Loading...
1/*
2 * Intel 3000/3010 Memory Controller kernel module
3 * Copyright (C) 2007 Akamai Technologies, Inc.
4 * Shamelessly copied from:
5 * Intel D82875P Memory Controller kernel module
6 * (C) 2003 Linux Networx (http://lnxi.com)
7 *
8 * This file may be distributed under the terms of the
9 * GNU General Public License.
10 */
11
12#include <linux/module.h>
13#include <linux/init.h>
14#include <linux/pci.h>
15#include <linux/pci_ids.h>
16#include <linux/edac.h>
17#include "edac_module.h"
18
19#define EDAC_MOD_STR "i3000_edac"
20
21#define I3000_RANKS 8
22#define I3000_RANKS_PER_CHANNEL 4
23#define I3000_CHANNELS 2
24
25/* Intel 3000 register addresses - device 0 function 0 - DRAM Controller */
26
27#define I3000_MCHBAR 0x44 /* MCH Memory Mapped Register BAR */
28#define I3000_MCHBAR_MASK 0xffffc000
29#define I3000_MMR_WINDOW_SIZE 16384
30
31#define I3000_EDEAP 0x70 /* Extended DRAM Error Address Pointer (8b)
32 *
33 * 7:1 reserved
34 * 0 bit 32 of address
35 */
36#define I3000_DEAP 0x58 /* DRAM Error Address Pointer (32b)
37 *
38 * 31:7 address
39 * 6:1 reserved
40 * 0 Error channel 0/1
41 */
42#define I3000_DEAP_GRAIN (1 << 7)
43
44/*
45 * Helper functions to decode the DEAP/EDEAP hardware registers.
46 *
47 * The type promotion here is deliberate; we're deriving an
48 * unsigned long pfn and offset from hardware regs which are u8/u32.
49 */
50
51static inline unsigned long deap_pfn(u8 edeap, u32 deap)
52{
53 deap >>= PAGE_SHIFT;
54 deap |= (edeap & 1) << (32 - PAGE_SHIFT);
55 return deap;
56}
57
58static inline unsigned long deap_offset(u32 deap)
59{
60 return deap & ~(I3000_DEAP_GRAIN - 1) & ~PAGE_MASK;
61}
62
63static inline int deap_channel(u32 deap)
64{
65 return deap & 1;
66}
67
68#define I3000_DERRSYN 0x5c /* DRAM Error Syndrome (8b)
69 *
70 * 7:0 DRAM ECC Syndrome
71 */
72
73#define I3000_ERRSTS 0xc8 /* Error Status Register (16b)
74 *
75 * 15:12 reserved
76 * 11 MCH Thermal Sensor Event
77 * for SMI/SCI/SERR
78 * 10 reserved
79 * 9 LOCK to non-DRAM Memory Flag (LCKF)
80 * 8 Received Refresh Timeout Flag (RRTOF)
81 * 7:2 reserved
82 * 1 Multi-bit DRAM ECC Error Flag (DMERR)
83 * 0 Single-bit DRAM ECC Error Flag (DSERR)
84 */
85#define I3000_ERRSTS_BITS 0x0b03 /* bits which indicate errors */
86#define I3000_ERRSTS_UE 0x0002
87#define I3000_ERRSTS_CE 0x0001
88
89#define I3000_ERRCMD 0xca /* Error Command (16b)
90 *
91 * 15:12 reserved
92 * 11 SERR on MCH Thermal Sensor Event
93 * (TSESERR)
94 * 10 reserved
95 * 9 SERR on LOCK to non-DRAM Memory
96 * (LCKERR)
97 * 8 SERR on DRAM Refresh Timeout
98 * (DRTOERR)
99 * 7:2 reserved
100 * 1 SERR Multi-Bit DRAM ECC Error
101 * (DMERR)
102 * 0 SERR on Single-Bit ECC Error
103 * (DSERR)
104 */
105
106/* Intel MMIO register space - device 0 function 0 - MMR space */
107
108#define I3000_DRB_SHIFT 25 /* 32MiB grain */
109
110#define I3000_C0DRB 0x100 /* Channel 0 DRAM Rank Boundary (8b x 4)
111 *
112 * 7:0 Channel 0 DRAM Rank Boundary Address
113 */
114#define I3000_C1DRB 0x180 /* Channel 1 DRAM Rank Boundary (8b x 4)
115 *
116 * 7:0 Channel 1 DRAM Rank Boundary Address
117 */
118
119#define I3000_C0DRA 0x108 /* Channel 0 DRAM Rank Attribute (8b x 2)
120 *
121 * 7 reserved
122 * 6:4 DRAM odd Rank Attribute
123 * 3 reserved
124 * 2:0 DRAM even Rank Attribute
125 *
126 * Each attribute defines the page
127 * size of the corresponding rank:
128 * 000: unpopulated
129 * 001: reserved
130 * 010: 4 KB
131 * 011: 8 KB
132 * 100: 16 KB
133 * Others: reserved
134 */
135#define I3000_C1DRA 0x188 /* Channel 1 DRAM Rank Attribute (8b x 2) */
136
137static inline unsigned char odd_rank_attrib(unsigned char dra)
138{
139 return (dra & 0x70) >> 4;
140}
141
142static inline unsigned char even_rank_attrib(unsigned char dra)
143{
144 return dra & 0x07;
145}
146
147#define I3000_C0DRC0 0x120 /* DRAM Controller Mode 0 (32b)
