Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * (C) Copyright 2009 Intel Corporation
4 * Author: Jacob Pan (jacob.jun.pan@intel.com)
5 *
6 * Shared with ARM platforms, Jamie Iles, Picochip 2011
7 *
8 * Support for the Synopsys DesignWare APB Timers.
9 */
10#include <linux/dw_apb_timer.h>
11#include <linux/delay.h>
12#include <linux/kernel.h>
13#include <linux/interrupt.h>
14#include <linux/irq.h>
15#include <linux/io.h>
16#include <linux/slab.h>
17
18#define APBT_MIN_PERIOD 4
19#define APBT_MIN_DELTA_USEC 200
20
21#define APBTMR_N_LOAD_COUNT 0x00
22#define APBTMR_N_CURRENT_VALUE 0x04
23#define APBTMR_N_CONTROL 0x08
24#define APBTMR_N_EOI 0x0c
25#define APBTMR_N_INT_STATUS 0x10
26
27#define APBTMRS_INT_STATUS 0xa0
28#define APBTMRS_EOI 0xa4
29#define APBTMRS_RAW_INT_STATUS 0xa8
30#define APBTMRS_COMP_VERSION 0xac
31
32#define APBTMR_CONTROL_ENABLE (1 << 0)
33/* 1: periodic, 0:free running. */
34#define APBTMR_CONTROL_MODE_PERIODIC (1 << 1)
35#define APBTMR_CONTROL_INT (1 << 2)
36
37static inline struct dw_apb_clock_event_device *
38ced_to_dw_apb_ced(struct clock_event_device *evt)
39{
40 return container_of(evt, struct dw_apb_clock_event_device, ced);
41}
42
43static inline struct dw_apb_clocksource *
44clocksource_to_dw_apb_clocksource(struct clocksource *cs)
45{
46 return container_of(cs, struct dw_apb_clocksource, cs);
47}
48
49static inline u32 apbt_readl(struct dw_apb_timer *timer, unsigned long offs)
50{
51 return readl(timer->base + offs);
52}
53
54static inline void apbt_writel(struct dw_apb_timer *timer, u32 val,
55 unsigned long offs)
56{
57 writel(val, timer->base + offs);
58}
59
60static inline u32 apbt_readl_relaxed(struct dw_apb_timer *timer, unsigned long offs)
61{
62 return readl_relaxed(timer->base + offs);
63}
64
65static inline void apbt_writel_relaxed(struct dw_apb_timer *timer, u32 val,
66 unsigned long offs)
67{
68 writel_relaxed(val, timer->base + offs);
69}
70
71static void apbt_disable_int(struct dw_apb_timer *timer)
72{
73 u32 ctrl = apbt_readl(timer, APBTMR_N_CONTROL);
74
75 ctrl |= APBTMR_CONTROL_INT;
76 apbt_writel(timer, ctrl, APBTMR_N_CONTROL);
77}
78
79/**
80 * dw_apb_clockevent_pause() - stop the clock_event_device from running
81 *
82 * @dw_ced: The APB clock to stop generating events.
