Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * 2007+ Copyright (c) Evgeniy Polyakov <johnpol@2ka.mipt.ru>
   4 * All rights reserved.
 
 
 
 
 
 
 
 
 
 
   5 */
   6
   7#include <linux/kernel.h>
   8#include <linux/module.h>
   9#include <linux/moduleparam.h>
  10#include <linux/mod_devicetable.h>
  11#include <linux/interrupt.h>
  12#include <linux/pci.h>
  13#include <linux/slab.h>
  14#include <linux/delay.h>
  15#include <linux/mm.h>
  16#include <linux/dma-mapping.h>
  17#include <linux/scatterlist.h>
  18#include <linux/highmem.h>
  19#include <linux/crypto.h>
  20#include <linux/hw_random.h>
  21#include <linux/ktime.h>
  22
  23#include <crypto/algapi.h>
  24#include <crypto/internal/des.h>
  25#include <crypto/internal/skcipher.h>
  26
  27static char hifn_pll_ref[sizeof("extNNN")] = "ext";
  28module_param_string(hifn_pll_ref, hifn_pll_ref, sizeof(hifn_pll_ref), 0444);
  29MODULE_PARM_DESC(hifn_pll_ref,
  30		 "PLL reference clock (pci[freq] or ext[freq], default ext)");
  31
  32static atomic_t hifn_dev_number;
  33
  34#define ACRYPTO_OP_DECRYPT	0
  35#define ACRYPTO_OP_ENCRYPT	1
  36#define ACRYPTO_OP_HMAC		2
  37#define ACRYPTO_OP_RNG		3
  38
  39#define ACRYPTO_MODE_ECB		0
  40#define ACRYPTO_MODE_CBC		1
  41#define ACRYPTO_MODE_CFB		2
  42#define ACRYPTO_MODE_OFB		3
  43
  44#define ACRYPTO_TYPE_AES_128	0
  45#define ACRYPTO_TYPE_AES_192	1
  46#define ACRYPTO_TYPE_AES_256	2
  47#define ACRYPTO_TYPE_3DES	3
  48#define ACRYPTO_TYPE_DES	4
  49
  50#define PCI_VENDOR_ID_HIFN		0x13A3
  51#define PCI_DEVICE_ID_HIFN_7955		0x0020
  52#define	PCI_DEVICE_ID_HIFN_7956		0x001d
  53
  54/* I/O region sizes */
  55
  56#define HIFN_BAR0_SIZE			0x1000
  57#define HIFN_BAR1_SIZE			0x2000
  58#define HIFN_BAR2_SIZE			0x8000
  59
  60/* DMA registres */
  61
  62#define HIFN_DMA_CRA			0x0C	/* DMA Command Ring Address */
  63#define HIFN_DMA_SDRA			0x1C	/* DMA Source Data Ring Address */
  64#define HIFN_DMA_RRA			0x2C	/* DMA Result Ring Address */
  65#define HIFN_DMA_DDRA			0x3C	/* DMA Destination Data Ring Address */
  66#define HIFN_DMA_STCTL			0x40	/* DMA Status and Control */
  67#define HIFN_DMA_INTREN			0x44	/* DMA Interrupt Enable */
  68#define HIFN_DMA_CFG1			0x48	/* DMA Configuration #1 */
  69#define HIFN_DMA_CFG2			0x6C	/* DMA Configuration #2 */
  70#define HIFN_CHIP_ID			0x98	/* Chip ID */
  71
  72/*
  73 * Processing Unit Registers (offset from BASEREG0)
  74 */
  75#define	HIFN_0_PUDATA		0x00	/* Processing Unit Data */
  76#define	HIFN_0_PUCTRL		0x04	/* Processing Unit Control */
  77#define	HIFN_0_PUISR		0x08	/* Processing Unit Interrupt Status */
  78#define	HIFN_0_PUCNFG		0x0c	/* Processing Unit Configuration */
  79#define	HIFN_0_PUIER		0x10	/* Processing Unit Interrupt Enable */
  80#define	HIFN_0_PUSTAT		0x14	/* Processing Unit Status/Chip ID */
  81#define	HIFN_0_FIFOSTAT		0x18	/* FIFO Status */
  82#define	HIFN_0_FIFOCNFG		0x1c	/* FIFO Configuration */
  83#define	HIFN_0_SPACESIZE	0x20	/* Register space size */
  84
  85/* Processing Unit Control Register (HIFN_0_PUCTRL) */
  86#define	HIFN_PUCTRL_CLRSRCFIFO	0x0010	/* clear source fifo */
  87#define	HIFN_PUCTRL_STOP	0x0008	/* stop pu */
  88#define	HIFN_PUCTRL_LOCKRAM	0x0004	/* lock ram */
  89#define	HIFN_PUCTRL_DMAENA	0x0002	/* enable dma */
  90#define	HIFN_PUCTRL_RESET	0x0001	/* Reset processing unit */
  91
  92/* Processing Unit Interrupt Status Register (HIFN_0_PUISR) */
  93#define	HIFN_PUISR_CMDINVAL	0x8000	/* Invalid command interrupt */
  94#define	HIFN_PUISR_DATAERR	0x4000	/* Data error interrupt */
  95#define	HIFN_PUISR_SRCFIFO	0x2000	/* Source FIFO ready interrupt */
  96#define	HIFN_PUISR_DSTFIFO	0x1000	/* Destination FIFO ready interrupt */
  97#define	HIFN_PUISR_DSTOVER	0x0200	/* Destination overrun interrupt */
  98#define	HIFN_PUISR_SRCCMD	0x0080	/* Source command interrupt */
  99#define	HIFN_PUISR_SRCCTX	0x0040	/* Source context interrupt */
 100#define	HIFN_PUISR_SRCDATA	0x0020	/* Source data interrupt */
 101#define	HIFN_PUISR_DSTDATA	0x0010	/* Destination data interrupt */
 102#define	HIFN_PUISR_DSTRESULT	0x0004	/* Destination result interrupt */
 103
 104/* Processing Unit Configuration Register (HIFN_0_PUCNFG) */
 105#define	HIFN_PUCNFG_DRAMMASK	0xe000	/* DRAM size mask */
 106#define	HIFN_PUCNFG_DSZ_256K	0x0000	/* 256k dram */
 107#define	HIFN_PUCNFG_DSZ_512K	0x2000	/* 512k dram */
 108#define	HIFN_PUCNFG_DSZ_1M	0x4000	/* 1m dram */
 109#define	HIFN_PUCNFG_DSZ_2M	0x6000	/* 2m dram */
 110#define	HIFN_PUCNFG_DSZ_4M	0x8000	/* 4m dram */
 111#define	HIFN_PUCNFG_DSZ_8M	0xa000	/* 8m dram */
 112#define	HIFN_PUNCFG_DSZ_16M	0xc000	/* 16m dram */
 113#define	HIFN_PUCNFG_DSZ_32M	0xe000	/* 32m dram */
 114#define	HIFN_PUCNFG_DRAMREFRESH	0x1800	/* DRAM refresh rate mask */
 115#define	HIFN_PUCNFG_DRFR_512	0x0000	/* 512 divisor of ECLK */
 116#define	HIFN_PUCNFG_DRFR_256	0x0800	/* 256 divisor of ECLK */
 117#define	HIFN_PUCNFG_DRFR_128	0x1000	/* 128 divisor of ECLK */
 118#define	HIFN_PUCNFG_TCALLPHASES	0x0200	/* your guess is as good as mine... */
 119#define	HIFN_PUCNFG_TCDRVTOTEM	0x0100	/* your guess is as good as mine... */
 120#define	HIFN_PUCNFG_BIGENDIAN	0x0080	/* DMA big endian mode */
 121#define	HIFN_PUCNFG_BUS32	0x0040	/* Bus width 32bits */
 122#define	HIFN_PUCNFG_BUS16	0x0000	/* Bus width 16 bits */
 123#define	HIFN_PUCNFG_CHIPID	0x0020	/* Allow chipid from PUSTAT */
 124#define	HIFN_PUCNFG_DRAM	0x0010	/* Context RAM is DRAM */
 125#define	HIFN_PUCNFG_SRAM	0x0000	/* Context RAM is SRAM */
 126#define	HIFN_PUCNFG_COMPSING	0x0004	/* Enable single compression context */
 127#define	HIFN_PUCNFG_ENCCNFG	0x0002	/* Encryption configuration */
 128
 129/* Processing Unit Interrupt Enable Register (HIFN_0_PUIER) */
 130#define	HIFN_PUIER_CMDINVAL	0x8000	/* Invalid command interrupt */
 131#define	HIFN_PUIER_DATAERR	0x4000	/* Data error interrupt */
 132#define	HIFN_PUIER_SRCFIFO	0x2000	/* Source FIFO ready interrupt */
 133#define	HIFN_PUIER_DSTFIFO	0x1000	/* Destination FIFO ready interrupt */
 134#define	HIFN_PUIER_DSTOVER	0x0200	/* Destination overrun interrupt */
 135#define	HIFN_PUIER_SRCCMD	0x0080	/* Source command interrupt */
 136#define	HIFN_PUIER_SRCCTX	0x0040	/* Source context interrupt */
 137#define	HIFN_PUIER_SRCDATA	0x0020	/* Source data interrupt */
 138#define	HIFN_PUIER_DSTDATA	0x0010	/* Destination data interrupt */
 139#define	HIFN_PUIER_DSTRESULT	0x0004	/* Destination result interrupt */
 140
 141/* Processing Unit Status Register/Chip ID (HIFN_0_PUSTAT) */
 142#define	HIFN_PUSTAT_CMDINVAL	0x8000	/* Invalid command interrupt */
 143#define	HIFN_PUSTAT_DATAERR	0x4000	/* Data error interrupt */
 144#define	HIFN_PUSTAT_SRCFIFO	0x2000	/* Source FIFO ready interrupt */
 145#define	HIFN_PUSTAT_DSTFIFO	0x1000	/* Destination FIFO ready interrupt */
 146#define	HIFN_PUSTAT_DSTOVER	0x0200	/* Destination overrun interrupt */
 147#define	HIFN_PUSTAT_SRCCMD	0x0080	/* Source command interrupt */
 148#define	HIFN_PUSTAT_SRCCTX	0x0040	/* Source context interrupt */
 149#define	HIFN_PUSTAT_SRCDATA	0x0020	/* Source data interrupt */
 150#define	HIFN_PUSTAT_DSTDATA	0x0010	/* Destination data interrupt */
 151#define	HIFN_PUSTAT_DSTRESULT	0x0004	/* Destination result interrupt */
 152#define	HIFN_PUSTAT_CHIPREV	0x00ff	/* Chip revision mask */
 153#define	HIFN_PUSTAT_CHIPENA	0xff00	/* Chip enabled mask */
 154#define	HIFN_PUSTAT_ENA_2	0x1100	/* Level 2 enabled */
 155#define	HIFN_PUSTAT_ENA_1	0x1000	/* Level 1 enabled */
 156#define	HIFN_PUSTAT_ENA_0	0x3000	/* Level 0 enabled */
 157#define	HIFN_PUSTAT_REV_2	0x0020	/* 7751 PT6/2 */
 158#define	HIFN_PUSTAT_REV_3	0x0030	/* 7751 PT6/3 */
 159
 160/* FIFO Status Register (HIFN_0_FIFOSTAT) */
 161#define	HIFN_FIFOSTAT_SRC	0x7f00	/* Source FIFO available */
 162#define	HIFN_FIFOSTAT_DST	0x007f	/* Destination FIFO available */
 163
 164/* FIFO Configuration Register (HIFN_0_FIFOCNFG) */
 165#define	HIFN_FIFOCNFG_THRESHOLD	0x0400	/* must be written as 1 */
 166
 167/*
 168 * DMA Interface Registers (offset from BASEREG1)
 169 */
 170#define	HIFN_1_DMA_CRAR		0x0c	/* DMA Command Ring Address */
 171#define	HIFN_1_DMA_SRAR		0x1c	/* DMA Source Ring Address */
 172#define	HIFN_1_DMA_RRAR		0x2c	/* DMA Result Ring Address */
 173#define	HIFN_1_DMA_DRAR		0x3c	/* DMA Destination Ring Address */
 174#define	HIFN_1_DMA_CSR		0x40	/* DMA Status and Control */
 175#define	HIFN_1_DMA_IER		0x44	/* DMA Interrupt Enable */
 176#define	HIFN_1_DMA_CNFG		0x48	/* DMA Configuration */
 177#define	HIFN_1_PLL		0x4c	/* 795x: PLL config */
 178#define	HIFN_1_7811_RNGENA	0x60	/* 7811: rng enable */
 179#define	HIFN_1_7811_RNGCFG	0x64	/* 7811: rng config */
 180#define	HIFN_1_7811_RNGDAT	0x68	/* 7811: rng data */
 181#define	HIFN_1_7811_RNGSTS	0x6c	/* 7811: rng status */
 182#define	HIFN_1_7811_MIPSRST	0x94	/* 7811: MIPS reset */
 183#define	HIFN_1_REVID		0x98	/* Revision ID */
 184#define	HIFN_1_UNLOCK_SECRET1	0xf4
 185#define	HIFN_1_UNLOCK_SECRET2	0xfc
 186#define	HIFN_1_PUB_RESET	0x204	/* Public/RNG Reset */
 187#define	HIFN_1_PUB_BASE		0x300	/* Public Base Address */
 188#define	HIFN_1_PUB_OPLEN	0x304	/* Public Operand Length */
 189#define	HIFN_1_PUB_OP		0x308	/* Public Operand */
 190#define	HIFN_1_PUB_STATUS	0x30c	/* Public Status */
 191#define	HIFN_1_PUB_IEN		0x310	/* Public Interrupt enable */
 192#define	HIFN_1_RNG_CONFIG	0x314	/* RNG config */
 193#define	HIFN_1_RNG_DATA		0x318	/* RNG data */
 194#define	HIFN_1_PUB_MEM		0x400	/* start of Public key memory */
 195#define	HIFN_1_PUB_MEMEND	0xbff	/* end of Public key memory */
 196
 197/* DMA Status and Control Register (HIFN_1_DMA_CSR) */
 198#define	HIFN_DMACSR_D_CTRLMASK	0xc0000000	/* Destinition Ring Control */
 199#define	HIFN_DMACSR_D_CTRL_NOP	0x00000000	/* Dest. Control: no-op */
 200#define	HIFN_DMACSR_D_CTRL_DIS	0x40000000	/* Dest. Control: disable */
 201#define	HIFN_DMACSR_D_CTRL_ENA	0x80000000	/* Dest. Control: enable */
 202#define	HIFN_DMACSR_D_ABORT	0x20000000	/* Destinition Ring PCIAbort */
 203#define	HIFN_DMACSR_D_DONE	0x10000000	/* Destinition Ring Done */
 204#define	HIFN_DMACSR_D_LAST	0x08000000	/* Destinition Ring Last */
 205#define	HIFN_DMACSR_D_WAIT	0x04000000	/* Destinition Ring Waiting */
 206#define	HIFN_DMACSR_D_OVER	0x02000000	/* Destinition Ring Overflow */
 207#define	HIFN_DMACSR_R_CTRL	0x00c00000	/* Result Ring Control */
 208#define	HIFN_DMACSR_R_CTRL_NOP	0x00000000	/* Result Control: no-op */
 209#define	HIFN_DMACSR_R_CTRL_DIS	0x00400000	/* Result Control: disable */
 210#define	HIFN_DMACSR_R_CTRL_ENA	0x00800000	/* Result Control: enable */
 211#define	HIFN_DMACSR_R_ABORT	0x00200000	/* Result Ring PCI Abort */
 212#define	HIFN_DMACSR_R_DONE	0x00100000	/* Result Ring Done */
 213#define	HIFN_DMACSR_R_LAST	0x00080000	/* Result Ring Last */
 214#define	HIFN_DMACSR_R_WAIT	0x00040000	/* Result Ring Waiting */
 215#define	HIFN_DMACSR_R_OVER	0x00020000	/* Result Ring Overflow */
 216#define	HIFN_DMACSR_S_CTRL	0x0000c000	/* Source Ring Control */
 217#define	HIFN_DMACSR_S_CTRL_NOP	0x00000000	/* Source Control: no-op */
 218#define	HIFN_DMACSR_S_CTRL_DIS	0x00004000	/* Source Control: disable */
 219#define	HIFN_DMACSR_S_CTRL_ENA	0x00008000	/* Source Control: enable */
 220#define	HIFN_DMACSR_S_ABORT	0x00002000	/* Source Ring PCI Abort */
 221#define	HIFN_DMACSR_S_DONE	0x00001000	/* Source Ring Done */
 222#define	HIFN_DMACSR_S_LAST	0x00000800	/* Source Ring Last */
 223#define	HIFN_DMACSR_S_WAIT	0x00000400	/* Source Ring Waiting */
 224#define	HIFN_DMACSR_ILLW	0x00000200	/* Illegal write (7811 only) */
 225#define	HIFN_DMACSR_ILLR	0x00000100	/* Illegal read (7811 only) */
 226#define	HIFN_DMACSR_C_CTRL	0x000000c0	/* Command Ring Control */
 227#define	HIFN_DMACSR_C_CTRL_NOP	0x00000000	/* Command Control: no-op */
 228#define	HIFN_DMACSR_C_CTRL_DIS	0x00000040	/* Command Control: disable */
 229#define	HIFN_DMACSR_C_CTRL_ENA	0x00000080	/* Command Control: enable */
 230#define	HIFN_DMACSR_C_ABORT	0x00000020	/* Command Ring PCI Abort */
 231#define	HIFN_DMACSR_C_DONE	0x00000010	/* Command Ring Done */
 232#define	HIFN_DMACSR_C_LAST	0x00000008	/* Command Ring Last */
 233#define	HIFN_DMACSR_C_WAIT	0x00000004	/* Command Ring Waiting */
 234#define	HIFN_DMACSR_PUBDONE	0x00000002	/* Public op done (7951 only) */
 235#define	HIFN_DMACSR_ENGINE	0x00000001	/* Command Ring Engine IRQ */
 236
 237/* DMA Interrupt Enable Register (HIFN_1_DMA_IER) */
 238#define	HIFN_DMAIER_D_ABORT	0x20000000	/* Destination Ring PCIAbort */
 239#define	HIFN_DMAIER_D_DONE	0x10000000	/* Destination Ring Done */
 240#define	HIFN_DMAIER_D_LAST	0x08000000	/* Destination Ring Last */
 241#define	HIFN_DMAIER_D_WAIT	0x04000000	/* Destination Ring Waiting */
 242#define	HIFN_DMAIER_D_OVER	0x02000000	/* Destination Ring Overflow */
 243#define	HIFN_DMAIER_R_ABORT	0x00200000	/* Result Ring PCI Abort */
 244#define	HIFN_DMAIER_R_DONE	0x00100000	/* Result Ring Done */
 245#define	HIFN_DMAIER_R_LAST	0x00080000	/* Result Ring Last */
 246#define	HIFN_DMAIER_R_WAIT	0x00040000	/* Result Ring Waiting */
 247#define	HIFN_DMAIER_R_OVER	0x00020000	/* Result Ring Overflow */
 248#define	HIFN_DMAIER_S_ABORT	0x00002000	/* Source Ring PCI Abort */
 249#define	HIFN_DMAIER_S_DONE	0x00001000	/* Source Ring Done */
 250#define	HIFN_DMAIER_S_LAST	0x00000800	/* Source Ring Last */
 251#define	HIFN_DMAIER_S_WAIT	0x00000400	/* Source Ring Waiting */
 252#define	HIFN_DMAIER_ILLW	0x00000200	/* Illegal write (7811 only) */
 253#define	HIFN_DMAIER_ILLR	0x00000100	/* Illegal read (7811 only) */
 254#define	HIFN_DMAIER_C_ABORT	0x00000020	/* Command Ring PCI Abort */
 255#define	HIFN_DMAIER_C_DONE	0x00000010	/* Command Ring Done */
 256#define	HIFN_DMAIER_C_LAST	0x00000008	/* Command Ring Last */
 257#define	HIFN_DMAIER_C_WAIT	0x00000004	/* Command Ring Waiting */
 258#define	HIFN_DMAIER_PUBDONE	0x00000002	/* public op done (7951 only) */
 259#define	HIFN_DMAIER_ENGINE	0x00000001	/* Engine IRQ */
 260
 261/* DMA Configuration Register (HIFN_1_DMA_CNFG) */
 262#define	HIFN_DMACNFG_BIGENDIAN	0x10000000	/* big endian mode */
 263#define	HIFN_DMACNFG_POLLFREQ	0x00ff0000	/* Poll frequency mask */
 264#define	HIFN_DMACNFG_UNLOCK	0x00000800
 265#define	HIFN_DMACNFG_POLLINVAL	0x00000700	/* Invalid Poll Scalar */
 266#define	HIFN_DMACNFG_LAST	0x00000010	/* Host control LAST bit */
 267#define	HIFN_DMACNFG_MODE	0x00000004	/* DMA mode */
 268#define	HIFN_DMACNFG_DMARESET	0x00000002	/* DMA Reset # */
 269#define	HIFN_DMACNFG_MSTRESET	0x00000001	/* Master Reset # */
 270
 271/* PLL configuration register */
 272#define HIFN_PLL_REF_CLK_HBI	0x00000000	/* HBI reference clock */
 273#define HIFN_PLL_REF_CLK_PLL	0x00000001	/* PLL reference clock */
 274#define HIFN_PLL_BP		0x00000002	/* Reference clock bypass */
 275#define HIFN_PLL_PK_CLK_HBI	0x00000000	/* PK engine HBI clock */
 276#define HIFN_PLL_PK_CLK_PLL	0x00000008	/* PK engine PLL clock */
 277#define HIFN_PLL_PE_CLK_HBI	0x00000000	/* PE engine HBI clock */
 278#define HIFN_PLL_PE_CLK_PLL	0x00000010	/* PE engine PLL clock */
 279#define HIFN_PLL_RESERVED_1	0x00000400	/* Reserved bit, must be 1 */
 280#define HIFN_PLL_ND_SHIFT	11		/* Clock multiplier shift */
 281#define HIFN_PLL_ND_MULT_2	0x00000000	/* PLL clock multiplier 2 */
 282#define HIFN_PLL_ND_MULT_4	0x00000800	/* PLL clock multiplier 4 */
 283#define HIFN_PLL_ND_MULT_6	0x00001000	/* PLL clock multiplier 6 */
 284#define HIFN_PLL_ND_MULT_8	0x00001800	/* PLL clock multiplier 8 */
 285#define HIFN_PLL_ND_MULT_10	0x00002000	/* PLL clock multiplier 10 */
 286#define HIFN_PLL_ND_MULT_12	0x00002800	/* PLL clock multiplier 12 */
 287#define HIFN_PLL_IS_1_8		0x00000000	/* charge pump (mult. 1-8) */
 288#define HIFN_PLL_IS_9_12	0x00010000	/* charge pump (mult. 9-12) */
 289
 290#define HIFN_PLL_FCK_MAX	266		/* Maximum PLL frequency */
 291
 292/* Public key reset register (HIFN_1_PUB_RESET) */
 293#define	HIFN_PUBRST_RESET	0x00000001	/* reset public/rng unit */
 294
 295/* Public base address register (HIFN_1_PUB_BASE) */
 296#define	HIFN_PUBBASE_ADDR	0x00003fff	/* base address */
 297
 298/* Public operand length register (HIFN_1_PUB_OPLEN) */
 299#define	HIFN_PUBOPLEN_MOD_M	0x0000007f	/* modulus length mask */
 300#define	HIFN_PUBOPLEN_MOD_S	0		/* modulus length shift */
 301#define	HIFN_PUBOPLEN_EXP_M	0x0003ff80	/* exponent length mask */
 302#define	HIFN_PUBOPLEN_EXP_S	7		/* exponent length shift */
 303#define	HIFN_PUBOPLEN_RED_M	0x003c0000	/* reducend length mask */
 304#define	HIFN_PUBOPLEN_RED_S	18		/* reducend length shift */
 305
 306/* Public operation register (HIFN_1_PUB_OP) */
 307#define	HIFN_PUBOP_AOFFSET_M	0x0000007f	/* A offset mask */
 308#define	HIFN_PUBOP_AOFFSET_S	0		/* A offset shift */
 309#define	HIFN_PUBOP_BOFFSET_M	0x00000f80	/* B offset mask */
 310#define	HIFN_PUBOP_BOFFSET_S	7		/* B offset shift */
 311#define	HIFN_PUBOP_MOFFSET_M	0x0003f000	/* M offset mask */
 312#define	HIFN_PUBOP_MOFFSET_S	12		/* M offset shift */
 313#define	HIFN_PUBOP_OP_MASK	0x003c0000	/* Opcode: */
 314#define	HIFN_PUBOP_OP_NOP	0x00000000	/*  NOP */
 315#define	HIFN_PUBOP_OP_ADD	0x00040000	/*  ADD */
 316#define	HIFN_PUBOP_OP_ADDC	0x00080000	/*  ADD w/carry */
 317#define	HIFN_PUBOP_OP_SUB	0x000c0000	/*  SUB */
 318#define	HIFN_PUBOP_OP_SUBC	0x00100000	/*  SUB w/carry */
 319#define	HIFN_PUBOP_OP_MODADD	0x00140000	/*  Modular ADD */
 320#define	HIFN_PUBOP_OP_MODSUB	0x00180000	/*  Modular SUB */
 321#define	HIFN_PUBOP_OP_INCA	0x001c0000	/*  INC A */
 322#define	HIFN_PUBOP_OP_DECA	0x00200000	/*  DEC A */
 323#define	HIFN_PUBOP_OP_MULT	0x00240000	/*  MULT */
 324#define	HIFN_PUBOP_OP_MODMULT	0x00280000	/*  Modular MULT */
 325#define	HIFN_PUBOP_OP_MODRED	0x002c0000	/*  Modular RED */
 326#define	HIFN_PUBOP_OP_MODEXP	0x00300000	/*  Modular EXP */
 327
 328/* Public status register (HIFN_1_PUB_STATUS) */
 329#define	HIFN_PUBSTS_DONE	0x00000001	/* operation done */
 330#define	HIFN_PUBSTS_CARRY	0x00000002	/* carry */
 331
 332/* Public interrupt enable register (HIFN_1_PUB_IEN) */
 333#define	HIFN_PUBIEN_DONE	0x00000001	/* operation done interrupt */
 334
 335/* Random number generator config register (HIFN_1_RNG_CONFIG) */
 336#define	HIFN_RNGCFG_ENA		0x00000001	/* enable rng */
 337
 338#define HIFN_NAMESIZE			32
 339#define HIFN_MAX_RESULT_ORDER		5
 340
 341#define	HIFN_D_CMD_RSIZE		(24 * 1)
 342#define	HIFN_D_SRC_RSIZE		(80 * 1)
 343#define	HIFN_D_DST_RSIZE		(80 * 1)
 344#define	HIFN_D_RES_RSIZE		(24 * 1)
 345
 346#define HIFN_D_DST_DALIGN		4
 347
 348#define HIFN_QUEUE_LENGTH		(HIFN_D_CMD_RSIZE - 1)
 349
 350#define AES_MIN_KEY_SIZE		16
 351#define AES_MAX_KEY_SIZE		32
 352
 353#define HIFN_DES_KEY_LENGTH		8
 354#define HIFN_3DES_KEY_LENGTH		24
 355#define HIFN_MAX_CRYPT_KEY_LENGTH	AES_MAX_KEY_SIZE
 356#define HIFN_IV_LENGTH			8
 357#define HIFN_AES_IV_LENGTH		16
 358#define	HIFN_MAX_IV_LENGTH		HIFN_AES_IV_LENGTH
 359
 360#define HIFN_MAC_KEY_LENGTH		64
 361#define HIFN_MD5_LENGTH			16
 362#define HIFN_SHA1_LENGTH		20
 363#define HIFN_MAC_TRUNC_LENGTH		12
 364
 365#define	HIFN_MAX_COMMAND		(8 + 8 + 8 + 64 + 260)
 366#define	HIFN_MAX_RESULT			(8 + 4 + 4 + 20 + 4)
 367#define HIFN_USED_RESULT		12
 368
 369struct hifn_desc {
 370	volatile __le32		l;
 371	volatile __le32		p;
 372};
 373
 374struct hifn_dma {
 375	struct hifn_desc	cmdr[HIFN_D_CMD_RSIZE + 1];
 376	struct hifn_desc	srcr[HIFN_D_SRC_RSIZE + 1];
 377	struct hifn_desc	dstr[HIFN_D_DST_RSIZE + 1];
 378	struct hifn_desc	resr[HIFN_D_RES_RSIZE + 1];
 379
 380	u8			command_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_COMMAND];
 381	u8			result_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_RESULT];
 382
 383	/*
 384	 *  Our current positions for insertion and removal from the descriptor
 385	 *  rings.
 386	 */
 387	volatile int		cmdi, srci, dsti, resi;
 388	volatile int		cmdu, srcu, dstu, resu;
 389	int			cmdk, srck, dstk, resk;
 390};
 391
 392#define HIFN_FLAG_CMD_BUSY	(1 << 0)
 393#define HIFN_FLAG_SRC_BUSY	(1 << 1)
 394#define HIFN_FLAG_DST_BUSY	(1 << 2)
 395#define HIFN_FLAG_RES_BUSY	(1 << 3)
 396#define HIFN_FLAG_OLD_KEY	(1 << 4)
 397
 398#define HIFN_DEFAULT_ACTIVE_NUM	5
 399
 400struct hifn_device {
 401	char			name[HIFN_NAMESIZE];
 402
 403	int			irq;
 404
 405	struct pci_dev		*pdev;
 406	void __iomem		*bar[3];
 407
 408	void			*desc_virt;
 409	dma_addr_t		desc_dma;
 410
 411	u32			dmareg;
 412
 413	void			*sa[HIFN_D_RES_RSIZE];
 414
 415	spinlock_t		lock;
 416
 417	u32			flags;
 418	int			active, started;
 419	struct delayed_work	work;
 420	unsigned long		reset;
 421	unsigned long		success;
 422	unsigned long		prev_success;
 423
 424	u8			snum;
 425
 426	struct tasklet_struct	tasklet;
 427
 428	struct crypto_queue	queue;
 429	struct list_head	alg_list;
 430
 431	unsigned int		pk_clk_freq;
 432
 433#ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
 434	unsigned int		rng_wait_time;
 435	ktime_t			rngtime;
 436	struct hwrng		rng;
 437#endif
 438};
 439
 440#define	HIFN_D_LENGTH			0x0000ffff
 441#define	HIFN_D_NOINVALID		0x01000000
 442#define	HIFN_D_MASKDONEIRQ		0x02000000
 443#define	HIFN_D_DESTOVER			0x04000000
 444#define	HIFN_D_OVER			0x08000000
 445#define	HIFN_D_LAST			0x20000000
 446#define	HIFN_D_JUMP			0x40000000
 447#define	HIFN_D_VALID			0x80000000
 448
 449struct hifn_base_command {
 450	volatile __le16		masks;
 451	volatile __le16		session_num;
 452	volatile __le16		total_source_count;
 453	volatile __le16		total_dest_count;
 454};
 455
 456#define	HIFN_BASE_CMD_COMP		0x0100	/* enable compression engine */
 457#define	HIFN_BASE_CMD_PAD		0x0200	/* enable padding engine */
 458#define	HIFN_BASE_CMD_MAC		0x0400	/* enable MAC engine */
 459#define	HIFN_BASE_CMD_CRYPT		0x0800	/* enable crypt engine */
 460#define	HIFN_BASE_CMD_DECODE		0x2000
 461#define	HIFN_BASE_CMD_SRCLEN_M		0xc000
 462#define	HIFN_BASE_CMD_SRCLEN_S		14
 463#define	HIFN_BASE_CMD_DSTLEN_M		0x3000
 464#define	HIFN_BASE_CMD_DSTLEN_S		12
 465#define	HIFN_BASE_CMD_LENMASK_HI	0x30000
 466#define	HIFN_BASE_CMD_LENMASK_LO	0x0ffff
 467
 468/*
 469 * Structure to help build up the command data structure.
 470 */
 471struct hifn_crypt_command {
 472	volatile __le16		masks;
 473	volatile __le16		header_skip;
 474	volatile __le16		source_count;
 475	volatile __le16		reserved;
 476};
 477
 478#define	HIFN_CRYPT_CMD_ALG_MASK		0x0003		/* algorithm: */
 479#define	HIFN_CRYPT_CMD_ALG_DES		0x0000		/*   DES */
 480#define	HIFN_CRYPT_CMD_ALG_3DES		0x0001		/*   3DES */
 481#define	HIFN_CRYPT_CMD_ALG_RC4		0x0002		/*   RC4 */
 482#define	HIFN_CRYPT_CMD_ALG_AES		0x0003		/*   AES */
 483#define	HIFN_CRYPT_CMD_MODE_MASK	0x0018		/* Encrypt mode: */
 484#define	HIFN_CRYPT_CMD_MODE_ECB		0x0000		/*   ECB */
 485#define	HIFN_CRYPT_CMD_MODE_CBC		0x0008		/*   CBC */
 486#define	HIFN_CRYPT_CMD_MODE_CFB		0x0010		/*   CFB */
 487#define	HIFN_CRYPT_CMD_MODE_OFB		0x0018		/*   OFB */
 488#define	HIFN_CRYPT_CMD_CLR_CTX		0x0040		/* clear context */
 489#define	HIFN_CRYPT_CMD_KSZ_MASK		0x0600		/* AES key size: */
 490#define	HIFN_CRYPT_CMD_KSZ_128		0x0000		/*  128 bit */
 491#define	HIFN_CRYPT_CMD_KSZ_192		0x0200		/*  192 bit */
 492#define	HIFN_CRYPT_CMD_KSZ_256		0x0400		/*  256 bit */
 493#define	HIFN_CRYPT_CMD_NEW_KEY		0x0800		/* expect new key */
 494#define	HIFN_CRYPT_CMD_NEW_IV		0x1000		/* expect new iv */
 495#define	HIFN_CRYPT_CMD_SRCLEN_M		0xc000
 496#define	HIFN_CRYPT_CMD_SRCLEN_S		14
 497
 498/*
 499 * Structure to help build up the command data structure.
 500 */
 501struct hifn_mac_command {
 502	volatile __le16	masks;
 503	volatile __le16	header_skip;
 504	volatile __le16	source_count;
 505	volatile __le16	reserved;
 506};
 507
 508#define	HIFN_MAC_CMD_ALG_MASK		0x0001
 509#define	HIFN_MAC_CMD_ALG_SHA1		0x0000
 510#define	HIFN_MAC_CMD_ALG_MD5		0x0001
 511#define	HIFN_MAC_CMD_MODE_MASK		0x000c
 512#define	HIFN_MAC_CMD_MODE_HMAC		0x0000
 513#define	HIFN_MAC_CMD_MODE_SSL_MAC	0x0004
 514#define	HIFN_MAC_CMD_MODE_HASH		0x0008
 515#define	HIFN_MAC_CMD_MODE_FULL		0x0004
 516#define	HIFN_MAC_CMD_TRUNC		0x0010
 517#define	HIFN_MAC_CMD_RESULT		0x0020
 518#define	HIFN_MAC_CMD_APPEND		0x0040
 519#define	HIFN_MAC_CMD_SRCLEN_M		0xc000
 520#define	HIFN_MAC_CMD_SRCLEN_S		14
 521
 522/*
 523 * MAC POS IPsec initiates authentication after encryption on encodes
 524 * and before decryption on decodes.
 525 */
 526#define	HIFN_MAC_CMD_POS_IPSEC		0x0200
 527#define	HIFN_MAC_CMD_NEW_KEY		0x0800
 528
 529struct hifn_comp_command {
 530	volatile __le16		masks;
 531	volatile __le16		header_skip;
 532	volatile __le16		source_count;
 533	volatile __le16		reserved;
 534};
 535
 536#define	HIFN_COMP_CMD_SRCLEN_M		0xc000
 537#define	HIFN_COMP_CMD_SRCLEN_S		14
 538#define	HIFN_COMP_CMD_ONE		0x0100	/* must be one */
 539#define	HIFN_COMP_CMD_CLEARHIST		0x0010	/* clear history */
 540#define	HIFN_COMP_CMD_UPDATEHIST	0x0008	/* update history */
 541#define	HIFN_COMP_CMD_LZS_STRIP0	0x0004	/* LZS: strip zero */
 542#define	HIFN_COMP_CMD_MPPC_RESTART	0x0004	/* MPPC: restart */
 543#define	HIFN_COMP_CMD_ALG_MASK		0x0001	/* compression mode: */
 544#define	HIFN_COMP_CMD_ALG_MPPC		0x0001	/*   MPPC */
 545#define	HIFN_COMP_CMD_ALG_LZS		0x0000	/*   LZS */
 546
 547struct hifn_base_result {
 548	volatile __le16		flags;
 549	volatile __le16		session;
 550	volatile __le16		src_cnt;		/* 15:0 of source count */
 551	volatile __le16		dst_cnt;		/* 15:0 of dest count */
 552};
 553
 554#define	HIFN_BASE_RES_DSTOVERRUN	0x0200	/* destination overrun */
 555#define	HIFN_BASE_RES_SRCLEN_M		0xc000	/* 17:16 of source count */
 556#define	HIFN_BASE_RES_SRCLEN_S		14
 557#define	HIFN_BASE_RES_DSTLEN_M		0x3000	/* 17:16 of dest count */
 558#define	HIFN_BASE_RES_DSTLEN_S		12
 559
 560struct hifn_comp_result {
 561	volatile __le16		flags;
 562	volatile __le16		crc;
 563};
 564
 565#define	HIFN_COMP_RES_LCB_M		0xff00	/* longitudinal check byte */
 566#define	HIFN_COMP_RES_LCB_S		8
 567#define	HIFN_COMP_RES_RESTART		0x0004	/* MPPC: restart */
 568#define	HIFN_COMP_RES_ENDMARKER		0x0002	/* LZS: end marker seen */
 569#define	HIFN_COMP_RES_SRC_NOTZERO	0x0001	/* source expired */
 570
 571struct hifn_mac_result {
 572	volatile __le16		flags;
 573	volatile __le16		reserved;
 574	/* followed by 0, 6, 8, or 10 u16's of the MAC, then crypt */
 575};
 576
 577#define	HIFN_MAC_RES_MISCOMPARE		0x0002	/* compare failed */
 578#define	HIFN_MAC_RES_SRC_NOTZERO	0x0001	/* source expired */
 579
 580struct hifn_crypt_result {
 581	volatile __le16		flags;
 582	volatile __le16		reserved;
 583};
 584
 585#define	HIFN_CRYPT_RES_SRC_NOTZERO	0x0001	/* source expired */
 586
 587#ifndef HIFN_POLL_FREQUENCY
 588#define	HIFN_POLL_FREQUENCY	0x1
 589#endif
 590
 591#ifndef HIFN_POLL_SCALAR
 592#define	HIFN_POLL_SCALAR	0x0
 593#endif
 594
 595#define	HIFN_MAX_SEGLEN		0xffff		/* maximum dma segment len */
 596#define	HIFN_MAX_DMALEN		0x3ffff		/* maximum dma length */
 597
 598struct hifn_crypto_alg {
 599	struct list_head	entry;
 600	struct skcipher_alg	alg;
 601	struct hifn_device	*dev;
 602};
 603
 604#define ASYNC_SCATTERLIST_CACHE	16
 605
 606#define ASYNC_FLAGS_MISALIGNED	(1 << 0)
 607
 608struct hifn_cipher_walk {
 609	struct scatterlist	cache[ASYNC_SCATTERLIST_CACHE];
 610	u32			flags;
 611	int			num;
 612};
 613
 614struct hifn_context {
 615	u8			key[HIFN_MAX_CRYPT_KEY_LENGTH];
 616	struct hifn_device	*dev;
 617	unsigned int		keysize;
 618};
 619
 620struct hifn_request_context {
 621	u8			*iv;
 622	unsigned int		ivsize;
 623	u8			op, type, mode, unused;
 624	struct hifn_cipher_walk	walk;
 625};
 626
 627#define crypto_alg_to_hifn(a)	container_of(a, struct hifn_crypto_alg, alg)
 628
 629static inline u32 hifn_read_0(struct hifn_device *dev, u32 reg)
 630{
 631	return readl(dev->bar[0] + reg);
 
