Linux Audio

Check our new training course

Embedded Linux training

Mar 10-20, 2025, special US time zones
Register
Loading...
v6.8
  1/*
  2 * Driver for TI Multi PLL CDCE913/925/937/949 clock synthesizer
  3 *
  4 * This driver always connects the Y1 to the input clock, Y2/Y3 to PLL1,
  5 * Y4/Y5 to PLL2, and so on. PLL frequency is set on a first-come-first-serve
  6 * basis. Clients can directly request any frequency that the chip can
  7 * deliver using the standard clk framework. In addition, the device can
  8 * be configured and activated via the devicetree.
  9 *
 10 * Copyright (C) 2014, Topic Embedded Products
 11 * Licenced under GPL
 12 */
 13#include <linux/clk.h>
 14#include <linux/clk-provider.h>
 15#include <linux/delay.h>
 16#include <linux/module.h>
 17#include <linux/i2c.h>
 18#include <linux/regmap.h>
 19#include <linux/regulator/consumer.h>
 20#include <linux/slab.h>
 21#include <linux/gcd.h>
 22
 23/* Each chip has different number of PLLs and outputs, for example:
 24 * The CECE925 has 2 PLLs which can be routed through dividers to 5 outputs.
 25 * Model this as 2 PLL clocks which are parents to the outputs.
 26 */
 27
 28struct clk_cdce925_chip_info {
 29	int num_plls;
 30	int num_outputs;
 31};
 32
 33#define MAX_NUMBER_OF_PLLS	4
 34#define MAX_NUMBER_OF_OUTPUTS	9
 35
 36#define CDCE925_REG_GLOBAL1	0x01
 37#define CDCE925_REG_Y1SPIPDIVH	0x02
 38#define CDCE925_REG_PDIVL	0x03
 39#define CDCE925_REG_XCSEL	0x05
 40/* PLL parameters start at 0x10, steps of 0x10 */
 41#define CDCE925_OFFSET_PLL	0x10
 42/* Add CDCE925_OFFSET_PLL * (pll) to these registers before sending */
 43#define CDCE925_PLL_MUX_OUTPUTS	0x14
 44#define CDCE925_PLL_MULDIV	0x18
 45
 46#define CDCE925_PLL_FREQUENCY_MIN	 80000000ul
 47#define CDCE925_PLL_FREQUENCY_MAX	230000000ul
 48struct clk_cdce925_chip;
 49
 50struct clk_cdce925_output {
 51	struct clk_hw hw;
 52	struct clk_cdce925_chip *chip;
 53	u8 index;
 54	u16 pdiv; /* 1..127 for Y2-Y9; 1..1023 for Y1 */
 55};
 56#define to_clk_cdce925_output(_hw) \
 57	container_of(_hw, struct clk_cdce925_output, hw)
 58
 59struct clk_cdce925_pll {
 60	struct clk_hw hw;
 61	struct clk_cdce925_chip *chip;
 62	u8 index;
 63	u16 m;   /* 1..511 */
 64	u16 n;   /* 1..4095 */
 65};
 66#define to_clk_cdce925_pll(_hw)	container_of(_hw, struct clk_cdce925_pll, hw)
 67
 68struct clk_cdce925_chip {
 69	struct regmap *regmap;
 70	struct i2c_client *i2c_client;
 71	const struct clk_cdce925_chip_info *chip_info;
 72	struct clk_cdce925_pll pll[MAX_NUMBER_OF_PLLS];
 73	struct clk_cdce925_output clk[MAX_NUMBER_OF_OUTPUTS];
 