83 */
84void dw_apb_clockevent_pause(struct dw_apb_clock_event_device *dw_ced)
85{
86 disable_irq(dw_ced->timer.irq);
87 apbt_disable_int(&dw_ced->timer);
88}
89
90static void apbt_eoi(struct dw_apb_timer *timer)
91{
92 apbt_readl_relaxed(timer, APBTMR_N_EOI);
93}
94
95static irqreturn_t dw_apb_clockevent_irq(int irq, void *data)
96{
97 struct clock_event_device *evt = data;
98 struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
99
100 if (!evt->event_handler) {
101 pr_info("Spurious APBT timer interrupt %d\n", irq);
102 return IRQ_NONE;
103 }
104
105 if (dw_ced->eoi)
106 dw_ced->eoi(&dw_ced->timer);
107
108 evt->event_handler(evt);
109 return IRQ_HANDLED;
110}
111
112static void apbt_enable_int(struct dw_apb_timer *timer)
113{
114 u32 ctrl = apbt_readl(timer, APBTMR_N_CONTROL);
115 /* clear pending intr */
116 apbt_readl(timer, APBTMR_N_EOI);
117 ctrl &= ~APBTMR_CONTROL_INT;
118 apbt_writel(timer, ctrl, APBTMR_N_CONTROL);
119}
120
121static int apbt_shutdown(struct clock_event_device *evt)
122{
123 struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
124 u32 ctrl;
125
126 pr_debug("%s CPU %d state=shutdown\n", __func__,
127 cpumask_first(evt->cpumask));
128
129 ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
130 ctrl &= ~APBTMR_CONTROL_ENABLE;
131 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
132 return 0;
133}
134
135static int apbt_set_oneshot(struct clock_event_device *evt)
136{
137 struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
138 u32 ctrl;
139
140 pr_debug("%s CPU %d state=oneshot\n", __func__,
141 cpumask_first(evt->cpumask));
142
143 ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
144 /*
145 * set free running mode, this mode will let timer reload max
146 * timeout which will give time (3min on 25MHz clock) to rearm
147 * the next event, therefore emulate the one-shot mode.
148 */
149 ctrl &= ~APBTMR_CONTROL_ENABLE;
150 ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
151
152 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
153 /* write again to set free running mode */
154 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
155
156 /*
157 * DW APB p. 46, load counter with all 1s before starting free
158 * running mode.
159 */
160 apbt_writel(&dw_ced->timer, ~0, APBTMR_N_LOAD_COUNT);
161 ctrl &= ~APBTMR_CONTROL_INT;
162 ctrl |= APBTMR_CONTROL_ENABLE;
163 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
164 return 0;
165}
166
167static int apbt_set_periodic(struct clock_event_device *evt)
168{
169 struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
170 unsigned long period = DIV_ROUND_UP(dw_ced->timer.freq, HZ);
171 u32 ctrl;
172
173 pr_debug("%s CPU %d state=periodic\n", __func__,
174 cpumask_first(evt->cpumask));
175
176 ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
177 ctrl |= APBTMR_CONTROL_MODE_PERIODIC;
178 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
179 /*
180 * DW APB p. 46, have to disable timer before load counter,
181 * may cause sync problem.
182 */
183 ctrl &= ~APBTMR_CONTROL_ENABLE;
184 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
185 udelay(1);
186 pr_debug("Setting clock period %lu for HZ %d\n", period, HZ);
187 apbt_writel(&dw_ced->timer, period, APBTMR_N_LOAD_COUNT);
188 ctrl |= APBTMR_CONTROL_ENABLE;
189 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
190 return 0;
191}
192
193static int apbt_resume(struct clock_event_device *evt)
194{
195 struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
196
197 pr_debug("%s CPU %d state=resume\n", __func__,
198 cpumask_first(evt->cpumask));
199
200 apbt_enable_int(&dw_ced->timer);
201 return 0;
202}
203
204static int apbt_next_event(unsigned long delta,
205 struct clock_event_device *evt)
206{
207 u32 ctrl;
208 struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
209
210 /* Disable timer */
211 ctrl = apbt_readl_relaxed(&dw_ced->timer, APBTMR_N_CONTROL);
212 ctrl &= ~APBTMR_CONTROL_ENABLE;
213 apbt_writel_relaxed(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
214 /* write new count */
215 apbt_writel_relaxed(&dw_ced->timer, delta, APBTMR_N_LOAD_COUNT);
216 ctrl |= APBTMR_CONTROL_ENABLE;
217 apbt_writel_relaxed(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
218
219 return 0;
220}
221
222/**
223 * dw_apb_clockevent_init() - use an APB timer as a clock_event_device
224 *
225 * @cpu: The CPU the events will be targeted at or -1 if CPU affiliation
226 * isn't required.
227 * @name: The name used for the timer and the IRQ for it.
228 * @rating: The rating to give the timer.
