Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Block multiqueue core code
   4 *
   5 * Copyright (C) 2013-2014 Jens Axboe
   6 * Copyright (C) 2013-2014 Christoph Hellwig
   7 */
   8#include <linux/kernel.h>
   9#include <linux/module.h>
  10#include <linux/backing-dev.h>
  11#include <linux/bio.h>
  12#include <linux/blkdev.h>
  13#include <linux/blk-integrity.h>
  14#include <linux/kmemleak.h>
  15#include <linux/mm.h>
  16#include <linux/init.h>
  17#include <linux/slab.h>
  18#include <linux/workqueue.h>
  19#include <linux/smp.h>
  20#include <linux/interrupt.h>
  21#include <linux/llist.h>
 
  22#include <linux/cpu.h>
  23#include <linux/cache.h>
  24#include <linux/sched/sysctl.h>
  25#include <linux/sched/topology.h>
  26#include <linux/sched/signal.h>
  27#include <linux/delay.h>
  28#include <linux/crash_dump.h>
  29#include <linux/prefetch.h>
  30#include <linux/blk-crypto.h>
  31#include <linux/part_stat.h>
  32
  33#include <trace/events/block.h>
  34
  35#include <linux/t10-pi.h>
  36#include "blk.h"
  37#include "blk-mq.h"
  38#include "blk-mq-debugfs.h"
  39#include "blk-pm.h"
  40#include "blk-stat.h"
  41#include "blk-mq-sched.h"
  42#include "blk-rq-qos.h"
  43
  44static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
  45static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd);
  46
  47static void blk_mq_insert_request(struct request *rq, blk_insert_t flags);
  48static void blk_mq_request_bypass_insert(struct request *rq,
  49		blk_insert_t flags);
  50static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
  51		struct list_head *list);
  52static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
  53			 struct io_comp_batch *iob, unsigned int flags);
  54
  55/*
  56 * Check if any of the ctx, dispatch list or elevator
  57 * have pending work in this hardware queue.
  58 */
  59static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
  60{
  61	return !list_empty_careful(&hctx->dispatch) ||
  62		sbitmap_any_bit_set(&hctx->ctx_map) ||
  63			blk_mq_sched_has_work(hctx);
 
 
 
 
 
 
 
 
 
 
  64}
  65
 
 
 
