Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Freescale i.MX23/i.MX28 Data Co-Processor driver
4 *
5 * Copyright (C) 2013 Marek Vasut <marex@denx.de>
6 */
7
8#include <linux/dma-mapping.h>
9#include <linux/interrupt.h>
10#include <linux/io.h>
11#include <linux/kernel.h>
12#include <linux/kthread.h>
13#include <linux/module.h>
14#include <linux/of.h>
15#include <linux/platform_device.h>
16#include <linux/stmp_device.h>
17#include <linux/clk.h>
18
19#include <crypto/aes.h>
20#include <crypto/sha1.h>
21#include <crypto/sha2.h>
22#include <crypto/internal/hash.h>
23#include <crypto/internal/skcipher.h>
24#include <crypto/scatterwalk.h>
25
26#define DCP_MAX_CHANS 4
27#define DCP_BUF_SZ PAGE_SIZE
28#define DCP_SHA_PAY_SZ 64
29
30#define DCP_ALIGNMENT 64
31
32/*
33 * Null hashes to align with hw behavior on imx6sl and ull
34 * these are flipped for consistency with hw output
35 */
36static const uint8_t sha1_null_hash[] =
37 "\x09\x07\xd8\xaf\x90\x18\x60\x95\xef\xbf"
38 "\x55\x32\x0d\x4b\x6b\x5e\xee\xa3\x39\xda";
39
40static const uint8_t sha256_null_hash[] =
41 "\x55\xb8\x52\x78\x1b\x99\x95\xa4"
42 "\x4c\x93\x9b\x64\xe4\x41\xae\x27"
43 "\x24\xb9\x6f\x99\xc8\xf4\xfb\x9a"
44 "\x14\x1c\xfc\x98\x42\xc4\xb0\xe3";
45
46/* DCP DMA descriptor. */
47struct dcp_dma_desc {
48 uint32_t next_cmd_addr;
49 uint32_t control0;
50 uint32_t control1;
51 uint32_t source;
52 uint32_t destination;
53 uint32_t size;
54 uint32_t payload;
55 uint32_t status;
56};
57
58/* Coherent aligned block for bounce buffering. */
59struct dcp_coherent_block {
60 uint8_t aes_in_buf[DCP_BUF_SZ];
61 uint8_t aes_out_buf[DCP_BUF_SZ];
62 uint8_t sha_in_buf[DCP_BUF_SZ];
63 uint8_t sha_out_buf[DCP_SHA_PAY_SZ];
64
65 uint8_t aes_key[2 * AES_KEYSIZE_128];
66
67 struct dcp_dma_desc desc[DCP_MAX_CHANS];
68};
69
70struct dcp {
71 struct device *dev;
72 void __iomem *base;
73
74 uint32_t caps;
75
76 struct dcp_coherent_block *coh;
77
78 struct completion completion[DCP_MAX_CHANS];
79 spinlock_t lock[DCP_MAX_CHANS];
80 struct task_struct *thread[DCP_MAX_CHANS];
81 struct crypto_queue queue[DCP_MAX_CHANS];
82 struct clk *dcp_clk;
83};
84
85enum dcp_chan {
86 DCP_CHAN_HASH_SHA = 0,
87 DCP_CHAN_CRYPTO = 2,
88};
89
90struct dcp_async_ctx {
91 /* Common context */
92 enum dcp_chan chan;
93 uint32_t fill;
94
95 /* SHA Hash-specific context */
96 struct mutex mutex;
97 uint32_t alg;
98 unsigned int hot:1;
99
100 /* Crypto-specific context */
101 struct crypto_skcipher *fallback;
102 unsigned int key_len;
103 uint8_t key[AES_KEYSIZE_128];
104};
105
106struct dcp_aes_req_ctx {
107 unsigned int enc:1;
108 unsigned int ecb:1;
109 struct skcipher_request fallback_req; // keep at the end
110};
111
112struct dcp_sha_req_ctx {
113 unsigned int init:1;
114 unsigned int fini:1;
115};
116
117struct dcp_export_state {
118 struct dcp_sha_req_ctx req_ctx;
119 struct dcp_async_ctx async_ctx;
120};
121
122/*
123 * There can even be only one instance of the MXS DCP due to the
124 * design of Linux Crypto API.
125 */
126static struct dcp *global_sdcp;
127
128/* DCP register layout. */
129#define MXS_DCP_CTRL 0x00
130#define MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES (1 << 23)
131#define MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING (1 << 22)
132
133#define MXS_DCP_STAT 0x10
134#define MXS_DCP_STAT_CLR 0x18
135#define MXS_DCP_STAT_IRQ_MASK 0xf
136
137#define MXS_DCP_CHANNELCTRL 0x20
138#define MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK 0xff
139
140#define MXS_DCP_CAPABILITY1 0x40
141#define MXS_DCP_CAPABILITY1_SHA256 (4 << 16)
142#define MXS_DCP_CAPABILITY1_SHA1 (1 << 16)
143#define MXS_DCP_CAPABILITY1_AES128 (1 << 0)
144
145#define MXS_DCP_CONTEXT 0x50
146
147#define MXS_DCP_CH_N_CMDPTR(n) (0x100 + ((n) * 0x40))
148
149#define MXS_DCP_CH_N_SEMA(n) (0x110 + ((n) * 0x40))
150
151#define MXS_DCP_CH_N_STAT(n) (0x120 + ((n) * 0x40))
152#define MXS_DCP_CH_N_STAT_CLR(n) (0x128 + ((n) * 0x40))
153
154/* DMA descriptor bits. */
155#define MXS_DCP_CONTROL0_HASH_TERM (1 << 13)
156#define MXS_DCP_CONTROL0_HASH_INIT (1 << 12)
157#define MXS_DCP_CONTROL0_PAYLOAD_KEY (1 << 11)
158#define MXS_DCP_CONTROL0_CIPHER_ENCRYPT (1 << 8)
159#define MXS_DCP_CONTROL0_CIPHER_INIT (1 << 9)
160#define MXS_DCP_CONTROL0_ENABLE_HASH (1 << 6)
161#define MXS_DCP_CONTROL0_ENABLE_CIPHER (1 << 5)
162#define MXS_DCP_CONTROL0_DECR_SEMAPHORE (1 << 1)
163#define MXS_DCP_CONTROL0_INTERRUPT (1 << 0)
164
165#define MXS_DCP_CONTROL1_HASH_SELECT_SHA256 (2 << 16)
166#define MXS_DCP_CONTROL1_HASH_SELECT_SHA1 (0 << 16)
167#define MXS_DCP_CONTROL1_CIPHER_MODE_CBC (1 << 4)
168#define MXS_DCP_CONTROL1_CIPHER_MODE_ECB (0 << 4)
169#define MXS_DCP_CONTROL1_CIPHER_SELECT_AES128 (0 << 0)
170
171static int mxs_dcp_start_dma(struct dcp_async_ctx *actx)
172{
173 int dma_err;
174 struct dcp *sdcp = global_sdcp;
175 const int chan = actx->chan;
176 uint32_t stat;
177 unsigned long ret;
178 struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
179 dma_addr_t desc_phys = dma_map_single(sdcp->dev, desc, sizeof(*desc),
180 DMA_TO_DEVICE);
181
182 dma_err = dma_mapping_error(sdcp->dev, desc_phys);
183 if (dma_err)
184 return dma_err;
185
186 reinit_completion(&sdcp->completion[chan]);
187
188 /* Clear status register. */
189 writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(chan));
190
191 /* Load the DMA descriptor. */
192 writel(desc_phys, sdcp->base + MXS_DCP_CH_N_CMDPTR(chan));
193
194 /* Increment the semaphore to start the DMA transfer. */
195 writel(1, sdcp->base + MXS_DCP_CH_N_SEMA(chan));
196
197 ret = wait_for_completion_timeout(&sdcp->completion[chan],
198 msecs_to_jiffies(1000));
199 if (!ret) {
200 dev_err(sdcp->dev, "Channel %i timeout (DCP_STAT=0x%08x)\n",
201 chan, readl(sdcp->base + MXS_DCP_STAT));
202 return -ETIMEDOUT;
203 }
204
205 stat = readl(sdcp->base + MXS_DCP_CH_N_STAT(chan));
206 if (stat & 0xff) {
207 dev_err(sdcp->dev, "Channel %i error (CH_STAT=0x%08x)\n",
208 chan, stat);
209 return -EINVAL;
210 }
211
212 dma_unmap_single(sdcp->dev, desc_phys, sizeof(*desc), DMA_TO_DEVICE);
213
214 return 0;
215}
216
217/*
218 * Encryption (AES128)
219 */
220static int mxs_dcp_run_aes(struct dcp_async_ctx *actx,
221 struct skcipher_request *req, int init)
222{
223 dma_addr_t key_phys, src_phys, dst_phys;
224 struct dcp *sdcp = global_sdcp;
225 struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
226 struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req);
227 int ret;
228
229 key_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_key,
230 2 * AES_KEYSIZE_128, DMA_TO_DEVICE);
231 ret = dma_mapping_error(sdcp->dev, key_phys);
232 if (ret)
233 return ret;
234
235 src_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_in_buf,
236 DCP_BUF_SZ, DMA_TO_DEVICE);
237 ret = dma_mapping_error(sdcp->dev, src_phys);
238 if (ret)
239 goto err_src;
240
241 dst_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_out_buf,
242 DCP_BUF_SZ, DMA_FROM_DEVICE);
243 ret = dma_mapping_error(sdcp->dev, dst_phys);
244 if (ret)
245 goto err_dst;
246
247 if (actx->fill % AES_BLOCK_SIZE) {
248 dev_err(sdcp->dev, "Invalid block size!\n");
249 ret = -EINVAL;
250 goto aes_done_run;
251 }
252
253 /* Fill in the DMA descriptor. */
254 desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE |
255 MXS_DCP_CONTROL0_INTERRUPT |
256 MXS_DCP_CONTROL0_ENABLE_CIPHER;
257
258 /* Payload contains the key. */
259 desc->control0 |= MXS_DCP_CONTROL0_PAYLOAD_KEY;
260
261 if (rctx->enc)
262 desc->control0 |= MXS_DCP_CONTROL0_CIPHER_ENCRYPT;
263 if (init)
264 desc->control0 |= MXS_DCP_CONTROL0_CIPHER_INIT;
265
266 desc->control1 = MXS_DCP_CONTROL1_CIPHER_SELECT_AES128;
267
268 if (rctx->ecb)
269 desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_ECB;
270 else
271 desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_CBC;
272
273 desc->next_cmd_addr = 0;
274 desc->source = src_phys;
275 desc->destination = dst_phys;
276 desc->size = actx->fill;
277 desc->payload = key_phys;
278 desc->status = 0;
279
280 ret = mxs_dcp_start_dma(actx);
281
282aes_done_run:
283 dma_unmap_single(sdcp->dev, dst_phys, DCP_BUF_SZ, DMA_FROM_DEVICE);
284err_dst:
285 dma_unmap_single(sdcp->dev, src_phys, DCP_BUF_SZ, DMA_TO_DEVICE);
286err_src:
287 dma_unmap_single(sdcp->dev, key_phys, 2 * AES_KEYSIZE_128,
288 DMA_TO_DEVICE);
289
290 return ret;
291}
292
293static int mxs_dcp_aes_block_crypt(struct crypto_async_request *arq)
294{
295 struct dcp *sdcp = global_sdcp;
296
297 struct skcipher_request *req = skcipher_request_cast(arq);
298 struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm);
299 struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req);
300
301 struct scatterlist *dst = req->dst;
302 struct scatterlist *src = req->src;
303 int dst_nents = sg_nents(dst);
304
305 const int out_off = DCP_BUF_SZ;
306 uint8_t *in_buf = sdcp->coh->aes_in_buf;
307 uint8_t *out_buf = sdcp->coh->aes_out_buf;
308
309 uint32_t dst_off = 0;
310 uint8_t *src_buf = NULL;
311 uint32_t last_out_len = 0;
312
313 uint8_t *key = sdcp->coh->aes_key;
314
315 int ret = 0;
316 unsigned int i, len, clen, tlen = 0;
317 int init = 0;
318 bool limit_hit = false;
319
320 actx->fill = 0;
321
322 /* Copy the key from the temporary location. */
323 memcpy(key, actx->key, actx->key_len);
324
325 if (!rctx->ecb) {
326 /* Copy the CBC IV just past the key. */
327 memcpy(key + AES_KEYSIZE_128, req->iv, AES_KEYSIZE_128);
328 /* CBC needs the INIT set. */
329 init = 1;
330 } else {
331 memset(key + AES_KEYSIZE_128, 0, AES_KEYSIZE_128);
332 }
333
334 for_each_sg(req->src, src, sg_nents(req->src), i) {
335 src_buf = sg_virt(src);
336 len = sg_dma_len(src);
337 tlen += len;
338 limit_hit = tlen > req->cryptlen;
339
340 if (limit_hit)
341 len = req->cryptlen - (tlen - len);
342
343 do {
344 if (actx->fill + len > out_off)
345 clen = out_off - actx->fill;
346 else
347 clen = len;
348
349 memcpy(in_buf + actx->fill, src_buf, clen);
350 len -= clen;
351 src_buf += clen;
352 actx->fill += clen;
353
354 /*
355 * If we filled the buffer or this is the last SG,
356 * submit the buffer.
357 */
358 if (actx->fill == out_off || sg_is_last(src) ||
359 limit_hit) {
360 ret = mxs_dcp_run_aes(actx, req, init);
361 if (ret)
362 return ret;
363 init = 0;
364
365 sg_pcopy_from_buffer(dst, dst_nents, out_buf,
366 actx->fill, dst_off);
367 dst_off += actx->fill;
368 last_out_len = actx->fill;
369 actx->fill = 0;
370 }
371 } while (len);
372
373 if (limit_hit)
374 break;
375 }
376
377 /* Copy the IV for CBC for chaining */
378 if (!rctx->ecb) {
379 if (rctx->enc)
380 memcpy(req->iv, out_buf+(last_out_len-AES_BLOCK_SIZE),
381 AES_BLOCK_SIZE);
382 else
383 memcpy(req->iv, in_buf+(last_out_len-AES_BLOCK_SIZE),
384 AES_BLOCK_SIZE);
385 }
386
387 return ret;
388}
389
390static int dcp_chan_thread_aes(void *data)
391{
392 struct dcp *sdcp = global_sdcp;
393 const int chan = DCP_CHAN_CRYPTO;
394
395 struct crypto_async_request *backlog;
396 struct crypto_async_request *arq;
397
398 int ret;
399
400 while (!kthread_should_stop()) {
401 set_current_state(TASK_INTERRUPTIBLE);
402
403 spin_lock(&sdcp->lock[chan]);
404 backlog = crypto_get_backlog(&sdcp->queue[chan]);
405 arq = crypto_dequeue_request(&sdcp->queue[chan]);
406 spin_unlock(&sdcp->lock[chan]);
407
408 if (!backlog && !arq) {
409 schedule();
410 continue;
411 }
412
413 set_current_state(TASK_RUNNING);
414
415 if (backlog)
416 crypto_request_complete(backlog, -EINPROGRESS);
417
418 if (arq) {
419 ret = mxs_dcp_aes_block_crypt(arq);
420 crypto_request_complete(arq, ret);
421 }
422 }
423
424 return 0;
425}
426
427static int mxs_dcp_block_fallback(struct skcipher_request *req, int enc)
428{
429 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
430 struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req);
431 struct dcp_async_ctx *ctx = crypto_skcipher_ctx(tfm);
432 int ret;
433
434 skcipher_request_set_tfm(&rctx->fallback_req, ctx->fallback);
435 skcipher_request_set_callback(&rctx->fallback_req, req->base.flags,
436 req->base.complete, req->base.data);
437 skcipher_request_set_crypt(&rctx->fallback_req, req->src, req->dst,
438 req->cryptlen, req->iv);
439
440 if (enc)
441 ret = crypto_skcipher_encrypt(&rctx->fallback_req);
442 else
443 ret = crypto_skcipher_decrypt(&rctx->fallback_req);
444
445 return ret;
446}
447
448static int mxs_dcp_aes_enqueue(struct skcipher_request *req, int enc, int ecb)
449{
450 struct dcp *sdcp = global_sdcp;
451 struct crypto_async_request *arq = &req->base;
452 struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm);
453 struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req);
454 int ret;
455
456 if (unlikely(actx->key_len != AES_KEYSIZE_128))
457 return mxs_dcp_block_fallback(req, enc);
458
459 rctx->enc = enc;
460 rctx->ecb = ecb;
461 actx->chan = DCP_CHAN_CRYPTO;
462
463 spin_lock(&sdcp->lock[actx->chan]);
464 ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base);
465 spin_unlock(&sdcp->lock[actx->chan]);
466
467 wake_up_process(sdcp->thread[actx->chan]);
468
469 return ret;
470}
471
472static int mxs_dcp_aes_ecb_decrypt(struct skcipher_request *req)
473{
474 return mxs_dcp_aes_enqueue(req, 0, 1);
475}
476
477static int mxs_dcp_aes_ecb_encrypt(struct skcipher_request *req)
478{
479 return mxs_dcp_aes_enqueue(req, 1, 1);
480}
481
482static int mxs_dcp_aes_cbc_decrypt(struct skcipher_request *req)
483{
484 return mxs_dcp_aes_enqueue(req, 0, 0);
485}
486
487static int mxs_dcp_aes_cbc_encrypt(struct skcipher_request *req)
488{
489 return mxs_dcp_aes_enqueue(req, 1, 0);
490}
491
492static int mxs_dcp_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
493 unsigned int len)
494{
495 struct dcp_async_ctx *actx = crypto_skcipher_ctx(tfm);
496
497 /*
498 * AES 128 is supposed by the hardware, store key into temporary
499 * buffer and exit. We must use the temporary buffer here, since
500 * there can still be an operation in progress.
501 */
502 actx->key_len = len;
503 if (len == AES_KEYSIZE_128) {
504 memcpy(actx->key, key, len);
505 return 0;
506 }
507
508 /*
509 * If the requested AES key size is not supported by the hardware,
510 * but is supported by in-kernel software implementation, we use
511 * software fallback.
512 */
513 crypto_skcipher_clear_flags(actx->fallback, CRYPTO_TFM_REQ_MASK);
514 crypto_skcipher_set_flags(actx->fallback,
515 tfm->base.crt_flags & CRYPTO_TFM_REQ_MASK);
516 return crypto_skcipher_setkey(actx->fallback, key, len);
517}
518
519static int mxs_dcp_aes_fallback_init_tfm(struct crypto_skcipher *tfm)
520{
521 const char *name = crypto_tfm_alg_name(crypto_skcipher_tfm(tfm));
522 struct dcp_async_ctx *actx = crypto_skcipher_ctx(tfm);
523 struct crypto_skcipher *blk;
524
525 blk = crypto_alloc_skcipher(name, 0, CRYPTO_ALG_NEED_FALLBACK);
526 if (IS_ERR(blk))
527 return PTR_ERR(blk);
528
529 actx->fallback = blk;
530 crypto_skcipher_set_reqsize(tfm, sizeof(struct dcp_aes_req_ctx) +
531 crypto_skcipher_reqsize(blk));
532 return 0;
533}
534
535static void mxs_dcp_aes_fallback_exit_tfm(struct crypto_skcipher *tfm)
536{
537 struct dcp_async_ctx *actx = crypto_skcipher_ctx(tfm);
538
539 crypto_free_skcipher(actx->fallback);
540}
541
542/*
543 * Hashing (SHA1/SHA256)
544 */
545static int mxs_dcp_run_sha(struct ahash_request *req)
546{
547 struct dcp *sdcp = global_sdcp;
548 int ret;
549
550 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
551 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
552 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
553 struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
554
555 dma_addr_t digest_phys = 0;
556 dma_addr_t buf_phys = dma_map_single(sdcp->dev, sdcp->coh->sha_in_buf,
557 DCP_BUF_SZ, DMA_TO_DEVICE);
558
559 ret = dma_mapping_error(sdcp->dev, buf_phys);
560 if (ret)
561 return ret;
562
563 /* Fill in the DMA descriptor. */
564 desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE |
565 MXS_DCP_CONTROL0_INTERRUPT |
566 MXS_DCP_CONTROL0_ENABLE_HASH;
567 if (rctx->init)
568 desc->control0 |= MXS_DCP_CONTROL0_HASH_INIT;
569
570 desc->control1 = actx->alg;
571 desc->next_cmd_addr = 0;
572 desc->source = buf_phys;
573 desc->destination = 0;
574 desc->size = actx->fill;
575 desc->payload = 0;
576 desc->status = 0;
577
578 /*
579 * Align driver with hw behavior when generating null hashes
580 */
581 if (rctx->init && rctx->fini && desc->size == 0) {
582 struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
583 const uint8_t *sha_buf =
584 (actx->alg == MXS_DCP_CONTROL1_HASH_SELECT_SHA1) ?