229 * @base: I/O base for the timer registers.
230 * @irq: The interrupt number to use for the timer.
231 * @freq: The frequency that the timer counts at.
232 *
233 * This creates a clock_event_device for using with the generic clock layer
234 * but does not start and register it. This should be done with
235 * dw_apb_clockevent_register() as the next step. If this is the first time
236 * it has been called for a timer then the IRQ will be requested, if not it
237 * just be enabled to allow CPU hotplug to avoid repeatedly requesting and
238 * releasing the IRQ.
239 */
240struct dw_apb_clock_event_device *
241dw_apb_clockevent_init(int cpu, const char *name, unsigned rating,
242 void __iomem *base, int irq, unsigned long freq)
243{
244 struct dw_apb_clock_event_device *dw_ced =
245 kzalloc(sizeof(*dw_ced), GFP_KERNEL);
246 int err;
247
248 if (!dw_ced)
249 return NULL;
250
251 dw_ced->timer.base = base;
252 dw_ced->timer.irq = irq;
253 dw_ced->timer.freq = freq;
254
255 clockevents_calc_mult_shift(&dw_ced->ced, freq, APBT_MIN_PERIOD);
256 dw_ced->ced.max_delta_ns = clockevent_delta2ns(0x7fffffff,
257 &dw_ced->ced);
258 dw_ced->ced.max_delta_ticks = 0x7fffffff;
259 dw_ced->ced.min_delta_ns = clockevent_delta2ns(5000, &dw_ced->ced);
260 dw_ced->ced.min_delta_ticks = 5000;
261 dw_ced->ced.cpumask = cpu < 0 ? cpu_possible_mask : cpumask_of(cpu);
262 dw_ced->ced.features = CLOCK_EVT_FEAT_PERIODIC |
263 CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_DYNIRQ;
264 dw_ced->ced.set_state_shutdown = apbt_shutdown;
265 dw_ced->ced.set_state_periodic = apbt_set_periodic;
266 dw_ced->ced.set_state_oneshot = apbt_set_oneshot;
267 dw_ced->ced.set_state_oneshot_stopped = apbt_shutdown;
268 dw_ced->ced.tick_resume = apbt_resume;
269 dw_ced->ced.set_next_event = apbt_next_event;
270 dw_ced->ced.irq = dw_ced->timer.irq;
271 dw_ced->ced.rating = rating;
272 dw_ced->ced.name = name;
273
274 dw_ced->eoi = apbt_eoi;
275 err = request_irq(irq, dw_apb_clockevent_irq,
276 IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
277 dw_ced->ced.name, &dw_ced->ced);
278 if (err) {
279 pr_err("failed to request timer irq\n");
280 kfree(dw_ced);
281 dw_ced = NULL;
282 }
283
284 return dw_ced;
285}
286
287/**
288 * dw_apb_clockevent_resume() - resume a clock that has been paused.
289 *
290 * @dw_ced: The APB clock to resume.
291 */
292void dw_apb_clockevent_resume(struct dw_apb_clock_event_device *dw_ced)
293{
294 enable_irq(dw_ced->timer.irq);
295}
296
297/**
298 * dw_apb_clockevent_stop() - stop the clock_event_device and release the IRQ.
299 *
300 * @dw_ced: The APB clock to stop generating the events.
301 */
302void dw_apb_clockevent_stop(struct dw_apb_clock_event_device *dw_ced)
303{
304 free_irq(dw_ced->timer.irq, &dw_ced->ced);
305}
306
307/**
308 * dw_apb_clockevent_register() - register the clock with the generic layer
309 *
310 * @dw_ced: The APB clock to register as a clock_event_device.
311 */
312void dw_apb_clockevent_register(struct dw_apb_clock_event_device *dw_ced)
313{
314 apbt_writel(&dw_ced->timer, 0, APBTMR_N_CONTROL);
315 clockevents_register_device(&dw_ced->ced);
316 apbt_enable_int(&dw_ced->timer);
317}
318
319/**
320 * dw_apb_clocksource_start() - start the clocksource counting.