 74};
 75
 76/* ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** */
 77
 78static unsigned long cdce925_pll_calculate_rate(unsigned long parent_rate,
 79	u16 n, u16 m)
 80{
 81	if ((!m || !n) || (m == n))
 82		return parent_rate; /* In bypass mode runs at same frequency */
 83	return mult_frac(parent_rate, (unsigned long)n, (unsigned long)m);
 84}
 85
 86static unsigned long cdce925_pll_recalc_rate(struct clk_hw *hw,
 87		unsigned long parent_rate)
 88{
 89	/* Output frequency of PLL is Fout = (Fin/Pdiv)*(N/M) */
 90	struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
 91
 92	return cdce925_pll_calculate_rate(parent_rate, data->n, data->m);
 93}
 94
 95static void cdce925_pll_find_rate(unsigned long rate,
 96		unsigned long parent_rate, u16 *n, u16 *m)
 97{
 98	unsigned long un;
 99	unsigned long um;
100	unsigned long g;
101
102	if (rate <= parent_rate) {
103		/* Can always deliver parent_rate in bypass mode */
104		rate = parent_rate;
105		*n = 0;
106		*m = 0;
107	} else {
108		/* In PLL mode, need to apply min/max range */
109		if (rate < CDCE925_PLL_FREQUENCY_MIN)
110			rate = CDCE925_PLL_FREQUENCY_MIN;
111		else if (rate > CDCE925_PLL_FREQUENCY_MAX)
112			rate = CDCE925_PLL_FREQUENCY_MAX;
113
114		g = gcd(rate, parent_rate);
115		um = parent_rate / g;
116		un = rate / g;
117		/* When outside hw range, reduce to fit (rounding errors) */
118		while ((un > 4095) || (um > 511)) {
119			un >>= 1;
120			um >>= 1;
121		}
122		if (un == 0)
123			un = 1;
124		if (um == 0)
125			um = 1;
126
127		*n = un;
128		*m = um;
129	}
130}
131
132static long cdce925_pll_round_rate(struct clk_hw *hw, unsigned long rate,
133		unsigned long *parent_rate)
134{
135	u16 n, m;
136
137	cdce925_pll_find_rate(rate, *parent_rate, &n, &m);
138	return (long)cdce925_pll_calculate_rate(*parent_rate, n, m);
139}
140
141static int cdce925_pll_set_rate(struct clk_hw *hw, unsigned long rate,
142		unsigned long parent_rate)
143{
144	struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
145
146	if (!rate || (rate == parent_rate)) {
147		data->m = 0; /* Bypass mode */
148		data->n = 0;
149		return 0;
150	}
151
152	if ((rate < CDCE925_PLL_FREQUENCY_MIN) ||
153		(rate > CDCE925_PLL_FREQUENCY_MAX)) {
154		pr_debug("%s: rate %lu outside PLL range.\n", __func__, rate);
155		return -EINVAL;
156	}
157
158	if (rate < parent_rate) {
159		pr_debug("%s: rate %lu less than parent rate %lu.\n", __func__,
160			rate, parent_rate);
161		return -EINVAL;
162	}
163
164	cdce925_pll_find_rate(rate, parent_rate, &data->n, &data->m);
165	return 0;
166}
167
168
169/* calculate p = max(0, 4 - int(log2 (n/m))) */
170static u8 cdce925_pll_calc_p(u16 n, u16 m)
171{
172	u8 p;
173	u16 r = n / m;
174
175	if (r >= 16)
176		return 0;
177	p = 4;
178	while (r > 1) {
179		r >>= 1;
180		--p;
181	}
182	return p;
183}
184
185/* Returns VCO range bits for VCO1_0_RANGE */
186static u8 cdce925_pll_calc_range_bits(struct clk_hw *hw, u16 n, u16 m)
187{
188	struct clk *parent = clk_get_parent(hw->clk);
189	unsigned long rate = clk_get_rate(parent);
190
191	rate = mult_frac(rate, (unsigned long)n, (unsigned long)m);
192	if (rate >= 175000000)
193		return 0x3;
194	if (rate >= 150000000)
195		return 0x02;
196	if (rate >= 125000000)
197		return 0x01;
198	return 0x00;
199}
200
201/* I2C clock, hence everything must happen in (un)prepare because this
202 * may sleep */
203static int cdce925_pll_prepare(struct clk_hw *hw)
204{
205	struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
206	u16 n = data->n;
207	u16 m = data->m;
208	u16 r;
209	u8 q;
210	u8 p;
211	u16 nn;
212	u8 pll[4]; /* Bits are spread out over 4 byte registers */
213	u8 reg_ofs = data->index * CDCE925_OFFSET_PLL;
214	unsigned i;
215
216	if ((!m || !n) || (m == n)) {
217		/* Set PLL mux to bypass mode, leave the rest as is */
218		regmap_update_bits(data->chip->regmap,
219			reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80);
220	} else {
221		/* According to data sheet: */
222		/* p = max(0, 4 - int(log2 (n/m))) */
223		p = cdce925_pll_calc_p(n, m);
224		/* nn = n * 2^p */
225		nn = n * BIT(p);
226		/* q = int(nn/m) */
227		q = nn / m;
228		if ((q < 16) || (q > 63)) {
229			pr_debug("%s invalid q=%d\n", __func__, q);
230			return -EINVAL;
231		}
232		r = nn - (m*q);
233		if (r > 511) {
234			pr_debug("%s invalid r=%d\n", __func__, r);
235			return -EINVAL;
236		}
237		pr_debug("%s n=%d m=%d p=%d q=%d r=%d\n", __func__,
238			n, m, p, q, r);
239		/* encode into register bits */
240		pll[0] = n >> 4;
241		pll[1] = ((n & 0x0F) << 4) | ((r >> 5) & 0x0F);
242		pll[2] = ((r & 0x1F) << 3) | ((q >> 3) & 0x07);
243		pll[3] = ((q & 0x07) << 5) | (p << 2) |
244				cdce925_pll_calc_range_bits(hw, n, m);
245		/* Write to registers */
246		for (i = 0; i < ARRAY_SIZE(pll); ++i)
247			regmap_write(data->chip->regmap,
248				reg_ofs + CDCE925_PLL_MULDIV + i, pll[i]);
249		/* Enable PLL */
250		regmap_update_bits(data->chip->regmap,
251			reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x00);
252	}
253
254	return 0;
255}
256
257static void cdce925_pll_unprepare(struct clk_hw *hw)
258{
259	struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
260	u8 reg_ofs = data->index * CDCE925_OFFSET_PLL;
261
262	regmap_update_bits(data->chip->regmap,
263			reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80);
264}
265
266static const struct clk_ops cdce925_pll_ops = {
267	.prepare = cdce925_pll_prepare,
268	.unprepare = cdce925_pll_unprepare,
269	.recalc_rate = cdce925_pll_recalc_rate,
270	.round_rate = cdce925_pll_round_rate,
271	.set_rate = cdce925_pll_set_rate,
272};
273
274
275static void cdce925_clk_set_pdiv(struct clk_cdce925_output *data, u16 pdiv)
276{
277	switch (data->index) {
278	case 0:
279		regmap_update_bits(data->chip->regmap,
280			CDCE925_REG_Y1SPIPDIVH,
281			0x03, (pdiv >> 8) & 0x03);
282		regmap_write(data->chip->regmap, 0x03, pdiv & 0xFF);
283		break;
284	case 1:
285		regmap_update_bits(data->chip->regmap, 0x16, 0x7F, pdiv);
286		break;
287	case 2:
288		regmap_update_bits(data->chip->regmap, 0x17, 0x7F, pdiv);
289		break;
290	case 3:
291		regmap_update_bits(data->chip->regmap, 0x26, 0x7F, pdiv);
292		break;
293	case 4:
294		regmap_update_bits(data->chip->regmap, 0x27, 0x7F, pdiv);
295		break;
296	case 5:
297		regmap_update_bits(data->chip->regmap, 0x36, 0x7F, pdiv);
298		break;
299	case 6:
300		regmap_update_bits(data->chip->regmap, 0x37, 0x7F, pdiv);
301		break;
302	case 7:
303		regmap_update_bits(data->chip->regmap, 0x46, 0x7F, pdiv);
304		break;
305	case 8:
306		regmap_update_bits(data->chip->regmap, 0x47, 0x7F, pdiv);
307		break;
308	}
309}
310
311static void cdce925_clk_activate(struct clk_cdce925_output *data)
312{
313	switch (data->index) {
314	case 0:
315		regmap_update_bits(data->chip->regmap,
316			CDCE925_REG_Y1SPIPDIVH, 0x0c, 0x0c);
317		break;
318	case 1:
319	case 2:
320		regmap_update_bits(data->chip->regmap, 0x14, 0x03, 0x03);
321		break;
322	case 3:
323	case 4:
324		regmap_update_bits(data->chip->regmap, 0x24, 0x03, 0x03);
325		break;
326	case 5:
327	case 6:
328		regmap_update_bits(data->chip->regmap, 0x34, 0x03, 0x03);
329		break;
330	case 7:
331	case 8:
332		regmap_update_bits(data->chip->regmap, 0x44, 0x03, 0x03);
333		break;
334	}
335}
336
337static int cdce925_clk_prepare(struct clk_hw *hw)
338{
339	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
340
341	cdce925_clk_set_pdiv(data, data->pdiv);
342	cdce925_clk_activate(data);
343	return 0;
344}
345
346static void cdce925_clk_unprepare(struct clk_hw *hw)
347{
348	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
349
350	/* Disable clock by setting divider to "0" */
351	cdce925_clk_set_pdiv(data, 0);
352}
353
354static unsigned long cdce925_clk_recalc_rate(struct clk_hw *hw,
355		unsigned long parent_rate)
356{
357	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
358
359	if (data->pdiv)
360		return parent_rate / data->pdiv;
361	return 0;
362}
363
364static u16 cdce925_calc_divider(unsigned long rate,
365		unsigned long parent_rate)
366{
367	unsigned long divider;
368
369	if (!rate)
370		return 0;
371	if (rate >= parent_rate)
372		return 1;
373
374	divider = DIV_ROUND_CLOSEST(parent_rate, rate);
375	if (divider > 0x7F)
376		divider = 0x7F;
377
378	return (u16)divider;
379}
380
381static unsigned long cdce925_clk_best_parent_rate(
382	struct clk_hw *hw, unsigned long rate)
383{
384	struct clk *pll = clk_get_parent(hw->clk);
385	struct clk *root = clk_get_parent(pll);
386	unsigned long root_rate = clk_get_rate(root);
387	unsigned long best_rate_error = rate;
388	u16 pdiv_min;
389	u16 pdiv_max;
390	u16 pdiv_best;
391	u16 pdiv_now;
392
393	if (root_rate % rate == 0)
394		return root_rate; /* Don't need the PLL, use bypass */
395
396	pdiv_min = (u16)max(1ul, DIV_ROUND_UP(CDCE925_PLL_FREQUENCY_MIN, rate));
397	pdiv_max = (u16)min(127ul, CDCE925_PLL_FREQUENCY_MAX / rate);
398
399	if (pdiv_min > pdiv_max)
400		return 0; /* No can do? */
401
402	pdiv_best = pdiv_min;
403	for (pdiv_now = pdiv_min; pdiv_now < pdiv_max; ++pdiv_now) {
404		unsigned long target_rate = rate * pdiv_now;
405		long pll_rate = clk_round_rate(pll, target_rate);
406		unsigned long actual_rate;
407		unsigned long rate_error;
408
409		if (pll_rate <= 0)
410			continue;
411		actual_rate = pll_rate / pdiv_now;
412		rate_error = abs((long)actual_rate - (long)rate);
413		if (rate_error < best_rate_error) {
414			pdiv_best = pdiv_now;
415			best_rate_error = rate_error;
416		}
417		/* TODO: Consider PLL frequency based on smaller n/m values
418		 * and pick the better one if the error is equal */
419	}
420
421	return rate * pdiv_best;
422}
423
424static long cdce925_clk_round_rate(struct clk_hw *hw, unsigned long rate,
425		unsigned long *parent_rate)
426{
427	unsigned long l_parent_rate = *parent_rate;
428	u16 divider = cdce925_calc_divider(rate, l_parent_rate);
429
430	if (l_parent_rate / divider != rate) {
431		l_parent_rate = cdce925_clk_best_parent_rate(hw, rate);
432		divider = cdce925_calc_divider(rate, l_parent_rate);
433		*parent_rate = l_parent_rate;
434	}
435
436	if (divider)
437		return (long)(l_parent_rate / divider);
438	return 0;
439}
440
441static int cdce925_clk_set_rate(struct clk_hw *hw, unsigned long rate,
442		unsigned long parent_rate)
443{
444	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
445
446	data->pdiv = cdce925_calc_divider(rate, parent_rate);
447
448	return 0;
449}
450
451static const struct clk_ops cdce925_clk_ops = {
452	.prepare = cdce925_clk_prepare,
453	.unprepare = cdce925_clk_unprepare,
454	.recalc_rate = cdce925_clk_recalc_rate,
455	.round_rate = cdce925_clk_round_rate,
456	.set_rate = cdce925_clk_set_rate,
457};
458
459
460static u16 cdce925_y1_calc_divider(unsigned long rate,
461		unsigned long parent_rate)
462{
463	unsigned long divider;
464
465	if (!rate)
466		return 0;
467	if (rate >= parent_rate)
468		return 1;
469
470	divider = DIV_ROUND_CLOSEST(parent_rate, rate);
471	if (divider > 0x3FF) /* Y1 has 10-bit divider */
472		divider = 0x3FF;
473
474	return (u16)divider;
475}
476
477static long cdce925_clk_y1_round_rate(struct clk_hw *hw, unsigned long rate,
478		unsigned long *parent_rate)
479{
480	unsigned long l_parent_rate = *parent_rate;
481	u16 divider = cdce925_y1_calc_divider(rate, l_parent_rate);
482
483	if (divider)
484		return (long)(l_parent_rate / divider);
485	return 0;
486}
487
488static int cdce925_clk_y1_set_rate(struct clk_hw *hw, unsigned long rate,
489		unsigned long parent_rate)
490{
491	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
492
493	data->pdiv = cdce925_y1_calc_divider(rate, parent_rate);
494
495	return 0;
496}
497
498static const struct clk_ops cdce925_clk_y1_ops = {
499	.prepare = cdce925_clk_prepare,
500	.unprepare = cdce925_clk_unprepare,
501	.recalc_rate = cdce925_clk_recalc_rate,
502	.round_rate = cdce925_clk_y1_round_rate,
503	.set_rate = cdce925_clk_y1_set_rate,
504};
505
 
