Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2008 STMicroelectronics
4 * Copyright (C) 2010 Alessandro Rubini
5 * Copyright (C) 2010 Linus Walleij for ST-Ericsson
6 */
7#include <linux/init.h>
8#include <linux/interrupt.h>
9#include <linux/irq.h>
10#include <linux/io.h>
11#include <linux/clockchips.h>
12#include <linux/clocksource.h>
13#include <linux/of.h>
14#include <linux/of_address.h>
15#include <linux/of_irq.h>
16#include <linux/clk.h>
17#include <linux/jiffies.h>
18#include <linux/delay.h>
19#include <linux/err.h>
20#include <linux/sched_clock.h>
21#include <asm/mach/time.h>
22
23/*
24 * The MTU device hosts four different counters, with 4 set of
25 * registers. These are register names.
26 */
27
28#define MTU_IMSC 0x00 /* Interrupt mask set/clear */
29#define MTU_RIS 0x04 /* Raw interrupt status */
30#define MTU_MIS 0x08 /* Masked interrupt status */
31#define MTU_ICR 0x0C /* Interrupt clear register */
32
33/* per-timer registers take 0..3 as argument */
34#define MTU_LR(x) (0x10 + 0x10 * (x) + 0x00) /* Load value */
35#define MTU_VAL(x) (0x10 + 0x10 * (x) + 0x04) /* Current value */
36#define MTU_CR(x) (0x10 + 0x10 * (x) + 0x08) /* Control reg */
37#define MTU_BGLR(x) (0x10 + 0x10 * (x) + 0x0c) /* At next overflow */
38
39/* bits for the control register */
40#define MTU_CRn_ENA 0x80
41#define MTU_CRn_PERIODIC 0x40 /* if 0 = free-running */
42#define MTU_CRn_PRESCALE_MASK 0x0c
43#define MTU_CRn_PRESCALE_1 0x00
44#define MTU_CRn_PRESCALE_16 0x04
45#define MTU_CRn_PRESCALE_256 0x08
46#define MTU_CRn_32BITS 0x02
47#define MTU_CRn_ONESHOT 0x01 /* if 0 = wraps reloading from BGLR*/
48
49/* Other registers are usual amba/primecell registers, currently not used */
50#define MTU_ITCR 0xff0
51#define MTU_ITOP 0xff4
52
53#define MTU_PERIPH_ID0 0xfe0
54#define MTU_PERIPH_ID1 0xfe4
55#define MTU_PERIPH_ID2 0xfe8
56#define MTU_PERIPH_ID3 0xfeC
57
58#define MTU_PCELL0 0xff0
59#define MTU_PCELL1 0xff4
60#define MTU_PCELL2 0xff8
61#define MTU_PCELL3 0xffC
62
63static void __iomem *mtu_base;
64static bool clkevt_periodic;
65static u32 clk_prescale;
66static u32 nmdk_cycle; /* write-once */
67static struct delay_timer mtu_delay_timer;
68
69/*
70 * Override the global weak sched_clock symbol with this
71 * local implementation which uses the clocksource to get some
72 * better resolution when scheduling the kernel.