585 sha1_null_hash : sha256_null_hash;
586 memcpy(sdcp->coh->sha_out_buf, sha_buf, halg->digestsize);
587 ret = 0;
588 goto done_run;
589 }
590
591 /* Set HASH_TERM bit for last transfer block. */
592 if (rctx->fini) {
593 digest_phys = dma_map_single(sdcp->dev, sdcp->coh->sha_out_buf,
594 DCP_SHA_PAY_SZ, DMA_FROM_DEVICE);
595 ret = dma_mapping_error(sdcp->dev, digest_phys);
596 if (ret)
597 goto done_run;
598
599 desc->control0 |= MXS_DCP_CONTROL0_HASH_TERM;
600 desc->payload = digest_phys;
601 }
602
603 ret = mxs_dcp_start_dma(actx);
604
605 if (rctx->fini)
606 dma_unmap_single(sdcp->dev, digest_phys, DCP_SHA_PAY_SZ,
607 DMA_FROM_DEVICE);
608
609done_run:
610 dma_unmap_single(sdcp->dev, buf_phys, DCP_BUF_SZ, DMA_TO_DEVICE);
611
612 return ret;
613}
614
615static int dcp_sha_req_to_buf(struct crypto_async_request *arq)
616{
617 struct dcp *sdcp = global_sdcp;
618
619 struct ahash_request *req = ahash_request_cast(arq);
620 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
621 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
622 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
623 struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
624
625 uint8_t *in_buf = sdcp->coh->sha_in_buf;
626 uint8_t *out_buf = sdcp->coh->sha_out_buf;
627
628 struct scatterlist *src;
629
630 unsigned int i, len, clen, oft = 0;
631 int ret;
632
633 int fin = rctx->fini;
634 if (fin)
635 rctx->fini = 0;
636
637 src = req->src;
638 len = req->nbytes;
639
640 while (len) {
641 if (actx->fill + len > DCP_BUF_SZ)
642 clen = DCP_BUF_SZ - actx->fill;
643 else
644 clen = len;
645
646 scatterwalk_map_and_copy(in_buf + actx->fill, src, oft, clen,
647 0);
648
649 len -= clen;
650 oft += clen;
651 actx->fill += clen;
652
653 /*
654 * If we filled the buffer and still have some
655 * more data, submit the buffer.
656 */
657 if (len && actx->fill == DCP_BUF_SZ) {
658 ret = mxs_dcp_run_sha(req);
659 if (ret)
660 return ret;
661 actx->fill = 0;
662 rctx->init = 0;
663 }
664 }
665
666 if (fin) {
667 rctx->fini = 1;
668
669 /* Submit whatever is left. */
670 if (!req->result)
671 return -EINVAL;
672
673 ret = mxs_dcp_run_sha(req);
674 if (ret)
675 return ret;
676
677 actx->fill = 0;
678
679 /* For some reason the result is flipped */
680 for (i = 0; i < halg->digestsize; i++)
681 req->result[i] = out_buf[halg->digestsize - i - 1];
682 }
683
684 return 0;
685}
686
687static int dcp_chan_thread_sha(void *data)
688{
689 struct dcp *sdcp = global_sdcp;
690 const int chan = DCP_CHAN_HASH_SHA;
691
692 struct crypto_async_request *backlog;
693 struct crypto_async_request *arq;
694 int ret;
695
696 while (!kthread_should_stop()) {
697 set_current_state(TASK_INTERRUPTIBLE);
698
699 spin_lock(&sdcp->lock[chan]);
700 backlog = crypto_get_backlog(&sdcp->queue[chan]);
701 arq = crypto_dequeue_request(&sdcp->queue[chan]);
702 spin_unlock(&sdcp->lock[chan]);
703
704 if (!backlog && !arq) {
705 schedule();
706 continue;
707 }
708
709 set_current_state(TASK_RUNNING);
710
711 if (backlog)
712 crypto_request_complete(backlog, -EINPROGRESS);
713
714 if (arq) {
715 ret = dcp_sha_req_to_buf(arq);
716 crypto_request_complete(arq, ret);
717 }
718 }
719
720 return 0;
721}
722
723static int dcp_sha_init(struct ahash_request *req)
724{
725 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
726 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
727
728 struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
729
730 /*
731 * Start hashing session. The code below only inits the
732 * hashing session context, nothing more.
733 */
734 memset(actx, 0, sizeof(*actx));
735
736 if (strcmp(halg->base.cra_name, "sha1") == 0)
737 actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA1;
738 else
739 actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA256;
740
741 actx->fill = 0;
742 actx->hot = 0;
743 actx->chan = DCP_CHAN_HASH_SHA;
744
745 mutex_init(&actx->mutex);
746
747 return 0;
748}
749
750static int dcp_sha_update_fx(struct ahash_request *req, int fini)
751{
752 struct dcp *sdcp = global_sdcp;
753
754 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
755 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
756 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
757
758 int ret;
759
760 /*
761 * Ignore requests that have no data in them and are not
762 * the trailing requests in the stream of requests.
763 */
764 if (!req->nbytes && !fini)
765 return 0;
766
767 mutex_lock(&actx->mutex);
768
769 rctx->fini = fini;
770
771 if (!actx->hot) {
772 actx->hot = 1;
773 rctx->init = 1;
774 }
775
776 spin_lock(&sdcp->lock[actx->chan]);
777 ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base);
778 spin_unlock(&sdcp->lock[actx->chan]);
779
780 wake_up_process(sdcp->thread[actx->chan]);
781 mutex_unlock(&actx->mutex);
782
783 return ret;
784}
785
786static int dcp_sha_update(struct ahash_request *req)
787{
788 return dcp_sha_update_fx(req, 0);
789}
790
791static int dcp_sha_final(struct ahash_request *req)
792{
793 ahash_request_set_crypt(req, NULL, req->result, 0);
794 req->nbytes = 0;
795 return dcp_sha_update_fx(req, 1);
796}
797
798static int dcp_sha_finup(struct ahash_request *req)
799{
800 return dcp_sha_update_fx(req, 1);
801}
802
803static int dcp_sha_digest(struct ahash_request *req)
804{
805 int ret;
806
807 ret = dcp_sha_init(req);
808 if (ret)
809 return ret;
810
811 return dcp_sha_finup(req);
812}
813
814static int dcp_sha_import(struct ahash_request *req, const void *in)
815{
816 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
817 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
818 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
819 const struct dcp_export_state *export = in;
820
821 memset(rctx, 0, sizeof(struct dcp_sha_req_ctx));
822 memset(actx, 0, sizeof(struct dcp_async_ctx));
823 memcpy(rctx, &export->req_ctx, sizeof(struct dcp_sha_req_ctx));
824 memcpy(actx, &export->async_ctx, sizeof(struct dcp_async_ctx));
825
826 return 0;
827}
828
829static int dcp_sha_export(struct ahash_request *req, void *out)
830{
831 struct dcp_sha_req_ctx *rctx_state = ahash_request_ctx(req);
832 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
833 struct dcp_async_ctx *actx_state = crypto_ahash_ctx(tfm);