  66/*
  67 * Mark this ctx as having pending work in this hardware queue
  68 */
  69static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
  70				     struct blk_mq_ctx *ctx)
  71{
  72	const int bit = ctx->index_hw[hctx->type];
  73
  74	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
  75		sbitmap_set_bit(&hctx->ctx_map, bit);
  76}
  77
  78static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
  79				      struct blk_mq_ctx *ctx)
  80{
  81	const int bit = ctx->index_hw[hctx->type];
  82
  83	sbitmap_clear_bit(&hctx->ctx_map, bit);
  84}
  85
  86struct mq_inflight {
  87	struct block_device *part;
  88	unsigned int inflight[2];
  89};
  90
  91static bool blk_mq_check_inflight(struct request *rq, void *priv)
  92{
  93	struct mq_inflight *mi = priv;
  94
  95	if (rq->part && blk_do_io_stat(rq) &&
  96	    (!mi->part->bd_partno || rq->part == mi->part) &&
  97	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
  98		mi->inflight[rq_data_dir(rq)]++;
  99
 100	return true;
 101}
 102
 103unsigned int blk_mq_in_flight(struct request_queue *q,
 104		struct block_device *part)
 105{
 106	struct mq_inflight mi = { .part = part };
 107
 108	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
 109
 110	return mi.inflight[0] + mi.inflight[1];
 111}
 112
 113void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
 114		unsigned int inflight[2])
 115{
 116	struct mq_inflight mi = { .part = part };
 117
 118	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
 119	inflight[0] = mi.inflight[0];
 120	inflight[1] = mi.inflight[1];
 121}
 122
 123void blk_freeze_queue_start(struct request_queue *q)
 124{
 125	mutex_lock(&q->mq_freeze_lock);
 126	if (++q->mq_freeze_depth == 1) {
 127		percpu_ref_kill(&q->q_usage_counter);
 128		mutex_unlock(&q->mq_freeze_lock);
 129		if (queue_is_mq(q))
 130			blk_mq_run_hw_queues(q, false);
 131	} else {
 132		mutex_unlock(&q->mq_freeze_lock);
 133	}
 134}
 135EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
 136
 137void blk_mq_freeze_queue_wait(struct request_queue *q)
 138{
 139	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
 140}
 141EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
 142
 143int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
 144				     unsigned long timeout)
 145{
 146	return wait_event_timeout(q->mq_freeze_wq,
 147					percpu_ref_is_zero(&q->q_usage_counter),
 148					timeout);
 149}
 150EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
 151
 152/*
 153 * Guarantee no request is in use, so we can change any data structure of
 154 * the queue afterward.
 155 */
 156void blk_freeze_queue(struct request_queue *q)
 157{
 158	/*
 159	 * In the !blk_mq case we are only calling this to kill the
 160	 * q_usage_counter, otherwise this increases the freeze depth
 161	 * and waits for it to return to zero.  For this reason there is
 162	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
 163	 * exported to drivers as the only user for unfreeze is blk_mq.
 164	 */
 165	blk_freeze_queue_start(q);
 166	blk_mq_freeze_queue_wait(q);
 167}
 168
 169void blk_mq_freeze_queue(struct request_queue *q)
 170{
 171	/*
 172	 * ...just an alias to keep freeze and unfreeze actions balanced
 173	 * in the blk_mq_* namespace
 174	 */
 175	blk_freeze_queue(q);
 176}
 177EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
 178
 179void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
 180{
 181	mutex_lock(&q->mq_freeze_lock);
 182	if (force_atomic)
 183		q->q_usage_counter.data->force_atomic = true;
 184	q->mq_freeze_depth--;
 185	WARN_ON_ONCE(q->mq_freeze_depth < 0);
 186	if (!q->mq_freeze_depth) {
 187		percpu_ref_resurrect(&q->q_usage_counter);
 188		wake_up_all(&q->mq_freeze_wq);
 189	}
 190	mutex_unlock(&q->mq_freeze_lock);
 191}
 192
 193void blk_mq_unfreeze_queue(struct request_queue *q)
 194{
 195	__blk_mq_unfreeze_queue(q, false);
 196}
 197EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
 198
 199/*
 200 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 201 * mpt3sas driver such that this function can be removed.
 202 */
 203void blk_mq_quiesce_queue_nowait(struct request_queue *q)
 204{
 205	unsigned long flags;
 206
 207	spin_lock_irqsave(&q->queue_lock, flags);
 208	if (!q->quiesce_depth++)
 209		blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
 210	spin_unlock_irqrestore(&q->queue_lock, flags);
 211}
 212EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
 213
 214/**
 215 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
 216 * @set: tag_set to wait on
 217 *
 218 * Note: it is driver's responsibility for making sure that quiesce has
 219 * been started on or more of the request_queues of the tag_set.  This
 220 * function only waits for the quiesce on those request_queues that had
 221 * the quiesce flag set using blk_mq_quiesce_queue_nowait.
 222 */
 223void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
 224{
 225	if (set->flags & BLK_MQ_F_BLOCKING)
 226		synchronize_srcu(set->srcu);
 227	else
 228		synchronize_rcu();
 229}
 230EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
 231
 232/**
 233 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
 234 * @q: request queue.
 235 *
 236 * Note: this function does not prevent that the struct request end_io()
 237 * callback function is invoked. Once this function is returned, we make
 238 * sure no dispatch can happen until the queue is unquiesced via
 239 * blk_mq_unquiesce_queue().
 240 */
 241void blk_mq_quiesce_queue(struct request_queue *q)
 242{
 243	blk_mq_quiesce_queue_nowait(q);
 244	/* nothing to wait for non-mq queues */
 245	if (queue_is_mq(q))
 246		blk_mq_wait_quiesce_done(q->tag_set);
 247}
 248EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
 249
 250/*
 251 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 252 * @q: request queue.
 253 *
 254 * This function recovers queue into the state before quiescing
 255 * which is done by blk_mq_quiesce_queue.
 256 */
 257void blk_mq_unquiesce_queue(struct request_queue *q)
 258{
 259	unsigned long flags;
 260	bool run_queue = false;
 261
 262	spin_lock_irqsave(&q->queue_lock, flags);
 263	if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
 264		;
 265	} else if (!--q->quiesce_depth) {
 266		blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
 267		run_queue = true;
 268	}
 269	spin_unlock_irqrestore(&q->queue_lock, flags);
 270
 271	/* dispatch requests which are inserted during quiescing */
 272	if (run_queue)
 273		blk_mq_run_hw_queues(q, true);
 274}
 275EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
 276
 277void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
 278{
 279	struct request_queue *q;
 280
 281	mutex_lock(&set->tag_list_lock);
 282	list_for_each_entry(q, &set->tag_list, tag_set_list) {
 283		if (!blk_queue_skip_tagset_quiesce(q))
 284			blk_mq_quiesce_queue_nowait(q);
 285	}
 286	blk_mq_wait_quiesce_done(set);
 287	mutex_unlock(&set->tag_list_lock);
 288}
 289EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
 290
 291void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
 292{
 293	struct request_queue *q;
 294
 295	mutex_lock(&set->tag_list_lock);
 296	list_for_each_entry(q, &set->tag_list, tag_set_list) {
 297		if (!blk_queue_skip_tagset_quiesce(q))
 298			blk_mq_unquiesce_queue(q);
 299	}
 300	mutex_unlock(&set->tag_list_lock);
 301}
 302EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
 303
 304void blk_mq_wake_waiters(struct request_queue *q)
 305{
 306	struct blk_mq_hw_ctx *hctx;
 307	unsigned long i;
 308
 309	queue_for_each_hw_ctx(q, hctx, i)
 310		if (blk_mq_hw_queue_mapped(hctx))
 311			blk_mq_tag_wakeup_all(hctx->tags, true);
 312}
 313
 314void blk_rq_init(struct request_queue *q, struct request *rq)
 315{
 316	memset(rq, 0, sizeof(*rq));
 317
 318	INIT_LIST_HEAD(&rq->queuelist);
 319	rq->q = q;
 320	rq->__sector = (sector_t) -1;
 321	INIT_HLIST_NODE(&rq->hash);
 322	RB_CLEAR_NODE(&rq->rb_node);
 323	rq->tag = BLK_MQ_NO_TAG;
 324	rq->internal_tag = BLK_MQ_NO_TAG;
 325	rq->start_time_ns = ktime_get_ns();
 326	rq->part = NULL;
 327	blk_crypto_rq_set_defaults(rq);
 328}
 329EXPORT_SYMBOL(blk_rq_init);
 330
 331/* Set start and alloc time when the allocated request is actually used */
 332static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns)
 333{
 334	if (blk_mq_need_time_stamp(rq))
 335		rq->start_time_ns = ktime_get_ns();
 336	else
 337		rq->start_time_ns = 0;
 338
 339#ifdef CONFIG_BLK_RQ_ALLOC_TIME
 340	if (blk_queue_rq_alloc_time(rq->q))
 341		rq->alloc_time_ns = alloc_time_ns ?: rq->start_time_ns;
 342	else
 343		rq->alloc_time_ns = 0;
 344#endif
 345}
 
 346
 347static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
 348		struct blk_mq_tags *tags, unsigned int tag)
 349{
 350	struct blk_mq_ctx *ctx = data->ctx;
 351	struct blk_mq_hw_ctx *hctx = data->hctx;
 352	struct request_queue *q = data->q;
 353	struct request *rq = tags->static_rqs[tag];
 354
 
 
 355	rq->q = q;
 356	rq->mq_ctx = ctx;
 357	rq->mq_hctx = hctx;
 358	rq->cmd_flags = data->cmd_flags;
 359
 360	if (data->flags & BLK_MQ_REQ_PM)
 361		data->rq_flags |= RQF_PM;
 362	if (blk_queue_io_stat(q))
 363		data->rq_flags |= RQF_IO_STAT;
 364	rq->rq_flags = data->rq_flags;
 365
 366	if (data->rq_flags & RQF_SCHED_TAGS) {
 367		rq->tag = BLK_MQ_NO_TAG;
 368		rq->internal_tag = tag;
 369	} else {
 370		rq->tag = tag;
 371		rq->internal_tag = BLK_MQ_NO_TAG;
 372	}
 373	rq->timeout = 0;
 374
 375	rq->part = NULL;
 
 
 