148 *
149 * 31:30 reserved
150 * 29 Initialization Complete (IC)
151 * 28:11 reserved
152 * 10:8 Refresh Mode Select (RMS)
153 * 7 reserved
154 * 6:4 Mode Select (SMS)
155 * 3:2 reserved
156 * 1:0 DRAM Type (DT)
157 */
158
159#define I3000_C0DRC1 0x124 /* DRAM Controller Mode 1 (32b)
160 *
161 * 31 Enhanced Addressing Enable (ENHADE)
162 * 30:0 reserved
163 */
164
165enum i3000p_chips {
166 I3000 = 0,
167};
168
169struct i3000_dev_info {
170 const char *ctl_name;
171};
172
173struct i3000_error_info {
174 u16 errsts;
175 u8 derrsyn;
176 u8 edeap;
177 u32 deap;
178 u16 errsts2;
179};
180
181static const struct i3000_dev_info i3000_devs[] = {
182 [I3000] = {
183 .ctl_name = "i3000"},
184};
185
186static struct pci_dev *mci_pdev;
187static int i3000_registered = 1;
188static struct edac_pci_ctl_info *i3000_pci;
189
190static void i3000_get_error_info(struct mem_ctl_info *mci,
191 struct i3000_error_info *info)
192{
193 struct pci_dev *pdev;
194
195 pdev = to_pci_dev(mci->pdev);
196
197 /*
198 * This is a mess because there is no atomic way to read all the
199 * registers at once and the registers can transition from CE being
200 * overwritten by UE.
201 */
202 pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts);
203 if (!(info->errsts & I3000_ERRSTS_BITS))
204 return;
205 pci_read_config_byte(pdev, I3000_EDEAP, &info->edeap);
206 pci_read_config_dword(pdev, I3000_DEAP, &info->deap);
207 pci_read_config_byte(pdev, I3000_DERRSYN, &info->derrsyn);
208 pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts2);
209
210 /*
211 * If the error is the same for both reads then the first set
212 * of reads is valid. If there is a change then there is a CE
213 * with no info and the second set of reads is valid and
214 * should be UE info.
215 */
216 if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) {
217 pci_read_config_byte(pdev, I3000_EDEAP, &info->edeap);
218 pci_read_config_dword(pdev, I3000_DEAP, &info->deap);
219 pci_read_config_byte(pdev, I3000_DERRSYN, &info->derrsyn);
220 }
221
222 /*
223 * Clear any error bits.
224 * (Yes, we really clear bits by writing 1 to them.)
225 */
226 pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS,
227 I3000_ERRSTS_BITS);
228}
229
230static int i3000_process_error_info(struct mem_ctl_info *mci,
231 struct i3000_error_info *info,
232 int handle_errors)
233{
234 int row, multi_chan, channel;
235 unsigned long pfn, offset;
236
237 multi_chan = mci->csrows[0]->nr_channels - 1;
238
239 if (!(info->errsts & I3000_ERRSTS_BITS))
240 return 0;
241
242 if (!handle_errors)
243 return 1;
244
245 if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) {
246 edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1, 0, 0, 0,
247 -1, -1, -1,
248 "UE overwrote CE", "");
249 info->errsts = info->errsts2;
250 }
251
252 pfn = deap_pfn(info->edeap, info->deap);
253 offset = deap_offset(info->deap);
254 channel = deap_channel(info->deap);
255
256 row = edac_mc_find_csrow_by_page(mci, pfn);
257
258 if (info->errsts & I3000_ERRSTS_UE)
259 edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1,
260 pfn, offset, 0,
261 row, -1, -1,
262 "i3000 UE", "");
263 else
264 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1,
265 pfn, offset, info->derrsyn,
266 row, multi_chan ? channel : 0, -1,
267 "i3000 CE", "");
268
269 return 1;
270}
271
272static void i3000_check(struct mem_ctl_info *mci)
273{
274 struct i3000_error_info info;
275
276 i3000_get_error_info(mci, &info);
277 i3000_process_error_info(mci, &info, 1);
278}
279
280static int i3000_is_interleaved(const unsigned char *c0dra,
281 const unsigned char *c1dra,
282 const unsigned char *c0drb,
283 const unsigned char *c1drb)
284{
285 int i;
286
287 /*
288 * If the channels aren't populated identically then
289 * we're not interleaved.
