Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
  1/*
  2 * CPU frequency scaling for Broadcom SoCs with AVS firmware that
  3 * supports DVS or DVFS
  4 *
  5 * Copyright (c) 2016 Broadcom
  6 *
  7 * This program is free software; you can redistribute it and/or
  8 * modify it under the terms of the GNU General Public License as
  9 * published by the Free Software Foundation version 2.
 10 *
 11 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
 12 * kind, whether express or implied; without even the implied warranty
 13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 14 * GNU General Public License for more details.
 15 */
 16
 17/*
 18 * "AVS" is the name of a firmware developed at Broadcom. It derives
 19 * its name from the technique called "Adaptive Voltage Scaling".
 20 * Adaptive voltage scaling was the original purpose of this firmware.
 21 * The AVS firmware still supports "AVS mode", where all it does is
 22 * adaptive voltage scaling. However, on some newer Broadcom SoCs, the
 23 * AVS Firmware, despite its unchanged name, also supports DFS mode and
 24 * DVFS mode.
 25 *
 26 * In the context of this document and the related driver, "AVS" by
 27 * itself always means the Broadcom firmware and never refers to the
 28 * technique called "Adaptive Voltage Scaling".
 29 *
 30 * The Broadcom STB AVS CPUfreq driver provides voltage and frequency
 31 * scaling on Broadcom SoCs using AVS firmware with support for DFS and
 32 * DVFS. The AVS firmware is running on its own co-processor. The
 33 * driver supports both uniprocessor (UP) and symmetric multiprocessor
 34 * (SMP) systems which share clock and voltage across all CPUs.
 35 *
 36 * Actual voltage and frequency scaling is done solely by the AVS
 37 * firmware. This driver does not change frequency or voltage itself.
 38 * It provides a standard CPUfreq interface to the rest of the kernel
 39 * and to userland. It interfaces with the AVS firmware to effect the
 40 * requested changes and to report back the current system status in a
 41 * way that is expected by existing tools.
 42 */
 43
 44#include <linux/cpufreq.h>
 45#include <linux/delay.h>
 46#include <linux/interrupt.h>
 47#include <linux/io.h>
 48#include <linux/module.h>
 49#include <linux/of_address.h>
 50#include <linux/platform_device.h>
 51#include <linux/semaphore.h>
 52
 53/* Max number of arguments AVS calls take */
 54#define AVS_MAX_CMD_ARGS	4
 55/*
 56 * This macro is used to generate AVS parameter register offsets. For
 57 * x >= AVS_MAX_CMD_ARGS, it returns 0 to protect against accidental memory
 58 * access outside of the parameter range. (Offset 0 is the first parameter.)
 59 */
 60#define AVS_PARAM_MULT(x)	((x) < AVS_MAX_CMD_ARGS ? (x) : 0)
 61
 62/* AVS Mailbox Register offsets */
 63#define AVS_MBOX_COMMAND	0x00
 64#define AVS_MBOX_STATUS		0x04
 65#define AVS_MBOX_VOLTAGE0	0x08
 66#define AVS_MBOX_TEMP0		0x0c
 67#define AVS_MBOX_PV0		0x10
 68#define AVS_MBOX_MV0		0x14
 69#define AVS_MBOX_PARAM(x)	(0x18 + AVS_PARAM_MULT(x) * sizeof(u32))
 70#define AVS_MBOX_REVISION	0x28
 71#define AVS_MBOX_PSTATE		0x2c
 72#define AVS_MBOX_HEARTBEAT	0x30
 73#define AVS_MBOX_MAGIC		0x34
 74#define AVS_MBOX_SIGMA_HVT	0x38
 75#define AVS_MBOX_SIGMA_SVT	0x3c
 76#define AVS_MBOX_VOLTAGE1	0x40
 77#define AVS_MBOX_TEMP1		0x44
 78#define AVS_MBOX_PV1		0x48
