Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
   1// SPDX-License-Identifier: GPL-2.0
   2
   3/*
   4 * Copyright 2016-2019 HabanaLabs, Ltd.
   5 * All Rights Reserved.
   6 */
   7
   8#include "habanalabs.h"
   9
  10#include <linux/slab.h>
  11
  12/*
  13 * hl_queue_add_ptr - add to pi or ci and checks if it wraps around
  14 *
  15 * @ptr: the current pi/ci value
  16 * @val: the amount to add
  17 *
  18 * Add val to ptr. It can go until twice the queue length.
  19 */
  20inline u32 hl_hw_queue_add_ptr(u32 ptr, u16 val)
  21{
  22	ptr += val;
  23	ptr &= ((HL_QUEUE_LENGTH << 1) - 1);
  24	return ptr;
  25}
  26static inline int queue_ci_get(atomic_t *ci, u32 queue_len)
  27{
  28	return atomic_read(ci) & ((queue_len << 1) - 1);
  29}
  30
  31static inline int queue_free_slots(struct hl_hw_queue *q, u32 queue_len)
  32{
  33	int delta = (q->pi - queue_ci_get(&q->ci, queue_len));
  34
  35	if (delta >= 0)
  36		return (queue_len - delta);
  37	else
  38		return (abs(delta) - queue_len);
  39}
  40
  41void hl_hw_queue_update_ci(struct hl_cs *cs)
  42{
  43	struct hl_device *hdev = cs->ctx->hdev;
  44	struct hl_hw_queue *q;
  45	int i;
  46
  47	if (hdev->disabled)
  48		return;
  49
  50	q = &hdev->kernel_queues[0];
  51
  52	/* There are no internal queues if H/W queues are being used */
  53	if (!hdev->asic_prop.max_queues || q->queue_type == QUEUE_TYPE_HW)
  54		return;
  55
  56	/* We must increment CI for every queue that will never get a
  57	 * completion, there are 2 scenarios this can happen:
  58	 * 1. All queues of a non completion CS will never get a completion.
  59	 * 2. Internal queues never gets completion.
  60	 */
  61	for (i = 0 ; i < hdev->asic_prop.max_queues ; i++, q++) {
  62		if (!cs_needs_completion(cs) || q->queue_type == QUEUE_TYPE_INT)
  63			atomic_add(cs->jobs_in_queue_cnt[i], &q->ci);
  64	}
  65}
  66
  67/*
  68 * hl_hw_queue_submit_bd() - Submit a buffer descriptor to an external or a
  69 *                                H/W queue.
  70 * @hdev: pointer to habanalabs device structure
  71 * @q: pointer to habanalabs queue structure
  72 * @ctl: BD's control word
  73 * @len: BD's length
  74 * @ptr: BD's pointer
  75 *
  76 * This function assumes there is enough space on the queue to submit a new
  77 * BD to it. It initializes the next BD and calls the device specific
  78 * function to set the pi (and doorbell)
  79 *
  80 * This function must be called when the scheduler mutex is taken
  81 *
  82 */
  83void hl_hw_queue_submit_bd(struct hl_device *hdev, struct hl_hw_queue *q,
  84		u32 ctl, u32 len, u64 ptr)
  85{
  86	struct hl_bd *bd;
  87
  88	bd = q->kernel_address;
  89	bd += hl_pi_2_offset(q->pi);
  90	bd->ctl = cpu_to_le32(ctl);
  91	bd->len = cpu_to_le32(len);
  92	bd->ptr = cpu_to_le64(ptr);
  93
  94	q->pi = hl_queue_inc_ptr(q->pi);
  95	hdev->asic_funcs->ring_doorbell(hdev, q->hw_queue_id, q->pi);
  96}
  97
  98/*
  99 * ext_queue_sanity_checks - perform some sanity checks on external queue
 100 *
 101 * @hdev              : pointer to hl_device structure
 102 * @q                 :	pointer to hl_hw_queue structure
 103 * @num_of_entries    : how many entries to check for space
 104 * @reserve_cq_entry  :	whether to reserve an entry in the cq
 105 *
 106 * H/W queues spinlock should be taken before calling this function
 107 *
 108 * Perform the following:
 109 * - Make sure we have enough space in the h/w queue
 110 * - Make sure we have enough space in the completion queue
 111 * - Reserve space in the completion queue (needs to be reversed if there
 112 *   is a failure down the road before the actual submission of work). Only
 113 *   do this action if reserve_cq_entry is true
 114 *
 115 */
 116static int ext_queue_sanity_checks(struct hl_device *hdev,
 117				struct hl_hw_queue *q, int num_of_entries,
 118				bool reserve_cq_entry)
 119{
 120	atomic_t *free_slots =
 121			&hdev->completion_queue[q->cq_id].free_slots_cnt;
 122	int free_slots_cnt;
 123
 124	/* Check we have enough space in the queue */
 125	free_slots_cnt = queue_free_slots(q, HL_QUEUE_LENGTH);
 126
 127	if (free_slots_cnt < num_of_entries) {
 128		dev_dbg(hdev->dev, "Queue %d doesn't have room for %d CBs\n",
 129			q->hw_queue_id, num_of_entries);
 130		return -EAGAIN;
 131	}
 132
 133	if (reserve_cq_entry) {
 134		/*
 135		 * Check we have enough space in the completion queue
 136		 * Add -1 to counter (decrement) unless counter was already 0
 137		 * In that case, CQ is full so we can't submit a new CB because
 138		 * we won't get ack on its completion
 139		 * atomic_add_unless will return 0 if counter was already 0
 140		 */
 141		if (atomic_add_negative(num_of_entries * -1, free_slots)) {
 142			dev_dbg(hdev->dev, "No space for %d on CQ %d\n",
 143				num_of_entries, q->hw_queue_id);
 144			atomic_add(num_of_entries, free_slots);
 145			return -EAGAIN;
 146		}
 147	}
 148
 149	return 0;
 150}
 151
 152/*
 153 * int_queue_sanity_checks - perform some sanity checks on internal queue
 154 *
 155 * @hdev              : pointer to hl_device structure
 156 * @q                 :	pointer to hl_hw_queue structure
 157 * @num_of_entries    : how many entries to check for space
 158 *
 159 * H/W queues spinlock should be taken before calling this function
 160 *
 161 * Perform the following:
 162 * - Make sure we have enough space in the h/w queue
 163 *
 164 */
 165static int int_queue_sanity_checks(struct hl_device *hdev,
 166					struct hl_hw_queue *q,
 167					int num_of_entries)
 168{
 169	int free_slots_cnt;
 170
 171	if (num_of_entries > q->int_queue_len) {
 172		dev_err(hdev->dev,
 173			"Cannot populate queue %u with %u jobs\n",
 174			q->hw_queue_id, num_of_entries);
 175		return -ENOMEM;
 176	}
 177
 178	/* Check we have enough space in the queue */
 179	free_slots_cnt = queue_free_slots(q, q->int_queue_len);
 180
 181	if (free_slots_cnt < num_of_entries) {
 182		dev_dbg(hdev->dev, "Queue %d doesn't have room for %d CBs\n",
 183			q->hw_queue_id, num_of_entries);
 184		return -EAGAIN;
 185	}
 186
 187	return 0;
 188}
 189
 190/*
 191 * hw_queue_sanity_checks() - Make sure we have enough space in the h/w queue
 192 * @hdev: Pointer to hl_device structure.