290 */
291 for (i = 0; i < I3000_RANKS_PER_CHANNEL / 2; i++)
292 if (odd_rank_attrib(c0dra[i]) != odd_rank_attrib(c1dra[i]) ||
293 even_rank_attrib(c0dra[i]) !=
294 even_rank_attrib(c1dra[i]))
295 return 0;
296
297 /*
298 * If the rank boundaries for the two channels are different
299 * then we're not interleaved.
300 */
301 for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++)
302 if (c0drb[i] != c1drb[i])
303 return 0;
304
305 return 1;
306}
307
308static int i3000_probe1(struct pci_dev *pdev, int dev_idx)
309{
310 int rc;
311 int i, j;
312 struct mem_ctl_info *mci = NULL;
313 struct edac_mc_layer layers[2];
314 unsigned long last_cumul_size, nr_pages;
315 int interleaved, nr_channels;
316 unsigned char dra[I3000_RANKS / 2], drb[I3000_RANKS];
317 unsigned char *c0dra = dra, *c1dra = &dra[I3000_RANKS_PER_CHANNEL / 2];
318 unsigned char *c0drb = drb, *c1drb = &drb[I3000_RANKS_PER_CHANNEL];
319 unsigned long mchbar;
320 void __iomem *window;
321
322 edac_dbg(0, "MC:\n");
323
324 pci_read_config_dword(pdev, I3000_MCHBAR, (u32 *) & mchbar);
325 mchbar &= I3000_MCHBAR_MASK;
326 window = ioremap(mchbar, I3000_MMR_WINDOW_SIZE);
327 if (!window) {
328 printk(KERN_ERR "i3000: cannot map mmio space at 0x%lx\n",
329 mchbar);
330 return -ENODEV;
331 }
332
333 c0dra[0] = readb(window + I3000_C0DRA + 0); /* ranks 0,1 */
334 c0dra[1] = readb(window + I3000_C0DRA + 1); /* ranks 2,3 */
335 c1dra[0] = readb(window + I3000_C1DRA + 0); /* ranks 0,1 */
336 c1dra[1] = readb(window + I3000_C1DRA + 1); /* ranks 2,3 */
337
338 for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++) {
339 c0drb[i] = readb(window + I3000_C0DRB + i);
340 c1drb[i] = readb(window + I3000_C1DRB + i);
341 }
342
343 iounmap(window);
344
345 /*
346 * Figure out how many channels we have.
347 *
348 * If we have what the datasheet calls "asymmetric channels"
349 * (essentially the same as what was called "virtual single
350 * channel mode" in the i82875) then it's a single channel as
351 * far as EDAC is concerned.
352 */
353 interleaved = i3000_is_interleaved(c0dra, c1dra, c0drb, c1drb);
354 nr_channels = interleaved ? 2 : 1;
355
356 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
357 layers[0].size = I3000_RANKS / nr_channels;
358 layers[0].is_virt_csrow = true;
359 layers[1].type = EDAC_MC_LAYER_CHANNEL;
360 layers[1].size = nr_channels;
361 layers[1].is_virt_csrow = false;
362 mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, 0);
363 if (!mci)
364 return -ENOMEM;
365
366 edac_dbg(3, "MC: init mci\n");
367
368 mci->pdev = &pdev->dev;
369 mci->mtype_cap = MEM_FLAG_DDR2;
370
371 mci->edac_ctl_cap = EDAC_FLAG_SECDED;
372 mci->edac_cap = EDAC_FLAG_SECDED;
373
374 mci->mod_name = EDAC_MOD_STR;
375 mci->ctl_name = i3000_devs[dev_idx].ctl_name;
376 mci->dev_name = pci_name(pdev);
377 mci->edac_check = i3000_check;
378 mci->ctl_page_to_phys = NULL;
379
380 /*
381 * The dram rank boundary (DRB) reg values are boundary addresses
382 * for each DRAM rank with a granularity of 32MB. DRB regs are
383 * cumulative; the last one will contain the total memory
384 * contained in all ranks.
385 *
386 * If we're in interleaved mode then we're only walking through
387 * the ranks of controller 0, so we double all the values we see.
388 */
389 for (last_cumul_size = i = 0; i < mci->nr_csrows; i++) {
390 u8 value;
391 u32 cumul_size;
392 struct csrow_info *csrow = mci->csrows[i];
393
394 value = drb[i];
395 cumul_size = value << (I3000_DRB_SHIFT - PAGE_SHIFT);
396 if (interleaved)
397 cumul_size <<= 1;
398 edac_dbg(3, "MC: (%d) cumul_size 0x%x\n", i, cumul_size);
399 if (cumul_size == last_cumul_size)
400 continue;
401
402 csrow->first_page = last_cumul_size;
403 csrow->last_page = cumul_size - 1;
404 nr_pages = cumul_size - last_cumul_size;
405 last_cumul_size = cumul_size;
406
407 for (j = 0; j < nr_channels; j++) {
408 struct dimm_info *dimm = csrow->channels[j]->dimm;
409
410 dimm->nr_pages = nr_pages / nr_channels;
411 dimm->grain = I3000_DEAP_GRAIN;
412 dimm->mtype = MEM_DDR2;
413 dimm->dtype = DEV_UNKNOWN;
414 dimm->edac_mode = EDAC_UNKNOWN;
415 }
416 }
417
418 /*
419 * Clear any error bits.
