Linux Audio

Check our new training course

Buildroot integration, development and maintenance

Need a Buildroot system for your embedded project?
Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * AMD Cryptographic Coprocessor (CCP) driver
  4 *
  5 * Copyright (C) 2013,2019 Advanced Micro Devices, Inc.
  6 *
  7 * Author: Tom Lendacky <thomas.lendacky@amd.com>
  8 * Author: Gary R Hook <gary.hook@amd.com>
 
 
 
  9 */
 10
 11#include <linux/module.h>
 12#include <linux/kernel.h>
 13#include <linux/kthread.h>
 14#include <linux/sched.h>
 15#include <linux/interrupt.h>
 16#include <linux/spinlock.h>
 17#include <linux/spinlock_types.h>
 18#include <linux/types.h>
 19#include <linux/mutex.h>
 20#include <linux/delay.h>
 21#include <linux/hw_random.h>
 22#include <linux/cpu.h>
 23#include <linux/atomic.h>
 24#ifdef CONFIG_X86
 25#include <asm/cpu_device_id.h>
 26#endif
 27#include <linux/ccp.h>
 28
 29#include "ccp-dev.h"
 30
 31#define MAX_CCPS 32
 32
 33/* Limit CCP use to a specifed number of queues per device */
 34static unsigned int nqueues;
 35module_param(nqueues, uint, 0444);
 36MODULE_PARM_DESC(nqueues, "Number of queues per CCP (minimum 1; default: all available)");
 37
 38/* Limit the maximum number of configured CCPs */
 39static atomic_t dev_count = ATOMIC_INIT(0);
 40static unsigned int max_devs = MAX_CCPS;
 41module_param(max_devs, uint, 0444);
 42MODULE_PARM_DESC(max_devs, "Maximum number of CCPs to enable (default: all; 0 disables all CCPs)");
 43
 44struct ccp_tasklet_data {
 45	struct completion completion;
 46	struct ccp_cmd *cmd;
 47};
 48
 49/* Human-readable error strings */
 50#define CCP_MAX_ERROR_CODE	64
 51static char *ccp_error_codes[] = {
 52	"",
 53	"ILLEGAL_ENGINE",
 54	"ILLEGAL_KEY_ID",
 55	"ILLEGAL_FUNCTION_TYPE",
 56	"ILLEGAL_FUNCTION_MODE",
 57	"ILLEGAL_FUNCTION_ENCRYPT",
 58	"ILLEGAL_FUNCTION_SIZE",
 59	"Zlib_MISSING_INIT_EOM",
 60	"ILLEGAL_FUNCTION_RSVD",
 61	"ILLEGAL_BUFFER_LENGTH",
 62	"VLSB_FAULT",
 63	"ILLEGAL_MEM_ADDR",
 64	"ILLEGAL_MEM_SEL",
 65	"ILLEGAL_CONTEXT_ID",
 66	"ILLEGAL_KEY_ADDR",
 67	"0xF Reserved",
 68	"Zlib_ILLEGAL_MULTI_QUEUE",
 69	"Zlib_ILLEGAL_JOBID_CHANGE",
 70	"CMD_TIMEOUT",
 71	"IDMA0_AXI_SLVERR",
 72	"IDMA0_AXI_DECERR",
 73	"0x15 Reserved",
 74	"IDMA1_AXI_SLAVE_FAULT",
 75	"IDMA1_AIXI_DECERR",
 76	"0x18 Reserved",
 77	"ZLIBVHB_AXI_SLVERR",
 78	"ZLIBVHB_AXI_DECERR",
 79	"0x1B Reserved",
 80	"ZLIB_UNEXPECTED_EOM",
 81	"ZLIB_EXTRA_DATA",
 82	"ZLIB_BTYPE",
 83	"ZLIB_UNDEFINED_SYMBOL",
 84	"ZLIB_UNDEFINED_DISTANCE_S",
 85	"ZLIB_CODE_LENGTH_SYMBOL",
 86	"ZLIB _VHB_ILLEGAL_FETCH",
 87	"ZLIB_UNCOMPRESSED_LEN",
 88	"ZLIB_LIMIT_REACHED",
 89	"ZLIB_CHECKSUM_MISMATCH0",
 90	"ODMA0_AXI_SLVERR",
 91	"ODMA0_AXI_DECERR",
 92	"0x28 Reserved",
 93	"ODMA1_AXI_SLVERR",
 94	"ODMA1_AXI_DECERR",
 95};
 96
 97void ccp_log_error(struct ccp_device *d, unsigned int e)
 98{
 99	if (WARN_ON(e >= CCP_MAX_ERROR_CODE))
100		return;
101
102	if (e < ARRAY_SIZE(ccp_error_codes))
103		dev_err(d->dev, "CCP error %d: %s\n", e, ccp_error_codes[e]);
104	else
105		dev_err(d->dev, "CCP error %d: Unknown Error\n", e);
106}
107
108/* List of CCPs, CCP count, read-write access lock, and access functions
109 *
110 * Lock structure: get ccp_unit_lock for reading whenever we need to
111 * examine the CCP list. While holding it for reading we can acquire
112 * the RR lock to update the round-robin next-CCP pointer. The unit lock
113 * must be acquired before the RR lock.
114 *
115 * If the unit-lock is acquired for writing, we have total control over
116 * the list, so there's no value in getting the RR lock.
117 */
118static DEFINE_RWLOCK(ccp_unit_lock);
119static LIST_HEAD(ccp_units);
120
121/* Round-robin counter */
122static DEFINE_SPINLOCK(ccp_rr_lock);
123static struct ccp_device *ccp_rr;
124
 