834 struct dcp_export_state *export = out;
835
836 memcpy(&export->req_ctx, rctx_state, sizeof(struct dcp_sha_req_ctx));
837 memcpy(&export->async_ctx, actx_state, sizeof(struct dcp_async_ctx));
838
839 return 0;
840}
841
842static int dcp_sha_cra_init(struct crypto_tfm *tfm)
843{
844 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
845 sizeof(struct dcp_sha_req_ctx));
846 return 0;
847}
848
849static void dcp_sha_cra_exit(struct crypto_tfm *tfm)
850{
851}
852
853/* AES 128 ECB and AES 128 CBC */
854static struct skcipher_alg dcp_aes_algs[] = {
855 {
856 .base.cra_name = "ecb(aes)",
857 .base.cra_driver_name = "ecb-aes-dcp",
858 .base.cra_priority = 400,
859 .base.cra_alignmask = 15,
860 .base.cra_flags = CRYPTO_ALG_ASYNC |
861 CRYPTO_ALG_NEED_FALLBACK,
862 .base.cra_blocksize = AES_BLOCK_SIZE,
863 .base.cra_ctxsize = sizeof(struct dcp_async_ctx),
864 .base.cra_module = THIS_MODULE,
865
866 .min_keysize = AES_MIN_KEY_SIZE,
867 .max_keysize = AES_MAX_KEY_SIZE,
868 .setkey = mxs_dcp_aes_setkey,
869 .encrypt = mxs_dcp_aes_ecb_encrypt,
870 .decrypt = mxs_dcp_aes_ecb_decrypt,
871 .init = mxs_dcp_aes_fallback_init_tfm,
872 .exit = mxs_dcp_aes_fallback_exit_tfm,
873 }, {
874 .base.cra_name = "cbc(aes)",
875 .base.cra_driver_name = "cbc-aes-dcp",
876 .base.cra_priority = 400,
877 .base.cra_alignmask = 15,
878 .base.cra_flags = CRYPTO_ALG_ASYNC |
879 CRYPTO_ALG_NEED_FALLBACK,
880 .base.cra_blocksize = AES_BLOCK_SIZE,
881 .base.cra_ctxsize = sizeof(struct dcp_async_ctx),
882 .base.cra_module = THIS_MODULE,
883
884 .min_keysize = AES_MIN_KEY_SIZE,
885 .max_keysize = AES_MAX_KEY_SIZE,
886 .setkey = mxs_dcp_aes_setkey,
887 .encrypt = mxs_dcp_aes_cbc_encrypt,
888 .decrypt = mxs_dcp_aes_cbc_decrypt,
889 .ivsize = AES_BLOCK_SIZE,
890 .init = mxs_dcp_aes_fallback_init_tfm,
891 .exit = mxs_dcp_aes_fallback_exit_tfm,
892 },
893};
894
895/* SHA1 */
896static struct ahash_alg dcp_sha1_alg = {
897 .init = dcp_sha_init,
898 .update = dcp_sha_update,
899 .final = dcp_sha_final,
900 .finup = dcp_sha_finup,
901 .digest = dcp_sha_digest,
902 .import = dcp_sha_import,
903 .export = dcp_sha_export,
904 .halg = {
905 .digestsize = SHA1_DIGEST_SIZE,
906 .statesize = sizeof(struct dcp_export_state),
907 .base = {
908 .cra_name = "sha1",
909 .cra_driver_name = "sha1-dcp",
910 .cra_priority = 400,
911 .cra_flags = CRYPTO_ALG_ASYNC,
912 .cra_blocksize = SHA1_BLOCK_SIZE,
913 .cra_ctxsize = sizeof(struct dcp_async_ctx),
914 .cra_module = THIS_MODULE,
915 .cra_init = dcp_sha_cra_init,
916 .cra_exit = dcp_sha_cra_exit,
917 },
918 },
919};
920
921/* SHA256 */
922static struct ahash_alg dcp_sha256_alg = {
923 .init = dcp_sha_init,
924 .update = dcp_sha_update,
925 .final = dcp_sha_final,
926 .finup = dcp_sha_finup,
927 .digest = dcp_sha_digest,
928 .import = dcp_sha_import,
929 .export = dcp_sha_export,
930 .halg = {
931 .digestsize = SHA256_DIGEST_SIZE,
932 .statesize = sizeof(struct dcp_export_state),
933 .base = {
934 .cra_name = "sha256",
935 .cra_driver_name = "sha256-dcp",
936 .cra_priority = 400,
937 .cra_flags = CRYPTO_ALG_ASYNC,
938 .cra_blocksize = SHA256_BLOCK_SIZE,
939 .cra_ctxsize = sizeof(struct dcp_async_ctx),
940 .cra_module = THIS_MODULE,
941 .cra_init = dcp_sha_cra_init,
942 .cra_exit = dcp_sha_cra_exit,
943 },
944 },
945};
946
947static irqreturn_t mxs_dcp_irq(int irq, void *context)
948{
949 struct dcp *sdcp = context;
950 uint32_t stat;
951 int i;
952
953 stat = readl(sdcp->base + MXS_DCP_STAT);
954 stat &= MXS_DCP_STAT_IRQ_MASK;
955 if (!stat)
956 return IRQ_NONE;
957
958 /* Clear the interrupts. */
959 writel(stat, sdcp->base + MXS_DCP_STAT_CLR);
960
961 /* Complete the DMA requests that finished. */
962 for (i = 0; i < DCP_MAX_CHANS; i++)
963 if (stat & (1 << i))
964 complete(&sdcp->completion[i]);
965
966 return IRQ_HANDLED;
967}
968
969static int mxs_dcp_probe(struct platform_device *pdev)
970{
971 struct device *dev = &pdev->dev;
972 struct dcp *sdcp = NULL;
973 int i, ret;
974 int dcp_vmi_irq, dcp_irq;
975
976 if (global_sdcp) {
977 dev_err(dev, "Only one DCP instance allowed!\n");
978 return -ENODEV;
979 }
980
981 dcp_vmi_irq = platform_get_irq(pdev, 0);
982 if (dcp_vmi_irq < 0)
983 return dcp_vmi_irq;
984
985 dcp_irq = platform_get_irq(pdev, 1);
986 if (dcp_irq < 0)
987 return dcp_irq;
988
989 sdcp = devm_kzalloc(dev, sizeof(*sdcp), GFP_KERNEL);
990 if (!sdcp)
991 return -ENOMEM;
992
993 sdcp->dev = dev;
994 sdcp->base = devm_platform_ioremap_resource(pdev, 0);
995 if (IS_ERR(sdcp->base))
996 return PTR_ERR(sdcp->base);
997
998
999 ret = devm_request_irq(dev, dcp_vmi_irq, mxs_dcp_irq, 0,
1000 "dcp-vmi-irq", sdcp);
1001 if (ret) {
1002 dev_err(dev, "Failed to claim DCP VMI IRQ!\n");
1003 return ret;
1004 }
1005
1006 ret = devm_request_irq(dev, dcp_irq, mxs_dcp_irq, 0,
1007 "dcp-irq", sdcp);
1008 if (ret) {
1009 dev_err(dev, "Failed to claim DCP IRQ!\n");
1010 return ret;
1011 }
1012
1013 /* Allocate coherent helper block. */
1014 sdcp->coh = devm_kzalloc(dev, sizeof(*sdcp->coh) + DCP_ALIGNMENT,
1015 GFP_KERNEL);
1016 if (!sdcp->coh)
1017 return -ENOMEM;
1018
1019 /* Re-align the structure so it fits the DCP constraints. */
1020 sdcp->coh = PTR_ALIGN(sdcp->coh, DCP_ALIGNMENT);
1021
1022 /* DCP clock is optional, only used on some SOCs */
1023 sdcp->dcp_clk = devm_clk_get_optional_enabled(dev, "dcp");
1024 if (IS_ERR(sdcp->dcp_clk))
1025 return PTR_ERR(sdcp->dcp_clk);
1026
1027 /* Restart the DCP block. */
1028 ret = stmp_reset_block(sdcp->base);
1029 if (ret) {
1030 dev_err(dev, "Failed reset\n");
1031 return ret;
1032 }
1033
1034 /* Initialize control register. */
1035 writel(MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES |
1036 MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING | 0xf,
1037 sdcp->base + MXS_DCP_CTRL);
1038
1039 /* Enable all DCP DMA channels. */
1040 writel(MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK,
1041 sdcp->base + MXS_DCP_CHANNELCTRL);
1042
1043 /*
1044 * We do not enable context switching. Give the context buffer a
1045 * pointer to an illegal address so if context switching is
1046 * inadvertantly enabled, the DCP will return an error instead of
1047 * trashing good memory. The DCP DMA cannot access ROM, so any ROM
1048 * address will do.