 193 * @q: Pointer to hl_hw_queue structure.
 194 * @num_of_entries: How many entries to check for space.
 195 *
 196 * Notice: We do not reserve queue entries so this function mustn't be called
 197 *         more than once per CS for the same queue
 198 *
 199 */
 200static int hw_queue_sanity_checks(struct hl_device *hdev, struct hl_hw_queue *q,
 201					int num_of_entries)
 202{
 203	int free_slots_cnt;
 204
 205	/* Check we have enough space in the queue */
 206	free_slots_cnt = queue_free_slots(q, HL_QUEUE_LENGTH);
 207
 208	if (free_slots_cnt < num_of_entries) {
 209		dev_dbg(hdev->dev, "Queue %d doesn't have room for %d CBs\n",
 210			q->hw_queue_id, num_of_entries);
 211		return -EAGAIN;
 212	}
 213
 214	return 0;
 215}
 216
 217/*
 218 * hl_hw_queue_send_cb_no_cmpl - send a single CB (not a JOB) without completion
 219 *
 220 * @hdev: pointer to hl_device structure
 221 * @hw_queue_id: Queue's type
 222 * @cb_size: size of CB
 223 * @cb_ptr: pointer to CB location
 224 *
 225 * This function sends a single CB, that must NOT generate a completion entry.
 226 * Sending CPU messages can be done instead via 'hl_hw_queue_submit_bd()'
 227 */
 228int hl_hw_queue_send_cb_no_cmpl(struct hl_device *hdev, u32 hw_queue_id,
 229				u32 cb_size, u64 cb_ptr)
 230{
 231	struct hl_hw_queue *q = &hdev->kernel_queues[hw_queue_id];
 232	int rc = 0;
 233
 234	hdev->asic_funcs->hw_queues_lock(hdev);
 235
 236	if (hdev->disabled) {
 237		rc = -EPERM;
 238		goto out;
 239	}
 240
 241	/*
 242	 * hl_hw_queue_send_cb_no_cmpl() is called for queues of a H/W queue
 243	 * type only on init phase, when the queues are empty and being tested,
 244	 * so there is no need for sanity checks.
 245	 */
 246	if (q->queue_type != QUEUE_TYPE_HW) {
 247		rc = ext_queue_sanity_checks(hdev, q, 1, false);
 248		if (rc)
 249			goto out;
 250	}
 251
 252	hl_hw_queue_submit_bd(hdev, q, 0, cb_size, cb_ptr);
 253
 254out:
 255	hdev->asic_funcs->hw_queues_unlock(hdev);
 256
 257	return rc;
 258}
 259
 260/*
 261 * ext_queue_schedule_job - submit a JOB to an external queue
 262 *
 263 * @job: pointer to the job that needs to be submitted to the queue
 264 *
 265 * This function must be called when the scheduler mutex is taken
 266 *
 267 */
 268static void ext_queue_schedule_job(struct hl_cs_job *job)
 269{
 270	struct hl_device *hdev = job->cs->ctx->hdev;
 271	struct hl_hw_queue *q = &hdev->kernel_queues[job->hw_queue_id];
 272	struct hl_cq_entry cq_pkt;
 273	struct hl_cq *cq;
 274	u64 cq_addr;
 275	struct hl_cb *cb;
 276	u32 ctl;
 277	u32 len;
 278	u64 ptr;
 279
 280	/*
 281	 * Update the JOB ID inside the BD CTL so the device would know what
 282	 * to write in the completion queue
 283	 */
 284	ctl = ((q->pi << BD_CTL_SHADOW_INDEX_SHIFT) & BD_CTL_SHADOW_INDEX_MASK);
 285
 286	cb = job->patched_cb;
 287	len = job->job_cb_size;
 288	ptr = cb->bus_address;
 289
 290	/* Skip completion flow in case this is a non completion CS */
 291	if (!cs_needs_completion(job->cs))
 292		goto submit_bd;
 293
 294	cq_pkt.data = cpu_to_le32(
 295			((q->pi << CQ_ENTRY_SHADOW_INDEX_SHIFT)
 296				& CQ_ENTRY_SHADOW_INDEX_MASK) |
 297			FIELD_PREP(CQ_ENTRY_SHADOW_INDEX_VALID_MASK, 1) |
 298			FIELD_PREP(CQ_ENTRY_READY_MASK, 1));
 299
 300	/*
 301	 * No need to protect pi_offset because scheduling to the
 302	 * H/W queues is done under the scheduler mutex
 303	 *
 304	 * No need to check if CQ is full because it was already
 305	 * checked in ext_queue_sanity_checks
 306	 */
 307	cq = &hdev->completion_queue[q->cq_id];
 308	cq_addr = cq->bus_address + cq->pi * sizeof(struct hl_cq_entry);
 309
 310	hdev->asic_funcs->add_end_of_cb_packets(hdev, cb->kernel_address, len,
 311						job->user_cb_size,
 312						cq_addr,
 313						le32_to_cpu(cq_pkt.data),
 314						q->msi_vec,
 315						job->contains_dma_pkt);
 316
 317	q->shadow_queue[hl_pi_2_offset(q->pi)] = job;
 318
 319	cq->pi = hl_cq_inc_ptr(cq->pi);
 320
 321submit_bd:
 322	hl_hw_queue_submit_bd(hdev, q, ctl, len, ptr);
 323}
 324
 325/*
 326 * int_queue_schedule_job - submit a JOB to an internal queue
 327 *