 
 
 
 
 
 
 
 
506#define CDCE925_I2C_COMMAND_BLOCK_TRANSFER	0x00
507#define CDCE925_I2C_COMMAND_BYTE_TRANSFER	0x80
508
509static int cdce925_regmap_i2c_write(
510	void *context, const void *data, size_t count)
511{
512	struct device *dev = context;
513	struct i2c_client *i2c = to_i2c_client(dev);
514	int ret;
515	u8 reg_data[2];
516
517	if (count != 2)
518		return -ENOTSUPP;
519
520	/* First byte is command code */
521	reg_data[0] = CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)data)[0];
522	reg_data[1] = ((u8 *)data)[1];
523
524	dev_dbg(&i2c->dev, "%s(%zu) %#x %#x\n", __func__, count,
525			reg_data[0], reg_data[1]);
526
527	ret = i2c_master_send(i2c, reg_data, count);
528	if (likely(ret == count))
529		return 0;
530	else if (ret < 0)
531		return ret;
532	else
533		return -EIO;
534}
535
536static int cdce925_regmap_i2c_read(void *context,
537	   const void *reg, size_t reg_size, void *val, size_t val_size)
538{
539	struct device *dev = context;
540	struct i2c_client *i2c = to_i2c_client(dev);
541	struct i2c_msg xfer[2];
542	int ret;
543	u8 reg_data[2];
544
545	if (reg_size != 1)
546		return -ENOTSUPP;
547
548	xfer[0].addr = i2c->addr;
549	xfer[0].flags = 0;
550	xfer[0].buf = reg_data;
551	if (val_size == 1) {
552		reg_data[0] =
553			CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)reg)[0];
554		xfer[0].len = 1;
555	} else {
556		reg_data[0] =
557			CDCE925_I2C_COMMAND_BLOCK_TRANSFER | ((u8 *)reg)[0];
558		reg_data[1] = val_size;
559		xfer[0].len = 2;
560	}
561
562	xfer[1].addr = i2c->addr;
563	xfer[1].flags = I2C_M_RD;
564	xfer[1].len = val_size;
565	xfer[1].buf = val;
566
567	ret = i2c_transfer(i2c->adapter, xfer, 2);
568	if (likely(ret == 2)) {
569		dev_dbg(&i2c->dev, "%s(%zu, %zu) %#x %#x\n", __func__,
570				reg_size, val_size, reg_data[0], *((u8 *)val));
571		return 0;
572	} else if (ret < 0)
573		return ret;
574	else
575		return -EIO;
576}
577
578static struct clk_hw *
579of_clk_cdce925_get(struct of_phandle_args *clkspec, void *_data)
580{
581	struct clk_cdce925_chip *data = _data;
582	unsigned int idx = clkspec->args[0];
583
584	if (idx >= ARRAY_SIZE(data->clk)) {
585		pr_err("%s: invalid index %u\n", __func__, idx);
586		return ERR_PTR(-EINVAL);
587	}
588
589	return &data->clk[idx].hw;
590}
591
592static int cdce925_regulator_enable(struct device *dev, const char *name)
593{
594	int err;
595
596	err = devm_regulator_get_enable(dev, name);
597	if (err)
598		dev_err_probe(dev, err, "Failed to enable %s:\n", name);
599
600	return err;
601}
602
603/* The CDCE925 uses a funky way to read/write registers. Bulk mode is
604 * just weird, so just use the single byte mode exclusively. */
605static struct regmap_bus regmap_cdce925_bus = {
606	.write = cdce925_regmap_i2c_write,
607	.read = cdce925_regmap_i2c_read,
608};
609
610static int cdce925_probe(struct i2c_client *client)
 