1049 */
1050 writel(0xffff0000, sdcp->base + MXS_DCP_CONTEXT);
1051 for (i = 0; i < DCP_MAX_CHANS; i++)
1052 writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(i));
1053 writel(0xffffffff, sdcp->base + MXS_DCP_STAT_CLR);
1054
1055 global_sdcp = sdcp;
1056
1057 platform_set_drvdata(pdev, sdcp);
1058
1059 for (i = 0; i < DCP_MAX_CHANS; i++) {
1060 spin_lock_init(&sdcp->lock[i]);
1061 init_completion(&sdcp->completion[i]);
1062 crypto_init_queue(&sdcp->queue[i], 50);
1063 }
1064
1065 /* Create the SHA and AES handler threads. */
1066 sdcp->thread[DCP_CHAN_HASH_SHA] = kthread_run(dcp_chan_thread_sha,
1067 NULL, "mxs_dcp_chan/sha");
1068 if (IS_ERR(sdcp->thread[DCP_CHAN_HASH_SHA])) {
1069 dev_err(dev, "Error starting SHA thread!\n");
1070 ret = PTR_ERR(sdcp->thread[DCP_CHAN_HASH_SHA]);
1071 return ret;
1072 }
1073
1074 sdcp->thread[DCP_CHAN_CRYPTO] = kthread_run(dcp_chan_thread_aes,
1075 NULL, "mxs_dcp_chan/aes");
1076 if (IS_ERR(sdcp->thread[DCP_CHAN_CRYPTO])) {
1077 dev_err(dev, "Error starting SHA thread!\n");
1078 ret = PTR_ERR(sdcp->thread[DCP_CHAN_CRYPTO]);
1079 goto err_destroy_sha_thread;
1080 }
1081
1082 /* Register the various crypto algorithms. */
1083 sdcp->caps = readl(sdcp->base + MXS_DCP_CAPABILITY1);
1084
1085 if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128) {
1086 ret = crypto_register_skciphers(dcp_aes_algs,
1087 ARRAY_SIZE(dcp_aes_algs));
1088 if (ret) {
1089 /* Failed to register algorithm. */
1090 dev_err(dev, "Failed to register AES crypto!\n");
1091 goto err_destroy_aes_thread;
1092 }
1093 }
1094
1095 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1) {
1096 ret = crypto_register_ahash(&dcp_sha1_alg);
1097 if (ret) {
1098 dev_err(dev, "Failed to register %s hash!\n",
1099 dcp_sha1_alg.halg.base.cra_name);
1100 goto err_unregister_aes;
1101 }
1102 }
1103
1104 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256) {
1105 ret = crypto_register_ahash(&dcp_sha256_alg);
1106 if (ret) {
1107 dev_err(dev, "Failed to register %s hash!\n",
1108 dcp_sha256_alg.halg.base.cra_name);
1109 goto err_unregister_sha1;
1110 }
1111 }
1112
1113 return 0;
1114
1115err_unregister_sha1:
1116 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1)
1117 crypto_unregister_ahash(&dcp_sha1_alg);
1118
1119err_unregister_aes:
1120 if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128)
1121 crypto_unregister_skciphers(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs));
1122
1123err_destroy_aes_thread:
1124 kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]);
1125
1126err_destroy_sha_thread:
1127 kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]);
1128
1129 return ret;
1130}
1131
1132static void mxs_dcp_remove(struct platform_device *pdev)
1133{
1134 struct dcp *sdcp = platform_get_drvdata(pdev);
1135
1136 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256)
1137 crypto_unregister_ahash(&dcp_sha256_alg);
1138
1139 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1)
1140 crypto_unregister_ahash(&dcp_sha1_alg);
1141
1142 if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128)
1143 crypto_unregister_skciphers(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs));
1144
1145 kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]);
1146 kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]);
1147
1148 platform_set_drvdata(pdev, NULL);
1149
1150 global_sdcp = NULL;
1151}
1152
1153static const struct of_device_id mxs_dcp_dt_ids[] = {
1154 { .compatible = "fsl,imx23-dcp", .data = NULL, },
1155 { .compatible = "fsl,imx28-dcp", .data = NULL, },
1156 { /* sentinel */ }
1157};
1158
1159MODULE_DEVICE_TABLE(of, mxs_dcp_dt_ids);
1160
1161static struct platform_driver mxs_dcp_driver = {
1162 .probe = mxs_dcp_probe,
1163 .remove_new = mxs_dcp_remove,
1164 .driver = {
1165 .name = "mxs-dcp",
1166 .of_match_table = mxs_dcp_dt_ids,
1167 },
1168};
1169
1170module_platform_driver(mxs_dcp_driver);
1171
1172MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
1173MODULE_DESCRIPTION("Freescale MXS DCP Driver");
1174MODULE_LICENSE("GPL");
1175MODULE_ALIAS("platform:mxs-dcp");
1/*
2 * Freescale i.MX23/i.MX28 Data Co-Processor driver
3 *
4 * Copyright (C) 2013 Marek Vasut <marex@denx.de>
5 *
6 * The code contained herein is licensed under the GNU General Public
7 * License. You may obtain a copy of the GNU General Public License
8 * Version 2 or later at the following locations:
9 *
10 * http://www.opensource.org/licenses/gpl-license.html
11 * http://www.gnu.org/copyleft/gpl.html
12 */
13
14#include <linux/crypto.h>
15#include <linux/dma-mapping.h>
16#include <linux/interrupt.h>
17#include <linux/io.h>
18#include <linux/kernel.h>
19#include <linux/kthread.h>
20#include <linux/module.h>
21#include <linux/of.h>
22#include <linux/platform_device.h>
23#include <linux/stmp_device.h>
24
25#include <crypto/aes.h>
26#include <crypto/sha.h>
27#include <crypto/internal/hash.h>
28
29#define DCP_MAX_CHANS 4
30#define DCP_BUF_SZ PAGE_SIZE
31
32#define DCP_ALIGNMENT 64
33
34/* DCP DMA descriptor. */
35struct dcp_dma_desc {
36 uint32_t next_cmd_addr;
37 uint32_t control0;
38 uint32_t control1;
39 uint32_t source;
40 uint32_t destination;
41 uint32_t size;
42 uint32_t payload;
43 uint32_t status;
44};
45
46/* Coherent aligned block for bounce buffering. */
47struct dcp_coherent_block {
48 uint8_t aes_in_buf[DCP_BUF_SZ];
49 uint8_t aes_out_buf[DCP_BUF_SZ];
50 uint8_t sha_in_buf[DCP_BUF_SZ];
51
52 uint8_t aes_key[2 * AES_KEYSIZE_128];
53
54 struct dcp_dma_desc desc[DCP_MAX_CHANS];
55};
56
57struct dcp {
58 struct device *dev;
59 void __iomem *base;
60
61 uint32_t caps;
62
63 struct dcp_coherent_block *coh;
64
65 struct completion completion[DCP_MAX_CHANS];
66 struct mutex mutex[DCP_MAX_CHANS];
67 struct task_struct *thread[DCP_MAX_CHANS];
68 struct crypto_queue queue[DCP_MAX_CHANS];
69};
70
71enum dcp_chan {
72 DCP_CHAN_HASH_SHA = 0,
73 DCP_CHAN_CRYPTO = 2,
74};
75
76struct dcp_async_ctx {
77 /* Common context */
78 enum dcp_chan chan;
79 uint32_t fill;
80
81 /* SHA Hash-specific context */
82 struct mutex mutex;
83 uint32_t alg;
84 unsigned int hot:1;
85
86 /* Crypto-specific context */
87 struct crypto_ablkcipher *fallback;
88 unsigned int key_len;
89 uint8_t key[AES_KEYSIZE_128];
90};
91
92struct dcp_aes_req_ctx {
93 unsigned int enc:1;
94 unsigned int ecb:1;
95};
96
97struct dcp_sha_req_ctx {
98 unsigned int init:1;
99 unsigned int fini:1;
100};
101
102/*
103 * There can even be only one instance of the MXS DCP due to the
104 * design of Linux Crypto API.
105 */
106static struct dcp *global_sdcp;
107
108/* DCP register layout. */
109#define MXS_DCP_CTRL 0x00
110#define MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES (1 << 23)
111#define MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING (1 << 22)
112
113#define MXS_DCP_STAT 0x10
114#define MXS_DCP_STAT_CLR 0x18
115#define MXS_DCP_STAT_IRQ_MASK 0xf
116
117#define MXS_DCP_CHANNELCTRL 0x20
118#define MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK 0xff
119
120#define MXS_DCP_CAPABILITY1 0x40
121#define MXS_DCP_CAPABILITY1_SHA256 (4 << 16)
122#define MXS_DCP_CAPABILITY1_SHA1 (1 << 16)
123#define MXS_DCP_CAPABILITY1_AES128 (1 << 0)
124
125#define MXS_DCP_CONTEXT 0x50
126
127#define MXS_DCP_CH_N_CMDPTR(n) (0x100 + ((n) * 0x40))
128
129#define MXS_DCP_CH_N_SEMA(n) (0x110 + ((n) * 0x40))
130
131#define MXS_DCP_CH_N_STAT(n) (0x120 + ((n) * 0x40))
132#define MXS_DCP_CH_N_STAT_CLR(n) (0x128 + ((n) * 0x40))
133
134/* DMA descriptor bits. */
135#define MXS_DCP_CONTROL0_HASH_TERM (1 << 13)
136#define MXS_DCP_CONTROL0_HASH_INIT (1 << 12)
137#define MXS_DCP_CONTROL0_PAYLOAD_KEY (1 << 11)
138#define MXS_DCP_CONTROL0_CIPHER_ENCRYPT (1 << 8)
139#define MXS_DCP_CONTROL0_CIPHER_INIT (1 << 9)
140#define MXS_DCP_CONTROL0_ENABLE_HASH (1 << 6)
141#define MXS_DCP_CONTROL0_ENABLE_CIPHER (1 << 5)
142#define MXS_DCP_CONTROL0_DECR_SEMAPHORE (1 << 1)
143#define MXS_DCP_CONTROL0_INTERRUPT (1 << 0)
144
145#define MXS_DCP_CONTROL1_HASH_SELECT_SHA256 (2 << 16)
146#define MXS_DCP_CONTROL1_HASH_SELECT_SHA1 (0 << 16)
147#define MXS_DCP_CONTROL1_CIPHER_MODE_CBC (1 << 4)
148#define MXS_DCP_CONTROL1_CIPHER_MODE_ECB (0 << 4)
149#define MXS_DCP_CONTROL1_CIPHER_SELECT_AES128 (0 << 0)
150
151static int mxs_dcp_start_dma(struct dcp_async_ctx *actx)
152{
153 struct dcp *sdcp = global_sdcp;
154 const int chan = actx->chan;
155 uint32_t stat;
156 unsigned long ret;
157 struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
158