 328 * @job: pointer to the job that needs to be submitted to the queue
 329 *
 330 * This function must be called when the scheduler mutex is taken
 331 *
 332 */
 333static void int_queue_schedule_job(struct hl_cs_job *job)
 334{
 335	struct hl_device *hdev = job->cs->ctx->hdev;
 336	struct hl_hw_queue *q = &hdev->kernel_queues[job->hw_queue_id];
 337	struct hl_bd bd;
 338	__le64 *pi;
 339
 340	bd.ctl = 0;
 341	bd.len = cpu_to_le32(job->job_cb_size);
 342
 343	if (job->is_kernel_allocated_cb)
 344		/* bus_address is actually a mmu mapped address
 345		 * allocated from an internal pool
 346		 */
 347		bd.ptr = cpu_to_le64(job->user_cb->bus_address);
 348	else
 349		bd.ptr = cpu_to_le64((u64) (uintptr_t) job->user_cb);
 350
 351	pi = q->kernel_address + (q->pi & (q->int_queue_len - 1)) * sizeof(bd);
 352
 353	q->pi++;
 354	q->pi &= ((q->int_queue_len << 1) - 1);
 355
 356	hdev->asic_funcs->pqe_write(hdev, pi, &bd);
 357
 358	hdev->asic_funcs->ring_doorbell(hdev, q->hw_queue_id, q->pi);
 359}
 360
 361/*
 362 * hw_queue_schedule_job - submit a JOB to a H/W queue
 363 *
 364 * @job: pointer to the job that needs to be submitted to the queue
 365 *
 366 * This function must be called when the scheduler mutex is taken
 367 *
 368 */
 369static void hw_queue_schedule_job(struct hl_cs_job *job)
 370{
 371	struct hl_device *hdev = job->cs->ctx->hdev;
 372	struct hl_hw_queue *q = &hdev->kernel_queues[job->hw_queue_id];
 373	u64 ptr;
 374	u32 offset, ctl, len;
 375
 376	/*
 377	 * Upon PQE completion, COMP_DATA is used as the write data to the
 378	 * completion queue (QMAN HBW message), and COMP_OFFSET is used as the
 379	 * write address offset in the SM block (QMAN LBW message).
 380	 * The write address offset is calculated as "COMP_OFFSET << 2".
 381	 */
 382	offset = job->cs->sequence & (hdev->asic_prop.max_pending_cs - 1);
 383	ctl = ((offset << BD_CTL_COMP_OFFSET_SHIFT) & BD_CTL_COMP_OFFSET_MASK) |
 384		((q->pi << BD_CTL_COMP_DATA_SHIFT) & BD_CTL_COMP_DATA_MASK);
 385
 386	len = job->job_cb_size;
 387
 388	/*
 389	 * A patched CB is created only if a user CB was allocated by driver and
 390	 * MMU is disabled. If MMU is enabled, the user CB should be used
 391	 * instead. If the user CB wasn't allocated by driver, assume that it
 392	 * holds an address.
 393	 */
 394	if (job->patched_cb)
 395		ptr = job->patched_cb->bus_address;
 396	else if (job->is_kernel_allocated_cb)
 397		ptr = job->user_cb->bus_address;
 398	else
 399		ptr = (u64) (uintptr_t) job->user_cb;
 400
 401	hl_hw_queue_submit_bd(hdev, q, ctl, len, ptr);
 402}
 403
 404static int init_signal_cs(struct hl_device *hdev,
 405		struct hl_cs_job *job, struct hl_cs_compl *cs_cmpl)
 406{
 407	struct hl_sync_stream_properties *prop;
 408	struct hl_hw_sob *hw_sob;
 409	u32 q_idx;
 410	int rc = 0;
 411
 412	q_idx = job->hw_queue_id;
 413	prop = &hdev->kernel_queues[q_idx].sync_stream_prop;
 414	hw_sob = &prop->hw_sob[prop->curr_sob_offset];
 415
 416	cs_cmpl->hw_sob = hw_sob;
 417	cs_cmpl->sob_val = prop->next_sob_val;
 418
 419	dev_dbg(hdev->dev,
 420		"generate signal CB, sob_id: %d, sob val: %u, q_idx: %d, seq: %llu\n",
 421		cs_cmpl->hw_sob->sob_id, cs_cmpl->sob_val, q_idx,
 422		cs_cmpl->cs_seq);
 423
 424	/* we set an EB since we must make sure all oeprations are done
 425	 * when sending the signal
 426	 */
 427	hdev->asic_funcs->gen_signal_cb(hdev, job->patched_cb,
 428				cs_cmpl->hw_sob->sob_id, 0, true);
 429
 430	rc = hl_cs_signal_sob_wraparound_handler(hdev, q_idx, &hw_sob, 1,
 431								false);
 432
 433	job->cs->sob_addr_offset = hw_sob->sob_addr;
 434	job->cs->initial_sob_count = prop->next_sob_val - 1;
 435
 436	return rc;
 437}
 438
 439void hl_hw_queue_encaps_sig_set_sob_info(struct hl_device *hdev,
 440			struct hl_cs *cs, struct hl_cs_job *job,
 441			struct hl_cs_compl *cs_cmpl)
 442{
 443	struct hl_cs_encaps_sig_handle *handle = cs->encaps_sig_hdl;
 444	u32 offset = 0;
 445
 446	cs_cmpl->hw_sob = handle->hw_sob;
 447
 448	/* Note that encaps_sig_wait_offset was validated earlier in the flow
 449	 * for offset value which exceeds the max reserved signal count.