 
 
 
 
 
 
125/**
126 * ccp_add_device - add a CCP device to the list
127 *
128 * @ccp: ccp_device struct pointer
129 *
130 * Put this CCP on the unit list, which makes it available
131 * for use.
132 *
133 * Returns zero if a CCP device is present, -ENODEV otherwise.
134 */
135void ccp_add_device(struct ccp_device *ccp)
136{
137	unsigned long flags;
138
139	write_lock_irqsave(&ccp_unit_lock, flags);
140	list_add_tail(&ccp->entry, &ccp_units);
141	if (!ccp_rr)
142		/* We already have the list lock (we're first) so this
143		 * pointer can't change on us. Set its initial value.
144		 */
145		ccp_rr = ccp;
146	write_unlock_irqrestore(&ccp_unit_lock, flags);
147}
148
149/**
150 * ccp_del_device - remove a CCP device from the list
151 *
152 * @ccp: ccp_device struct pointer
153 *
154 * Remove this unit from the list of devices. If the next device
155 * up for use is this one, adjust the pointer. If this is the last
156 * device, NULL the pointer.
157 */
158void ccp_del_device(struct ccp_device *ccp)
159{
160	unsigned long flags;
161
162	write_lock_irqsave(&ccp_unit_lock, flags);
163	if (ccp_rr == ccp) {
164		/* ccp_unit_lock is read/write; any read access
165		 * will be suspended while we make changes to the
166		 * list and RR pointer.
167		 */
168		if (list_is_last(&ccp_rr->entry, &ccp_units))
169			ccp_rr = list_first_entry(&ccp_units, struct ccp_device,
170						  entry);
171		else
172			ccp_rr = list_next_entry(ccp_rr, entry);
173	}
174	list_del(&ccp->entry);
175	if (list_empty(&ccp_units))
176		ccp_rr = NULL;
177	write_unlock_irqrestore(&ccp_unit_lock, flags);
178}
179
180
181
182int ccp_register_rng(struct ccp_device *ccp)
183{
184	int ret = 0;
185
186	dev_dbg(ccp->dev, "Registering RNG...\n");
187	/* Register an RNG */
188	ccp->hwrng.name = ccp->rngname;
189	ccp->hwrng.read = ccp_trng_read;
190	ret = hwrng_register(&ccp->hwrng);
191	if (ret)
192		dev_err(ccp->dev, "error registering hwrng (%d)\n", ret);
193
194	return ret;
195}
196
197void ccp_unregister_rng(struct ccp_device *ccp)
198{
199	if (ccp->hwrng.name)
200		hwrng_unregister(&ccp->hwrng);
201}
202
203static struct ccp_device *ccp_get_device(void)
204{
205	unsigned long flags;
206	struct ccp_device *dp = NULL;
207
208	/* We round-robin through the unit list.
209	 * The (ccp_rr) pointer refers to the next unit to use.
210	 */
211	read_lock_irqsave(&ccp_unit_lock, flags);
212	if (!list_empty(&ccp_units)) {
213		spin_lock(&ccp_rr_lock);
214		dp = ccp_rr;
215		if (list_is_last(&ccp_rr->entry, &ccp_units))
216			ccp_rr = list_first_entry(&ccp_units, struct ccp_device,
217						  entry);
218		else
219			ccp_rr = list_next_entry(ccp_rr, entry);
220		spin_unlock(&ccp_rr_lock);
221	}
222	read_unlock_irqrestore(&ccp_unit_lock, flags);
223
224	return dp;
225}
226
227/**
228 * ccp_present - check if a CCP device is present
229 *
230 * Returns zero if a CCP device is present, -ENODEV otherwise.
231 */
232int ccp_present(void)
233{
234	unsigned long flags;
235	int ret;
236
237	read_lock_irqsave(&ccp_unit_lock, flags);
238	ret = list_empty(&ccp_units);
239	read_unlock_irqrestore(&ccp_unit_lock, flags);
240
241	return ret ? -ENODEV : 0;
242}
243EXPORT_SYMBOL_GPL(ccp_present);
244
245/**
246 * ccp_version - get the version of the CCP device
247 *
248 * Returns the version from the first unit on the list;
249 * otherwise a zero if no CCP device is present
250 */
251unsigned int ccp_version(void)
252{
253	struct ccp_device *dp;
254	unsigned long flags;
255	int ret = 0;
256
257	read_lock_irqsave(&ccp_unit_lock, flags);
258	if (!list_empty(&ccp_units)) {
259		dp = list_first_entry(&ccp_units, struct ccp_device, entry);
260		ret = dp->vdata->version;
261	}
262	read_unlock_irqrestore(&ccp_unit_lock, flags);
263
264	return ret;
265}
266EXPORT_SYMBOL_GPL(ccp_version);
267
268/**
269 * ccp_enqueue_cmd - queue an operation for processing by the CCP
270 *
271 * @cmd: ccp_cmd struct to be processed
272 *
273 * Queue a cmd to be processed by the CCP. If queueing the cmd
274 * would exceed the defined length of the cmd queue the cmd will
275 * only be queued if the CCP_CMD_MAY_BACKLOG flag is set and will
276 * result in a return code of -EBUSY.
277 *
278 * The callback routine specified in the ccp_cmd struct will be
279 * called to notify the caller of completion (if the cmd was not
280 * backlogged) or advancement out of the backlog. If the cmd has
281 * advanced out of the backlog the "err" value of the callback
282 * will be -EINPROGRESS. Any other "err" value during callback is
283 * the result of the operation.
284 *
285 * The cmd has been successfully queued if:
286 *   the return code is -EINPROGRESS or
287 *   the return code is -EBUSY and CCP_CMD_MAY_BACKLOG flag is set
288 */
289int ccp_enqueue_cmd(struct ccp_cmd *cmd)
290{
291	struct ccp_device *ccp;
292	unsigned long flags;
293	unsigned int i;
294	int ret;
295
296	/* Some commands might need to be sent to a specific device */
297	ccp = cmd->ccp ? cmd->ccp : ccp_get_device();
298
299	if (!ccp)
300		return -ENODEV;
301
302	/* Caller must supply a callback routine */
303	if (!cmd->callback)
304		return -EINVAL;
305
306	cmd->ccp = ccp;
307
308	spin_lock_irqsave(&ccp->cmd_lock, flags);
309
310	i = ccp->cmd_q_count;
311
312	if (ccp->cmd_count >= MAX_CMD_QLEN) {
313		if (cmd->flags & CCP_CMD_MAY_BACKLOG) {
314			ret = -EBUSY;
315			list_add_tail(&cmd->entry, &ccp->backlog);
316		} else {
317			ret = -ENOSPC;
318		}
319	} else {
320		ret = -EINPROGRESS;
321		ccp->cmd_count++;
322		list_add_tail(&cmd->entry, &ccp->cmd);
323
324		/* Find an idle queue */
325		if (!ccp->suspending) {