 
 376	rq->io_start_time_ns = 0;
 377	rq->stats_sectors = 0;
 378	rq->nr_phys_segments = 0;
 379#if defined(CONFIG_BLK_DEV_INTEGRITY)
 380	rq->nr_integrity_segments = 0;
 381#endif
 382	rq->end_io = NULL;
 383	rq->end_io_data = NULL;
 384
 385	blk_crypto_rq_set_defaults(rq);
 386	INIT_LIST_HEAD(&rq->queuelist);
 387	/* tag was already set */
 388	WRITE_ONCE(rq->deadline, 0);
 389	req_ref_set(rq, 1);
 390
 391	if (rq->rq_flags & RQF_USE_SCHED) {
 392		struct elevator_queue *e = data->q->elevator;
 393
 394		INIT_HLIST_NODE(&rq->hash);
 395		RB_CLEAR_NODE(&rq->rb_node);
 396
 397		if (e->type->ops.prepare_request)
 398			e->type->ops.prepare_request(rq);
 399	}
 400
 401	return rq;
 402}
 403
 404static inline struct request *
 405__blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data)
 406{
 407	unsigned int tag, tag_offset;
 408	struct blk_mq_tags *tags;
 409	struct request *rq;
 410	unsigned long tag_mask;
 411	int i, nr = 0;
 412
 413	tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
 414	if (unlikely(!tag_mask))
 415		return NULL;
 416
 417	tags = blk_mq_tags_from_data(data);
 418	for (i = 0; tag_mask; i++) {
 419		if (!(tag_mask & (1UL << i)))
 420			continue;
 421		tag = tag_offset + i;
 422		prefetch(tags->static_rqs[tag]);
 423		tag_mask &= ~(1UL << i);
 424		rq = blk_mq_rq_ctx_init(data, tags, tag);
 425		rq_list_add(data->cached_rq, rq);
 426		nr++;
 427	}
 428	if (!(data->rq_flags & RQF_SCHED_TAGS))
 429		blk_mq_add_active_requests(data->hctx, nr);
 430	/* caller already holds a reference, add for remainder */
 431	percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
 432	data->nr_tags -= nr;
 433
 434	return rq_list_pop(data->cached_rq);
 435}
 436
 437static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
 
 438{
 439	struct request_queue *q = data->q;
 440	u64 alloc_time_ns = 0;
 441	struct request *rq;
 442	unsigned int tag;
 443
 444	/* alloc_time includes depth and tag waits */
 445	if (blk_queue_rq_alloc_time(q))
 446		alloc_time_ns = ktime_get_ns();
 447
 448	if (data->cmd_flags & REQ_NOWAIT)
 449		data->flags |= BLK_MQ_REQ_NOWAIT;
 450
 451	if (q->elevator) {
 452		/*
 453		 * All requests use scheduler tags when an I/O scheduler is
 454		 * enabled for the queue.
 455		 */
 456		data->rq_flags |= RQF_SCHED_TAGS;
 457
 458		/*
 459		 * Flush/passthrough requests are special and go directly to the
 460		 * dispatch list.
 461		 */
 462		if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH &&
 463		    !blk_op_is_passthrough(data->cmd_flags)) {
 464			struct elevator_mq_ops *ops = &q->elevator->type->ops;
 465
 466			WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED);
 467
 468			data->rq_flags |= RQF_USE_SCHED;
 469			if (ops->limit_depth)
 470				ops->limit_depth(data->cmd_flags, data);
 471		}
 472	}
 473
 474retry:
 475	data->ctx = blk_mq_get_ctx(q);
 476	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
 477	if (!(data->rq_flags & RQF_SCHED_TAGS))
 478		blk_mq_tag_busy(data->hctx);
 479
 480	if (data->flags & BLK_MQ_REQ_RESERVED)
 481		data->rq_flags |= RQF_RESV;
 482
 483	/*
 484	 * Try batched alloc if we want more than 1 tag.
 485	 */
 486	if (data->nr_tags > 1) {
 487		rq = __blk_mq_alloc_requests_batch(data);
 488		if (rq) {
 489			blk_mq_rq_time_init(rq, alloc_time_ns);
 490			return rq;
 491		}
 492		data->nr_tags = 1;
 493	}
 494
 495	/*
 496	 * Waiting allocations only fail because of an inactive hctx.  In that
 497	 * case just retry the hctx assignment and tag allocation as CPU hotplug
 498	 * should have migrated us to an online CPU by now.
 499	 */
 500	tag = blk_mq_get_tag(data);
 501	if (tag == BLK_MQ_NO_TAG) {
 502		if (data->flags & BLK_MQ_REQ_NOWAIT)
 503			return NULL;
 504		/*
 505		 * Give up the CPU and sleep for a random short time to
 506		 * ensure that thread using a realtime scheduling class
 507		 * are migrated off the CPU, and thus off the hctx that
 508		 * is going away.
 509		 */
 510		msleep(3);
 511		goto retry;
 512	}
 513
 514	if (!(data->rq_flags & RQF_SCHED_TAGS))
 515		blk_mq_inc_active_requests(data->hctx);
 516	rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag);
 517	blk_mq_rq_time_init(rq, alloc_time_ns);
 518	return rq;
 519}
 520
 521static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
 522					    struct blk_plug *plug,
 523					    blk_opf_t opf,
 524					    blk_mq_req_flags_t flags)
 525{
 526	struct blk_mq_alloc_data data = {
 527		.q		= q,
 528		.flags		= flags,
 529		.cmd_flags	= opf,
 530		.nr_tags	= plug->nr_ios,
 531		.cached_rq	= &plug->cached_rq,
 532	};
 533	struct request *rq;
 534
 535	if (blk_queue_enter(q, flags))
 536		return NULL;
 537
 538	plug->nr_ios = 1;
 539
 540	rq = __blk_mq_alloc_requests(&data);
 541	if (unlikely(!rq))
 542		blk_queue_exit(q);
 543	return rq;
 544}
 545
 546static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
 547						   blk_opf_t opf,
 548						   blk_mq_req_flags_t flags)
 549{
 550	struct blk_plug *plug = current->plug;
 
 551	struct request *rq;
 