611{
612	struct clk_cdce925_chip *data;
613	struct device_node *node = client->dev.of_node;
614	const char *parent_name;
615	const char *pll_clk_name[MAX_NUMBER_OF_PLLS] = {NULL,};
616	struct clk_init_data init;
 
617	u32 value;
618	int i;
619	int err;
620	struct device_node *np_output;
621	char child_name[6];
622	struct regmap_config config = {
623		.name = "configuration0",
624		.reg_bits = 8,
625		.val_bits = 8,
626		.cache_type = REGCACHE_MAPLE,
627	};
628
629	dev_dbg(&client->dev, "%s\n", __func__);
630
631	err = cdce925_regulator_enable(&client->dev, "vdd");
632	if (err)
633		return err;
634
635	err = cdce925_regulator_enable(&client->dev, "vddout");
636	if (err)
637		return err;
638
639	data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
640	if (!data)
641		return -ENOMEM;
642
643	data->i2c_client = client;
644	data->chip_info = i2c_get_match_data(client);
645	config.max_register = CDCE925_OFFSET_PLL +
646		data->chip_info->num_plls * 0x10 - 1;
647	data->regmap = devm_regmap_init(&client->dev, &regmap_cdce925_bus,
648			&client->dev, &config);
649	if (IS_ERR(data->regmap)) {
650		dev_err(&client->dev, "failed to allocate register map\n");
651		return PTR_ERR(data->regmap);
652	}
653	i2c_set_clientdata(client, data);
654
655	parent_name = of_clk_get_parent_name(node, 0);
656	if (!parent_name) {
657		dev_err(&client->dev, "missing parent clock\n");
658		return -ENODEV;
659	}
660	dev_dbg(&client->dev, "parent is: %s\n", parent_name);
661
662	if (of_property_read_u32(node, "xtal-load-pf", &value) == 0)
663		regmap_write(data->regmap,
664			CDCE925_REG_XCSEL, (value << 3) & 0xF8);
665	/* PWDN bit */
666	regmap_update_bits(data->regmap, CDCE925_REG_GLOBAL1, BIT(4), 0);
667
668	/* Set input source for Y1 to be the XTAL */
669	regmap_update_bits(data->regmap, 0x02, BIT(7), 0);
670
671	init.ops = &cdce925_pll_ops;
672	init.flags = 0;
673	init.parent_names = &parent_name;
674	init.num_parents = 1;
675
676	/* Register PLL clocks */
677	for (i = 0; i < data->chip_info->num_plls; ++i) {
678		pll_clk_name[i] = kasprintf(GFP_KERNEL, "%pOFn.pll%d",
679			client->dev.of_node, i);
680		if (!pll_clk_name[i]) {
681			err = -ENOMEM;
682			goto error;
683		}
684		init.name = pll_clk_name[i];
685		data->pll[i].chip = data;
686		data->pll[i].hw.init = &init;
687		data->pll[i].index = i;
688		err = devm_clk_hw_register(&client->dev, &data->pll[i].hw);
689		if (err) {
690			dev_err(&client->dev, "Failed register PLL %d\n", i);
 
691			goto error;
692		}
693		sprintf(child_name, "PLL%d", i+1);
694		np_output = of_get_child_by_name(node, child_name);
695		if (!np_output)
696			continue;
697		if (!of_property_read_u32(np_output,
698			"clock-frequency", &value)) {
699			err = clk_set_rate(data->pll[i].hw.clk, value);
700			if (err)
701				dev_err(&client->dev,
702					"unable to set PLL frequency %ud\n",
703					value);
704		}
705		if (!of_property_read_u32(np_output,
706			"spread-spectrum", &value)) {
707			u8 flag = of_property_read_bool(np_output,
708				"spread-spectrum-center") ? 0x80 : 0x00;
709			regmap_update_bits(data->regmap,
710				0x16 + (i*CDCE925_OFFSET_PLL),
711				0x80, flag);
712			regmap_update_bits(data->regmap,
713				0x12 + (i*CDCE925_OFFSET_PLL),
714				0x07, value & 0x07);
715		}
716		of_node_put(np_output);
717	}
718
719	/* Register output clock Y1 */
720	init.ops = &cdce925_clk_y1_ops;
721	init.flags = 0;
722	init.num_parents = 1;
723	init.parent_names = &parent_name; /* Mux Y1 to input */
724	init.name = kasprintf(GFP_KERNEL, "%pOFn.Y1", client->dev.of_node);
725	if (!init.name) {
726		err = -ENOMEM;
727		goto error;
728	}
729	data->clk[0].chip = data;
730	data->clk[0].hw.init = &init;
731	data->clk[0].index = 0;
732	data->clk[0].pdiv = 1;
733	err = devm_clk_hw_register(&client->dev, &data->clk[0].hw);
734	kfree(init.name); /* clock framework made a copy of the name */
735	if (err) {
736		dev_err(&client->dev, "clock registration Y1 failed\n");
 
737		goto error;
738	}
 
739
740	/* Register output clocks Y2 .. Y5*/
741	init.ops = &cdce925_clk_ops;
742	init.flags = CLK_SET_RATE_PARENT;
743	init.num_parents = 1;
744	for (i = 1; i < data->chip_info->num_outputs; ++i) {
745		init.name = kasprintf(GFP_KERNEL, "%pOFn.Y%d",
746			client->dev.of_node, i+1);
747		if (!init.name) {
748			err = -ENOMEM;
749			goto error;
750		}
751		data->clk[i].chip = data;
752		data->clk[i].hw.init = &init;
753		data->clk[i].index = i;
754		data->clk[i].pdiv = 1;
755		switch (i) {
756		case 1:
757		case 2:
758			/* Mux Y2/3 to PLL1 */
759			init.parent_names = &pll_clk_name[0];
760			break;
761		case 3:
762		case 4:
763			/* Mux Y4/5 to PLL2 */
764			init.parent_names = &pll_clk_name[1];
765			break;
766		case 5:
767		case 6:
768			/* Mux Y6/7 to PLL3 */
769			init.parent_names = &pll_clk_name[2];
770			break;
771		case 7:
772		case 8:
773			/* Mux Y8/9 to PLL4 */
774			init.parent_names = &pll_clk_name[3];
775			break;
776		}
777		err = devm_clk_hw_register(&client->dev, &data->clk[i].hw);
778		kfree(init.name); /* clock framework made a copy of the name */
779		if (err) {
780			dev_err(&client->dev, "clock registration failed\n");
 
781			goto error;
782		}
 
783	}
784
785	/* Register the output clocks */
786	err = of_clk_add_hw_provider(client->dev.of_node, of_clk_cdce925_get,
787				  data);
 