326			for (i = 0; i < ccp->cmd_q_count; i++) {
327				if (ccp->cmd_q[i].active)
328					continue;
329
330				break;
331			}
332		}
333	}
334
335	spin_unlock_irqrestore(&ccp->cmd_lock, flags);
336
337	/* If we found an idle queue, wake it up */
338	if (i < ccp->cmd_q_count)
339		wake_up_process(ccp->cmd_q[i].kthread);
340
341	return ret;
342}
343EXPORT_SYMBOL_GPL(ccp_enqueue_cmd);
344
345static void ccp_do_cmd_backlog(struct work_struct *work)
346{
347	struct ccp_cmd *cmd = container_of(work, struct ccp_cmd, work);
348	struct ccp_device *ccp = cmd->ccp;
349	unsigned long flags;
350	unsigned int i;
351
352	cmd->callback(cmd->data, -EINPROGRESS);
353
354	spin_lock_irqsave(&ccp->cmd_lock, flags);
355
356	ccp->cmd_count++;
357	list_add_tail(&cmd->entry, &ccp->cmd);
358
359	/* Find an idle queue */
360	for (i = 0; i < ccp->cmd_q_count; i++) {
361		if (ccp->cmd_q[i].active)
362			continue;
363
364		break;
365	}
366
367	spin_unlock_irqrestore(&ccp->cmd_lock, flags);
368
369	/* If we found an idle queue, wake it up */
370	if (i < ccp->cmd_q_count)
371		wake_up_process(ccp->cmd_q[i].kthread);
372}
373
374static struct ccp_cmd *ccp_dequeue_cmd(struct ccp_cmd_queue *cmd_q)
375{
376	struct ccp_device *ccp = cmd_q->ccp;
377	struct ccp_cmd *cmd = NULL;
378	struct ccp_cmd *backlog = NULL;
379	unsigned long flags;
380
381	spin_lock_irqsave(&ccp->cmd_lock, flags);
382
383	cmd_q->active = 0;
384
385	if (ccp->suspending) {
386		cmd_q->suspended = 1;
387
388		spin_unlock_irqrestore(&ccp->cmd_lock, flags);
389		wake_up_interruptible(&ccp->suspend_queue);
390
391		return NULL;
392	}
393
394	if (ccp->cmd_count) {
395		cmd_q->active = 1;
396
397		cmd = list_first_entry(&ccp->cmd, struct ccp_cmd, entry);
398		list_del(&cmd->entry);
399
400		ccp->cmd_count--;
401	}
402
403	if (!list_empty(&ccp->backlog)) {
404		backlog = list_first_entry(&ccp->backlog, struct ccp_cmd,
405					   entry);
406		list_del(&backlog->entry);
407	}
408
409	spin_unlock_irqrestore(&ccp->cmd_lock, flags);
410
411	if (backlog) {
412		INIT_WORK(&backlog->work, ccp_do_cmd_backlog);
413		schedule_work(&backlog->work);
414	}
415
416	return cmd;
417}
418
419static void ccp_do_cmd_complete(unsigned long data)
420{
421	struct ccp_tasklet_data *tdata = (struct ccp_tasklet_data *)data;
422	struct ccp_cmd *cmd = tdata->cmd;
423
424	cmd->callback(cmd->data, cmd->ret);
425
426	complete(&tdata->completion);
427}
428
429/**
430 * ccp_cmd_queue_thread - create a kernel thread to manage a CCP queue
431 *
432 * @data: thread-specific data
433 */
434int ccp_cmd_queue_thread(void *data)
435{
436	struct ccp_cmd_queue *cmd_q = (struct ccp_cmd_queue *)data;
437	struct ccp_cmd *cmd;
438	struct ccp_tasklet_data tdata;
439	struct tasklet_struct tasklet;
440
441	tasklet_init(&tasklet, ccp_do_cmd_complete, (unsigned long)&tdata);
442
443	set_current_state(TASK_INTERRUPTIBLE);
444	while (!kthread_should_stop()) {
445		schedule();
446
447		set_current_state(TASK_INTERRUPTIBLE);
448
449		cmd = ccp_dequeue_cmd(cmd_q);
450		if (!cmd)
451			continue;
452
453		__set_current_state(TASK_RUNNING);
454
455		/* Execute the command */
456		cmd->ret = ccp_run_cmd(cmd_q, cmd);
457
458		/* Schedule the completion callback */
459		tdata.cmd = cmd;
460		init_completion(&tdata.completion);
461		tasklet_schedule(&tasklet);
462		wait_for_completion(&tdata.completion);
463	}
464
465	__set_current_state(TASK_RUNNING);
466
467	return 0;
468}
469
470/**
471 * ccp_alloc_struct - allocate and initialize the ccp_device struct
472 *
473 * @sp: sp_device struct of the CCP
474 */
475struct ccp_device *ccp_alloc_struct(struct sp_device *sp)
476{
477	struct device *dev = sp->dev;
478	struct ccp_device *ccp;
479
480	ccp = devm_kzalloc(dev, sizeof(*ccp), GFP_KERNEL);
481	if (!ccp)
482		return NULL;
483	ccp->dev = dev;
484	ccp->sp = sp;
485	ccp->axcache = sp->axcache;
486
487	INIT_LIST_HEAD(&ccp->cmd);
488	INIT_LIST_HEAD(&ccp->backlog);
489
490	spin_lock_init(&ccp->cmd_lock);
491	mutex_init(&ccp->req_mutex);
492	mutex_init(&ccp->sb_mutex);
493	ccp->sb_count = KSB_COUNT;
494	ccp->sb_start = 0;
495
496	/* Initialize the wait queues */
497	init_waitqueue_head(&ccp->sb_queue);
498	init_waitqueue_head(&ccp->suspend_queue);
499
500	snprintf(ccp->name, MAX_CCP_NAME_LEN, "ccp-%u", sp->ord);
501	snprintf(ccp->rngname, MAX_CCP_NAME_LEN, "ccp-%u-rng", sp->ord);
502
503	return ccp;
504}
505
506int ccp_trng_read(struct hwrng *rng, void *data, size_t max, bool wait)
507{
508	struct ccp_device *ccp = container_of(rng, struct ccp_device, hwrng);
509	u32 trng_value;
510	int len = min_t(int, sizeof(trng_value), max);
511
512	/* Locking is provided by the caller so we can update device
513	 * hwrng-related fields safely
514	 */
515	trng_value = ioread32(ccp->io_regs + TRNG_OUT_REG);
516	if (!trng_value) {
517		/* Zero is returned if not data is available or if a
518		 * bad-entropy error is present. Assume an error if
519		 * we exceed TRNG_RETRIES reads of zero.
520		 */
521		if (ccp->hwrng_retries++ > TRNG_RETRIES)
522			return -EIO;
523
524		return 0;
525	}
526
527	/* Reset the counter and save the rng value */
528	ccp->hwrng_retries = 0;
529	memcpy(data, &trng_value, len);
530
531	return len;
532}
533
534bool ccp_queues_suspended(struct ccp_device *ccp)
535{
536	unsigned int suspended = 0;
537	unsigned long flags;
538	unsigned int i;
539
540	spin_lock_irqsave(&ccp->cmd_lock, flags);
541
542	for (i = 0; i < ccp->cmd_q_count; i++)
543		if (ccp->cmd_q[i].suspended)
544			suspended++;
545
546	spin_unlock_irqrestore(&ccp->cmd_lock, flags);
547
548	return ccp->cmd_q_count == suspended;
549}
 