420 * (Yes, we really clear bits by writing 1 to them.)
421 */
422 pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS,
423 I3000_ERRSTS_BITS);
424
425 rc = -ENODEV;
426 if (edac_mc_add_mc(mci)) {
427 edac_dbg(3, "MC: failed edac_mc_add_mc()\n");
428 goto fail;
429 }
430
431 /* allocating generic PCI control info */
432 i3000_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
433 if (!i3000_pci) {
434 printk(KERN_WARNING
435 "%s(): Unable to create PCI control\n",
436 __func__);
437 printk(KERN_WARNING
438 "%s(): PCI error report via EDAC not setup\n",
439 __func__);
440 }
441
442 /* get this far and it's successful */
443 edac_dbg(3, "MC: success\n");
444 return 0;
445
446fail:
447 if (mci)
448 edac_mc_free(mci);
449
450 return rc;
451}
452
453/* returns count (>= 0), or negative on error */
454static int i3000_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
455{
456 int rc;
457
458 edac_dbg(0, "MC:\n");
459
460 if (pci_enable_device(pdev) < 0)
461 return -EIO;
462
463 rc = i3000_probe1(pdev, ent->driver_data);
464 if (!mci_pdev)
465 mci_pdev = pci_dev_get(pdev);
466
467 return rc;
468}
469
470static void i3000_remove_one(struct pci_dev *pdev)
471{
472 struct mem_ctl_info *mci;
473
474 edac_dbg(0, "\n");
475
476 if (i3000_pci)
477 edac_pci_release_generic_ctl(i3000_pci);
478
479 mci = edac_mc_del_mc(&pdev->dev);
480 if (!mci)
481 return;
482
483 edac_mc_free(mci);
484}
485
486static const struct pci_device_id i3000_pci_tbl[] = {
487 {
488 PCI_VEND_DEV(INTEL, 3000_HB), PCI_ANY_ID, PCI_ANY_ID, 0, 0,
489 I3000},
490 {
491 0,
492 } /* 0 terminated list. */
493};
494
495MODULE_DEVICE_TABLE(pci, i3000_pci_tbl);
496
497static struct pci_driver i3000_driver = {
498 .name = EDAC_MOD_STR,
499 .probe = i3000_init_one,
500 .remove = i3000_remove_one,
501 .id_table = i3000_pci_tbl,
502};
503
504static int __init i3000_init(void)
505{
506 int pci_rc;
507
508 edac_dbg(3, "MC:\n");
509
510 /* Ensure that the OPSTATE is set correctly for POLL or NMI */
511 opstate_init();
512
513 pci_rc = pci_register_driver(&i3000_driver);
514 if (pci_rc < 0)
515 goto fail0;
516
517 if (!mci_pdev) {
518 i3000_registered = 0;
519 mci_pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
520 PCI_DEVICE_ID_INTEL_3000_HB, NULL);
521 if (!mci_pdev) {
522 edac_dbg(0, "i3000 pci_get_device fail\n");
523 pci_rc = -ENODEV;
524 goto fail1;
525 }
526
527 pci_rc = i3000_init_one(mci_pdev, i3000_pci_tbl);
528 if (pci_rc < 0) {
529 edac_dbg(0, "i3000 init fail\n");
530 pci_rc = -ENODEV;
531 goto fail1;
532 }
533 }
534
535 return 0;
536
537fail1:
538 pci_unregister_driver(&i3000_driver);
539
540fail0:
541 pci_dev_put(mci_pdev);
542
543 return pci_rc;
544}
545
546static void __exit i3000_exit(void)
547{
548 edac_dbg(3, "MC:\n");
549
550 pci_unregister_driver(&i3000_driver);
551 if (!i3000_registered) {
552 i3000_remove_one(mci_pdev);
553 pci_dev_put(mci_pdev);
554 }
555}
556
557module_init(i3000_init);
558module_exit(i3000_exit);
559
560MODULE_LICENSE("GPL");
561MODULE_AUTHOR("Akamai Technologies Arthur Ulfeldt/Jason Uhlenkott");
562MODULE_DESCRIPTION("MC support for Intel 3000 memory hub controllers");
563
564module_param(edac_op_state, int, 0444);
565MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
1/*
2 * Intel 3000/3010 Memory Controller kernel module
3 * Copyright (C) 2007 Akamai Technologies, Inc.