 450	 * always decrement 1 of the offset since when the user
 451	 * set offset 1 for example he mean to wait only for the first
 452	 * signal only, which will be pre_sob_val, and if he set offset 2
 453	 * then the value required is (pre_sob_val + 1) and so on...
 454	 * if user set wait offset to 0, then treat it as legacy wait cs,
 455	 * wait for the next signal.
 456	 */
 457	if (job->encaps_sig_wait_offset)
 458		offset = job->encaps_sig_wait_offset - 1;
 459
 460	cs_cmpl->sob_val = handle->pre_sob_val + offset;
 461}
 462
 463static int init_wait_cs(struct hl_device *hdev, struct hl_cs *cs,
 464		struct hl_cs_job *job, struct hl_cs_compl *cs_cmpl)
 465{
 466	struct hl_gen_wait_properties wait_prop;
 467	struct hl_sync_stream_properties *prop;
 468	struct hl_cs_compl *signal_cs_cmpl;
 469	u32 q_idx;
 470
 471	q_idx = job->hw_queue_id;
 472	prop = &hdev->kernel_queues[q_idx].sync_stream_prop;
 473
 474	signal_cs_cmpl = container_of(cs->signal_fence,
 475					struct hl_cs_compl,
 476					base_fence);
 477
 478	if (cs->encaps_signals) {
 479		/* use the encaps signal handle stored earlier in the flow
 480		 * and set the SOB information from the encaps
 481		 * signals handle
 482		 */
 483		hl_hw_queue_encaps_sig_set_sob_info(hdev, cs, job, cs_cmpl);
 484
 485		dev_dbg(hdev->dev, "Wait for encaps signals handle, qidx(%u), CS sequence(%llu), sob val: 0x%x, offset: %u\n",
 486				cs->encaps_sig_hdl->q_idx,
 487				cs->encaps_sig_hdl->cs_seq,
 488				cs_cmpl->sob_val,
 489				job->encaps_sig_wait_offset);
 490	} else {
 491		/* Copy the SOB id and value of the signal CS */
 492		cs_cmpl->hw_sob = signal_cs_cmpl->hw_sob;
 493		cs_cmpl->sob_val = signal_cs_cmpl->sob_val;
 494	}
 495
 496	/* check again if the signal cs already completed.
 497	 * if yes then don't send any wait cs since the hw_sob
 498	 * could be in reset already. if signal is not completed
 499	 * then get refcount to hw_sob to prevent resetting the sob
 500	 * while wait cs is not submitted.
 501	 * note that this check is protected by two locks,
 502	 * hw queue lock and completion object lock,
 503	 * and the same completion object lock also protects
 504	 * the hw_sob reset handler function.
 505	 * The hw_queue lock prevent out of sync of hw_sob
 506	 * refcount value, changed by signal/wait flows.
 507	 */
 508	spin_lock(&signal_cs_cmpl->lock);
 509
 510	if (completion_done(&cs->signal_fence->completion)) {
 511		spin_unlock(&signal_cs_cmpl->lock);
 512		return -EINVAL;
 513	}
 514
 515	kref_get(&cs_cmpl->hw_sob->kref);
 516
 517	spin_unlock(&signal_cs_cmpl->lock);
 518
 519	dev_dbg(hdev->dev,
 520		"generate wait CB, sob_id: %d, sob_val: 0x%x, mon_id: %d, q_idx: %d, seq: %llu\n",
 521		cs_cmpl->hw_sob->sob_id, cs_cmpl->sob_val,
 522		prop->base_mon_id, q_idx, cs->sequence);
 523
 524	wait_prop.data = (void *) job->patched_cb;
 525	wait_prop.sob_base = cs_cmpl->hw_sob->sob_id;
 526	wait_prop.sob_mask = 0x1;
 527	wait_prop.sob_val = cs_cmpl->sob_val;
 528	wait_prop.mon_id = prop->base_mon_id;
 529	wait_prop.q_idx = q_idx;
 530	wait_prop.size = 0;
 531
 532	hdev->asic_funcs->gen_wait_cb(hdev, &wait_prop);
 533
 534	mb();
 535	hl_fence_put(cs->signal_fence);
 536	cs->signal_fence = NULL;
 537
 538	return 0;
 539}
 540
 541/*
 542 * init_signal_wait_cs - initialize a signal/wait CS
 543 * @cs: pointer to the signal/wait CS
 544 *
 545 * H/W queues spinlock should be taken before calling this function
 546 */
 547static int init_signal_wait_cs(struct hl_cs *cs)
 548{
 549	struct hl_ctx *ctx = cs->ctx;
 550	struct hl_device *hdev = ctx->hdev;
 551	struct hl_cs_job *job;
 552	struct hl_cs_compl *cs_cmpl =
 553			container_of(cs->fence, struct hl_cs_compl, base_fence);
 554	int rc = 0;
 555
 556	/* There is only one job in a signal/wait CS */
 557	job = list_first_entry(&cs->job_list, struct hl_cs_job,
 558				cs_node);
 559
 560	if (cs->type & CS_TYPE_SIGNAL)
 561		rc = init_signal_cs(hdev, job, cs_cmpl);
 562	else if (cs->type & CS_TYPE_WAIT)
 563		rc = init_wait_cs(hdev, cs, job, cs_cmpl);
 564
 565	return rc;
 566}
 567
 568static int encaps_sig_first_staged_cs_handler
 569			(struct hl_device *hdev, struct hl_cs *cs)
 570{
 571	struct hl_cs_compl *cs_cmpl =
 572			container_of(cs->fence,
 573					struct hl_cs_compl, base_fence);
 574	struct hl_cs_encaps_sig_handle *encaps_sig_hdl;
 575	struct hl_encaps_signals_mgr *mgr;
 576	int rc = 0;
 577
 578	mgr = &cs->ctx->sig_mgr;
 579
 580	spin_lock(&mgr->lock);
 581	encaps_sig_hdl = idr_find(&mgr->handles, cs->encaps_sig_hdl_id);
 582	if (encaps_sig_hdl) {
 583		/*
 584		 * Set handler CS sequence,
 585		 * the CS which contains the encapsulated signals.
