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2	0x0eac
 429#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3	0x0ead
 430#define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD			0x0ec8
 431#define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0			0x0ec9
 432#define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1			0x0eca
 433#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1		0x0e60
 434#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA		0x0e68
 435#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS		0x0e79
 436#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0	0x0e6a
 437#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1	0x0e6b
 438#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2	0x0e6c
 439#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3	0x0e6d
 440
 441static const struct pci_id_descr pci_dev_descr_ibridge[] = {
 442		/* Processor Home Agent */
 443	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0, 0)		},
 
 444
 445		/* Memory controller */
 446	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA, 0)		},
 447	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS, 0)		},
 448	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0, 0)	},
 449	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1, 0)	},
 450	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2, 0)	},
 451	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3, 0)	},
 
 
 
 
 
 
 
 
 
 
 
 452
 453		/* System Address Decoder */
 454	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD, 0)			},
 455
 456		/* Broadcast Registers */
 457	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0, 1)			},
 458	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1, 0)			},
 459
 460		/* Optional, mode 2HA */
 461	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1, 1)		},
 462#if 0
 463	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA, 1)	},
 464	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS, 1)	},
 465#endif
 466	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0, 1)	},
 467	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1, 1)	},
 468	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2, 1)	},
 469	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3, 1)	},
 470
 471	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0, 1)	},
 472	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0, 1)	},
 473};
 474
 475static const struct pci_id_table pci_dev_descr_ibridge_table[] = {
 476	PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge),
 477	{0,}			/* 0 terminated list. */
 478};
 479
 480/* Haswell support */
 481/* EN processor:
 482 *	- 1 IMC
 483 *	- 3 DDR3 channels, 2 DPC per channel
 484 * EP processor:
 485 *	- 1 or 2 IMC
 486 *	- 4 DDR4 channels, 3 DPC per channel
 487 * EP 4S processor:
 488 *	- 2 IMC
 489 *	- 4 DDR4 channels, 3 DPC per channel
 490 * EX processor:
 491 *	- 2 IMC
 492 *	- each IMC interfaces with a SMI 2 channel
 493 *	- each SMI channel interfaces with a scalable memory buffer
 494 *	- each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
 495 */
 496#define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */
 497#define HASWELL_HASYSDEFEATURE2 0x84
 498#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
 499#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0	0x2fa0
 500#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1	0x2f60
 501#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA	0x2fa8
 502#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL 0x2f71
 503#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA	0x2f68
 504#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL 0x2f79
 505#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
 506#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
 507#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
 508#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
 509#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
 510#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
 511#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
 512#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
 513#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
 514#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
 515#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
 516#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1 0x2fbf
 517#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2 0x2fb9
 518#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3 0x2fbb
 519static const struct pci_id_descr pci_dev_descr_haswell[] = {
 520	/* first item must be the HA */
 521	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0, 0)		},
 522
 523	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0, 0)	},
 524	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1, 0)	},
 525
 526	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1, 1)		},
 527
 528	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA, 0)		},
 529	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL, 0)	},
 530	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0, 0)	},
 531	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1, 0)	},
 532	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2, 1)	},
 533	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3, 1)	},
 534
 535	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0, 1)		},
 536	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1, 1)		},
 537	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2, 1)		},
 538	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3, 1)		},
 539
 540	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA, 1)		},
 541	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL, 1)	},
 542	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0, 1)	},
 543	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1, 1)	},
 544	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2, 1)	},
 545	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3, 1)	},
 546};
 547
 548static const struct pci_id_table pci_dev_descr_haswell_table[] = {
 549	PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell),
 550	{0,}			/* 0 terminated list. */
 551};
 552
 553/* Knight's Landing Support */
 554/*
 555 * KNL's memory channels are swizzled between memory controllers.
 556 * MC0 is mapped to CH3,5,6 and MC1 is mapped to CH0,1,2
 557 */
 558#define knl_channel_remap(channel) ((channel + 3) % 6)
 559
 560/* Memory controller, TAD tables, error injection - 2-8-0, 2-9-0 (2 of these) */
 561#define PCI_DEVICE_ID_INTEL_KNL_IMC_MC       0x7840
 562/* DRAM channel stuff; bank addrs, dimmmtr, etc.. 2-8-2 - 2-9-4 (6 of these) */
 563#define PCI_DEVICE_ID_INTEL_KNL_IMC_CHANNEL  0x7843
 564/* kdrwdbu TAD limits/offsets, MCMTR - 2-10-1, 2-11-1 (2 of these) */
 565#define PCI_DEVICE_ID_INTEL_KNL_IMC_TA       0x7844
 566/* CHA broadcast registers, dram rules - 1-29-0 (1 of these) */
 567#define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0     0x782a
 568/* SAD target - 1-29-1 (1 of these) */
 569#define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1     0x782b
 570/* Caching / Home Agent */
 571#define PCI_DEVICE_ID_INTEL_KNL_IMC_CHA      0x782c
 572/* Device with TOLM and TOHM, 0-5-0 (1 of these) */
 573#define PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM    0x7810
 574
 575/*
 576 * KNL differs from SB, IB, and Haswell in that it has multiple
 577 * instances of the same device with the same device ID, so we handle that
 578 * by creating as many copies in the table as we expect to find.
 579 * (Like device ID must be grouped together.)
 580 */
 581
 582static const struct pci_id_descr pci_dev_descr_knl[] = {
 583	[0]         = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0, 0) },
 584	[1]         = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1, 0) },
 585	[2 ... 3]   = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_MC, 0)},
 586	[4 ... 41]  = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHA, 0) },
 587	[42 ... 47] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHANNEL, 0) },
 588	[48]        = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TA, 0) },
 589	[49]        = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM, 0) },
 590};
 591
 592static const struct pci_id_table pci_dev_descr_knl_table[] = {
 593	PCI_ID_TABLE_ENTRY(pci_dev_descr_knl),
 594	{0,}
 595};
 596
 597/*
 598 * Broadwell support
 599 *
 600 * DE processor:
 601 *	- 1 IMC
 602 *	- 2 DDR3 channels, 2 DPC per channel
 603 * EP processor:
 604 *	- 1 or 2 IMC
 605 *	- 4 DDR4 channels, 3 DPC per channel
 606 * EP 4S processor:
 607 *	- 2 IMC
 608 *	- 4 DDR4 channels, 3 DPC per channel
 609 * EX processor:
 610 *	- 2 IMC
 611 *	- each IMC interfaces with a SMI 2 channel
 612 *	- each SMI channel interfaces with a scalable memory buffer
 613 *	- each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
 614 */
 615#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28
 616#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0	0x6fa0
 617#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1	0x6f60
 618#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA	0x6fa8
 619#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL 0x6f71
 620#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA	0x6f68
 621#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_THERMAL 0x6f79
 622#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc
 623#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd
 624#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa
 625#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab
 626#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac
 627#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad
 628#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 0x6f6a
 629#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1 0x6f6b
 630#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2 0x6f6c
 631#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3 0x6f6d
 632#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf
 633
 634static const struct pci_id_descr pci_dev_descr_broadwell[] = {
 635	/* first item must be the HA */
 636	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0, 0)		},
 637
 638	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0, 0)	},
 639	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1, 0)	},
 640
 641	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1, 1)		},
 642
 643	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA, 0)	},
 644	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL, 0)	},
 645	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0, 0)	},
 646	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1, 0)	},
 647	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2, 1)	},
 648	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3, 1)	},
 649
 650	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0, 1)	},
 651
 652	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA, 1)	},
 653	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_THERMAL, 1)	},
 654	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0, 1)	},
 655	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1, 1)	},
 656	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2, 1)	},
 657	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3, 1)	},
 
 
 658};
 659
 660static const struct pci_id_table pci_dev_descr_broadwell_table[] = {
 661	PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell),
 662	{0,}			/* 0 terminated list. */
 663};
 664
 665/*
 666 *	pci_device_id	table for which devices we are looking for
 667 */
 668static const struct pci_device_id sbridge_pci_tbl[] = {
 669	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0)},
 670	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA)},
 671	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0)},
 672	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0)},
 673	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0)},
 674	{0,}			/* 0 terminated list. */
 675};
 676
 677
 678/****************************************************************************
 679			Ancillary status routines
 680 ****************************************************************************/
 681
 682static inline int numrank(enum type type, u32 mtr)
 683{
 684	int ranks = (1 << RANK_CNT_BITS(mtr));
 685	int max = 4;
 686
 687	if (type == HASWELL || type == BROADWELL || type == KNIGHTS_LANDING)
 688		max = 8;
 689
 690	if (ranks > max) {
 691		edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
 692			 ranks, max, (unsigned int)RANK_CNT_BITS(mtr), mtr);
 693		return -EINVAL;
 694	}
 695
 696	return ranks;
 697}
 698
 699static inline int numrow(u32 mtr)
 700{
 701	int rows = (RANK_WIDTH_BITS(mtr) + 12);
 702
 703	if (rows < 13 || rows > 18) {
 704		edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
 705			 rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
 706		return -EINVAL;
 707	}
 708
 709	return 1 << rows;
 710}
 711
 712static inline int numcol(u32 mtr)
 713{
 714	int cols = (COL_WIDTH_BITS(mtr) + 10);
 715
 716	if (cols > 12) {
 717		edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
 718			 cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
 719		return -EINVAL;
 720	}
 721
 722	return 1 << cols;
 723}
 724
 725static struct sbridge_dev *get_sbridge_dev(u8 bus, int multi_bus)
 
 
 726{
 727	struct sbridge_dev *sbridge_dev;
 728
 729	/*
 730	 * If we have devices scattered across several busses that pertain
 731	 * to the same memory controller, we'll lump them all together.
 732	 */
 733	if (multi_bus) {
 734		return list_first_entry_or_null(&sbridge_edac_list,
 735				struct sbridge_dev, list);
 736	}
 737
 738	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
 739		if (sbridge_dev->bus == bus)
 
 
 
 
 740			return sbridge_dev;
 741	}
 742
 743	return NULL;
 744}
 745
 746static struct sbridge_dev *alloc_sbridge_dev(u8 bus,
 747					   const struct pci_id_table *table)
 748{
 749	struct sbridge_dev *sbridge_dev;
 750
 751	sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
 752	if (!sbridge_dev)
 753		return NULL;
 754
 755	sbridge_dev->pdev = kzalloc(sizeof(*sbridge_dev->pdev) * table->n_devs,
 756				   GFP_KERNEL);
 
 757	if (!sbridge_dev->pdev) {
 758		kfree(sbridge_dev);
 759		return NULL;
 760	}
 761
 
 762	sbridge_dev->bus = bus;
 763	sbridge_dev->n_devs = table->n_devs;
 
 764	list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
 765
 766	return sbridge_dev;
 767}
 768
 769static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
 770{
 771	list_del(&sbridge_dev->list);
 772	kfree(sbridge_dev->pdev);
 773	kfree(sbridge_dev);
 774}
 775
 776static u64 sbridge_get_tolm(struct sbridge_pvt *pvt)
 777{
 778	u32 reg;
 779
 780	/* Address range is 32:28 */
 781	pci_read_config_dword(pvt->pci_sad1, TOLM, &reg);
 782	return GET_TOLM(reg);
 783}
 784
 785static u64 sbridge_get_tohm(struct sbridge_pvt *pvt)
 786{
 787	u32 reg;
 788
 789	pci_read_config_dword(pvt->pci_sad1, TOHM, &reg);
 790	return GET_TOHM(reg);
 791}
 792
 793static u64 ibridge_get_tolm(struct sbridge_pvt *pvt)
 794{
 795	u32 reg;
 796
 797	pci_read_config_dword(pvt->pci_br1, TOLM, &reg);
 798
 799	return GET_TOLM(reg);
 800}
 801
 802static u64 ibridge_get_tohm(struct sbridge_pvt *pvt)
 803{
 804	u32 reg;
 805
 806	pci_read_config_dword(pvt->pci_br1, TOHM, &reg);
 807
 808	return GET_TOHM(reg);
 809}
 810
 811static u64 rir_limit(u32 reg)
 812{
 813	return ((u64)GET_BITFIELD(reg,  1, 10) << 29) | 0x1fffffff;
 814}
 815
 816static u64 sad_limit(u32 reg)
 817{
 818	return (GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff;
 819}
 820
 821static u32 interleave_mode(u32 reg)
 822{
 823	return GET_BITFIELD(reg, 1, 1);
 824}
 825
 826char *show_interleave_mode(u32 reg)
 827{
 828	return interleave_mode(reg) ? "8:6" : "[8:6]XOR[18:16]";
 829}
 830
 831static u32 dram_attr(u32 reg)
 832{
 833	return GET_BITFIELD(reg, 2, 3);
 834}
 835
 836static u64 knl_sad_limit(u32 reg)
 837{
 838	return (GET_BITFIELD(reg, 7, 26) << 26) | 0x3ffffff;
 839}
 840
 841static u32 knl_interleave_mode(u32 reg)
 842{
 843	return GET_BITFIELD(reg, 1, 2);
 844}
 845
 846static char *knl_show_interleave_mode(u32 reg)
 
 
 