550
551void ccp_dev_suspend(struct sp_device *sp)
552{
553	struct ccp_device *ccp = sp->ccp_data;
554	unsigned long flags;
555	unsigned int i;
556
557	/* If there's no device there's nothing to do */
558	if (!ccp)
559		return;
560
561	spin_lock_irqsave(&ccp->cmd_lock, flags);
562
563	ccp->suspending = 1;
564
565	/* Wake all the queue kthreads to prepare for suspend */
566	for (i = 0; i < ccp->cmd_q_count; i++)
567		wake_up_process(ccp->cmd_q[i].kthread);
568
569	spin_unlock_irqrestore(&ccp->cmd_lock, flags);
570
571	/* Wait for all queue kthreads to say they're done */
572	while (!ccp_queues_suspended(ccp))
573		wait_event_interruptible(ccp->suspend_queue,
574					 ccp_queues_suspended(ccp));
575}
576
577void ccp_dev_resume(struct sp_device *sp)
578{
579	struct ccp_device *ccp = sp->ccp_data;
580	unsigned long flags;
581	unsigned int i;
582
583	/* If there's no device there's nothing to do */
584	if (!ccp)
585		return;
586
587	spin_lock_irqsave(&ccp->cmd_lock, flags);
588
589	ccp->suspending = 0;
 