 
788	if (err)
789		dev_err(&client->dev, "unable to add OF clock provider\n");
790
791	err = 0;
792
793error:
794	for (i = 0; i < data->chip_info->num_plls; ++i)
795		/* clock framework made a copy of the name */
796		kfree(pll_clk_name[i]);
797
798	return err;
799}
800
801static const struct clk_cdce925_chip_info clk_cdce913_info = {
802	.num_plls = 1,
803	.num_outputs = 3,
804};
805
806static const struct clk_cdce925_chip_info clk_cdce925_info = {
807	.num_plls = 2,
808	.num_outputs = 5,
809};
810
811static const struct clk_cdce925_chip_info clk_cdce937_info = {
812	.num_plls = 3,
813	.num_outputs = 7,
814};
815
816static const struct clk_cdce925_chip_info clk_cdce949_info = {
817	.num_plls = 4,
818	.num_outputs = 9,
819};
820
821static const struct i2c_device_id cdce925_id[] = {
822	{ "cdce913", (kernel_ulong_t)&clk_cdce913_info },
823	{ "cdce925", (kernel_ulong_t)&clk_cdce925_info },
824	{ "cdce937", (kernel_ulong_t)&clk_cdce937_info },
825	{ "cdce949", (kernel_ulong_t)&clk_cdce949_info },
826	{ }
827};
828MODULE_DEVICE_TABLE(i2c, cdce925_id);
829
830static const struct of_device_id clk_cdce925_of_match[] = {
831	{ .compatible = "ti,cdce913", .data = &clk_cdce913_info },
832	{ .compatible = "ti,cdce925", .data = &clk_cdce925_info },
833	{ .compatible = "ti,cdce937", .data = &clk_cdce937_info },
834	{ .compatible = "ti,cdce949", .data = &clk_cdce949_info },
835	{ }
836};
837MODULE_DEVICE_TABLE(of, clk_cdce925_of_match);
838
839static struct i2c_driver cdce925_driver = {
840	.driver = {
841		.name = "cdce925",
842		.of_match_table = clk_cdce925_of_match,
843	},
844	.probe		= cdce925_probe,
845	.id_table	= cdce925_id,
846};
847module_i2c_driver(cdce925_driver);
848
849MODULE_AUTHOR("Mike Looijmans <mike.looijmans@topic.nl>");
850MODULE_DESCRIPTION("TI CDCE913/925/937/949 driver");
851MODULE_LICENSE("GPL");
v4.6
  1/*
  2 * Driver for TI Dual PLL CDCE925 clock synthesizer
  3 *
  4 * This driver always connects the Y1 to the input clock, Y2/Y3 to PLL1
  5 * and Y4/Y5 to PLL2. PLL frequency is set on a first-come-first-serve
  6 * basis. Clients can directly request any frequency that the chip can
  7 * deliver using the standard clk framework. In addition, the device can
  8 * be configured and activated via the devicetree.
  9 *
 10 * Copyright (C) 2014, Topic Embedded Products
 11 * Licenced under GPL
 12 */
 13#include <linux/clk.h>
 14#include <linux/clk-provider.h>
 15#include <linux/delay.h>
 16#include <linux/module.h>
 17#include <linux/i2c.h>
 18#include <linux/regmap.h>
 
 19#include <linux/slab.h>
 20#include <linux/gcd.h>
 21
 22/* The chip has 2 PLLs which can be routed through dividers to 5 outputs.
 
 23 * Model this as 2 PLL clocks which are parents to the outputs.
 24 */
 25#define NUMBER_OF_PLLS	2
 26#define NUMBER_OF_OUTPUTS	5
 
 
 
 
 