 
 847{
 848	char *s;
 849
 850	switch (knl_interleave_mode(reg)) {
 851	case 0:
 852		s = "use address bits [8:6]";
 853		break;
 854	case 1:
 855		s = "use address bits [10:8]";
 856		break;
 857	case 2:
 858		s = "use address bits [14:12]";
 859		break;
 860	case 3:
 861		s = "use address bits [32:30]";
 862		break;
 863	default:
 864		WARN_ON(1);
 865		break;
 866	}
 867
 868	return s;
 869}
 870
 871static u32 dram_attr_knl(u32 reg)
 872{
 873	return GET_BITFIELD(reg, 3, 4);
 874}
 875
 876
 877static enum mem_type get_memory_type(struct sbridge_pvt *pvt)
 878{
 879	u32 reg;
 880	enum mem_type mtype;
 881
 882	if (pvt->pci_ddrio) {
 883		pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr,
 884				      &reg);
 885		if (GET_BITFIELD(reg, 11, 11))
 886			/* FIXME: Can also be LRDIMM */
 887			mtype = MEM_RDDR3;
 888		else
 889			mtype = MEM_DDR3;
 890	} else
 891		mtype = MEM_UNKNOWN;
 892
 893	return mtype;
 894}
 895
 896static enum mem_type haswell_get_memory_type(struct sbridge_pvt *pvt)
 897{
 898	u32 reg;
 899	bool registered = false;
 900	enum mem_type mtype = MEM_UNKNOWN;
 901
 902	if (!pvt->pci_ddrio)
 903		goto out;
 904
 905	pci_read_config_dword(pvt->pci_ddrio,
 906			      HASWELL_DDRCRCLKCONTROLS, &reg);
 907	/* Is_Rdimm */
 908	if (GET_BITFIELD(reg, 16, 16))
 909		registered = true;
 910
 911	pci_read_config_dword(pvt->pci_ta, MCMTR, &reg);
 912	if (GET_BITFIELD(reg, 14, 14)) {
 913		if (registered)
 914			mtype = MEM_RDDR4;
 915		else
 916			mtype = MEM_DDR4;
 917	} else {
 918		if (registered)
 919			mtype = MEM_RDDR3;
 920		else
 921			mtype = MEM_DDR3;
 922	}
 923
 924out:
 925	return mtype;
 926}
 927
 928static enum dev_type knl_get_width(struct sbridge_pvt *pvt, u32 mtr)
 929{
 930	/* for KNL value is fixed */
 931	return DEV_X16;
 932}
 933
 934static enum dev_type sbridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
 935{
 936	/* there's no way to figure out */
 937	return DEV_UNKNOWN;
 938}
 939
 940static enum dev_type __ibridge_get_width(u32 mtr)
 941{
 942	enum dev_type type;
 943
 944	switch (mtr) {
 945	case 3:
 946		type = DEV_UNKNOWN;
 947		break;
 948	case 2:
 949		type = DEV_X16;
 950		break;
 951	case 1:
 952		type = DEV_X8;
 953		break;
 954	case 0:
 955		type = DEV_X4;
 956		break;
 957	}
 958
 959	return type;
 960}
 961
 962static enum dev_type ibridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
 963{
 964	/*
 965	 * ddr3_width on the documentation but also valid for DDR4 on
 966	 * Haswell
 967	 */
 968	return __ibridge_get_width(GET_BITFIELD(mtr, 7, 8));
 969}
 970
 971static enum dev_type broadwell_get_width(struct sbridge_pvt *pvt, u32 mtr)
 972{
 973	/* ddr3_width on the documentation but also valid for DDR4 */
 974	return __ibridge_get_width(GET_BITFIELD(mtr, 8, 9));
 975}
 976
 977static enum mem_type knl_get_memory_type(struct sbridge_pvt *pvt)
 978{
 979	/* DDR4 RDIMMS and LRDIMMS are supported */
 980	return MEM_RDDR4;
 981}
 982
 983static u8 get_node_id(struct sbridge_pvt *pvt)
 984{
 985	u32 reg;
 986	pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, &reg);
 987	return GET_BITFIELD(reg, 0, 2);
 988}
 989
 990static u8 haswell_get_node_id(struct sbridge_pvt *pvt)
 991{
 992	u32 reg;
 993
 994	pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
 995	return GET_BITFIELD(reg, 0, 3);
 996}
 997
 998static u8 knl_get_node_id(struct sbridge_pvt *pvt)
 999{
1000	u32 reg;
1001
1002	pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
1003	return GET_BITFIELD(reg, 0, 2);
1004}
1005
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1006
1007static u64 haswell_get_tolm(struct sbridge_pvt *pvt)
1008{
1009	u32 reg;
1010
1011	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOLM, &reg);
1012	return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
1013}
1014
1015static u64 haswell_get_tohm(struct sbridge_pvt *pvt)
1016{
1017	u64 rc;
1018	u32 reg;
1019
1020	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_0, &reg);
1021	rc = GET_BITFIELD(reg, 26, 31);
1022	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_1, &reg);
1023	rc = ((reg << 6) | rc) << 26;
1024
1025	return rc | 0x1ffffff;
1026}
1027
1028static u64 knl_get_tolm(struct sbridge_pvt *pvt)
1029{
1030	u32 reg;
1031
1032	pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOLM, &reg);
1033	return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
1034}
1035
1036static u64 knl_get_tohm(struct sbridge_pvt *pvt)
1037{
1038	u64 rc;
1039	u32 reg_lo, reg_hi;
1040
1041	pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_0, &reg_lo);
1042	pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_1, &reg_hi);
1043	rc = ((u64)reg_hi << 32) | reg_lo;
1044	return rc | 0x3ffffff;
1045}
1046
1047
1048static u64 haswell_rir_limit(u32 reg)
1049{
1050	return (((u64)GET_BITFIELD(reg,  1, 11) + 1) << 29) - 1;
1051}
1052
1053static inline u8 sad_pkg_socket(u8 pkg)
1054{
1055	/* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
1056	return ((pkg >> 3) << 2) | (pkg & 0x3);
1057}
1058
1059static inline u8 sad_pkg_ha(u8 pkg)
1060{
1061	return (pkg >> 2) & 0x1;
1062}
1063
1064static int haswell_chan_hash(int idx, u64 addr)
1065{
1066	int i;
1067
1068	/*
1069	 * XOR even bits from 12:26 to bit0 of idx,
1070	 *     odd bits from 13:27 to bit1
1071	 */
1072	for (i = 12; i < 28; i += 2)
1073		idx ^= (addr >> i) & 3;
1074
1075	return idx;
1076}
1077
1078/****************************************************************************
1079			Memory check routines
1080 ****************************************************************************/
1081static struct pci_dev *get_pdev_same_bus(u8 bus, u32 id)
1082{
1083	struct pci_dev *pdev = NULL;
1084
1085	do {
1086		pdev = pci_get_device(PCI_VENDOR_ID_INTEL, id, pdev);
1087		if (pdev && pdev->bus->number == bus)
1088			break;
1089	} while (pdev);
1090
1091	return pdev;
1092}
1093
1094/**
1095 * check_if_ecc_is_active() - Checks if ECC is active
1096 * @bus:	Device bus
1097 * @type:	Memory controller type
1098 * returns: 0 in case ECC is active, -ENODEV if it can't be determined or
1099 *	    disabled
1100 */
1101static int check_if_ecc_is_active(const u8 bus, enum type type)
1102{
1103	struct pci_dev *pdev = NULL;
1104	u32 mcmtr, id;
1105
1106	switch (type) {
1107	case IVY_BRIDGE:
1108		id = PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA;
1109		break;
1110	case HASWELL:
1111		id = PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA;
1112		break;
1113	case SANDY_BRIDGE:
1114		id = PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA;
1115		break;
1116	case BROADWELL:
1117		id = PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA;
1118		break;
1119	case KNIGHTS_LANDING:
1120		/*
1121		 * KNL doesn't group things by bus the same way
1122		 * SB/IB/Haswell does.
1123		 */
1124		id = PCI_DEVICE_ID_INTEL_KNL_IMC_TA;
1125		break;
1126	default:
1127		return -ENODEV;
1128	}
1129
1130	if (type != KNIGHTS_LANDING)
1131		pdev = get_pdev_same_bus(bus, id);
1132	else
1133		pdev = pci_get_device(PCI_VENDOR_ID_INTEL, id, 0);
1134
1135	if (!pdev) {
1136		sbridge_printk(KERN_ERR, "Couldn't find PCI device "
1137					"%04x:%04x! on bus %02d\n",
1138					PCI_VENDOR_ID_INTEL, id, bus);
1139		return -ENODEV;
1140	}
1141
1142	pci_read_config_dword(pdev,
1143			type == KNIGHTS_LANDING ? KNL_MCMTR : MCMTR, &mcmtr);
1144	if (!IS_ECC_ENABLED(mcmtr)) {
1145		sbridge_printk(KERN_ERR, "ECC is disabled. Aborting\n");
1146		return -ENODEV;
1147	}
1148	return 0;
1149}
1150
1151/* Low bits of TAD limit, and some metadata. */
1152static const u32 knl_tad_dram_limit_lo[] = {
1153	0x400, 0x500, 0x600, 0x700,
1154	0x800, 0x900, 0xa00, 0xb00,
1155};
1156
1157/* Low bits of TAD offset. */
1158static const u32 knl_tad_dram_offset_lo[] = {
1159	0x404, 0x504, 0x604, 0x704,
1160	0x804, 0x904, 0xa04, 0xb04,
1161};
1162
1163/* High 16 bits of TAD limit and offset. */
1164static const u32 knl_tad_dram_hi[] = {
1165	0x408, 0x508, 0x608, 0x708,
1166	0x808, 0x908, 0xa08, 0xb08,
1167};
1168
1169/* Number of ways a tad entry is interleaved. */
1170static const u32 knl_tad_ways[] = {
1171	8, 6, 4, 3, 2, 1,
1172};
1173
1174/*
1175 * Retrieve the n'th Target Address Decode table entry
1176 * from the memory controller's TAD table.
1177 *
1178 * @pvt:	driver private data
1179 * @entry:	which entry you want to retrieve
1180 * @mc:		which memory controller (0 or 1)
1181 * @offset:	output tad range offset
1182 * @limit:	output address of first byte above tad range
1183 * @ways:	output number of interleave ways
1184 *
1185 * The offset value has curious semantics.  It's a sort of running total
1186 * of the sizes of all the memory regions that aren't mapped in this
1187 * tad table.
1188 */
1189static int knl_get_tad(const struct sbridge_pvt *pvt,
1190		const int entry,
1191		const int mc,
1192		u64 *offset,
1193		u64 *limit,
1194		int *ways)
1195{
1196	u32 reg_limit_lo, reg_offset_lo, reg_hi;
1197	struct pci_dev *pci_mc;
1198	int way_id;
1199
1200	switch (mc) {
1201	case 0:
1202		pci_mc = pvt->knl.pci_mc0;
1203		break;
1204	case 1:
1205		pci_mc = pvt->knl.pci_mc1;
1206		break;
1207	default:
1208		WARN_ON(1);
1209		return -EINVAL;
1210	}
1211
1212	pci_read_config_dword(pci_mc,
1213			knl_tad_dram_limit_lo[entry], &reg_limit_lo);
1214	pci_read_config_dword(pci_mc,
1215			knl_tad_dram_offset_lo[entry], &reg_offset_lo);
1216	pci_read_config_dword(pci_mc,
1217			knl_tad_dram_hi[entry], &reg_hi);
1218
1219	/* Is this TAD entry enabled? */
1220	if (!GET_BITFIELD(reg_limit_lo, 0, 0))
1221		return -ENODEV;
1222
1223	way_id = GET_BITFIELD(reg_limit_lo, 3, 5);
1224
1225	if (way_id < ARRAY_SIZE(knl_tad_ways)) {
1226		*ways = knl_tad_ways[way_id];
1227	} else {
1228		*ways = 0;
1229		sbridge_printk(KERN_ERR,
1230				"Unexpected value %d in mc_tad_limit_lo wayness field\n",
1231				way_id);
1232		return -ENODEV;
1233	}
1234
1235	/*
1236	 * The least significant 6 bits of base and limit are truncated.
1237	 * For limit, we fill the missing bits with 1s.
1238	 */
1239	*offset = ((u64) GET_BITFIELD(reg_offset_lo, 6, 31) << 6) |
1240				((u64) GET_BITFIELD(reg_hi, 0,  15) << 32);
1241	*limit = ((u64) GET_BITFIELD(reg_limit_lo,  6, 31) << 6) | 63 |
1242				((u64) GET_BITFIELD(reg_hi, 16, 31) << 32);
1243
1244	return 0;
1245}
1246
1247/* Determine which memory controller is responsible for a given channel. */
1248static int knl_channel_mc(int channel)
1249{
1250	WARN_ON(channel < 0 || channel >= 6);
1251
1252	return channel < 3 ? 1 : 0;
1253}
1254
1255/*
1256 * Get the Nth entry from EDC_ROUTE_TABLE register.
1257 * (This is the per-tile mapping of logical interleave targets to
1258 *  physical EDC modules.)
1259 *
1260 * entry 0: 0:2
1261 *       1: 3:5
1262 *       2: 6:8
1263 *       3: 9:11
1264 *       4: 12:14
1265 *       5: 15:17
1266 *       6: 18:20
1267 *       7: 21:23
1268 * reserved: 24:31
1269 */
1270static u32 knl_get_edc_route(int entry, u32 reg)
1271{
1272	WARN_ON(entry >= KNL_MAX_EDCS);
1273	return GET_BITFIELD(reg, entry*3, (entry*3)+2);
1274}
1275
1276/*
1277 * Get the Nth entry from MC_ROUTE_TABLE register.
1278 * (This is the per-tile mapping of logical interleave targets to
1279 *  physical DRAM channels modules.)
1280 *
1281 * entry 0: mc 0:2   channel 18:19
1282 *       1: mc 3:5   channel 20:21
1283 *       2: mc 6:8   channel 22:23
1284 *       3: mc 9:11  channel 24:25
1285 *       4: mc 12:14 channel 26:27
1286 *       5: mc 15:17 channel 28:29
1287 * reserved: 30:31
1288 *
1289 * Though we have 3 bits to identify the MC, we should only see
1290 * the values 0 or 1.
1291 */
1292
1293static u32 knl_get_mc_route(int entry, u32 reg)
1294{
1295	int mc, chan;
1296
1297	WARN_ON(entry >= KNL_MAX_CHANNELS);
1298
1299	mc = GET_BITFIELD(reg, entry*3, (entry*3)+2);
1300	chan = GET_BITFIELD(reg, (entry*2) + 18, (entry*2) + 18 + 1);
1301
1302	return knl_channel_remap(mc*3 + chan);
1303}
1304
1305/*
1306 * Render the EDC_ROUTE register in human-readable form.
1307 * Output string s should be at least KNL_MAX_EDCS*2 bytes.
1308 */
1309static void knl_show_edc_route(u32 reg, char *s)
1310{
1311	int i;
1312
1313	for (i = 0; i < KNL_MAX_EDCS; i++) {
1314		s[i*2] = knl_get_edc_route(i, reg) + '0';
1315		s[i*2+1] = '-';
1316	}
1317
1318	s[KNL_MAX_EDCS*2 - 1] = '\0';
1319}
1320
1321/*
1322 * Render the MC_ROUTE register in human-readable form.
1323 * Output string s should be at least KNL_MAX_CHANNELS*2 bytes.
1324 */
1325static void knl_show_mc_route(u32 reg, char *s)
1326{
1327	int i;
1328
1329	for (i = 0; i < KNL_MAX_CHANNELS; i++) {
1330		s[i*2] = knl_get_mc_route(i, reg) + '0';
1331		s[i*2+1] = '-';
1332	}
1333
1334	s[KNL_MAX_CHANNELS*2 - 1] = '\0';
1335}
1336
1337#define KNL_EDC_ROUTE 0xb8
1338#define KNL_MC_ROUTE 0xb4
1339
1340/* Is this dram rule backed by regular DRAM in flat mode? */
1341#define KNL_EDRAM(reg) GET_BITFIELD(reg, 29, 29)
1342
1343/* Is this dram rule cached? */
1344#define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1345
1346/* Is this rule backed by edc ? */
1347#define KNL_EDRAM_ONLY(reg) GET_BITFIELD(reg, 29, 29)
1348
1349/* Is this rule backed by DRAM, cacheable in EDRAM? */
1350#define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1351
1352/* Is this rule mod3? */
1353#define KNL_MOD3(reg) GET_BITFIELD(reg, 27, 27)
1354
1355/*
1356 * Figure out how big our RAM modules are.
1357 *
1358 * The DIMMMTR register in KNL doesn't tell us the size of the DIMMs, so we
1359 * have to figure this out from the SAD rules, interleave lists, route tables,
1360 * and TAD rules.
1361 *
1362 * SAD rules can have holes in them (e.g. the 3G-4G hole), so we have to
1363 * inspect the TAD rules to figure out how large the SAD regions really are.
1364 *
1365 * When we know the real size of a SAD region and how many ways it's
1366 * interleaved, we know the individual contribution of each channel to
1367 * TAD is size/ways.
1368 *
1369 * Finally, we have to check whether each channel participates in each SAD
1370 * region.
1371 *
1372 * Fortunately, KNL only supports one DIMM per channel, so once we know how
1373 * much memory the channel uses, we know the DIMM is at least that large.
1374 * (The BIOS might possibly choose not to map all available memory, in which
1375 * case we will underreport the size of the DIMM.)
1376 *
1377 * In theory, we could try to determine the EDC sizes as well, but that would
1378 * only work in flat mode, not in cache mode.
1379 *
1380 * @mc_sizes: Output sizes of channels (must have space for KNL_MAX_CHANNELS
1381 *            elements)
1382 */
1383static int knl_get_dimm_capacity(struct sbridge_pvt *pvt, u64 *mc_sizes)
1384{
1385	u64 sad_base, sad_size, sad_limit = 0;
1386	u64 tad_base, tad_size, tad_limit, tad_deadspace, tad_livespace;
1387	int sad_rule = 0;
1388	int tad_rule = 0;
1389	int intrlv_ways, tad_ways;
1390	u32 first_pkg, pkg;
1391	int i;
1392	u64 sad_actual_size[2]; /* sad size accounting for holes, per mc */
1393	u32 dram_rule, interleave_reg;
1394	u32 mc_route_reg[KNL_MAX_CHAS];
1395	u32 edc_route_reg[KNL_MAX_CHAS];
1396	int edram_only;
1397	char edc_route_string[KNL_MAX_EDCS*2];
1398	char mc_route_string[KNL_MAX_CHANNELS*2];
1399	int cur_reg_start;
1400	int mc;
1401	int channel;
1402	int way;
1403	int participants[KNL_MAX_CHANNELS];
1404	int participant_count = 0;
1405
1406	for (i = 0; i < KNL_MAX_CHANNELS; i++)
1407		mc_sizes[i] = 0;
1408
1409	/* Read the EDC route table in each CHA. */
1410	cur_reg_start = 0;
1411	for (i = 0; i < KNL_MAX_CHAS; i++) {
1412		pci_read_config_dword(pvt->knl.pci_cha[i],
1413				KNL_EDC_ROUTE, &edc_route_reg[i]);
1414
1415		if (i > 0 && edc_route_reg[i] != edc_route_reg[i-1]) {
1416			knl_show_edc_route(edc_route_reg[i-1],
1417					edc_route_string);
1418			if (cur_reg_start == i-1)
1419				edac_dbg(0, "edc route table for CHA %d: %s\n",
1420					cur_reg_start, edc_route_string);
1421			else
1422				edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1423					cur_reg_start, i-1, edc_route_string);
1424			cur_reg_start = i;
1425		}
1426	}
1427	knl_show_edc_route(edc_route_reg[i-1], edc_route_string);
1428	if (cur_reg_start == i-1)
1429		edac_dbg(0, "edc route table for CHA %d: %s\n",
1430			cur_reg_start, edc_route_string);
1431	else
1432		edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1433			cur_reg_start, i-1, edc_route_string);
1434
1435	/* Read the MC route table in each CHA. */
1436	cur_reg_start = 0;
1437	for (i = 0; i < KNL_MAX_CHAS; i++) {
1438		pci_read_config_dword(pvt->knl.pci_cha[i],
1439			KNL_MC_ROUTE, &mc_route_reg[i]);
1440
1441		if (i > 0 && mc_route_reg[i] != mc_route_reg[i-1]) {
1442			knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
1443			if (cur_reg_start == i-1)
1444				edac_dbg(0, "mc route table for CHA %d: %s\n",
1445					cur_reg_start, mc_route_string);
1446			else
1447				edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1448					cur_reg_start, i-1, mc_route_string);
1449			cur_reg_start = i;
1450		}
1451	}
1452	knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
1453	if (cur_reg_start == i-1)
1454		edac_dbg(0, "mc route table for CHA %d: %s\n",
1455			cur_reg_start, mc_route_string);
1456	else
1457		edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1458			cur_reg_start, i-1, mc_route_string);
1459
1460	/* Process DRAM rules */
1461	for (sad_rule = 0; sad_rule < pvt->info.max_sad; sad_rule++) {
1462		/* previous limit becomes the new base */
1463		sad_base = sad_limit;
1464
1465		pci_read_config_dword(pvt->pci_sad0,
1466			pvt->info.dram_rule[sad_rule], &dram_rule);
1467
1468		if (!DRAM_RULE_ENABLE(dram_rule))
1469			break;
1470
1471		edram_only = KNL_EDRAM_ONLY(dram_rule);
1472
1473		sad_limit = pvt->info.sad_limit(dram_rule)+1;
1474		sad_size = sad_limit - sad_base;
1475
1476		pci_read_config_dword(pvt->pci_sad0,
1477			pvt->info.interleave_list[sad_rule], &interleave_reg);
1478
1479		/*
1480		 * Find out how many ways this dram rule is interleaved.
1481		 * We stop when we see the first channel again.
1482		 */
1483		first_pkg = sad_pkg(pvt->info.interleave_pkg,
1484						interleave_reg, 0);
1485		for (intrlv_ways = 1; intrlv_ways < 8; intrlv_ways++) {
1486			pkg = sad_pkg(pvt->info.interleave_pkg,
1487						interleave_reg, intrlv_ways);
1488
1489			if ((pkg & 0x8) == 0) {
1490				/*
1491				 * 0 bit means memory is non-local,
1492				 * which KNL doesn't support
1493				 */
1494				edac_dbg(0, "Unexpected interleave target %d\n",
1495					pkg);
1496				return -1;
1497			}
1498
1499			if (pkg == first_pkg)
1500				break;
1501		}
1502		if (KNL_MOD3(dram_rule))
1503			intrlv_ways *= 3;
1504
1505		edac_dbg(3, "dram rule %d (base 0x%llx, limit 0x%llx), %d way interleave%s\n",
1506			sad_rule,
1507			sad_base,
1508			sad_limit,
1509			intrlv_ways,
1510			edram_only ? ", EDRAM" : "");
1511
1512		/*
1513		 * Find out how big the SAD region really is by iterating
1514		 * over TAD tables (SAD regions may contain holes).
1515		 * Each memory controller might have a different TAD table, so
1516		 * we have to look at both.
1517		 *
1518		 * Livespace is the memory that's mapped in this TAD table,
1519		 * deadspace is the holes (this could be the MMIO hole, or it
1520		 * could be memory that's mapped by the other TAD table but
1521		 * not this one).
1522		 */
1523		for (mc = 0; mc < 2; mc++) {
1524			sad_actual_size[mc] = 0;
1525			tad_livespace = 0;
1526			for (tad_rule = 0;
1527					tad_rule < ARRAY_SIZE(
1528						knl_tad_dram_limit_lo);
1529					tad_rule++) {
1530				if (knl_get_tad(pvt,
1531						tad_rule,
1532						mc,
1533						&tad_deadspace,
1534						&tad_limit,
1535						&tad_ways))
1536					break;
1537
1538				tad_size = (tad_limit+1) -
1539					(tad_livespace + tad_deadspace);
1540				tad_livespace += tad_size;
1541				tad_base = (tad_limit+1) - tad_size;
1542
1543				if (tad_base < sad_base) {
1544					if (tad_limit > sad_base)
1545						edac_dbg(0, "TAD region overlaps lower SAD boundary -- TAD tables may be configured incorrectly.\n");
1546				} else if (tad_base < sad_limit) {
1547					if (tad_limit+1 > sad_limit) {
1548						edac_dbg(0, "TAD region overlaps upper SAD boundary -- TAD tables may be configured incorrectly.\n");
1549					} else {
1550						/* TAD region is completely inside SAD region */
1551						edac_dbg(3, "TAD region %d 0x%llx - 0x%llx (%lld bytes) table%d\n",
1552							tad_rule, tad_base,
1553							tad_limit, tad_size,
1554							mc);
1555						sad_actual_size[mc] += tad_size;
1556					}
1557				}
1558				tad_base = tad_limit+1;
1559			}
1560		}
1561
1562		for (mc = 0; mc < 2; mc++) {
1563			edac_dbg(3, " total TAD DRAM footprint in table%d : 0x%llx (%lld bytes)\n",
1564				mc, sad_actual_size[mc], sad_actual_size[mc]);
1565		}
1566
1567		/* Ignore EDRAM rule */
1568		if (edram_only)
1569			continue;
1570
1571		/* Figure out which channels participate in interleave. */
1572		for (channel = 0; channel < KNL_MAX_CHANNELS; channel++)
1573			participants[channel] = 0;
1574
1575		/* For each channel, does at least one CHA have
1576		 * this channel mapped to the given target?
1577		 */
1578		for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
1579			for (way = 0; way < intrlv_ways; way++) {
1580				int target;
1581				int cha;
1582
1583				if (KNL_MOD3(dram_rule))
1584					target = way;
1585				else
1586					target = 0x7 & sad_pkg(
1587				pvt->info.interleave_pkg, interleave_reg, way);
1588
 