 
 
 
 632}
 633
 634static inline u32 hifn_read_1(struct hifn_device *dev, u32 reg)
 635{
 636	return readl(dev->bar[1] + reg);
 
 
 
 
 637}
 638
 639static inline void hifn_write_0(struct hifn_device *dev, u32 reg, u32 val)
 640{
 641	writel((__force u32)cpu_to_le32(val), dev->bar[0] + reg);
 642}
 643
 644static inline void hifn_write_1(struct hifn_device *dev, u32 reg, u32 val)
 645{
 646	writel((__force u32)cpu_to_le32(val), dev->bar[1] + reg);
 647}
 648
 649static void hifn_wait_puc(struct hifn_device *dev)
 650{
 651	int i;
 652	u32 ret;
 653
 654	for (i = 10000; i > 0; --i) {
 655		ret = hifn_read_0(dev, HIFN_0_PUCTRL);
 656		if (!(ret & HIFN_PUCTRL_RESET))
 657			break;
 658
 659		udelay(1);
 660	}
 661
 662	if (!i)
 663		dev_err(&dev->pdev->dev, "Failed to reset PUC unit.\n");
 664}
 665
 666static void hifn_reset_puc(struct hifn_device *dev)
 667{
 668	hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
 669	hifn_wait_puc(dev);
 670}
 671
 672static void hifn_stop_device(struct hifn_device *dev)
 673{
 674	hifn_write_1(dev, HIFN_1_DMA_CSR,
 675		HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
 676		HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS);
 677	hifn_write_0(dev, HIFN_0_PUIER, 0);
 678	hifn_write_1(dev, HIFN_1_DMA_IER, 0);
 679}
 680
 681static void hifn_reset_dma(struct hifn_device *dev, int full)
 682{
 683	hifn_stop_device(dev);
 684
 685	/*
 686	 * Setting poll frequency and others to 0.
 687	 */
 688	hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
 689			HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
 690	mdelay(1);
 691
 692	/*
 693	 * Reset DMA.
 694	 */
 695	if (full) {
 696		hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE);
 697		mdelay(1);
 698	} else {
 699		hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE |
 700				HIFN_DMACNFG_MSTRESET);
 701		hifn_reset_puc(dev);
 702	}
 703
 704	hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
 705			HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
 706
 707	hifn_reset_puc(dev);
 708}
 709
 710static u32 hifn_next_signature(u32 a, u_int cnt)
 711{
 712	int i;
 713	u32 v;
 714
 715	for (i = 0; i < cnt; i++) {
 716		/* get the parity */
 717		v = a & 0x80080125;
 718		v ^= v >> 16;
 719		v ^= v >> 8;
 720		v ^= v >> 4;
 721		v ^= v >> 2;
 722		v ^= v >> 1;
 723
 724		a = (v & 1) ^ (a << 1);
 725	}
 726
 727	return a;
 728}
 729
 730static struct pci2id {
 731	u_short		pci_vendor;
 732	u_short		pci_prod;
 733	char		card_id[13];
 734} pci2id[] = {
 735	{
 736		PCI_VENDOR_ID_HIFN,
 737		PCI_DEVICE_ID_HIFN_7955,
 738		{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 739		  0x00, 0x00, 0x00, 0x00, 0x00 }
 740	},
 741	{
 742		PCI_VENDOR_ID_HIFN,
 743		PCI_DEVICE_ID_HIFN_7956,
 744		{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 745		  0x00, 0x00, 0x00, 0x00, 0x00 }
 746	}
 747};
 748
 749#ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
 750static int hifn_rng_data_present(struct hwrng *rng, int wait)
 751{
 752	struct hifn_device *dev = (struct hifn_device *)rng->priv;
 753	s64 nsec;
 754
 755	nsec = ktime_to_ns(ktime_sub(ktime_get(), dev->rngtime));
 756	nsec -= dev->rng_wait_time;
 757	if (nsec <= 0)
 758		return 1;
 759	if (!wait)
 760		return 0;
 761	ndelay(nsec);
 762	return 1;
 763}
 764
 765static int hifn_rng_data_read(struct hwrng *rng, u32 *data)
 766{
 767	struct hifn_device *dev = (struct hifn_device *)rng->priv;
 768
 769	*data = hifn_read_1(dev, HIFN_1_RNG_DATA);
 770	dev->rngtime = ktime_get();
 771	return 4;
 772}
 773
 774static int hifn_register_rng(struct hifn_device *dev)
 775{
 776	/*
 777	 * We must wait at least 256 Pk_clk cycles between two reads of the rng.
 778	 */
 779	dev->rng_wait_time	= DIV_ROUND_UP_ULL(NSEC_PER_SEC,
 780						   dev->pk_clk_freq) * 256;
 781
 782	dev->rng.name		= dev->name;
 783	dev->rng.data_present	= hifn_rng_data_present;
 784	dev->rng.data_read	= hifn_rng_data_read;
 785	dev->rng.priv		= (unsigned long)dev;
 786
 787	return hwrng_register(&dev->rng);
 788}
 789
 790static void hifn_unregister_rng(struct hifn_device *dev)
 791{
 792	hwrng_unregister(&dev->rng);
 793}
 794#else
 795#define hifn_register_rng(dev)		0
 796#define hifn_unregister_rng(dev)
 797#endif
 798
 799static int hifn_init_pubrng(struct hifn_device *dev)
 800{
 801	int i;
 802
 803	hifn_write_1(dev, HIFN_1_PUB_RESET, hifn_read_1(dev, HIFN_1_PUB_RESET) |
 804			HIFN_PUBRST_RESET);
 805
 806	for (i = 100; i > 0; --i) {
 807		mdelay(1);
 808
 809		if ((hifn_read_1(dev, HIFN_1_PUB_RESET) & HIFN_PUBRST_RESET) == 0)
 810			break;
 811	}
 812
 813	if (!i) {
 814		dev_err(&dev->pdev->dev, "Failed to initialise public key engine.\n");
 815	} else {
 816		hifn_write_1(dev, HIFN_1_PUB_IEN, HIFN_PUBIEN_DONE);
 817		dev->dmareg |= HIFN_DMAIER_PUBDONE;
 818		hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
 819
 820		dev_dbg(&dev->pdev->dev, "Public key engine has been successfully initialised.\n");
 821	}
 822
 823	/* Enable RNG engine. */
 824
 825	hifn_write_1(dev, HIFN_1_RNG_CONFIG,
 826			hifn_read_1(dev, HIFN_1_RNG_CONFIG) | HIFN_RNGCFG_ENA);
 827	dev_dbg(&dev->pdev->dev, "RNG engine has been successfully initialised.\n");
 828
 829#ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
 830	/* First value must be discarded */
 831	hifn_read_1(dev, HIFN_1_RNG_DATA);
 832	dev->rngtime = ktime_get();
 833#endif
 834	return 0;
 835}
 836
 837static int hifn_enable_crypto(struct hifn_device *dev)
 838{
 839	u32 dmacfg, addr;
 840	char *offtbl = NULL;
 841	int i;
 842
 843	for (i = 0; i < ARRAY_SIZE(pci2id); i++) {
 844		if (pci2id[i].pci_vendor == dev->pdev->vendor &&
 845				pci2id[i].pci_prod == dev->pdev->device) {
 846			offtbl = pci2id[i].card_id;
 847			break;
 848		}
 849	}
 850
 851	if (!offtbl) {
 852		dev_err(&dev->pdev->dev, "Unknown card!\n");
 853		return -ENODEV;
 854	}
 855
 856	dmacfg = hifn_read_1(dev, HIFN_1_DMA_CNFG);
 857
 858	hifn_write_1(dev, HIFN_1_DMA_CNFG,
 859			HIFN_DMACNFG_UNLOCK | HIFN_DMACNFG_MSTRESET |
 860			HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
 861	mdelay(1);
 862	addr = hifn_read_1(dev, HIFN_1_UNLOCK_SECRET1);
 863	mdelay(1);
 864	hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, 0);
 865	mdelay(1);
 866
 867	for (i = 0; i < 12; ++i) {
 868		addr = hifn_next_signature(addr, offtbl[i] + 0x101);
 869		hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, addr);
 870
 871		mdelay(1);
 872	}
 873	hifn_write_1(dev, HIFN_1_DMA_CNFG, dmacfg);
 874
 875	dev_dbg(&dev->pdev->dev, "%s %s.\n", dev->name, pci_name(dev->pdev));
 876
 877	return 0;
 878}
 879
 880static void hifn_init_dma(struct hifn_device *dev)
 881{
 882	struct hifn_dma *dma = dev->desc_virt;
 883	u32 dptr = dev->desc_dma;
 884	int i;
 885
 886	for (i = 0; i < HIFN_D_CMD_RSIZE; ++i)
 887		dma->cmdr[i].p = __cpu_to_le32(dptr +
 888				offsetof(struct hifn_dma, command_bufs[i][0]));
 889	for (i = 0; i < HIFN_D_RES_RSIZE; ++i)
 890		dma->resr[i].p = __cpu_to_le32(dptr +
 891				offsetof(struct hifn_dma, result_bufs[i][0]));
 892
 893	/* Setup LAST descriptors. */
 894	dma->cmdr[HIFN_D_CMD_RSIZE].p = __cpu_to_le32(dptr +
 895			offsetof(struct hifn_dma, cmdr[0]));
 896	dma->srcr[HIFN_D_SRC_RSIZE].p = __cpu_to_le32(dptr +
 897			offsetof(struct hifn_dma, srcr[0]));
 898	dma->dstr[HIFN_D_DST_RSIZE].p = __cpu_to_le32(dptr +
 899			offsetof(struct hifn_dma, dstr[0]));
 900	dma->resr[HIFN_D_RES_RSIZE].p = __cpu_to_le32(dptr +
 901			offsetof(struct hifn_dma, resr[0]));
 902
 903	dma->cmdu = dma->srcu = dma->dstu = dma->resu = 0;
 904	dma->cmdi = dma->srci = dma->dsti = dma->resi = 0;
 905	dma->cmdk = dma->srck = dma->dstk = dma->resk = 0;
 906}
 907
 908/*
 909 * Initialize the PLL. We need to know the frequency of the reference clock
 910 * to calculate the optimal multiplier. For PCI we assume 66MHz, since that
 911 * allows us to operate without the risk of overclocking the chip. If it
 912 * actually uses 33MHz, the chip will operate at half the speed, this can be
 913 * overridden by specifying the frequency as module parameter (pci33).
 914 *
 915 * Unfortunately the PCI clock is not very suitable since the HIFN needs a
 916 * stable clock and the PCI clock frequency may vary, so the default is the
 917 * external clock. There is no way to find out its frequency, we default to
 918 * 66MHz since according to Mike Ham of HiFn, almost every board in existence
 919 * has an external crystal populated at 66MHz.
 920 */
 921static void hifn_init_pll(struct hifn_device *dev)
 922{
 923	unsigned int freq, m;
 924	u32 pllcfg;
 925
 926	pllcfg = HIFN_1_PLL | HIFN_PLL_RESERVED_1;
 927
 928	if (strncmp(hifn_pll_ref, "ext", 3) == 0)
 929		pllcfg |= HIFN_PLL_REF_CLK_PLL;
 930	else
 931		pllcfg |= HIFN_PLL_REF_CLK_HBI;
 932
 933	if (hifn_pll_ref[3] != '\0')
 934		freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
 935	else {
 936		freq = 66;
 937		dev_info(&dev->pdev->dev, "assuming %uMHz clock speed, override with hifn_pll_ref=%.3s<frequency>\n",
 938			 freq, hifn_pll_ref);
 939	}
 940
 941	m = HIFN_PLL_FCK_MAX / freq;
 942
 943	pllcfg |= (m / 2 - 1) << HIFN_PLL_ND_SHIFT;
 944	if (m <= 8)
 945		pllcfg |= HIFN_PLL_IS_1_8;
 946	else
 947		pllcfg |= HIFN_PLL_IS_9_12;
 948
 949	/* Select clock source and enable clock bypass */
 950	hifn_write_1(dev, HIFN_1_PLL, pllcfg |
 951		     HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI | HIFN_PLL_BP);
 952
 953	/* Let the chip lock to the input clock */
 954	mdelay(10);
 955
 956	/* Disable clock bypass */
 957	hifn_write_1(dev, HIFN_1_PLL, pllcfg |
 958		     HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI);
 959
 960	/* Switch the engines to the PLL */
 961	hifn_write_1(dev, HIFN_1_PLL, pllcfg |
 962		     HIFN_PLL_PK_CLK_PLL | HIFN_PLL_PE_CLK_PLL);
 963
 964	/*
 965	 * The Fpk_clk runs at half the total speed. Its frequency is needed to
 966	 * calculate the minimum time between two reads of the rng. Since 33MHz
 967	 * is actually 33.333... we overestimate the frequency here, resulting
 968	 * in slightly larger intervals.
 969	 */
 970	dev->pk_clk_freq = 1000000 * (freq + 1) * m / 2;
 971}
 972
 973static void hifn_init_registers(struct hifn_device *dev)
 974{
 975	u32 dptr = dev->desc_dma;
 976
 977	/* Initialization magic... */
 978	hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
 979	hifn_write_0(dev, HIFN_0_FIFOCNFG, HIFN_FIFOCNFG_THRESHOLD);
 980	hifn_write_0(dev, HIFN_0_PUIER, HIFN_PUIER_DSTOVER);
 981
 982	/* write all 4 ring address registers */
 983	hifn_write_1(dev, HIFN_1_DMA_CRAR, dptr +
 984				offsetof(struct hifn_dma, cmdr[0]));
 985	hifn_write_1(dev, HIFN_1_DMA_SRAR, dptr +
 986				offsetof(struct hifn_dma, srcr[0]));
 987	hifn_write_1(dev, HIFN_1_DMA_DRAR, dptr +
 988				offsetof(struct hifn_dma, dstr[0]));
 989	hifn_write_1(dev, HIFN_1_DMA_RRAR, dptr +
 990				offsetof(struct hifn_dma, resr[0]));
 991
 992	mdelay(2);
 993#if 0
 994	hifn_write_1(dev, HIFN_1_DMA_CSR,
 995	    HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
 996	    HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS |
 997	    HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
 998	    HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
 999	    HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
1000	    HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
1001	    HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
1002	    HIFN_DMACSR_S_WAIT |
1003	    HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1004	    HIFN_DMACSR_C_WAIT |
1005	    HIFN_DMACSR_ENGINE |
1006	    HIFN_DMACSR_PUBDONE);
1007#else
1008	hifn_write_1(dev, HIFN_1_DMA_CSR,
1009	    HIFN_DMACSR_C_CTRL_ENA | HIFN_DMACSR_S_CTRL_ENA |
1010	    HIFN_DMACSR_D_CTRL_ENA | HIFN_DMACSR_R_CTRL_ENA |
1011	    HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
1012	    HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
1013	    HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
1014	    HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
1015	    HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
1016	    HIFN_DMACSR_S_WAIT |
1017	    HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1018	    HIFN_DMACSR_C_WAIT |
1019	    HIFN_DMACSR_ENGINE |
1020	    HIFN_DMACSR_PUBDONE);
1021#endif
1022	hifn_read_1(dev, HIFN_1_DMA_CSR);
1023
1024	dev->dmareg |= HIFN_DMAIER_R_DONE | HIFN_DMAIER_C_ABORT |
1025	    HIFN_DMAIER_D_OVER | HIFN_DMAIER_R_OVER |
1026	    HIFN_DMAIER_S_ABORT | HIFN_DMAIER_D_ABORT | HIFN_DMAIER_R_ABORT |
1027	    HIFN_DMAIER_ENGINE;
1028	dev->dmareg &= ~HIFN_DMAIER_C_WAIT;
1029
1030	hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1031	hifn_read_1(dev, HIFN_1_DMA_IER);
1032#if 0
1033	hifn_write_0(dev, HIFN_0_PUCNFG, HIFN_PUCNFG_ENCCNFG |
1034		    HIFN_PUCNFG_DRFR_128 | HIFN_PUCNFG_TCALLPHASES |
1035		    HIFN_PUCNFG_TCDRVTOTEM | HIFN_PUCNFG_BUS32 |
1036		    HIFN_PUCNFG_DRAM);
1037#else
1038	hifn_write_0(dev, HIFN_0_PUCNFG, 0x10342);
1039#endif
1040	hifn_init_pll(dev);
1041
1042	hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1043	hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
1044	    HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE | HIFN_DMACNFG_LAST |
1045	    ((HIFN_POLL_FREQUENCY << 16 ) & HIFN_DMACNFG_POLLFREQ) |
1046	    ((HIFN_POLL_SCALAR << 8) & HIFN_DMACNFG_POLLINVAL));
1047}
1048
1049static int hifn_setup_base_command(struct hifn_device *dev, u8 *buf,
1050		unsigned dlen, unsigned slen, u16 mask, u8 snum)
1051{
1052	struct hifn_base_command *base_cmd;
1053	u8 *buf_pos = buf;
1054
1055	base_cmd = (struct hifn_base_command *)buf_pos;
1056	base_cmd->masks = __cpu_to_le16(mask);
1057	base_cmd->total_source_count =
1058		__cpu_to_le16(slen & HIFN_BASE_CMD_LENMASK_LO);
1059	base_cmd->total_dest_count =
1060		__cpu_to_le16(dlen & HIFN_BASE_CMD_LENMASK_LO);
1061
1062	dlen >>= 16;
1063	slen >>= 16;
1064	base_cmd->session_num = __cpu_to_le16(snum |
1065	    ((slen << HIFN_BASE_CMD_SRCLEN_S) & HIFN_BASE_CMD_SRCLEN_M) |
1066	    ((dlen << HIFN_BASE_CMD_DSTLEN_S) & HIFN_BASE_CMD_DSTLEN_M));
1067
1068	return sizeof(struct hifn_base_command);
1069}
1070
1071static int hifn_setup_crypto_command(struct hifn_device *dev,
1072		u8 *buf, unsigned dlen, unsigned slen,
1073		u8 *key, int keylen, u8 *iv, int ivsize, u16 mode)
1074{
1075	struct hifn_dma *dma = dev->desc_virt;
1076	struct hifn_crypt_command *cry_cmd;
1077	u8 *buf_pos = buf;
1078	u16 cmd_len;
1079
1080	cry_cmd = (struct hifn_crypt_command *)buf_pos;
1081
1082	cry_cmd->source_count = __cpu_to_le16(dlen & 0xffff);
1083	dlen >>= 16;
1084	cry_cmd->masks = __cpu_to_le16(mode |
1085			((dlen << HIFN_CRYPT_CMD_SRCLEN_S) &
1086			 HIFN_CRYPT_CMD_SRCLEN_M));
1087	cry_cmd->header_skip = 0;
1088	cry_cmd->reserved = 0;
1089
1090	buf_pos += sizeof(struct hifn_crypt_command);
1091
1092	dma->cmdu++;
1093	if (dma->cmdu > 1) {
1094		dev->dmareg |= HIFN_DMAIER_C_WAIT;
1095		hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1096	}
1097
1098	if (keylen) {
1099		memcpy(buf_pos, key, keylen);
1100		buf_pos += keylen;
1101	}
1102	if (ivsize) {
1103		memcpy(buf_pos, iv, ivsize);
1104		buf_pos += ivsize;
1105	}
1106
1107	cmd_len = buf_pos - buf;
1108
1109	return cmd_len;
1110}
1111
1112static int hifn_setup_cmd_desc(struct hifn_device *dev,
1113		struct hifn_context *ctx, struct hifn_request_context *rctx,
1114		void *priv, unsigned int nbytes)
1115{
1116	struct hifn_dma *dma = dev->desc_virt;
1117	int cmd_len, sa_idx;
1118	u8 *buf, *buf_pos;
1119	u16 mask;
1120
1121	sa_idx = dma->cmdi;
1122	buf_pos = buf = dma->command_bufs[dma->cmdi];
1123
1124	mask = 0;
1125	switch (rctx->op) {
1126	case ACRYPTO_OP_DECRYPT:
1127		mask = HIFN_BASE_CMD_CRYPT | HIFN_BASE_CMD_DECODE;
1128		break;
1129	case ACRYPTO_OP_ENCRYPT:
1130		mask = HIFN_BASE_CMD_CRYPT;
1131		break;
1132	case ACRYPTO_OP_HMAC:
1133		mask = HIFN_BASE_CMD_MAC;
1134		break;
1135	default:
1136		goto err_out;
1137	}
1138
1139	buf_pos += hifn_setup_base_command(dev, buf_pos, nbytes,
1140			nbytes, mask, dev->snum);
1141
1142	if (rctx->op == ACRYPTO_OP_ENCRYPT || rctx->op == ACRYPTO_OP_DECRYPT) {
1143		u16 md = 0;
1144
1145		if (ctx->keysize)
1146			md |= HIFN_CRYPT_CMD_NEW_KEY;
1147		if (rctx->iv && rctx->mode != ACRYPTO_MODE_ECB)
1148			md |= HIFN_CRYPT_CMD_NEW_IV;
1149
1150		switch (rctx->mode) {
1151		case ACRYPTO_MODE_ECB:
1152			md |= HIFN_CRYPT_CMD_MODE_ECB;
1153			break;
1154		case ACRYPTO_MODE_CBC:
1155			md |= HIFN_CRYPT_CMD_MODE_CBC;
1156			break;
1157		case ACRYPTO_MODE_CFB:
1158			md |= HIFN_CRYPT_CMD_MODE_CFB;
1159			break;
1160		case ACRYPTO_MODE_OFB:
1161			md |= HIFN_CRYPT_CMD_MODE_OFB;
1162			break;
1163		default:
1164			goto err_out;
1165		}
1166
1167		switch (rctx->type) {
1168		case ACRYPTO_TYPE_AES_128:
1169			if (ctx->keysize != 16)
1170				goto err_out;
1171			md |= HIFN_CRYPT_CMD_KSZ_128 |
1172				HIFN_CRYPT_CMD_ALG_AES;
1173			break;
1174		case ACRYPTO_TYPE_AES_192:
1175			if (ctx->keysize != 24)
1176				goto err_out;
1177			md |= HIFN_CRYPT_CMD_KSZ_192 |
1178				HIFN_CRYPT_CMD_ALG_AES;
1179			break;
1180		case ACRYPTO_TYPE_AES_256:
1181			if (ctx->keysize != 32)
1182				goto err_out;
1183			md |= HIFN_CRYPT_CMD_KSZ_256 |
1184				HIFN_CRYPT_CMD_ALG_AES;
1185			break;
1186		case ACRYPTO_TYPE_3DES:
1187			if (ctx->keysize != 24)
1188				goto err_out;
1189			md |= HIFN_CRYPT_CMD_ALG_3DES;
1190			break;
1191		case ACRYPTO_TYPE_DES:
1192			if (ctx->keysize != 8)
1193				goto err_out;
1194			md |= HIFN_CRYPT_CMD_ALG_DES;
1195			break;
1196		default:
1197			goto err_out;
1198		}
1199
1200		buf_pos += hifn_setup_crypto_command(dev, buf_pos,
1201				nbytes, nbytes, ctx->key, ctx->keysize,
1202				rctx->iv, rctx->ivsize, md);
1203	}
1204
1205	dev->sa[sa_idx] = priv;
1206	dev->started++;
1207
1208	cmd_len = buf_pos - buf;
1209	dma->cmdr[dma->cmdi].l = __cpu_to_le32(cmd_len | HIFN_D_VALID |
1210			HIFN_D_LAST | HIFN_D_MASKDONEIRQ);
1211
1212	if (++dma->cmdi == HIFN_D_CMD_RSIZE) {
1213		dma->cmdr[dma->cmdi].l = __cpu_to_le32(
1214			HIFN_D_VALID | HIFN_D_LAST |
1215			HIFN_D_MASKDONEIRQ | HIFN_D_JUMP);
1216		dma->cmdi = 0;
1217	} else {
1218		dma->cmdr[dma->cmdi - 1].l |= __cpu_to_le32(HIFN_D_VALID);
1219	}
1220
1221	if (!(dev->flags & HIFN_FLAG_CMD_BUSY)) {
1222		hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_C_CTRL_ENA);
1223		dev->flags |= HIFN_FLAG_CMD_BUSY;
1224	}
1225	return 0;
1226
1227err_out:
1228	return -EINVAL;
1229}
1230
1231static int hifn_setup_src_desc(struct hifn_device *dev, struct page *page,
1232		unsigned int offset, unsigned int size, int last)
1233{
1234	struct hifn_dma *dma = dev->desc_virt;
1235	int idx;
1236	dma_addr_t addr;
1237
1238	addr = dma_map_page(&dev->pdev->dev, page, offset, size,
1239			    DMA_TO_DEVICE);
1240
1241	idx = dma->srci;
1242
1243	dma->srcr[idx].p = __cpu_to_le32(addr);
1244	dma->srcr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
1245			HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
1246
1247	if (++idx == HIFN_D_SRC_RSIZE) {
1248		dma->srcr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1249				HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1250				(last ? HIFN_D_LAST : 0));
1251		idx = 0;
1252	}
1253
1254	dma->srci = idx;
1255	dma->srcu++;
1256
1257	if (!(dev->flags & HIFN_FLAG_SRC_BUSY)) {
1258		hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_S_CTRL_ENA);
1259		dev->flags |= HIFN_FLAG_SRC_BUSY;
1260	}
1261
1262	return size;
1263}
1264
1265static void hifn_setup_res_desc(struct hifn_device *dev)
1266{
1267	struct hifn_dma *dma = dev->desc_virt;
1268
1269	dma->resr[dma->resi].l = __cpu_to_le32(HIFN_USED_RESULT |
1270			HIFN_D_VALID | HIFN_D_LAST);
1271	/*
1272	 * dma->resr[dma->resi].l = __cpu_to_le32(HIFN_MAX_RESULT | HIFN_D_VALID |
1273	 *					HIFN_D_LAST);
1274	 */
1275
1276	if (++dma->resi == HIFN_D_RES_RSIZE) {
1277		dma->resr[HIFN_D_RES_RSIZE].l = __cpu_to_le32(HIFN_D_VALID |
1278				HIFN_D_JUMP | HIFN_D_MASKDONEIRQ | HIFN_D_LAST);
1279		dma->resi = 0;
1280	}
1281
1282	dma->resu++;
1283
1284	if (!(dev->flags & HIFN_FLAG_RES_BUSY)) {
1285		hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_R_CTRL_ENA);
1286		dev->flags |= HIFN_FLAG_RES_BUSY;
1287	}
1288}
1289
1290static void hifn_setup_dst_desc(struct hifn_device *dev, struct page *page,
1291		unsigned offset, unsigned size, int last)
1292{
1293	struct hifn_dma *dma = dev->desc_virt;
1294	int idx;
1295	dma_addr_t addr;
1296
1297	addr = dma_map_page(&dev->pdev->dev, page, offset, size,
1298			    DMA_FROM_DEVICE);
1299
1300	idx = dma->dsti;
1301	dma->dstr[idx].p = __cpu_to_le32(addr);
1302	dma->dstr[idx].l = __cpu_to_le32(size |	HIFN_D_VALID |
1303			HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
1304
1305	if (++idx == HIFN_D_DST_RSIZE) {
1306		dma->dstr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1307				HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1308				(last ? HIFN_D_LAST : 0));
1309		idx = 0;
1310	}
1311	dma->dsti = idx;
1312	dma->dstu++;
1313
1314	if (!(dev->flags & HIFN_FLAG_DST_BUSY)) {
1315		hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_D_CTRL_ENA);
1316		dev->flags |= HIFN_FLAG_DST_BUSY;
1317	}
1318}
1319
1320static int hifn_setup_dma(struct hifn_device *dev,
1321		struct hifn_context *ctx, struct hifn_request_context *rctx,
1322		struct scatterlist *src, struct scatterlist *dst,
1323		unsigned int nbytes, void *priv)
1324{
1325	struct scatterlist *t;
1326	struct page *spage, *dpage;
1327	unsigned int soff, doff;
1328	unsigned int n, len;
1329
1330	n = nbytes;
1331	while (n) {
1332		spage = sg_page(src);
1333		soff = src->offset;
1334		len = min(src->length, n);
1335
1336		hifn_setup_src_desc(dev, spage, soff, len, n - len == 0);
1337
1338		src++;
1339		n -= len;
1340	}
1341
1342	t = &rctx->walk.cache[0];
1343	n = nbytes;
1344	while (n) {
1345		if (t->length && rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1346			BUG_ON(!sg_page(t));
1347			dpage = sg_page(t);
1348			doff = 0;
1349			len = t->length;
1350		} else {
1351			BUG_ON(!sg_page(dst));
1352			dpage = sg_page(dst);
1353			doff = dst->offset;
1354			len = dst->length;
1355		}
1356		len = min(len, n);
1357
1358		hifn_setup_dst_desc(dev, dpage, doff, len, n - len == 0);
1359
1360		dst++;
1361		t++;
1362		n -= len;
1363	}
1364
1365	hifn_setup_cmd_desc(dev, ctx, rctx, priv, nbytes);
1366	hifn_setup_res_desc(dev);
1367	return 0;
1368}
1369
1370static int hifn_cipher_walk_init(struct hifn_cipher_walk *w,
1371		int num, gfp_t gfp_flags)
1372{
1373	int i;
1374
1375	num = min(ASYNC_SCATTERLIST_CACHE, num);
1376	sg_init_table(w->cache, num);
1377
1378	w->num = 0;
1379	for (i = 0; i < num; ++i) {
1380		struct page *page = alloc_page(gfp_flags);
1381		struct scatterlist *s;
1382
1383		if (!page)
1384			break;
1385
1386		s = &w->cache[i];
1387
1388		sg_set_page(s, page, PAGE_SIZE, 0);
1389		w->num++;
1390	}
1391
1392	return i;
1393}
1394
1395static void hifn_cipher_walk_exit(struct hifn_cipher_walk *w)
1396{
1397	int i;
1398
1399	for (i = 0; i < w->num; ++i) {
1400		struct scatterlist *s = &w->cache[i];
1401
1402		__free_page(sg_page(s));
1403
1404		s->length = 0;
1405	}
1406
1407	w->num = 0;
1408}
1409
1410static int skcipher_add(unsigned int *drestp, struct scatterlist *dst,
1411		unsigned int size, unsigned int *nbytesp)
1412{
1413	unsigned int copy, drest = *drestp, nbytes = *nbytesp;
1414	int idx = 0;
1415
1416	if (drest < size || size > nbytes)
1417		return -EINVAL;
1418
1419	while (size) {
1420		copy = min3(drest, size, dst->length);
1421
1422		size -= copy;
1423		drest -= copy;
1424		nbytes -= copy;
1425
1426		pr_debug("%s: copy: %u, size: %u, drest: %u, nbytes: %u.\n",
1427			 __func__, copy, size, drest, nbytes);
1428
1429		dst++;
1430		idx++;
1431	}
1432
1433	*nbytesp = nbytes;
1434	*drestp = drest;
1435
1436	return idx;
1437}
1438
1439static int hifn_cipher_walk(struct skcipher_request *req,
1440		struct hifn_cipher_walk *w)
1441{
1442	struct scatterlist *dst, *t;
1443	unsigned int nbytes = req->cryptlen, offset, copy, diff;
1444	int idx, tidx, err;
1445
1446	tidx = idx = 0;
1447	offset = 0;
1448	while (nbytes) {
1449		if (idx >= w->num && (w->flags & ASYNC_FLAGS_MISALIGNED))
1450			return -EINVAL;
1451
1452		dst = &req->dst[idx];
1453
1454		pr_debug("\n%s: dlen: %u, doff: %u, offset: %u, nbytes: %u.\n",
1455			 __func__, dst->length, dst->offset, offset, nbytes);
1456
1457		if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1458		    !IS_ALIGNED(dst->length, HIFN_D_DST_DALIGN) ||
1459		    offset) {
1460			unsigned slen = min(dst->length - offset, nbytes);
1461			unsigned dlen = PAGE_SIZE;
1462
1463			t = &w->cache[idx];
1464
1465			err = skcipher_add(&dlen, dst, slen, &nbytes);
1466			if (err < 0)
1467				return err;
1468
1469			idx += err;
1470
1471			copy = slen & ~(HIFN_D_DST_DALIGN - 1);
1472			diff = slen & (HIFN_D_DST_DALIGN - 1);
1473
1474			if (dlen < nbytes) {
1475				/*
1476				 * Destination page does not have enough space
1477				 * to put there additional blocksized chunk,
1478				 * so we mark that page as containing only
1479				 * blocksize aligned chunks:
1480				 *	t->length = (slen & ~(HIFN_D_DST_DALIGN - 1));
1481				 * and increase number of bytes to be processed
1482				 * in next chunk:
1483				 *	nbytes += diff;
1484				 */
1485				nbytes += diff;
1486
1487				/*
1488				 * Temporary of course...
1489				 * Kick author if you will catch this one.
1490				 */
1491				pr_err("%s: dlen: %u, nbytes: %u, slen: %u, offset: %u.\n",
1492				       __func__, dlen, nbytes, slen, offset);
1493				pr_err("%s: please contact author to fix this "
1494				       "issue, generally you should not catch "
1495				       "this path under any condition but who "
1496				       "knows how did you use crypto code.\n"
1497				       "Thank you.\n",	__func__);
1498				BUG();
1499			} else {
1500				copy += diff + nbytes;
1501
1502				dst = &req->dst[idx];
1503
1504				err = skcipher_add(&dlen, dst, nbytes, &nbytes);
1505				if (err < 0)
1506					return err;
1507
1508				idx += err;
1509			}
1510
1511			t->length = copy;
1512			t->offset = offset;
1513		} else {
1514			nbytes -= min(dst->length, nbytes);
1515			idx++;
1516		}
1517
1518		tidx++;
1519	}
1520
1521	return tidx;
1522}
1523
1524static int hifn_setup_session(struct skcipher_request *req)
1525{
1526	struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1527	struct hifn_request_context *rctx = skcipher_request_ctx(req);
1528	struct hifn_device *dev = ctx->dev;
1529	unsigned long dlen, flags;
1530	unsigned int nbytes = req->cryptlen, idx = 0;
1531	int err = -EINVAL, sg_num;
1532	struct scatterlist *dst;
1533
1534	if (rctx->iv && !rctx->ivsize && rctx->mode != ACRYPTO_MODE_ECB)
1535		goto err_out_exit;
1536
1537	rctx->walk.flags = 0;
1538
1539	while (nbytes) {
1540		dst = &req->dst[idx];
1541		dlen = min(dst->length, nbytes);
1542
1543		if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1544		    !IS_ALIGNED(dlen, HIFN_D_DST_DALIGN))
1545			rctx->walk.flags |= ASYNC_FLAGS_MISALIGNED;
1546
1547		nbytes -= dlen;
1548		idx++;
1549	}
1550
1551	if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1552		err = hifn_cipher_walk_init(&rctx->walk, idx, GFP_ATOMIC);
1553		if (err < 0)
1554			return err;
1555	}
1556
1557	sg_num = hifn_cipher_walk(req, &rctx->walk);
1558	if (sg_num < 0) {
1559		err = sg_num;
1560		goto err_out_exit;
1561	}
1562
1563	spin_lock_irqsave(&dev->lock, flags);
1564	if (dev->started + sg_num > HIFN_QUEUE_LENGTH) {
1565		err = -EAGAIN;
1566		goto err_out;
1567	}
1568
1569	err = hifn_setup_dma(dev, ctx, rctx, req->src, req->dst, req->cryptlen, req);
1570	if (err)
1571		goto err_out;
1572
1573	dev->snum++;
1574
1575	dev->active = HIFN_DEFAULT_ACTIVE_NUM;
1576	spin_unlock_irqrestore(&dev->lock, flags);
1577
1578	return 0;
1579
1580err_out:
1581	spin_unlock_irqrestore(&dev->lock, flags);
1582err_out_exit:
1583	if (err) {
1584		dev_info(&dev->pdev->dev, "iv: %p [%d], key: %p [%d], mode: %u, op: %u, "
1585			 "type: %u, err: %d.\n",
1586			 rctx->iv, rctx->ivsize,
1587			 ctx->key, ctx->keysize,
1588			 rctx->mode, rctx->op, rctx->type, err);
1589	}
1590
1591	return err;
1592}
1593
1594static int hifn_start_device(struct hifn_device *dev)
1595{
1596	int err;
1597
1598	dev->started = dev->active = 0;
1599	hifn_reset_dma(dev, 1);
1600
1601	err = hifn_enable_crypto(dev);
1602	if (err)
1603		return err;
1604
1605	hifn_reset_puc(dev);
1606
1607	hifn_init_dma(dev);
1608
1609	hifn_init_registers(dev);
1610
1611	hifn_init_pubrng(dev);
1612
1613	return 0;
1614}
1615
1616static int skcipher_get(void *saddr, unsigned int *srestp, unsigned int offset,
1617		struct scatterlist *dst, unsigned int size, unsigned int *nbytesp)
1618{
1619	unsigned int srest = *srestp, nbytes = *nbytesp, copy;
1620	void *daddr;
1621	int idx = 0;
1622
1623	if (srest < size || size > nbytes)
1624		return -EINVAL;
1625
1626	while (size) {
1627		copy = min3(srest, dst->length, size);
1628
1629		daddr = kmap_atomic(sg_page(dst));
1630		memcpy(daddr + dst->offset + offset, saddr, copy);
1631		kunmap_atomic(daddr);
1632
1633		nbytes -= copy;
1634		size -= copy;
1635		srest -= copy;
1636		saddr += copy;
1637		offset = 0;
1638
1639		pr_debug("%s: copy: %u, size: %u, srest: %u, nbytes: %u.\n",
1640			 __func__, copy, size, srest, nbytes);
1641
1642		dst++;
1643		idx++;
1644	}
1645
1646	*nbytesp = nbytes;
1647	*srestp = srest;
1648
1649	return idx;
1650}
1651
1652static inline void hifn_complete_sa(struct hifn_device *dev, int i)
1653{
1654	unsigned long flags;
1655
1656	spin_lock_irqsave(&dev->lock, flags);
1657	dev->sa[i] = NULL;
1658	dev->started--;
1659	if (dev->started < 0)
1660		dev_info(&dev->pdev->dev, "%s: started: %d.\n", __func__,
1661			 dev->started);
1662	spin_unlock_irqrestore(&dev->lock, flags);
1663	BUG_ON(dev->started < 0);
1664}
1665
1666static void hifn_process_ready(struct skcipher_request *req, int error)
1667{
1668	struct hifn_request_context *rctx = skcipher_request_ctx(req);
1669
1670	if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1671		unsigned int nbytes = req->cryptlen;
1672		int idx = 0, err;
1673		struct scatterlist *dst, *t;
1674		void *saddr;
1675
1676		while (nbytes) {
1677			t = &rctx->walk.cache[idx];
1678			dst = &req->dst[idx];
1679
1680			pr_debug("\n%s: sg_page(t): %p, t->length: %u, "
1681				"sg_page(dst): %p, dst->length: %u, "
1682				"nbytes: %u.\n",
1683				__func__, sg_page(t), t->length,
1684				sg_page(dst), dst->length, nbytes);
1685
1686			if (!t->length) {
1687				nbytes -= min(dst->length, nbytes);
1688				idx++;
1689				continue;
1690			}
1691
1692			saddr = kmap_atomic(sg_page(t));
1693
1694			err = skcipher_get(saddr, &t->length, t->offset,
1695					dst, nbytes, &nbytes);
1696			if (err < 0) {
1697				kunmap_atomic(saddr);
1698				break;
1699			}
1700
1701			idx += err;
1702			kunmap_atomic(saddr);
1703		}
1704
1705		hifn_cipher_walk_exit(&rctx->walk);
1706	}
1707
1708	skcipher_request_complete(req, error);
1709}
1710
1711static void hifn_clear_rings(struct hifn_device *dev, int error)
1712{
1713	struct hifn_dma *dma = dev->desc_virt;
1714	int i, u;
1715
1716	dev_dbg(&dev->pdev->dev, "ring cleanup 1: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1717			"k: %d.%d.%d.%d.\n",
1718			dma->cmdi, dma->srci, dma->dsti, dma->resi,
1719			dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1720			dma->cmdk, dma->srck, dma->dstk, dma->resk);
1721
1722	i = dma->resk; u = dma->resu;
1723	while (u != 0) {
1724		if (dma->resr[i].l & __cpu_to_le32(HIFN_D_VALID))
1725			break;
1726
1727		if (dev->sa[i]) {
1728			dev->success++;
1729			dev->reset = 0;
1730			hifn_process_ready(dev->sa[i], error);
1731			hifn_complete_sa(dev, i);
1732		}
1733
1734		if (++i == HIFN_D_RES_RSIZE)
1735			i = 0;
1736		u--;
1737	}
1738	dma->resk = i; dma->resu = u;
1739
1740	i = dma->srck; u = dma->srcu;
1741	while (u != 0) {
1742		if (dma->srcr[i].l & __cpu_to_le32(HIFN_D_VALID))
1743			break;
1744		if (++i == HIFN_D_SRC_RSIZE)
1745			i = 0;
1746		u--;
1747	}
1748	dma->srck = i; dma->srcu = u;
1749
1750	i = dma->cmdk; u = dma->cmdu;
1751	while (u != 0) {
1752		if (dma->cmdr[i].l & __cpu_to_le32(HIFN_D_VALID))
1753			break;
1754		if (++i == HIFN_D_CMD_RSIZE)
1755			i = 0;
1756		u--;
1757	}
1758	dma->cmdk = i; dma->cmdu = u;
1759
1760	i = dma->dstk; u = dma->dstu;
1761	while (u != 0) {
1762		if (dma->dstr[i].l & __cpu_to_le32(HIFN_D_VALID))
1763			break;
1764		if (++i == HIFN_D_DST_RSIZE)
1765			i = 0;
1766		u--;
1767	}
1768	dma->dstk = i; dma->dstu = u;
1769
1770	dev_dbg(&dev->pdev->dev, "ring cleanup 2: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1771			"k: %d.%d.%d.%d.\n",
1772			dma->cmdi, dma->srci, dma->dsti, dma->resi,
1773			dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1774			dma->cmdk, dma->srck, dma->dstk, dma->resk);
1775}
1776
1777static void hifn_work(struct work_struct *work)
1778{
1779	struct delayed_work *dw = to_delayed_work(work);
1780	struct hifn_device *dev = container_of(dw, struct hifn_device, work);
1781	unsigned long flags;
1782	int reset = 0;
1783	u32 r = 0;
1784
1785	spin_lock_irqsave(&dev->lock, flags);
1786	if (dev->active == 0) {
1787		struct hifn_dma *dma = dev->desc_virt;
1788
1789		if (dma->cmdu == 0 && (dev->flags & HIFN_FLAG_CMD_BUSY)) {
1790			dev->flags &= ~HIFN_FLAG_CMD_BUSY;
1791			r |= HIFN_DMACSR_C_CTRL_DIS;
1792		}
1793		if (dma->srcu == 0 && (dev->flags & HIFN_FLAG_SRC_BUSY)) {
1794			dev->flags &= ~HIFN_FLAG_SRC_BUSY;
1795			r |= HIFN_DMACSR_S_CTRL_DIS;
1796		}
1797		if (dma->dstu == 0 && (dev->flags & HIFN_FLAG_DST_BUSY)) {
1798			dev->flags &= ~HIFN_FLAG_DST_BUSY;
1799			r |= HIFN_DMACSR_D_CTRL_DIS;
1800		}
1801		if (dma->resu == 0 && (dev->flags & HIFN_FLAG_RES_BUSY)) {
1802			dev->flags &= ~HIFN_FLAG_RES_BUSY;
1803			r |= HIFN_DMACSR_R_CTRL_DIS;
1804		}
1805		if (r)
1806			hifn_write_1(dev, HIFN_1_DMA_CSR, r);
1807	} else
1808		dev->active--;
1809
1810	if ((dev->prev_success == dev->success) && dev->started)
1811		reset = 1;
1812	dev->prev_success = dev->success;
1813	spin_unlock_irqrestore(&dev->lock, flags);
1814
1815	if (reset) {
1816		if (++dev->reset >= 5) {
1817			int i;
1818			struct hifn_dma *dma = dev->desc_virt;
1819
1820			dev_info(&dev->pdev->dev,
1821				 "r: %08x, active: %d, started: %d, "
1822				 "success: %lu: qlen: %u/%u, reset: %d.\n",
1823				 r, dev->active, dev->started,
1824				 dev->success, dev->queue.qlen, dev->queue.max_qlen,
1825				 reset);
1826
1827			dev_info(&dev->pdev->dev, "%s: res: ", __func__);
1828			for (i = 0; i < HIFN_D_RES_RSIZE; ++i) {
1829				pr_info("%x.%p ", dma->resr[i].l, dev->sa[i]);
1830				if (dev->sa[i]) {
1831					hifn_process_ready(dev->sa[i], -ENODEV);
1832					hifn_complete_sa(dev, i);
1833				}
1834			}
1835			pr_info("\n");
1836
1837			hifn_reset_dma(dev, 1);
1838			hifn_stop_device(dev);
1839			hifn_start_device(dev);
1840			dev->reset = 0;
1841		}
1842
1843		tasklet_schedule(&dev->tasklet);
1844	}
1845
1846	schedule_delayed_work(&dev->work, HZ);
1847}
1848
1849static irqreturn_t hifn_interrupt(int irq, void *data)
1850{
1851	struct hifn_device *dev = data;
1852	struct hifn_dma *dma = dev->desc_virt;
1853	u32 dmacsr, restart;
1854
1855	dmacsr = hifn_read_1(dev, HIFN_1_DMA_CSR);
1856
1857	dev_dbg(&dev->pdev->dev, "1 dmacsr: %08x, dmareg: %08x, res: %08x [%d], "
1858			"i: %d.%d.%d.%d, u: %d.%d.%d.%d.\n",
1859		dmacsr, dev->dmareg, dmacsr & dev->dmareg, dma->cmdi,
1860		dma->cmdi, dma->srci, dma->dsti, dma->resi,
1861		dma->cmdu, dma->srcu, dma->dstu, dma->resu);
1862
1863	if ((dmacsr & dev->dmareg) == 0)
1864		return IRQ_NONE;
1865
1866	hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & dev->dmareg);
1867
1868	if (dmacsr & HIFN_DMACSR_ENGINE)
1869		hifn_write_0(dev, HIFN_0_PUISR, hifn_read_0(dev, HIFN_0_PUISR));
1870	if (dmacsr & HIFN_DMACSR_PUBDONE)
1871		hifn_write_1(dev, HIFN_1_PUB_STATUS,
1872			hifn_read_1(dev, HIFN_1_PUB_STATUS) | HIFN_PUBSTS_DONE);
1873
1874	restart = dmacsr & (HIFN_DMACSR_R_OVER | HIFN_DMACSR_D_OVER);
1875	if (restart) {
1876		u32 puisr = hifn_read_0(dev, HIFN_0_PUISR);
1877
1878		dev_warn(&dev->pdev->dev, "overflow: r: %d, d: %d, puisr: %08x, d: %u.\n",
1879			 !!(dmacsr & HIFN_DMACSR_R_OVER),
1880			 !!(dmacsr & HIFN_DMACSR_D_OVER),
1881			puisr, !!(puisr & HIFN_PUISR_DSTOVER));
1882		if (!!(puisr & HIFN_PUISR_DSTOVER))
1883			hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1884		hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & (HIFN_DMACSR_R_OVER |
1885					HIFN_DMACSR_D_OVER));
1886	}
1887
1888	restart = dmacsr & (HIFN_DMACSR_C_ABORT | HIFN_DMACSR_S_ABORT |
1889			HIFN_DMACSR_D_ABORT | HIFN_DMACSR_R_ABORT);
1890	if (restart) {
1891		dev_warn(&dev->pdev->dev, "abort: c: %d, s: %d, d: %d, r: %d.\n",
1892			 !!(dmacsr & HIFN_DMACSR_C_ABORT),
1893			 !!(dmacsr & HIFN_DMACSR_S_ABORT),
1894			 !!(dmacsr & HIFN_DMACSR_D_ABORT),
1895			 !!(dmacsr & HIFN_DMACSR_R_ABORT));
1896		hifn_reset_dma(dev, 1);
1897		hifn_init_dma(dev);
1898		hifn_init_registers(dev);
1899	}
1900
1901	if ((dmacsr & HIFN_DMACSR_C_WAIT) && (dma->cmdu == 0)) {
1902		dev_dbg(&dev->pdev->dev, "wait on command.\n");
1903		dev->dmareg &= ~(HIFN_DMAIER_C_WAIT);
1904		hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1905	}
1906
1907	tasklet_schedule(&dev->tasklet);
1908
1909	return IRQ_HANDLED;
1910}
1911
1912static void hifn_flush(struct hifn_device *dev)
1913{
1914	unsigned long flags;
1915	struct crypto_async_request *async_req;
1916	struct skcipher_request *req;
1917	struct hifn_dma *dma = dev->desc_virt;
1918	int i;
1919
1920	for (i = 0; i < HIFN_D_RES_RSIZE; ++i) {
1921		struct hifn_desc *d = &dma->resr[i];
1922
1923		if (dev->sa[i]) {
1924			hifn_process_ready(dev->sa[i],
1925				(d->l & __cpu_to_le32(HIFN_D_VALID)) ? -ENODEV : 0);
1926			hifn_complete_sa(dev, i);
1927		}
1928	}
1929
1930	spin_lock_irqsave(&dev->lock, flags);
1931	while ((async_req = crypto_dequeue_request(&dev->queue))) {
1932		req = skcipher_request_cast(async_req);
1933		spin_unlock_irqrestore(&dev->lock, flags);
1934
1935		hifn_process_ready(req, -ENODEV);
1936
1937		spin_lock_irqsave(&dev->lock, flags);
1938	}
1939	spin_unlock_irqrestore(&dev->lock, flags);
1940}
1941
1942static int hifn_setkey(struct crypto_skcipher *cipher, const u8 *key,
1943		unsigned int len)
1944{
1945	struct hifn_context *ctx = crypto_skcipher_ctx(cipher);
 