 79#define AVS_MBOX_MV1		0x4c
 80#define AVS_MBOX_FREQUENCY	0x50
 81
 82/* AVS Commands */
 83#define AVS_CMD_AVAILABLE	0x00
 84#define AVS_CMD_DISABLE		0x10
 85#define AVS_CMD_ENABLE		0x11
 86#define AVS_CMD_S2_ENTER	0x12
 87#define AVS_CMD_S2_EXIT		0x13
 88#define AVS_CMD_BBM_ENTER	0x14
 89#define AVS_CMD_BBM_EXIT	0x15
 90#define AVS_CMD_S3_ENTER	0x16
 91#define AVS_CMD_S3_EXIT		0x17
 92#define AVS_CMD_BALANCE		0x18
 93/* PMAP and P-STATE commands */
 94#define AVS_CMD_GET_PMAP	0x30
 95#define AVS_CMD_SET_PMAP	0x31
 96#define AVS_CMD_GET_PSTATE	0x40
 97#define AVS_CMD_SET_PSTATE	0x41
 98
 99/* Different modes AVS supports (for GET_PMAP/SET_PMAP) */
100#define AVS_MODE_AVS		0x0
101#define AVS_MODE_DFS		0x1
102#define AVS_MODE_DVS		0x2
103#define AVS_MODE_DVFS		0x3
104
105/*
106 * PMAP parameter p1
107 * unused:31-24, mdiv_p0:23-16, unused:15-14, pdiv:13-10 , ndiv_int:9-0
108 */
109#define NDIV_INT_SHIFT		0
110#define NDIV_INT_MASK		0x3ff
111#define PDIV_SHIFT		10
112#define PDIV_MASK		0xf
113#define MDIV_P0_SHIFT		16
114#define MDIV_P0_MASK		0xff
115/*
116 * PMAP parameter p2
117 * mdiv_p4:31-24, mdiv_p3:23-16, mdiv_p2:15:8, mdiv_p1:7:0
118 */
119#define MDIV_P1_SHIFT		0
120#define MDIV_P1_MASK		0xff
121#define MDIV_P2_SHIFT		8
122#define MDIV_P2_MASK		0xff
123#define MDIV_P3_SHIFT		16
124#define MDIV_P3_MASK		0xff
125#define MDIV_P4_SHIFT		24
126#define MDIV_P4_MASK		0xff
127
128/* Different P-STATES AVS supports (for GET_PSTATE/SET_PSTATE) */
129#define AVS_PSTATE_P0		0x0
130#define AVS_PSTATE_P1		0x1
131#define AVS_PSTATE_P2		0x2
132#define AVS_PSTATE_P3		0x3
133#define AVS_PSTATE_P4		0x4
134#define AVS_PSTATE_MAX		AVS_PSTATE_P4
135
136/* CPU L2 Interrupt Controller Registers */
137#define AVS_CPU_L2_SET0		0x04
138#define AVS_CPU_L2_INT_MASK	BIT(31)
139
140/* AVS Command Status Values */
141#define AVS_STATUS_CLEAR	0x00
142/* Command/notification accepted */
143#define AVS_STATUS_SUCCESS	0xf0
144/* Command/notification rejected */
145#define AVS_STATUS_FAILURE	0xff
146/* Invalid command/notification (unknown) */
147#define AVS_STATUS_INVALID	0xf1
148/* Non-AVS modes are not supported */
149#define AVS_STATUS_NO_SUPP	0xf2
150/* Cannot set P-State until P-Map supplied */
151#define AVS_STATUS_NO_MAP	0xf3
152/* Cannot change P-Map after initial P-Map set */
153#define AVS_STATUS_MAP_SET	0xf4
154/* Max AVS status; higher numbers are used for debugging */
155#define AVS_STATUS_MAX		0xff
156
157/* Other AVS related constants */
158#define AVS_LOOP_LIMIT		10000
159#define AVS_TIMEOUT		300 /* in ms; expected completion is < 10ms */
160#define AVS_FIRMWARE_MAGIC	0xa11600d1
161
162#define BRCM_AVS_CPUFREQ_PREFIX	"brcmstb-avs"
163#define BRCM_AVS_CPUFREQ_NAME	BRCM_AVS_CPUFREQ_PREFIX "-cpufreq"
164#define BRCM_AVS_CPU_DATA	"brcm,avs-cpu-data-mem"
165#define BRCM_AVS_CPU_INTR	"brcm,avs-cpu-l2-intr"
166#define BRCM_AVS_HOST_INTR	"sw_intr"
167
168struct pmap {
169	unsigned int mode;
170	unsigned int p1;
171	unsigned int p2;
172	unsigned int state;
173};
174
175struct private_data {
176	void __iomem *base;
177	void __iomem *avs_intr_base;
178	struct device *dev;
179	struct completion done;
180	struct semaphore sem;
181	struct pmap pmap;
182	int host_irq;
183};
184
185static void __iomem *__map_region(const char *name)
186{
187	struct device_node *np;
188	void __iomem *ptr;
189