1589				for (cha = 0; cha < KNL_MAX_CHAS; cha++) {
1590					if (knl_get_mc_route(target,
1591						mc_route_reg[cha]) == channel
1592						&& !participants[channel]) {
1593						participant_count++;
1594						participants[channel] = 1;
1595						break;
1596					}
1597				}
1598			}
1599		}
1600
1601		if (participant_count != intrlv_ways)
1602			edac_dbg(0, "participant_count (%d) != interleave_ways (%d): DIMM size may be incorrect\n",
1603				participant_count, intrlv_ways);
1604
1605		for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
1606			mc = knl_channel_mc(channel);
1607			if (participants[channel]) {
1608				edac_dbg(4, "mc channel %d contributes %lld bytes via sad entry %d\n",
1609					channel,
1610					sad_actual_size[mc]/intrlv_ways,
1611					sad_rule);
1612				mc_sizes[channel] +=
1613					sad_actual_size[mc]/intrlv_ways;
1614			}
1615		}
1616	}
1617
1618	return 0;
1619}
1620
1621static int get_dimm_config(struct mem_ctl_info *mci)
1622{
1623	struct sbridge_pvt *pvt = mci->pvt_info;
1624	struct dimm_info *dimm;
1625	unsigned i, j, banks, ranks, rows, cols, npages;
1626	u64 size;
1627	u32 reg;
1628	enum edac_type mode;
1629	enum mem_type mtype;
1630	int channels = pvt->info.type == KNIGHTS_LANDING ?
1631		KNL_MAX_CHANNELS : NUM_CHANNELS;
1632	u64 knl_mc_sizes[KNL_MAX_CHANNELS];
1633
1634	if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
1635		pci_read_config_dword(pvt->pci_ha0, HASWELL_HASYSDEFEATURE2, &reg);
1636		pvt->is_chan_hash = GET_BITFIELD(reg, 21, 21);
1637	}
1638	if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL ||
1639			pvt->info.type == KNIGHTS_LANDING)
1640		pci_read_config_dword(pvt->pci_sad1, SAD_TARGET, &reg);
1641	else
1642		pci_read_config_dword(pvt->pci_br0, SAD_TARGET, &reg);
1643
1644	if (pvt->info.type == KNIGHTS_LANDING)
1645		pvt->sbridge_dev->source_id = SOURCE_ID_KNL(reg);
1646	else
1647		pvt->sbridge_dev->source_id = SOURCE_ID(reg);
 