1946	struct hifn_device *dev = ctx->dev;
1947	int err;
1948
1949	err = verify_skcipher_des_key(cipher, key);
1950	if (err)
1951		return err;
1952
1953	dev->flags &= ~HIFN_FLAG_OLD_KEY;
1954
1955	memcpy(ctx->key, key, len);
1956	ctx->keysize = len;
 
1957
1958	return 0;
1959}
1960
1961static int hifn_des3_setkey(struct crypto_skcipher *cipher, const u8 *key,
1962			    unsigned int len)
1963{
1964	struct hifn_context *ctx = crypto_skcipher_ctx(cipher);
1965	struct hifn_device *dev = ctx->dev;
1966	int err;
1967
1968	err = verify_skcipher_des3_key(cipher, key);
1969	if (err)
1970		return err;
1971
1972	dev->flags &= ~HIFN_FLAG_OLD_KEY;
1973
1974	memcpy(ctx->key, key, len);
1975	ctx->keysize = len;
1976
1977	return 0;
1978}
1979
1980static int hifn_handle_req(struct skcipher_request *req)
1981{
1982	struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1983	struct hifn_device *dev = ctx->dev;
1984	int err = -EAGAIN;
1985
1986	if (dev->started + DIV_ROUND_UP(req->cryptlen, PAGE_SIZE) <= HIFN_QUEUE_LENGTH)
1987		err = hifn_setup_session(req);
1988
1989	if (err == -EAGAIN) {
1990		unsigned long flags;
1991
1992		spin_lock_irqsave(&dev->lock, flags);
1993		err = crypto_enqueue_request(&dev->queue, &req->base);
1994		spin_unlock_irqrestore(&dev->lock, flags);
1995	}
1996
1997	return err;
1998}
1999
2000static int hifn_setup_crypto_req(struct skcipher_request *req, u8 op,
2001		u8 type, u8 mode)
2002{
2003	struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2004	struct hifn_request_context *rctx = skcipher_request_ctx(req);
2005	unsigned ivsize;
2006
2007	ivsize = crypto_skcipher_ivsize(crypto_skcipher_reqtfm(req));
2008
2009	if (req->iv && mode != ACRYPTO_MODE_ECB) {
2010		if (type == ACRYPTO_TYPE_AES_128)
2011			ivsize = HIFN_AES_IV_LENGTH;
2012		else if (type == ACRYPTO_TYPE_DES)
2013			ivsize = HIFN_DES_KEY_LENGTH;
2014		else if (type == ACRYPTO_TYPE_3DES)
2015			ivsize = HIFN_3DES_KEY_LENGTH;
2016	}
2017
2018	if (ctx->keysize != 16 && type == ACRYPTO_TYPE_AES_128) {
2019		if (ctx->keysize == 24)
2020			type = ACRYPTO_TYPE_AES_192;
2021		else if (ctx->keysize == 32)
2022			type = ACRYPTO_TYPE_AES_256;
2023	}
2024
2025	rctx->op = op;
2026	rctx->mode = mode;
2027	rctx->type = type;
2028	rctx->iv = req->iv;
2029	rctx->ivsize = ivsize;
2030
2031	/*
2032	 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2033	 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2034	 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2035	 */
2036
2037	return hifn_handle_req(req);
2038}
2039
2040static int hifn_process_queue(struct hifn_device *dev)
2041{
2042	struct crypto_async_request *async_req, *backlog;
2043	struct skcipher_request *req;
2044	unsigned long flags;
2045	int err = 0;
2046
2047	while (dev->started < HIFN_QUEUE_LENGTH) {
2048		spin_lock_irqsave(&dev->lock, flags);
2049		backlog = crypto_get_backlog(&dev->queue);
2050		async_req = crypto_dequeue_request(&dev->queue);
2051		spin_unlock_irqrestore(&dev->lock, flags);
2052
2053		if (!async_req)
2054			break;
2055
2056		if (backlog)
2057			crypto_request_complete(backlog, -EINPROGRESS);
2058
2059		req = skcipher_request_cast(async_req);
2060
2061		err = hifn_handle_req(req);
2062		if (err)
2063			break;
2064	}
2065
2066	return err;
2067}
2068
2069static int hifn_setup_crypto(struct skcipher_request *req, u8 op,
2070		u8 type, u8 mode)
2071{
2072	int err;
2073	struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2074	struct hifn_device *dev = ctx->dev;
2075
2076	err = hifn_setup_crypto_req(req, op, type, mode);
2077	if (err)
2078		return err;
2079
2080	if (dev->started < HIFN_QUEUE_LENGTH &&	dev->queue.qlen)
2081		hifn_process_queue(dev);
2082
2083	return -EINPROGRESS;
2084}
2085
2086/*
2087 * AES ecryption functions.
2088 */
2089static inline int hifn_encrypt_aes_ecb(struct skcipher_request *req)
2090{
2091	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2092			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2093}
2094static inline int hifn_encrypt_aes_cbc(struct skcipher_request *req)
2095{
2096	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2097			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2098}
 
 
 
 
 
 
 
 
 
 
2099
2100/*
2101 * AES decryption functions.
2102 */
2103static inline int hifn_decrypt_aes_ecb(struct skcipher_request *req)
2104{
2105	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2106			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2107}
2108static inline int hifn_decrypt_aes_cbc(struct skcipher_request *req)
2109{
2110	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2111			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2112}
 
 
 
 
 
 
 
 
 
 
2113
2114/*
2115 * DES ecryption functions.
2116 */
2117static inline int hifn_encrypt_des_ecb(struct skcipher_request *req)
2118{
2119	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2120			ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2121}
2122static inline int hifn_encrypt_des_cbc(struct skcipher_request *req)
2123{
2124	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2125			ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2126}
 
 
 
 
 
 
 
 
 
 
2127
2128/*
2129 * DES decryption functions.
2130 */
2131static inline int hifn_decrypt_des_ecb(struct skcipher_request *req)
2132{
2133	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2134			ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2135}
2136static inline int hifn_decrypt_des_cbc(struct skcipher_request *req)
2137{
2138	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2139			ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2140}
 
 
 
 
 
 
 
 
 
 
2141
2142/*
2143 * 3DES ecryption functions.
2144 */
2145static inline int hifn_encrypt_3des_ecb(struct skcipher_request *req)
2146{
2147	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2148			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2149}
2150static inline int hifn_encrypt_3des_cbc(struct skcipher_request *req)
2151{
2152	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2153			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2154}
 
 
 
 
 
 
 
 
 
 
2155
2156/* 3DES decryption functions. */
2157static inline int hifn_decrypt_3des_ecb(struct skcipher_request *req)
2158{
2159	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2160			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2161}
2162static inline int hifn_decrypt_3des_cbc(struct skcipher_request *req)
2163{
2164	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2165			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2166}
 
 
 
 
 
 
 
 
 
 
2167
2168struct hifn_alg_template {
2169	char name[CRYPTO_MAX_ALG_NAME];
2170	char drv_name[CRYPTO_MAX_ALG_NAME];
2171	unsigned int bsize;
2172	struct skcipher_alg skcipher;
2173};
2174
2175static const struct hifn_alg_template hifn_alg_templates[] = {
2176	/*
2177	 * 3DES ECB and CBC modes.
2178	 */
2179	{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2180		.name = "cbc(des3_ede)", .drv_name = "cbc-3des", .bsize = 8,
2181		.skcipher = {
2182			.ivsize		=	HIFN_IV_LENGTH,
2183			.min_keysize	=	HIFN_3DES_KEY_LENGTH,
2184			.max_keysize	=	HIFN_3DES_KEY_LENGTH,
2185			.setkey		=	hifn_des3_setkey,
2186			.encrypt	=	hifn_encrypt_3des_cbc,
2187			.decrypt	=	hifn_decrypt_3des_cbc,
2188		},
2189	},
2190	{
2191		.name = "ecb(des3_ede)", .drv_name = "ecb-3des", .bsize = 8,
2192		.skcipher = {
2193			.min_keysize	=	HIFN_3DES_KEY_LENGTH,
2194			.max_keysize	=	HIFN_3DES_KEY_LENGTH,
2195			.setkey		=	hifn_des3_setkey,
2196			.encrypt	=	hifn_encrypt_3des_ecb,
2197			.decrypt	=	hifn_decrypt_3des_ecb,
2198		},
2199	},
2200
2201	/*
2202	 * DES ECB and CBC modes.
2203	 */
2204	{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2205		.name = "cbc(des)", .drv_name = "cbc-des", .bsize = 8,
2206		.skcipher = {
2207			.ivsize		=	HIFN_IV_LENGTH,
2208			.min_keysize	=	HIFN_DES_KEY_LENGTH,
2209			.max_keysize	=	HIFN_DES_KEY_LENGTH,
2210			.setkey		=	hifn_setkey,
2211			.encrypt	=	hifn_encrypt_des_cbc,
2212			.decrypt	=	hifn_decrypt_des_cbc,
2213		},
2214	},
2215	{
2216		.name = "ecb(des)", .drv_name = "ecb-des", .bsize = 8,
2217		.skcipher = {
2218			.min_keysize	=	HIFN_DES_KEY_LENGTH,
2219			.max_keysize	=	HIFN_DES_KEY_LENGTH,
2220			.setkey		=	hifn_setkey,
2221			.encrypt	=	hifn_encrypt_des_ecb,
2222			.decrypt	=	hifn_decrypt_des_ecb,
2223		},
2224	},
2225
2226	/*
2227	 * AES ECB and CBC modes.
2228	 */
2229	{
2230		.name = "ecb(aes)", .drv_name = "ecb-aes", .bsize = 16,
2231		.skcipher = {
2232			.min_keysize	=	AES_MIN_KEY_SIZE,
2233			.max_keysize	=	AES_MAX_KEY_SIZE,
2234			.setkey		=	hifn_setkey,
2235			.encrypt	=	hifn_encrypt_aes_ecb,
2236			.decrypt	=	hifn_decrypt_aes_ecb,
2237		},
2238	},
2239	{
2240		.name = "cbc(aes)", .drv_name = "cbc-aes", .bsize = 16,
2241		.skcipher = {
2242			.ivsize		=	HIFN_AES_IV_LENGTH,
2243			.min_keysize	=	AES_MIN_KEY_SIZE,
2244			.max_keysize	=	AES_MAX_KEY_SIZE,
2245			.setkey		=	hifn_setkey,
2246			.encrypt	=	hifn_encrypt_aes_cbc,
2247			.decrypt	=	hifn_decrypt_aes_cbc,
2248		},
2249	},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2250};
2251
2252static int hifn_init_tfm(struct crypto_skcipher *tfm)
2253{
2254	struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
2255	struct hifn_crypto_alg *ha = crypto_alg_to_hifn(alg);
2256	struct hifn_context *ctx = crypto_skcipher_ctx(tfm);
2257
2258	ctx->dev = ha->dev;
2259	crypto_skcipher_set_reqsize(tfm, sizeof(struct hifn_request_context));
2260
2261	return 0;
2262}
2263
2264static int hifn_alg_alloc(struct hifn_device *dev, const struct hifn_alg_template *t)
2265{
2266	struct hifn_crypto_alg *alg;
2267	int err;
2268
2269	alg = kzalloc(sizeof(*alg), GFP_KERNEL);
2270	if (!alg)
2271		return -ENOMEM;
2272
2273	alg->alg = t->skcipher;
2274	alg->alg.init = hifn_init_tfm;
2275
2276	err = -EINVAL;
2277	if (snprintf(alg->alg.base.cra_name, CRYPTO_MAX_ALG_NAME,
2278		     "%s", t->name) >= CRYPTO_MAX_ALG_NAME)
2279		goto out_free_alg;
2280	if (snprintf(alg->alg.base.cra_driver_name, CRYPTO_MAX_ALG_NAME,
2281		     "%s-%s", t->drv_name, dev->name) >= CRYPTO_MAX_ALG_NAME)
2282		goto out_free_alg;
2283
2284	alg->alg.base.cra_priority = 300;
2285	alg->alg.base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC;
2286	alg->alg.base.cra_blocksize = t->bsize;
2287	alg->alg.base.cra_ctxsize = sizeof(struct hifn_context);
2288	alg->alg.base.cra_alignmask = 0;
2289	alg->alg.base.cra_module = THIS_MODULE;
2290
2291	alg->dev = dev;
2292
2293	list_add_tail(&alg->entry, &dev->alg_list);
2294
2295	err = crypto_register_skcipher(&alg->alg);
2296	if (err) {
2297		list_del(&alg->entry);
2298out_free_alg:
2299		kfree(alg);
2300	}
2301
2302	return err;
2303}
2304
2305static void hifn_unregister_alg(struct hifn_device *dev)
2306{
2307	struct hifn_crypto_alg *a, *n;
2308
2309	list_for_each_entry_safe(a, n, &dev->alg_list, entry) {
2310		list_del(&a->entry);
2311		crypto_unregister_skcipher(&a->alg);
2312		kfree(a);
2313	}
2314}
2315
2316static int hifn_register_alg(struct hifn_device *dev)
2317{
2318	int i, err;
2319
2320	for (i = 0; i < ARRAY_SIZE(hifn_alg_templates); ++i) {
2321		err = hifn_alg_alloc(dev, &hifn_alg_templates[i]);
2322		if (err)
2323			goto err_out_exit;
2324	}
2325
2326	return 0;
2327
2328err_out_exit:
2329	hifn_unregister_alg(dev);
2330	return err;
2331}
2332
2333static void hifn_tasklet_callback(unsigned long data)
2334{
2335	struct hifn_device *dev = (struct hifn_device *)data;
2336
2337	/*
2338	 * This is ok to call this without lock being held,
2339	 * althogh it modifies some parameters used in parallel,
2340	 * (like dev->success), but they are used in process
2341	 * context or update is atomic (like setting dev->sa[i] to NULL).
2342	 */
2343	hifn_clear_rings(dev, 0);
2344
2345	if (dev->started < HIFN_QUEUE_LENGTH &&	dev->queue.qlen)
2346		hifn_process_queue(dev);
2347}
2348
2349static int hifn_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2350{
2351	int err, i;
2352	struct hifn_device *dev;
2353	char name[8];
2354
2355	err = pci_enable_device(pdev);
2356	if (err)
2357		return err;
2358	pci_set_master(pdev);
2359
2360	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2361	if (err)
2362		goto err_out_disable_pci_device;
2363
2364	snprintf(name, sizeof(name), "hifn%d",
2365			atomic_inc_return(&hifn_dev_number) - 1);
2366
2367	err = pci_request_regions(pdev, name);
2368	if (err)
2369		goto err_out_disable_pci_device;
2370
2371	if (pci_resource_len(pdev, 0) < HIFN_BAR0_SIZE ||
2372	    pci_resource_len(pdev, 1) < HIFN_BAR1_SIZE ||
2373	    pci_resource_len(pdev, 2) < HIFN_BAR2_SIZE) {
2374		dev_err(&pdev->dev, "Broken hardware - I/O regions are too small.\n");
2375		err = -ENODEV;
2376		goto err_out_free_regions;
2377	}
2378
2379	dev = kzalloc(sizeof(struct hifn_device) + sizeof(struct crypto_alg),
2380			GFP_KERNEL);
2381	if (!dev) {
2382		err = -ENOMEM;
2383		goto err_out_free_regions;
2384	}
2385
2386	INIT_LIST_HEAD(&dev->alg_list);
2387
2388	snprintf(dev->name, sizeof(dev->name), "%s", name);
2389	spin_lock_init(&dev->lock);
2390
2391	for (i = 0; i < 3; ++i) {
2392		unsigned long addr, size;
2393
2394		addr = pci_resource_start(pdev, i);
2395		size = pci_resource_len(pdev, i);
2396
2397		dev->bar[i] = ioremap(addr, size);
2398		if (!dev->bar[i]) {
2399			err = -ENOMEM;
2400			goto err_out_unmap_bars;
2401		}
2402	}
2403
2404	dev->desc_virt = dma_alloc_coherent(&pdev->dev,
2405					    sizeof(struct hifn_dma),
2406					    &dev->desc_dma, GFP_KERNEL);
2407	if (!dev->desc_virt) {
2408		dev_err(&pdev->dev, "Failed to allocate descriptor rings.\n");
2409		err = -ENOMEM;
2410		goto err_out_unmap_bars;
2411	}
2412
2413	dev->pdev = pdev;
2414	dev->irq = pdev->irq;
2415
2416	for (i = 0; i < HIFN_D_RES_RSIZE; ++i)
2417		dev->sa[i] = NULL;
2418
2419	pci_set_drvdata(pdev, dev);
2420
2421	tasklet_init(&dev->tasklet, hifn_tasklet_callback, (unsigned long)dev);
2422
2423	crypto_init_queue(&dev->queue, 1);
2424
2425	err = request_irq(dev->irq, hifn_interrupt, IRQF_SHARED, dev->name, dev);
2426	if (err) {
2427		dev_err(&pdev->dev, "Failed to request IRQ%d: err: %d.\n",
2428			dev->irq, err);
2429		dev->irq = 0;
2430		goto err_out_free_desc;
2431	}
2432
2433	err = hifn_start_device(dev);
2434	if (err)
2435		goto err_out_free_irq;
2436
2437	err = hifn_register_rng(dev);
2438	if (err)
2439		goto err_out_stop_device;
2440
2441	err = hifn_register_alg(dev);
2442	if (err)
2443		goto err_out_unregister_rng;
2444
2445	INIT_DELAYED_WORK(&dev->work, hifn_work);
2446	schedule_delayed_work(&dev->work, HZ);
2447
2448	dev_dbg(&pdev->dev, "HIFN crypto accelerator card at %s has been "
2449		"successfully registered as %s.\n",
2450		pci_name(pdev), dev->name);
2451
2452	return 0;
2453
2454err_out_unregister_rng:
2455	hifn_unregister_rng(dev);
2456err_out_stop_device:
2457	hifn_reset_dma(dev, 1);
2458	hifn_stop_device(dev);
2459err_out_free_irq:
2460	free_irq(dev->irq, dev);
2461	tasklet_kill(&dev->tasklet);
2462err_out_free_desc:
2463	dma_free_coherent(&pdev->dev, sizeof(struct hifn_dma), dev->desc_virt,
2464			  dev->desc_dma);
2465
2466err_out_unmap_bars:
2467	for (i = 0; i < 3; ++i)
2468		if (dev->bar[i])
2469			iounmap(dev->bar[i]);
2470	kfree(dev);
2471
2472err_out_free_regions:
2473	pci_release_regions(pdev);
2474
2475err_out_disable_pci_device:
2476	pci_disable_device(pdev);
2477
2478	return err;
2479}
2480
2481static void hifn_remove(struct pci_dev *pdev)
2482{
2483	int i;
2484	struct hifn_device *dev;
2485
2486	dev = pci_get_drvdata(pdev);
2487
2488	if (dev) {
2489		cancel_delayed_work_sync(&dev->work);
2490
2491		hifn_unregister_rng(dev);
2492		hifn_unregister_alg(dev);
2493		hifn_reset_dma(dev, 1);
2494		hifn_stop_device(dev);
2495
2496		free_irq(dev->irq, dev);
2497		tasklet_kill(&dev->tasklet);
2498
2499		hifn_flush(dev);
2500
2501		dma_free_coherent(&pdev->dev, sizeof(struct hifn_dma),
2502				  dev->desc_virt, dev->desc_dma);
2503		for (i = 0; i < 3; ++i)
2504			if (dev->bar[i])
2505				iounmap(dev->bar[i]);
2506
2507		kfree(dev);
2508	}
2509
2510	pci_release_regions(pdev);
2511	pci_disable_device(pdev);
2512}
2513
2514static struct pci_device_id hifn_pci_tbl[] = {
2515	{ PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7955) },
2516	{ PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7956) },
2517	{ 0 }
2518};
2519MODULE_DEVICE_TABLE(pci, hifn_pci_tbl);
2520
2521static struct pci_driver hifn_pci_driver = {
2522	.name     = "hifn795x",
2523	.id_table = hifn_pci_tbl,
2524	.probe    = hifn_probe,
2525	.remove   = hifn_remove,
2526};
2527
2528static int __init hifn_init(void)
2529{
2530	unsigned int freq;
2531	int err;
 
 
 
2532
2533	if (strncmp(hifn_pll_ref, "ext", 3) &&
2534	    strncmp(hifn_pll_ref, "pci", 3)) {
2535		pr_err("hifn795x: invalid hifn_pll_ref clock, must be pci or ext");
2536		return -EINVAL;
2537	}
2538
2539	/*
2540	 * For the 7955/7956 the reference clock frequency must be in the
2541	 * range of 20MHz-100MHz. For the 7954 the upper bound is 66.67MHz,
2542	 * but this chip is currently not supported.
2543	 */
2544	if (hifn_pll_ref[3] != '\0') {
2545		freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
2546		if (freq < 20 || freq > 100) {
2547			pr_err("hifn795x: invalid hifn_pll_ref frequency, must"
2548			       "be in the range of 20-100");
2549			return -EINVAL;
2550		}
2551	}
2552
2553	err = pci_register_driver(&hifn_pci_driver);
2554	if (err < 0) {
2555		pr_err("Failed to register PCI driver for %s device.\n",
2556		       hifn_pci_driver.name);
2557		return -ENODEV;
2558	}
2559
2560	pr_info("Driver for HIFN 795x crypto accelerator chip "
2561		"has been successfully registered.\n");
2562
2563	return 0;
2564}
2565
2566static void __exit hifn_fini(void)
2567{
2568	pci_unregister_driver(&hifn_pci_driver);
2569
2570	pr_info("Driver for HIFN 795x crypto accelerator chip "
2571		"has been successfully unregistered.\n");
2572}
2573
2574module_init(hifn_init);
2575module_exit(hifn_fini);
2576
2577MODULE_LICENSE("GPL");
2578MODULE_AUTHOR("Evgeniy Polyakov <johnpol@2ka.mipt.ru>");
2579MODULE_DESCRIPTION("Driver for HIFN 795x crypto accelerator chip.");
v4.6
 
   1/*
   2 * 2007+ Copyright (c) Evgeniy Polyakov <johnpol@2ka.mipt.ru>
   3 * All rights reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License as published by
   7 * the Free Software Foundation; either version 2 of the License, or
   8 * (at your option) any later version.
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
  14 */
  15
  16#include <linux/kernel.h>
  17#include <linux/module.h>
  18#include <linux/moduleparam.h>
  19#include <linux/mod_devicetable.h>
  20#include <linux/interrupt.h>
  21#include <linux/pci.h>
  22#include <linux/slab.h>
  23#include <linux/delay.h>
  24#include <linux/mm.h>
  25#include <linux/dma-mapping.h>
  26#include <linux/scatterlist.h>
  27#include <linux/highmem.h>
  28#include <linux/crypto.h>
  29#include <linux/hw_random.h>
  30#include <linux/ktime.h>
  31
  32#include <crypto/algapi.h>
  33#include <crypto/des.h>
 