 
 552
 553	if (!plug)
 554		return NULL;
 555
 556	if (rq_list_empty(plug->cached_rq)) {
 557		if (plug->nr_ios == 1)
 558			return NULL;
 559		rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
 560		if (!rq)
 561			return NULL;
 562	} else {
 563		rq = rq_list_peek(&plug->cached_rq);
 564		if (!rq || rq->q != q)
 565			return NULL;
 566
 567		if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
 568			return NULL;
 569		if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
 570			return NULL;
 571
 572		plug->cached_rq = rq_list_next(rq);
 573		blk_mq_rq_time_init(rq, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 574	}
 575
 576	rq->cmd_flags = opf;
 577	INIT_LIST_HEAD(&rq->queuelist);
 578	return rq;
 579}
 580
 581struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
 582		blk_mq_req_flags_t flags)
 583{
 584	struct request *rq;
 585
 586	rq = blk_mq_alloc_cached_request(q, opf, flags);
 587	if (!rq) {
 588		struct blk_mq_alloc_data data = {
 589			.q		= q,
 590			.flags		= flags,
 591			.cmd_flags	= opf,
 592			.nr_tags	= 1,
 593		};
 594		int ret;
 595
 596		ret = blk_queue_enter(q, flags);
 597		if (ret)
 598			return ERR_PTR(ret);
 599
 600		rq = __blk_mq_alloc_requests(&data);
 601		if (!rq)
 602			goto out_queue_exit;
 603	}
 604	rq->__data_len = 0;
 605	rq->__sector = (sector_t) -1;
 606	rq->bio = rq->biotail = NULL;
 607	return rq;
 608out_queue_exit:
 609	blk_queue_exit(q);
 610	return ERR_PTR(-EWOULDBLOCK);
 611}
 612EXPORT_SYMBOL(blk_mq_alloc_request);
 613
 614struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
 615	blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
 616{
 617	struct blk_mq_alloc_data data = {
 618		.q		= q,
 619		.flags		= flags,
 620		.cmd_flags	= opf,
 621		.nr_tags	= 1,
 622	};
 623	u64 alloc_time_ns = 0;
 624	struct request *rq;
 625	unsigned int cpu;
 626	unsigned int tag;
 627	int ret;
 628
 629	/* alloc_time includes depth and tag waits */
 630	if (blk_queue_rq_alloc_time(q))
 631		alloc_time_ns = ktime_get_ns();
 632
 633	/*
 634	 * If the tag allocator sleeps we could get an allocation for a
 635	 * different hardware context.  No need to complicate the low level
 636	 * allocator for this for the rare use case of a command tied to
 637	 * a specific queue.
 638	 */
 639	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
 640	    WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
 641		return ERR_PTR(-EINVAL);
 642
 643	if (hctx_idx >= q->nr_hw_queues)
 644		return ERR_PTR(-EIO);
 645
 646	ret = blk_queue_enter(q, flags);
 647	if (ret)
 648		return ERR_PTR(ret);
 649
 650	/*
 651	 * Check if the hardware context is actually mapped to anything.
 652	 * If not tell the caller that it should skip this queue.
 653	 */
 654	ret = -EXDEV;
 655	data.hctx = xa_load(&q->hctx_table, hctx_idx);
 656	if (!blk_mq_hw_queue_mapped(data.hctx))
 657		goto out_queue_exit;
 658	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
 659	if (cpu >= nr_cpu_ids)
 660		goto out_queue_exit;
 661	data.ctx = __blk_mq_get_ctx(q, cpu);
 662
 663	if (q->elevator)
 664		data.rq_flags |= RQF_SCHED_TAGS;
 665	else
 666		blk_mq_tag_busy(data.hctx);
 667
 668	if (flags & BLK_MQ_REQ_RESERVED)
 669		data.rq_flags |= RQF_RESV;
 670
 671	ret = -EWOULDBLOCK;
 672	tag = blk_mq_get_tag(&data);
 673	if (tag == BLK_MQ_NO_TAG)
 674		goto out_queue_exit;
 675	if (!(data.rq_flags & RQF_SCHED_TAGS))
 676		blk_mq_inc_active_requests(data.hctx);
 677	rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag);
 678	blk_mq_rq_time_init(rq, alloc_time_ns);
 679	rq->__data_len = 0;
 680	rq->__sector = (sector_t) -1;
 681	rq->bio = rq->biotail = NULL;
 682	return rq;
 683
 684out_queue_exit:
 
 685	blk_queue_exit(q);
 686	return ERR_PTR(ret);
 687}
 688EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
 689
 690static void blk_mq_finish_request(struct request *rq)
 691{
 692	struct request_queue *q = rq->q;
 693
 694	if (rq->rq_flags & RQF_USE_SCHED) {
 695		q->elevator->type->ops.finish_request(rq);
 696		/*
 697		 * For postflush request that may need to be
 698		 * completed twice, we should clear this flag
 699		 * to avoid double finish_request() on the rq.
 700		 */
 701		rq->rq_flags &= ~RQF_USE_SCHED;
 702	}
 703}
 704
 705static void __blk_mq_free_request(struct request *rq)
 706{
 707	struct request_queue *q = rq->q;
 708	struct blk_mq_ctx *ctx = rq->mq_ctx;
 709	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
 710	const int sched_tag = rq->internal_tag;
 711
 712	blk_crypto_free_request(rq);
 713	blk_pm_mark_last_busy(rq);
 714	rq->mq_hctx = NULL;
 715
 716	if (rq->tag != BLK_MQ_NO_TAG) {
 717		blk_mq_dec_active_requests(hctx);
 718		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
 719	}
 720	if (sched_tag != BLK_MQ_NO_TAG)
 721		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
 722	blk_mq_sched_restart(hctx);
 723	blk_queue_exit(q);
 724}
 