 586		 */
 587		encaps_sig_hdl->cs_seq = cs->sequence;
 588		/* store the handle and set encaps signal indication,
 589		 * to be used later in cs_do_release to put the last
 590		 * reference to encaps signals handlers.
 591		 */
 592		cs_cmpl->encaps_signals = true;
 593		cs_cmpl->encaps_sig_hdl = encaps_sig_hdl;
 594
 595		/* set hw_sob pointer in completion object
 596		 * since it's used in cs_do_release flow to put
 597		 * refcount to sob
 598		 */
 599		cs_cmpl->hw_sob = encaps_sig_hdl->hw_sob;
 600		cs_cmpl->sob_val = encaps_sig_hdl->pre_sob_val +
 601						encaps_sig_hdl->count;
 602
 603		dev_dbg(hdev->dev, "CS seq (%llu) added to encaps signal handler id (%u), count(%u), qidx(%u), sob(%u), val(%u)\n",
 604				cs->sequence, encaps_sig_hdl->id,
 605				encaps_sig_hdl->count,
 606				encaps_sig_hdl->q_idx,
 607				cs_cmpl->hw_sob->sob_id,
 608				cs_cmpl->sob_val);
 609
 610	} else {
 611		dev_err(hdev->dev, "encaps handle id(%u) wasn't found!\n",
 612				cs->encaps_sig_hdl_id);
 613		rc = -EINVAL;
 614	}
 615
 616	spin_unlock(&mgr->lock);
 617
 618	return rc;
 619}
 620
 621/*
 622 * hl_hw_queue_schedule_cs - schedule a command submission
 623 * @cs: pointer to the CS
 624 */
 625int hl_hw_queue_schedule_cs(struct hl_cs *cs)
 626{
 627	enum hl_device_status status;
 628	struct hl_cs_counters_atomic *cntr;
 629	struct hl_ctx *ctx = cs->ctx;
 630	struct hl_device *hdev = ctx->hdev;
 631	struct hl_cs_job *job, *tmp;
 632	struct hl_hw_queue *q;
 633	int rc = 0, i, cq_cnt;
 634	bool first_entry;
 635	u32 max_queues;
 636
 637	cntr = &hdev->aggregated_cs_counters;
 638
 639	hdev->asic_funcs->hw_queues_lock(hdev);
 640
 641	if (!hl_device_operational(hdev, &status)) {
 642		atomic64_inc(&cntr->device_in_reset_drop_cnt);
 643		atomic64_inc(&ctx->cs_counters.device_in_reset_drop_cnt);
 644		dev_err(hdev->dev,
 645			"device is %s, CS rejected!\n", hdev->status[status]);
 646		rc = -EPERM;
 647		goto out;
 648	}
 649
 650	max_queues = hdev->asic_prop.max_queues;
 651
 652	q = &hdev->kernel_queues[0];
 653	for (i = 0, cq_cnt = 0 ; i < max_queues ; i++, q++) {
 654		if (cs->jobs_in_queue_cnt[i]) {
 655			switch (q->queue_type) {
 656			case QUEUE_TYPE_EXT:
 657				rc = ext_queue_sanity_checks(hdev, q,
 658						cs->jobs_in_queue_cnt[i],
 659						cs_needs_completion(cs) ?