1648
1649	pvt->sbridge_dev->node_id = pvt->info.get_node_id(pvt);
1650	edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
1651		 pvt->sbridge_dev->mc,
1652		 pvt->sbridge_dev->node_id,
1653		 pvt->sbridge_dev->source_id);
1654
1655	/* KNL doesn't support mirroring or lockstep,
1656	 * and is always closed page
1657	 */
1658	if (pvt->info.type == KNIGHTS_LANDING) {
1659		mode = EDAC_S4ECD4ED;
1660		pvt->is_mirrored = false;
1661
1662		if (knl_get_dimm_capacity(pvt, knl_mc_sizes) != 0)
1663			return -1;
1664	} else {
1665		pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg);
1666		if (IS_MIRROR_ENABLED(reg)) {
1667			edac_dbg(0, "Memory mirror is enabled\n");
1668			pvt->is_mirrored = true;
1669		} else {
1670			edac_dbg(0, "Memory mirror is disabled\n");
1671			pvt->is_mirrored = false;
1672		}
1673
1674		pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr);
1675		if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
1676			edac_dbg(0, "Lockstep is enabled\n");
1677			mode = EDAC_S8ECD8ED;
1678			pvt->is_lockstep = true;
1679		} else {
1680			edac_dbg(0, "Lockstep is disabled\n");
1681			mode = EDAC_S4ECD4ED;
1682			pvt->is_lockstep = false;
1683		}
1684		if (IS_CLOSE_PG(pvt->info.mcmtr)) {
1685			edac_dbg(0, "address map is on closed page mode\n");
1686			pvt->is_close_pg = true;
1687		} else {
1688			edac_dbg(0, "address map is on open page mode\n");
1689			pvt->is_close_pg = false;
1690		}
1691	}
1692
1693	mtype = pvt->info.get_memory_type(pvt);
1694	if (mtype == MEM_RDDR3 || mtype == MEM_RDDR4)
1695		edac_dbg(0, "Memory is registered\n");
1696	else if (mtype == MEM_UNKNOWN)
1697		edac_dbg(0, "Cannot determine memory type\n");
1698	else
1699		edac_dbg(0, "Memory is unregistered\n");
1700
1701	if (mtype == MEM_DDR4 || mtype == MEM_RDDR4)
1702		banks = 16;
1703	else
1704		banks = 8;
1705
1706	for (i = 0; i < channels; i++) {
1707		u32 mtr;
1708
1709		int max_dimms_per_channel;
1710
1711		if (pvt->info.type == KNIGHTS_LANDING) {
1712			max_dimms_per_channel = 1;
1713			if (!pvt->knl.pci_channel[i])
1714				continue;
1715		} else {
1716			max_dimms_per_channel = ARRAY_SIZE(mtr_regs);
1717			if (!pvt->pci_tad[i])
1718				continue;
 
1719		}
1720
1721		for (j = 0; j < max_dimms_per_channel; j++) {
1722			dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
1723				       i, j, 0);
1724			if (pvt->info.type == KNIGHTS_LANDING) {
1725				pci_read_config_dword(pvt->knl.pci_channel[i],
1726					knl_mtr_reg, &mtr);
1727			} else {
1728				pci_read_config_dword(pvt->pci_tad[i],
1729					mtr_regs[j], &mtr);
1730			}
1731			edac_dbg(4, "Channel #%d  MTR%d = %x\n", i, j, mtr);
 
1732			if (IS_DIMM_PRESENT(mtr)) {
 
 
 
 
 
 
1733				pvt->channel[i].dimms++;
1734
1735				ranks = numrank(pvt->info.type, mtr);
1736
1737				if (pvt->info.type == KNIGHTS_LANDING) {
1738					/* For DDR4, this is fixed. */
1739					cols = 1 << 10;
1740					rows = knl_mc_sizes[i] /
1741						((u64) cols * ranks * banks * 8);
1742				} else {
1743					rows = numrow(mtr);
1744					cols = numcol(mtr);
1745				}
1746
1747				size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
1748				npages = MiB_TO_PAGES(size);
1749
1750				edac_dbg(0, "mc#%d: ha %d channel %d, dimm %d, %lld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
1751					 pvt->sbridge_dev->mc, i/4, i%4, j,
1752					 size, npages,
1753					 banks, ranks, rows, cols);
1754
1755				dimm->nr_pages = npages;
1756				dimm->grain = 32;
1757				dimm->dtype = pvt->info.get_width(pvt, mtr);
1758				dimm->mtype = mtype;
1759				dimm->edac_mode = mode;
 
 
 
 
 
1760				snprintf(dimm->label, sizeof(dimm->label),
1761					 "CPU_SrcID#%u_Ha#%u_Chan#%u_DIMM#%u",
1762					 pvt->sbridge_dev->source_id, i/4, i%4, j);
1763			}
1764		}
1765	}
1766
1767	return 0;
1768}
1769
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1770static void get_memory_layout(const struct mem_ctl_info *mci)
1771{
1772	struct sbridge_pvt *pvt = mci->pvt_info;
1773	int i, j, k, n_sads, n_tads, sad_interl;
1774	u32 reg;
1775	u64 limit, prv = 0;
1776	u64 tmp_mb;
1777	u32 gb, mb;
1778	u32 rir_way;
1779
1780	/*
1781	 * Step 1) Get TOLM/TOHM ranges
1782	 */
1783
1784	pvt->tolm = pvt->info.get_tolm(pvt);
1785	tmp_mb = (1 + pvt->tolm) >> 20;
1786
1787	gb = div_u64_rem(tmp_mb, 1024, &mb);
1788	edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n",
1789		gb, (mb*1000)/1024, (u64)pvt->tolm);
1790
1791	/* Address range is already 45:25 */
1792	pvt->tohm = pvt->info.get_tohm(pvt);
1793	tmp_mb = (1 + pvt->tohm) >> 20;
1794
1795	gb = div_u64_rem(tmp_mb, 1024, &mb);
1796	edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n",
1797		gb, (mb*1000)/1024, (u64)pvt->tohm);
1798
1799	/*
1800	 * Step 2) Get SAD range and SAD Interleave list
1801	 * TAD registers contain the interleave wayness. However, it
1802	 * seems simpler to just discover it indirectly, with the
1803	 * algorithm bellow.
1804	 */
1805	prv = 0;
1806	for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1807		/* SAD_LIMIT Address range is 45:26 */
1808		pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1809				      &reg);
1810		limit = pvt->info.sad_limit(reg);
1811
1812		if (!DRAM_RULE_ENABLE(reg))
1813			continue;
1814
1815		if (limit <= prv)
1816			break;
1817
1818		tmp_mb = (limit + 1) >> 20;
1819		gb = div_u64_rem(tmp_mb, 1024, &mb);
1820		edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
1821			 n_sads,
1822			 show_dram_attr(pvt->info.dram_attr(reg)),
1823			 gb, (mb*1000)/1024,
1824			 ((u64)tmp_mb) << 20L,
1825			 pvt->info.show_interleave_mode(reg),
1826			 reg);
1827		prv = limit;
1828
1829		pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1830				      &reg);
1831		sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1832		for (j = 0; j < 8; j++) {
1833			u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, j);
1834			if (j > 0 && sad_interl == pkg)
1835				break;
1836
1837			edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
1838				 n_sads, j, pkg);
1839		}
1840	}
1841
1842	if (pvt->info.type == KNIGHTS_LANDING)
1843		return;
1844
1845	/*
1846	 * Step 3) Get TAD range
1847	 */
1848	prv = 0;
1849	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
1850		pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads],
1851				      &reg);
1852		limit = TAD_LIMIT(reg);
1853		if (limit <= prv)
1854			break;
1855		tmp_mb = (limit + 1) >> 20;
1856
1857		gb = div_u64_rem(tmp_mb, 1024, &mb);
1858		edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
1859			 n_tads, gb, (mb*1000)/1024,
1860			 ((u64)tmp_mb) << 20L,
1861			 (u32)(1 << TAD_SOCK(reg)),
1862			 (u32)TAD_CH(reg) + 1,
1863			 (u32)TAD_TGT0(reg),
1864			 (u32)TAD_TGT1(reg),
1865			 (u32)TAD_TGT2(reg),
1866			 (u32)TAD_TGT3(reg),
1867			 reg);
1868		prv = limit;
1869	}
1870
1871	/*
1872	 * Step 4) Get TAD offsets, per each channel
1873	 */
1874	for (i = 0; i < NUM_CHANNELS; i++) {
1875		if (!pvt->channel[i].dimms)
1876			continue;
1877		for (j = 0; j < n_tads; j++) {
1878			pci_read_config_dword(pvt->pci_tad[i],
1879					      tad_ch_nilv_offset[j],
1880					      &reg);
1881			tmp_mb = TAD_OFFSET(reg) >> 20;
1882			gb = div_u64_rem(tmp_mb, 1024, &mb);
1883			edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
1884				 i, j,
1885				 gb, (mb*1000)/1024,
1886				 ((u64)tmp_mb) << 20L,
1887				 reg);
1888		}
1889	}
1890
1891	/*
1892	 * Step 6) Get RIR Wayness/Limit, per each channel
1893	 */
1894	for (i = 0; i < NUM_CHANNELS; i++) {
1895		if (!pvt->channel[i].dimms)
1896			continue;
1897		for (j = 0; j < MAX_RIR_RANGES; j++) {
1898			pci_read_config_dword(pvt->pci_tad[i],
1899					      rir_way_limit[j],
1900					      &reg);
1901
1902			if (!IS_RIR_VALID(reg))
1903				continue;
1904
1905			tmp_mb = pvt->info.rir_limit(reg) >> 20;
1906			rir_way = 1 << RIR_WAY(reg);
1907			gb = div_u64_rem(tmp_mb, 1024, &mb);
1908			edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
1909				 i, j,
1910				 gb, (mb*1000)/1024,
1911				 ((u64)tmp_mb) << 20L,
1912				 rir_way,
1913				 reg);
1914
1915			for (k = 0; k < rir_way; k++) {
1916				pci_read_config_dword(pvt->pci_tad[i],
1917						      rir_offset[j][k],
1918						      &reg);
1919				tmp_mb = RIR_OFFSET(reg) << 6;
1920
1921				gb = div_u64_rem(tmp_mb, 1024, &mb);
1922				edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
1923					 i, j, k,
1924					 gb, (mb*1000)/1024,
1925					 ((u64)tmp_mb) << 20L,
1926					 (u32)RIR_RNK_TGT(reg),
1927					 reg);
1928			}
1929		}
1930	}
1931}
1932
1933static struct mem_ctl_info *get_mci_for_node_id(u8 node_id)
1934{
1935	struct sbridge_dev *sbridge_dev;
1936
1937	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
1938		if (sbridge_dev->node_id == node_id)
1939			return sbridge_dev->mci;
1940	}
1941	return NULL;
1942}
1943
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1944static int get_memory_error_data(struct mem_ctl_info *mci,
1945				 u64 addr,
1946				 u8 *socket, u8 *ha,
1947				 long *channel_mask,
1948				 u8 *rank,
1949				 char **area_type, char *msg)
1950{
1951	struct mem_ctl_info	*new_mci;
1952	struct sbridge_pvt *pvt = mci->pvt_info;
1953	struct pci_dev		*pci_ha;
1954	int			n_rir, n_sads, n_tads, sad_way, sck_xch;
1955	int			sad_interl, idx, base_ch;
1956	int			interleave_mode, shiftup = 0;
1957	unsigned		sad_interleave[pvt->info.max_interleave];
1958	u32			reg, dram_rule;
1959	u8			ch_way, sck_way, pkg, sad_ha = 0, ch_add = 0;
1960	u32			tad_offset;
1961	u32			rir_way;
1962	u32			mb, gb;
1963	u64			ch_addr, offset, limit = 0, prv = 0;
1964
 