321 *
322 * @dw_cs: The clocksource to start.
323 *
324 * This is used to start the clocksource before registration and can be used
325 * to enable calibration of timers.
326 */
327void dw_apb_clocksource_start(struct dw_apb_clocksource *dw_cs)
328{
329 /*
330 * start count down from 0xffff_ffff. this is done by toggling the
331 * enable bit then load initial load count to ~0.
332 */
333 u32 ctrl = apbt_readl(&dw_cs->timer, APBTMR_N_CONTROL);
334
335 ctrl &= ~APBTMR_CONTROL_ENABLE;
336 apbt_writel(&dw_cs->timer, ctrl, APBTMR_N_CONTROL);
337 apbt_writel(&dw_cs->timer, ~0, APBTMR_N_LOAD_COUNT);
338 /* enable, mask interrupt */
339 ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
340 ctrl |= (APBTMR_CONTROL_ENABLE | APBTMR_CONTROL_INT);
341 apbt_writel(&dw_cs->timer, ctrl, APBTMR_N_CONTROL);
342 /* read it once to get cached counter value initialized */
343 dw_apb_clocksource_read(dw_cs);
344}
345
346static u64 __apbt_read_clocksource(struct clocksource *cs)
347{
348 u32 current_count;
349 struct dw_apb_clocksource *dw_cs =
350 clocksource_to_dw_apb_clocksource(cs);
351
352 current_count = apbt_readl_relaxed(&dw_cs->timer,
353 APBTMR_N_CURRENT_VALUE);
354
355 return (u64)~current_count;
356}
357
358static void apbt_restart_clocksource(struct clocksource *cs)
359{
360 struct dw_apb_clocksource *dw_cs =
361 clocksource_to_dw_apb_clocksource(cs);
362
363 dw_apb_clocksource_start(dw_cs);
364}
365
366/**
367 * dw_apb_clocksource_init() - use an APB timer as a clocksource.
368 *
369 * @rating: The rating to give the clocksource.
370 * @name: The name for the clocksource.
371 * @base: The I/O base for the timer registers.
372 * @freq: The frequency that the timer counts at.
373 *
374 * This creates a clocksource using an APB timer but does not yet register it
375 * with the clocksource system. This should be done with
376 * dw_apb_clocksource_register() as the next step.
377 */
378struct dw_apb_clocksource *
379dw_apb_clocksource_init(unsigned rating, const char *name, void __iomem *base,
380 unsigned long freq)
381{
382 struct dw_apb_clocksource *dw_cs = kzalloc(sizeof(*dw_cs), GFP_KERNEL);
383
384 if (!dw_cs)
385 return NULL;
386
387 dw_cs->timer.base = base;
388 dw_cs->timer.freq = freq;
389 dw_cs->cs.name = name;
390 dw_cs->cs.rating = rating;
391 dw_cs->cs.read = __apbt_read_clocksource;
392 dw_cs->cs.mask = CLOCKSOURCE_MASK(32);
393 dw_cs->cs.flags = CLOCK_SOURCE_IS_CONTINUOUS;
394 dw_cs->cs.resume = apbt_restart_clocksource;
395
396 return dw_cs;
397}
398
399/**
400 * dw_apb_clocksource_register() - register the APB clocksource.
401 *
402 * @dw_cs: The clocksource to register.
403 */
404void dw_apb_clocksource_register(struct dw_apb_clocksource *dw_cs)
405{
406 clocksource_register_hz(&dw_cs->cs, dw_cs->timer.freq);
407}
408
409/**
410 * dw_apb_clocksource_read() - read the current value of a clocksource.
411 *
412 * @dw_cs: The clocksource to read.