 
590
591	/* Wake up all the kthreads */
592	for (i = 0; i < ccp->cmd_q_count; i++) {
593		ccp->cmd_q[i].suspended = 0;
594		wake_up_process(ccp->cmd_q[i].kthread);
595	}
596
597	spin_unlock_irqrestore(&ccp->cmd_lock, flags);
598}
599
600int ccp_dev_init(struct sp_device *sp)
601{
602	struct device *dev = sp->dev;
603	struct ccp_device *ccp;
604	int ret;
605
606	/*
607	 * Check how many we have so far, and stop after reaching
608	 * that number
609	 */
610	if (atomic_inc_return(&dev_count) > max_devs)
611		return 0; /* don't fail the load */
612
613	ret = -ENOMEM;
614	ccp = ccp_alloc_struct(sp);
615	if (!ccp)
616		goto e_err;
617	sp->ccp_data = ccp;
618
619	if (!nqueues || (nqueues > MAX_HW_QUEUES))
620		ccp->max_q_count = MAX_HW_QUEUES;
621	else
622		ccp->max_q_count = nqueues;
623
624	ccp->vdata = (struct ccp_vdata *)sp->dev_vdata->ccp_vdata;
625	if (!ccp->vdata || !ccp->vdata->version) {
626		ret = -ENODEV;
627		dev_err(dev, "missing driver data\n");
628		goto e_err;
629	}
630
631	ccp->use_tasklet = sp->use_tasklet;
632
633	ccp->io_regs = sp->io_map + ccp->vdata->offset;
634	if (ccp->vdata->setup)
635		ccp->vdata->setup(ccp);
636
637	ret = ccp->vdata->perform->init(ccp);
638	if (ret) {
639		/* A positive number means that the device cannot be initialized,
640		 * but no additional message is required.
641		 */
642		if (ret > 0)
643			goto e_quiet;
644
645		/* An unexpected problem occurred, and should be reported in the log */
646		goto e_err;
 
 
647	}
648
649	dev_notice(dev, "ccp enabled\n");
650
651	return 0;
 
652
653e_err:
654	dev_notice(dev, "ccp initialization failed\n");
655
656e_quiet:
657	sp->ccp_data = NULL;
658
659	return ret;
660}
661
662void ccp_dev_destroy(struct sp_device *sp)
663{
664	struct ccp_device *ccp = sp->ccp_data;
665
666	if (!ccp)
667		return;
668
669	ccp->vdata->perform->destroy(ccp);
 
 
670}
v4.6
 
  1/*
  2 * AMD Cryptographic Coprocessor (CCP) driver
  3 *
  4 * Copyright (C) 2013,2016 Advanced Micro Devices, Inc.
  5 *
  6 * Author: Tom Lendacky <thomas.lendacky@amd.com>
  7 *
  8 * This program is free software; you can redistribute it and/or modify
  9 * it under the terms of the GNU General Public License version 2 as
 10 * published by the Free Software Foundation.
 11 */
 12
 13#include <linux/module.h>
 14#include <linux/kernel.h>
 15#include <linux/kthread.h>
 16#include <linux/sched.h>
 17#include <linux/interrupt.h>
 18#include <linux/spinlock.h>
 19#include <linux/rwlock_types.h>
 20#include <linux/types.h>
 21#include <linux/mutex.h>
 22#include <linux/delay.h>
 23#include <linux/hw_random.h>
 24#include <linux/cpu.h>
 
 25#ifdef CONFIG_X86
 26#include <asm/cpu_device_id.h>
 27#endif
 28#include <linux/ccp.h>
 29
 30#include "ccp-dev.h"
 31
 32MODULE_AUTHOR("Tom Lendacky <thomas.lendacky@amd.com>");
 33MODULE_LICENSE("GPL");
 34MODULE_VERSION("1.0.0");
 35MODULE_DESCRIPTION("AMD Cryptographic Coprocessor driver");
 