1965
1966	/*
1967	 * Step 0) Check if the address is at special memory ranges
1968	 * The check bellow is probably enough to fill all cases where
1969	 * the error is not inside a memory, except for the legacy
1970	 * range (e. g. VGA addresses). It is unlikely, however, that the
1971	 * memory controller would generate an error on that range.
1972	 */
1973	if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
1974		sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
1975		return -EINVAL;
1976	}
1977	if (addr >= (u64)pvt->tohm) {
1978		sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
1979		return -EINVAL;
1980	}
1981
1982	/*
1983	 * Step 1) Get socket
1984	 */
1985	for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1986		pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1987				      &reg);
1988
1989		if (!DRAM_RULE_ENABLE(reg))
1990			continue;
1991
1992		limit = pvt->info.sad_limit(reg);
1993		if (limit <= prv) {
1994			sprintf(msg, "Can't discover the memory socket");
1995			return -EINVAL;
1996		}
1997		if  (addr <= limit)
1998			break;
1999		prv = limit;
2000	}
2001	if (n_sads == pvt->info.max_sad) {
2002		sprintf(msg, "Can't discover the memory socket");
2003		return -EINVAL;
2004	}
2005	dram_rule = reg;
2006	*area_type = show_dram_attr(pvt->info.dram_attr(dram_rule));
2007	interleave_mode = pvt->info.interleave_mode(dram_rule);
2008
2009	pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
2010			      &reg);
2011
2012	if (pvt->info.type == SANDY_BRIDGE) {
2013		sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
2014		for (sad_way = 0; sad_way < 8; sad_way++) {
2015			u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, sad_way);
2016			if (sad_way > 0 && sad_interl == pkg)
2017				break;
2018			sad_interleave[sad_way] = pkg;
2019			edac_dbg(0, "SAD interleave #%d: %d\n",
2020				 sad_way, sad_interleave[sad_way]);
2021		}
2022		edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
2023			 pvt->sbridge_dev->mc,
2024			 n_sads,
2025			 addr,
2026			 limit,
2027			 sad_way + 7,
2028			 !interleave_mode ? "" : "XOR[18:16]");
2029		if (interleave_mode)
2030			idx = ((addr >> 6) ^ (addr >> 16)) & 7;
2031		else
2032			idx = (addr >> 6) & 7;
2033		switch (sad_way) {
2034		case 1:
2035			idx = 0;
2036			break;
2037		case 2:
2038			idx = idx & 1;
2039			break;
2040		case 4:
2041			idx = idx & 3;
2042			break;
2043		case 8:
2044			break;
2045		default:
2046			sprintf(msg, "Can't discover socket interleave");
2047			return -EINVAL;
2048		}
2049		*socket = sad_interleave[idx];
2050		edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
2051			 idx, sad_way, *socket);
2052	} else if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
2053		int bits, a7mode = A7MODE(dram_rule);
2054
2055		if (a7mode) {
2056			/* A7 mode swaps P9 with P6 */
2057			bits = GET_BITFIELD(addr, 7, 8) << 1;
2058			bits |= GET_BITFIELD(addr, 9, 9);
2059		} else
2060			bits = GET_BITFIELD(addr, 6, 8);
2061
2062		if (interleave_mode == 0) {
2063			/* interleave mode will XOR {8,7,6} with {18,17,16} */
2064			idx = GET_BITFIELD(addr, 16, 18);
2065			idx ^= bits;
2066		} else
2067			idx = bits;
2068
2069		pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
2070		*socket = sad_pkg_socket(pkg);
2071		sad_ha = sad_pkg_ha(pkg);
2072		if (sad_ha)
2073			ch_add = 4;
2074
2075		if (a7mode) {
2076			/* MCChanShiftUpEnable */
2077			pci_read_config_dword(pvt->pci_ha0,
2078					      HASWELL_HASYSDEFEATURE2, &reg);
2079			shiftup = GET_BITFIELD(reg, 22, 22);
2080		}
2081
2082		edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
2083			 idx, *socket, sad_ha, shiftup);
2084	} else {
2085		/* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
2086		idx = (addr >> 6) & 7;
2087		pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
2088		*socket = sad_pkg_socket(pkg);
2089		sad_ha = sad_pkg_ha(pkg);
2090		if (sad_ha)
2091			ch_add = 4;
2092		edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
2093			 idx, *socket, sad_ha);
2094	}
2095
2096	*ha = sad_ha;
2097
2098	/*
2099	 * Move to the proper node structure, in order to access the
2100	 * right PCI registers
2101	 */
2102	new_mci = get_mci_for_node_id(*socket);
2103	if (!new_mci) {
2104		sprintf(msg, "Struct for socket #%u wasn't initialized",
2105			*socket);
2106		return -EINVAL;
2107	}
2108	mci = new_mci;
2109	pvt = mci->pvt_info;
2110
2111	/*
2112	 * Step 2) Get memory channel
2113	 */
2114	prv = 0;
2115	if (pvt->info.type == SANDY_BRIDGE)
2116		pci_ha = pvt->pci_ha0;
2117	else {
2118		if (sad_ha)
2119			pci_ha = pvt->pci_ha1;
2120		else
2121			pci_ha = pvt->pci_ha0;
2122	}
2123	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
2124		pci_read_config_dword(pci_ha, tad_dram_rule[n_tads], &reg);
2125		limit = TAD_LIMIT(reg);
2126		if (limit <= prv) {
2127			sprintf(msg, "Can't discover the memory channel");
2128			return -EINVAL;
2129		}
2130		if  (addr <= limit)
2131			break;
2132		prv = limit;
2133	}
2134	if (n_tads == MAX_TAD) {
2135		sprintf(msg, "Can't discover the memory channel");
2136		return -EINVAL;
2137	}
2138
2139	ch_way = TAD_CH(reg) + 1;
2140	sck_way = TAD_SOCK(reg);
2141
2142	if (ch_way == 3)
2143		idx = addr >> 6;
2144	else {
2145		idx = (addr >> (6 + sck_way + shiftup)) & 0x3;
2146		if (pvt->is_chan_hash)
2147			idx = haswell_chan_hash(idx, addr);
2148	}
2149	idx = idx % ch_way;
2150
2151	/*
2152	 * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
2153	 */
2154	switch (idx) {
2155	case 0:
2156		base_ch = TAD_TGT0(reg);
2157		break;
2158	case 1:
2159		base_ch = TAD_TGT1(reg);
2160		break;
2161	case 2:
2162		base_ch = TAD_TGT2(reg);
2163		break;
2164	case 3:
2165		base_ch = TAD_TGT3(reg);
2166		break;
2167	default:
2168		sprintf(msg, "Can't discover the TAD target");
2169		return -EINVAL;
2170	}
2171	*channel_mask = 1 << base_ch;
2172
2173	pci_read_config_dword(pvt->pci_tad[ch_add + base_ch],
2174				tad_ch_nilv_offset[n_tads],
2175				&tad_offset);
2176
2177	if (pvt->is_mirrored) {
 
2178		*channel_mask |= 1 << ((base_ch + 2) % 4);
2179		switch(ch_way) {
2180		case 2:
2181		case 4:
2182			sck_xch = (1 << sck_way) * (ch_way >> 1);
2183			break;
2184		default:
2185			sprintf(msg, "Invalid mirror set. Can't decode addr");
2186			return -EINVAL;
2187		}
2188	} else
 
 
2189		sck_xch = (1 << sck_way) * ch_way;
 
 
2190
2191	if (pvt->is_lockstep)
2192		*channel_mask |= 1 << ((base_ch + 1) % 4);
2193
2194	offset = TAD_OFFSET(tad_offset);
2195
2196	edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
2197		 n_tads,
2198		 addr,
2199		 limit,
2200		 sck_way,
2201		 ch_way,
2202		 offset,
2203		 idx,
2204		 base_ch,
2205		 *channel_mask);
2206
2207	/* Calculate channel address */
2208	/* Remove the TAD offset */
2209
2210	if (offset > addr) {
2211		sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
2212			offset, addr);
2213		return -EINVAL;
2214	}
2215
2216	ch_addr = addr - offset;
2217	ch_addr >>= (6 + shiftup);
2218	ch_addr /= sck_xch;
2219	ch_addr <<= (6 + shiftup);
2220	ch_addr |= addr & ((1 << (6 + shiftup)) - 1);
2221
2222	/*
2223	 * Step 3) Decode rank
2224	 */
2225	for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
2226		pci_read_config_dword(pvt->pci_tad[ch_add + base_ch],
2227				      rir_way_limit[n_rir],
2228				      &reg);
2229
2230		if (!IS_RIR_VALID(reg))
2231			continue;
2232
2233		limit = pvt->info.rir_limit(reg);
2234		gb = div_u64_rem(limit >> 20, 1024, &mb);
2235		edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
2236			 n_rir,
2237			 gb, (mb*1000)/1024,
2238			 limit,
2239			 1 << RIR_WAY(reg));
2240		if  (ch_addr <= limit)
2241			break;
2242	}
2243	if (n_rir == MAX_RIR_RANGES) {
2244		sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
2245			ch_addr);
2246		return -EINVAL;
2247	}
2248	rir_way = RIR_WAY(reg);
2249
2250	if (pvt->is_close_pg)
2251		idx = (ch_addr >> 6);
2252	else
2253		idx = (ch_addr >> 13);	/* FIXME: Datasheet says to shift by 15 */
2254	idx %= 1 << rir_way;
2255
2256	pci_read_config_dword(pvt->pci_tad[ch_add + base_ch],
2257			      rir_offset[n_rir][idx],
2258			      &reg);
2259	*rank = RIR_RNK_TGT(reg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2260
2261	edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
2262		 n_rir,
2263		 ch_addr,
2264		 limit,
2265		 rir_way,
2266		 idx);
2267
2268	return 0;
2269}
2270
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2271/****************************************************************************
2272	Device initialization routines: put/get, init/exit
2273 ****************************************************************************/
2274
2275/*
2276 *	sbridge_put_all_devices	'put' all the devices that we have
2277 *				reserved via 'get'
2278 */
2279static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
2280{
2281	int i;
2282
2283	edac_dbg(0, "\n");
2284	for (i = 0; i < sbridge_dev->n_devs; i++) {
2285		struct pci_dev *pdev = sbridge_dev->pdev[i];
2286		if (!pdev)
2287			continue;
2288		edac_dbg(0, "Removing dev %02x:%02x.%d\n",
2289			 pdev->bus->number,
2290			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
2291		pci_dev_put(pdev);
2292	}
2293}
2294
2295static void sbridge_put_all_devices(void)
2296{
2297	struct sbridge_dev *sbridge_dev, *tmp;
2298
2299	list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
2300		sbridge_put_devices(sbridge_dev);
2301		free_sbridge_dev(sbridge_dev);
2302	}
2303}
2304
2305static int sbridge_get_onedevice(struct pci_dev **prev,
2306				 u8 *num_mc,
2307				 const struct pci_id_table *table,
2308				 const unsigned devno,
2309				 const int multi_bus)
2310{
2311	struct sbridge_dev *sbridge_dev;
2312	const struct pci_id_descr *dev_descr = &table->descr[devno];
2313	struct pci_dev *pdev = NULL;
 
2314	u8 bus = 0;
 
2315
2316	sbridge_printk(KERN_DEBUG,
2317		"Seeking for: PCI ID %04x:%04x\n",
2318		PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2319
2320	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
2321			      dev_descr->dev_id, *prev);
2322
2323	if (!pdev) {
2324		if (*prev) {
2325			*prev = pdev;
2326			return 0;
2327		}
2328
2329		if (dev_descr->optional)
2330			return 0;
2331
2332		/* if the HA wasn't found */
2333		if (devno == 0)
2334			return -ENODEV;
2335
2336		sbridge_printk(KERN_INFO,
2337			"Device not found: %04x:%04x\n",
2338			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2339
2340		/* End of list, leave */
2341		return -ENODEV;
2342	}
 
2343	bus = pdev->bus->number;
2344
2345	sbridge_dev = get_sbridge_dev(bus, multi_bus);
 
 
2346	if (!sbridge_dev) {
2347		sbridge_dev = alloc_sbridge_dev(bus, table);
 
 
 
 
 
 
 
 
 
 
 
2348		if (!sbridge_dev) {
2349			pci_dev_put(pdev);
2350			return -ENOMEM;
2351		}
2352		(*num_mc)++;
2353	}
2354
2355	if (sbridge_dev->pdev[devno]) {
2356		sbridge_printk(KERN_ERR,
2357			"Duplicated device for %04x:%04x\n",
2358			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2359		pci_dev_put(pdev);
2360		return -ENODEV;
2361	}
2362
2363	sbridge_dev->pdev[devno] = pdev;
 
 
 
 
 
 
 
2364
 
2365	/* Be sure that the device is enabled */
2366	if (unlikely(pci_enable_device(pdev) < 0)) {
2367		sbridge_printk(KERN_ERR,
2368			"Couldn't enable %04x:%04x\n",
2369			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2370		return -ENODEV;
2371	}
2372
2373	edac_dbg(0, "Detected %04x:%04x\n",
2374		 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2375
2376	/*
2377	 * As stated on drivers/pci/search.c, the reference count for
2378	 * @from is always decremented if it is not %NULL. So, as we need
2379	 * to get all devices up to null, we need to do a get for the device
2380	 */
2381	pci_dev_get(pdev);
2382
2383	*prev = pdev;
2384
2385	return 0;
2386}
2387
2388/*
2389 * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
2390 *			     devices we want to reference for this driver.
2391 * @num_mc: pointer to the memory controllers count, to be incremented in case
2392 *	    of success.
2393 * @table: model specific table
2394 * @allow_dups: allow for multiple devices to exist with the same device id
2395 *              (as implemented, this isn't expected to work correctly in the
2396 *              multi-socket case).
2397 * @multi_bus: don't assume devices on different buses belong to different
2398 *             memory controllers.
2399 *
2400 * returns 0 in case of success or error code
2401 */
2402static int sbridge_get_all_devices_full(u8 *num_mc,
2403					const struct pci_id_table *table,
2404					int allow_dups,
2405					int multi_bus)
2406{
2407	int i, rc;
2408	struct pci_dev *pdev = NULL;
 
 
2409
 
 
2410	while (table && table->descr) {
2411		for (i = 0; i < table->n_devs; i++) {
2412			if (!allow_dups || i == 0 ||
2413					table->descr[i].dev_id !=
2414						table->descr[i-1].dev_id) {
2415				pdev = NULL;
2416			}
2417			do {
2418				rc = sbridge_get_onedevice(&pdev, num_mc,
2419							   table, i, multi_bus);
2420				if (rc < 0) {
2421					if (i == 0) {
2422						i = table->n_devs;
2423						break;
2424					}
2425					sbridge_put_all_devices();
2426					return -ENODEV;
2427				}
2428			} while (pdev && !allow_dups);
2429		}
2430		table++;
2431	}
2432
2433	return 0;
2434}
2435
2436#define sbridge_get_all_devices(num_mc, table) \
2437		sbridge_get_all_devices_full(num_mc, table, 0, 0)
2438#define sbridge_get_all_devices_knl(num_mc, table) \
2439		sbridge_get_all_devices_full(num_mc, table, 1, 1)
 