 725
 726void blk_mq_free_request(struct request *rq)
 727{
 
 728	struct request_queue *q = rq->q;
 729
 730	blk_mq_finish_request(rq);
 731
 732	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
 733		laptop_io_completion(q->disk->bdi);
 734
 735	rq_qos_done(q, rq);
 736
 737	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
 738	if (req_ref_put_and_test(rq))
 739		__blk_mq_free_request(rq);
 740}
 741EXPORT_SYMBOL_GPL(blk_mq_free_request);
 742
 743void blk_mq_free_plug_rqs(struct blk_plug *plug)
 744{
 745	struct request *rq;
 746
 747	while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
 748		blk_mq_free_request(rq);
 749}
 750
 751void blk_dump_rq_flags(struct request *rq, char *msg)
 752{
 753	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
 754		rq->q->disk ? rq->q->disk->disk_name : "?",
 755		(__force unsigned long long) rq->cmd_flags);
 756
 757	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
 758	       (unsigned long long)blk_rq_pos(rq),
 759	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
 760	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
 761	       rq->bio, rq->biotail, blk_rq_bytes(rq));
 762}
 763EXPORT_SYMBOL(blk_dump_rq_flags);
 764
 765static void req_bio_endio(struct request *rq, struct bio *bio,
 766			  unsigned int nbytes, blk_status_t error)
 767{
 768	if (unlikely(error)) {
 769		bio->bi_status = error;
 770	} else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
 771		/*
 772		 * Partial zone append completions cannot be supported as the
 773		 * BIO fragments may end up not being written sequentially.
 774		 * For such case, force the completed nbytes to be equal to
 775		 * the BIO size so that bio_advance() sets the BIO remaining
 776		 * size to 0 and we end up calling bio_endio() before returning.
 777		 */
 778		if (bio->bi_iter.bi_size != nbytes) {
 779			bio->bi_status = BLK_STS_IOERR;
 780			nbytes = bio->bi_iter.bi_size;
 781		} else {
 782			bio->bi_iter.bi_sector = rq->__sector;
 783		}
 784	}
 785
 786	bio_advance(bio, nbytes);
 787
 788	if (unlikely(rq->rq_flags & RQF_QUIET))
 789		bio_set_flag(bio, BIO_QUIET);
 790	/* don't actually finish bio if it's part of flush sequence */
 791	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
 792		bio_endio(bio);
 793}
 794
 795static void blk_account_io_completion(struct request *req, unsigned int bytes)
 796{
 797	if (req->part && blk_do_io_stat(req)) {
 798		const int sgrp = op_stat_group(req_op(req));
 799
 800		part_stat_lock();
 801		part_stat_add(req->part, sectors[sgrp], bytes >> 9);
 802		part_stat_unlock();
 803	}
 804}
 805
 806static void blk_print_req_error(struct request *req, blk_status_t status)
 807{
 808	printk_ratelimited(KERN_ERR
 809		"%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
 810		"phys_seg %u prio class %u\n",
 811		blk_status_to_str(status),
 812		req->q->disk ? req->q->disk->disk_name : "?",
 813		blk_rq_pos(req), (__force u32)req_op(req),
 814		blk_op_str(req_op(req)),
 815		(__force u32)(req->cmd_flags & ~REQ_OP_MASK),
 816		req->nr_phys_segments,
 817		IOPRIO_PRIO_CLASS(req->ioprio));
 818}
 819
 820/*
 821 * Fully end IO on a request. Does not support partial completions, or
 822 * errors.
 823 */
 824static void blk_complete_request(struct request *req)
 825{
 826	const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
 827	int total_bytes = blk_rq_bytes(req);
 828	struct bio *bio = req->bio;
 829
 830	trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
 831
 832	if (!bio)
 833		return;
 834
 835#ifdef CONFIG_BLK_DEV_INTEGRITY
 836	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
 837		req->q->integrity.profile->complete_fn(req, total_bytes);
 838#endif
 839
 840	/*
 841	 * Upper layers may call blk_crypto_evict_key() anytime after the last
 842	 * bio_endio().  Therefore, the keyslot must be released before that.
 843	 */
 844	blk_crypto_rq_put_keyslot(req);
 845
 846	blk_account_io_completion(req, total_bytes);
 847
 848	do {
 849		struct bio *next = bio->bi_next;
 850
 851		/* Completion has already been traced */
 852		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
 853
 854		if (req_op(req) == REQ_OP_ZONE_APPEND)
 855			bio->bi_iter.bi_sector = req->__sector;
 856
 857		if (!is_flush)
 858			bio_endio(bio);
 859		bio = next;
 860	} while (bio);
 861
 862	/*
 863	 * Reset counters so that the request stacking driver
 864	 * can find how many bytes remain in the request
 865	 * later.
 866	 */
 867	if (!req->end_io) {
 868		req->bio = NULL;
 869		req->__data_len = 0;
 870	}
 871}
 872
 873/**
 874 * blk_update_request - Complete multiple bytes without completing the request
 875 * @req:      the request being processed
 876 * @error:    block status code
 877 * @nr_bytes: number of bytes to complete for @req
 878 *
 879 * Description:
 880 *     Ends I/O on a number of bytes attached to @req, but doesn't complete
 881 *     the request structure even if @req doesn't have leftover.
 882 *     If @req has leftover, sets it up for the next range of segments.
 883 *
 884 *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
 885 *     %false return from this function.
 886 *
 887 * Note:
 888 *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
 889 *      except in the consistency check at the end of this function.
 890 *
 891 * Return:
 892 *     %false - this request doesn't have any more data
 893 *     %true  - this request has more data
 894 **/
 895bool blk_update_request(struct request *req, blk_status_t error,
 896		unsigned int nr_bytes)
 897{
 898	int total_bytes;
 899
 900	trace_block_rq_complete(req, error, nr_bytes);
 901
 902	if (!req->bio)
 903		return false;
 904
 905#ifdef CONFIG_BLK_DEV_INTEGRITY
 906	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
 907	    error == BLK_STS_OK)
 908		req->q->integrity.profile->complete_fn(req, nr_bytes);
 909#endif
 910
 911	/*
 912	 * Upper layers may call blk_crypto_evict_key() anytime after the last
 913	 * bio_endio().  Therefore, the keyslot must be released before that.
 914	 */
 915	if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
 916		__blk_crypto_rq_put_keyslot(req);
 917
 918	if (unlikely(error && !blk_rq_is_passthrough(req) &&
 919		     !(req->rq_flags & RQF_QUIET)) &&
 920		     !test_bit(GD_DEAD, &req->q->disk->state)) {
 921		blk_print_req_error(req, error);
 922		trace_block_rq_error(req, error, nr_bytes);
 923	}
 924
 925	blk_account_io_completion(req, nr_bytes);
 926
 927	total_bytes = 0;
 928	while (req->bio) {
 929		struct bio *bio = req->bio;
 930		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
 931
 932		if (bio_bytes == bio->bi_iter.bi_size)
 933			req->bio = bio->bi_next;
 934
 935		/* Completion has already been traced */
 936		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
 937		req_bio_endio(req, bio, bio_bytes, error);
 938
 939		total_bytes += bio_bytes;
 940		nr_bytes -= bio_bytes;
 941
 942		if (!nr_bytes)
 943			break;
 944	}
 945
 946	/*
 947	 * completely done
 948	 */
 949	if (!req->bio) {
 950		/*
 951		 * Reset counters so that the request stacking driver
 952		 * can find how many bytes remain in the request
 953		 * later.
 954		 */
 955		req->__data_len = 0;
 956		return false;
 957	}
 958
 959	req->__data_len -= total_bytes;
 960
 961	/* update sector only for requests with clear definition of sector */
 962	if (!blk_rq_is_passthrough(req))
 963		req->__sector += total_bytes >> 9;
 964
 965	/* mixed attributes always follow the first bio */
 966	if (req->rq_flags & RQF_MIXED_MERGE) {
 967		req->cmd_flags &= ~REQ_FAILFAST_MASK;
 968		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
 969	}
 970
 971	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
 972		/*
 973		 * If total number of sectors is less than the first segment
 974		 * size, something has gone terribly wrong.
 975		 */
 976		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
 977			blk_dump_rq_flags(req, "request botched");
 978			req->__data_len = blk_rq_cur_bytes(req);
 979		}
 980
 981		/* recalculate the number of segments */
 982		req->nr_phys_segments = blk_recalc_rq_segments(req);
 983	}
 984
 985	return true;
 986}
 987EXPORT_SYMBOL_GPL(blk_update_request);
 988
 989static inline void blk_account_io_done(struct request *req, u64 now)
 990{
 991	trace_block_io_done(req);
 992
 993	/*
 994	 * Account IO completion.  flush_rq isn't accounted as a
 995	 * normal IO on queueing nor completion.  Accounting the
 996	 * containing request is enough.
 997	 */
 998	if (blk_do_io_stat(req) && req->part &&
 999	    !(req->rq_flags & RQF_FLUSH_SEQ)) {
1000		const int sgrp = op_stat_group(req_op(req));
1001
1002		part_stat_lock();
1003		update_io_ticks(req->part, jiffies, true);
1004		part_stat_inc(req->part, ios[sgrp]);
1005		part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
1006		part_stat_unlock();
1007	}
1008}
1009
1010static inline void blk_account_io_start(struct request *req)
1011{
1012	trace_block_io_start(req);
1013
1014	if (blk_do_io_stat(req)) {
1015		/*
1016		 * All non-passthrough requests are created from a bio with one
1017		 * exception: when a flush command that is part of a flush sequence
1018		 * generated by the state machine in blk-flush.c is cloned onto the
1019		 * lower device by dm-multipath we can get here without a bio.
1020		 */
1021		if (req->bio)
1022			req->part = req->bio->bi_bdev;
1023		else
1024			req->part = req->q->disk->part0;
1025
1026		part_stat_lock();
1027		update_io_ticks(req->part, jiffies, false);
1028		part_stat_unlock();
1029	}
1030}
1031
1032static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1033{
1034	if (rq->rq_flags & RQF_STATS)
1035		blk_stat_add(rq, now);
1036
1037	blk_mq_sched_completed_request(rq, now);
1038	blk_account_io_done(rq, now);
1039}
1040
1041inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1042{
1043	if (blk_mq_need_time_stamp(rq))
1044		__blk_mq_end_request_acct(rq, ktime_get_ns());
1045
1046	blk_mq_finish_request(rq);
1047
1048	if (rq->end_io) {
1049		rq_qos_done(rq->q, rq);
1050		if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1051			blk_mq_free_request(rq);
1052	} else {
 