413 */
414u64 dw_apb_clocksource_read(struct dw_apb_clocksource *dw_cs)
415{
416 return (u64)~apbt_readl(&dw_cs->timer, APBTMR_N_CURRENT_VALUE);
417}
1/*
2 * (C) Copyright 2009 Intel Corporation
3 * Author: Jacob Pan (jacob.jun.pan@intel.com)
4 *
5 * Shared with ARM platforms, Jamie Iles, Picochip 2011
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * Support for the Synopsys DesignWare APB Timers.
12 */
13#include <linux/dw_apb_timer.h>
14#include <linux/delay.h>
15#include <linux/kernel.h>
16#include <linux/interrupt.h>
17#include <linux/irq.h>
18#include <linux/io.h>
19#include <linux/slab.h>
20
21#define APBT_MIN_PERIOD 4
22#define APBT_MIN_DELTA_USEC 200
23
24#define APBTMR_N_LOAD_COUNT 0x00
25#define APBTMR_N_CURRENT_VALUE 0x04
26#define APBTMR_N_CONTROL 0x08
27#define APBTMR_N_EOI 0x0c
28#define APBTMR_N_INT_STATUS 0x10
29
30#define APBTMRS_INT_STATUS 0xa0
31#define APBTMRS_EOI 0xa4
32#define APBTMRS_RAW_INT_STATUS 0xa8
33#define APBTMRS_COMP_VERSION 0xac
34
35#define APBTMR_CONTROL_ENABLE (1 << 0)
36/* 1: periodic, 0:free running. */
37#define APBTMR_CONTROL_MODE_PERIODIC (1 << 1)
38#define APBTMR_CONTROL_INT (1 << 2)
39
40static inline struct dw_apb_clock_event_device *
41ced_to_dw_apb_ced(struct clock_event_device *evt)
42{
43 return container_of(evt, struct dw_apb_clock_event_device, ced);
44}
45
46static inline struct dw_apb_clocksource *
47clocksource_to_dw_apb_clocksource(struct clocksource *cs)
48{
49 return container_of(cs, struct dw_apb_clocksource, cs);
50}
51
52static inline u32 apbt_readl(struct dw_apb_timer *timer, unsigned long offs)
53{
54 return readl(timer->base + offs);
55}
56
57static inline void apbt_writel(struct dw_apb_timer *timer, u32 val,
58 unsigned long offs)
59{
60 writel(val, timer->base + offs);
61}
62
63static inline u32 apbt_readl_relaxed(struct dw_apb_timer *timer, unsigned long offs)
64{
65 return readl_relaxed(timer->base + offs);
66}
67
68static inline void apbt_writel_relaxed(struct dw_apb_timer *timer, u32 val,
69 unsigned long offs)
70{
71 writel_relaxed(val, timer->base + offs);
72}
73
74static void apbt_disable_int(struct dw_apb_timer *timer)
75{
76 u32 ctrl = apbt_readl(timer, APBTMR_N_CONTROL);
77
78 ctrl |= APBTMR_CONTROL_INT;
79 apbt_writel(timer, ctrl, APBTMR_N_CONTROL);
80}
81
82/**
83 * dw_apb_clockevent_pause() - stop the clock_event_device from running
84 *
85 * @dw_ced: The APB clock to stop generating events.