4 * Shamelessly copied from:
5 * Intel D82875P Memory Controller kernel module
6 * (C) 2003 Linux Networx (http://lnxi.com)
7 *
8 * This file may be distributed under the terms of the
9 * GNU General Public License.
10 */
11
12#include <linux/module.h>
13#include <linux/init.h>
14#include <linux/pci.h>
15#include <linux/pci_ids.h>
16#include <linux/edac.h>
17#include "edac_core.h"
18
19#define I3000_REVISION "1.1"
20
21#define EDAC_MOD_STR "i3000_edac"
22
23#define I3000_RANKS 8
24#define I3000_RANKS_PER_CHANNEL 4
25#define I3000_CHANNELS 2
26
27/* Intel 3000 register addresses - device 0 function 0 - DRAM Controller */
28
29#define I3000_MCHBAR 0x44 /* MCH Memory Mapped Register BAR */
30#define I3000_MCHBAR_MASK 0xffffc000
31#define I3000_MMR_WINDOW_SIZE 16384
32
33#define I3000_EDEAP 0x70 /* Extended DRAM Error Address Pointer (8b)
34 *
35 * 7:1 reserved
36 * 0 bit 32 of address
37 */
38#define I3000_DEAP 0x58 /* DRAM Error Address Pointer (32b)
39 *
40 * 31:7 address
41 * 6:1 reserved
42 * 0 Error channel 0/1
43 */
44#define I3000_DEAP_GRAIN (1 << 7)
45
46/*
47 * Helper functions to decode the DEAP/EDEAP hardware registers.
48 *
49 * The type promotion here is deliberate; we're deriving an
50 * unsigned long pfn and offset from hardware regs which are u8/u32.
51 */
52
53static inline unsigned long deap_pfn(u8 edeap, u32 deap)
54{
55 deap >>= PAGE_SHIFT;
56 deap |= (edeap & 1) << (32 - PAGE_SHIFT);
57 return deap;
58}
59
60static inline unsigned long deap_offset(u32 deap)
61{
62 return deap & ~(I3000_DEAP_GRAIN - 1) & ~PAGE_MASK;
63}
64
65static inline int deap_channel(u32 deap)
66{
67 return deap & 1;
68}
69
70#define I3000_DERRSYN 0x5c /* DRAM Error Syndrome (8b)
71 *
72 * 7:0 DRAM ECC Syndrome
73 */
74
75#define I3000_ERRSTS 0xc8 /* Error Status Register (16b)
76 *
77 * 15:12 reserved
78 * 11 MCH Thermal Sensor Event
79 * for SMI/SCI/SERR
80 * 10 reserved
81 * 9 LOCK to non-DRAM Memory Flag (LCKF)
82 * 8 Received Refresh Timeout Flag (RRTOF)
83 * 7:2 reserved
84 * 1 Multi-bit DRAM ECC Error Flag (DMERR)
85 * 0 Single-bit DRAM ECC Error Flag (DSERR)
86 */
87#define I3000_ERRSTS_BITS 0x0b03 /* bits which indicate errors */
88#define I3000_ERRSTS_UE 0x0002
89#define I3000_ERRSTS_CE 0x0001
90
91#define I3000_ERRCMD 0xca /* Error Command (16b)
92 *
93 * 15:12 reserved
94 * 11 SERR on MCH Thermal Sensor Event
95 * (TSESERR)
96 * 10 reserved
97 * 9 SERR on LOCK to non-DRAM Memory
98 * (LCKERR)
99 * 8 SERR on DRAM Refresh Timeout
100 * (DRTOERR)
101 * 7:2 reserved
102 * 1 SERR Multi-Bit DRAM ECC Error
103 * (DMERR)
104 * 0 SERR on Single-Bit ECC Error
105 * (DSERR)
106 */
107
108/* Intel MMIO register space - device 0 function 0 - MMR space */
109
110#define I3000_DRB_SHIFT 25 /* 32MiB grain */
111
112#define I3000_C0DRB 0x100 /* Channel 0 DRAM Rank Boundary (8b x 4)
113 *
114 * 7:0 Channel 0 DRAM Rank Boundary Address
115 */
116#define I3000_C1DRB 0x180 /* Channel 1 DRAM Rank Boundary (8b x 4)
117 *
118 * 7:0 Channel 1 DRAM Rank Boundary Address
119 */
120
121#define I3000_C0DRA 0x108 /* Channel 0 DRAM Rank Attribute (8b x 2)
122 *
123 * 7 reserved
124 * 6:4 DRAM odd Rank Attribute
125 * 3 reserved
126 * 2:0 DRAM even Rank Attribute
127 *
128 * Each attribute defines the page
129 * size of the corresponding rank:
130 * 000: unpopulated
131 * 001: reserved
132 * 010: 4 KB
133 * 011: 8 KB
134 * 100: 16 KB
135 * Others: reserved
136 */
137#define I3000_C1DRA 0x188 /* Channel 1 DRAM Rank Attribute (8b x 2) */
138
139static inline unsigned char odd_rank_attrib(unsigned char dra)
140{
141 return (dra & 0x70) >> 4;
142}
143
144static inline unsigned char even_rank_attrib(unsigned char dra)
145{
146 return dra & 0x07;
147}
148
149#define I3000_C0DRC0 0x120 /* DRAM Controller Mode 0 (32b)
150 *
151 * 31:30 reserved