 
 27
 28#define CDCE925_REG_GLOBAL1	0x01
 29#define CDCE925_REG_Y1SPIPDIVH	0x02
 30#define CDCE925_REG_PDIVL	0x03
 31#define CDCE925_REG_XCSEL	0x05
 32/* PLL parameters start at 0x10, steps of 0x10 */
 33#define CDCE925_OFFSET_PLL	0x10
 34/* Add CDCE925_OFFSET_PLL * (pll) to these registers before sending */
 35#define CDCE925_PLL_MUX_OUTPUTS	0x14
 36#define CDCE925_PLL_MULDIV	0x18
 37
 38#define CDCE925_PLL_FREQUENCY_MIN	 80000000ul
 39#define CDCE925_PLL_FREQUENCY_MAX	230000000ul
 40struct clk_cdce925_chip;
 41
 42struct clk_cdce925_output {
 43	struct clk_hw hw;
 44	struct clk_cdce925_chip *chip;
 45	u8 index;
 46	u16 pdiv; /* 1..127 for Y2-Y5; 1..1023 for Y1 */
 47};
 48#define to_clk_cdce925_output(_hw) \
 49	container_of(_hw, struct clk_cdce925_output, hw)
 50
 51struct clk_cdce925_pll {
 52	struct clk_hw hw;
 53	struct clk_cdce925_chip *chip;
 54	u8 index;
 55	u16 m;   /* 1..511 */
 56	u16 n;   /* 1..4095 */
 57};
 58#define to_clk_cdce925_pll(_hw)	container_of(_hw, struct clk_cdce925_pll, hw)
 59
 60struct clk_cdce925_chip {
 61	struct regmap *regmap;
 62	struct i2c_client *i2c_client;
 63	struct clk_cdce925_pll pll[NUMBER_OF_PLLS];
 64	struct clk_cdce925_output clk[NUMBER_OF_OUTPUTS];
 65	struct clk *dt_clk[NUMBER_OF_OUTPUTS];
 66	struct clk_onecell_data onecell;
 67};
 68
 69/* ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** */
 70
 71static unsigned long cdce925_pll_calculate_rate(unsigned long parent_rate,
 72	u16 n, u16 m)
 73{
 74	if ((!m || !n) || (m == n))
 75		return parent_rate; /* In bypass mode runs at same frequency */
 76	return mult_frac(parent_rate, (unsigned long)n, (unsigned long)m);
 77}
 78
 79static unsigned long cdce925_pll_recalc_rate(struct clk_hw *hw,
 80		unsigned long parent_rate)
 81{
 82	/* Output frequency of PLL is Fout = (Fin/Pdiv)*(N/M) */
 83	struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
 84
 85	return cdce925_pll_calculate_rate(parent_rate, data->n, data->m);
 86}
 87
 88static void cdce925_pll_find_rate(unsigned long rate,
 89		unsigned long parent_rate, u16 *n, u16 *m)
 90{
 91	unsigned long un;
 92	unsigned long um;
 93	unsigned long g;
 94
 95	if (rate <= parent_rate) {
 96		/* Can always deliver parent_rate in bypass mode */
 97		rate = parent_rate;
 98		*n = 0;
 99		*m = 0;
100	} else {
101		/* In PLL mode, need to apply min/max range */
102		if (rate < CDCE925_PLL_FREQUENCY_MIN)
103			rate = CDCE925_PLL_FREQUENCY_MIN;
104		else if (rate > CDCE925_PLL_FREQUENCY_MAX)
105			rate = CDCE925_PLL_FREQUENCY_MAX;
106
107		g = gcd(rate, parent_rate);
108		um = parent_rate / g;
109		un = rate / g;
110		/* When outside hw range, reduce to fit (rounding errors) */
111		while ((un > 4095) || (um > 511)) {
112			un >>= 1;
113			um >>= 1;
114		}
115		if (un == 0)
116			un = 1;
117		if (um == 0)
118			um = 1;
119
120		*n = un;
121		*m = um;
122	}
123}
124
125static long cdce925_pll_round_rate(struct clk_hw *hw, unsigned long rate,
126		unsigned long *parent_rate)
127{
128	u16 n, m;
129
130	cdce925_pll_find_rate(rate, *parent_rate, &n, &m);
131	return (long)cdce925_pll_calculate_rate(*parent_rate, n, m);
132}
133
134static int cdce925_pll_set_rate(struct clk_hw *hw, unsigned long rate,
135		unsigned long parent_rate)
136{
137	struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
138
139	if (!rate || (rate == parent_rate)) {
140		data->m = 0; /* Bypass mode */
141		data->n = 0;
142		return 0;
143	}
144
145	if ((rate < CDCE925_PLL_FREQUENCY_MIN) ||
146		(rate > CDCE925_PLL_FREQUENCY_MAX)) {
147		pr_debug("%s: rate %lu outside PLL range.\n", __func__, rate);
148		return -EINVAL;
149	}
150
151	if (rate < parent_rate) {
152		pr_debug("%s: rate %lu less than parent rate %lu.\n", __func__,
153			rate, parent_rate);
154		return -EINVAL;
155	}
156
157	cdce925_pll_find_rate(rate, parent_rate, &data->n, &data->m);
158	return 0;
159}
160
161
162/* calculate p = max(0, 4 - int(log2 (n/m))) */
163static u8 cdce925_pll_calc_p(u16 n, u16 m)
164{
165	u8 p;
166	u16 r = n / m;
167
168	if (r >= 16)
169		return 0;
170	p = 4;
171	while (r > 1) {
172		r >>= 1;
173		--p;
174	}
175	return p;
176}
177
178/* Returns VCO range bits for VCO1_0_RANGE */
179static u8 cdce925_pll_calc_range_bits(struct clk_hw *hw, u16 n, u16 m)
180{
181	struct clk *parent = clk_get_parent(hw->clk);
182	unsigned long rate = clk_get_rate(parent);
183
184	rate = mult_frac(rate, (unsigned long)n, (unsigned long)m);
185	if (rate >= 175000000)
186		return 0x3;
187	if (rate >= 150000000)
188		return 0x02;
189	if (rate >= 125000000)
190		return 0x01;
191	return 0x00;
192}
193
194/* I2C clock, hence everything must happen in (un)prepare because this
195 * may sleep */
196static int cdce925_pll_prepare(struct clk_hw *hw)
197{
198	struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
199	u16 n = data->n;
200	u16 m = data->m;
201	u16 r;
202	u8 q;
203	u8 p;
204	u16 nn;
205	u8 pll[4]; /* Bits are spread out over 4 byte registers */
206	u8 reg_ofs = data->index * CDCE925_OFFSET_PLL;
207	unsigned i;
208
209	if ((!m || !n) || (m == n)) {
210		/* Set PLL mux to bypass mode, leave the rest as is */
211		regmap_update_bits(data->chip->regmap,
212			reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80);
213	} else {
214		/* According to data sheet: */
215		/* p = max(0, 4 - int(log2 (n/m))) */
216		p = cdce925_pll_calc_p(n, m);
217		/* nn = n * 2^p */
218		nn = n * BIT(p);
219		/* q = int(nn/m) */
220		q = nn / m;
221		if ((q < 16) || (1 > 64)) {
222			pr_debug("%s invalid q=%d\n", __func__, q);
223			return -EINVAL;
224		}
225		r = nn - (m*q);
226		if (r > 511) {
227			pr_debug("%s invalid r=%d\n", __func__, r);
228			return -EINVAL;
229		}
230		pr_debug("%s n=%d m=%d p=%d q=%d r=%d\n", __func__,
231			n, m, p, q, r);
232		/* encode into register bits */
233		pll[0] = n >> 4;
234		pll[1] = ((n & 0x0F) << 4) | ((r >> 5) & 0x0F);
235		pll[2] = ((r & 0x1F) << 3) | ((q >> 3) & 0x07);
236		pll[3] = ((q & 0x07) << 5) | (p << 2) |
237				cdce925_pll_calc_range_bits(hw, n, m);
238		/* Write to registers */
239		for (i = 0; i < ARRAY_SIZE(pll); ++i)
240			regmap_write(data->chip->regmap,
241				reg_ofs + CDCE925_PLL_MULDIV + i, pll[i]);
242		/* Enable PLL */
243		regmap_update_bits(data->chip->regmap,
244			reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x00);
245	}
246
247	return 0;
248}
249
250static void cdce925_pll_unprepare(struct clk_hw *hw)
251{
252	struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
253	u8 reg_ofs = data->index * CDCE925_OFFSET_PLL;
254
255	regmap_update_bits(data->chip->regmap,
256			reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80);
257}
258
259static const struct clk_ops cdce925_pll_ops = {
260	.prepare = cdce925_pll_prepare,
261	.unprepare = cdce925_pll_unprepare,
262	.recalc_rate = cdce925_pll_recalc_rate,
263	.round_rate = cdce925_pll_round_rate,
264	.set_rate = cdce925_pll_set_rate,
265};
266
267
268static void cdce925_clk_set_pdiv(struct clk_cdce925_output *data, u16 pdiv)
269{
270	switch (data->index) {
271	case 0:
272		regmap_update_bits(data->chip->regmap,
273			CDCE925_REG_Y1SPIPDIVH,
274			0x03, (pdiv >> 8) & 0x03);
275		regmap_write(data->chip->regmap, 0x03, pdiv & 0xFF);
276		break;
277	case 1:
278		regmap_update_bits(data->chip->regmap, 0x16, 0x7F, pdiv);
279		break;
280	case 2:
281		regmap_update_bits(data->chip->regmap, 0x17, 0x7F, pdiv);
282		break;
283	case 3:
284		regmap_update_bits(data->chip->regmap, 0x26, 0x7F, pdiv);
285		break;
286	case 4:
287		regmap_update_bits(data->chip->regmap, 0x27, 0x7F, pdiv);
288		break;
 
 
 
 
 
 
 
 
 
 
 
 
289	}
290}
291
292static void cdce925_clk_activate(struct clk_cdce925_output *data)
293{
294	switch (data->index) {
295	case 0:
296		regmap_update_bits(data->chip->regmap,
297			CDCE925_REG_Y1SPIPDIVH, 0x0c, 0x0c);
298		break;
299	case 1:
300	case 2:
301		regmap_update_bits(data->chip->regmap, 0x14, 0x03, 0x03);
302		break;
303	case 3:
304	case 4:
305		regmap_update_bits(data->chip->regmap, 0x24, 0x03, 0x03);
306		break;
 
 
 
 
 
 
 