159 dma_addr_t desc_phys = dma_map_single(sdcp->dev, desc, sizeof(*desc),
160 DMA_TO_DEVICE);
161
162 reinit_completion(&sdcp->completion[chan]);
163
164 /* Clear status register. */
165 writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(chan));
166
167 /* Load the DMA descriptor. */
168 writel(desc_phys, sdcp->base + MXS_DCP_CH_N_CMDPTR(chan));
169
170 /* Increment the semaphore to start the DMA transfer. */
171 writel(1, sdcp->base + MXS_DCP_CH_N_SEMA(chan));
172
173 ret = wait_for_completion_timeout(&sdcp->completion[chan],
174 msecs_to_jiffies(1000));
175 if (!ret) {
176 dev_err(sdcp->dev, "Channel %i timeout (DCP_STAT=0x%08x)\n",
177 chan, readl(sdcp->base + MXS_DCP_STAT));
178 return -ETIMEDOUT;
179 }
180
181 stat = readl(sdcp->base + MXS_DCP_CH_N_STAT(chan));
182 if (stat & 0xff) {
183 dev_err(sdcp->dev, "Channel %i error (CH_STAT=0x%08x)\n",
184 chan, stat);
185 return -EINVAL;
186 }
187
188 dma_unmap_single(sdcp->dev, desc_phys, sizeof(*desc), DMA_TO_DEVICE);
189
190 return 0;
191}
192
193/*
194 * Encryption (AES128)
195 */
196static int mxs_dcp_run_aes(struct dcp_async_ctx *actx,
197 struct ablkcipher_request *req, int init)
198{
199 struct dcp *sdcp = global_sdcp;
200 struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
201 struct dcp_aes_req_ctx *rctx = ablkcipher_request_ctx(req);
202 int ret;
203
204 dma_addr_t key_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_key,
205 2 * AES_KEYSIZE_128,
206 DMA_TO_DEVICE);
207 dma_addr_t src_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_in_buf,
208 DCP_BUF_SZ, DMA_TO_DEVICE);
209 dma_addr_t dst_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_out_buf,
210 DCP_BUF_SZ, DMA_FROM_DEVICE);
211
212 /* Fill in the DMA descriptor. */
213 desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE |
214 MXS_DCP_CONTROL0_INTERRUPT |
215 MXS_DCP_CONTROL0_ENABLE_CIPHER;
216
217 /* Payload contains the key. */
218 desc->control0 |= MXS_DCP_CONTROL0_PAYLOAD_KEY;
219
220 if (rctx->enc)
221 desc->control0 |= MXS_DCP_CONTROL0_CIPHER_ENCRYPT;
222 if (init)
223 desc->control0 |= MXS_DCP_CONTROL0_CIPHER_INIT;
224
225 desc->control1 = MXS_DCP_CONTROL1_CIPHER_SELECT_AES128;
226
227 if (rctx->ecb)
228 desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_ECB;
229 else
230 desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_CBC;
231
232 desc->next_cmd_addr = 0;
233 desc->source = src_phys;
234 desc->destination = dst_phys;
235 desc->size = actx->fill;
236 desc->payload = key_phys;
237 desc->status = 0;
238
239 ret = mxs_dcp_start_dma(actx);
240
241 dma_unmap_single(sdcp->dev, key_phys, 2 * AES_KEYSIZE_128,
242 DMA_TO_DEVICE);
243 dma_unmap_single(sdcp->dev, src_phys, DCP_BUF_SZ, DMA_TO_DEVICE);
244 dma_unmap_single(sdcp->dev, dst_phys, DCP_BUF_SZ, DMA_FROM_DEVICE);
245
246 return ret;
247}
248
249static int mxs_dcp_aes_block_crypt(struct crypto_async_request *arq)
250{
251 struct dcp *sdcp = global_sdcp;
252
253 struct ablkcipher_request *req = ablkcipher_request_cast(arq);
254 struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm);
255 struct dcp_aes_req_ctx *rctx = ablkcipher_request_ctx(req);
256
257 struct scatterlist *dst = req->dst;
258 struct scatterlist *src = req->src;
259 const int nents = sg_nents(req->src);
260
261 const int out_off = DCP_BUF_SZ;
262 uint8_t *in_buf = sdcp->coh->aes_in_buf;
263 uint8_t *out_buf = sdcp->coh->aes_out_buf;
264
265 uint8_t *out_tmp, *src_buf, *dst_buf = NULL;
266 uint32_t dst_off = 0;
267
268 uint8_t *key = sdcp->coh->aes_key;
269
270 int ret = 0;
271 int split = 0;
272 unsigned int i, len, clen, rem = 0;
273 int init = 0;
274
275 actx->fill = 0;
276
277 /* Copy the key from the temporary location. */
278 memcpy(key, actx->key, actx->key_len);
279
280 if (!rctx->ecb) {
281 /* Copy the CBC IV just past the key. */
282 memcpy(key + AES_KEYSIZE_128, req->info, AES_KEYSIZE_128);
283 /* CBC needs the INIT set. */
284 init = 1;
285 } else {
286 memset(key + AES_KEYSIZE_128, 0, AES_KEYSIZE_128);
287 }
288
289 for_each_sg(req->src, src, nents, i) {
290 src_buf = sg_virt(src);
291 len = sg_dma_len(src);
292
293 do {
294 if (actx->fill + len > out_off)
295 clen = out_off - actx->fill;
296 else
297 clen = len;
298
299 memcpy(in_buf + actx->fill, src_buf, clen);
300 len -= clen;
301 src_buf += clen;
302 actx->fill += clen;
303
304 /*
305 * If we filled the buffer or this is the last SG,
306 * submit the buffer.
307 */
308 if (actx->fill == out_off || sg_is_last(src)) {
309 ret = mxs_dcp_run_aes(actx, req, init);
310 if (ret)
311 return ret;
312 init = 0;
313
314 out_tmp = out_buf;
315 while (dst && actx->fill) {
316 if (!split) {
317 dst_buf = sg_virt(dst);
318 dst_off = 0;
319 }
320 rem = min(sg_dma_len(dst) - dst_off,
321 actx->fill);
322
323 memcpy(dst_buf + dst_off, out_tmp, rem);
324 out_tmp += rem;
325 dst_off += rem;
326 actx->fill -= rem;
327
328 if (dst_off == sg_dma_len(dst)) {
329 dst = sg_next(dst);
330 split = 0;
331 } else {
332 split = 1;
333 }
334 }
335 }
336 } while (len);
337 }
338
339 return ret;
340}
341
342static int dcp_chan_thread_aes(void *data)
343{
344 struct dcp *sdcp = global_sdcp;
345 const int chan = DCP_CHAN_CRYPTO;
346
347 struct crypto_async_request *backlog;
348 struct crypto_async_request *arq;
349
350 int ret;
351
352 do {
353 __set_current_state(TASK_INTERRUPTIBLE);
354
355 mutex_lock(&sdcp->mutex[chan]);
356 backlog = crypto_get_backlog(&sdcp->queue[chan]);
357 arq = crypto_dequeue_request(&sdcp->queue[chan]);
358 mutex_unlock(&sdcp->mutex[chan]);
359
360 if (backlog)
361 backlog->complete(backlog, -EINPROGRESS);
362
363 if (arq) {
364 ret = mxs_dcp_aes_block_crypt(arq);
365 arq->complete(arq, ret);
366 continue;
367 }
368
369 schedule();
370 } while (!kthread_should_stop());
371
372 return 0;
373}
374
375static int mxs_dcp_block_fallback(struct ablkcipher_request *req, int enc)
376{
377 struct crypto_tfm *tfm =
378 crypto_ablkcipher_tfm(crypto_ablkcipher_reqtfm(req));
379 struct dcp_async_ctx *ctx = crypto_ablkcipher_ctx(
380 crypto_ablkcipher_reqtfm(req));
381 int ret;
382
383 ablkcipher_request_set_tfm(req, ctx->fallback);
384
385 if (enc)
386 ret = crypto_ablkcipher_encrypt(req);
387 else
388 ret = crypto_ablkcipher_decrypt(req);
389
390 ablkcipher_request_set_tfm(req, __crypto_ablkcipher_cast(tfm));
391
392 return ret;
393}
394
395static int mxs_dcp_aes_enqueue(struct ablkcipher_request *req, int enc, int ecb)
396{
397 struct dcp *sdcp = global_sdcp;
398 struct crypto_async_request *arq = &req->base;
399 struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm);
400 struct dcp_aes_req_ctx *rctx = ablkcipher_request_ctx(req);
401 int ret;
402
403 if (unlikely(actx->key_len != AES_KEYSIZE_128))
404 return mxs_dcp_block_fallback(req, enc);
405
406 rctx->enc = enc;
407 rctx->ecb = ecb;
408 actx->chan = DCP_CHAN_CRYPTO;
409
410 mutex_lock(&sdcp->mutex[actx->chan]);
411 ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base);
412 mutex_unlock(&sdcp->mutex[actx->chan]);
413
414 wake_up_process(sdcp->thread[actx->chan]);
415
416 return -EINPROGRESS;
417}
418
419static int mxs_dcp_aes_ecb_decrypt(struct ablkcipher_request *req)
420{
421 return mxs_dcp_aes_enqueue(req, 0, 1);
422}
423
424static int mxs_dcp_aes_ecb_encrypt(struct ablkcipher_request *req)
425{
426 return mxs_dcp_aes_enqueue(req, 1, 1);
427}
428
429static int mxs_dcp_aes_cbc_decrypt(struct ablkcipher_request *req)
430{
431 return mxs_dcp_aes_enqueue(req, 0, 0);
432}
433
434static int mxs_dcp_aes_cbc_encrypt(struct ablkcipher_request *req)
435{
436 return mxs_dcp_aes_enqueue(req, 1, 0);
437}
438
439static int mxs_dcp_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
440 unsigned int len)
441{
442 struct dcp_async_ctx *actx = crypto_ablkcipher_ctx(tfm);
443 unsigned int ret;
444
445 /*
446 * AES 128 is supposed by the hardware, store key into temporary
447 * buffer and exit. We must use the temporary buffer here, since
448 * there can still be an operation in progress.
449 */
450 actx->key_len = len;
451 if (len == AES_KEYSIZE_128) {
452 memcpy(actx->key, key, len);
453 return 0;
454 }
455
456 /* Check if the key size is supported by kernel at all. */
457 if (len != AES_KEYSIZE_192 && len != AES_KEYSIZE_256) {
458 tfm->base.crt_flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
459 return -EINVAL;
460 }
461
462 /*
463 * If the requested AES key size is not supported by the hardware,
464 * but is supported by in-kernel software implementation, we use
465 * software fallback.