86 */
87void dw_apb_clockevent_pause(struct dw_apb_clock_event_device *dw_ced)
88{
89 disable_irq(dw_ced->timer.irq);
90 apbt_disable_int(&dw_ced->timer);
91}
92
93static void apbt_eoi(struct dw_apb_timer *timer)
94{
95 apbt_readl_relaxed(timer, APBTMR_N_EOI);
96}
97
98static irqreturn_t dw_apb_clockevent_irq(int irq, void *data)
99{
100 struct clock_event_device *evt = data;
101 struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
102
103 if (!evt->event_handler) {
104 pr_info("Spurious APBT timer interrupt %d", irq);
105 return IRQ_NONE;
106 }
107
108 if (dw_ced->eoi)
109 dw_ced->eoi(&dw_ced->timer);
110
111 evt->event_handler(evt);
112 return IRQ_HANDLED;
113}
114
115static void apbt_enable_int(struct dw_apb_timer *timer)
116{
117 u32 ctrl = apbt_readl(timer, APBTMR_N_CONTROL);
118 /* clear pending intr */
119 apbt_readl(timer, APBTMR_N_EOI);
120 ctrl &= ~APBTMR_CONTROL_INT;
121 apbt_writel(timer, ctrl, APBTMR_N_CONTROL);
122}
123
124static int apbt_shutdown(struct clock_event_device *evt)
125{
126 struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
127 u32 ctrl;
128
129 pr_debug("%s CPU %d state=shutdown\n", __func__,
130 cpumask_first(evt->cpumask));
131
132 ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
133 ctrl &= ~APBTMR_CONTROL_ENABLE;
134 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
135 return 0;
136}
137
138static int apbt_set_oneshot(struct clock_event_device *evt)
139{
140 struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
141 u32 ctrl;
142
143 pr_debug("%s CPU %d state=oneshot\n", __func__,
144 cpumask_first(evt->cpumask));
145
146 ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
147 /*
148 * set free running mode, this mode will let timer reload max
149 * timeout which will give time (3min on 25MHz clock) to rearm
150 * the next event, therefore emulate the one-shot mode.
151 */
152 ctrl &= ~APBTMR_CONTROL_ENABLE;
153 ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
154
155 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
156 /* write again to set free running mode */
157 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
158
159 /*
160 * DW APB p. 46, load counter with all 1s before starting free
161 * running mode.
162 */
163 apbt_writel(&dw_ced->timer, ~0, APBTMR_N_LOAD_COUNT);
164 ctrl &= ~APBTMR_CONTROL_INT;
165 ctrl |= APBTMR_CONTROL_ENABLE;
166 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
167 return 0;
168}
169
170static int apbt_set_periodic(struct clock_event_device *evt)
171{
172 struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
173 unsigned long period = DIV_ROUND_UP(dw_ced->timer.freq, HZ);
174 u32 ctrl;
175
176 pr_debug("%s CPU %d state=periodic\n", __func__,
177 cpumask_first(evt->cpumask));
178
179 ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
180 ctrl |= APBTMR_CONTROL_MODE_PERIODIC;
181 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
182 /*
183 * DW APB p. 46, have to disable timer before load counter,
184 * may cause sync problem.
185 */
186 ctrl &= ~APBTMR_CONTROL_ENABLE;
187 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
188 udelay(1);
189 pr_debug("Setting clock period %lu for HZ %d\n", period, HZ);
190 apbt_writel(&dw_ced->timer, period, APBTMR_N_LOAD_COUNT);
191 ctrl |= APBTMR_CONTROL_ENABLE;
192 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
193 return 0;
194}
195
196static int apbt_resume(struct clock_event_device *evt)
197{
198 struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
199
200 pr_debug("%s CPU %d state=resume\n", __func__,
201 cpumask_first(evt->cpumask));
202
203 apbt_enable_int(&dw_ced->timer);
204 return 0;
205}
206
207static int apbt_next_event(unsigned long delta,
208 struct clock_event_device *evt)
209{
210 u32 ctrl;
211 struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
212
213 /* Disable timer */
214 ctrl = apbt_readl_relaxed(&dw_ced->timer, APBTMR_N_CONTROL);
215 ctrl &= ~APBTMR_CONTROL_ENABLE;
216 apbt_writel_relaxed(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
217 /* write new count */
218 apbt_writel_relaxed(&dw_ced->timer, delta, APBTMR_N_LOAD_COUNT);
219 ctrl |= APBTMR_CONTROL_ENABLE;
220 apbt_writel_relaxed(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
221
222 return 0;
223}
224
225/**
226 * dw_apb_clockevent_init() - use an APB timer as a clock_event_device
227 *
228 * @cpu: The CPU the events will be targeted at.
229 * @name: The name used for the timer and the IRQ for it.
230 * @rating: The rating to give the timer.
231 * @base: I/O base for the timer registers.
232 * @irq: The interrupt number to use for the timer.