190	np = of_find_compatible_node(NULL, NULL, name);
191	if (!np)
192		return NULL;
193
194	ptr = of_iomap(np, 0);
195	of_node_put(np);
196
197	return ptr;
198}
199
200static unsigned long wait_for_avs_command(struct private_data *priv,
201					  unsigned long timeout)
202{
203	unsigned long time_left = 0;
204	u32 val;
205
206	/* Event driven, wait for the command interrupt */
207	if (priv->host_irq >= 0)
208		return wait_for_completion_timeout(&priv->done,
209						   msecs_to_jiffies(timeout));
210
211	/* Polling for command completion */
212	do {
213		time_left = timeout;
214		val = readl(priv->base + AVS_MBOX_STATUS);
215		if (val)
216			break;
217
218		usleep_range(1000, 2000);
219	} while (--timeout);
220
221	return time_left;
222}
223
224static int __issue_avs_command(struct private_data *priv, unsigned int cmd,
225			       unsigned int num_in, unsigned int num_out,
226			       u32 args[])
227{
228	void __iomem *base = priv->base;
229	unsigned long time_left;
230	unsigned int i;
231	int ret;
232	u32 val;
233
234	ret = down_interruptible(&priv->sem);
235	if (ret)
236		return ret;
237
238	/*
239	 * Make sure no other command is currently running: cmd is 0 if AVS
240	 * co-processor is idle. Due to the guard above, we should almost never
241	 * have to wait here.
242	 */
243	for (i = 0, val = 1; val != 0 && i < AVS_LOOP_LIMIT; i++)
244		val = readl(base + AVS_MBOX_COMMAND);
245
246	/* Give the caller a chance to retry if AVS is busy. */
247	if (i == AVS_LOOP_LIMIT) {
248		ret = -EAGAIN;
249		goto out;
250	}
251
252	/* Clear status before we begin. */
253	writel(AVS_STATUS_CLEAR, base + AVS_MBOX_STATUS);
254
255	/* Provide input parameters */
256	for (i = 0; i < num_in; i++)
257		writel(args[i], base + AVS_MBOX_PARAM(i));
258
259	/* Protect from spurious interrupts. */
260	reinit_completion(&priv->done);
261
262	/* Now issue the command & tell firmware to wake up to process it. */
263	writel(cmd, base + AVS_MBOX_COMMAND);
264	writel(AVS_CPU_L2_INT_MASK, priv->avs_intr_base + AVS_CPU_L2_SET0);
265
266	/* Wait for AVS co-processor to finish processing the command. */
267	time_left = wait_for_avs_command(priv, AVS_TIMEOUT);
268
269	/*
270	 * If the AVS status is not in the expected range, it means AVS didn't
271	 * complete our command in time, and we return an error. Also, if there
272	 * is no "time left", we timed out waiting for the interrupt.
273	 */
274	val = readl(base + AVS_MBOX_STATUS);
275	if (time_left == 0 || val == 0 || val > AVS_STATUS_MAX) {
276		dev_err(priv->dev, "AVS command %#x didn't complete in time\n",
277			cmd);
278		dev_err(priv->dev, "    Time left: %u ms, AVS status: %#x\n",
279			jiffies_to_msecs(time_left), val);
280		ret = -ETIMEDOUT;
281		goto out;
282	}
283
284	/* Process returned values */
285	for (i = 0; i < num_out; i++)
286		args[i] = readl(base + AVS_MBOX_PARAM(i));
287
288	/* Clear status to tell AVS co-processor we are done. */
289	writel(AVS_STATUS_CLEAR, base + AVS_MBOX_STATUS);
290
291	/* Convert firmware errors to errno's as much as possible. */
292	switch (val) {
293	case AVS_STATUS_INVALID:
294		ret = -EINVAL;
295		break;
296	case AVS_STATUS_NO_SUPP:
297		ret = -ENOTSUPP;
298		break;
299	case AVS_STATUS_NO_MAP:
300		ret = -ENOENT;
301		break;
302	case AVS_STATUS_MAP_SET:
303		ret = -EEXIST;
304		break;
305	case AVS_STATUS_FAILURE:
306		ret = -EIO;
307		break;
308	}
309
310out:
311	up(&priv->sem);
312
313	return ret;
314}
315
316static irqreturn_t irq_handler(int irq, void *data)
317{
318	struct private_data *priv = data;
319
320	/* AVS command completed execution. Wake up __issue_avs_command(). */
321	complete(&priv->done);
322
323	return IRQ_HANDLED;
324}
325
326static char *brcm_avs_mode_to_string(unsigned int mode)
327{
328	switch (mode) {
329	case AVS_MODE_AVS:
330		return "AVS";
331	case AVS_MODE_DFS:
332		return "DFS";
333	case AVS_MODE_DVS:
334		return "DVS";
335	case AVS_MODE_DVFS:
336		return "DVFS";
337	}
338	return NULL;
339}
340
341static void brcm_avs_parse_p1(u32 p1, unsigned int *mdiv_p0, unsigned int *pdiv,
342			      unsigned int *ndiv)
343{
344	*mdiv_p0 = (p1 >> MDIV_P0_SHIFT) & MDIV_P0_MASK;
345	*pdiv = (p1 >> PDIV_SHIFT) & PDIV_MASK;
346	*ndiv = (p1 >> NDIV_INT_SHIFT) & NDIV_INT_MASK;
347}
348
349static void brcm_avs_parse_p2(u32 p2, unsigned int *mdiv_p1,
350			      unsigned int *mdiv_p2, unsigned int *mdiv_p3,
351			      unsigned int *mdiv_p4)
352{
353	*mdiv_p4 = (p2 >> MDIV_P4_SHIFT) & MDIV_P4_MASK;
354	*mdiv_p3 = (p2 >> MDIV_P3_SHIFT) & MDIV_P3_MASK;
355	*mdiv_p2 = (p2 >> MDIV_P2_SHIFT) & MDIV_P2_MASK;
356	*mdiv_p1 = (p2 >> MDIV_P1_SHIFT) & MDIV_P1_MASK;
357}
358
359static int brcm_avs_get_pmap(struct private_data *priv, struct pmap *pmap)
360{
361	u32 args[AVS_MAX_CMD_ARGS];
362	int ret;
363
364	ret = __issue_avs_command(priv, AVS_CMD_GET_PMAP, 0, 4, args);
365	if (ret || !pmap)
366		return ret;
367
368	pmap->mode = args[0];
369	pmap->p1 = args[1];
370	pmap->p2 = args[2];
371	pmap->state = args[3];
372
373	return 0;
374}
375
376static int brcm_avs_set_pmap(struct private_data *priv, struct pmap *pmap)
377{
378	u32 args[AVS_MAX_CMD_ARGS];
379
380	args[0] = pmap->mode;
381	args[1] = pmap->p1;
382	args[2] = pmap->p2;
383	args[3] = pmap->state;
384
385	return __issue_avs_command(priv, AVS_CMD_SET_PMAP, 4, 0, args);
386}
387
388static int brcm_avs_get_pstate(struct private_data *priv, unsigned int *pstate)
389{
390	u32 args[AVS_MAX_CMD_ARGS];
391	int ret;
392
393	ret = __issue_avs_command(priv, AVS_CMD_GET_PSTATE, 0, 1, args);
394	if (ret)
395		return ret;
396	*pstate = args[0];
397
398	return 0;
399}
400
401static int brcm_avs_set_pstate(struct private_data *priv, unsigned int pstate)
402{
403	u32 args[AVS_MAX_CMD_ARGS];
404
405	args[0] = pstate;
406
407	return __issue_avs_command(priv, AVS_CMD_SET_PSTATE, 1, 0, args);
408
409}
410
411static u32 brcm_avs_get_voltage(void __iomem *base)
412{
413	return readl(base + AVS_MBOX_VOLTAGE1);
414}
415
416static u32 brcm_avs_get_frequency(void __iomem *base)
417{
418	return readl(base + AVS_MBOX_FREQUENCY) * 1000;	/* in kHz */
419}
420
421/*
422 * We determine which frequencies are supported by cycling through all P-states
423 * and reading back what frequency we are running at for each P-state.
424 */
425static struct cpufreq_frequency_table *
426brcm_avs_get_freq_table(struct device *dev, struct private_data *priv)
427{
428	struct cpufreq_frequency_table *table;
429	unsigned int pstate;
430	int i, ret;
431
432	/* Remember P-state for later */
433	ret = brcm_avs_get_pstate(priv, &pstate);
434	if (ret)
435		return ERR_PTR(ret);
436
437	/*
438	 * We allocate space for the 5 different P-STATES AVS,
439	 * plus extra space for a terminating element.