466 */
467 actx->fallback->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
468 actx->fallback->base.crt_flags |=
469 tfm->base.crt_flags & CRYPTO_TFM_REQ_MASK;
470
471 ret = crypto_ablkcipher_setkey(actx->fallback, key, len);
472 if (!ret)
473 return 0;
474
475 tfm->base.crt_flags &= ~CRYPTO_TFM_RES_MASK;
476 tfm->base.crt_flags |=
477 actx->fallback->base.crt_flags & CRYPTO_TFM_RES_MASK;
478
479 return ret;
480}
481
482static int mxs_dcp_aes_fallback_init(struct crypto_tfm *tfm)
483{
484 const char *name = crypto_tfm_alg_name(tfm);
485 const uint32_t flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK;
486 struct dcp_async_ctx *actx = crypto_tfm_ctx(tfm);
487 struct crypto_ablkcipher *blk;
488
489 blk = crypto_alloc_ablkcipher(name, 0, flags);
490 if (IS_ERR(blk))
491 return PTR_ERR(blk);
492
493 actx->fallback = blk;
494 tfm->crt_ablkcipher.reqsize = sizeof(struct dcp_aes_req_ctx);
495 return 0;
496}
497
498static void mxs_dcp_aes_fallback_exit(struct crypto_tfm *tfm)
499{
500 struct dcp_async_ctx *actx = crypto_tfm_ctx(tfm);
501
502 crypto_free_ablkcipher(actx->fallback);
503 actx->fallback = NULL;
504}
505
506/*
507 * Hashing (SHA1/SHA256)
508 */
509static int mxs_dcp_run_sha(struct ahash_request *req)
510{
511 struct dcp *sdcp = global_sdcp;
512 int ret;
513
514 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
515 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
516 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
517 struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
518
519 struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
520
521 dma_addr_t digest_phys = 0;
522 dma_addr_t buf_phys = dma_map_single(sdcp->dev, sdcp->coh->sha_in_buf,
523 DCP_BUF_SZ, DMA_TO_DEVICE);
524
525 /* Fill in the DMA descriptor. */
526 desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE |
527 MXS_DCP_CONTROL0_INTERRUPT |
528 MXS_DCP_CONTROL0_ENABLE_HASH;
529 if (rctx->init)
530 desc->control0 |= MXS_DCP_CONTROL0_HASH_INIT;
531
532 desc->control1 = actx->alg;
533 desc->next_cmd_addr = 0;
534 desc->source = buf_phys;
535 desc->destination = 0;
536 desc->size = actx->fill;
537 desc->payload = 0;
538 desc->status = 0;
539
540 /* Set HASH_TERM bit for last transfer block. */
541 if (rctx->fini) {
542 digest_phys = dma_map_single(sdcp->dev, req->result,
543 halg->digestsize, DMA_FROM_DEVICE);
544 desc->control0 |= MXS_DCP_CONTROL0_HASH_TERM;
545 desc->payload = digest_phys;
546 }
547
548 ret = mxs_dcp_start_dma(actx);
549
550 if (rctx->fini)
551 dma_unmap_single(sdcp->dev, digest_phys, halg->digestsize,
552 DMA_FROM_DEVICE);
553
554 dma_unmap_single(sdcp->dev, buf_phys, DCP_BUF_SZ, DMA_TO_DEVICE);
555
556 return ret;
557}
558
559static int dcp_sha_req_to_buf(struct crypto_async_request *arq)
560{
561 struct dcp *sdcp = global_sdcp;
562
563 struct ahash_request *req = ahash_request_cast(arq);
564 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
565 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
566 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
567 struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
568 const int nents = sg_nents(req->src);
569
570 uint8_t *in_buf = sdcp->coh->sha_in_buf;
571
572 uint8_t *src_buf;
573
574 struct scatterlist *src;
575
576 unsigned int i, len, clen;
577 int ret;
578
579 int fin = rctx->fini;
580 if (fin)
581 rctx->fini = 0;
582
583 for_each_sg(req->src, src, nents, i) {
584 src_buf = sg_virt(src);
585 len = sg_dma_len(src);
586
587 do {
588 if (actx->fill + len > DCP_BUF_SZ)
589 clen = DCP_BUF_SZ - actx->fill;
590 else
591 clen = len;
592
593 memcpy(in_buf + actx->fill, src_buf, clen);
594 len -= clen;
595 src_buf += clen;
596 actx->fill += clen;
597
598 /*
599 * If we filled the buffer and still have some
600 * more data, submit the buffer.
601 */
602 if (len && actx->fill == DCP_BUF_SZ) {
603 ret = mxs_dcp_run_sha(req);
604 if (ret)
605 return ret;
606 actx->fill = 0;
607 rctx->init = 0;
608 }
609 } while (len);
610 }
611
612 if (fin) {
613 rctx->fini = 1;
614
615 /* Submit whatever is left. */
616 if (!req->result)
617 return -EINVAL;
618
619 ret = mxs_dcp_run_sha(req);
620 if (ret)
621 return ret;
622
623 actx->fill = 0;
624
625 /* For some reason, the result is flipped. */
626 for (i = 0; i < halg->digestsize / 2; i++) {
627 swap(req->result[i],
628 req->result[halg->digestsize - i - 1]);
629 }
630 }
631
632 return 0;
633}
634
635static int dcp_chan_thread_sha(void *data)
636{
637 struct dcp *sdcp = global_sdcp;
638 const int chan = DCP_CHAN_HASH_SHA;
639
640 struct crypto_async_request *backlog;
641 struct crypto_async_request *arq;
642
643 struct dcp_sha_req_ctx *rctx;
644
645 struct ahash_request *req;
646 int ret, fini;
647
648 do {
649 __set_current_state(TASK_INTERRUPTIBLE);
650
651 mutex_lock(&sdcp->mutex[chan]);
652 backlog = crypto_get_backlog(&sdcp->queue[chan]);
653 arq = crypto_dequeue_request(&sdcp->queue[chan]);
654 mutex_unlock(&sdcp->mutex[chan]);
655
656 if (backlog)
657 backlog->complete(backlog, -EINPROGRESS);
658
659 if (arq) {
660 req = ahash_request_cast(arq);
661 rctx = ahash_request_ctx(req);
662
663 ret = dcp_sha_req_to_buf(arq);
664 fini = rctx->fini;
665 arq->complete(arq, ret);
666 if (!fini)
667 continue;
668 }
669
670 schedule();
671 } while (!kthread_should_stop());
672
673 return 0;
674}
675
676static int dcp_sha_init(struct ahash_request *req)
677{
678 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
679 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
680
681 struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
682
683 /*
684 * Start hashing session. The code below only inits the
685 * hashing session context, nothing more.
686 */
687 memset(actx, 0, sizeof(*actx));
688
689 if (strcmp(halg->base.cra_name, "sha1") == 0)
690 actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA1;
691 else
692 actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA256;
693
694 actx->fill = 0;
695 actx->hot = 0;
696 actx->chan = DCP_CHAN_HASH_SHA;
697
698 mutex_init(&actx->mutex);
699
700 return 0;
701}
702
703static int dcp_sha_update_fx(struct ahash_request *req, int fini)
704{
705 struct dcp *sdcp = global_sdcp;
706
707 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
708 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
709 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
710
711 int ret;
712
713 /*
714 * Ignore requests that have no data in them and are not
715 * the trailing requests in the stream of requests.
716 */
717 if (!req->nbytes && !fini)
718 return 0;
719
720 mutex_lock(&actx->mutex);
721
722 rctx->fini = fini;
723
724 if (!actx->hot) {
725 actx->hot = 1;
726 rctx->init = 1;
727 }
728
729 mutex_lock(&sdcp->mutex[actx->chan]);
730 ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base);
731 mutex_unlock(&sdcp->mutex[actx->chan]);
732
733 wake_up_process(sdcp->thread[actx->chan]);
734 mutex_unlock(&actx->mutex);
735
736 return -EINPROGRESS;
737}
738
739static int dcp_sha_update(struct ahash_request *req)
740{
741 return dcp_sha_update_fx(req, 0);
742}
743
744static int dcp_sha_final(struct ahash_request *req)
745{
746 ahash_request_set_crypt(req, NULL, req->result, 0);
747 req->nbytes = 0;
748 return dcp_sha_update_fx(req, 1);
749}
750
751static int dcp_sha_finup(struct ahash_request *req)
752{
753 return dcp_sha_update_fx(req, 1);
754}
755
756static int dcp_sha_digest(struct ahash_request *req)
757{
758 int ret;
759
760 ret = dcp_sha_init(req);
761 if (ret)
762 return ret;
763
764 return dcp_sha_finup(req);
765}
766
767static int dcp_sha_cra_init(struct crypto_tfm *tfm)
768{
769 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
770 sizeof(struct dcp_sha_req_ctx));
771 return 0;
772}
773
774static void dcp_sha_cra_exit(struct crypto_tfm *tfm)
775{
776}
777
778/* AES 128 ECB and AES 128 CBC */
779static struct crypto_alg dcp_aes_algs[] = {
780 {
781 .cra_name = "ecb(aes)",
782 .cra_driver_name = "ecb-aes-dcp",
783 .cra_priority = 400,
784 .cra_alignmask = 15,
785 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
786 CRYPTO_ALG_ASYNC |
787 CRYPTO_ALG_NEED_FALLBACK,
788 .cra_init = mxs_dcp_aes_fallback_init,
789 .cra_exit = mxs_dcp_aes_fallback_exit,
790 .cra_blocksize = AES_BLOCK_SIZE,
791 .cra_ctxsize = sizeof(struct dcp_async_ctx),
792 .cra_type = &crypto_ablkcipher_type,
793 .cra_module = THIS_MODULE,
794 .cra_u = {
795 .ablkcipher = {
796 .min_keysize = AES_MIN_KEY_SIZE,
797 .max_keysize = AES_MAX_KEY_SIZE,
798 .setkey = mxs_dcp_aes_setkey,
799 .encrypt = mxs_dcp_aes_ecb_encrypt,
800 .decrypt = mxs_dcp_aes_ecb_decrypt
801 },
802 },
803 }, {
804 .cra_name = "cbc(aes)",
805 .cra_driver_name = "cbc-aes-dcp",
806 .cra_priority = 400,
807 .cra_alignmask = 15,