  34
  35static char hifn_pll_ref[sizeof("extNNN")] = "ext";
  36module_param_string(hifn_pll_ref, hifn_pll_ref, sizeof(hifn_pll_ref), 0444);
  37MODULE_PARM_DESC(hifn_pll_ref,
  38		 "PLL reference clock (pci[freq] or ext[freq], default ext)");
  39
  40static atomic_t hifn_dev_number;
  41
  42#define ACRYPTO_OP_DECRYPT	0
  43#define ACRYPTO_OP_ENCRYPT	1
  44#define ACRYPTO_OP_HMAC		2
  45#define ACRYPTO_OP_RNG		3
  46
  47#define ACRYPTO_MODE_ECB		0
  48#define ACRYPTO_MODE_CBC		1
  49#define ACRYPTO_MODE_CFB		2
  50#define ACRYPTO_MODE_OFB		3
  51
  52#define ACRYPTO_TYPE_AES_128	0
  53#define ACRYPTO_TYPE_AES_192	1
  54#define ACRYPTO_TYPE_AES_256	2
  55#define ACRYPTO_TYPE_3DES	3
  56#define ACRYPTO_TYPE_DES	4
  57
  58#define PCI_VENDOR_ID_HIFN		0x13A3
  59#define PCI_DEVICE_ID_HIFN_7955		0x0020
  60#define	PCI_DEVICE_ID_HIFN_7956		0x001d
  61
  62/* I/O region sizes */
  63
  64#define HIFN_BAR0_SIZE			0x1000
  65#define HIFN_BAR1_SIZE			0x2000
  66#define HIFN_BAR2_SIZE			0x8000
  67
  68/* DMA registres */
  69
  70#define HIFN_DMA_CRA			0x0C	/* DMA Command Ring Address */
  71#define HIFN_DMA_SDRA			0x1C	/* DMA Source Data Ring Address */
  72#define HIFN_DMA_RRA			0x2C	/* DMA Result Ring Address */
  73#define HIFN_DMA_DDRA			0x3C	/* DMA Destination Data Ring Address */
  74#define HIFN_DMA_STCTL			0x40	/* DMA Status and Control */
  75#define HIFN_DMA_INTREN			0x44	/* DMA Interrupt Enable */
  76#define HIFN_DMA_CFG1			0x48	/* DMA Configuration #1 */
  77#define HIFN_DMA_CFG2			0x6C	/* DMA Configuration #2 */
  78#define HIFN_CHIP_ID			0x98	/* Chip ID */
  79
  80/*
  81 * Processing Unit Registers (offset from BASEREG0)
  82 */
  83#define	HIFN_0_PUDATA		0x00	/* Processing Unit Data */
  84#define	HIFN_0_PUCTRL		0x04	/* Processing Unit Control */
  85#define	HIFN_0_PUISR		0x08	/* Processing Unit Interrupt Status */
  86#define	HIFN_0_PUCNFG		0x0c	/* Processing Unit Configuration */
  87#define	HIFN_0_PUIER		0x10	/* Processing Unit Interrupt Enable */
  88#define	HIFN_0_PUSTAT		0x14	/* Processing Unit Status/Chip ID */
  89#define	HIFN_0_FIFOSTAT		0x18	/* FIFO Status */
  90#define	HIFN_0_FIFOCNFG		0x1c	/* FIFO Configuration */
  91#define	HIFN_0_SPACESIZE	0x20	/* Register space size */
  92
  93/* Processing Unit Control Register (HIFN_0_PUCTRL) */
  94#define	HIFN_PUCTRL_CLRSRCFIFO	0x0010	/* clear source fifo */
  95#define	HIFN_PUCTRL_STOP	0x0008	/* stop pu */
  96#define	HIFN_PUCTRL_LOCKRAM	0x0004	/* lock ram */
  97#define	HIFN_PUCTRL_DMAENA	0x0002	/* enable dma */
  98#define	HIFN_PUCTRL_RESET	0x0001	/* Reset processing unit */
  99
 100/* Processing Unit Interrupt Status Register (HIFN_0_PUISR) */
 101#define	HIFN_PUISR_CMDINVAL	0x8000	/* Invalid command interrupt */
 102#define	HIFN_PUISR_DATAERR	0x4000	/* Data error interrupt */
 103#define	HIFN_PUISR_SRCFIFO	0x2000	/* Source FIFO ready interrupt */
 104#define	HIFN_PUISR_DSTFIFO	0x1000	/* Destination FIFO ready interrupt */
 105#define	HIFN_PUISR_DSTOVER	0x0200	/* Destination overrun interrupt */
 106#define	HIFN_PUISR_SRCCMD	0x0080	/* Source command interrupt */
 107#define	HIFN_PUISR_SRCCTX	0x0040	/* Source context interrupt */
 108#define	HIFN_PUISR_SRCDATA	0x0020	/* Source data interrupt */
 109#define	HIFN_PUISR_DSTDATA	0x0010	/* Destination data interrupt */
 110#define	HIFN_PUISR_DSTRESULT	0x0004	/* Destination result interrupt */
 111
 112/* Processing Unit Configuration Register (HIFN_0_PUCNFG) */
 113#define	HIFN_PUCNFG_DRAMMASK	0xe000	/* DRAM size mask */
 114#define	HIFN_PUCNFG_DSZ_256K	0x0000	/* 256k dram */
 115#define	HIFN_PUCNFG_DSZ_512K	0x2000	/* 512k dram */
 116#define	HIFN_PUCNFG_DSZ_1M	0x4000	/* 1m dram */
 117#define	HIFN_PUCNFG_DSZ_2M	0x6000	/* 2m dram */
 118#define	HIFN_PUCNFG_DSZ_4M	0x8000	/* 4m dram */
 119#define	HIFN_PUCNFG_DSZ_8M	0xa000	/* 8m dram */
 120#define	HIFN_PUNCFG_DSZ_16M	0xc000	/* 16m dram */
 121#define	HIFN_PUCNFG_DSZ_32M	0xe000	/* 32m dram */
 122#define	HIFN_PUCNFG_DRAMREFRESH	0x1800	/* DRAM refresh rate mask */
 123#define	HIFN_PUCNFG_DRFR_512	0x0000	/* 512 divisor of ECLK */
 124#define	HIFN_PUCNFG_DRFR_256	0x0800	/* 256 divisor of ECLK */
 125#define	HIFN_PUCNFG_DRFR_128	0x1000	/* 128 divisor of ECLK */
 126#define	HIFN_PUCNFG_TCALLPHASES	0x0200	/* your guess is as good as mine... */
 127#define	HIFN_PUCNFG_TCDRVTOTEM	0x0100	/* your guess is as good as mine... */
 128#define	HIFN_PUCNFG_BIGENDIAN	0x0080	/* DMA big endian mode */
 129#define	HIFN_PUCNFG_BUS32	0x0040	/* Bus width 32bits */
 130#define	HIFN_PUCNFG_BUS16	0x0000	/* Bus width 16 bits */
 131#define	HIFN_PUCNFG_CHIPID	0x0020	/* Allow chipid from PUSTAT */
 132#define	HIFN_PUCNFG_DRAM	0x0010	/* Context RAM is DRAM */
 133#define	HIFN_PUCNFG_SRAM	0x0000	/* Context RAM is SRAM */
 134#define	HIFN_PUCNFG_COMPSING	0x0004	/* Enable single compression context */
 135#define	HIFN_PUCNFG_ENCCNFG	0x0002	/* Encryption configuration */
 136
 137/* Processing Unit Interrupt Enable Register (HIFN_0_PUIER) */
 138#define	HIFN_PUIER_CMDINVAL	0x8000	/* Invalid command interrupt */
 139#define	HIFN_PUIER_DATAERR	0x4000	/* Data error interrupt */
 140#define	HIFN_PUIER_SRCFIFO	0x2000	/* Source FIFO ready interrupt */
 141#define	HIFN_PUIER_DSTFIFO	0x1000	/* Destination FIFO ready interrupt */
 142#define	HIFN_PUIER_DSTOVER	0x0200	/* Destination overrun interrupt */
 143#define	HIFN_PUIER_SRCCMD	0x0080	/* Source command interrupt */
 144#define	HIFN_PUIER_SRCCTX	0x0040	/* Source context interrupt */
 145#define	HIFN_PUIER_SRCDATA	0x0020	/* Source data interrupt */
 146#define	HIFN_PUIER_DSTDATA	0x0010	/* Destination data interrupt */
 147#define	HIFN_PUIER_DSTRESULT	0x0004	/* Destination result interrupt */
 148
 149/* Processing Unit Status Register/Chip ID (HIFN_0_PUSTAT) */
 150#define	HIFN_PUSTAT_CMDINVAL	0x8000	/* Invalid command interrupt */
 151#define	HIFN_PUSTAT_DATAERR	0x4000	/* Data error interrupt */
 152#define	HIFN_PUSTAT_SRCFIFO	0x2000	/* Source FIFO ready interrupt */
 153#define	HIFN_PUSTAT_DSTFIFO	0x1000	/* Destination FIFO ready interrupt */
 154#define	HIFN_PUSTAT_DSTOVER	0x0200	/* Destination overrun interrupt */
 155#define	HIFN_PUSTAT_SRCCMD	0x0080	/* Source command interrupt */
 156#define	HIFN_PUSTAT_SRCCTX	0x0040	/* Source context interrupt */
 157#define	HIFN_PUSTAT_SRCDATA	0x0020	/* Source data interrupt */
 158#define	HIFN_PUSTAT_DSTDATA	0x0010	/* Destination data interrupt */
 159#define	HIFN_PUSTAT_DSTRESULT	0x0004	/* Destination result interrupt */
 160#define	HIFN_PUSTAT_CHIPREV	0x00ff	/* Chip revision mask */
 161#define	HIFN_PUSTAT_CHIPENA	0xff00	/* Chip enabled mask */
 162#define	HIFN_PUSTAT_ENA_2	0x1100	/* Level 2 enabled */
 163#define	HIFN_PUSTAT_ENA_1	0x1000	/* Level 1 enabled */
 164#define	HIFN_PUSTAT_ENA_0	0x3000	/* Level 0 enabled */
 165#define	HIFN_PUSTAT_REV_2	0x0020	/* 7751 PT6/2 */
 166#define	HIFN_PUSTAT_REV_3	0x0030	/* 7751 PT6/3 */
 167
 168/* FIFO Status Register (HIFN_0_FIFOSTAT) */
 169#define	HIFN_FIFOSTAT_SRC	0x7f00	/* Source FIFO available */
 170#define	HIFN_FIFOSTAT_DST	0x007f	/* Destination FIFO available */
 171
 172/* FIFO Configuration Register (HIFN_0_FIFOCNFG) */
 173#define	HIFN_FIFOCNFG_THRESHOLD	0x0400	/* must be written as 1 */
 174
 175/*
 176 * DMA Interface Registers (offset from BASEREG1)
 177 */
 178#define	HIFN_1_DMA_CRAR		0x0c	/* DMA Command Ring Address */
 179#define	HIFN_1_DMA_SRAR		0x1c	/* DMA Source Ring Address */
 180#define	HIFN_1_DMA_RRAR		0x2c	/* DMA Result Ring Address */
 181#define	HIFN_1_DMA_DRAR		0x3c	/* DMA Destination Ring Address */
 182#define	HIFN_1_DMA_CSR		0x40	/* DMA Status and Control */
 183#define	HIFN_1_DMA_IER		0x44	/* DMA Interrupt Enable */
 184#define	HIFN_1_DMA_CNFG		0x48	/* DMA Configuration */
 185#define	HIFN_1_PLL		0x4c	/* 795x: PLL config */
 186#define	HIFN_1_7811_RNGENA	0x60	/* 7811: rng enable */
 187#define	HIFN_1_7811_RNGCFG	0x64	/* 7811: rng config */
 188#define	HIFN_1_7811_RNGDAT	0x68	/* 7811: rng data */
 189#define	HIFN_1_7811_RNGSTS	0x6c	/* 7811: rng status */
 190#define	HIFN_1_7811_MIPSRST	0x94	/* 7811: MIPS reset */
 191#define	HIFN_1_REVID		0x98	/* Revision ID */
 192#define	HIFN_1_UNLOCK_SECRET1	0xf4
 193#define	HIFN_1_UNLOCK_SECRET2	0xfc
 194#define	HIFN_1_PUB_RESET	0x204	/* Public/RNG Reset */
 195#define	HIFN_1_PUB_BASE		0x300	/* Public Base Address */
 196#define	HIFN_1_PUB_OPLEN	0x304	/* Public Operand Length */
 197#define	HIFN_1_PUB_OP		0x308	/* Public Operand */
 198#define	HIFN_1_PUB_STATUS	0x30c	/* Public Status */
 199#define	HIFN_1_PUB_IEN		0x310	/* Public Interrupt enable */
 200#define	HIFN_1_RNG_CONFIG	0x314	/* RNG config */
 201#define	HIFN_1_RNG_DATA		0x318	/* RNG data */
 202#define	HIFN_1_PUB_MEM		0x400	/* start of Public key memory */
 203#define	HIFN_1_PUB_MEMEND	0xbff	/* end of Public key memory */
 204
 205/* DMA Status and Control Register (HIFN_1_DMA_CSR) */
 206#define	HIFN_DMACSR_D_CTRLMASK	0xc0000000	/* Destinition Ring Control */
 207#define	HIFN_DMACSR_D_CTRL_NOP	0x00000000	/* Dest. Control: no-op */
 208#define	HIFN_DMACSR_D_CTRL_DIS	0x40000000	/* Dest. Control: disable */
 209#define	HIFN_DMACSR_D_CTRL_ENA	0x80000000	/* Dest. Control: enable */
 210#define	HIFN_DMACSR_D_ABORT	0x20000000	/* Destinition Ring PCIAbort */
 211#define	HIFN_DMACSR_D_DONE	0x10000000	/* Destinition Ring Done */
 212#define	HIFN_DMACSR_D_LAST	0x08000000	/* Destinition Ring Last */
 213#define	HIFN_DMACSR_D_WAIT	0x04000000	/* Destinition Ring Waiting */
 214#define	HIFN_DMACSR_D_OVER	0x02000000	/* Destinition Ring Overflow */
 215#define	HIFN_DMACSR_R_CTRL	0x00c00000	/* Result Ring Control */
 216#define	HIFN_DMACSR_R_CTRL_NOP	0x00000000	/* Result Control: no-op */
 217#define	HIFN_DMACSR_R_CTRL_DIS	0x00400000	/* Result Control: disable */
 218#define	HIFN_DMACSR_R_CTRL_ENA	0x00800000	/* Result Control: enable */
 219#define	HIFN_DMACSR_R_ABORT	0x00200000	/* Result Ring PCI Abort */
 220#define	HIFN_DMACSR_R_DONE	0x00100000	/* Result Ring Done */
 221#define	HIFN_DMACSR_R_LAST	0x00080000	/* Result Ring Last */
 222#define	HIFN_DMACSR_R_WAIT	0x00040000	/* Result Ring Waiting */
 223#define	HIFN_DMACSR_R_OVER	0x00020000	/* Result Ring Overflow */
 224#define	HIFN_DMACSR_S_CTRL	0x0000c000	/* Source Ring Control */
 225#define	HIFN_DMACSR_S_CTRL_NOP	0x00000000	/* Source Control: no-op */
 226#define	HIFN_DMACSR_S_CTRL_DIS	0x00004000	/* Source Control: disable */
 227#define	HIFN_DMACSR_S_CTRL_ENA	0x00008000	/* Source Control: enable */
 228#define	HIFN_DMACSR_S_ABORT	0x00002000	/* Source Ring PCI Abort */
 229#define	HIFN_DMACSR_S_DONE	0x00001000	/* Source Ring Done */
 230#define	HIFN_DMACSR_S_LAST	0x00000800	/* Source Ring Last */
 231#define	HIFN_DMACSR_S_WAIT	0x00000400	/* Source Ring Waiting */
 232#define	HIFN_DMACSR_ILLW	0x00000200	/* Illegal write (7811 only) */
 233#define	HIFN_DMACSR_ILLR	0x00000100	/* Illegal read (7811 only) */
 234#define	HIFN_DMACSR_C_CTRL	0x000000c0	/* Command Ring Control */
 235#define	HIFN_DMACSR_C_CTRL_NOP	0x00000000	/* Command Control: no-op */
 236#define	HIFN_DMACSR_C_CTRL_DIS	0x00000040	/* Command Control: disable */
 237#define	HIFN_DMACSR_C_CTRL_ENA	0x00000080	/* Command Control: enable */
 238#define	HIFN_DMACSR_C_ABORT	0x00000020	/* Command Ring PCI Abort */
 239#define	HIFN_DMACSR_C_DONE	0x00000010	/* Command Ring Done */
 240#define	HIFN_DMACSR_C_LAST	0x00000008	/* Command Ring Last */
 241#define	HIFN_DMACSR_C_WAIT	0x00000004	/* Command Ring Waiting */
 242#define	HIFN_DMACSR_PUBDONE	0x00000002	/* Public op done (7951 only) */
 243#define	HIFN_DMACSR_ENGINE	0x00000001	/* Command Ring Engine IRQ */
 244
 245/* DMA Interrupt Enable Register (HIFN_1_DMA_IER) */
 246#define	HIFN_DMAIER_D_ABORT	0x20000000	/* Destination Ring PCIAbort */
 247#define	HIFN_DMAIER_D_DONE	0x10000000	/* Destination Ring Done */
 248#define	HIFN_DMAIER_D_LAST	0x08000000	/* Destination Ring Last */
 249#define	HIFN_DMAIER_D_WAIT	0x04000000	/* Destination Ring Waiting */
 250#define	HIFN_DMAIER_D_OVER	0x02000000	/* Destination Ring Overflow */
 251#define	HIFN_DMAIER_R_ABORT	0x00200000	/* Result Ring PCI Abort */
 252#define	HIFN_DMAIER_R_DONE	0x00100000	/* Result Ring Done */
 253#define	HIFN_DMAIER_R_LAST	0x00080000	/* Result Ring Last */
 254#define	HIFN_DMAIER_R_WAIT	0x00040000	/* Result Ring Waiting */
 255#define	HIFN_DMAIER_R_OVER	0x00020000	/* Result Ring Overflow */
 256#define	HIFN_DMAIER_S_ABORT	0x00002000	/* Source Ring PCI Abort */
 257#define	HIFN_DMAIER_S_DONE	0x00001000	/* Source Ring Done */
 258#define	HIFN_DMAIER_S_LAST	0x00000800	/* Source Ring Last */
 259#define	HIFN_DMAIER_S_WAIT	0x00000400	/* Source Ring Waiting */
 260#define	HIFN_DMAIER_ILLW	0x00000200	/* Illegal write (7811 only) */
 261#define	HIFN_DMAIER_ILLR	0x00000100	/* Illegal read (7811 only) */
 262#define	HIFN_DMAIER_C_ABORT	0x00000020	/* Command Ring PCI Abort */
 263#define	HIFN_DMAIER_C_DONE	0x00000010	/* Command Ring Done */
 264#define	HIFN_DMAIER_C_LAST	0x00000008	/* Command Ring Last */
 265#define	HIFN_DMAIER_C_WAIT	0x00000004	/* Command Ring Waiting */
 266#define	HIFN_DMAIER_PUBDONE	0x00000002	/* public op done (7951 only) */
 267#define	HIFN_DMAIER_ENGINE	0x00000001	/* Engine IRQ */
 268
 269/* DMA Configuration Register (HIFN_1_DMA_CNFG) */
 270#define	HIFN_DMACNFG_BIGENDIAN	0x10000000	/* big endian mode */
 271#define	HIFN_DMACNFG_POLLFREQ	0x00ff0000	/* Poll frequency mask */
 272#define	HIFN_DMACNFG_UNLOCK	0x00000800
 273#define	HIFN_DMACNFG_POLLINVAL	0x00000700	/* Invalid Poll Scalar */
 274#define	HIFN_DMACNFG_LAST	0x00000010	/* Host control LAST bit */
 275#define	HIFN_DMACNFG_MODE	0x00000004	/* DMA mode */
 276#define	HIFN_DMACNFG_DMARESET	0x00000002	/* DMA Reset # */
 277#define	HIFN_DMACNFG_MSTRESET	0x00000001	/* Master Reset # */
 278
 279/* PLL configuration register */
 280#define HIFN_PLL_REF_CLK_HBI	0x00000000	/* HBI reference clock */
 281#define HIFN_PLL_REF_CLK_PLL	0x00000001	/* PLL reference clock */
 282#define HIFN_PLL_BP		0x00000002	/* Reference clock bypass */
 283#define HIFN_PLL_PK_CLK_HBI	0x00000000	/* PK engine HBI clock */
 284#define HIFN_PLL_PK_CLK_PLL	0x00000008	/* PK engine PLL clock */
 285#define HIFN_PLL_PE_CLK_HBI	0x00000000	/* PE engine HBI clock */
 286#define HIFN_PLL_PE_CLK_PLL	0x00000010	/* PE engine PLL clock */
 287#define HIFN_PLL_RESERVED_1	0x00000400	/* Reserved bit, must be 1 */
 288#define HIFN_PLL_ND_SHIFT	11		/* Clock multiplier shift */
 289#define HIFN_PLL_ND_MULT_2	0x00000000	/* PLL clock multiplier 2 */
 290#define HIFN_PLL_ND_MULT_4	0x00000800	/* PLL clock multiplier 4 */
 291#define HIFN_PLL_ND_MULT_6	0x00001000	/* PLL clock multiplier 6 */
 292#define HIFN_PLL_ND_MULT_8	0x00001800	/* PLL clock multiplier 8 */
 293#define HIFN_PLL_ND_MULT_10	0x00002000	/* PLL clock multiplier 10 */
 294#define HIFN_PLL_ND_MULT_12	0x00002800	/* PLL clock multiplier 12 */
 295#define HIFN_PLL_IS_1_8		0x00000000	/* charge pump (mult. 1-8) */
 296#define HIFN_PLL_IS_9_12	0x00010000	/* charge pump (mult. 9-12) */
 297
 298#define HIFN_PLL_FCK_MAX	266		/* Maximum PLL frequency */
 299
 300/* Public key reset register (HIFN_1_PUB_RESET) */
 301#define	HIFN_PUBRST_RESET	0x00000001	/* reset public/rng unit */
 302
 303/* Public base address register (HIFN_1_PUB_BASE) */
 304#define	HIFN_PUBBASE_ADDR	0x00003fff	/* base address */
 305
 306/* Public operand length register (HIFN_1_PUB_OPLEN) */
 307#define	HIFN_PUBOPLEN_MOD_M	0x0000007f	/* modulus length mask */
 308#define	HIFN_PUBOPLEN_MOD_S	0		/* modulus length shift */
 309#define	HIFN_PUBOPLEN_EXP_M	0x0003ff80	/* exponent length mask */
 310#define	HIFN_PUBOPLEN_EXP_S	7		/* exponent length shift */
 311#define	HIFN_PUBOPLEN_RED_M	0x003c0000	/* reducend length mask */
 312#define	HIFN_PUBOPLEN_RED_S	18		/* reducend length shift */
 313
 314/* Public operation register (HIFN_1_PUB_OP) */
 315#define	HIFN_PUBOP_AOFFSET_M	0x0000007f	/* A offset mask */
 316#define	HIFN_PUBOP_AOFFSET_S	0		/* A offset shift */
 317#define	HIFN_PUBOP_BOFFSET_M	0x00000f80	/* B offset mask */
 318#define	HIFN_PUBOP_BOFFSET_S	7		/* B offset shift */
 319#define	HIFN_PUBOP_MOFFSET_M	0x0003f000	/* M offset mask */
 320#define	HIFN_PUBOP_MOFFSET_S	12		/* M offset shift */
 321#define	HIFN_PUBOP_OP_MASK	0x003c0000	/* Opcode: */
 322#define	HIFN_PUBOP_OP_NOP	0x00000000	/*  NOP */
 323#define	HIFN_PUBOP_OP_ADD	0x00040000	/*  ADD */
 324#define	HIFN_PUBOP_OP_ADDC	0x00080000	/*  ADD w/carry */
 325#define	HIFN_PUBOP_OP_SUB	0x000c0000	/*  SUB */
 326#define	HIFN_PUBOP_OP_SUBC	0x00100000	/*  SUB w/carry */
 327#define	HIFN_PUBOP_OP_MODADD	0x00140000	/*  Modular ADD */
 328#define	HIFN_PUBOP_OP_MODSUB	0x00180000	/*  Modular SUB */
 329#define	HIFN_PUBOP_OP_INCA	0x001c0000	/*  INC A */
 330#define	HIFN_PUBOP_OP_DECA	0x00200000	/*  DEC A */
 331#define	HIFN_PUBOP_OP_MULT	0x00240000	/*  MULT */
 332#define	HIFN_PUBOP_OP_MODMULT	0x00280000	/*  Modular MULT */
 333#define	HIFN_PUBOP_OP_MODRED	0x002c0000	/*  Modular RED */
 334#define	HIFN_PUBOP_OP_MODEXP	0x00300000	/*  Modular EXP */
 335
 336/* Public status register (HIFN_1_PUB_STATUS) */
 337#define	HIFN_PUBSTS_DONE	0x00000001	/* operation done */
 338#define	HIFN_PUBSTS_CARRY	0x00000002	/* carry */
 339
 340/* Public interrupt enable register (HIFN_1_PUB_IEN) */
 341#define	HIFN_PUBIEN_DONE	0x00000001	/* operation done interrupt */
 342
 343/* Random number generator config register (HIFN_1_RNG_CONFIG) */
 344#define	HIFN_RNGCFG_ENA		0x00000001	/* enable rng */
 345
 346#define HIFN_NAMESIZE			32
 347#define HIFN_MAX_RESULT_ORDER		5
 348
 349#define	HIFN_D_CMD_RSIZE		(24 * 1)
 350#define	HIFN_D_SRC_RSIZE		(80 * 1)
 351#define	HIFN_D_DST_RSIZE		(80 * 1)
 352#define	HIFN_D_RES_RSIZE		(24 * 1)
 353
 354#define HIFN_D_DST_DALIGN		4
 355
 356#define HIFN_QUEUE_LENGTH		(HIFN_D_CMD_RSIZE - 1)
 357
 358#define AES_MIN_KEY_SIZE		16
 359#define AES_MAX_KEY_SIZE		32
 360
 361#define HIFN_DES_KEY_LENGTH		8
 362#define HIFN_3DES_KEY_LENGTH		24
 363#define HIFN_MAX_CRYPT_KEY_LENGTH	AES_MAX_KEY_SIZE
 364#define HIFN_IV_LENGTH			8
 365#define HIFN_AES_IV_LENGTH		16
 366#define	HIFN_MAX_IV_LENGTH		HIFN_AES_IV_LENGTH
 367
 368#define HIFN_MAC_KEY_LENGTH		64
 369#define HIFN_MD5_LENGTH			16
 370#define HIFN_SHA1_LENGTH		20
 371#define HIFN_MAC_TRUNC_LENGTH		12
 372
 373#define	HIFN_MAX_COMMAND		(8 + 8 + 8 + 64 + 260)
 374#define	HIFN_MAX_RESULT			(8 + 4 + 4 + 20 + 4)
 375#define HIFN_USED_RESULT		12
 376
 377struct hifn_desc {
 378	volatile __le32		l;
 379	volatile __le32		p;
 380};
 381
 382struct hifn_dma {
 383	struct hifn_desc	cmdr[HIFN_D_CMD_RSIZE + 1];
 384	struct hifn_desc	srcr[HIFN_D_SRC_RSIZE + 1];
 385	struct hifn_desc	dstr[HIFN_D_DST_RSIZE + 1];
 386	struct hifn_desc	resr[HIFN_D_RES_RSIZE + 1];
 387
 388	u8			command_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_COMMAND];
 389	u8			result_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_RESULT];
 390
 391	/*
 392	 *  Our current positions for insertion and removal from the descriptor
 393	 *  rings.
 394	 */
 395	volatile int		cmdi, srci, dsti, resi;
 396	volatile int		cmdu, srcu, dstu, resu;
 397	int			cmdk, srck, dstk, resk;
 398};
 399
 400#define HIFN_FLAG_CMD_BUSY	(1 << 0)
 401#define HIFN_FLAG_SRC_BUSY	(1 << 1)
 402#define HIFN_FLAG_DST_BUSY	(1 << 2)
 403#define HIFN_FLAG_RES_BUSY	(1 << 3)
 404#define HIFN_FLAG_OLD_KEY	(1 << 4)
 405
 406#define HIFN_DEFAULT_ACTIVE_NUM	5
 407
 408struct hifn_device {
 409	char			name[HIFN_NAMESIZE];
 410
 411	int			irq;
 412
 413	struct pci_dev		*pdev;
 414	void __iomem		*bar[3];
 415
 416	void			*desc_virt;
 417	dma_addr_t		desc_dma;
 418
 419	u32			dmareg;
 420
 421	void			*sa[HIFN_D_RES_RSIZE];
 422
 423	spinlock_t		lock;
 424
 425	u32			flags;
 426	int			active, started;
 427	struct delayed_work	work;
 428	unsigned long		reset;
 429	unsigned long		success;
 430	unsigned long		prev_success;
 431
 432	u8			snum;
 433
 434	struct tasklet_struct	tasklet;
 435
 436	struct crypto_queue	queue;
 437	struct list_head	alg_list;
 438
 439	unsigned int		pk_clk_freq;
 440
 441#ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
 442	unsigned int		rng_wait_time;
 443	ktime_t			rngtime;
 444	struct hwrng		rng;
 445#endif
 446};
 447
 448#define	HIFN_D_LENGTH			0x0000ffff
 449#define	HIFN_D_NOINVALID		0x01000000
 450#define	HIFN_D_MASKDONEIRQ		0x02000000
 451#define	HIFN_D_DESTOVER			0x04000000
 452#define	HIFN_D_OVER			0x08000000
 453#define	HIFN_D_LAST			0x20000000
 454#define	HIFN_D_JUMP			0x40000000
 455#define	HIFN_D_VALID			0x80000000
 456
 457struct hifn_base_command {
 458	volatile __le16		masks;
 459	volatile __le16		session_num;
 460	volatile __le16		total_source_count;
 461	volatile __le16		total_dest_count;
 462};
 463
 464#define	HIFN_BASE_CMD_COMP		0x0100	/* enable compression engine */
 465#define	HIFN_BASE_CMD_PAD		0x0200	/* enable padding engine */
 466#define	HIFN_BASE_CMD_MAC		0x0400	/* enable MAC engine */
 467#define	HIFN_BASE_CMD_CRYPT		0x0800	/* enable crypt engine */
 468#define	HIFN_BASE_CMD_DECODE		0x2000
 469#define	HIFN_BASE_CMD_SRCLEN_M		0xc000
 470#define	HIFN_BASE_CMD_SRCLEN_S		14
 471#define	HIFN_BASE_CMD_DSTLEN_M		0x3000
 472#define	HIFN_BASE_CMD_DSTLEN_S		12
 473#define	HIFN_BASE_CMD_LENMASK_HI	0x30000
 474#define	HIFN_BASE_CMD_LENMASK_LO	0x0ffff
 475
 476/*
 477 * Structure to help build up the command data structure.
 478 */
 479struct hifn_crypt_command {
 480	volatile __le16		masks;
 481	volatile __le16		header_skip;
 482	volatile __le16		source_count;
 483	volatile __le16		reserved;
 484};
 485
 486#define	HIFN_CRYPT_CMD_ALG_MASK		0x0003		/* algorithm: */
 487#define	HIFN_CRYPT_CMD_ALG_DES		0x0000		/*   DES */
 488#define	HIFN_CRYPT_CMD_ALG_3DES		0x0001		/*   3DES */
 489#define	HIFN_CRYPT_CMD_ALG_RC4		0x0002		/*   RC4 */
 490#define	HIFN_CRYPT_CMD_ALG_AES		0x0003		/*   AES */
 491#define	HIFN_CRYPT_CMD_MODE_MASK	0x0018		/* Encrypt mode: */
 492#define	HIFN_CRYPT_CMD_MODE_ECB		0x0000		/*   ECB */
 493#define	HIFN_CRYPT_CMD_MODE_CBC		0x0008		/*   CBC */
 494#define	HIFN_CRYPT_CMD_MODE_CFB		0x0010		/*   CFB */
 495#define	HIFN_CRYPT_CMD_MODE_OFB		0x0018		/*   OFB */
 496#define	HIFN_CRYPT_CMD_CLR_CTX		0x0040		/* clear context */
 497#define	HIFN_CRYPT_CMD_KSZ_MASK		0x0600		/* AES key size: */
 498#define	HIFN_CRYPT_CMD_KSZ_128		0x0000		/*  128 bit */
 499#define	HIFN_CRYPT_CMD_KSZ_192		0x0200		/*  192 bit */
 500#define	HIFN_CRYPT_CMD_KSZ_256		0x0400		/*  256 bit */
 501#define	HIFN_CRYPT_CMD_NEW_KEY		0x0800		/* expect new key */
 502#define	HIFN_CRYPT_CMD_NEW_IV		0x1000		/* expect new iv */
 503#define	HIFN_CRYPT_CMD_SRCLEN_M		0xc000
 504#define	HIFN_CRYPT_CMD_SRCLEN_S		14
 505
 506/*
 507 * Structure to help build up the command data structure.
 508 */
 509struct hifn_mac_command {
 510	volatile __le16	masks;
 511	volatile __le16	header_skip;
 512	volatile __le16	source_count;
 513	volatile __le16	reserved;
 514};
 515