 
1053		blk_mq_free_request(rq);
1054	}
1055}
1056EXPORT_SYMBOL(__blk_mq_end_request);
1057
1058void blk_mq_end_request(struct request *rq, blk_status_t error)
1059{
1060	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1061		BUG();
1062	__blk_mq_end_request(rq, error);
1063}
1064EXPORT_SYMBOL(blk_mq_end_request);
1065
1066#define TAG_COMP_BATCH		32
1067
1068static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1069					  int *tag_array, int nr_tags)
1070{
1071	struct request_queue *q = hctx->queue;
1072
1073	blk_mq_sub_active_requests(hctx, nr_tags);
1074
1075	blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1076	percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1077}
1078
1079void blk_mq_end_request_batch(struct io_comp_batch *iob)
1080{
1081	int tags[TAG_COMP_BATCH], nr_tags = 0;
1082	struct blk_mq_hw_ctx *cur_hctx = NULL;
1083	struct request *rq;
1084	u64 now = 0;
1085
1086	if (iob->need_ts)
1087		now = ktime_get_ns();
1088
1089	while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1090		prefetch(rq->bio);
1091		prefetch(rq->rq_next);
1092
1093		blk_complete_request(rq);
1094		if (iob->need_ts)
1095			__blk_mq_end_request_acct(rq, now);
1096
1097		blk_mq_finish_request(rq);
1098
1099		rq_qos_done(rq->q, rq);
1100
1101		/*
1102		 * If end_io handler returns NONE, then it still has
1103		 * ownership of the request.
1104		 */
1105		if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1106			continue;
1107
1108		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1109		if (!req_ref_put_and_test(rq))
1110			continue;
1111
1112		blk_crypto_free_request(rq);
1113		blk_pm_mark_last_busy(rq);
1114
1115		if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1116			if (cur_hctx)
1117				blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1118			nr_tags = 0;
1119			cur_hctx = rq->mq_hctx;
1120		}
1121		tags[nr_tags++] = rq->tag;
1122	}
1123
1124	if (nr_tags)
1125		blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1126}
1127EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1128
1129static void blk_complete_reqs(struct llist_head *list)
1130{
1131	struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1132	struct request *rq, *next;
1133
1134	llist_for_each_entry_safe(rq, next, entry, ipi_list)
1135		rq->q->mq_ops->complete(rq);
1136}
1137
1138static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1139{
1140	blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1141}
1142
1143static int blk_softirq_cpu_dead(unsigned int cpu)
1144{
1145	blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1146	return 0;
1147}
1148
1149static void __blk_mq_complete_request_remote(void *data)
1150{
1151	__raise_softirq_irqoff(BLOCK_SOFTIRQ);
1152}
1153
1154static inline bool blk_mq_complete_need_ipi(struct request *rq)
1155{
1156	int cpu = raw_smp_processor_id();
1157
1158	if (!IS_ENABLED(CONFIG_SMP) ||
1159	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1160		return false;
1161	/*
1162	 * With force threaded interrupts enabled, raising softirq from an SMP
1163	 * function call will always result in waking the ksoftirqd thread.
1164	 * This is probably worse than completing the request on a different
1165	 * cache domain.
1166	 */
1167	if (force_irqthreads())
1168		return false;
1169
1170	/* same CPU or cache domain?  Complete locally */
1171	if (cpu == rq->mq_ctx->cpu ||
1172	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1173	     cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1174		return false;
1175
1176	/* don't try to IPI to an offline CPU */
1177	return cpu_online(rq->mq_ctx->cpu);
1178}
1179
1180static void blk_mq_complete_send_ipi(struct request *rq)
1181{
1182	unsigned int cpu;
 