152 * 29 Initialization Complete (IC)
153 * 28:11 reserved
154 * 10:8 Refresh Mode Select (RMS)
155 * 7 reserved
156 * 6:4 Mode Select (SMS)
157 * 3:2 reserved
158 * 1:0 DRAM Type (DT)
159 */
160
161#define I3000_C0DRC1 0x124 /* DRAM Controller Mode 1 (32b)
162 *
163 * 31 Enhanced Addressing Enable (ENHADE)
164 * 30:0 reserved
165 */
166
167enum i3000p_chips {
168 I3000 = 0,
169};
170
171struct i3000_dev_info {
172 const char *ctl_name;
173};
174
175struct i3000_error_info {
176 u16 errsts;
177 u8 derrsyn;
178 u8 edeap;
179 u32 deap;
180 u16 errsts2;
181};
182
183static const struct i3000_dev_info i3000_devs[] = {
184 [I3000] = {
185 .ctl_name = "i3000"},
186};
187
188static struct pci_dev *mci_pdev;
189static int i3000_registered = 1;
190static struct edac_pci_ctl_info *i3000_pci;
191
192static void i3000_get_error_info(struct mem_ctl_info *mci,
193 struct i3000_error_info *info)
194{
195 struct pci_dev *pdev;
196
197 pdev = to_pci_dev(mci->pdev);
198
199 /*
200 * This is a mess because there is no atomic way to read all the
201 * registers at once and the registers can transition from CE being
202 * overwritten by UE.
203 */
204 pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts);
205 if (!(info->errsts & I3000_ERRSTS_BITS))
206 return;
207 pci_read_config_byte(pdev, I3000_EDEAP, &info->edeap);
208 pci_read_config_dword(pdev, I3000_DEAP, &info->deap);
209 pci_read_config_byte(pdev, I3000_DERRSYN, &info->derrsyn);
210 pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts2);
211
212 /*
213 * If the error is the same for both reads then the first set
214 * of reads is valid. If there is a change then there is a CE
215 * with no info and the second set of reads is valid and
216 * should be UE info.
217 */
218 if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) {
219 pci_read_config_byte(pdev, I3000_EDEAP, &info->edeap);
220 pci_read_config_dword(pdev, I3000_DEAP, &info->deap);
221 pci_read_config_byte(pdev, I3000_DERRSYN, &info->derrsyn);
222 }
223
224 /*
225 * Clear any error bits.
226 * (Yes, we really clear bits by writing 1 to them.)
227 */
228 pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS,
229 I3000_ERRSTS_BITS);
230}
231
232static int i3000_process_error_info(struct mem_ctl_info *mci,
233 struct i3000_error_info *info,
234 int handle_errors)
235{
236 int row, multi_chan, channel;
237 unsigned long pfn, offset;
238
239 multi_chan = mci->csrows[0]->nr_channels - 1;
240
241 if (!(info->errsts & I3000_ERRSTS_BITS))
242 return 0;
243
244 if (!handle_errors)
245 return 1;
246
247 if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) {
248 edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1, 0, 0, 0,
249 -1, -1, -1,
250 "UE overwrote CE", "");
251 info->errsts = info->errsts2;
252 }
253
254 pfn = deap_pfn(info->edeap, info->deap);
255 offset = deap_offset(info->deap);
256 channel = deap_channel(info->deap);
257
258 row = edac_mc_find_csrow_by_page(mci, pfn);
259
260 if (info->errsts & I3000_ERRSTS_UE)
261 edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1,
262 pfn, offset, 0,
263 row, -1, -1,
264 "i3000 UE", "");
265 else
266 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1,
267 pfn, offset, info->derrsyn,
268 row, multi_chan ? channel : 0, -1,
269 "i3000 CE", "");
270
271 return 1;
272}
273
274static void i3000_check(struct mem_ctl_info *mci)
275{
276 struct i3000_error_info info;
277
278 edac_dbg(1, "MC%d\n", mci->mc_idx);
279 i3000_get_error_info(mci, &info);
280 i3000_process_error_info(mci, &info, 1);
281}
282
283static int i3000_is_interleaved(const unsigned char *c0dra,
284 const unsigned char *c1dra,
285 const unsigned char *c0drb,
286 const unsigned char *c1drb)
287{
288 int i;
289
290 /*
291 * If the channels aren't populated identically then
292 * we're not interleaved.