 
307	}
308}
309
310static int cdce925_clk_prepare(struct clk_hw *hw)
311{
312	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
313
314	cdce925_clk_set_pdiv(data, data->pdiv);
315	cdce925_clk_activate(data);
316	return 0;
317}
318
319static void cdce925_clk_unprepare(struct clk_hw *hw)
320{
321	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
322
323	/* Disable clock by setting divider to "0" */
324	cdce925_clk_set_pdiv(data, 0);
325}
326
327static unsigned long cdce925_clk_recalc_rate(struct clk_hw *hw,
328		unsigned long parent_rate)
329{
330	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
331
332	if (data->pdiv)
333		return parent_rate / data->pdiv;
334	return 0;
335}
336
337static u16 cdce925_calc_divider(unsigned long rate,
338		unsigned long parent_rate)
339{
340	unsigned long divider;
341
342	if (!rate)
343		return 0;
344	if (rate >= parent_rate)
345		return 1;
346
347	divider = DIV_ROUND_CLOSEST(parent_rate, rate);
348	if (divider > 0x7F)
349		divider = 0x7F;
350
351	return (u16)divider;
352}
353
354static unsigned long cdce925_clk_best_parent_rate(
355	struct clk_hw *hw, unsigned long rate)
356{
357	struct clk *pll = clk_get_parent(hw->clk);
358	struct clk *root = clk_get_parent(pll);
359	unsigned long root_rate = clk_get_rate(root);
360	unsigned long best_rate_error = rate;
361	u16 pdiv_min;
362	u16 pdiv_max;
363	u16 pdiv_best;
364	u16 pdiv_now;
365
366	if (root_rate % rate == 0)
367		return root_rate; /* Don't need the PLL, use bypass */
368
369	pdiv_min = (u16)max(1ul, DIV_ROUND_UP(CDCE925_PLL_FREQUENCY_MIN, rate));
370	pdiv_max = (u16)min(127ul, CDCE925_PLL_FREQUENCY_MAX / rate);
371
372	if (pdiv_min > pdiv_max)
373		return 0; /* No can do? */
374
375	pdiv_best = pdiv_min;
376	for (pdiv_now = pdiv_min; pdiv_now < pdiv_max; ++pdiv_now) {
377		unsigned long target_rate = rate * pdiv_now;
378		long pll_rate = clk_round_rate(pll, target_rate);
379		unsigned long actual_rate;
380		unsigned long rate_error;
381
382		if (pll_rate <= 0)
383			continue;
384		actual_rate = pll_rate / pdiv_now;
385		rate_error = abs((long)actual_rate - (long)rate);
386		if (rate_error < best_rate_error) {
387			pdiv_best = pdiv_now;
388			best_rate_error = rate_error;
389		}
390		/* TODO: Consider PLL frequency based on smaller n/m values
391		 * and pick the better one if the error is equal */
392	}
393
394	return rate * pdiv_best;
395}
396
397static long cdce925_clk_round_rate(struct clk_hw *hw, unsigned long rate,
398		unsigned long *parent_rate)
399{
400	unsigned long l_parent_rate = *parent_rate;
401	u16 divider = cdce925_calc_divider(rate, l_parent_rate);
402
403	if (l_parent_rate / divider != rate) {
404		l_parent_rate = cdce925_clk_best_parent_rate(hw, rate);
405		divider = cdce925_calc_divider(rate, l_parent_rate);
406		*parent_rate = l_parent_rate;
407	}
408
409	if (divider)
410		return (long)(l_parent_rate / divider);
411	return 0;
412}
413
414static int cdce925_clk_set_rate(struct clk_hw *hw, unsigned long rate,
415		unsigned long parent_rate)
416{
417	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
418
419	data->pdiv = cdce925_calc_divider(rate, parent_rate);
420
421	return 0;
422}
423
424static const struct clk_ops cdce925_clk_ops = {
425	.prepare = cdce925_clk_prepare,
426	.unprepare = cdce925_clk_unprepare,
427	.recalc_rate = cdce925_clk_recalc_rate,
428	.round_rate = cdce925_clk_round_rate,
429	.set_rate = cdce925_clk_set_rate,
430};
431
432
433static u16 cdce925_y1_calc_divider(unsigned long rate,
434		unsigned long parent_rate)
435{
436	unsigned long divider;
437
438	if (!rate)
439		return 0;
440	if (rate >= parent_rate)
441		return 1;
442
443	divider = DIV_ROUND_CLOSEST(parent_rate, rate);
444	if (divider > 0x3FF) /* Y1 has 10-bit divider */
445		divider = 0x3FF;
446
447	return (u16)divider;
448}
449
450static long cdce925_clk_y1_round_rate(struct clk_hw *hw, unsigned long rate,
451		unsigned long *parent_rate)
452{
453	unsigned long l_parent_rate = *parent_rate;
454	u16 divider = cdce925_y1_calc_divider(rate, l_parent_rate);
455
456	if (divider)
457		return (long)(l_parent_rate / divider);
458	return 0;
459}
460
461static int cdce925_clk_y1_set_rate(struct clk_hw *hw, unsigned long rate,
462		unsigned long parent_rate)
463{
464	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
465
466	data->pdiv = cdce925_y1_calc_divider(rate, parent_rate);
467
468	return 0;
469}
470
471static const struct clk_ops cdce925_clk_y1_ops = {
472	.prepare = cdce925_clk_prepare,
473	.unprepare = cdce925_clk_unprepare,
474	.recalc_rate = cdce925_clk_recalc_rate,
475	.round_rate = cdce925_clk_y1_round_rate,
476	.set_rate = cdce925_clk_y1_set_rate,
477};
478
479
480static struct regmap_config cdce925_regmap_config = {
481	.name = "configuration0",
482	.reg_bits = 8,
483	.val_bits = 8,
484	.cache_type = REGCACHE_RBTREE,
485	.max_register = 0x2F,
486};
487
488#define CDCE925_I2C_COMMAND_BLOCK_TRANSFER	0x00
489#define CDCE925_I2C_COMMAND_BYTE_TRANSFER	0x80
490
491static int cdce925_regmap_i2c_write(
492	void *context, const void *data, size_t count)
493{
494	struct device *dev = context;
495	struct i2c_client *i2c = to_i2c_client(dev);
496	int ret;
497	u8 reg_data[2];
498
499	if (count != 2)
500		return -ENOTSUPP;
501
502	/* First byte is command code */
503	reg_data[0] = CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)data)[0];
504	reg_data[1] = ((u8 *)data)[1];
505
506	dev_dbg(&i2c->dev, "%s(%zu) %#x %#x\n", __func__, count,
507			reg_data[0], reg_data[1]);
508
509	ret = i2c_master_send(i2c, reg_data, count);
510	if (likely(ret == count))
511		return 0;
512	else if (ret < 0)
513		return ret;
514	else
515		return -EIO;
516}
517
518static int cdce925_regmap_i2c_read(void *context,
519	   const void *reg, size_t reg_size, void *val, size_t val_size)
520{
521	struct device *dev = context;
522	struct i2c_client *i2c = to_i2c_client(dev);
523	struct i2c_msg xfer[2];
524	int ret;
525	u8 reg_data[2];
526
527	if (reg_size != 1)
528		return -ENOTSUPP;
529
530	xfer[0].addr = i2c->addr;
531	xfer[0].flags = 0;
532	xfer[0].buf = reg_data;
533	if (val_size == 1) {
534		reg_data[0] =
535			CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)reg)[0];
536		xfer[0].len = 1;
537	} else {
538		reg_data[0] =
539			CDCE925_I2C_COMMAND_BLOCK_TRANSFER | ((u8 *)reg)[0];
540		reg_data[1] = val_size;
541		xfer[0].len = 2;
542	}
543
544	xfer[1].addr = i2c->addr;
545	xfer[1].flags = I2C_M_RD;
546	xfer[1].len = val_size;
547	xfer[1].buf = val;
548
549	ret = i2c_transfer(i2c->adapter, xfer, 2);
550	if (likely(ret == 2)) {
551		dev_dbg(&i2c->dev, "%s(%zu, %zu) %#x %#x\n", __func__,
552				reg_size, val_size, reg_data[0], *((u8 *)val));
553		return 0;
554	} else if (ret < 0)
555		return ret;
556	else
557		return -EIO;
558}
559
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
560/* The CDCE925 uses a funky way to read/write registers. Bulk mode is
561 * just weird, so just use the single byte mode exclusively. */
562static struct regmap_bus regmap_cdce925_bus = {
563	.write = cdce925_regmap_i2c_write,
564	.read = cdce925_regmap_i2c_read,
565};
566
567static int cdce925_probe(struct i2c_client *client,
568		const struct i2c_device_id *id)
569{
570	struct clk_cdce925_chip *data;
571	struct device_node *node = client->dev.of_node;
572	const char *parent_name;
573	const char *pll_clk_name[NUMBER_OF_PLLS] = {NULL,};
574	struct clk_init_data init;
575	struct clk *clk;
576	u32 value;
577	int i;
578	int err;
579	struct device_node *np_output;
580	char child_name[6];
 