 
1183
1184	cpu = rq->mq_ctx->cpu;
1185	if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu)))
1186		smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu));
1187}
1188
1189static void blk_mq_raise_softirq(struct request *rq)
1190{
1191	struct llist_head *list;
1192
1193	preempt_disable();
1194	list = this_cpu_ptr(&blk_cpu_done);
1195	if (llist_add(&rq->ipi_list, list))
1196		raise_softirq(BLOCK_SOFTIRQ);
1197	preempt_enable();
 
 
 
 
1198}
1199
1200bool blk_mq_complete_request_remote(struct request *rq)
1201{
1202	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1203
1204	/*
1205	 * For request which hctx has only one ctx mapping,
1206	 * or a polled request, always complete locally,
1207	 * it's pointless to redirect the completion.
1208	 */
1209	if ((rq->mq_hctx->nr_ctx == 1 &&
1210	     rq->mq_ctx->cpu == raw_smp_processor_id()) ||
1211	     rq->cmd_flags & REQ_POLLED)
1212		return false;
1213
1214	if (blk_mq_complete_need_ipi(rq)) {
1215		blk_mq_complete_send_ipi(rq);
1216		return true;
1217	}
1218
1219	if (rq->q->nr_hw_queues == 1) {
1220		blk_mq_raise_softirq(rq);
1221		return true;
1222	}
1223	return false;
1224}
1225EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1226
1227/**
1228 * blk_mq_complete_request - end I/O on a request
1229 * @rq:		the request being processed
1230 *
1231 * Description:
1232 *	Complete a request by scheduling the ->complete_rq operation.
 
1233 **/
1234void blk_mq_complete_request(struct request *rq)
1235{
1236	if (!blk_mq_complete_request_remote(rq))
1237		rq->q->mq_ops->complete(rq);
1238}
1239EXPORT_SYMBOL(blk_mq_complete_request);
1240
1241/**
1242 * blk_mq_start_request - Start processing a request
1243 * @rq: Pointer to request to be started
1244 *
1245 * Function used by device drivers to notify the block layer that a request
1246 * is going to be processed now, so blk layer can do proper initializations
1247 * such as starting the timeout timer.
1248 */
1249void blk_mq_start_request(struct request *rq)
1250{
1251	struct request_queue *q = rq->q;
1252
1253	trace_block_rq_issue(rq);
1254
1255	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags) &&
1256	    !blk_rq_is_passthrough(rq)) {
1257		rq->io_start_time_ns = ktime_get_ns();
1258		rq->stats_sectors = blk_rq_sectors(rq);
1259		rq->rq_flags |= RQF_STATS;
1260		rq_qos_issue(q, rq);
1261	}
1262
1263	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1264
1265	blk_add_timer(rq);
1266	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1267	rq->mq_hctx->tags->rqs[rq->tag] = rq;
1268
1269#ifdef CONFIG_BLK_DEV_INTEGRITY
1270	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1271		q->integrity.profile->prepare_fn(rq);
1272#endif
1273	if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1274	        WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num);
1275}
1276EXPORT_SYMBOL(blk_mq_start_request);
1277
1278/*
1279 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1280 * queues. This is important for md arrays to benefit from merging
1281 * requests.
1282 */
1283static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1284{
1285	if (plug->multiple_queues)
1286		return BLK_MAX_REQUEST_COUNT * 2;
1287	return BLK_MAX_REQUEST_COUNT;
1288}
 
1289
1290static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1291{
1292	struct request *last = rq_list_peek(&plug->mq_list);
1293
1294	if (!plug->rq_count) {
1295		trace_block_plug(rq->q);
1296	} else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1297		   (!blk_queue_nomerges(rq->q) &&
1298		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1299		blk_mq_flush_plug_list(plug, false);
1300		last = NULL;
1301		trace_block_plug(rq->q);
1302	}
1303
1304	if (!plug->multiple_queues && last && last->q != rq->q)
1305		plug->multiple_queues = true;
1306	/*
1307	 * Any request allocated from sched tags can't be issued to
1308	 * ->queue_rqs() directly
1309	 */
1310	if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS))
1311		plug->has_elevator = true;
1312	rq->rq_next = NULL;
1313	rq_list_add(&plug->mq_list, rq);
1314	plug->rq_count++;
1315}
1316
1317/**
1318 * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1319 * @rq:		request to insert
1320 * @at_head:    insert request at head or tail of queue
1321 *
1322 * Description:
1323 *    Insert a fully prepared request at the back of the I/O scheduler queue
1324 *    for execution.  Don't wait for completion.
1325 *
1326 * Note:
1327 *    This function will invoke @done directly if the queue is dead.
1328 */
1329void blk_execute_rq_nowait(struct request *rq, bool at_head)
1330{
1331	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1332
1333	WARN_ON(irqs_disabled());
1334	WARN_ON(!blk_rq_is_passthrough(rq));
1335
1336	blk_account_io_start(rq);
1337
1338	/*
1339	 * As plugging can be enabled for passthrough requests on a zoned
1340	 * device, directly accessing the plug instead of using blk_mq_plug()
1341	 * should not have any consequences.
1342	 */
1343	if (current->plug && !at_head) {
1344		blk_add_rq_to_plug(current->plug, rq);
1345		return;
1346	}
1347
1348	blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1349	blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
1350}
1351EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1352
1353struct blk_rq_wait {
1354	struct completion done;
1355	blk_status_t ret;
1356};
1357
1358static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1359{
1360	struct blk_rq_wait *wait = rq->end_io_data;
1361
1362	wait->ret = ret;
1363	complete(&wait->done);
1364	return RQ_END_IO_NONE;
1365}
1366
1367bool blk_rq_is_poll(struct request *rq)
1368{
1369	if (!rq->mq_hctx)
1370		return false;
1371	if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1372		return false;
1373	return true;
1374}
1375EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1376
1377static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1378{
1379	do {
1380		blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0);
1381		cond_resched();
1382	} while (!completion_done(wait));
1383}
1384
1385/**
1386 * blk_execute_rq - insert a request into queue for execution
1387 * @rq:		request to insert
1388 * @at_head:    insert request at head or tail of queue
1389 *
1390 * Description:
1391 *    Insert a fully prepared request at the back of the I/O scheduler queue
1392 *    for execution and wait for completion.
1393 * Return: The blk_status_t result provided to blk_mq_end_request().
1394 */
1395blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1396{
1397	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1398	struct blk_rq_wait wait = {
1399		.done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1400	};
1401
1402	WARN_ON(irqs_disabled());
1403	WARN_ON(!blk_rq_is_passthrough(rq));
1404
1405	rq->end_io_data = &wait;
1406	rq->end_io = blk_end_sync_rq;
1407
1408	blk_account_io_start(rq);
1409	blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1410	blk_mq_run_hw_queue(hctx, false);
1411
1412	if (blk_rq_is_poll(rq)) {
1413		blk_rq_poll_completion(rq, &wait.done);
1414	} else {
1415		/*
1416		 * Prevent hang_check timer from firing at us during very long
1417		 * I/O
 