440	 */
441	table = devm_kcalloc(dev, AVS_PSTATE_MAX + 1 + 1, sizeof(*table),
442			     GFP_KERNEL);
443	if (!table)
444		return ERR_PTR(-ENOMEM);
445
446	for (i = AVS_PSTATE_P0; i <= AVS_PSTATE_MAX; i++) {
447		ret = brcm_avs_set_pstate(priv, i);
448		if (ret)
449			return ERR_PTR(ret);
450		table[i].frequency = brcm_avs_get_frequency(priv->base);
451		table[i].driver_data = i;
452	}
453	table[i].frequency = CPUFREQ_TABLE_END;
454
455	/* Restore P-state */
456	ret = brcm_avs_set_pstate(priv, pstate);
457	if (ret)
458		return ERR_PTR(ret);
459
460	return table;
461}
462
463/*
464 * To ensure the right firmware is running we need to
465 *    - check the MAGIC matches what we expect
466 *    - brcm_avs_get_pmap() doesn't return -ENOTSUPP or -EINVAL
467 * We need to set up our interrupt handling before calling brcm_avs_get_pmap()!
468 */
469static bool brcm_avs_is_firmware_loaded(struct private_data *priv)
470{
471	u32 magic;
472	int rc;
473
474	rc = brcm_avs_get_pmap(priv, NULL);
475	magic = readl(priv->base + AVS_MBOX_MAGIC);
476
477	return (magic == AVS_FIRMWARE_MAGIC) && ((rc != -ENOTSUPP) ||
478		(rc != -EINVAL));
479}
480
481static unsigned int brcm_avs_cpufreq_get(unsigned int cpu)
482{
483	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
484	struct private_data *priv = policy->driver_data;
485
486	cpufreq_cpu_put(policy);
487
488	return brcm_avs_get_frequency(priv->base);
489}
490
491static int brcm_avs_target_index(struct cpufreq_policy *policy,
492				 unsigned int index)
493{
494	return brcm_avs_set_pstate(policy->driver_data,
495				  policy->freq_table[index].driver_data);
496}
497
498static int brcm_avs_suspend(struct cpufreq_policy *policy)
499{
500	struct private_data *priv = policy->driver_data;
501	int ret;
502
503	ret = brcm_avs_get_pmap(priv, &priv->pmap);
504	if (ret)
505		return ret;
506
507	/*
508	 * We can't use the P-state returned by brcm_avs_get_pmap(), since
509	 * that's the initial P-state from when the P-map was downloaded to the
510	 * AVS co-processor, not necessarily the P-state we are running at now.
511	 * So, we get the current P-state explicitly.
512	 */
513	ret = brcm_avs_get_pstate(priv, &priv->pmap.state);
514	if (ret)
515		return ret;
516
517	/* This is best effort. Nothing to do if it fails. */
518	(void)__issue_avs_command(priv, AVS_CMD_S2_ENTER, 0, 0, NULL);
519
520	return 0;
521}
522
523static int brcm_avs_resume(struct cpufreq_policy *policy)
524{
525	struct private_data *priv = policy->driver_data;
526	int ret;
527
528	/* This is best effort. Nothing to do if it fails. */
529	(void)__issue_avs_command(priv, AVS_CMD_S2_EXIT, 0, 0, NULL);
530
531	ret = brcm_avs_set_pmap(priv, &priv->pmap);
532	if (ret == -EEXIST) {
533		struct platform_device *pdev  = cpufreq_get_driver_data();
534		struct device *dev = &pdev->dev;
535
536		dev_warn(dev, "PMAP was already set\n");
537		ret = 0;
538	}
539
540	return ret;
541}
542
543/*
544 * All initialization code that we only want to execute once goes here. Setup
545 * code that can be re-tried on every core (if it failed before) can go into
546 * brcm_avs_cpufreq_init().