808 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
809 CRYPTO_ALG_ASYNC |
810 CRYPTO_ALG_NEED_FALLBACK,
811 .cra_init = mxs_dcp_aes_fallback_init,
812 .cra_exit = mxs_dcp_aes_fallback_exit,
813 .cra_blocksize = AES_BLOCK_SIZE,
814 .cra_ctxsize = sizeof(struct dcp_async_ctx),
815 .cra_type = &crypto_ablkcipher_type,
816 .cra_module = THIS_MODULE,
817 .cra_u = {
818 .ablkcipher = {
819 .min_keysize = AES_MIN_KEY_SIZE,
820 .max_keysize = AES_MAX_KEY_SIZE,
821 .setkey = mxs_dcp_aes_setkey,
822 .encrypt = mxs_dcp_aes_cbc_encrypt,
823 .decrypt = mxs_dcp_aes_cbc_decrypt,
824 .ivsize = AES_BLOCK_SIZE,
825 },
826 },
827 },
828};
829
830/* SHA1 */
831static struct ahash_alg dcp_sha1_alg = {
832 .init = dcp_sha_init,
833 .update = dcp_sha_update,
834 .final = dcp_sha_final,
835 .finup = dcp_sha_finup,
836 .digest = dcp_sha_digest,
837 .halg = {
838 .digestsize = SHA1_DIGEST_SIZE,
839 .base = {
840 .cra_name = "sha1",
841 .cra_driver_name = "sha1-dcp",
842 .cra_priority = 400,
843 .cra_alignmask = 63,
844 .cra_flags = CRYPTO_ALG_ASYNC,
845 .cra_blocksize = SHA1_BLOCK_SIZE,
846 .cra_ctxsize = sizeof(struct dcp_async_ctx),
847 .cra_module = THIS_MODULE,
848 .cra_init = dcp_sha_cra_init,
849 .cra_exit = dcp_sha_cra_exit,
850 },
851 },
852};
853
854/* SHA256 */
855static struct ahash_alg dcp_sha256_alg = {
856 .init = dcp_sha_init,
857 .update = dcp_sha_update,
858 .final = dcp_sha_final,
859 .finup = dcp_sha_finup,
860 .digest = dcp_sha_digest,
861 .halg = {
862 .digestsize = SHA256_DIGEST_SIZE,
863 .base = {
864 .cra_name = "sha256",
865 .cra_driver_name = "sha256-dcp",
866 .cra_priority = 400,
867 .cra_alignmask = 63,
868 .cra_flags = CRYPTO_ALG_ASYNC,
869 .cra_blocksize = SHA256_BLOCK_SIZE,
870 .cra_ctxsize = sizeof(struct dcp_async_ctx),
871 .cra_module = THIS_MODULE,
872 .cra_init = dcp_sha_cra_init,
873 .cra_exit = dcp_sha_cra_exit,
874 },
875 },
876};
877
878static irqreturn_t mxs_dcp_irq(int irq, void *context)
879{
880 struct dcp *sdcp = context;
881 uint32_t stat;
882 int i;
883
884 stat = readl(sdcp->base + MXS_DCP_STAT);
885 stat &= MXS_DCP_STAT_IRQ_MASK;
886 if (!stat)
887 return IRQ_NONE;
888
889 /* Clear the interrupts. */
890 writel(stat, sdcp->base + MXS_DCP_STAT_CLR);
891
892 /* Complete the DMA requests that finished. */
893 for (i = 0; i < DCP_MAX_CHANS; i++)
894 if (stat & (1 << i))
895 complete(&sdcp->completion[i]);
896
897 return IRQ_HANDLED;
898}
899
900static int mxs_dcp_probe(struct platform_device *pdev)
901{
902 struct device *dev = &pdev->dev;
903 struct dcp *sdcp = NULL;
904 int i, ret;
905
906 struct resource *iores;
907 int dcp_vmi_irq, dcp_irq;
908
909 if (global_sdcp) {
910 dev_err(dev, "Only one DCP instance allowed!\n");
911 return -ENODEV;
912 }
913
914 iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
915 dcp_vmi_irq = platform_get_irq(pdev, 0);
916 if (dcp_vmi_irq < 0)
917 return dcp_vmi_irq;
918
919 dcp_irq = platform_get_irq(pdev, 1);
920 if (dcp_irq < 0)
921 return dcp_irq;
922
923 sdcp = devm_kzalloc(dev, sizeof(*sdcp), GFP_KERNEL);
924 if (!sdcp)
925 return -ENOMEM;
926
927 sdcp->dev = dev;
928 sdcp->base = devm_ioremap_resource(dev, iores);
929 if (IS_ERR(sdcp->base))
930 return PTR_ERR(sdcp->base);
931
932
933 ret = devm_request_irq(dev, dcp_vmi_irq, mxs_dcp_irq, 0,
934 "dcp-vmi-irq", sdcp);
935 if (ret) {
936 dev_err(dev, "Failed to claim DCP VMI IRQ!\n");
937 return ret;
938 }
939
940 ret = devm_request_irq(dev, dcp_irq, mxs_dcp_irq, 0,
941 "dcp-irq", sdcp);
942 if (ret) {
943 dev_err(dev, "Failed to claim DCP IRQ!\n");
944 return ret;
945 }
946
947 /* Allocate coherent helper block. */
948 sdcp->coh = devm_kzalloc(dev, sizeof(*sdcp->coh) + DCP_ALIGNMENT,
949 GFP_KERNEL);
950 if (!sdcp->coh)
951 return -ENOMEM;
952
953 /* Re-align the structure so it fits the DCP constraints. */
954 sdcp->coh = PTR_ALIGN(sdcp->coh, DCP_ALIGNMENT);
955
956 /* Restart the DCP block. */
957 ret = stmp_reset_block(sdcp->base);
958 if (ret)
959 return ret;
960
961 /* Initialize control register. */
962 writel(MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES |
963 MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING | 0xf,
964 sdcp->base + MXS_DCP_CTRL);
965
966 /* Enable all DCP DMA channels. */
967 writel(MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK,
968 sdcp->base + MXS_DCP_CHANNELCTRL);
969
970 /*
971 * We do not enable context switching. Give the context buffer a
972 * pointer to an illegal address so if context switching is
973 * inadvertantly enabled, the DCP will return an error instead of
974 * trashing good memory. The DCP DMA cannot access ROM, so any ROM
975 * address will do.
976 */
977 writel(0xffff0000, sdcp->base + MXS_DCP_CONTEXT);
978 for (i = 0; i < DCP_MAX_CHANS; i++)
979 writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(i));
980 writel(0xffffffff, sdcp->base + MXS_DCP_STAT_CLR);
981
982 global_sdcp = sdcp;
983
984 platform_set_drvdata(pdev, sdcp);
985
986 for (i = 0; i < DCP_MAX_CHANS; i++) {
987 mutex_init(&sdcp->mutex[i]);
988 init_completion(&sdcp->completion[i]);
989 crypto_init_queue(&sdcp->queue[i], 50);
990 }
991
992 /* Create the SHA and AES handler threads. */
993 sdcp->thread[DCP_CHAN_HASH_SHA] = kthread_run(dcp_chan_thread_sha,
994 NULL, "mxs_dcp_chan/sha");
995 if (IS_ERR(sdcp->thread[DCP_CHAN_HASH_SHA])) {
996 dev_err(dev, "Error starting SHA thread!\n");
997 return PTR_ERR(sdcp->thread[DCP_CHAN_HASH_SHA]);
998 }
999
1000 sdcp->thread[DCP_CHAN_CRYPTO] = kthread_run(dcp_chan_thread_aes,
1001 NULL, "mxs_dcp_chan/aes");
1002 if (IS_ERR(sdcp->thread[DCP_CHAN_CRYPTO])) {
1003 dev_err(dev, "Error starting SHA thread!\n");
1004 ret = PTR_ERR(sdcp->thread[DCP_CHAN_CRYPTO]);
1005 goto err_destroy_sha_thread;
1006 }
1007
1008 /* Register the various crypto algorithms. */
1009 sdcp->caps = readl(sdcp->base + MXS_DCP_CAPABILITY1);
1010
1011 if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128) {
1012 ret = crypto_register_algs(dcp_aes_algs,
1013 ARRAY_SIZE(dcp_aes_algs));
1014 if (ret) {
1015 /* Failed to register algorithm. */
1016 dev_err(dev, "Failed to register AES crypto!\n");
1017 goto err_destroy_aes_thread;
1018 }
1019 }
1020
1021 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1) {
1022 ret = crypto_register_ahash(&dcp_sha1_alg);
1023 if (ret) {
1024 dev_err(dev, "Failed to register %s hash!\n",
1025 dcp_sha1_alg.halg.base.cra_name);
1026 goto err_unregister_aes;
1027 }
1028 }
1029
1030 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256) {
1031 ret = crypto_register_ahash(&dcp_sha256_alg);
1032 if (ret) {
1033 dev_err(dev, "Failed to register %s hash!\n",
1034 dcp_sha256_alg.halg.base.cra_name);
1035 goto err_unregister_sha1;
1036 }
1037 }
1038
1039 return 0;
1040
1041err_unregister_sha1:
1042 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1)
1043 crypto_unregister_ahash(&dcp_sha1_alg);
1044
1045err_unregister_aes:
1046 if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128)
1047 crypto_unregister_algs(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs));
1048
1049err_destroy_aes_thread:
1050 kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]);
1051
1052err_destroy_sha_thread:
1053 kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]);
1054 return ret;
1055}
1056
1057static int mxs_dcp_remove(struct platform_device *pdev)
1058{
1059 struct dcp *sdcp = platform_get_drvdata(pdev);
1060
1061 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256)
1062 crypto_unregister_ahash(&dcp_sha256_alg);
1063
1064 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1)
1065 crypto_unregister_ahash(&dcp_sha1_alg);
1066
1067 if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128)
1068 crypto_unregister_algs(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs));
1069
1070 kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]);
1071 kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]);
1072
1073 platform_set_drvdata(pdev, NULL);
1074
1075 global_sdcp = NULL;
1076
1077 return 0;
1078}
1079
1080static const struct of_device_id mxs_dcp_dt_ids[] = {
1081 { .compatible = "fsl,imx23-dcp", .data = NULL, },
1082 { .compatible = "fsl,imx28-dcp", .data = NULL, },
1083 { /* sentinel */ }
1084};
1085
1086MODULE_DEVICE_TABLE(of, mxs_dcp_dt_ids);
1087
1088static struct platform_driver mxs_dcp_driver = {
1089 .probe = mxs_dcp_probe,
1090 .remove = mxs_dcp_remove,
1091 .driver = {
1092 .name = "mxs-dcp",
1093 .of_match_table = mxs_dcp_dt_ids,
1094 },
1095};
1096
1097module_platform_driver(mxs_dcp_driver);
1098
1099MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
1100MODULE_DESCRIPTION("Freescale MXS DCP Driver");
1101MODULE_LICENSE("GPL");
1102MODULE_ALIAS("platform:mxs-dcp");