 
2440
2441static int sbridge_mci_bind_devs(struct mem_ctl_info *mci,
2442				 struct sbridge_dev *sbridge_dev)
2443{
2444	struct sbridge_pvt *pvt = mci->pvt_info;
2445	struct pci_dev *pdev;
2446	u8 saw_chan_mask = 0;
2447	int i;
2448
2449	for (i = 0; i < sbridge_dev->n_devs; i++) {
2450		pdev = sbridge_dev->pdev[i];
2451		if (!pdev)
2452			continue;
2453
2454		switch (pdev->device) {
2455		case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0:
2456			pvt->pci_sad0 = pdev;
2457			break;
2458		case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1:
2459			pvt->pci_sad1 = pdev;
2460			break;
2461		case PCI_DEVICE_ID_INTEL_SBRIDGE_BR:
2462			pvt->pci_br0 = pdev;
2463			break;
2464		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
2465			pvt->pci_ha0 = pdev;
2466			break;
2467		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA:
2468			pvt->pci_ta = pdev;
2469			break;
2470		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS:
2471			pvt->pci_ras = pdev;
2472			break;
2473		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0:
2474		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1:
2475		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2:
2476		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3:
2477		{
2478			int id = pdev->device - PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0;
2479			pvt->pci_tad[id] = pdev;
2480			saw_chan_mask |= 1 << id;
2481		}
2482			break;
2483		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO:
2484			pvt->pci_ddrio = pdev;
2485			break;
2486		default:
2487			goto error;
2488		}
2489
2490		edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
2491			 pdev->vendor, pdev->device,
2492			 sbridge_dev->bus,
2493			 pdev);
2494	}
2495
2496	/* Check if everything were registered */
2497	if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha0 ||
2498	    !pvt-> pci_tad || !pvt->pci_ras  || !pvt->pci_ta)
2499		goto enodev;
2500
2501	if (saw_chan_mask != 0x0f)
2502		goto enodev;
2503	return 0;
2504
2505enodev:
2506	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2507	return -ENODEV;
2508
2509error:
2510	sbridge_printk(KERN_ERR, "Unexpected device %02x:%02x\n",
2511		       PCI_VENDOR_ID_INTEL, pdev->device);
2512	return -EINVAL;
2513}
2514
2515static int ibridge_mci_bind_devs(struct mem_ctl_info *mci,
2516				 struct sbridge_dev *sbridge_dev)
2517{
2518	struct sbridge_pvt *pvt = mci->pvt_info;
2519	struct pci_dev *pdev;
2520	u8 saw_chan_mask = 0;
2521	int i;
2522
2523	for (i = 0; i < sbridge_dev->n_devs; i++) {
2524		pdev = sbridge_dev->pdev[i];
2525		if (!pdev)
2526			continue;
2527
2528		switch (pdev->device) {
2529		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0:
2530			pvt->pci_ha0 = pdev;
 
2531			break;
2532		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
 
2533			pvt->pci_ta = pdev;
 
2534		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS:
 
2535			pvt->pci_ras = pdev;
2536			break;
2537		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0:
2538		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1:
2539		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2:
2540		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3:
 
 
 
 
2541		{
2542			int id = pdev->device - PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0;
2543			pvt->pci_tad[id] = pdev;
2544			saw_chan_mask |= 1 << id;
2545		}
2546			break;
2547		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0:
2548			pvt->pci_ddrio = pdev;
2549			break;
2550		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0:
2551			pvt->pci_ddrio = pdev;
2552			break;
2553		case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD:
2554			pvt->pci_sad0 = pdev;
2555			break;
2556		case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0:
2557			pvt->pci_br0 = pdev;
2558			break;
2559		case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1:
2560			pvt->pci_br1 = pdev;
2561			break;
2562		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1:
2563			pvt->pci_ha1 = pdev;
2564			break;
2565		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0:
2566		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1:
2567		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2:
2568		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3:
2569		{
2570			int id = pdev->device - PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0 + 4;
2571			pvt->pci_tad[id] = pdev;
2572			saw_chan_mask |= 1 << id;
2573		}
2574			break;
2575		default:
2576			goto error;
2577		}
2578
2579		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2580			 sbridge_dev->bus,
2581			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2582			 pdev);
2583	}
2584
2585	/* Check if everything were registered */
2586	if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_br0 ||
2587	    !pvt->pci_br1 || !pvt->pci_tad || !pvt->pci_ras  ||
2588	    !pvt->pci_ta)
2589		goto enodev;
2590
2591	if (saw_chan_mask != 0x0f && /* -EN */
2592	    saw_chan_mask != 0x33 && /* -EP */
2593	    saw_chan_mask != 0xff)   /* -EX */
2594		goto enodev;
2595	return 0;
2596
2597enodev:
2598	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2599	return -ENODEV;
2600
2601error:
2602	sbridge_printk(KERN_ERR,
2603		       "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL,
2604			pdev->device);
2605	return -EINVAL;
2606}
2607
2608static int haswell_mci_bind_devs(struct mem_ctl_info *mci,
2609				 struct sbridge_dev *sbridge_dev)
2610{
2611	struct sbridge_pvt *pvt = mci->pvt_info;
2612	struct pci_dev *pdev;
2613	u8 saw_chan_mask = 0;
2614	int i;
2615
2616	/* there's only one device per system; not tied to any bus */
2617	if (pvt->info.pci_vtd == NULL)
2618		/* result will be checked later */
2619		pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
2620						   PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC,
2621						   NULL);
2622
2623	for (i = 0; i < sbridge_dev->n_devs; i++) {
2624		pdev = sbridge_dev->pdev[i];
2625		if (!pdev)
2626			continue;
2627
2628		switch (pdev->device) {
2629		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0:
2630			pvt->pci_sad0 = pdev;
2631			break;
2632		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1:
2633			pvt->pci_sad1 = pdev;
2634			break;
2635		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
2636			pvt->pci_ha0 = pdev;
 
2637			break;
2638		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA:
 
2639			pvt->pci_ta = pdev;
2640			break;
2641		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL:
 
2642			pvt->pci_ras = pdev;
2643			break;
2644		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0:
2645		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1:
2646		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2:
2647		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3:
2648		{
2649			int id = pdev->device - PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0;
2650
2651			pvt->pci_tad[id] = pdev;
2652			saw_chan_mask |= 1 << id;
2653		}
2654			break;
2655		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0:
2656		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1:
2657		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2:
2658		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3:
2659		{
2660			int id = pdev->device - PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 + 4;
2661
2662			pvt->pci_tad[id] = pdev;
2663			saw_chan_mask |= 1 << id;
2664		}
2665			break;
2666		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0:
2667		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1:
2668		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2:
2669		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3:
2670			if (!pvt->pci_ddrio)
2671				pvt->pci_ddrio = pdev;
2672			break;
2673		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1:
2674			pvt->pci_ha1 = pdev;
2675			break;
2676		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA:
2677			pvt->pci_ha1_ta = pdev;
2678			break;
2679		default:
2680			break;
2681		}
2682
2683		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2684			 sbridge_dev->bus,
2685			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2686			 pdev);
2687	}
2688
2689	/* Check if everything were registered */
2690	if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_sad1 ||
2691	    !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
2692		goto enodev;
2693
2694	if (saw_chan_mask != 0x0f && /* -EN */
2695	    saw_chan_mask != 0x33 && /* -EP */
2696	    saw_chan_mask != 0xff)   /* -EX */
2697		goto enodev;
2698	return 0;
2699
2700enodev:
2701	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2702	return -ENODEV;
2703}
2704
2705static int broadwell_mci_bind_devs(struct mem_ctl_info *mci,
2706				 struct sbridge_dev *sbridge_dev)
2707{
2708	struct sbridge_pvt *pvt = mci->pvt_info;
2709	struct pci_dev *pdev;
2710	u8 saw_chan_mask = 0;
2711	int i;
2712
2713	/* there's only one device per system; not tied to any bus */
2714	if (pvt->info.pci_vtd == NULL)
2715		/* result will be checked later */
2716		pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
2717						   PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC,
2718						   NULL);
2719
2720	for (i = 0; i < sbridge_dev->n_devs; i++) {
2721		pdev = sbridge_dev->pdev[i];
2722		if (!pdev)
2723			continue;
2724
2725		switch (pdev->device) {
2726		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0:
2727			pvt->pci_sad0 = pdev;
2728			break;
2729		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1:
2730			pvt->pci_sad1 = pdev;
2731			break;
2732		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
2733			pvt->pci_ha0 = pdev;
 
2734			break;
2735		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA:
 
2736			pvt->pci_ta = pdev;
2737			break;
2738		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL:
 
2739			pvt->pci_ras = pdev;
2740			break;
2741		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0:
2742		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1:
2743		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2:
2744		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3:
2745		{
2746			int id = pdev->device - PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0;
2747			pvt->pci_tad[id] = pdev;
2748			saw_chan_mask |= 1 << id;
2749		}
2750			break;
2751		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0:
2752		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1:
2753		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2:
2754		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3:
2755		{
2756			int id = pdev->device - PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 + 4;
2757			pvt->pci_tad[id] = pdev;
2758			saw_chan_mask |= 1 << id;
2759		}
2760			break;
2761		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0:
2762			pvt->pci_ddrio = pdev;
2763			break;
2764		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1:
2765			pvt->pci_ha1 = pdev;
2766			break;
2767		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA:
2768			pvt->pci_ha1_ta = pdev;
2769			break;
2770		default:
2771			break;
2772		}
2773
2774		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2775			 sbridge_dev->bus,
2776			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2777			 pdev);
2778	}
2779
2780	/* Check if everything were registered */
2781	if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_sad1 ||
2782	    !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
2783		goto enodev;
2784
2785	if (saw_chan_mask != 0x0f && /* -EN */
2786	    saw_chan_mask != 0x33 && /* -EP */
2787	    saw_chan_mask != 0xff)   /* -EX */
2788		goto enodev;
2789	return 0;
2790
2791enodev:
2792	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2793	return -ENODEV;
2794}
2795
2796static int knl_mci_bind_devs(struct mem_ctl_info *mci,
2797			struct sbridge_dev *sbridge_dev)
2798{
2799	struct sbridge_pvt *pvt = mci->pvt_info;
2800	struct pci_dev *pdev;
2801	int dev, func;
2802
2803	int i;
2804	int devidx;
2805
2806	for (i = 0; i < sbridge_dev->n_devs; i++) {
2807		pdev = sbridge_dev->pdev[i];
2808		if (!pdev)
2809			continue;
2810
2811		/* Extract PCI device and function. */
2812		dev = (pdev->devfn >> 3) & 0x1f;
2813		func = pdev->devfn & 0x7;
2814
2815		switch (pdev->device) {
2816		case PCI_DEVICE_ID_INTEL_KNL_IMC_MC:
2817			if (dev == 8)
2818				pvt->knl.pci_mc0 = pdev;
2819			else if (dev == 9)
2820				pvt->knl.pci_mc1 = pdev;
2821			else {
2822				sbridge_printk(KERN_ERR,
2823					"Memory controller in unexpected place! (dev %d, fn %d)\n",
2824					dev, func);
2825				continue;
2826			}
2827			break;
2828
2829		case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0:
2830			pvt->pci_sad0 = pdev;
2831			break;
2832
2833		case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1:
2834			pvt->pci_sad1 = pdev;
2835			break;
2836
2837		case PCI_DEVICE_ID_INTEL_KNL_IMC_CHA:
2838			/* There are one of these per tile, and range from
2839			 * 1.14.0 to 1.18.5.
2840			 */
2841			devidx = ((dev-14)*8)+func;
2842
2843			if (devidx < 0 || devidx >= KNL_MAX_CHAS) {
2844				sbridge_printk(KERN_ERR,
2845					"Caching and Home Agent in unexpected place! (dev %d, fn %d)\n",
2846					dev, func);
2847				continue;
2848			}
2849
2850			WARN_ON(pvt->knl.pci_cha[devidx] != NULL);
2851
2852			pvt->knl.pci_cha[devidx] = pdev;
2853			break;
2854
2855		case PCI_DEVICE_ID_INTEL_KNL_IMC_CHANNEL:
2856			devidx = -1;
2857
2858			/*
2859			 *  MC0 channels 0-2 are device 9 function 2-4,
2860			 *  MC1 channels 3-5 are device 8 function 2-4.
2861			 */
2862
2863			if (dev == 9)
2864				devidx = func-2;
2865			else if (dev == 8)
2866				devidx = 3 + (func-2);
2867
2868			if (devidx < 0 || devidx >= KNL_MAX_CHANNELS) {
2869				sbridge_printk(KERN_ERR,
2870					"DRAM Channel Registers in unexpected place! (dev %d, fn %d)\n",
2871					dev, func);
2872				continue;
2873			}
2874
2875			WARN_ON(pvt->knl.pci_channel[devidx] != NULL);
2876			pvt->knl.pci_channel[devidx] = pdev;
2877			break;
2878
2879		case PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM:
2880			pvt->knl.pci_mc_info = pdev;
2881			break;
2882
2883		case PCI_DEVICE_ID_INTEL_KNL_IMC_TA:
2884			pvt->pci_ta = pdev;
2885			break;
2886
2887		default:
2888			sbridge_printk(KERN_ERR, "Unexpected device %d\n",
2889				pdev->device);
2890			break;
2891		}
2892	}
2893
2894	if (!pvt->knl.pci_mc0  || !pvt->knl.pci_mc1 ||
2895	    !pvt->pci_sad0     || !pvt->pci_sad1    ||
2896	    !pvt->pci_ta) {
2897		goto enodev;
2898	}
2899
2900	for (i = 0; i < KNL_MAX_CHANNELS; i++) {
2901		if (!pvt->knl.pci_channel[i]) {
2902			sbridge_printk(KERN_ERR, "Missing channel %d\n", i);
2903			goto enodev;
2904		}
2905	}
2906
2907	for (i = 0; i < KNL_MAX_CHAS; i++) {
2908		if (!pvt->knl.pci_cha[i]) {
2909			sbridge_printk(KERN_ERR, "Missing CHA %d\n", i);
2910			goto enodev;
2911		}
2912	}
2913
2914	return 0;
2915
2916enodev:
2917	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2918	return -ENODEV;
2919}
2920
2921/****************************************************************************
2922			Error check routines
2923 ****************************************************************************/
2924
2925/*
2926 * While Sandy Bridge has error count registers, SMI BIOS read values from
2927 * and resets the counters. So, they are not reliable for the OS to read
2928 * from them. So, we have no option but to just trust on whatever MCE is
2929 * telling us about the errors.
2930 */
2931static void sbridge_mce_output_error(struct mem_ctl_info *mci,
2932				    const struct mce *m)
2933{
2934	struct mem_ctl_info *new_mci;
2935	struct sbridge_pvt *pvt = mci->pvt_info;
2936	enum hw_event_mc_err_type tp_event;
2937	char *type, *optype, msg[256];
2938	bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
2939	bool overflow = GET_BITFIELD(m->status, 62, 62);
2940	bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
2941	bool recoverable;
2942	u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
2943	u32 mscod = GET_BITFIELD(m->status, 16, 31);
2944	u32 errcode = GET_BITFIELD(m->status, 0, 15);
2945	u32 channel = GET_BITFIELD(m->status, 0, 3);
2946	u32 optypenum = GET_BITFIELD(m->status, 4, 6);
 