 
 
 
 
 
 
 
 36
 37struct ccp_tasklet_data {
 38	struct completion completion;
 39	struct ccp_cmd *cmd;
 40};
 41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 42/* List of CCPs, CCP count, read-write access lock, and access functions
 43 *
 44 * Lock structure: get ccp_unit_lock for reading whenever we need to
 45 * examine the CCP list. While holding it for reading we can acquire
 46 * the RR lock to update the round-robin next-CCP pointer. The unit lock
 47 * must be acquired before the RR lock.
 48 *
 49 * If the unit-lock is acquired for writing, we have total control over
 50 * the list, so there's no value in getting the RR lock.
 51 */
 52static DEFINE_RWLOCK(ccp_unit_lock);
 53static LIST_HEAD(ccp_units);
 54
 55/* Round-robin counter */
 56static DEFINE_SPINLOCK(ccp_rr_lock);
 57static struct ccp_device *ccp_rr;
 58
 59/* Ever-increasing value to produce unique unit numbers */
 60static atomic_t ccp_unit_ordinal;
 61unsigned int ccp_increment_unit_ordinal(void)
 62{
 63	return atomic_inc_return(&ccp_unit_ordinal);
 64}
 65
 66/**
 67 * ccp_add_device - add a CCP device to the list
 68 *
 69 * @ccp: ccp_device struct pointer
 70 *
 71 * Put this CCP on the unit list, which makes it available
 72 * for use.
 73 *
 74 * Returns zero if a CCP device is present, -ENODEV otherwise.
 75 */
 76void ccp_add_device(struct ccp_device *ccp)
 77{
 78	unsigned long flags;
 79
 80	write_lock_irqsave(&ccp_unit_lock, flags);
 81	list_add_tail(&ccp->entry, &ccp_units);
 82	if (!ccp_rr)
 83		/* We already have the list lock (we're first) so this
 84		 * pointer can't change on us. Set its initial value.
 85		 */
 86		ccp_rr = ccp;
 87	write_unlock_irqrestore(&ccp_unit_lock, flags);
 88}
 89
 90/**
 91 * ccp_del_device - remove a CCP device from the list
 92 *
 93 * @ccp: ccp_device struct pointer
 94 *
 95 * Remove this unit from the list of devices. If the next device
 96 * up for use is this one, adjust the pointer. If this is the last
 97 * device, NULL the pointer.
 98 */
 99void ccp_del_device(struct ccp_device *ccp)
100{
101	unsigned long flags;
102
103	write_lock_irqsave(&ccp_unit_lock, flags);
104	if (ccp_rr == ccp) {
105		/* ccp_unit_lock is read/write; any read access
106		 * will be suspended while we make changes to the
107		 * list and RR pointer.
108		 */
109		if (list_is_last(&ccp_rr->entry, &ccp_units))
110			ccp_rr = list_first_entry(&ccp_units, struct ccp_device,
111						  entry);
112		else
113			ccp_rr = list_next_entry(ccp_rr, entry);
114	}
115	list_del(&ccp->entry);
116	if (list_empty(&ccp_units))
117		ccp_rr = NULL;
118	write_unlock_irqrestore(&ccp_unit_lock, flags);
119}
120
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
121static struct ccp_device *ccp_get_device(void)
122{
123	unsigned long flags;
124	struct ccp_device *dp = NULL;
125
126	/* We round-robin through the unit list.
127	 * The (ccp_rr) pointer refers to the next unit to use.
128	 */
129	read_lock_irqsave(&ccp_unit_lock, flags);
130	if (!list_empty(&ccp_units)) {
131		spin_lock(&ccp_rr_lock);
132		dp = ccp_rr;
133		if (list_is_last(&ccp_rr->entry, &ccp_units))
134			ccp_rr = list_first_entry(&ccp_units, struct ccp_device,
135						  entry);
136		else
137			ccp_rr = list_next_entry(ccp_rr, entry);
138		spin_unlock(&ccp_rr_lock);
139	}
140	read_unlock_irqrestore(&ccp_unit_lock, flags);
141
142	return dp;
143}
144
145/**
146 * ccp_present - check if a CCP device is present
147 *
148 * Returns zero if a CCP device is present, -ENODEV otherwise.
149 */
150int ccp_present(void)
151{
152	unsigned long flags;
153	int ret;
154
155	read_lock_irqsave(&ccp_unit_lock, flags);
156	ret = list_empty(&ccp_units);
157	read_unlock_irqrestore(&ccp_unit_lock, flags);
158
159	return ret ? -ENODEV : 0;
160}
161EXPORT_SYMBOL_GPL(ccp_present);
162
163/**
164 * ccp_version - get the version of the CCP device
165 *
166 * Returns the version from the first unit on the list;
167 * otherwise a zero if no CCP device is present
168 */
169unsigned int ccp_version(void)
170{
171	struct ccp_device *dp;
172	unsigned long flags;
173	int ret = 0;
174
175	read_lock_irqsave(&ccp_unit_lock, flags);
176	if (!list_empty(&ccp_units)) {
177		dp = list_first_entry(&ccp_units, struct ccp_device, entry);
178		ret = dp->vdata->version;
179	}
180	read_unlock_irqrestore(&ccp_unit_lock, flags);
181
182	return ret;
183}
184EXPORT_SYMBOL_GPL(ccp_version);
185
186/**
187 * ccp_enqueue_cmd - queue an operation for processing by the CCP
188 *
189 * @cmd: ccp_cmd struct to be processed
190 *
191 * Queue a cmd to be processed by the CCP. If queueing the cmd
192 * would exceed the defined length of the cmd queue the cmd will
193 * only be queued if the CCP_CMD_MAY_BACKLOG flag is set and will
194 * result in a return code of -EBUSY.
195 *
196 * The callback routine specified in the ccp_cmd struct will be
197 * called to notify the caller of completion (if the cmd was not
198 * backlogged) or advancement out of the backlog. If the cmd has
199 * advanced out of the backlog the "err" value of the callback
200 * will be -EINPROGRESS. Any other "err" value during callback is
201 * the result of the operation.
202 *
203 * The cmd has been successfully queued if:
204 *   the return code is -EINPROGRESS or
205 *   the return code is -EBUSY and CCP_CMD_MAY_BACKLOG flag is set
206 */
207int ccp_enqueue_cmd(struct ccp_cmd *cmd)
208{
209	struct ccp_device *ccp = ccp_get_device();
210	unsigned long flags;
211	unsigned int i;
212	int ret;
213
 