233 * @freq: The frequency that the timer counts at.
234 *
235 * This creates a clock_event_device for using with the generic clock layer
236 * but does not start and register it. This should be done with
237 * dw_apb_clockevent_register() as the next step. If this is the first time
238 * it has been called for a timer then the IRQ will be requested, if not it
239 * just be enabled to allow CPU hotplug to avoid repeatedly requesting and
240 * releasing the IRQ.
241 */
242struct dw_apb_clock_event_device *
243dw_apb_clockevent_init(int cpu, const char *name, unsigned rating,
244 void __iomem *base, int irq, unsigned long freq)
245{
246 struct dw_apb_clock_event_device *dw_ced =
247 kzalloc(sizeof(*dw_ced), GFP_KERNEL);
248 int err;
249
250 if (!dw_ced)
251 return NULL;
252
253 dw_ced->timer.base = base;
254 dw_ced->timer.irq = irq;
255 dw_ced->timer.freq = freq;
256
257 clockevents_calc_mult_shift(&dw_ced->ced, freq, APBT_MIN_PERIOD);
258 dw_ced->ced.max_delta_ns = clockevent_delta2ns(0x7fffffff,
259 &dw_ced->ced);
260 dw_ced->ced.min_delta_ns = clockevent_delta2ns(5000, &dw_ced->ced);
261 dw_ced->ced.cpumask = cpumask_of(cpu);
262 dw_ced->ced.features = CLOCK_EVT_FEAT_PERIODIC |
263 CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_DYNIRQ;
264 dw_ced->ced.set_state_shutdown = apbt_shutdown;
265 dw_ced->ced.set_state_periodic = apbt_set_periodic;
266 dw_ced->ced.set_state_oneshot = apbt_set_oneshot;
267 dw_ced->ced.tick_resume = apbt_resume;
268 dw_ced->ced.set_next_event = apbt_next_event;
269 dw_ced->ced.irq = dw_ced->timer.irq;
270 dw_ced->ced.rating = rating;
271 dw_ced->ced.name = name;
272
273 dw_ced->irqaction.name = dw_ced->ced.name;
274 dw_ced->irqaction.handler = dw_apb_clockevent_irq;
275 dw_ced->irqaction.dev_id = &dw_ced->ced;
276 dw_ced->irqaction.irq = irq;
277 dw_ced->irqaction.flags = IRQF_TIMER | IRQF_IRQPOLL |
278 IRQF_NOBALANCING;
279
280 dw_ced->eoi = apbt_eoi;
281 err = setup_irq(irq, &dw_ced->irqaction);
282 if (err) {
283 pr_err("failed to request timer irq\n");
284 kfree(dw_ced);
285 dw_ced = NULL;
286 }
287
288 return dw_ced;
289}
290
291/**
292 * dw_apb_clockevent_resume() - resume a clock that has been paused.
293 *
294 * @dw_ced: The APB clock to resume.
295 */
296void dw_apb_clockevent_resume(struct dw_apb_clock_event_device *dw_ced)
297{
298 enable_irq(dw_ced->timer.irq);
299}
300
301/**
302 * dw_apb_clockevent_stop() - stop the clock_event_device and release the IRQ.
303 *
304 * @dw_ced: The APB clock to stop generating the events.
305 */
306void dw_apb_clockevent_stop(struct dw_apb_clock_event_device *dw_ced)
307{
308 free_irq(dw_ced->timer.irq, &dw_ced->ced);
309}
310
311/**
312 * dw_apb_clockevent_register() - register the clock with the generic layer
313 *
314 * @dw_ced: The APB clock to register as a clock_event_device.
315 */
316void dw_apb_clockevent_register(struct dw_apb_clock_event_device *dw_ced)
317{
318 apbt_writel(&dw_ced->timer, 0, APBTMR_N_CONTROL);
319 clockevents_register_device(&dw_ced->ced);
320 apbt_enable_int(&dw_ced->timer);
321}
322
323/**
324 * dw_apb_clocksource_start() - start the clocksource counting.