73 */
74static u64 notrace nomadik_read_sched_clock(void)
75{
76 if (unlikely(!mtu_base))
77 return 0;
78
79 return -readl(mtu_base + MTU_VAL(0));
80}
81
82static unsigned long nmdk_timer_read_current_timer(void)
83{
84 return ~readl_relaxed(mtu_base + MTU_VAL(0));
85}
86
87/* Clockevent device: use one-shot mode */
88static int nmdk_clkevt_next(unsigned long evt, struct clock_event_device *ev)
89{
90 writel(1 << 1, mtu_base + MTU_IMSC);
91 writel(evt, mtu_base + MTU_LR(1));
92 /* Load highest value, enable device, enable interrupts */
93 writel(MTU_CRn_ONESHOT | clk_prescale |
94 MTU_CRn_32BITS | MTU_CRn_ENA,
95 mtu_base + MTU_CR(1));
96
97 return 0;
98}
99
100static void nmdk_clkevt_reset(void)
101{
102 if (clkevt_periodic) {
103 /* Timer: configure load and background-load, and fire it up */
104 writel(nmdk_cycle, mtu_base + MTU_LR(1));
105 writel(nmdk_cycle, mtu_base + MTU_BGLR(1));
106
107 writel(MTU_CRn_PERIODIC | clk_prescale |
108 MTU_CRn_32BITS | MTU_CRn_ENA,
109 mtu_base + MTU_CR(1));
110 writel(1 << 1, mtu_base + MTU_IMSC);
111 } else {
112 /* Generate an interrupt to start the clockevent again */
113 (void) nmdk_clkevt_next(nmdk_cycle, NULL);
114 }
115}
116
117static int nmdk_clkevt_shutdown(struct clock_event_device *evt)
118{
119 writel(0, mtu_base + MTU_IMSC);
120 /* disable timer */
121 writel(0, mtu_base + MTU_CR(1));
122 /* load some high default value */
123 writel(0xffffffff, mtu_base + MTU_LR(1));
124 return 0;
125}
126
127static int nmdk_clkevt_set_oneshot(struct clock_event_device *evt)
128{
129 clkevt_periodic = false;
130 return 0;
131}
132
133static int nmdk_clkevt_set_periodic(struct clock_event_device *evt)
134{
135 clkevt_periodic = true;
136 nmdk_clkevt_reset();
137 return 0;
138}
139
140static void nmdk_clksrc_reset(void)
141{
142 /* Disable */
143 writel(0, mtu_base + MTU_CR(0));
144
145 /* ClockSource: configure load and background-load, and fire it up */
146 writel(nmdk_cycle, mtu_base + MTU_LR(0));
147 writel(nmdk_cycle, mtu_base + MTU_BGLR(0));
148
149 writel(clk_prescale | MTU_CRn_32BITS | MTU_CRn_ENA,
150 mtu_base + MTU_CR(0));
151}
152
153static void nmdk_clkevt_resume(struct clock_event_device *cedev)
154{
155 nmdk_clkevt_reset();
156 nmdk_clksrc_reset();
157}
158
159static struct clock_event_device nmdk_clkevt = {
160 .name = "mtu_1",
161 .features = CLOCK_EVT_FEAT_ONESHOT |
162 CLOCK_EVT_FEAT_PERIODIC |
163 CLOCK_EVT_FEAT_DYNIRQ,
164 .rating = 200,
165 .set_state_shutdown = nmdk_clkevt_shutdown,
166 .set_state_periodic = nmdk_clkevt_set_periodic,
167 .set_state_oneshot = nmdk_clkevt_set_oneshot,
168 .set_next_event = nmdk_clkevt_next,
169 .resume = nmdk_clkevt_resume,
170};
171
172/*
173 * IRQ Handler for timer 1 of the MTU block.
174 */
175static irqreturn_t nmdk_timer_interrupt(int irq, void *dev_id)
176{
177 struct clock_event_device *evdev = dev_id;
178
179 writel(1 << 1, mtu_base + MTU_ICR); /* Interrupt clear reg */
180 evdev->event_handler(evdev);
181 return IRQ_HANDLED;
182}
183
184static int __init nmdk_timer_init(void __iomem *base, int irq,
185 struct clk *pclk, struct clk *clk)
186{
187 unsigned long rate;
188 int ret;
189 int min_ticks;
190
191 mtu_base = base;
192
193 BUG_ON(clk_prepare_enable(pclk));
194 BUG_ON(clk_prepare_enable(clk));
195
196 /*
197 * Tick rate is 2.4MHz for Nomadik and 2.4Mhz, 100MHz or 133 MHz
198 * for ux500, and in one specific Ux500 case 32768 Hz.
199 *
200 * Use a divide-by-16 counter if the tick rate is more than 32MHz.
201 * At 32 MHz, the timer (with 32 bit counter) can be programmed
202 * to wake-up at a max 127s a head in time. Dividing a 2.4 MHz timer
203 * with 16 gives too low timer resolution.