 516#define	HIFN_MAC_CMD_ALG_MASK		0x0001
 517#define	HIFN_MAC_CMD_ALG_SHA1		0x0000
 518#define	HIFN_MAC_CMD_ALG_MD5		0x0001
 519#define	HIFN_MAC_CMD_MODE_MASK		0x000c
 520#define	HIFN_MAC_CMD_MODE_HMAC		0x0000
 521#define	HIFN_MAC_CMD_MODE_SSL_MAC	0x0004
 522#define	HIFN_MAC_CMD_MODE_HASH		0x0008
 523#define	HIFN_MAC_CMD_MODE_FULL		0x0004
 524#define	HIFN_MAC_CMD_TRUNC		0x0010
 525#define	HIFN_MAC_CMD_RESULT		0x0020
 526#define	HIFN_MAC_CMD_APPEND		0x0040
 527#define	HIFN_MAC_CMD_SRCLEN_M		0xc000
 528#define	HIFN_MAC_CMD_SRCLEN_S		14
 529
 530/*
 531 * MAC POS IPsec initiates authentication after encryption on encodes
 532 * and before decryption on decodes.
 533 */
 534#define	HIFN_MAC_CMD_POS_IPSEC		0x0200
 535#define	HIFN_MAC_CMD_NEW_KEY		0x0800
 536
 537struct hifn_comp_command {
 538	volatile __le16		masks;
 539	volatile __le16		header_skip;
 540	volatile __le16		source_count;
 541	volatile __le16		reserved;
 542};
 543
 544#define	HIFN_COMP_CMD_SRCLEN_M		0xc000
 545#define	HIFN_COMP_CMD_SRCLEN_S		14
 546#define	HIFN_COMP_CMD_ONE		0x0100	/* must be one */
 547#define	HIFN_COMP_CMD_CLEARHIST		0x0010	/* clear history */
 548#define	HIFN_COMP_CMD_UPDATEHIST	0x0008	/* update history */
 549#define	HIFN_COMP_CMD_LZS_STRIP0	0x0004	/* LZS: strip zero */
 550#define	HIFN_COMP_CMD_MPPC_RESTART	0x0004	/* MPPC: restart */
 551#define	HIFN_COMP_CMD_ALG_MASK		0x0001	/* compression mode: */
 552#define	HIFN_COMP_CMD_ALG_MPPC		0x0001	/*   MPPC */
 553#define	HIFN_COMP_CMD_ALG_LZS		0x0000	/*   LZS */
 554
 555struct hifn_base_result {
 556	volatile __le16		flags;
 557	volatile __le16		session;
 558	volatile __le16		src_cnt;		/* 15:0 of source count */
 559	volatile __le16		dst_cnt;		/* 15:0 of dest count */
 560};
 561
 562#define	HIFN_BASE_RES_DSTOVERRUN	0x0200	/* destination overrun */
 563#define	HIFN_BASE_RES_SRCLEN_M		0xc000	/* 17:16 of source count */
 564#define	HIFN_BASE_RES_SRCLEN_S		14
 565#define	HIFN_BASE_RES_DSTLEN_M		0x3000	/* 17:16 of dest count */
 566#define	HIFN_BASE_RES_DSTLEN_S		12
 567
 568struct hifn_comp_result {
 569	volatile __le16		flags;
 570	volatile __le16		crc;
 571};
 572
 573#define	HIFN_COMP_RES_LCB_M		0xff00	/* longitudinal check byte */
 574#define	HIFN_COMP_RES_LCB_S		8
 575#define	HIFN_COMP_RES_RESTART		0x0004	/* MPPC: restart */
 576#define	HIFN_COMP_RES_ENDMARKER		0x0002	/* LZS: end marker seen */
 577#define	HIFN_COMP_RES_SRC_NOTZERO	0x0001	/* source expired */
 578
 579struct hifn_mac_result {
 580	volatile __le16		flags;
 581	volatile __le16		reserved;
 582	/* followed by 0, 6, 8, or 10 u16's of the MAC, then crypt */
 583};
 584
 585#define	HIFN_MAC_RES_MISCOMPARE		0x0002	/* compare failed */
 586#define	HIFN_MAC_RES_SRC_NOTZERO	0x0001	/* source expired */
 587
 588struct hifn_crypt_result {
 589	volatile __le16		flags;
 590	volatile __le16		reserved;
 591};
 592
 593#define	HIFN_CRYPT_RES_SRC_NOTZERO	0x0001	/* source expired */
 594
 595#ifndef HIFN_POLL_FREQUENCY
 596#define	HIFN_POLL_FREQUENCY	0x1
 597#endif
 598
 599#ifndef HIFN_POLL_SCALAR
 600#define	HIFN_POLL_SCALAR	0x0
 601#endif
 602
 603#define	HIFN_MAX_SEGLEN		0xffff		/* maximum dma segment len */
 604#define	HIFN_MAX_DMALEN		0x3ffff		/* maximum dma length */
 605
 606struct hifn_crypto_alg {
 607	struct list_head	entry;
 608	struct crypto_alg	alg;
 609	struct hifn_device	*dev;
 610};
 611
 612#define ASYNC_SCATTERLIST_CACHE	16
 613
 614#define ASYNC_FLAGS_MISALIGNED	(1 << 0)
 615
 616struct hifn_cipher_walk {
 617	struct scatterlist	cache[ASYNC_SCATTERLIST_CACHE];
 618	u32			flags;
 619	int			num;
 620};
 621
 622struct hifn_context {
 623	u8			key[HIFN_MAX_CRYPT_KEY_LENGTH];
 624	struct hifn_device	*dev;
 625	unsigned int		keysize;
 626};
 627
 628struct hifn_request_context {
 629	u8			*iv;
 630	unsigned int		ivsize;
 631	u8			op, type, mode, unused;
 632	struct hifn_cipher_walk	walk;
 633};
 634
 635#define crypto_alg_to_hifn(a)	container_of(a, struct hifn_crypto_alg, alg)
 636
 637static inline u32 hifn_read_0(struct hifn_device *dev, u32 reg)
 638{
 639	u32 ret;
 640
 641	ret = readl(dev->bar[0] + reg);
 642
 643	return ret;
 644}
 645
 646static inline u32 hifn_read_1(struct hifn_device *dev, u32 reg)
 647{
 648	u32 ret;
 649
 650	ret = readl(dev->bar[1] + reg);
 651
 652	return ret;
 653}
 654
 655static inline void hifn_write_0(struct hifn_device *dev, u32 reg, u32 val)
 656{
 657	writel((__force u32)cpu_to_le32(val), dev->bar[0] + reg);
 658}
 659
 660static inline void hifn_write_1(struct hifn_device *dev, u32 reg, u32 val)
 661{
 662	writel((__force u32)cpu_to_le32(val), dev->bar[1] + reg);
 663}
 664
 665static void hifn_wait_puc(struct hifn_device *dev)
 666{
 667	int i;
 668	u32 ret;
 669
 670	for (i = 10000; i > 0; --i) {
 671		ret = hifn_read_0(dev, HIFN_0_PUCTRL);
 672		if (!(ret & HIFN_PUCTRL_RESET))
 673			break;
 674
 675		udelay(1);
 676	}
 677
 678	if (!i)
 679		dev_err(&dev->pdev->dev, "Failed to reset PUC unit.\n");
 680}
 681
 682static void hifn_reset_puc(struct hifn_device *dev)
 683{
 684	hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
 685	hifn_wait_puc(dev);
 686}
 687
 688static void hifn_stop_device(struct hifn_device *dev)
 689{
 690	hifn_write_1(dev, HIFN_1_DMA_CSR,
 691		HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
 692		HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS);
 693	hifn_write_0(dev, HIFN_0_PUIER, 0);
 694	hifn_write_1(dev, HIFN_1_DMA_IER, 0);
 695}
 696
 697static void hifn_reset_dma(struct hifn_device *dev, int full)
 698{
 699	hifn_stop_device(dev);
 700
 701	/*
 702	 * Setting poll frequency and others to 0.
 703	 */
 704	hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
 705			HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
 706	mdelay(1);
 707
 708	/*
 709	 * Reset DMA.
 710	 */
 711	if (full) {
 712		hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE);
 713		mdelay(1);
 714	} else {
 715		hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE |
 716				HIFN_DMACNFG_MSTRESET);
 717		hifn_reset_puc(dev);
 718	}
 719
 720	hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
 721			HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
 722
 723	hifn_reset_puc(dev);
 724}
 725
 726static u32 hifn_next_signature(u32 a, u_int cnt)
 727{
 728	int i;
 729	u32 v;
 730
 731	for (i = 0; i < cnt; i++) {
 732		/* get the parity */
 733		v = a & 0x80080125;
 734		v ^= v >> 16;
 735		v ^= v >> 8;
 736		v ^= v >> 4;
 737		v ^= v >> 2;
 738		v ^= v >> 1;
 739
 740		a = (v & 1) ^ (a << 1);
 741	}
 742
 743	return a;
 744}
 745
 746static struct pci2id {
 747	u_short		pci_vendor;
 748	u_short		pci_prod;
 749	char		card_id[13];
 750} pci2id[] = {
 751	{
 752		PCI_VENDOR_ID_HIFN,
 753		PCI_DEVICE_ID_HIFN_7955,
 754		{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 755		  0x00, 0x00, 0x00, 0x00, 0x00 }
 756	},
 757	{
 758		PCI_VENDOR_ID_HIFN,
 759		PCI_DEVICE_ID_HIFN_7956,
 760		{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 761		  0x00, 0x00, 0x00, 0x00, 0x00 }
 762	}
 763};
 764
 765#ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
 766static int hifn_rng_data_present(struct hwrng *rng, int wait)
 767{
 768	struct hifn_device *dev = (struct hifn_device *)rng->priv;
 769	s64 nsec;
 770
 771	nsec = ktime_to_ns(ktime_sub(ktime_get(), dev->rngtime));
 772	nsec -= dev->rng_wait_time;
 773	if (nsec <= 0)
 774		return 1;
 775	if (!wait)
 776		return 0;
 777	ndelay(nsec);
 778	return 1;
 779}
 780
 781static int hifn_rng_data_read(struct hwrng *rng, u32 *data)
 782{
 783	struct hifn_device *dev = (struct hifn_device *)rng->priv;
 784
 785	*data = hifn_read_1(dev, HIFN_1_RNG_DATA);
 786	dev->rngtime = ktime_get();
 787	return 4;
 788}
 789
 790static int hifn_register_rng(struct hifn_device *dev)
 791{
 792	/*
 793	 * We must wait at least 256 Pk_clk cycles between two reads of the rng.
 794	 */
 795	dev->rng_wait_time	= DIV_ROUND_UP_ULL(NSEC_PER_SEC,
 796						   dev->pk_clk_freq) * 256;
 797
 798	dev->rng.name		= dev->name;
 799	dev->rng.data_present	= hifn_rng_data_present,
 800	dev->rng.data_read	= hifn_rng_data_read,
 801	dev->rng.priv		= (unsigned long)dev;
 802
 803	return hwrng_register(&dev->rng);
 804}
 805
 806static void hifn_unregister_rng(struct hifn_device *dev)
 807{
 808	hwrng_unregister(&dev->rng);
 809}
 810#else
 811#define hifn_register_rng(dev)		0
 812#define hifn_unregister_rng(dev)
 813#endif
 814
 815static int hifn_init_pubrng(struct hifn_device *dev)
 816{
 817	int i;
 818
 819	hifn_write_1(dev, HIFN_1_PUB_RESET, hifn_read_1(dev, HIFN_1_PUB_RESET) |
 820			HIFN_PUBRST_RESET);
 821
 822	for (i = 100; i > 0; --i) {
 823		mdelay(1);
 824
 825		if ((hifn_read_1(dev, HIFN_1_PUB_RESET) & HIFN_PUBRST_RESET) == 0)
 826			break;
 827	}
 828
 829	if (!i) {
 830		dev_err(&dev->pdev->dev, "Failed to initialise public key engine.\n");
 831	} else {
 832		hifn_write_1(dev, HIFN_1_PUB_IEN, HIFN_PUBIEN_DONE);
 833		dev->dmareg |= HIFN_DMAIER_PUBDONE;
 834		hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
 835
 836		dev_dbg(&dev->pdev->dev, "Public key engine has been successfully initialised.\n");
 837	}
 838
 839	/* Enable RNG engine. */
 840
 841	hifn_write_1(dev, HIFN_1_RNG_CONFIG,
 842			hifn_read_1(dev, HIFN_1_RNG_CONFIG) | HIFN_RNGCFG_ENA);
 843	dev_dbg(&dev->pdev->dev, "RNG engine has been successfully initialised.\n");
 844
 845#ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
 846	/* First value must be discarded */
 847	hifn_read_1(dev, HIFN_1_RNG_DATA);
 848	dev->rngtime = ktime_get();
 849#endif
 850	return 0;
 851}
 852
 853static int hifn_enable_crypto(struct hifn_device *dev)
 854{
 855	u32 dmacfg, addr;
 856	char *offtbl = NULL;
 857	int i;
 858
 859	for (i = 0; i < ARRAY_SIZE(pci2id); i++) {
 860		if (pci2id[i].pci_vendor == dev->pdev->vendor &&
 861				pci2id[i].pci_prod == dev->pdev->device) {
 862			offtbl = pci2id[i].card_id;
 863			break;
 864		}
 865	}
 866
 867	if (!offtbl) {
 868		dev_err(&dev->pdev->dev, "Unknown card!\n");
 869		return -ENODEV;
 870	}
 871
 872	dmacfg = hifn_read_1(dev, HIFN_1_DMA_CNFG);
 873
 874	hifn_write_1(dev, HIFN_1_DMA_CNFG,
 875			HIFN_DMACNFG_UNLOCK | HIFN_DMACNFG_MSTRESET |
 876			HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
 877	mdelay(1);
 878	addr = hifn_read_1(dev, HIFN_1_UNLOCK_SECRET1);
 879	mdelay(1);
 880	hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, 0);
 881	mdelay(1);
 882
 883	for (i = 0; i < 12; ++i) {
 884		addr = hifn_next_signature(addr, offtbl[i] + 0x101);
 885		hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, addr);
 886
 887		mdelay(1);
 888	}
 889	hifn_write_1(dev, HIFN_1_DMA_CNFG, dmacfg);
 890
 891	dev_dbg(&dev->pdev->dev, "%s %s.\n", dev->name, pci_name(dev->pdev));
 892
 893	return 0;
 894}
 895
 896static void hifn_init_dma(struct hifn_device *dev)
 897{
 898	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
 899	u32 dptr = dev->desc_dma;
 900	int i;
 901
 902	for (i = 0; i < HIFN_D_CMD_RSIZE; ++i)
 903		dma->cmdr[i].p = __cpu_to_le32(dptr +
 904				offsetof(struct hifn_dma, command_bufs[i][0]));
 905	for (i = 0; i < HIFN_D_RES_RSIZE; ++i)
 906		dma->resr[i].p = __cpu_to_le32(dptr +
 907				offsetof(struct hifn_dma, result_bufs[i][0]));
 908
 909	/* Setup LAST descriptors. */
 910	dma->cmdr[HIFN_D_CMD_RSIZE].p = __cpu_to_le32(dptr +
 911			offsetof(struct hifn_dma, cmdr[0]));
 912	dma->srcr[HIFN_D_SRC_RSIZE].p = __cpu_to_le32(dptr +
 913			offsetof(struct hifn_dma, srcr[0]));
 914	dma->dstr[HIFN_D_DST_RSIZE].p = __cpu_to_le32(dptr +
 915			offsetof(struct hifn_dma, dstr[0]));
 916	dma->resr[HIFN_D_RES_RSIZE].p = __cpu_to_le32(dptr +
 917			offsetof(struct hifn_dma, resr[0]));
 918
 919	dma->cmdu = dma->srcu = dma->dstu = dma->resu = 0;
 920	dma->cmdi = dma->srci = dma->dsti = dma->resi = 0;
 921	dma->cmdk = dma->srck = dma->dstk = dma->resk = 0;
 922}
 923
 924/*
 925 * Initialize the PLL. We need to know the frequency of the reference clock
 926 * to calculate the optimal multiplier. For PCI we assume 66MHz, since that
 927 * allows us to operate without the risk of overclocking the chip. If it
 928 * actually uses 33MHz, the chip will operate at half the speed, this can be
 929 * overridden by specifying the frequency as module parameter (pci33).
 930 *
 931 * Unfortunately the PCI clock is not very suitable since the HIFN needs a
 932 * stable clock and the PCI clock frequency may vary, so the default is the
 933 * external clock. There is no way to find out its frequency, we default to
 934 * 66MHz since according to Mike Ham of HiFn, almost every board in existence
 935 * has an external crystal populated at 66MHz.
 936 */
 937static void hifn_init_pll(struct hifn_device *dev)
 938{
 939	unsigned int freq, m;
 940	u32 pllcfg;
 941
 942	pllcfg = HIFN_1_PLL | HIFN_PLL_RESERVED_1;
 943
 944	if (strncmp(hifn_pll_ref, "ext", 3) == 0)
 945		pllcfg |= HIFN_PLL_REF_CLK_PLL;
 946	else
 947		pllcfg |= HIFN_PLL_REF_CLK_HBI;
 948
 949	if (hifn_pll_ref[3] != '\0')
 950		freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
 951	else {
 952		freq = 66;
 953		dev_info(&dev->pdev->dev, "assuming %uMHz clock speed, override with hifn_pll_ref=%.3s<frequency>\n",
 954			 freq, hifn_pll_ref);
 955	}
 956
 957	m = HIFN_PLL_FCK_MAX / freq;
 958
 959	pllcfg |= (m / 2 - 1) << HIFN_PLL_ND_SHIFT;
 960	if (m <= 8)
 961		pllcfg |= HIFN_PLL_IS_1_8;
 962	else
 963		pllcfg |= HIFN_PLL_IS_9_12;
 964
 965	/* Select clock source and enable clock bypass */
 966	hifn_write_1(dev, HIFN_1_PLL, pllcfg |
 967		     HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI | HIFN_PLL_BP);
 968
 969	/* Let the chip lock to the input clock */
 970	mdelay(10);
 971
 972	/* Disable clock bypass */
 973	hifn_write_1(dev, HIFN_1_PLL, pllcfg |
 974		     HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI);
 975
 976	/* Switch the engines to the PLL */
 977	hifn_write_1(dev, HIFN_1_PLL, pllcfg |
 978		     HIFN_PLL_PK_CLK_PLL | HIFN_PLL_PE_CLK_PLL);
 979
 980	/*
 981	 * The Fpk_clk runs at half the total speed. Its frequency is needed to
 982	 * calculate the minimum time between two reads of the rng. Since 33MHz
 983	 * is actually 33.333... we overestimate the frequency here, resulting
 984	 * in slightly larger intervals.
 985	 */
 986	dev->pk_clk_freq = 1000000 * (freq + 1) * m / 2;
 987}
 988
 989static void hifn_init_registers(struct hifn_device *dev)
 990{
 991	u32 dptr = dev->desc_dma;
 992
 993	/* Initialization magic... */
 994	hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
 995	hifn_write_0(dev, HIFN_0_FIFOCNFG, HIFN_FIFOCNFG_THRESHOLD);
 996	hifn_write_0(dev, HIFN_0_PUIER, HIFN_PUIER_DSTOVER);
 997
 998	/* write all 4 ring address registers */
 999	hifn_write_1(dev, HIFN_1_DMA_CRAR, dptr +
1000				offsetof(struct hifn_dma, cmdr[0]));
1001	hifn_write_1(dev, HIFN_1_DMA_SRAR, dptr +
1002				offsetof(struct hifn_dma, srcr[0]));
1003	hifn_write_1(dev, HIFN_1_DMA_DRAR, dptr +
1004				offsetof(struct hifn_dma, dstr[0]));
1005	hifn_write_1(dev, HIFN_1_DMA_RRAR, dptr +
1006				offsetof(struct hifn_dma, resr[0]));
1007
1008	mdelay(2);
1009#if 0
1010	hifn_write_1(dev, HIFN_1_DMA_CSR,
1011	    HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
1012	    HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS |
1013	    HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
1014	    HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
1015	    HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
1016	    HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
1017	    HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
1018	    HIFN_DMACSR_S_WAIT |
1019	    HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1020	    HIFN_DMACSR_C_WAIT |
1021	    HIFN_DMACSR_ENGINE |
1022	    HIFN_DMACSR_PUBDONE);
1023#else
1024	hifn_write_1(dev, HIFN_1_DMA_CSR,
1025	    HIFN_DMACSR_C_CTRL_ENA | HIFN_DMACSR_S_CTRL_ENA |
1026	    HIFN_DMACSR_D_CTRL_ENA | HIFN_DMACSR_R_CTRL_ENA |
1027	    HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
1028	    HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
1029	    HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
1030	    HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
1031	    HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
1032	    HIFN_DMACSR_S_WAIT |
1033	    HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1034	    HIFN_DMACSR_C_WAIT |
1035	    HIFN_DMACSR_ENGINE |
1036	    HIFN_DMACSR_PUBDONE);
1037#endif
1038	hifn_read_1(dev, HIFN_1_DMA_CSR);
1039
1040	dev->dmareg |= HIFN_DMAIER_R_DONE | HIFN_DMAIER_C_ABORT |
1041	    HIFN_DMAIER_D_OVER | HIFN_DMAIER_R_OVER |
1042	    HIFN_DMAIER_S_ABORT | HIFN_DMAIER_D_ABORT | HIFN_DMAIER_R_ABORT |
1043	    HIFN_DMAIER_ENGINE;
1044	dev->dmareg &= ~HIFN_DMAIER_C_WAIT;
1045
1046	hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1047	hifn_read_1(dev, HIFN_1_DMA_IER);
1048#if 0
1049	hifn_write_0(dev, HIFN_0_PUCNFG, HIFN_PUCNFG_ENCCNFG |
1050		    HIFN_PUCNFG_DRFR_128 | HIFN_PUCNFG_TCALLPHASES |
1051		    HIFN_PUCNFG_TCDRVTOTEM | HIFN_PUCNFG_BUS32 |
1052		    HIFN_PUCNFG_DRAM);
1053#else
1054	hifn_write_0(dev, HIFN_0_PUCNFG, 0x10342);
1055#endif
1056	hifn_init_pll(dev);
1057
1058	hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1059	hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
1060	    HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE | HIFN_DMACNFG_LAST |
1061	    ((HIFN_POLL_FREQUENCY << 16 ) & HIFN_DMACNFG_POLLFREQ) |
1062	    ((HIFN_POLL_SCALAR << 8) & HIFN_DMACNFG_POLLINVAL));
1063}
1064
1065static int hifn_setup_base_command(struct hifn_device *dev, u8 *buf,
1066		unsigned dlen, unsigned slen, u16 mask, u8 snum)
1067{
1068	struct hifn_base_command *base_cmd;
1069	u8 *buf_pos = buf;
1070
1071	base_cmd = (struct hifn_base_command *)buf_pos;
1072	base_cmd->masks = __cpu_to_le16(mask);
1073	base_cmd->total_source_count =
1074		__cpu_to_le16(slen & HIFN_BASE_CMD_LENMASK_LO);
1075	base_cmd->total_dest_count =
1076		__cpu_to_le16(dlen & HIFN_BASE_CMD_LENMASK_LO);
1077
1078	dlen >>= 16;
1079	slen >>= 16;
1080	base_cmd->session_num = __cpu_to_le16(snum |
1081	    ((slen << HIFN_BASE_CMD_SRCLEN_S) & HIFN_BASE_CMD_SRCLEN_M) |
1082	    ((dlen << HIFN_BASE_CMD_DSTLEN_S) & HIFN_BASE_CMD_DSTLEN_M));
1083
1084	return sizeof(struct hifn_base_command);
1085}
1086
1087static int hifn_setup_crypto_command(struct hifn_device *dev,
1088		u8 *buf, unsigned dlen, unsigned slen,
1089		u8 *key, int keylen, u8 *iv, int ivsize, u16 mode)
1090{
1091	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1092	struct hifn_crypt_command *cry_cmd;
1093	u8 *buf_pos = buf;
1094	u16 cmd_len;
1095
1096	cry_cmd = (struct hifn_crypt_command *)buf_pos;
1097
1098	cry_cmd->source_count = __cpu_to_le16(dlen & 0xffff);
1099	dlen >>= 16;
1100	cry_cmd->masks = __cpu_to_le16(mode |
1101			((dlen << HIFN_CRYPT_CMD_SRCLEN_S) &
1102			 HIFN_CRYPT_CMD_SRCLEN_M));
1103	cry_cmd->header_skip = 0;
1104	cry_cmd->reserved = 0;
1105
1106	buf_pos += sizeof(struct hifn_crypt_command);
1107
1108	dma->cmdu++;
1109	if (dma->cmdu > 1) {
1110		dev->dmareg |= HIFN_DMAIER_C_WAIT;
1111		hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1112	}
1113
1114	if (keylen) {
1115		memcpy(buf_pos, key, keylen);
1116		buf_pos += keylen;
1117	}
1118	if (ivsize) {
1119		memcpy(buf_pos, iv, ivsize);
1120		buf_pos += ivsize;
1121	}
1122
1123	cmd_len = buf_pos - buf;
1124
1125	return cmd_len;
1126}
1127
1128static int hifn_setup_cmd_desc(struct hifn_device *dev,
1129		struct hifn_context *ctx, struct hifn_request_context *rctx,
1130		void *priv, unsigned int nbytes)
1131{
1132	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1133	int cmd_len, sa_idx;
1134	u8 *buf, *buf_pos;
1135	u16 mask;
1136
1137	sa_idx = dma->cmdi;
1138	buf_pos = buf = dma->command_bufs[dma->cmdi];
1139
1140	mask = 0;
1141	switch (rctx->op) {
1142	case ACRYPTO_OP_DECRYPT:
1143		mask = HIFN_BASE_CMD_CRYPT | HIFN_BASE_CMD_DECODE;
1144		break;
1145	case ACRYPTO_OP_ENCRYPT:
1146		mask = HIFN_BASE_CMD_CRYPT;
1147		break;
1148	case ACRYPTO_OP_HMAC:
1149		mask = HIFN_BASE_CMD_MAC;
1150		break;
1151	default:
1152		goto err_out;
1153	}
1154
1155	buf_pos += hifn_setup_base_command(dev, buf_pos, nbytes,
1156			nbytes, mask, dev->snum);
1157
1158	if (rctx->op == ACRYPTO_OP_ENCRYPT || rctx->op == ACRYPTO_OP_DECRYPT) {
1159		u16 md = 0;
1160
1161		if (ctx->keysize)
1162			md |= HIFN_CRYPT_CMD_NEW_KEY;
1163		if (rctx->iv && rctx->mode != ACRYPTO_MODE_ECB)
1164			md |= HIFN_CRYPT_CMD_NEW_IV;
1165
1166		switch (rctx->mode) {
1167		case ACRYPTO_MODE_ECB:
1168			md |= HIFN_CRYPT_CMD_MODE_ECB;
1169			break;
1170		case ACRYPTO_MODE_CBC:
1171			md |= HIFN_CRYPT_CMD_MODE_CBC;
1172			break;
1173		case ACRYPTO_MODE_CFB:
1174			md |= HIFN_CRYPT_CMD_MODE_CFB;
1175			break;
1176		case ACRYPTO_MODE_OFB:
1177			md |= HIFN_CRYPT_CMD_MODE_OFB;
1178			break;
1179		default:
1180			goto err_out;
1181		}
1182
1183		switch (rctx->type) {
1184		case ACRYPTO_TYPE_AES_128:
1185			if (ctx->keysize != 16)
1186				goto err_out;
1187			md |= HIFN_CRYPT_CMD_KSZ_128 |
1188				HIFN_CRYPT_CMD_ALG_AES;
1189			break;
1190		case ACRYPTO_TYPE_AES_192:
1191			if (ctx->keysize != 24)
1192				goto err_out;
1193			md |= HIFN_CRYPT_CMD_KSZ_192 |
1194				HIFN_CRYPT_CMD_ALG_AES;
1195			break;
1196		case ACRYPTO_TYPE_AES_256:
1197			if (ctx->keysize != 32)
1198				goto err_out;
1199			md |= HIFN_CRYPT_CMD_KSZ_256 |
1200				HIFN_CRYPT_CMD_ALG_AES;
1201			break;
1202		case ACRYPTO_TYPE_3DES:
1203			if (ctx->keysize != 24)
1204				goto err_out;
1205			md |= HIFN_CRYPT_CMD_ALG_3DES;
1206			break;
1207		case ACRYPTO_TYPE_DES:
1208			if (ctx->keysize != 8)
1209				goto err_out;
1210			md |= HIFN_CRYPT_CMD_ALG_DES;
1211			break;
1212		default:
1213			goto err_out;
1214		}
1215
1216		buf_pos += hifn_setup_crypto_command(dev, buf_pos,
1217				nbytes, nbytes, ctx->key, ctx->keysize,
1218				rctx->iv, rctx->ivsize, md);
1219	}
1220
1221	dev->sa[sa_idx] = priv;
1222	dev->started++;
1223
1224	cmd_len = buf_pos - buf;
1225	dma->cmdr[dma->cmdi].l = __cpu_to_le32(cmd_len | HIFN_D_VALID |
1226			HIFN_D_LAST | HIFN_D_MASKDONEIRQ);
1227
1228	if (++dma->cmdi == HIFN_D_CMD_RSIZE) {
1229		dma->cmdr[dma->cmdi].l = __cpu_to_le32(
1230			HIFN_D_VALID | HIFN_D_LAST |
1231			HIFN_D_MASKDONEIRQ | HIFN_D_JUMP);
1232		dma->cmdi = 0;
1233	} else {
1234		dma->cmdr[dma->cmdi - 1].l |= __cpu_to_le32(HIFN_D_VALID);
1235	}
1236
1237	if (!(dev->flags & HIFN_FLAG_CMD_BUSY)) {
1238		hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_C_CTRL_ENA);
1239		dev->flags |= HIFN_FLAG_CMD_BUSY;
1240	}
1241	return 0;
1242
1243err_out:
1244	return -EINVAL;
1245}
1246
1247static int hifn_setup_src_desc(struct hifn_device *dev, struct page *page,
1248		unsigned int offset, unsigned int size, int last)
1249{
1250	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1251	int idx;
1252	dma_addr_t addr;
1253
1254	addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_TODEVICE);
 