 660								true : false);
 661				break;
 662			case QUEUE_TYPE_INT:
 663				rc = int_queue_sanity_checks(hdev, q,
 664						cs->jobs_in_queue_cnt[i]);
 665				break;
 666			case QUEUE_TYPE_HW:
 667				rc = hw_queue_sanity_checks(hdev, q,
 668						cs->jobs_in_queue_cnt[i]);
 669				break;
 670			default:
 671				dev_err(hdev->dev, "Queue type %d is invalid\n",
 672					q->queue_type);
 673				rc = -EINVAL;
 674				break;
 675			}
 676
 677			if (rc) {
 678				atomic64_inc(
 679					&ctx->cs_counters.queue_full_drop_cnt);
 680				atomic64_inc(&cntr->queue_full_drop_cnt);
 681				goto unroll_cq_resv;
 682			}
 683
 684			if (q->queue_type == QUEUE_TYPE_EXT)
 685				cq_cnt++;
 686		}
 687	}
 688
 689	if ((cs->type == CS_TYPE_SIGNAL) || (cs->type == CS_TYPE_WAIT)) {
 690		rc = init_signal_wait_cs(cs);
 691		if (rc)
 692			goto unroll_cq_resv;
 693	} else if (cs->type == CS_TYPE_COLLECTIVE_WAIT) {
 694		rc = hdev->asic_funcs->collective_wait_init_cs(cs);
 695		if (rc)
 696			goto unroll_cq_resv;
 697	}
 698
 699	rc = hdev->asic_funcs->pre_schedule_cs(cs);
 700	if (rc) {
 701		dev_err(hdev->dev,
 702			"Failed in pre-submission operations of CS %d.%llu\n",
 703			ctx->asid, cs->sequence);
 704		goto unroll_cq_resv;
 705	}
 706
 707	hdev->shadow_cs_queue[cs->sequence &
 708				(hdev->asic_prop.max_pending_cs - 1)] = cs;
 709
 710	if (cs->encaps_signals && cs->staged_first) {
 711		rc = encaps_sig_first_staged_cs_handler(hdev, cs);
 712		if (rc)
 713			goto unroll_cq_resv;
 714	}
 715
 716	spin_lock(&hdev->cs_mirror_lock);
 717
 718	/* Verify staged CS exists and add to the staged list */
 719	if (cs->staged_cs && !cs->staged_first) {
 720		struct hl_cs *staged_cs;
 721
 722		staged_cs = hl_staged_cs_find_first(hdev, cs->staged_sequence);
 723		if (!staged_cs) {
 724			dev_err(hdev->dev,
 725				"Cannot find staged submission sequence %llu",
 726				cs->staged_sequence);
 727			rc = -EINVAL;
 728			goto unlock_cs_mirror;
 729		}
 730
 731		if (is_staged_cs_last_exists(hdev, staged_cs)) {
 732			dev_err(hdev->dev,
 733				"Staged submission sequence %llu already submitted",
 734				cs->staged_sequence);
 735			rc = -EINVAL;
 736			goto unlock_cs_mirror;
 737		}
 738
 739		list_add_tail(&cs->staged_cs_node, &staged_cs->staged_cs_node);
 740
 741		/* update stream map of the first CS */
 742		if (hdev->supports_wait_for_multi_cs)
 743			staged_cs->fence->stream_master_qid_map |=
 744					cs->fence->stream_master_qid_map;
 745	}
 746
 747	list_add_tail(&cs->mirror_node, &hdev->cs_mirror_list);
 748
 749	/* Queue TDR if the CS is the first entry and if timeout is wanted */
 750	first_entry = list_first_entry(&hdev->cs_mirror_list,
 751					struct hl_cs, mirror_node) == cs;
 752	if ((hdev->timeout_jiffies != MAX_SCHEDULE_TIMEOUT) &&
 753				first_entry && cs_needs_timeout(cs)) {
 754		cs->tdr_active = true;
 755		schedule_delayed_work(&cs->work_tdr, cs->timeout_jiffies);
 756
 757	}
 758
 759	spin_unlock(&hdev->cs_mirror_lock);
 760
 761	list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node)
 762		switch (job->queue_type) {
 763		case QUEUE_TYPE_EXT:
 764			ext_queue_schedule_job(job);
 765			break;
 766		case QUEUE_TYPE_INT:
 767			int_queue_schedule_job(job);
 768			break;
 769		case QUEUE_TYPE_HW:
 770			hw_queue_schedule_job(job);
 771			break;
 772		default:
 773			break;
 774		}
 775
 776	cs->submitted = true;
 777
 778	goto out;
 779
 780unlock_cs_mirror:
 781	spin_unlock(&hdev->cs_mirror_lock);
 782unroll_cq_resv:
 783	q = &hdev->kernel_queues[0];
 784	for (i = 0 ; (i < max_queues) && (cq_cnt > 0) ; i++, q++) {
 785		if ((q->queue_type == QUEUE_TYPE_EXT) &&
 786						(cs->jobs_in_queue_cnt[i])) {
 787			atomic_t *free_slots =
 788				&hdev->completion_queue[i].free_slots_cnt;
 789			atomic_add(cs->jobs_in_queue_cnt[i], free_slots);
 790			cq_cnt--;
 791		}
 792	}
 793
 794out:
 795	hdev->asic_funcs->hw_queues_unlock(hdev);
 796
 797	return rc;
 798}
 799
 800/*
 801 * hl_hw_queue_inc_ci_kernel - increment ci for kernel's queue
 802 *
 803 * @hdev: pointer to hl_device structure
 804 * @hw_queue_id: which queue to increment its ci
 805 */
 806void hl_hw_queue_inc_ci_kernel(struct hl_device *hdev, u32 hw_queue_id)
 807{
 808	struct hl_hw_queue *q = &hdev->kernel_queues[hw_queue_id];
 809
 810	atomic_inc(&q->ci);
 811}
 812
 813static int ext_and_cpu_queue_init(struct hl_device *hdev, struct hl_hw_queue *q,
 814					bool is_cpu_queue)
 815{
 816	void *p;
 817	int rc;
 818
 819	if (is_cpu_queue)
 820		p = hl_cpu_accessible_dma_pool_alloc(hdev, HL_QUEUE_SIZE_IN_BYTES, &q->bus_address);
 821	else
 822		p = hl_asic_dma_alloc_coherent(hdev, HL_QUEUE_SIZE_IN_BYTES, &q->bus_address,