547 */
548static int brcm_avs_prepare_init(struct platform_device *pdev)
549{
550	struct private_data *priv;
551	struct device *dev;
552	int ret;
553
554	dev = &pdev->dev;
555	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
556	if (!priv)
557		return -ENOMEM;
558
559	priv->dev = dev;
560	sema_init(&priv->sem, 1);
561	init_completion(&priv->done);
562	platform_set_drvdata(pdev, priv);
563
564	priv->base = __map_region(BRCM_AVS_CPU_DATA);
565	if (!priv->base) {
566		dev_err(dev, "Couldn't find property %s in device tree.\n",
567			BRCM_AVS_CPU_DATA);
568		return -ENOENT;
569	}
570
571	priv->avs_intr_base = __map_region(BRCM_AVS_CPU_INTR);
572	if (!priv->avs_intr_base) {
573		dev_err(dev, "Couldn't find property %s in device tree.\n",
574			BRCM_AVS_CPU_INTR);
575		ret = -ENOENT;
576		goto unmap_base;
577	}
578
579	priv->host_irq = platform_get_irq_byname(pdev, BRCM_AVS_HOST_INTR);
580
581	ret = devm_request_irq(dev, priv->host_irq, irq_handler,
582			       IRQF_TRIGGER_RISING,
583			       BRCM_AVS_HOST_INTR, priv);
584	if (ret && priv->host_irq >= 0) {
585		dev_err(dev, "IRQ request failed: %s (%d) -- %d\n",
586			BRCM_AVS_HOST_INTR, priv->host_irq, ret);
587		goto unmap_intr_base;
588	}
589
590	if (brcm_avs_is_firmware_loaded(priv))
591		return 0;
592
593	dev_err(dev, "AVS firmware is not loaded or doesn't support DVFS\n");
594	ret = -ENODEV;
595
596unmap_intr_base:
597	iounmap(priv->avs_intr_base);
598unmap_base:
599	iounmap(priv->base);
600
601	return ret;
602}
603
604static void brcm_avs_prepare_uninit(struct platform_device *pdev)
605{
606	struct private_data *priv;
607
608	priv = platform_get_drvdata(pdev);
609
610	iounmap(priv->avs_intr_base);
611	iounmap(priv->base);
612}
613
614static int brcm_avs_cpufreq_init(struct cpufreq_policy *policy)
615{
616	struct cpufreq_frequency_table *freq_table;
617	struct platform_device *pdev;
618	struct private_data *priv;
619	struct device *dev;
620	int ret;
621
622	pdev = cpufreq_get_driver_data();
623	priv = platform_get_drvdata(pdev);
624	policy->driver_data = priv;
625	dev = &pdev->dev;
626
627	freq_table = brcm_avs_get_freq_table(dev, priv);
628	if (IS_ERR(freq_table)) {
629		ret = PTR_ERR(freq_table);
630		dev_err(dev, "Couldn't determine frequency table (%d).\n", ret);
631		return ret;
632	}
633
634	policy->freq_table = freq_table;
635
636	/* All cores share the same clock and thus the same policy. */
637	cpumask_setall(policy->cpus);
638
639	ret = __issue_avs_command(priv, AVS_CMD_ENABLE, 0, 0, NULL);
640	if (!ret) {
641		unsigned int pstate;
642
643		ret = brcm_avs_get_pstate(priv, &pstate);
644		if (!ret) {
645			policy->cur = freq_table[pstate].frequency;
646			dev_info(dev, "registered\n");
647			return 0;
648		}
649	}
650
651	dev_err(dev, "couldn't initialize driver (%d)\n", ret);
652
653	return ret;
654}
655
656static ssize_t show_brcm_avs_pstate(struct cpufreq_policy *policy, char *buf)
657{
658	struct private_data *priv = policy->driver_data;
659	unsigned int pstate;
660
661	if (brcm_avs_get_pstate(priv, &pstate))
662		return sprintf(buf, "<unknown>\n");
663
664	return sprintf(buf, "%u\n", pstate);
665}
666
667static ssize_t show_brcm_avs_mode(struct cpufreq_policy *policy, char *buf)
668{
669	struct private_data *priv = policy->driver_data;
670	struct pmap pmap;
671