1255
1256	idx = dma->srci;
1257
1258	dma->srcr[idx].p = __cpu_to_le32(addr);
1259	dma->srcr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
1260			HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
1261
1262	if (++idx == HIFN_D_SRC_RSIZE) {
1263		dma->srcr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1264				HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1265				(last ? HIFN_D_LAST : 0));
1266		idx = 0;
1267	}
1268
1269	dma->srci = idx;
1270	dma->srcu++;
1271
1272	if (!(dev->flags & HIFN_FLAG_SRC_BUSY)) {
1273		hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_S_CTRL_ENA);
1274		dev->flags |= HIFN_FLAG_SRC_BUSY;
1275	}
1276
1277	return size;
1278}
1279
1280static void hifn_setup_res_desc(struct hifn_device *dev)
1281{
1282	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1283
1284	dma->resr[dma->resi].l = __cpu_to_le32(HIFN_USED_RESULT |
1285			HIFN_D_VALID | HIFN_D_LAST);
1286	/*
1287	 * dma->resr[dma->resi].l = __cpu_to_le32(HIFN_MAX_RESULT | HIFN_D_VALID |
1288	 *					HIFN_D_LAST);
1289	 */
1290
1291	if (++dma->resi == HIFN_D_RES_RSIZE) {
1292		dma->resr[HIFN_D_RES_RSIZE].l = __cpu_to_le32(HIFN_D_VALID |
1293				HIFN_D_JUMP | HIFN_D_MASKDONEIRQ | HIFN_D_LAST);
1294		dma->resi = 0;
1295	}
1296
1297	dma->resu++;
1298
1299	if (!(dev->flags & HIFN_FLAG_RES_BUSY)) {
1300		hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_R_CTRL_ENA);
1301		dev->flags |= HIFN_FLAG_RES_BUSY;
1302	}
1303}
1304
1305static void hifn_setup_dst_desc(struct hifn_device *dev, struct page *page,
1306		unsigned offset, unsigned size, int last)
1307{
1308	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1309	int idx;
1310	dma_addr_t addr;
1311
1312	addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_FROMDEVICE);
 