 823						GFP_KERNEL | __GFP_ZERO);
 824	if (!p)
 825		return -ENOMEM;
 826
 827	q->kernel_address = p;
 828
 829	q->shadow_queue = kmalloc_array(HL_QUEUE_LENGTH, sizeof(struct hl_cs_job *), GFP_KERNEL);
 830	if (!q->shadow_queue) {
 831		dev_err(hdev->dev,
 832			"Failed to allocate shadow queue for H/W queue %d\n",
 833			q->hw_queue_id);
 834		rc = -ENOMEM;
 835		goto free_queue;
 836	}
 837
 838	/* Make sure read/write pointers are initialized to start of queue */
 839	atomic_set(&q->ci, 0);
 840	q->pi = 0;
 841
 842	return 0;
 843
 844free_queue:
 845	if (is_cpu_queue)
 846		hl_cpu_accessible_dma_pool_free(hdev, HL_QUEUE_SIZE_IN_BYTES, q->kernel_address);
 847	else
 848		hl_asic_dma_free_coherent(hdev, HL_QUEUE_SIZE_IN_BYTES, q->kernel_address,
 849						q->bus_address);
 850
 851	return rc;
 852}
 853
 854static int int_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
 855{
 856	void *p;
 857
 858	p = hdev->asic_funcs->get_int_queue_base(hdev, q->hw_queue_id,
 859					&q->bus_address, &q->int_queue_len);
 860	if (!p) {
 861		dev_err(hdev->dev,
 862			"Failed to get base address for internal queue %d\n",
 863			q->hw_queue_id);
 864		return -EFAULT;
 865	}
 866
 867	q->kernel_address = p;
 868	q->pi = 0;
 869	atomic_set(&q->ci, 0);
 870
 871	return 0;
 872}
 873
 874static int cpu_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
 875{
 876	return ext_and_cpu_queue_init(hdev, q, true);
 877}
 878
 879static int ext_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
 880{
 881	return ext_and_cpu_queue_init(hdev, q, false);
 882}
 883
 884static int hw_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
 885{
 886	void *p;
 887
 888	p = hl_asic_dma_alloc_coherent(hdev, HL_QUEUE_SIZE_IN_BYTES, &q->bus_address,
 889					GFP_KERNEL | __GFP_ZERO);
 890	if (!p)
 891		return -ENOMEM;
 892
 893	q->kernel_address = p;
 894
 895	/* Make sure read/write pointers are initialized to start of queue */
 896	atomic_set(&q->ci, 0);
 897	q->pi = 0;
 898
 899	return 0;
 900}
 901
 902static void sync_stream_queue_init(struct hl_device *hdev, u32 q_idx)
 903{
 904	struct hl_sync_stream_properties *sync_stream_prop;
 905	struct asic_fixed_properties *prop = &hdev->asic_prop;
 906	struct hl_hw_sob *hw_sob;
 907	int sob, reserved_mon_idx, queue_idx;
 908
 909	sync_stream_prop = &hdev->kernel_queues[q_idx].sync_stream_prop;
 910
 911	/* We use 'collective_mon_idx' as a running index in order to reserve
 912	 * monitors for collective master/slave queues.
 913	 * collective master queue gets 2 reserved monitors
 914	 * collective slave queue gets 1 reserved monitor
 915	 */
 916	if (hdev->kernel_queues[q_idx].collective_mode ==
 917			HL_COLLECTIVE_MASTER) {
 918		reserved_mon_idx = hdev->collective_mon_idx;
 919
 920		/* reserve the first monitor for collective master queue */
 921		sync_stream_prop->collective_mstr_mon_id[0] =
 922			prop->collective_first_mon + reserved_mon_idx;
 923
 924		/* reserve the second monitor for collective master queue */
 925		sync_stream_prop->collective_mstr_mon_id[1] =
 926			prop->collective_first_mon + reserved_mon_idx + 1;
 927
 928		hdev->collective_mon_idx += HL_COLLECTIVE_RSVD_MSTR_MONS;
 929	} else if (hdev->kernel_queues[q_idx].collective_mode ==
 930			HL_COLLECTIVE_SLAVE) {
 931		reserved_mon_idx = hdev->collective_mon_idx++;
 932
 933		/* reserve a monitor for collective slave queue */
 934		sync_stream_prop->collective_slave_mon_id =
 935			prop->collective_first_mon + reserved_mon_idx;
 936	}
 937
 938	if (!hdev->kernel_queues[q_idx].supports_sync_stream)
 939		return;
 940
 941	queue_idx = hdev->sync_stream_queue_idx++;
 942
 943	sync_stream_prop->base_sob_id = prop->sync_stream_first_sob +
 944			(queue_idx * HL_RSVD_SOBS);
 945	sync_stream_prop->base_mon_id = prop->sync_stream_first_mon +
 946			(queue_idx * HL_RSVD_MONS);
 947	sync_stream_prop->next_sob_val = 1;
 948	sync_stream_prop->curr_sob_offset = 0;
 949
 950	for (sob = 0 ; sob < HL_RSVD_SOBS ; sob++) {
 951		hw_sob = &sync_stream_prop->hw_sob[sob];
 952		hw_sob->hdev = hdev;
 953		hw_sob->sob_id = sync_stream_prop->base_sob_id + sob;
 954		hw_sob->sob_addr =
 955			hdev->asic_funcs->get_sob_addr(hdev, hw_sob->sob_id);
 956		hw_sob->q_idx = q_idx;
 957		kref_init(&hw_sob->kref);
 958	}
 959}
 960
 961static void sync_stream_queue_reset(struct hl_device *hdev, u32 q_idx)
 962{
 963	struct hl_sync_stream_properties *prop =
 964			&hdev->kernel_queues[q_idx].sync_stream_prop;
 965
 966	/*
 967	 * In case we got here due to a stuck CS, the refcnt might be bigger
 968	 * than 1 and therefore we reset it.