 
 
 
 
 
581
582	dev_dbg(&client->dev, "%s\n", __func__);
 
 
 
 
 
 
 
 
 
583	data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
584	if (!data)
585		return -ENOMEM;
586
587	data->i2c_client = client;
 
 
 
588	data->regmap = devm_regmap_init(&client->dev, &regmap_cdce925_bus,
589			&client->dev, &cdce925_regmap_config);
590	if (IS_ERR(data->regmap)) {
591		dev_err(&client->dev, "failed to allocate register map\n");
592		return PTR_ERR(data->regmap);
593	}
594	i2c_set_clientdata(client, data);
595
596	parent_name = of_clk_get_parent_name(node, 0);
597	if (!parent_name) {
598		dev_err(&client->dev, "missing parent clock\n");
599		return -ENODEV;
600	}
601	dev_dbg(&client->dev, "parent is: %s\n", parent_name);
602
603	if (of_property_read_u32(node, "xtal-load-pf", &value) == 0)
604		regmap_write(data->regmap,
605			CDCE925_REG_XCSEL, (value << 3) & 0xF8);
606	/* PWDN bit */
607	regmap_update_bits(data->regmap, CDCE925_REG_GLOBAL1, BIT(4), 0);
608
609	/* Set input source for Y1 to be the XTAL */
610	regmap_update_bits(data->regmap, 0x02, BIT(7), 0);
611
612	init.ops = &cdce925_pll_ops;
613	init.flags = 0;
614	init.parent_names = &parent_name;
615	init.num_parents = parent_name ? 1 : 0;
616
617	/* Register PLL clocks */
618	for (i = 0; i < NUMBER_OF_PLLS; ++i) {
619		pll_clk_name[i] = kasprintf(GFP_KERNEL, "%s.pll%d",
620			client->dev.of_node->name, i);
 
 
 
 
621		init.name = pll_clk_name[i];
622		data->pll[i].chip = data;
623		data->pll[i].hw.init = &init;
624		data->pll[i].index = i;
625		clk = devm_clk_register(&client->dev, &data->pll[i].hw);
626		if (IS_ERR(clk)) {
627			dev_err(&client->dev, "Failed register PLL %d\n", i);
628			err = PTR_ERR(clk);
629			goto error;
630		}
631		sprintf(child_name, "PLL%d", i+1);
632		np_output = of_get_child_by_name(node, child_name);
633		if (!np_output)
634			continue;
635		if (!of_property_read_u32(np_output,
636			"clock-frequency", &value)) {
637			err = clk_set_rate(clk, value);
638			if (err)
639				dev_err(&client->dev,
640					"unable to set PLL frequency %ud\n",
641					value);
642		}
643		if (!of_property_read_u32(np_output,
644			"spread-spectrum", &value)) {
645			u8 flag = of_property_read_bool(np_output,
646				"spread-spectrum-center") ? 0x80 : 0x00;
647			regmap_update_bits(data->regmap,
648				0x16 + (i*CDCE925_OFFSET_PLL),
649				0x80, flag);
650			regmap_update_bits(data->regmap,
651				0x12 + (i*CDCE925_OFFSET_PLL),
652				0x07, value & 0x07);
653		}
 
654	}
655
656	/* Register output clock Y1 */
657	init.ops = &cdce925_clk_y1_ops;
658	init.flags = 0;
659	init.num_parents = 1;
660	init.parent_names = &parent_name; /* Mux Y1 to input */
661	init.name = kasprintf(GFP_KERNEL, "%s.Y1", client->dev.of_node->name);
 
 
 
 
662	data->clk[0].chip = data;
663	data->clk[0].hw.init = &init;
664	data->clk[0].index = 0;
665	data->clk[0].pdiv = 1;
666	clk = devm_clk_register(&client->dev, &data->clk[0].hw);
667	kfree(init.name); /* clock framework made a copy of the name */
668	if (IS_ERR(clk)) {
669		dev_err(&client->dev, "clock registration Y1 failed\n");
670		err = PTR_ERR(clk);
671		goto error;
672	}
673	data->dt_clk[0] = clk;
674
675	/* Register output clocks Y2 .. Y5*/
676	init.ops = &cdce925_clk_ops;
677	init.flags = CLK_SET_RATE_PARENT;
678	init.num_parents = 1;
679	for (i = 1; i < NUMBER_OF_OUTPUTS; ++i) {
680		init.name = kasprintf(GFP_KERNEL, "%s.Y%d",
681			client->dev.of_node->name, i+1);
 
 
 
 
682		data->clk[i].chip = data;
683		data->clk[i].hw.init = &init;
684		data->clk[i].index = i;
685		data->clk[i].pdiv = 1;
686		switch (i) {
687		case 1:
688		case 2:
689			/* Mux Y2/3 to PLL1 */
690			init.parent_names = &pll_clk_name[0];
691			break;
692		case 3:
693		case 4:
694			/* Mux Y4/5 to PLL2 */
695			init.parent_names = &pll_clk_name[1];
696			break;
 
 
 
 
 
 
 
 
 
 
697		}
698		clk = devm_clk_register(&client->dev, &data->clk[i].hw);
699		kfree(init.name); /* clock framework made a copy of the name */
700		if (IS_ERR(clk)) {
701			dev_err(&client->dev, "clock registration failed\n");
702			err = PTR_ERR(clk);
703			goto error;
704		}
705		data->dt_clk[i] = clk;
706	}
707
708	/* Register the output clocks */
709	data->onecell.clk_num = NUMBER_OF_OUTPUTS;
710	data->onecell.clks = data->dt_clk;
711	err = of_clk_add_provider(client->dev.of_node, of_clk_src_onecell_get,
712		&data->onecell);
713	if (err)
714		dev_err(&client->dev, "unable to add OF clock provider\n");
715
716	err = 0;
717
718error:
719	for (i = 0; i < NUMBER_OF_PLLS; ++i)
720		/* clock framework made a copy of the name */
721		kfree(pll_clk_name[i]);
722
723	return err;
724}
725
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
726static const struct i2c_device_id cdce925_id[] = {
727	{ "cdce925", 0 },
 
 
 
728	{ }
729};
730MODULE_DEVICE_TABLE(i2c, cdce925_id);
731
732static const struct of_device_id clk_cdce925_of_match[] = {
733	{ .compatible = "ti,cdce925" },
734	{ },
 
 
 
735};
736MODULE_DEVICE_TABLE(of, clk_cdce925_of_match);
737
738static struct i2c_driver cdce925_driver = {
739	.driver = {
740		.name = "cdce925",
741		.of_match_table = of_match_ptr(clk_cdce925_of_match),
742	},
743	.probe		= cdce925_probe,
744	.id_table	= cdce925_id,
745};
746module_i2c_driver(cdce925_driver);
747
748MODULE_AUTHOR("Mike Looijmans <mike.looijmans@topic.nl>");
749MODULE_DESCRIPTION("cdce925 driver");
750MODULE_LICENSE("GPL");