1313
1314	idx = dma->dsti;
1315	dma->dstr[idx].p = __cpu_to_le32(addr);
1316	dma->dstr[idx].l = __cpu_to_le32(size |	HIFN_D_VALID |
1317			HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
1318
1319	if (++idx == HIFN_D_DST_RSIZE) {
1320		dma->dstr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1321				HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1322				(last ? HIFN_D_LAST : 0));
1323		idx = 0;
1324	}
1325	dma->dsti = idx;
1326	dma->dstu++;
1327
1328	if (!(dev->flags & HIFN_FLAG_DST_BUSY)) {
1329		hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_D_CTRL_ENA);
1330		dev->flags |= HIFN_FLAG_DST_BUSY;
1331	}
1332}
1333
1334static int hifn_setup_dma(struct hifn_device *dev,
1335		struct hifn_context *ctx, struct hifn_request_context *rctx,
1336		struct scatterlist *src, struct scatterlist *dst,
1337		unsigned int nbytes, void *priv)
1338{
1339	struct scatterlist *t;
1340	struct page *spage, *dpage;
1341	unsigned int soff, doff;
1342	unsigned int n, len;
1343
1344	n = nbytes;
1345	while (n) {
1346		spage = sg_page(src);
1347		soff = src->offset;
1348		len = min(src->length, n);
1349
1350		hifn_setup_src_desc(dev, spage, soff, len, n - len == 0);
1351
1352		src++;
1353		n -= len;
1354	}
1355
1356	t = &rctx->walk.cache[0];
1357	n = nbytes;
1358	while (n) {
1359		if (t->length && rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1360			BUG_ON(!sg_page(t));
1361			dpage = sg_page(t);
1362			doff = 0;
1363			len = t->length;
1364		} else {
1365			BUG_ON(!sg_page(dst));
1366			dpage = sg_page(dst);
1367			doff = dst->offset;
1368			len = dst->length;
1369		}
1370		len = min(len, n);
1371
1372		hifn_setup_dst_desc(dev, dpage, doff, len, n - len == 0);
1373
1374		dst++;
1375		t++;
1376		n -= len;
1377	}
1378
1379	hifn_setup_cmd_desc(dev, ctx, rctx, priv, nbytes);
1380	hifn_setup_res_desc(dev);
1381	return 0;
1382}
1383
1384static int hifn_cipher_walk_init(struct hifn_cipher_walk *w,
1385		int num, gfp_t gfp_flags)
1386{
1387	int i;
1388
1389	num = min(ASYNC_SCATTERLIST_CACHE, num);
1390	sg_init_table(w->cache, num);
1391
1392	w->num = 0;
1393	for (i = 0; i < num; ++i) {
1394		struct page *page = alloc_page(gfp_flags);
1395		struct scatterlist *s;
1396
1397		if (!page)
1398			break;
1399
1400		s = &w->cache[i];
1401
1402		sg_set_page(s, page, PAGE_SIZE, 0);
1403		w->num++;
1404	}
1405
1406	return i;
1407}
1408
1409static void hifn_cipher_walk_exit(struct hifn_cipher_walk *w)
1410{
1411	int i;
1412
1413	for (i = 0; i < w->num; ++i) {
1414		struct scatterlist *s = &w->cache[i];
1415
1416		__free_page(sg_page(s));
1417
1418		s->length = 0;
1419	}
1420
1421	w->num = 0;
1422}
1423
1424static int ablkcipher_add(unsigned int *drestp, struct scatterlist *dst,
1425		unsigned int size, unsigned int *nbytesp)
1426{
1427	unsigned int copy, drest = *drestp, nbytes = *nbytesp;
1428	int idx = 0;
1429
1430	if (drest < size || size > nbytes)
1431		return -EINVAL;
1432
1433	while (size) {
1434		copy = min3(drest, size, dst->length);
1435
1436		size -= copy;
1437		drest -= copy;
1438		nbytes -= copy;
1439
1440		pr_debug("%s: copy: %u, size: %u, drest: %u, nbytes: %u.\n",
1441			 __func__, copy, size, drest, nbytes);
1442
1443		dst++;
1444		idx++;
1445	}
1446
1447	*nbytesp = nbytes;
1448	*drestp = drest;
1449
1450	return idx;
1451}
1452
1453static int hifn_cipher_walk(struct ablkcipher_request *req,
1454		struct hifn_cipher_walk *w)
1455{
1456	struct scatterlist *dst, *t;
1457	unsigned int nbytes = req->nbytes, offset, copy, diff;
1458	int idx, tidx, err;
1459
1460	tidx = idx = 0;
1461	offset = 0;
1462	while (nbytes) {
1463		if (idx >= w->num && (w->flags & ASYNC_FLAGS_MISALIGNED))
1464			return -EINVAL;
1465
1466		dst = &req->dst[idx];
1467
1468		pr_debug("\n%s: dlen: %u, doff: %u, offset: %u, nbytes: %u.\n",
1469			 __func__, dst->length, dst->offset, offset, nbytes);
1470
1471		if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1472		    !IS_ALIGNED(dst->length, HIFN_D_DST_DALIGN) ||
1473		    offset) {
1474			unsigned slen = min(dst->length - offset, nbytes);
1475			unsigned dlen = PAGE_SIZE;
1476
1477			t = &w->cache[idx];
1478
1479			err = ablkcipher_add(&dlen, dst, slen, &nbytes);
1480			if (err < 0)
1481				return err;
1482
1483			idx += err;
1484
1485			copy = slen & ~(HIFN_D_DST_DALIGN - 1);
1486			diff = slen & (HIFN_D_DST_DALIGN - 1);
1487
1488			if (dlen < nbytes) {
1489				/*
1490				 * Destination page does not have enough space
1491				 * to put there additional blocksized chunk,
1492				 * so we mark that page as containing only
1493				 * blocksize aligned chunks:
1494				 *	t->length = (slen & ~(HIFN_D_DST_DALIGN - 1));
1495				 * and increase number of bytes to be processed
1496				 * in next chunk:
1497				 *	nbytes += diff;
1498				 */
1499				nbytes += diff;
1500
1501				/*
1502				 * Temporary of course...
1503				 * Kick author if you will catch this one.
1504				 */
1505				pr_err("%s: dlen: %u, nbytes: %u, slen: %u, offset: %u.\n",
1506				       __func__, dlen, nbytes, slen, offset);
1507				pr_err("%s: please contact author to fix this "
1508				       "issue, generally you should not catch "
1509				       "this path under any condition but who "
1510				       "knows how did you use crypto code.\n"
1511				       "Thank you.\n",	__func__);
1512				BUG();
1513			} else {
1514				copy += diff + nbytes;
1515
1516				dst = &req->dst[idx];
1517
1518				err = ablkcipher_add(&dlen, dst, nbytes, &nbytes);
1519				if (err < 0)
1520					return err;
1521
1522				idx += err;
1523			}
1524
1525			t->length = copy;
1526			t->offset = offset;
1527		} else {
1528			nbytes -= min(dst->length, nbytes);
1529			idx++;
1530		}
1531
1532		tidx++;
1533	}
1534
1535	return tidx;
1536}
1537
1538static int hifn_setup_session(struct ablkcipher_request *req)
1539{
1540	struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1541	struct hifn_request_context *rctx = ablkcipher_request_ctx(req);
1542	struct hifn_device *dev = ctx->dev;
1543	unsigned long dlen, flags;
1544	unsigned int nbytes = req->nbytes, idx = 0;
1545	int err = -EINVAL, sg_num;
1546	struct scatterlist *dst;
1547
1548	if (rctx->iv && !rctx->ivsize && rctx->mode != ACRYPTO_MODE_ECB)
1549		goto err_out_exit;
1550
1551	rctx->walk.flags = 0;
1552
1553	while (nbytes) {
1554		dst = &req->dst[idx];
1555		dlen = min(dst->length, nbytes);
1556
1557		if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1558		    !IS_ALIGNED(dlen, HIFN_D_DST_DALIGN))
1559			rctx->walk.flags |= ASYNC_FLAGS_MISALIGNED;
1560
1561		nbytes -= dlen;
1562		idx++;
1563	}
1564
1565	if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1566		err = hifn_cipher_walk_init(&rctx->walk, idx, GFP_ATOMIC);
1567		if (err < 0)
1568			return err;
1569	}
1570
1571	sg_num = hifn_cipher_walk(req, &rctx->walk);
1572	if (sg_num < 0) {
1573		err = sg_num;
1574		goto err_out_exit;
1575	}
1576
1577	spin_lock_irqsave(&dev->lock, flags);
1578	if (dev->started + sg_num > HIFN_QUEUE_LENGTH) {
1579		err = -EAGAIN;
1580		goto err_out;
1581	}
1582
1583	err = hifn_setup_dma(dev, ctx, rctx, req->src, req->dst, req->nbytes, req);
1584	if (err)
1585		goto err_out;
1586
1587	dev->snum++;
1588
1589	dev->active = HIFN_DEFAULT_ACTIVE_NUM;
1590	spin_unlock_irqrestore(&dev->lock, flags);
1591
1592	return 0;
1593
1594err_out:
1595	spin_unlock_irqrestore(&dev->lock, flags);
1596err_out_exit:
1597	if (err) {
1598		dev_info(&dev->pdev->dev, "iv: %p [%d], key: %p [%d], mode: %u, op: %u, "
1599			 "type: %u, err: %d.\n",
1600			 rctx->iv, rctx->ivsize,
1601			 ctx->key, ctx->keysize,
1602			 rctx->mode, rctx->op, rctx->type, err);
1603	}
1604
1605	return err;
1606}
1607
1608static int hifn_start_device(struct hifn_device *dev)
1609{
1610	int err;
1611
1612	dev->started = dev->active = 0;
1613	hifn_reset_dma(dev, 1);
1614
1615	err = hifn_enable_crypto(dev);
1616	if (err)
1617		return err;
1618
1619	hifn_reset_puc(dev);
1620
1621	hifn_init_dma(dev);
1622
1623	hifn_init_registers(dev);
1624
1625	hifn_init_pubrng(dev);
1626
1627	return 0;
1628}
1629
1630static int ablkcipher_get(void *saddr, unsigned int *srestp, unsigned int offset,
1631		struct scatterlist *dst, unsigned int size, unsigned int *nbytesp)
1632{
1633	unsigned int srest = *srestp, nbytes = *nbytesp, copy;
1634	void *daddr;
1635	int idx = 0;
1636
1637	if (srest < size || size > nbytes)
1638		return -EINVAL;
1639
1640	while (size) {
1641		copy = min3(srest, dst->length, size);
1642
1643		daddr = kmap_atomic(sg_page(dst));
1644		memcpy(daddr + dst->offset + offset, saddr, copy);
1645		kunmap_atomic(daddr);
1646
1647		nbytes -= copy;
1648		size -= copy;
1649		srest -= copy;
1650		saddr += copy;
1651		offset = 0;
1652
1653		pr_debug("%s: copy: %u, size: %u, srest: %u, nbytes: %u.\n",
1654			 __func__, copy, size, srest, nbytes);
1655
1656		dst++;
1657		idx++;
1658	}
1659
1660	*nbytesp = nbytes;
1661	*srestp = srest;
1662
1663	return idx;
1664}
1665
1666static inline void hifn_complete_sa(struct hifn_device *dev, int i)
1667{
1668	unsigned long flags;
1669
1670	spin_lock_irqsave(&dev->lock, flags);
1671	dev->sa[i] = NULL;
1672	dev->started--;
1673	if (dev->started < 0)
1674		dev_info(&dev->pdev->dev, "%s: started: %d.\n", __func__,
1675			 dev->started);
1676	spin_unlock_irqrestore(&dev->lock, flags);
1677	BUG_ON(dev->started < 0);
1678}
1679
1680static void hifn_process_ready(struct ablkcipher_request *req, int error)
1681{
1682	struct hifn_request_context *rctx = ablkcipher_request_ctx(req);
1683
1684	if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1685		unsigned int nbytes = req->nbytes;
1686		int idx = 0, err;
1687		struct scatterlist *dst, *t;
1688		void *saddr;
1689
1690		while (nbytes) {
1691			t = &rctx->walk.cache[idx];
1692			dst = &req->dst[idx];
1693
1694			pr_debug("\n%s: sg_page(t): %p, t->length: %u, "
1695				"sg_page(dst): %p, dst->length: %u, "
1696				"nbytes: %u.\n",
1697				__func__, sg_page(t), t->length,
1698				sg_page(dst), dst->length, nbytes);
1699
1700			if (!t->length) {
1701				nbytes -= min(dst->length, nbytes);
1702				idx++;
1703				continue;
1704			}
1705
1706			saddr = kmap_atomic(sg_page(t));
1707
1708			err = ablkcipher_get(saddr, &t->length, t->offset,
1709					dst, nbytes, &nbytes);
1710			if (err < 0) {
1711				kunmap_atomic(saddr);
1712				break;
1713			}
1714
1715			idx += err;
1716			kunmap_atomic(saddr);
1717		}
1718
1719		hifn_cipher_walk_exit(&rctx->walk);
1720	}
1721
1722	req->base.complete(&req->base, error);
1723}
1724
1725static void hifn_clear_rings(struct hifn_device *dev, int error)
1726{
1727	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1728	int i, u;
1729
1730	dev_dbg(&dev->pdev->dev, "ring cleanup 1: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1731			"k: %d.%d.%d.%d.\n",
1732			dma->cmdi, dma->srci, dma->dsti, dma->resi,
1733			dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1734			dma->cmdk, dma->srck, dma->dstk, dma->resk);
1735
1736	i = dma->resk; u = dma->resu;
1737	while (u != 0) {
1738		if (dma->resr[i].l & __cpu_to_le32(HIFN_D_VALID))
1739			break;
1740
1741		if (dev->sa[i]) {
1742			dev->success++;
1743			dev->reset = 0;
1744			hifn_process_ready(dev->sa[i], error);
1745			hifn_complete_sa(dev, i);
1746		}
1747
1748		if (++i == HIFN_D_RES_RSIZE)
1749			i = 0;
1750		u--;
1751	}
1752	dma->resk = i; dma->resu = u;
1753
1754	i = dma->srck; u = dma->srcu;
1755	while (u != 0) {
1756		if (dma->srcr[i].l & __cpu_to_le32(HIFN_D_VALID))
1757			break;
1758		if (++i == HIFN_D_SRC_RSIZE)
1759			i = 0;
1760		u--;
1761	}
1762	dma->srck = i; dma->srcu = u;
1763
1764	i = dma->cmdk; u = dma->cmdu;
1765	while (u != 0) {
1766		if (dma->cmdr[i].l & __cpu_to_le32(HIFN_D_VALID))
1767			break;
1768		if (++i == HIFN_D_CMD_RSIZE)
1769			i = 0;
1770		u--;
1771	}
1772	dma->cmdk = i; dma->cmdu = u;
1773
1774	i = dma->dstk; u = dma->dstu;
1775	while (u != 0) {
1776		if (dma->dstr[i].l & __cpu_to_le32(HIFN_D_VALID))
1777			break;
1778		if (++i == HIFN_D_DST_RSIZE)
1779			i = 0;
1780		u--;
1781	}
1782	dma->dstk = i; dma->dstu = u;
1783
1784	dev_dbg(&dev->pdev->dev, "ring cleanup 2: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1785			"k: %d.%d.%d.%d.\n",
1786			dma->cmdi, dma->srci, dma->dsti, dma->resi,
1787			dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1788			dma->cmdk, dma->srck, dma->dstk, dma->resk);
1789}
1790
1791static void hifn_work(struct work_struct *work)
1792{
1793	struct delayed_work *dw = to_delayed_work(work);
1794	struct hifn_device *dev = container_of(dw, struct hifn_device, work);
1795	unsigned long flags;
1796	int reset = 0;
1797	u32 r = 0;
1798
1799	spin_lock_irqsave(&dev->lock, flags);
1800	if (dev->active == 0) {
1801		struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1802
1803		if (dma->cmdu == 0 && (dev->flags & HIFN_FLAG_CMD_BUSY)) {
1804			dev->flags &= ~HIFN_FLAG_CMD_BUSY;
1805			r |= HIFN_DMACSR_C_CTRL_DIS;
1806		}
1807		if (dma->srcu == 0 && (dev->flags & HIFN_FLAG_SRC_BUSY)) {
1808			dev->flags &= ~HIFN_FLAG_SRC_BUSY;
1809			r |= HIFN_DMACSR_S_CTRL_DIS;
1810		}
1811		if (dma->dstu == 0 && (dev->flags & HIFN_FLAG_DST_BUSY)) {
1812			dev->flags &= ~HIFN_FLAG_DST_BUSY;
1813			r |= HIFN_DMACSR_D_CTRL_DIS;
1814		}
1815		if (dma->resu == 0 && (dev->flags & HIFN_FLAG_RES_BUSY)) {
1816			dev->flags &= ~HIFN_FLAG_RES_BUSY;
1817			r |= HIFN_DMACSR_R_CTRL_DIS;
1818		}
1819		if (r)
1820			hifn_write_1(dev, HIFN_1_DMA_CSR, r);
1821	} else
1822		dev->active--;
1823
1824	if ((dev->prev_success == dev->success) && dev->started)
1825		reset = 1;
1826	dev->prev_success = dev->success;
1827	spin_unlock_irqrestore(&dev->lock, flags);
1828
1829	if (reset) {
1830		if (++dev->reset >= 5) {
1831			int i;
1832			struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1833
1834			dev_info(&dev->pdev->dev,
1835				 "r: %08x, active: %d, started: %d, "
1836				 "success: %lu: qlen: %u/%u, reset: %d.\n",
1837				 r, dev->active, dev->started,
1838				 dev->success, dev->queue.qlen, dev->queue.max_qlen,
1839				 reset);
1840
1841			dev_info(&dev->pdev->dev, "%s: res: ", __func__);
1842			for (i = 0; i < HIFN_D_RES_RSIZE; ++i) {
1843				pr_info("%x.%p ", dma->resr[i].l, dev->sa[i]);
1844				if (dev->sa[i]) {
1845					hifn_process_ready(dev->sa[i], -ENODEV);
1846					hifn_complete_sa(dev, i);
1847				}
1848			}
1849			pr_info("\n");
1850
1851			hifn_reset_dma(dev, 1);
1852			hifn_stop_device(dev);
1853			hifn_start_device(dev);
1854			dev->reset = 0;
1855		}
1856
1857		tasklet_schedule(&dev->tasklet);
1858	}
1859
1860	schedule_delayed_work(&dev->work, HZ);
1861}
1862
1863static irqreturn_t hifn_interrupt(int irq, void *data)
1864{
1865	struct hifn_device *dev = (struct hifn_device *)data;
1866	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1867	u32 dmacsr, restart;
1868
1869	dmacsr = hifn_read_1(dev, HIFN_1_DMA_CSR);
1870
1871	dev_dbg(&dev->pdev->dev, "1 dmacsr: %08x, dmareg: %08x, res: %08x [%d], "
1872			"i: %d.%d.%d.%d, u: %d.%d.%d.%d.\n",
1873		dmacsr, dev->dmareg, dmacsr & dev->dmareg, dma->cmdi,
1874		dma->cmdi, dma->srci, dma->dsti, dma->resi,
1875		dma->cmdu, dma->srcu, dma->dstu, dma->resu);
1876
1877	if ((dmacsr & dev->dmareg) == 0)
1878		return IRQ_NONE;
1879
1880	hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & dev->dmareg);
1881
1882	if (dmacsr & HIFN_DMACSR_ENGINE)
1883		hifn_write_0(dev, HIFN_0_PUISR, hifn_read_0(dev, HIFN_0_PUISR));
1884	if (dmacsr & HIFN_DMACSR_PUBDONE)
1885		hifn_write_1(dev, HIFN_1_PUB_STATUS,
1886			hifn_read_1(dev, HIFN_1_PUB_STATUS) | HIFN_PUBSTS_DONE);
1887
1888	restart = dmacsr & (HIFN_DMACSR_R_OVER | HIFN_DMACSR_D_OVER);
1889	if (restart) {
1890		u32 puisr = hifn_read_0(dev, HIFN_0_PUISR);
1891
1892		dev_warn(&dev->pdev->dev, "overflow: r: %d, d: %d, puisr: %08x, d: %u.\n",
1893			 !!(dmacsr & HIFN_DMACSR_R_OVER),
1894			 !!(dmacsr & HIFN_DMACSR_D_OVER),
1895			puisr, !!(puisr & HIFN_PUISR_DSTOVER));
1896		if (!!(puisr & HIFN_PUISR_DSTOVER))
1897			hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1898		hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & (HIFN_DMACSR_R_OVER |
1899					HIFN_DMACSR_D_OVER));
1900	}
1901
1902	restart = dmacsr & (HIFN_DMACSR_C_ABORT | HIFN_DMACSR_S_ABORT |
1903			HIFN_DMACSR_D_ABORT | HIFN_DMACSR_R_ABORT);
1904	if (restart) {
1905		dev_warn(&dev->pdev->dev, "abort: c: %d, s: %d, d: %d, r: %d.\n",
1906			 !!(dmacsr & HIFN_DMACSR_C_ABORT),
1907			 !!(dmacsr & HIFN_DMACSR_S_ABORT),
1908			 !!(dmacsr & HIFN_DMACSR_D_ABORT),
1909			 !!(dmacsr & HIFN_DMACSR_R_ABORT));
1910		hifn_reset_dma(dev, 1);
1911		hifn_init_dma(dev);
1912		hifn_init_registers(dev);
1913	}
1914
1915	if ((dmacsr & HIFN_DMACSR_C_WAIT) && (dma->cmdu == 0)) {
1916		dev_dbg(&dev->pdev->dev, "wait on command.\n");
1917		dev->dmareg &= ~(HIFN_DMAIER_C_WAIT);
1918		hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1919	}
1920
1921	tasklet_schedule(&dev->tasklet);
1922
1923	return IRQ_HANDLED;
1924}
1925
1926static void hifn_flush(struct hifn_device *dev)
1927{
1928	unsigned long flags;
1929	struct crypto_async_request *async_req;
1930	struct ablkcipher_request *req;
1931	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1932	int i;
1933
1934	for (i = 0; i < HIFN_D_RES_RSIZE; ++i) {
1935		struct hifn_desc *d = &dma->resr[i];
1936
1937		if (dev->sa[i]) {
1938			hifn_process_ready(dev->sa[i],
1939				(d->l & __cpu_to_le32(HIFN_D_VALID)) ? -ENODEV : 0);
1940			hifn_complete_sa(dev, i);
1941		}
1942	}
1943
1944	spin_lock_irqsave(&dev->lock, flags);
1945	while ((async_req = crypto_dequeue_request(&dev->queue))) {
1946		req = ablkcipher_request_cast(async_req);
1947		spin_unlock_irqrestore(&dev->lock, flags);
1948
1949		hifn_process_ready(req, -ENODEV);
1950
1951		spin_lock_irqsave(&dev->lock, flags);
1952	}
1953	spin_unlock_irqrestore(&dev->lock, flags);
1954}
1955
1956static int hifn_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
1957		unsigned int len)
1958{
1959	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
1960	struct hifn_context *ctx = crypto_tfm_ctx(tfm);
1961	struct hifn_device *dev = ctx->dev;
 