 
 
214	if (!ccp)
215		return -ENODEV;
216
217	/* Caller must supply a callback routine */
218	if (!cmd->callback)
219		return -EINVAL;
220
221	cmd->ccp = ccp;
222
223	spin_lock_irqsave(&ccp->cmd_lock, flags);
224
225	i = ccp->cmd_q_count;
226
227	if (ccp->cmd_count >= MAX_CMD_QLEN) {
228		ret = -EBUSY;
229		if (cmd->flags & CCP_CMD_MAY_BACKLOG)
230			list_add_tail(&cmd->entry, &ccp->backlog);
 
 
 
231	} else {
232		ret = -EINPROGRESS;
233		ccp->cmd_count++;
234		list_add_tail(&cmd->entry, &ccp->cmd);
235
236		/* Find an idle queue */
237		if (!ccp->suspending) {
238			for (i = 0; i < ccp->cmd_q_count; i++) {
239				if (ccp->cmd_q[i].active)
240					continue;
241
242				break;
243			}
244		}
245	}
246
247	spin_unlock_irqrestore(&ccp->cmd_lock, flags);
248
249	/* If we found an idle queue, wake it up */
250	if (i < ccp->cmd_q_count)
251		wake_up_process(ccp->cmd_q[i].kthread);
252
253	return ret;
254}
255EXPORT_SYMBOL_GPL(ccp_enqueue_cmd);
256
257static void ccp_do_cmd_backlog(struct work_struct *work)
258{
259	struct ccp_cmd *cmd = container_of(work, struct ccp_cmd, work);
260	struct ccp_device *ccp = cmd->ccp;
261	unsigned long flags;
262	unsigned int i;
263
264	cmd->callback(cmd->data, -EINPROGRESS);
265
266	spin_lock_irqsave(&ccp->cmd_lock, flags);
267
268	ccp->cmd_count++;
269	list_add_tail(&cmd->entry, &ccp->cmd);
270
271	/* Find an idle queue */
272	for (i = 0; i < ccp->cmd_q_count; i++) {
273		if (ccp->cmd_q[i].active)
274			continue;
275
276		break;
277	}
278
279	spin_unlock_irqrestore(&ccp->cmd_lock, flags);
280
281	/* If we found an idle queue, wake it up */
282	if (i < ccp->cmd_q_count)
283		wake_up_process(ccp->cmd_q[i].kthread);
284}
285
286static struct ccp_cmd *ccp_dequeue_cmd(struct ccp_cmd_queue *cmd_q)
287{
288	struct ccp_device *ccp = cmd_q->ccp;
289	struct ccp_cmd *cmd = NULL;
290	struct ccp_cmd *backlog = NULL;
291	unsigned long flags;
292
293	spin_lock_irqsave(&ccp->cmd_lock, flags);
294
295	cmd_q->active = 0;
296
297	if (ccp->suspending) {
298		cmd_q->suspended = 1;
299
300		spin_unlock_irqrestore(&ccp->cmd_lock, flags);
301		wake_up_interruptible(&ccp->suspend_queue);
302
303		return NULL;
304	}
305
306	if (ccp->cmd_count) {
307		cmd_q->active = 1;
308
309		cmd = list_first_entry(&ccp->cmd, struct ccp_cmd, entry);
310		list_del(&cmd->entry);
311
312		ccp->cmd_count--;
313	}
314
315	if (!list_empty(&ccp->backlog)) {
316		backlog = list_first_entry(&ccp->backlog, struct ccp_cmd,
317					   entry);
318		list_del(&backlog->entry);
319	}
320
321	spin_unlock_irqrestore(&ccp->cmd_lock, flags);
322
323	if (backlog) {
324		INIT_WORK(&backlog->work, ccp_do_cmd_backlog);
325		schedule_work(&backlog->work);
326	}
327
328	return cmd;
329}
330
331static void ccp_do_cmd_complete(unsigned long data)
332{
333	struct ccp_tasklet_data *tdata = (struct ccp_tasklet_data *)data;
334	struct ccp_cmd *cmd = tdata->cmd;
335
336	cmd->callback(cmd->data, cmd->ret);
 