293 */
294 for (i = 0; i < I3000_RANKS_PER_CHANNEL / 2; i++)
295 if (odd_rank_attrib(c0dra[i]) != odd_rank_attrib(c1dra[i]) ||
296 even_rank_attrib(c0dra[i]) !=
297 even_rank_attrib(c1dra[i]))
298 return 0;
299
300 /*
301 * If the rank boundaries for the two channels are different
302 * then we're not interleaved.
303 */
304 for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++)
305 if (c0drb[i] != c1drb[i])
306 return 0;
307
308 return 1;
309}
310
311static int i3000_probe1(struct pci_dev *pdev, int dev_idx)
312{
313 int rc;
314 int i, j;
315 struct mem_ctl_info *mci = NULL;
316 struct edac_mc_layer layers[2];
317 unsigned long last_cumul_size, nr_pages;
318 int interleaved, nr_channels;
319 unsigned char dra[I3000_RANKS / 2], drb[I3000_RANKS];
320 unsigned char *c0dra = dra, *c1dra = &dra[I3000_RANKS_PER_CHANNEL / 2];
321 unsigned char *c0drb = drb, *c1drb = &drb[I3000_RANKS_PER_CHANNEL];
322 unsigned long mchbar;
323 void __iomem *window;
324
325 edac_dbg(0, "MC:\n");
326
327 pci_read_config_dword(pdev, I3000_MCHBAR, (u32 *) & mchbar);
328 mchbar &= I3000_MCHBAR_MASK;
329 window = ioremap_nocache(mchbar, I3000_MMR_WINDOW_SIZE);
330 if (!window) {
331 printk(KERN_ERR "i3000: cannot map mmio space at 0x%lx\n",
332 mchbar);
333 return -ENODEV;
334 }
335
336 c0dra[0] = readb(window + I3000_C0DRA + 0); /* ranks 0,1 */
337 c0dra[1] = readb(window + I3000_C0DRA + 1); /* ranks 2,3 */
338 c1dra[0] = readb(window + I3000_C1DRA + 0); /* ranks 0,1 */
339 c1dra[1] = readb(window + I3000_C1DRA + 1); /* ranks 2,3 */
340
341 for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++) {
342 c0drb[i] = readb(window + I3000_C0DRB + i);
343 c1drb[i] = readb(window + I3000_C1DRB + i);
344 }
345
346 iounmap(window);
347
348 /*
349 * Figure out how many channels we have.
350 *
351 * If we have what the datasheet calls "asymmetric channels"
352 * (essentially the same as what was called "virtual single
353 * channel mode" in the i82875) then it's a single channel as
354 * far as EDAC is concerned.
355 */
356 interleaved = i3000_is_interleaved(c0dra, c1dra, c0drb, c1drb);
357 nr_channels = interleaved ? 2 : 1;
358
359 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
360 layers[0].size = I3000_RANKS / nr_channels;
361 layers[0].is_virt_csrow = true;
362 layers[1].type = EDAC_MC_LAYER_CHANNEL;
363 layers[1].size = nr_channels;
364 layers[1].is_virt_csrow = false;
365 mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, 0);
366 if (!mci)
367 return -ENOMEM;
368
369 edac_dbg(3, "MC: init mci\n");
370
371 mci->pdev = &pdev->dev;
372 mci->mtype_cap = MEM_FLAG_DDR2;
373
374 mci->edac_ctl_cap = EDAC_FLAG_SECDED;
375 mci->edac_cap = EDAC_FLAG_SECDED;
376
377 mci->mod_name = EDAC_MOD_STR;
378 mci->mod_ver = I3000_REVISION;
379 mci->ctl_name = i3000_devs[dev_idx].ctl_name;
380 mci->dev_name = pci_name(pdev);
381 mci->edac_check = i3000_check;
382 mci->ctl_page_to_phys = NULL;
383
384 /*
385 * The dram rank boundary (DRB) reg values are boundary addresses
386 * for each DRAM rank with a granularity of 32MB. DRB regs are
387 * cumulative; the last one will contain the total memory
388 * contained in all ranks.
389 *
390 * If we're in interleaved mode then we're only walking through
391 * the ranks of controller 0, so we double all the values we see.