 969	 */
 970	kref_init(&prop->hw_sob[prop->curr_sob_offset].kref);
 971	prop->curr_sob_offset = 0;
 972	prop->next_sob_val = 1;
 973}
 974
 975/*
 976 * queue_init - main initialization function for H/W queue object
 977 *
 978 * @hdev: pointer to hl_device device structure
 979 * @q: pointer to hl_hw_queue queue structure
 980 * @hw_queue_id: The id of the H/W queue
 981 *
 982 * Allocate dma-able memory for the queue and initialize fields
 983 * Returns 0 on success
 984 */
 985static int queue_init(struct hl_device *hdev, struct hl_hw_queue *q,
 986			u32 hw_queue_id)
 987{
 988	int rc;
 989
 990	q->hw_queue_id = hw_queue_id;
 991
 992	switch (q->queue_type) {
 993	case QUEUE_TYPE_EXT:
 994		rc = ext_queue_init(hdev, q);
 995		break;
 996	case QUEUE_TYPE_INT:
 997		rc = int_queue_init(hdev, q);
 998		break;
 999	case QUEUE_TYPE_CPU:
1000		rc = cpu_queue_init(hdev, q);
1001		break;
1002	case QUEUE_TYPE_HW:
1003		rc = hw_queue_init(hdev, q);
1004		break;
1005	case QUEUE_TYPE_NA:
1006		q->valid = 0;
1007		return 0;
1008	default:
1009		dev_crit(hdev->dev, "wrong queue type %d during init\n",
1010			q->queue_type);
1011		rc = -EINVAL;
1012		break;
1013	}
1014
1015	sync_stream_queue_init(hdev, q->hw_queue_id);
1016
1017	if (rc)
1018		return rc;
1019
1020	q->valid = 1;
1021
1022	return 0;
1023}
1024
1025/*
1026 * hw_queue_fini - destroy queue
1027 *
1028 * @hdev: pointer to hl_device device structure
1029 * @q: pointer to hl_hw_queue queue structure
1030 *
1031 * Free the queue memory
1032 */
1033static void queue_fini(struct hl_device *hdev, struct hl_hw_queue *q)
1034{
1035	if (!q->valid)
1036		return;
1037
1038	/*
1039	 * If we arrived here, there are no jobs waiting on this queue
1040	 * so we can safely remove it.
1041	 * This is because this function can only called when:
1042	 * 1. Either a context is deleted, which only can occur if all its
1043	 *    jobs were finished
1044	 * 2. A context wasn't able to be created due to failure or timeout,
1045	 *    which means there are no jobs on the queue yet
1046	 *
1047	 * The only exception are the queues of the kernel context, but
1048	 * if they are being destroyed, it means that the entire module is
1049	 * being removed. If the module is removed, it means there is no open
1050	 * user context. It also means that if a job was submitted by
1051	 * the kernel driver (e.g. context creation), the job itself was
1052	 * released by the kernel driver when a timeout occurred on its
1053	 * Completion. Thus, we don't need to release it again.
1054	 */
1055
1056	if (q->queue_type == QUEUE_TYPE_INT)
1057		return;
1058
1059	kfree(q->shadow_queue);
1060
1061	if (q->queue_type == QUEUE_TYPE_CPU)
1062		hl_cpu_accessible_dma_pool_free(hdev, HL_QUEUE_SIZE_IN_BYTES, q->kernel_address);
1063	else
1064		hl_asic_dma_free_coherent(hdev, HL_QUEUE_SIZE_IN_BYTES, q->kernel_address,
1065						q->bus_address);
1066}
1067
1068int hl_hw_queues_create(struct hl_device *hdev)
1069{
1070	struct asic_fixed_properties *asic = &hdev->asic_prop;
1071	struct hl_hw_queue *q;
1072	int i, rc, q_ready_cnt;
1073
1074	hdev->kernel_queues = kcalloc(asic->max_queues,
1075				sizeof(*hdev->kernel_queues), GFP_KERNEL);
1076
1077	if (!hdev->kernel_queues) {
1078		dev_err(hdev->dev, "Not enough memory for H/W queues\n");
1079		return -ENOMEM;
1080	}
1081
1082	/* Initialize the H/W queues */
1083	for (i = 0, q_ready_cnt = 0, q = hdev->kernel_queues;
1084			i < asic->max_queues ; i++, q_ready_cnt++, q++) {
1085
1086		q->queue_type = asic->hw_queues_props[i].type;
1087		q->supports_sync_stream =
1088				asic->hw_queues_props[i].supports_sync_stream;
1089		q->collective_mode = asic->hw_queues_props[i].collective_mode;
1090		rc = queue_init(hdev, q, i);
1091		if (rc) {
1092			dev_err(hdev->dev,
1093				"failed to initialize queue %d\n", i);
1094			goto release_queues;
1095		}
1096	}
1097
1098	return 0;
1099
1100release_queues:
1101	for (i = 0, q = hdev->kernel_queues ; i < q_ready_cnt ; i++, q++)
1102		queue_fini(hdev, q);
1103
1104	kfree(hdev->kernel_queues);
1105
1106	return rc;
1107}
1108
1109void hl_hw_queues_destroy(struct hl_device *hdev)
1110{
1111	struct hl_hw_queue *q;
1112	u32 max_queues = hdev->asic_prop.max_queues;
1113	int i;
1114
1115	for (i = 0, q = hdev->kernel_queues ; i < max_queues ; i++, q++)
1116		queue_fini(hdev, q);
1117
1118	kfree(hdev->kernel_queues);
1119}
1120
1121void hl_hw_queue_reset(struct hl_device *hdev, bool hard_reset)
1122{
1123	struct hl_hw_queue *q;
1124	u32 max_queues = hdev->asic_prop.max_queues;
1125	int i;
1126
1127	for (i = 0, q = hdev->kernel_queues ; i < max_queues ; i++, q++) {
1128		if ((!q->valid) ||
1129			((!hard_reset) && (q->queue_type == QUEUE_TYPE_CPU)))
1130			continue;
1131		q->pi = 0;
1132		atomic_set(&q->ci, 0);
1133
1134		if (q->supports_sync_stream)
1135			sync_stream_queue_reset(hdev, q->hw_queue_id);
1136	}
1137}