204 */
205 rate = clk_get_rate(clk);
206 if (rate > 32000000) {
207 rate /= 16;
208 clk_prescale = MTU_CRn_PRESCALE_16;
209 } else {
210 clk_prescale = MTU_CRn_PRESCALE_1;
211 }
212
213 /* Cycles for periodic mode */
214 nmdk_cycle = DIV_ROUND_CLOSEST(rate, HZ);
215
216
217 /* Timer 0 is the free running clocksource */
218 nmdk_clksrc_reset();
219
220 ret = clocksource_mmio_init(mtu_base + MTU_VAL(0), "mtu_0",
221 rate, 200, 32, clocksource_mmio_readl_down);
222 if (ret) {
223 pr_err("timer: failed to initialize clock source %s\n", "mtu_0");
224 return ret;
225 }
226
227 sched_clock_register(nomadik_read_sched_clock, 32, rate);
228
229 /* Timer 1 is used for events, register irq and clockevents */
230 if (request_irq(irq, nmdk_timer_interrupt, IRQF_TIMER,
231 "Nomadik Timer Tick", &nmdk_clkevt))
232 pr_err("%s: request_irq() failed\n", "Nomadik Timer Tick");
233 nmdk_clkevt.cpumask = cpumask_of(0);
234 nmdk_clkevt.irq = irq;
235 if (rate < 100000)
236 min_ticks = 5;
237 else
238 min_ticks = 2;
239 clockevents_config_and_register(&nmdk_clkevt, rate, min_ticks,
240 0xffffffffU);
241
242 mtu_delay_timer.read_current_timer = &nmdk_timer_read_current_timer;
243 mtu_delay_timer.freq = rate;
244 register_current_timer_delay(&mtu_delay_timer);
245
246 return 0;
247}
248
249static int __init nmdk_timer_of_init(struct device_node *node)
250{
251 struct clk *pclk;
252 struct clk *clk;
253 void __iomem *base;
254 int irq;
255
256 base = of_iomap(node, 0);
257 if (!base) {
258 pr_err("Can't remap registers\n");
259 return -ENXIO;
260 }
261
262 pclk = of_clk_get_by_name(node, "apb_pclk");
263 if (IS_ERR(pclk)) {
264 pr_err("could not get apb_pclk\n");
265 return PTR_ERR(pclk);
266 }
267
268 clk = of_clk_get_by_name(node, "timclk");
269 if (IS_ERR(clk)) {
270 pr_err("could not get timclk\n");
271 return PTR_ERR(clk);
272 }
273
274 irq = irq_of_parse_and_map(node, 0);
275 if (irq <= 0) {
276 pr_err("Can't parse IRQ\n");
277 return -EINVAL;
278 }
279
280 return nmdk_timer_init(base, irq, pclk, clk);
281}
282TIMER_OF_DECLARE(nomadik_mtu, "st,nomadik-mtu",
283 nmdk_timer_of_init);
1/*
2 * Copyright (C) 2008 STMicroelectronics
3 * Copyright (C) 2010 Alessandro Rubini
4 * Copyright (C) 2010 Linus Walleij for ST-Ericsson
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2, as
8 * published by the Free Software Foundation.
9 */
10#include <linux/init.h>
11#include <linux/interrupt.h>
12#include <linux/irq.h>
13#include <linux/io.h>
14#include <linux/clockchips.h>
15#include <linux/clocksource.h>
16#include <linux/of_address.h>
17#include <linux/of_irq.h>
18#include <linux/of_platform.h>
19#include <linux/clk.h>
20#include <linux/jiffies.h>
21#include <linux/delay.h>
22#include <linux/err.h>
23#include <linux/sched_clock.h>
24#include <asm/mach/time.h>
25
26/*
27 * The MTU device hosts four different counters, with 4 set of
28 * registers. These are register names.
29 */
30
31#define MTU_IMSC 0x00 /* Interrupt mask set/clear */
32#define MTU_RIS 0x04 /* Raw interrupt status */
33#define MTU_MIS 0x08 /* Masked interrupt status */
34#define MTU_ICR 0x0C /* Interrupt clear register */
35
36/* per-timer registers take 0..3 as argument */
37#define MTU_LR(x) (0x10 + 0x10 * (x) + 0x00) /* Load value */
38#define MTU_VAL(x) (0x10 + 0x10 * (x) + 0x04) /* Current value */
39#define MTU_CR(x) (0x10 + 0x10 * (x) + 0x08) /* Control reg */
40#define MTU_BGLR(x) (0x10 + 0x10 * (x) + 0x0c) /* At next overflow */
41
42/* bits for the control register */
43#define MTU_CRn_ENA 0x80
44#define MTU_CRn_PERIODIC 0x40 /* if 0 = free-running */
45#define MTU_CRn_PRESCALE_MASK 0x0c
46#define MTU_CRn_PRESCALE_1 0x00
47#define MTU_CRn_PRESCALE_16 0x04
48#define MTU_CRn_PRESCALE_256 0x08
49#define MTU_CRn_32BITS 0x02
50#define MTU_CRn_ONESHOT 0x01 /* if 0 = wraps reloading from BGLR*/
51
52/* Other registers are usual amba/primecell registers, currently not used */
53#define MTU_ITCR 0xff0
54#define MTU_ITOP 0xff4
55
56#define MTU_PERIPH_ID0 0xfe0
57#define MTU_PERIPH_ID1 0xfe4
58#define MTU_PERIPH_ID2 0xfe8
59#define MTU_PERIPH_ID3 0xfeC
60
61#define MTU_PCELL0 0xff0
62#define MTU_PCELL1 0xff4
63#define MTU_PCELL2 0xff8
64#define MTU_PCELL3 0xffC
65
66static void __iomem *mtu_base;
67static bool clkevt_periodic;
68static u32 clk_prescale;
69static u32 nmdk_cycle; /* write-once */
70static struct delay_timer mtu_delay_timer;
71
72#ifdef CONFIG_CLKSRC_NOMADIK_MTU_SCHED_CLOCK
73/*
74 * Override the global weak sched_clock symbol with this
75 * local implementation which uses the clocksource to get some
76 * better resolution when scheduling the kernel.