392 */
393 for (last_cumul_size = i = 0; i < mci->nr_csrows; i++) {
394 u8 value;
395 u32 cumul_size;
396 struct csrow_info *csrow = mci->csrows[i];
397
398 value = drb[i];
399 cumul_size = value << (I3000_DRB_SHIFT - PAGE_SHIFT);
400 if (interleaved)
401 cumul_size <<= 1;
402 edac_dbg(3, "MC: (%d) cumul_size 0x%x\n", i, cumul_size);
403 if (cumul_size == last_cumul_size)
404 continue;
405
406 csrow->first_page = last_cumul_size;
407 csrow->last_page = cumul_size - 1;
408 nr_pages = cumul_size - last_cumul_size;
409 last_cumul_size = cumul_size;
410
411 for (j = 0; j < nr_channels; j++) {
412 struct dimm_info *dimm = csrow->channels[j]->dimm;
413
414 dimm->nr_pages = nr_pages / nr_channels;
415 dimm->grain = I3000_DEAP_GRAIN;
416 dimm->mtype = MEM_DDR2;
417 dimm->dtype = DEV_UNKNOWN;
418 dimm->edac_mode = EDAC_UNKNOWN;
419 }
420 }
421
422 /*
423 * Clear any error bits.
424 * (Yes, we really clear bits by writing 1 to them.)
425 */
426 pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS,
427 I3000_ERRSTS_BITS);
428
429 rc = -ENODEV;
430 if (edac_mc_add_mc(mci)) {
431 edac_dbg(3, "MC: failed edac_mc_add_mc()\n");
432 goto fail;
433 }
434
435 /* allocating generic PCI control info */
436 i3000_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
437 if (!i3000_pci) {
438 printk(KERN_WARNING
439 "%s(): Unable to create PCI control\n",
440 __func__);
441 printk(KERN_WARNING
442 "%s(): PCI error report via EDAC not setup\n",
443 __func__);
444 }
445
446 /* get this far and it's successful */
447 edac_dbg(3, "MC: success\n");
448 return 0;
449
450fail:
451 if (mci)
452 edac_mc_free(mci);
453
454 return rc;
455}
456
457/* returns count (>= 0), or negative on error */
458static int i3000_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
459{
460 int rc;
461
462 edac_dbg(0, "MC:\n");
463
464 if (pci_enable_device(pdev) < 0)
465 return -EIO;
466
467 rc = i3000_probe1(pdev, ent->driver_data);
468 if (!mci_pdev)
469 mci_pdev = pci_dev_get(pdev);
470
471 return rc;
472}
473
474static void i3000_remove_one(struct pci_dev *pdev)
475{
476 struct mem_ctl_info *mci;
477
478 edac_dbg(0, "\n");
479
480 if (i3000_pci)
481 edac_pci_release_generic_ctl(i3000_pci);
482
483 mci = edac_mc_del_mc(&pdev->dev);
484 if (!mci)
485 return;
486
487 edac_mc_free(mci);
488}
489
490static const struct pci_device_id i3000_pci_tbl[] = {
491 {
492 PCI_VEND_DEV(INTEL, 3000_HB), PCI_ANY_ID, PCI_ANY_ID, 0, 0,
493 I3000},
494 {
495 0,
496 } /* 0 terminated list. */
497};
498
499MODULE_DEVICE_TABLE(pci, i3000_pci_tbl);
500
501static struct pci_driver i3000_driver = {
502 .name = EDAC_MOD_STR,
503 .probe = i3000_init_one,
504 .remove = i3000_remove_one,
505 .id_table = i3000_pci_tbl,
506};
507
508static int __init i3000_init(void)
509{
510 int pci_rc;
511
512 edac_dbg(3, "MC:\n");
513
514 /* Ensure that the OPSTATE is set correctly for POLL or NMI */
515 opstate_init();
516
517 pci_rc = pci_register_driver(&i3000_driver);
518 if (pci_rc < 0)
519 goto fail0;
520
521 if (!mci_pdev) {
522 i3000_registered = 0;
523 mci_pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
524 PCI_DEVICE_ID_INTEL_3000_HB, NULL);
525 if (!mci_pdev) {
526 edac_dbg(0, "i3000 pci_get_device fail\n");
527 pci_rc = -ENODEV;
528 goto fail1;
529 }
530
531 pci_rc = i3000_init_one(mci_pdev, i3000_pci_tbl);
532 if (pci_rc < 0) {
533 edac_dbg(0, "i3000 init fail\n");
534 pci_rc = -ENODEV;
535 goto fail1;
536 }
537 }
538
539 return 0;
540
541fail1:
542 pci_unregister_driver(&i3000_driver);
543
544fail0:
545 pci_dev_put(mci_pdev);
546
547 return pci_rc;
548}
549
550static void __exit i3000_exit(void)
551{
552 edac_dbg(3, "MC:\n");
553
554 pci_unregister_driver(&i3000_driver);
555 if (!i3000_registered) {
556 i3000_remove_one(mci_pdev);
557 pci_dev_put(mci_pdev);
558 }
559}
560
561module_init(i3000_init);
562module_exit(i3000_exit);
563
564MODULE_LICENSE("GPL");
565MODULE_AUTHOR("Akamai Technologies Arthur Ulfeldt/Jason Uhlenkott");
566MODULE_DESCRIPTION("MC support for Intel 3000 memory hub controllers");
567
568module_param(edac_op_state, int, 0444);
569MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");