325 *
326 * @dw_cs: The clocksource to start.
327 *
328 * This is used to start the clocksource before registration and can be used
329 * to enable calibration of timers.
330 */
331void dw_apb_clocksource_start(struct dw_apb_clocksource *dw_cs)
332{
333 /*
334 * start count down from 0xffff_ffff. this is done by toggling the
335 * enable bit then load initial load count to ~0.
336 */
337 u32 ctrl = apbt_readl(&dw_cs->timer, APBTMR_N_CONTROL);
338
339 ctrl &= ~APBTMR_CONTROL_ENABLE;
340 apbt_writel(&dw_cs->timer, ctrl, APBTMR_N_CONTROL);
341 apbt_writel(&dw_cs->timer, ~0, APBTMR_N_LOAD_COUNT);
342 /* enable, mask interrupt */
343 ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
344 ctrl |= (APBTMR_CONTROL_ENABLE | APBTMR_CONTROL_INT);
345 apbt_writel(&dw_cs->timer, ctrl, APBTMR_N_CONTROL);
346 /* read it once to get cached counter value initialized */
347 dw_apb_clocksource_read(dw_cs);
348}
349
350static cycle_t __apbt_read_clocksource(struct clocksource *cs)
351{
352 u32 current_count;
353 struct dw_apb_clocksource *dw_cs =
354 clocksource_to_dw_apb_clocksource(cs);
355
356 current_count = apbt_readl_relaxed(&dw_cs->timer,
357 APBTMR_N_CURRENT_VALUE);
358
359 return (cycle_t)~current_count;
360}
361
362static void apbt_restart_clocksource(struct clocksource *cs)
363{
364 struct dw_apb_clocksource *dw_cs =
365 clocksource_to_dw_apb_clocksource(cs);
366
367 dw_apb_clocksource_start(dw_cs);
368}
369
370/**
371 * dw_apb_clocksource_init() - use an APB timer as a clocksource.
372 *
373 * @rating: The rating to give the clocksource.
374 * @name: The name for the clocksource.
375 * @base: The I/O base for the timer registers.
376 * @freq: The frequency that the timer counts at.
377 *
378 * This creates a clocksource using an APB timer but does not yet register it
379 * with the clocksource system. This should be done with
380 * dw_apb_clocksource_register() as the next step.
381 */
382struct dw_apb_clocksource *
383dw_apb_clocksource_init(unsigned rating, const char *name, void __iomem *base,
384 unsigned long freq)
385{
386 struct dw_apb_clocksource *dw_cs = kzalloc(sizeof(*dw_cs), GFP_KERNEL);
387
388 if (!dw_cs)
389 return NULL;
390
391 dw_cs->timer.base = base;
392 dw_cs->timer.freq = freq;
393 dw_cs->cs.name = name;
394 dw_cs->cs.rating = rating;
395 dw_cs->cs.read = __apbt_read_clocksource;
396 dw_cs->cs.mask = CLOCKSOURCE_MASK(32);
397 dw_cs->cs.flags = CLOCK_SOURCE_IS_CONTINUOUS;
398 dw_cs->cs.resume = apbt_restart_clocksource;
399
400 return dw_cs;
401}
402
403/**
404 * dw_apb_clocksource_register() - register the APB clocksource.
405 *
406 * @dw_cs: The clocksource to register.
407 */
408void dw_apb_clocksource_register(struct dw_apb_clocksource *dw_cs)
409{
410 clocksource_register_hz(&dw_cs->cs, dw_cs->timer.freq);
411}
412
413/**
414 * dw_apb_clocksource_read() - read the current value of a clocksource.
415 *
416 * @dw_cs: The clocksource to read.
417 */
418cycle_t dw_apb_clocksource_read(struct dw_apb_clocksource *dw_cs)
419{
420 return (cycle_t)~apbt_readl(&dw_cs->timer, APBTMR_N_CURRENT_VALUE);
421}