77 */
78static u64 notrace nomadik_read_sched_clock(void)
79{
80 if (unlikely(!mtu_base))
81 return 0;
82
83 return -readl(mtu_base + MTU_VAL(0));
84}
85#endif
86
87static unsigned long nmdk_timer_read_current_timer(void)
88{
89 return ~readl_relaxed(mtu_base + MTU_VAL(0));
90}
91
92/* Clockevent device: use one-shot mode */
93static int nmdk_clkevt_next(unsigned long evt, struct clock_event_device *ev)
94{
95 writel(1 << 1, mtu_base + MTU_IMSC);
96 writel(evt, mtu_base + MTU_LR(1));
97 /* Load highest value, enable device, enable interrupts */
98 writel(MTU_CRn_ONESHOT | clk_prescale |
99 MTU_CRn_32BITS | MTU_CRn_ENA,
100 mtu_base + MTU_CR(1));
101
102 return 0;
103}
104
105static void nmdk_clkevt_reset(void)
106{
107 if (clkevt_periodic) {
108 /* Timer: configure load and background-load, and fire it up */
109 writel(nmdk_cycle, mtu_base + MTU_LR(1));
110 writel(nmdk_cycle, mtu_base + MTU_BGLR(1));
111
112 writel(MTU_CRn_PERIODIC | clk_prescale |
113 MTU_CRn_32BITS | MTU_CRn_ENA,
114 mtu_base + MTU_CR(1));
115 writel(1 << 1, mtu_base + MTU_IMSC);
116 } else {
117 /* Generate an interrupt to start the clockevent again */
118 (void) nmdk_clkevt_next(nmdk_cycle, NULL);
119 }
120}
121
122static int nmdk_clkevt_shutdown(struct clock_event_device *evt)
123{
124 writel(0, mtu_base + MTU_IMSC);
125 /* disable timer */
126 writel(0, mtu_base + MTU_CR(1));
127 /* load some high default value */
128 writel(0xffffffff, mtu_base + MTU_LR(1));
129 return 0;
130}
131
132static int nmdk_clkevt_set_oneshot(struct clock_event_device *evt)
133{
134 clkevt_periodic = false;
135 return 0;
136}
137
138static int nmdk_clkevt_set_periodic(struct clock_event_device *evt)
139{
140 clkevt_periodic = true;
141 nmdk_clkevt_reset();
142 return 0;
143}
144
145static void nmdk_clksrc_reset(void)
146{
147 /* Disable */
148 writel(0, mtu_base + MTU_CR(0));
149
150 /* ClockSource: configure load and background-load, and fire it up */
151 writel(nmdk_cycle, mtu_base + MTU_LR(0));
152 writel(nmdk_cycle, mtu_base + MTU_BGLR(0));
153
154 writel(clk_prescale | MTU_CRn_32BITS | MTU_CRn_ENA,
155 mtu_base + MTU_CR(0));
156}
157
158static void nmdk_clkevt_resume(struct clock_event_device *cedev)
159{
160 nmdk_clkevt_reset();
161 nmdk_clksrc_reset();
162}
163
164static struct clock_event_device nmdk_clkevt = {
165 .name = "mtu_1",
166 .features = CLOCK_EVT_FEAT_ONESHOT |
167 CLOCK_EVT_FEAT_PERIODIC |
168 CLOCK_EVT_FEAT_DYNIRQ,
169 .rating = 200,
170 .set_state_shutdown = nmdk_clkevt_shutdown,
171 .set_state_periodic = nmdk_clkevt_set_periodic,
172 .set_state_oneshot = nmdk_clkevt_set_oneshot,
173 .set_next_event = nmdk_clkevt_next,
174 .resume = nmdk_clkevt_resume,
175};
176
177/*
178 * IRQ Handler for timer 1 of the MTU block.