 
 
 
 
 
2947	long channel_mask, first_channel;
2948	u8  rank, socket, ha;
2949	int rc, dimm;
2950	char *area_type = NULL;
2951
2952	if (pvt->info.type != SANDY_BRIDGE)
2953		recoverable = true;
2954	else
2955		recoverable = GET_BITFIELD(m->status, 56, 56);
2956
2957	if (uncorrected_error) {
 
2958		if (ripv) {
2959			type = "FATAL";
 
2960			tp_event = HW_EVENT_ERR_FATAL;
2961		} else {
2962			type = "NON_FATAL";
2963			tp_event = HW_EVENT_ERR_UNCORRECTED;
2964		}
2965	} else {
2966		type = "CORRECTED";
2967		tp_event = HW_EVENT_ERR_CORRECTED;
2968	}
2969
2970	/*
2971	 * According with Table 15-9 of the Intel Architecture spec vol 3A,
2972	 * memory errors should fit in this mask:
2973	 *	000f 0000 1mmm cccc (binary)
2974	 * where:
2975	 *	f = Correction Report Filtering Bit. If 1, subsequent errors
2976	 *	    won't be shown
2977	 *	mmm = error type
2978	 *	cccc = channel
2979	 * If the mask doesn't match, report an error to the parsing logic
2980	 */
2981	if (! ((errcode & 0xef80) == 0x80)) {
2982		optype = "Can't parse: it is not a mem";
2983	} else {
2984		switch (optypenum) {
2985		case 0:
2986			optype = "generic undef request error";
2987			break;
2988		case 1:
2989			optype = "memory read error";
2990			break;
2991		case 2:
2992			optype = "memory write error";
2993			break;
2994		case 3:
2995			optype = "addr/cmd error";
2996			break;
2997		case 4:
2998			optype = "memory scrubbing error";
2999			break;
3000		default:
3001			optype = "reserved";
3002			break;
3003		}
3004	}
3005
3006	/* Only decode errors with an valid address (ADDRV) */
3007	if (!GET_BITFIELD(m->status, 58, 58))
3008		return;
3009
3010	if (pvt->info.type == KNIGHTS_LANDING) {
3011		if (channel == 14) {
3012			edac_dbg(0, "%s%s err_code:%04x:%04x EDRAM bank %d\n",
3013				overflow ? " OVERFLOW" : "",
3014				(uncorrected_error && recoverable)
3015				? " recoverable" : "",
3016				mscod, errcode,
3017				m->bank);
3018		} else {
3019			char A = *("A");
3020
3021			channel = knl_channel_remap(channel);
 
 
 
 
 
 
3022			channel_mask = 1 << channel;
 
3023			snprintf(msg, sizeof(msg),
3024				"%s%s err_code:%04x:%04x channel:%d (DIMM_%c)",
3025				overflow ? " OVERFLOW" : "",
3026				(uncorrected_error && recoverable)
3027				? " recoverable" : " ",
3028				mscod, errcode, channel, A + channel);
3029			edac_mc_handle_error(tp_event, mci, core_err_cnt,
3030				m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
3031				channel, 0, -1,
3032				optype, msg);
3033		}
3034		return;
 
 
 
 
3035	} else {
3036		rc = get_memory_error_data(mci, m->addr, &socket, &ha,
3037				&channel_mask, &rank, &area_type, msg);
3038	}
3039
3040	if (rc < 0)
3041		goto err_parsing;
3042	new_mci = get_mci_for_node_id(socket);
3043	if (!new_mci) {
3044		strcpy(msg, "Error: socket got corrupted!");
3045		goto err_parsing;
3046	}
3047	mci = new_mci;
3048	pvt = mci->pvt_info;
3049
3050	first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
3051
3052	if (rank < 4)
 
 
3053		dimm = 0;
3054	else if (rank < 8)
3055		dimm = 1;
3056	else
3057		dimm = 2;
3058
3059
3060	/*
3061	 * FIXME: On some memory configurations (mirror, lockstep), the
3062	 * Memory Controller can't point the error to a single DIMM. The
3063	 * EDAC core should be handling the channel mask, in order to point
3064	 * to the group of dimm's where the error may be happening.
3065	 */
3066	if (!pvt->is_lockstep && !pvt->is_mirrored && !pvt->is_close_pg)
3067		channel = first_channel;
3068
3069	snprintf(msg, sizeof(msg),
3070		 "%s%s area:%s err_code:%04x:%04x socket:%d ha:%d channel_mask:%ld rank:%d",
3071		 overflow ? " OVERFLOW" : "",
3072		 (uncorrected_error && recoverable) ? " recoverable" : "",
3073		 area_type,
3074		 mscod, errcode,
3075		 socket, ha,
3076		 channel_mask,
3077		 rank);
3078
3079	edac_dbg(0, "%s\n", msg);
3080
3081	/* FIXME: need support for channel mask */
3082
3083	if (channel == CHANNEL_UNSPECIFIED)
3084		channel = -1;
3085
3086	/* Call the helper to output message */
3087	edac_mc_handle_error(tp_event, mci, core_err_cnt,
3088			     m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
3089			     4*ha+channel, dimm, -1,
3090			     optype, msg);
3091	return;
3092err_parsing:
3093	edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
3094			     -1, -1, -1,
3095			     msg, "");
3096
3097}
3098
3099/*
3100 *	sbridge_check_error	Retrieve and process errors reported by the
3101 *				hardware. Called by the Core module.
3102 */
3103static void sbridge_check_error(struct mem_ctl_info *mci)
3104{
3105	struct sbridge_pvt *pvt = mci->pvt_info;
3106	int i;
3107	unsigned count = 0;
3108	struct mce *m;
3109
3110	/*
3111	 * MCE first step: Copy all mce errors into a temporary buffer
3112	 * We use a double buffering here, to reduce the risk of
3113	 * loosing an error.
3114	 */
3115	smp_rmb();
3116	count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
3117		% MCE_LOG_LEN;
3118	if (!count)
3119		return;
3120
3121	m = pvt->mce_outentry;
3122	if (pvt->mce_in + count > MCE_LOG_LEN) {
3123		unsigned l = MCE_LOG_LEN - pvt->mce_in;
3124
3125		memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
3126		smp_wmb();
3127		pvt->mce_in = 0;
3128		count -= l;
3129		m += l;
3130	}
3131	memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
3132	smp_wmb();
3133	pvt->mce_in += count;
3134
3135	smp_rmb();
3136	if (pvt->mce_overrun) {
3137		sbridge_printk(KERN_ERR, "Lost %d memory errors\n",
3138			      pvt->mce_overrun);
3139		smp_wmb();
3140		pvt->mce_overrun = 0;
3141	}
3142
3143	/*
3144	 * MCE second step: parse errors and display
3145	 */
3146	for (i = 0; i < count; i++)
3147		sbridge_mce_output_error(mci, &pvt->mce_outentry[i]);
3148}
3149
3150/*
3151 * sbridge_mce_check_error	Replicates mcelog routine to get errors
3152 *				This routine simply queues mcelog errors, and
3153 *				return. The error itself should be handled later
3154 *				by sbridge_check_error.
3155 * WARNING: As this routine should be called at NMI time, extra care should
3156 * be taken to avoid deadlocks, and to be as fast as possible.
3157 */
3158static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
3159				   void *data)
3160{
3161	struct mce *mce = (struct mce *)data;
3162	struct mem_ctl_info *mci;
3163	struct sbridge_pvt *pvt;
3164	char *type;
3165
3166	if (get_edac_report_status() == EDAC_REPORTING_DISABLED)
3167		return NOTIFY_DONE;
3168
3169	mci = get_mci_for_node_id(mce->socketid);
3170	if (!mci)
3171		return NOTIFY_DONE;
3172	pvt = mci->pvt_info;
3173
3174	/*
3175	 * Just let mcelog handle it if the error is
3176	 * outside the memory controller. A memory error
3177	 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
3178	 * bit 12 has an special meaning.
3179	 */
3180	if ((mce->status & 0xefff) >> 7 != 1)
3181		return NOTIFY_DONE;
3182
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3183	if (mce->mcgstatus & MCG_STATUS_MCIP)
3184		type = "Exception";
3185	else
3186		type = "Event";
3187
3188	sbridge_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
3189
3190	sbridge_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
3191			  "Bank %d: %016Lx\n", mce->extcpu, type,
3192			  mce->mcgstatus, mce->bank, mce->status);
3193	sbridge_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
3194	sbridge_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
3195	sbridge_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
3196
3197	sbridge_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
3198			  "%u APIC %x\n", mce->cpuvendor, mce->cpuid,
3199			  mce->time, mce->socketid, mce->apicid);
3200
3201	smp_rmb();
3202	if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
3203		smp_wmb();
3204		pvt->mce_overrun++;
3205		return NOTIFY_DONE;
3206	}
3207
3208	/* Copy memory error at the ringbuffer */
3209	memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
3210	smp_wmb();
3211	pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;
3212
3213	/* Handle fatal errors immediately */
3214	if (mce->mcgstatus & 1)
3215		sbridge_check_error(mci);
3216
3217	/* Advice mcelog that the error were handled */
3218	return NOTIFY_STOP;
 
3219}
3220
3221static struct notifier_block sbridge_mce_dec = {
3222	.notifier_call      = sbridge_mce_check_error,
 
3223};
3224
3225/****************************************************************************
3226			EDAC register/unregister logic
3227 ****************************************************************************/
3228
3229static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
3230{
3231	struct mem_ctl_info *mci = sbridge_dev->mci;
3232	struct sbridge_pvt *pvt;
3233
3234	if (unlikely(!mci || !mci->pvt_info)) {
3235		edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
3236
3237		sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
3238		return;
3239	}
3240
3241	pvt = mci->pvt_info;
3242
3243	edac_dbg(0, "MC: mci = %p, dev = %p\n",
3244		 mci, &sbridge_dev->pdev[0]->dev);
3245
3246	/* Remove MC sysfs nodes */
3247	edac_mc_del_mc(mci->pdev);
3248
3249	edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
3250	kfree(mci->ctl_name);
3251	edac_mc_free(mci);
3252	sbridge_dev->mci = NULL;
3253}
3254
3255static int sbridge_register_mci(struct sbridge_dev *sbridge_dev, enum type type)
3256{
3257	struct mem_ctl_info *mci;
3258	struct edac_mc_layer layers[2];
3259	struct sbridge_pvt *pvt;
3260	struct pci_dev *pdev = sbridge_dev->pdev[0];
3261	int rc;
3262
3263	/* Check the number of active and not disabled channels */
3264	rc = check_if_ecc_is_active(sbridge_dev->bus, type);
3265	if (unlikely(rc < 0))
3266		return rc;
3267
3268	/* allocate a new MC control structure */
3269	layers[0].type = EDAC_MC_LAYER_CHANNEL;
3270	layers[0].size = type == KNIGHTS_LANDING ?
3271		KNL_MAX_CHANNELS : NUM_CHANNELS;
3272	layers[0].is_virt_csrow = false;
3273	layers[1].type = EDAC_MC_LAYER_SLOT;
3274	layers[1].size = type == KNIGHTS_LANDING ? 1 : MAX_DIMMS;
3275	layers[1].is_virt_csrow = true;
3276	mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
3277			    sizeof(*pvt));
3278
3279	if (unlikely(!mci))
3280		return -ENOMEM;
3281
3282	edac_dbg(0, "MC: mci = %p, dev = %p\n",
3283		 mci, &pdev->dev);
3284
3285	pvt = mci->pvt_info;
3286	memset(pvt, 0, sizeof(*pvt));
3287
3288	/* Associate sbridge_dev and mci for future usage */
3289	pvt->sbridge_dev = sbridge_dev;
3290	sbridge_dev->mci = mci;
3291
3292	mci->mtype_cap = type == KNIGHTS_LANDING ?
3293		MEM_FLAG_DDR4 : MEM_FLAG_DDR3;
3294	mci->edac_ctl_cap = EDAC_FLAG_NONE;
3295	mci->edac_cap = EDAC_FLAG_NONE;
3296	mci->mod_name = "sbridge_edac.c";
3297	mci->mod_ver = SBRIDGE_REVISION;
3298	mci->dev_name = pci_name(pdev);
3299	mci->ctl_page_to_phys = NULL;
3300
3301	/* Set the function pointer to an actual operation function */
3302	mci->edac_check = sbridge_check_error;
3303
3304	pvt->info.type = type;
3305	switch (type) {
3306	case IVY_BRIDGE:
3307		pvt->info.rankcfgr = IB_RANK_CFG_A;
3308		pvt->info.get_tolm = ibridge_get_tolm;
3309		pvt->info.get_tohm = ibridge_get_tohm;
3310		pvt->info.dram_rule = ibridge_dram_rule;
3311		pvt->info.get_memory_type = get_memory_type;
3312		pvt->info.get_node_id = get_node_id;
 