1962
1963	if (len > HIFN_MAX_CRYPT_KEY_LENGTH) {
1964		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
1965		return -1;
1966	}
 
1967
1968	if (len == HIFN_DES_KEY_LENGTH) {
1969		u32 tmp[DES_EXPKEY_WORDS];
1970		int ret = des_ekey(tmp, key);
1971
1972		if (unlikely(ret == 0) && (tfm->crt_flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
1973			tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
1974			return -EINVAL;
1975		}
1976	}
 
 
 
 
 
 
 
 
1977
1978	dev->flags &= ~HIFN_FLAG_OLD_KEY;
1979
1980	memcpy(ctx->key, key, len);
1981	ctx->keysize = len;
1982
1983	return 0;
1984}
1985
1986static int hifn_handle_req(struct ablkcipher_request *req)
1987{
1988	struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1989	struct hifn_device *dev = ctx->dev;
1990	int err = -EAGAIN;
1991
1992	if (dev->started + DIV_ROUND_UP(req->nbytes, PAGE_SIZE) <= HIFN_QUEUE_LENGTH)
1993		err = hifn_setup_session(req);
1994
1995	if (err == -EAGAIN) {
1996		unsigned long flags;
1997
1998		spin_lock_irqsave(&dev->lock, flags);
1999		err = ablkcipher_enqueue_request(&dev->queue, req);
2000		spin_unlock_irqrestore(&dev->lock, flags);
2001	}
2002
2003	return err;
2004}
2005
2006static int hifn_setup_crypto_req(struct ablkcipher_request *req, u8 op,
2007		u8 type, u8 mode)
2008{
2009	struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2010	struct hifn_request_context *rctx = ablkcipher_request_ctx(req);
2011	unsigned ivsize;
2012
2013	ivsize = crypto_ablkcipher_ivsize(crypto_ablkcipher_reqtfm(req));
2014
2015	if (req->info && mode != ACRYPTO_MODE_ECB) {
2016		if (type == ACRYPTO_TYPE_AES_128)
2017			ivsize = HIFN_AES_IV_LENGTH;
2018		else if (type == ACRYPTO_TYPE_DES)
2019			ivsize = HIFN_DES_KEY_LENGTH;
2020		else if (type == ACRYPTO_TYPE_3DES)
2021			ivsize = HIFN_3DES_KEY_LENGTH;
2022	}
2023
2024	if (ctx->keysize != 16 && type == ACRYPTO_TYPE_AES_128) {
2025		if (ctx->keysize == 24)
2026			type = ACRYPTO_TYPE_AES_192;
2027		else if (ctx->keysize == 32)
2028			type = ACRYPTO_TYPE_AES_256;
2029	}
2030
2031	rctx->op = op;
2032	rctx->mode = mode;
2033	rctx->type = type;
2034	rctx->iv = req->info;
2035	rctx->ivsize = ivsize;
2036
2037	/*
2038	 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2039	 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2040	 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2041	 */
2042
2043	return hifn_handle_req(req);
2044}
2045
2046static int hifn_process_queue(struct hifn_device *dev)
2047{
2048	struct crypto_async_request *async_req, *backlog;
2049	struct ablkcipher_request *req;
2050	unsigned long flags;
2051	int err = 0;
2052
2053	while (dev->started < HIFN_QUEUE_LENGTH) {
2054		spin_lock_irqsave(&dev->lock, flags);
2055		backlog = crypto_get_backlog(&dev->queue);
2056		async_req = crypto_dequeue_request(&dev->queue);
2057		spin_unlock_irqrestore(&dev->lock, flags);
2058
2059		if (!async_req)
2060			break;
2061
2062		if (backlog)
2063			backlog->complete(backlog, -EINPROGRESS);
2064
2065		req = ablkcipher_request_cast(async_req);
2066
2067		err = hifn_handle_req(req);
2068		if (err)
2069			break;
2070	}
2071
2072	return err;
2073}
2074
2075static int hifn_setup_crypto(struct ablkcipher_request *req, u8 op,
2076		u8 type, u8 mode)
2077{
2078	int err;
2079	struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2080	struct hifn_device *dev = ctx->dev;
2081
2082	err = hifn_setup_crypto_req(req, op, type, mode);
2083	if (err)
2084		return err;
2085
2086	if (dev->started < HIFN_QUEUE_LENGTH &&	dev->queue.qlen)
2087		hifn_process_queue(dev);
2088
2089	return -EINPROGRESS;
2090}
2091
2092/*
2093 * AES ecryption functions.
2094 */
2095static inline int hifn_encrypt_aes_ecb(struct ablkcipher_request *req)
2096{
2097	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2098			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2099}
2100static inline int hifn_encrypt_aes_cbc(struct ablkcipher_request *req)
2101{
2102	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2103			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2104}
2105static inline int hifn_encrypt_aes_cfb(struct ablkcipher_request *req)
2106{
2107	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2108			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
2109}
2110static inline int hifn_encrypt_aes_ofb(struct ablkcipher_request *req)
2111{
2112	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2113			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
2114}
2115
2116/*
2117 * AES decryption functions.
2118 */
2119static inline int hifn_decrypt_aes_ecb(struct ablkcipher_request *req)
2120{
2121	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2122			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2123}
2124static inline int hifn_decrypt_aes_cbc(struct ablkcipher_request *req)
2125{
2126	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2127			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2128}
2129static inline int hifn_decrypt_aes_cfb(struct ablkcipher_request *req)
2130{
2131	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2132			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
2133}
2134static inline int hifn_decrypt_aes_ofb(struct ablkcipher_request *req)
2135{
2136	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2137			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
2138}
2139
2140/*
2141 * DES ecryption functions.
2142 */
2143static inline int hifn_encrypt_des_ecb(struct ablkcipher_request *req)
2144{
2145	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2146			ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2147}
2148static inline int hifn_encrypt_des_cbc(struct ablkcipher_request *req)
2149{
2150	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2151			ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2152}
2153static inline int hifn_encrypt_des_cfb(struct ablkcipher_request *req)
2154{
2155	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2156			ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
2157}
2158static inline int hifn_encrypt_des_ofb(struct ablkcipher_request *req)
2159{
2160	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2161			ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
2162}
2163
2164/*
2165 * DES decryption functions.
2166 */
2167static inline int hifn_decrypt_des_ecb(struct ablkcipher_request *req)
2168{
2169	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2170			ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2171}
2172static inline int hifn_decrypt_des_cbc(struct ablkcipher_request *req)
2173{
2174	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2175			ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2176}
2177static inline int hifn_decrypt_des_cfb(struct ablkcipher_request *req)
2178{
2179	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2180			ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
2181}
2182static inline int hifn_decrypt_des_ofb(struct ablkcipher_request *req)
2183{
2184	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2185			ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
2186}
2187
2188/*
2189 * 3DES ecryption functions.
2190 */
2191static inline int hifn_encrypt_3des_ecb(struct ablkcipher_request *req)
2192{
2193	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2194			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2195}
2196static inline int hifn_encrypt_3des_cbc(struct ablkcipher_request *req)
2197{
2198	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2199			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2200}
2201static inline int hifn_encrypt_3des_cfb(struct ablkcipher_request *req)
2202{
2203	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2204			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
2205}
2206static inline int hifn_encrypt_3des_ofb(struct ablkcipher_request *req)
2207{
2208	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2209			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
2210}
2211
2212/* 3DES decryption functions. */
2213static inline int hifn_decrypt_3des_ecb(struct ablkcipher_request *req)
2214{
2215	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2216			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2217}
2218static inline int hifn_decrypt_3des_cbc(struct ablkcipher_request *req)
2219{
2220	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2221			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2222}
2223static inline int hifn_decrypt_3des_cfb(struct ablkcipher_request *req)
2224{
2225	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2226			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
2227}
2228static inline int hifn_decrypt_3des_ofb(struct ablkcipher_request *req)
2229{
2230	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2231			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
2232}
2233
2234struct hifn_alg_template {
2235	char name[CRYPTO_MAX_ALG_NAME];
2236	char drv_name[CRYPTO_MAX_ALG_NAME];
2237	unsigned int bsize;
2238	struct ablkcipher_alg ablkcipher;
2239};
2240
2241static struct hifn_alg_template hifn_alg_templates[] = {
2242	/*
2243	 * 3DES ECB, CBC, CFB and OFB modes.
2244	 */
2245	{
2246		.name = "cfb(des3_ede)", .drv_name = "cfb-3des", .bsize = 8,
2247		.ablkcipher = {
2248			.min_keysize	=	HIFN_3DES_KEY_LENGTH,
2249			.max_keysize	=	HIFN_3DES_KEY_LENGTH,
2250			.setkey		=	hifn_setkey,
2251			.encrypt	=	hifn_encrypt_3des_cfb,
2252			.decrypt	=	hifn_decrypt_3des_cfb,
2253		},
2254	},
2255	{
2256		.name = "ofb(des3_ede)", .drv_name = "ofb-3des", .bsize = 8,
2257		.ablkcipher = {
2258			.min_keysize	=	HIFN_3DES_KEY_LENGTH,
2259			.max_keysize	=	HIFN_3DES_KEY_LENGTH,
2260			.setkey		=	hifn_setkey,
2261			.encrypt	=	hifn_encrypt_3des_ofb,
2262			.decrypt	=	hifn_decrypt_3des_ofb,
2263		},
2264	},
2265	{
2266		.name = "cbc(des3_ede)", .drv_name = "cbc-3des", .bsize = 8,
2267		.ablkcipher = {
2268			.ivsize		=	HIFN_IV_LENGTH,
2269			.min_keysize	=	HIFN_3DES_KEY_LENGTH,
2270			.max_keysize	=	HIFN_3DES_KEY_LENGTH,
2271			.setkey		=	hifn_setkey,
2272			.encrypt	=	hifn_encrypt_3des_cbc,
2273			.decrypt	=	hifn_decrypt_3des_cbc,
2274		},
2275	},
2276	{
2277		.name = "ecb(des3_ede)", .drv_name = "ecb-3des", .bsize = 8,
2278		.ablkcipher = {
2279			.min_keysize	=	HIFN_3DES_KEY_LENGTH,
2280			.max_keysize	=	HIFN_3DES_KEY_LENGTH,
2281			.setkey		=	hifn_setkey,
2282			.encrypt	=	hifn_encrypt_3des_ecb,
2283			.decrypt	=	hifn_decrypt_3des_ecb,
2284		},
2285	},
2286
2287	/*
2288	 * DES ECB, CBC, CFB and OFB modes.
2289	 */
2290	{
2291		.name = "cfb(des)", .drv_name = "cfb-des", .bsize = 8,
2292		.ablkcipher = {
2293			.min_keysize	=	HIFN_DES_KEY_LENGTH,
2294			.max_keysize	=	HIFN_DES_KEY_LENGTH,
2295			.setkey		=	hifn_setkey,
2296			.encrypt	=	hifn_encrypt_des_cfb,
2297			.decrypt	=	hifn_decrypt_des_cfb,
2298		},
2299	},
2300	{
2301		.name = "ofb(des)", .drv_name = "ofb-des", .bsize = 8,
2302		.ablkcipher = {
2303			.min_keysize	=	HIFN_DES_KEY_LENGTH,
2304			.max_keysize	=	HIFN_DES_KEY_LENGTH,
2305			.setkey		=	hifn_setkey,
2306			.encrypt	=	hifn_encrypt_des_ofb,
2307			.decrypt	=	hifn_decrypt_des_ofb,
2308		},
2309	},
2310	{
2311		.name = "cbc(des)", .drv_name = "cbc-des", .bsize = 8,
2312		.ablkcipher = {
2313			.ivsize		=	HIFN_IV_LENGTH,
2314			.min_keysize	=	HIFN_DES_KEY_LENGTH,
2315			.max_keysize	=	HIFN_DES_KEY_LENGTH,
2316			.setkey		=	hifn_setkey,
2317			.encrypt	=	hifn_encrypt_des_cbc,
2318			.decrypt	=	hifn_decrypt_des_cbc,
2319		},
2320	},
2321	{
2322		.name = "ecb(des)", .drv_name = "ecb-des", .bsize = 8,
2323		.ablkcipher = {
2324			.min_keysize	=	HIFN_DES_KEY_LENGTH,
2325			.max_keysize	=	HIFN_DES_KEY_LENGTH,
2326			.setkey		=	hifn_setkey,
2327			.encrypt	=	hifn_encrypt_des_ecb,
2328			.decrypt	=	hifn_decrypt_des_ecb,
2329		},
2330	},
2331
2332	/*
2333	 * AES ECB, CBC, CFB and OFB modes.
2334	 */
2335	{
2336		.name = "ecb(aes)", .drv_name = "ecb-aes", .bsize = 16,
2337		.ablkcipher = {
2338			.min_keysize	=	AES_MIN_KEY_SIZE,
2339			.max_keysize	=	AES_MAX_KEY_SIZE,
2340			.setkey		=	hifn_setkey,
2341			.encrypt	=	hifn_encrypt_aes_ecb,
2342			.decrypt	=	hifn_decrypt_aes_ecb,
2343		},
2344	},
2345	{
2346		.name = "cbc(aes)", .drv_name = "cbc-aes", .bsize = 16,
2347		.ablkcipher = {
2348			.ivsize		=	HIFN_AES_IV_LENGTH,
2349			.min_keysize	=	AES_MIN_KEY_SIZE,
2350			.max_keysize	=	AES_MAX_KEY_SIZE,
2351			.setkey		=	hifn_setkey,
2352			.encrypt	=	hifn_encrypt_aes_cbc,
2353			.decrypt	=	hifn_decrypt_aes_cbc,
2354		},
2355	},
2356	{
2357		.name = "cfb(aes)", .drv_name = "cfb-aes", .bsize = 16,
2358		.ablkcipher = {
2359			.min_keysize	=	AES_MIN_KEY_SIZE,
2360			.max_keysize	=	AES_MAX_KEY_SIZE,
2361			.setkey		=	hifn_setkey,
2362			.encrypt	=	hifn_encrypt_aes_cfb,
2363			.decrypt	=	hifn_decrypt_aes_cfb,
2364		},
2365	},
2366	{
2367		.name = "ofb(aes)", .drv_name = "ofb-aes", .bsize = 16,
2368		.ablkcipher = {
2369			.min_keysize	=	AES_MIN_KEY_SIZE,
2370			.max_keysize	=	AES_MAX_KEY_SIZE,
2371			.setkey		=	hifn_setkey,
2372			.encrypt	=	hifn_encrypt_aes_ofb,
2373			.decrypt	=	hifn_decrypt_aes_ofb,
2374		},
2375	},
2376};
2377
2378static int hifn_cra_init(struct crypto_tfm *tfm)
2379{
2380	struct crypto_alg *alg = tfm->__crt_alg;
2381	struct hifn_crypto_alg *ha = crypto_alg_to_hifn(alg);
2382	struct hifn_context *ctx = crypto_tfm_ctx(tfm);
2383
2384	ctx->dev = ha->dev;
2385	tfm->crt_ablkcipher.reqsize = sizeof(struct hifn_request_context);
 
2386	return 0;
2387}
2388
2389static int hifn_alg_alloc(struct hifn_device *dev, struct hifn_alg_template *t)
2390{
2391	struct hifn_crypto_alg *alg;
2392	int err;
2393
2394	alg = kzalloc(sizeof(*alg), GFP_KERNEL);
2395	if (!alg)
2396		return -ENOMEM;
2397
2398	snprintf(alg->alg.cra_name, CRYPTO_MAX_ALG_NAME, "%s", t->name);
2399	snprintf(alg->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-%s",
2400		 t->drv_name, dev->name);
2401
2402	alg->alg.cra_priority = 300;
2403	alg->alg.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
2404				CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC;
2405	alg->alg.cra_blocksize = t->bsize;
2406	alg->alg.cra_ctxsize = sizeof(struct hifn_context);
2407	alg->alg.cra_alignmask = 0;
2408	alg->alg.cra_type = &crypto_ablkcipher_type;
2409	alg->alg.cra_module = THIS_MODULE;
2410	alg->alg.cra_u.ablkcipher = t->ablkcipher;
2411	alg->alg.cra_init = hifn_cra_init;
 
 
 
2412
2413	alg->dev = dev;
2414
2415	list_add_tail(&alg->entry, &dev->alg_list);
2416
2417	err = crypto_register_alg(&alg->alg);
2418	if (err) {
2419		list_del(&alg->entry);
 
2420		kfree(alg);
2421	}
2422
2423	return err;
2424}
2425
2426static void hifn_unregister_alg(struct hifn_device *dev)
2427{
2428	struct hifn_crypto_alg *a, *n;
2429
2430	list_for_each_entry_safe(a, n, &dev->alg_list, entry) {
2431		list_del(&a->entry);
2432		crypto_unregister_alg(&a->alg);
2433		kfree(a);
2434	}
2435}
2436
2437static int hifn_register_alg(struct hifn_device *dev)
2438{
2439	int i, err;
2440
2441	for (i = 0; i < ARRAY_SIZE(hifn_alg_templates); ++i) {
2442		err = hifn_alg_alloc(dev, &hifn_alg_templates[i]);
2443		if (err)
2444			goto err_out_exit;
2445	}
2446
2447	return 0;
2448
2449err_out_exit:
2450	hifn_unregister_alg(dev);
2451	return err;
2452}
2453
2454static void hifn_tasklet_callback(unsigned long data)
2455{
2456	struct hifn_device *dev = (struct hifn_device *)data;
2457
2458	/*
2459	 * This is ok to call this without lock being held,
2460	 * althogh it modifies some parameters used in parallel,
2461	 * (like dev->success), but they are used in process
2462	 * context or update is atomic (like setting dev->sa[i] to NULL).
2463	 */
2464	hifn_clear_rings(dev, 0);
2465
2466	if (dev->started < HIFN_QUEUE_LENGTH &&	dev->queue.qlen)
2467		hifn_process_queue(dev);
2468}
2469
2470static int hifn_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2471{
2472	int err, i;
2473	struct hifn_device *dev;
2474	char name[8];
2475
2476	err = pci_enable_device(pdev);
2477	if (err)
2478		return err;
2479	pci_set_master(pdev);
2480
2481	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2482	if (err)
2483		goto err_out_disable_pci_device;
2484
2485	snprintf(name, sizeof(name), "hifn%d",
2486			atomic_inc_return(&hifn_dev_number) - 1);
2487
2488	err = pci_request_regions(pdev, name);
2489	if (err)
2490		goto err_out_disable_pci_device;
2491
2492	if (pci_resource_len(pdev, 0) < HIFN_BAR0_SIZE ||
2493	    pci_resource_len(pdev, 1) < HIFN_BAR1_SIZE ||
2494	    pci_resource_len(pdev, 2) < HIFN_BAR2_SIZE) {
2495		dev_err(&pdev->dev, "Broken hardware - I/O regions are too small.\n");
2496		err = -ENODEV;
2497		goto err_out_free_regions;
2498	}
2499
2500	dev = kzalloc(sizeof(struct hifn_device) + sizeof(struct crypto_alg),
2501			GFP_KERNEL);
2502	if (!dev) {
2503		err = -ENOMEM;
2504		goto err_out_free_regions;
2505	}
2506
2507	INIT_LIST_HEAD(&dev->alg_list);
2508
2509	snprintf(dev->name, sizeof(dev->name), "%s", name);
2510	spin_lock_init(&dev->lock);
2511
2512	for (i = 0; i < 3; ++i) {
2513		unsigned long addr, size;
2514
2515		addr = pci_resource_start(pdev, i);
2516		size = pci_resource_len(pdev, i);
2517
2518		dev->bar[i] = ioremap_nocache(addr, size);
2519		if (!dev->bar[i]) {
2520			err = -ENOMEM;
2521			goto err_out_unmap_bars;
2522		}
2523	}
2524
2525	dev->desc_virt = pci_zalloc_consistent(pdev, sizeof(struct hifn_dma),
2526					       &dev->desc_dma);
 
2527	if (!dev->desc_virt) {
2528		dev_err(&pdev->dev, "Failed to allocate descriptor rings.\n");
2529		err = -ENOMEM;
2530		goto err_out_unmap_bars;
2531	}
2532
2533	dev->pdev = pdev;
2534	dev->irq = pdev->irq;
2535
2536	for (i = 0; i < HIFN_D_RES_RSIZE; ++i)
2537		dev->sa[i] = NULL;
2538
2539	pci_set_drvdata(pdev, dev);
2540
2541	tasklet_init(&dev->tasklet, hifn_tasklet_callback, (unsigned long)dev);
2542
2543	crypto_init_queue(&dev->queue, 1);
2544
2545	err = request_irq(dev->irq, hifn_interrupt, IRQF_SHARED, dev->name, dev);
2546	if (err) {
2547		dev_err(&pdev->dev, "Failed to request IRQ%d: err: %d.\n",
2548			dev->irq, err);
2549		dev->irq = 0;
2550		goto err_out_free_desc;
2551	}
2552
2553	err = hifn_start_device(dev);
2554	if (err)
2555		goto err_out_free_irq;
2556
2557	err = hifn_register_rng(dev);
2558	if (err)
2559		goto err_out_stop_device;
2560
2561	err = hifn_register_alg(dev);
2562	if (err)
2563		goto err_out_unregister_rng;
2564
2565	INIT_DELAYED_WORK(&dev->work, hifn_work);
2566	schedule_delayed_work(&dev->work, HZ);
2567
2568	dev_dbg(&pdev->dev, "HIFN crypto accelerator card at %s has been "
2569		"successfully registered as %s.\n",
2570		pci_name(pdev), dev->name);
2571
2572	return 0;
2573
2574err_out_unregister_rng:
2575	hifn_unregister_rng(dev);
2576err_out_stop_device:
2577	hifn_reset_dma(dev, 1);
2578	hifn_stop_device(dev);
2579err_out_free_irq:
2580	free_irq(dev->irq, dev);
2581	tasklet_kill(&dev->tasklet);
2582err_out_free_desc:
2583	pci_free_consistent(pdev, sizeof(struct hifn_dma),
2584			dev->desc_virt, dev->desc_dma);
2585
2586err_out_unmap_bars:
2587	for (i = 0; i < 3; ++i)
2588		if (dev->bar[i])
2589			iounmap(dev->bar[i]);
 
2590
2591err_out_free_regions:
2592	pci_release_regions(pdev);
2593
2594err_out_disable_pci_device:
2595	pci_disable_device(pdev);
2596
2597	return err;
2598}
2599
2600static void hifn_remove(struct pci_dev *pdev)
2601{
2602	int i;
2603	struct hifn_device *dev;
2604
2605	dev = pci_get_drvdata(pdev);
2606
2607	if (dev) {
2608		cancel_delayed_work_sync(&dev->work);
2609
2610		hifn_unregister_rng(dev);
2611		hifn_unregister_alg(dev);
2612		hifn_reset_dma(dev, 1);
2613		hifn_stop_device(dev);
2614
2615		free_irq(dev->irq, dev);
2616		tasklet_kill(&dev->tasklet);
2617
2618		hifn_flush(dev);
2619
2620		pci_free_consistent(pdev, sizeof(struct hifn_dma),
2621				dev->desc_virt, dev->desc_dma);
2622		for (i = 0; i < 3; ++i)
2623			if (dev->bar[i])
2624				iounmap(dev->bar[i]);
2625
2626		kfree(dev);
2627	}
2628
2629	pci_release_regions(pdev);
2630	pci_disable_device(pdev);
2631}
2632
2633static struct pci_device_id hifn_pci_tbl[] = {
2634	{ PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7955) },
2635	{ PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7956) },
2636	{ 0 }
2637};
2638MODULE_DEVICE_TABLE(pci, hifn_pci_tbl);
2639
2640static struct pci_driver hifn_pci_driver = {
2641	.name     = "hifn795x",
2642	.id_table = hifn_pci_tbl,
2643	.probe    = hifn_probe,
2644	.remove   = hifn_remove,
2645};
2646
2647static int __init hifn_init(void)
2648{
2649	unsigned int freq;
2650	int err;
2651
2652	/* HIFN supports only 32-bit addresses */
2653	BUILD_BUG_ON(sizeof(dma_addr_t) != 4);
2654
2655	if (strncmp(hifn_pll_ref, "ext", 3) &&
2656	    strncmp(hifn_pll_ref, "pci", 3)) {
2657		pr_err("hifn795x: invalid hifn_pll_ref clock, must be pci or ext");
2658		return -EINVAL;
2659	}
2660
2661	/*
2662	 * For the 7955/7956 the reference clock frequency must be in the
2663	 * range of 20MHz-100MHz. For the 7954 the upper bound is 66.67MHz,
2664	 * but this chip is currently not supported.
2665	 */
2666	if (hifn_pll_ref[3] != '\0') {
2667		freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
2668		if (freq < 20 || freq > 100) {
2669			pr_err("hifn795x: invalid hifn_pll_ref frequency, must"
2670			       "be in the range of 20-100");
2671			return -EINVAL;
2672		}
2673	}
2674
2675	err = pci_register_driver(&hifn_pci_driver);
2676	if (err < 0) {
2677		pr_err("Failed to register PCI driver for %s device.\n",
2678		       hifn_pci_driver.name);
2679		return -ENODEV;
2680	}
2681
2682	pr_info("Driver for HIFN 795x crypto accelerator chip "
2683		"has been successfully registered.\n");
2684
2685	return 0;
2686}
2687
2688static void __exit hifn_fini(void)
2689{
2690	pci_unregister_driver(&hifn_pci_driver);
2691
2692	pr_info("Driver for HIFN 795x crypto accelerator chip "
2693		"has been successfully unregistered.\n");
2694}
2695
2696module_init(hifn_init);
2697module_exit(hifn_fini);
2698
2699MODULE_LICENSE("GPL");
2700MODULE_AUTHOR("Evgeniy Polyakov <johnpol@2ka.mipt.ru>");
2701MODULE_DESCRIPTION("Driver for HIFN 795x crypto accelerator chip.");