672	if (brcm_avs_get_pmap(priv, &pmap))
673		return sprintf(buf, "<unknown>\n");
674
675	return sprintf(buf, "%s %u\n", brcm_avs_mode_to_string(pmap.mode),
676		pmap.mode);
677}
678
679static ssize_t show_brcm_avs_pmap(struct cpufreq_policy *policy, char *buf)
680{
681	unsigned int mdiv_p0, mdiv_p1, mdiv_p2, mdiv_p3, mdiv_p4;
682	struct private_data *priv = policy->driver_data;
683	unsigned int ndiv, pdiv;
684	struct pmap pmap;
685
686	if (brcm_avs_get_pmap(priv, &pmap))
687		return sprintf(buf, "<unknown>\n");
688
689	brcm_avs_parse_p1(pmap.p1, &mdiv_p0, &pdiv, &ndiv);
690	brcm_avs_parse_p2(pmap.p2, &mdiv_p1, &mdiv_p2, &mdiv_p3, &mdiv_p4);
691
692	return sprintf(buf, "0x%08x 0x%08x %u %u %u %u %u %u %u %u %u\n",
693		pmap.p1, pmap.p2, ndiv, pdiv, mdiv_p0, mdiv_p1, mdiv_p2,
694		mdiv_p3, mdiv_p4, pmap.mode, pmap.state);
695}
696
697static ssize_t show_brcm_avs_voltage(struct cpufreq_policy *policy, char *buf)
698{
699	struct private_data *priv = policy->driver_data;
700
701	return sprintf(buf, "0x%08x\n", brcm_avs_get_voltage(priv->base));
702}
703
704static ssize_t show_brcm_avs_frequency(struct cpufreq_policy *policy, char *buf)
705{
706	struct private_data *priv = policy->driver_data;
707
708	return sprintf(buf, "0x%08x\n", brcm_avs_get_frequency(priv->base));
709}
710
711cpufreq_freq_attr_ro(brcm_avs_pstate);
712cpufreq_freq_attr_ro(brcm_avs_mode);
713cpufreq_freq_attr_ro(brcm_avs_pmap);
714cpufreq_freq_attr_ro(brcm_avs_voltage);
715cpufreq_freq_attr_ro(brcm_avs_frequency);
716
717static struct freq_attr *brcm_avs_cpufreq_attr[] = {
718	&cpufreq_freq_attr_scaling_available_freqs,
719	&brcm_avs_pstate,
720	&brcm_avs_mode,
721	&brcm_avs_pmap,
722	&brcm_avs_voltage,
723	&brcm_avs_frequency,
724	NULL
725};
726
727static struct cpufreq_driver brcm_avs_driver = {
728	.flags		= CPUFREQ_NEED_INITIAL_FREQ_CHECK,
729	.verify		= cpufreq_generic_frequency_table_verify,
730	.target_index	= brcm_avs_target_index,
731	.get		= brcm_avs_cpufreq_get,
732	.suspend	= brcm_avs_suspend,
733	.resume		= brcm_avs_resume,
734	.init		= brcm_avs_cpufreq_init,
735	.attr		= brcm_avs_cpufreq_attr,
736	.name		= BRCM_AVS_CPUFREQ_PREFIX,
737};
738
739static int brcm_avs_cpufreq_probe(struct platform_device *pdev)
740{
741	int ret;
742
743	ret = brcm_avs_prepare_init(pdev);
744	if (ret)
745		return ret;
746
747	brcm_avs_driver.driver_data = pdev;
748
749	ret = cpufreq_register_driver(&brcm_avs_driver);
750	if (ret)
751		brcm_avs_prepare_uninit(pdev);
752
753	return ret;
754}
755
756static void brcm_avs_cpufreq_remove(struct platform_device *pdev)
757{
758	cpufreq_unregister_driver(&brcm_avs_driver);
759
760	brcm_avs_prepare_uninit(pdev);
761}
762
763static const struct of_device_id brcm_avs_cpufreq_match[] = {
764	{ .compatible = BRCM_AVS_CPU_DATA },
765	{ }
766};
767MODULE_DEVICE_TABLE(of, brcm_avs_cpufreq_match);
768
769static struct platform_driver brcm_avs_cpufreq_platdrv = {
770	.driver = {
771		.name	= BRCM_AVS_CPUFREQ_NAME,
772		.of_match_table = brcm_avs_cpufreq_match,
773	},
774	.probe		= brcm_avs_cpufreq_probe,
775	.remove_new	= brcm_avs_cpufreq_remove,
776};
777module_platform_driver(brcm_avs_cpufreq_platdrv);
778
779MODULE_AUTHOR("Markus Mayer <mmayer@broadcom.com>");
780MODULE_DESCRIPTION("CPUfreq driver for Broadcom STB AVS");
781MODULE_LICENSE("GPL");