3313		pvt->info.rir_limit = rir_limit;
3314		pvt->info.sad_limit = sad_limit;
3315		pvt->info.interleave_mode = interleave_mode;
3316		pvt->info.show_interleave_mode = show_interleave_mode;
3317		pvt->info.dram_attr = dram_attr;
3318		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3319		pvt->info.interleave_list = ibridge_interleave_list;
3320		pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
3321		pvt->info.interleave_pkg = ibridge_interleave_pkg;
3322		pvt->info.get_width = ibridge_get_width;
3323		mci->ctl_name = kasprintf(GFP_KERNEL, "Ivy Bridge Socket#%d", mci->mc_idx);
3324
3325		/* Store pci devices at mci for faster access */
3326		rc = ibridge_mci_bind_devs(mci, sbridge_dev);
3327		if (unlikely(rc < 0))
3328			goto fail0;
 
 
 
3329		break;
3330	case SANDY_BRIDGE:
3331		pvt->info.rankcfgr = SB_RANK_CFG_A;
3332		pvt->info.get_tolm = sbridge_get_tolm;
3333		pvt->info.get_tohm = sbridge_get_tohm;
3334		pvt->info.dram_rule = sbridge_dram_rule;
3335		pvt->info.get_memory_type = get_memory_type;
3336		pvt->info.get_node_id = get_node_id;
 
3337		pvt->info.rir_limit = rir_limit;
3338		pvt->info.sad_limit = sad_limit;
3339		pvt->info.interleave_mode = interleave_mode;
3340		pvt->info.show_interleave_mode = show_interleave_mode;
3341		pvt->info.dram_attr = dram_attr;
3342		pvt->info.max_sad = ARRAY_SIZE(sbridge_dram_rule);
3343		pvt->info.interleave_list = sbridge_interleave_list;
3344		pvt->info.max_interleave = ARRAY_SIZE(sbridge_interleave_list);
3345		pvt->info.interleave_pkg = sbridge_interleave_pkg;
3346		pvt->info.get_width = sbridge_get_width;
3347		mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge Socket#%d", mci->mc_idx);
3348
3349		/* Store pci devices at mci for faster access */
3350		rc = sbridge_mci_bind_devs(mci, sbridge_dev);
3351		if (unlikely(rc < 0))
3352			goto fail0;
 
 
 
3353		break;
3354	case HASWELL:
3355		/* rankcfgr isn't used */
3356		pvt->info.get_tolm = haswell_get_tolm;
3357		pvt->info.get_tohm = haswell_get_tohm;
3358		pvt->info.dram_rule = ibridge_dram_rule;
3359		pvt->info.get_memory_type = haswell_get_memory_type;
3360		pvt->info.get_node_id = haswell_get_node_id;
 
3361		pvt->info.rir_limit = haswell_rir_limit;
3362		pvt->info.sad_limit = sad_limit;
3363		pvt->info.interleave_mode = interleave_mode;
3364		pvt->info.show_interleave_mode = show_interleave_mode;
3365		pvt->info.dram_attr = dram_attr;
3366		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3367		pvt->info.interleave_list = ibridge_interleave_list;
3368		pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
3369		pvt->info.interleave_pkg = ibridge_interleave_pkg;
3370		pvt->info.get_width = ibridge_get_width;
3371		mci->ctl_name = kasprintf(GFP_KERNEL, "Haswell Socket#%d", mci->mc_idx);
3372
3373		/* Store pci devices at mci for faster access */
3374		rc = haswell_mci_bind_devs(mci, sbridge_dev);
3375		if (unlikely(rc < 0))
3376			goto fail0;
 
 
 
3377		break;
3378	case BROADWELL:
3379		/* rankcfgr isn't used */
3380		pvt->info.get_tolm = haswell_get_tolm;
3381		pvt->info.get_tohm = haswell_get_tohm;
3382		pvt->info.dram_rule = ibridge_dram_rule;
3383		pvt->info.get_memory_type = haswell_get_memory_type;
3384		pvt->info.get_node_id = haswell_get_node_id;
 
3385		pvt->info.rir_limit = haswell_rir_limit;
3386		pvt->info.sad_limit = sad_limit;
3387		pvt->info.interleave_mode = interleave_mode;
3388		pvt->info.show_interleave_mode = show_interleave_mode;
3389		pvt->info.dram_attr = dram_attr;
3390		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3391		pvt->info.interleave_list = ibridge_interleave_list;
3392		pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
3393		pvt->info.interleave_pkg = ibridge_interleave_pkg;
3394		pvt->info.get_width = broadwell_get_width;
3395		mci->ctl_name = kasprintf(GFP_KERNEL, "Broadwell Socket#%d", mci->mc_idx);
3396
3397		/* Store pci devices at mci for faster access */
3398		rc = broadwell_mci_bind_devs(mci, sbridge_dev);
3399		if (unlikely(rc < 0))
3400			goto fail0;
 
 
 
3401		break;
3402	case KNIGHTS_LANDING:
3403		/* pvt->info.rankcfgr == ??? */
3404		pvt->info.get_tolm = knl_get_tolm;
3405		pvt->info.get_tohm = knl_get_tohm;
3406		pvt->info.dram_rule = knl_dram_rule;
3407		pvt->info.get_memory_type = knl_get_memory_type;
3408		pvt->info.get_node_id = knl_get_node_id;
 
3409		pvt->info.rir_limit = NULL;
3410		pvt->info.sad_limit = knl_sad_limit;
3411		pvt->info.interleave_mode = knl_interleave_mode;
3412		pvt->info.show_interleave_mode = knl_show_interleave_mode;
3413		pvt->info.dram_attr = dram_attr_knl;
3414		pvt->info.max_sad = ARRAY_SIZE(knl_dram_rule);
3415		pvt->info.interleave_list = knl_interleave_list;
3416		pvt->info.max_interleave = ARRAY_SIZE(knl_interleave_list);
3417		pvt->info.interleave_pkg = ibridge_interleave_pkg;
3418		pvt->info.get_width = knl_get_width;
3419		mci->ctl_name = kasprintf(GFP_KERNEL,
3420			"Knights Landing Socket#%d", mci->mc_idx);
3421
3422		rc = knl_mci_bind_devs(mci, sbridge_dev);
3423		if (unlikely(rc < 0))
3424			goto fail0;
 
 
 
3425		break;
3426	}
3427
 
 
 
 
 
3428	/* Get dimm basic config and the memory layout */
3429	get_dimm_config(mci);
 
 
 
 
3430	get_memory_layout(mci);
3431
3432	/* record ptr to the generic device */
3433	mci->pdev = &pdev->dev;
3434
3435	/* add this new MC control structure to EDAC's list of MCs */
3436	if (unlikely(edac_mc_add_mc(mci))) {
3437		edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
3438		rc = -EINVAL;
3439		goto fail0;
3440	}
3441
3442	return 0;
3443
 
 
3444fail0:
3445	kfree(mci->ctl_name);
3446	edac_mc_free(mci);
3447	sbridge_dev->mci = NULL;
3448	return rc;
3449}
3450
 
 
 
 
 
 
 
 
 
 
 
 
3451/*
3452 *	sbridge_probe	Probe for ONE instance of device to see if it is
3453 *			present.
3454 *	return:
3455 *		0 for FOUND a device
3456 *		< 0 for error code
3457 */
3458
3459static int sbridge_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3460{
3461	int rc = -ENODEV;
3462	u8 mc, num_mc = 0;
3463	struct sbridge_dev *sbridge_dev;
3464	enum type type = SANDY_BRIDGE;
3465
3466	/* get the pci devices we want to reserve for our use */
3467	mutex_lock(&sbridge_edac_lock);
3468
3469	/*
3470	 * All memory controllers are allocated at the first pass.
3471	 */
3472	if (unlikely(probed >= 1)) {
3473		mutex_unlock(&sbridge_edac_lock);
3474		return -ENODEV;
3475	}
3476	probed++;
3477
3478	switch (pdev->device) {
3479	case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
3480		rc = sbridge_get_all_devices(&num_mc,
3481					pci_dev_descr_ibridge_table);
3482		type = IVY_BRIDGE;
3483		break;
3484	case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
3485		rc = sbridge_get_all_devices(&num_mc,
3486					pci_dev_descr_sbridge_table);
3487		type = SANDY_BRIDGE;
3488		break;
3489	case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
3490		rc = sbridge_get_all_devices(&num_mc,
3491					pci_dev_descr_haswell_table);
3492		type = HASWELL;
3493		break;
3494	case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
3495		rc = sbridge_get_all_devices(&num_mc,
3496					pci_dev_descr_broadwell_table);
3497		type = BROADWELL;
3498	    break;
3499	case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0:
3500		rc = sbridge_get_all_devices_knl(&num_mc,
3501					pci_dev_descr_knl_table);
3502		type = KNIGHTS_LANDING;
3503		break;
3504	}
3505	if (unlikely(rc < 0)) {
3506		edac_dbg(0, "couldn't get all devices for 0x%x\n", pdev->device);
3507		goto fail0;
3508	}
3509
3510	mc = 0;
3511
3512	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
3513		edac_dbg(0, "Registering MC#%d (%d of %d)\n",
3514			 mc, mc + 1, num_mc);
3515
3516		sbridge_dev->mc = mc++;
3517		rc = sbridge_register_mci(sbridge_dev, type);
3518		if (unlikely(rc < 0))
3519			goto fail1;
3520	}
3521
3522	sbridge_printk(KERN_INFO, "%s\n", SBRIDGE_REVISION);
3523
3524	mutex_unlock(&sbridge_edac_lock);
3525	return 0;
3526
3527fail1:
3528	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
3529		sbridge_unregister_mci(sbridge_dev);
3530
3531	sbridge_put_all_devices();
3532fail0:
3533	mutex_unlock(&sbridge_edac_lock);
3534	return rc;
3535}
3536
3537/*
3538 *	sbridge_remove	destructor for one instance of device
3539 *
3540 */
3541static void sbridge_remove(struct pci_dev *pdev)
3542{
3543	struct sbridge_dev *sbridge_dev;
3544
3545	edac_dbg(0, "\n");
3546
3547	/*
3548	 * we have a trouble here: pdev value for removal will be wrong, since
3549	 * it will point to the X58 register used to detect that the machine
3550	 * is a Nehalem or upper design. However, due to the way several PCI
3551	 * devices are grouped together to provide MC functionality, we need
3552	 * to use a different method for releasing the devices
3553	 */
3554
3555	mutex_lock(&sbridge_edac_lock);
3556
3557	if (unlikely(!probed)) {
3558		mutex_unlock(&sbridge_edac_lock);
3559		return;
3560	}
3561
3562	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
3563		sbridge_unregister_mci(sbridge_dev);
3564
3565	/* Release PCI resources */
3566	sbridge_put_all_devices();
3567
3568	probed--;
3569
3570	mutex_unlock(&sbridge_edac_lock);
3571}
3572
3573MODULE_DEVICE_TABLE(pci, sbridge_pci_tbl);
3574
3575/*
3576 *	sbridge_driver	pci_driver structure for this module
3577 *
3578 */
3579static struct pci_driver sbridge_driver = {
3580	.name     = "sbridge_edac",
3581	.probe    = sbridge_probe,
3582	.remove   = sbridge_remove,
3583	.id_table = sbridge_pci_tbl,
3584};
3585
3586/*
3587 *	sbridge_init		Module entry function
3588 *			Try to initialize this module for its devices
3589 */
3590static int __init sbridge_init(void)
3591{
3592	int pci_rc;
 
 
3593
3594	edac_dbg(2, "\n");
3595
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3596	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
3597	opstate_init();
3598
3599	pci_rc = pci_register_driver(&sbridge_driver);
3600	if (pci_rc >= 0) {
 
3601		mce_register_decode_chain(&sbridge_mce_dec);
3602		if (get_edac_report_status() == EDAC_REPORTING_DISABLED)
3603			sbridge_printk(KERN_WARNING, "Loading driver, error reporting disabled.\n");
3604		return 0;
3605	}
3606
3607	sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
3608		      pci_rc);
3609
3610	return pci_rc;
3611}
3612
3613/*
3614 *	sbridge_exit()	Module exit function
3615 *			Unregister the driver
3616 */
3617static void __exit sbridge_exit(void)
3618{
3619	edac_dbg(2, "\n");
3620	pci_unregister_driver(&sbridge_driver);
3621	mce_unregister_decode_chain(&sbridge_mce_dec);
3622}
3623
3624module_init(sbridge_init);
3625module_exit(sbridge_exit);
3626
3627module_param(edac_op_state, int, 0444);
3628MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
3629
3630MODULE_LICENSE("GPL");
3631MODULE_AUTHOR("Mauro Carvalho Chehab");
3632MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
3633MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "
3634		   SBRIDGE_REVISION);