179 */
180static irqreturn_t nmdk_timer_interrupt(int irq, void *dev_id)
181{
182 struct clock_event_device *evdev = dev_id;
183
184 writel(1 << 1, mtu_base + MTU_ICR); /* Interrupt clear reg */
185 evdev->event_handler(evdev);
186 return IRQ_HANDLED;
187}
188
189static struct irqaction nmdk_timer_irq = {
190 .name = "Nomadik Timer Tick",
191 .flags = IRQF_TIMER,
192 .handler = nmdk_timer_interrupt,
193 .dev_id = &nmdk_clkevt,
194};
195
196static void __init nmdk_timer_init(void __iomem *base, int irq,
197 struct clk *pclk, struct clk *clk)
198{
199 unsigned long rate;
200
201 mtu_base = base;
202
203 BUG_ON(clk_prepare_enable(pclk));
204 BUG_ON(clk_prepare_enable(clk));
205
206 /*
207 * Tick rate is 2.4MHz for Nomadik and 2.4Mhz, 100MHz or 133 MHz
208 * for ux500.
209 * Use a divide-by-16 counter if the tick rate is more than 32MHz.
210 * At 32 MHz, the timer (with 32 bit counter) can be programmed
211 * to wake-up at a max 127s a head in time. Dividing a 2.4 MHz timer
212 * with 16 gives too low timer resolution.
213 */
214 rate = clk_get_rate(clk);
215 if (rate > 32000000) {
216 rate /= 16;
217 clk_prescale = MTU_CRn_PRESCALE_16;
218 } else {
219 clk_prescale = MTU_CRn_PRESCALE_1;
220 }
221
222 /* Cycles for periodic mode */
223 nmdk_cycle = DIV_ROUND_CLOSEST(rate, HZ);
224
225
226 /* Timer 0 is the free running clocksource */
227 nmdk_clksrc_reset();
228
229 if (clocksource_mmio_init(mtu_base + MTU_VAL(0), "mtu_0",
230 rate, 200, 32, clocksource_mmio_readl_down))
231 pr_err("timer: failed to initialize clock source %s\n",
232 "mtu_0");
233
234#ifdef CONFIG_CLKSRC_NOMADIK_MTU_SCHED_CLOCK
235 sched_clock_register(nomadik_read_sched_clock, 32, rate);
236#endif
237
238 /* Timer 1 is used for events, register irq and clockevents */
239 setup_irq(irq, &nmdk_timer_irq);
240 nmdk_clkevt.cpumask = cpumask_of(0);
241 nmdk_clkevt.irq = irq;
242 clockevents_config_and_register(&nmdk_clkevt, rate, 2, 0xffffffffU);
243
244 mtu_delay_timer.read_current_timer = &nmdk_timer_read_current_timer;
245 mtu_delay_timer.freq = rate;
246 register_current_timer_delay(&mtu_delay_timer);
247}
248
249static void __init nmdk_timer_of_init(struct device_node *node)
250{
251 struct clk *pclk;
252 struct clk *clk;
253 void __iomem *base;
254 int irq;
255
256 base = of_iomap(node, 0);
257 if (!base)
258 panic("Can't remap registers");
259
260 pclk = of_clk_get_by_name(node, "apb_pclk");
261 if (IS_ERR(pclk))
262 panic("could not get apb_pclk");
263
264 clk = of_clk_get_by_name(node, "timclk");
265 if (IS_ERR(clk))
266 panic("could not get timclk");
267
268 irq = irq_of_parse_and_map(node, 0);
269 if (irq <= 0)
270 panic("Can't parse IRQ");
271
272 nmdk_timer_init(base, irq, pclk, clk);
273}
274CLOCKSOURCE_OF_DECLARE(nomadik_mtu, "st,nomadik-mtu",
275 nmdk_timer_of_init);