337	complete(&tdata->completion);
338}
339
340/**
341 * ccp_cmd_queue_thread - create a kernel thread to manage a CCP queue
342 *
343 * @data: thread-specific data
344 */
345int ccp_cmd_queue_thread(void *data)
346{
347	struct ccp_cmd_queue *cmd_q = (struct ccp_cmd_queue *)data;
348	struct ccp_cmd *cmd;
349	struct ccp_tasklet_data tdata;
350	struct tasklet_struct tasklet;
351
352	tasklet_init(&tasklet, ccp_do_cmd_complete, (unsigned long)&tdata);
353
354	set_current_state(TASK_INTERRUPTIBLE);
355	while (!kthread_should_stop()) {
356		schedule();
357
358		set_current_state(TASK_INTERRUPTIBLE);
359
360		cmd = ccp_dequeue_cmd(cmd_q);
361		if (!cmd)
362			continue;
363
364		__set_current_state(TASK_RUNNING);
365
366		/* Execute the command */
367		cmd->ret = ccp_run_cmd(cmd_q, cmd);
368
369		/* Schedule the completion callback */
370		tdata.cmd = cmd;
371		init_completion(&tdata.completion);
372		tasklet_schedule(&tasklet);
373		wait_for_completion(&tdata.completion);
374	}
375
376	__set_current_state(TASK_RUNNING);
377
378	return 0;
379}
380
381/**
382 * ccp_alloc_struct - allocate and initialize the ccp_device struct
383 *
384 * @dev: device struct of the CCP
385 */
386struct ccp_device *ccp_alloc_struct(struct device *dev)
387{
 
388	struct ccp_device *ccp;
389
390	ccp = devm_kzalloc(dev, sizeof(*ccp), GFP_KERNEL);
391	if (!ccp)
392		return NULL;
393	ccp->dev = dev;
 
 
394
395	INIT_LIST_HEAD(&ccp->cmd);
396	INIT_LIST_HEAD(&ccp->backlog);
397
398	spin_lock_init(&ccp->cmd_lock);
399	mutex_init(&ccp->req_mutex);
400	mutex_init(&ccp->ksb_mutex);
401	ccp->ksb_count = KSB_COUNT;
402	ccp->ksb_start = 0;
403
404	ccp->ord = ccp_increment_unit_ordinal();
405	snprintf(ccp->name, MAX_CCP_NAME_LEN, "ccp-%u", ccp->ord);
406	snprintf(ccp->rngname, MAX_CCP_NAME_LEN, "ccp-%u-rng", ccp->ord);
 
 
 
407
408	return ccp;
409}
410
411#ifdef CONFIG_PM
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
412bool ccp_queues_suspended(struct ccp_device *ccp)
413{
414	unsigned int suspended = 0;
415	unsigned long flags;
416	unsigned int i;
417
418	spin_lock_irqsave(&ccp->cmd_lock, flags);
419
420	for (i = 0; i < ccp->cmd_q_count; i++)
421		if (ccp->cmd_q[i].suspended)
422			suspended++;
423
424	spin_unlock_irqrestore(&ccp->cmd_lock, flags);
425
426	return ccp->cmd_q_count == suspended;
427}
428#endif
429
430static int __init ccp_mod_init(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
431{
432#ifdef CONFIG_X86
433	int ret;
 
 
 
 
 
 
 
434
435	ret = ccp_pci_init();
436	if (ret)
437		return ret;
438
439	/* Don't leave the driver loaded if init failed */
440	if (ccp_present() != 0) {
441		ccp_pci_exit();
442		return -ENODEV;
443	}
444
445	return 0;
446#endif
447
448#ifdef CONFIG_ARM64
 
 
 
449	int ret;
450
451	ret = ccp_platform_init();
452	if (ret)
453		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
454
455	/* Don't leave the driver loaded if init failed */
456	if (ccp_present() != 0) {
457		ccp_platform_exit();
458		return -ENODEV;
459	}
460
 
 
461	return 0;
462#endif
463
464	return -ENODEV;
 
 
 
 
 
 
465}
466
467static void __exit ccp_mod_exit(void)
468{
469#ifdef CONFIG_X86
470	ccp_pci_exit();
471#endif
 
472
473#ifdef CONFIG_ARM64
474	ccp_platform_exit();
475#endif
476}
477
478module_init(ccp_mod_init);
479module_exit(ccp_mod_exit);