1418		 */
1419		unsigned long hang_check = sysctl_hung_task_timeout_secs;
1420
1421		if (hang_check)
1422			while (!wait_for_completion_io_timeout(&wait.done,
1423					hang_check * (HZ/2)))
1424				;
1425		else
1426			wait_for_completion_io(&wait.done);
1427	}
1428
1429	return wait.ret;
1430}
1431EXPORT_SYMBOL(blk_execute_rq);
1432
1433static void __blk_mq_requeue_request(struct request *rq)
1434{
1435	struct request_queue *q = rq->q;
1436
1437	blk_mq_put_driver_tag(rq);
1438
1439	trace_block_rq_requeue(rq);
1440	rq_qos_requeue(q, rq);
1441
1442	if (blk_mq_request_started(rq)) {
1443		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1444		rq->rq_flags &= ~RQF_TIMED_OUT;
1445	}
1446}
1447
1448void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1449{
1450	struct request_queue *q = rq->q;
1451	unsigned long flags;
1452
1453	__blk_mq_requeue_request(rq);
1454
1455	/* this request will be re-inserted to io scheduler queue */
1456	blk_mq_sched_requeue_request(rq);
1457
1458	spin_lock_irqsave(&q->requeue_lock, flags);
1459	list_add_tail(&rq->queuelist, &q->requeue_list);
1460	spin_unlock_irqrestore(&q->requeue_lock, flags);
1461
1462	if (kick_requeue_list)
1463		blk_mq_kick_requeue_list(q);
1464}
1465EXPORT_SYMBOL(blk_mq_requeue_request);
1466
1467static void blk_mq_requeue_work(struct work_struct *work)
1468{
1469	struct request_queue *q =
1470		container_of(work, struct request_queue, requeue_work.work);
1471	LIST_HEAD(rq_list);
1472	LIST_HEAD(flush_list);
1473	struct request *rq;
1474
1475	spin_lock_irq(&q->requeue_lock);
1476	list_splice_init(&q->requeue_list, &rq_list);
1477	list_splice_init(&q->flush_list, &flush_list);
1478	spin_unlock_irq(&q->requeue_lock);
1479
1480	while (!list_empty(&rq_list)) {
1481		rq = list_entry(rq_list.next, struct request, queuelist);
1482		/*
1483		 * If RQF_DONTPREP ist set, the request has been started by the
1484		 * driver already and might have driver-specific data allocated
1485		 * already.  Insert it into the hctx dispatch list to avoid
1486		 * block layer merges for the request.
1487		 */
1488		if (rq->rq_flags & RQF_DONTPREP) {
1489			list_del_init(&rq->queuelist);
1490			blk_mq_request_bypass_insert(rq, 0);
1491		} else {
1492			list_del_init(&rq->queuelist);
1493			blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD);
1494		}
1495	}
1496
1497	while (!list_empty(&flush_list)) {
1498		rq = list_entry(flush_list.next, struct request, queuelist);
1499		list_del_init(&rq->queuelist);
1500		blk_mq_insert_request(rq, 0);
1501	}
1502
1503	blk_mq_run_hw_queues(q, false);
 
 
 
 
1504}
1505
1506void blk_mq_kick_requeue_list(struct request_queue *q)
1507{
1508	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1509}
1510EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1511
1512void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1513				    unsigned long msecs)
1514{
1515	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1516				    msecs_to_jiffies(msecs));
1517}
1518EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1519
1520static bool blk_is_flush_data_rq(struct request *rq)
1521{
1522	return (rq->rq_flags & RQF_FLUSH_SEQ) && !is_flush_rq(rq);
1523}
 
1524
1525static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1526{
1527	/*
1528	 * If we find a request that isn't idle we know the queue is busy
1529	 * as it's checked in the iter.
1530	 * Return false to stop the iteration.
1531	 *
1532	 * In case of queue quiesce, if one flush data request is completed,
1533	 * don't count it as inflight given the flush sequence is suspended,
1534	 * and the original flush data request is invisible to driver, just
1535	 * like other pending requests because of quiesce
1536	 */
1537	if (blk_mq_request_started(rq) && !(blk_queue_quiesced(rq->q) &&
1538				blk_is_flush_data_rq(rq) &&
1539				blk_mq_request_completed(rq))) {
1540		bool *busy = priv;
1541
1542		*busy = true;
1543		return false;
1544	}
1545
1546	return true;
1547}
 
1548
1549bool blk_mq_queue_inflight(struct request_queue *q)
1550{
1551	bool busy = false;
1552
1553	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1554	return busy;
 
 
 
1555}
1556EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1557
1558static void blk_mq_rq_timed_out(struct request *req)
1559{
1560	req->rq_flags |= RQF_TIMED_OUT;
1561	if (req->q->mq_ops->timeout) {
1562		enum blk_eh_timer_return ret;
1563
1564		ret = req->q->mq_ops->timeout(req);
1565		if (ret == BLK_EH_DONE)
1566			return;
1567		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1568	}
1569
1570	blk_add_timer(req);
1571}
 
1572
1573struct blk_expired_data {
1574	bool has_timedout_rq;
1575	unsigned long next;
1576	unsigned long timeout_start;
1577};
1578
1579static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1580{
1581	unsigned long deadline;
1582
1583	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1584		return false;
1585	if (rq->rq_flags & RQF_TIMED_OUT)
1586		return false;
1587
1588	deadline = READ_ONCE(rq->deadline);
1589	if (time_after_eq(expired->timeout_start, deadline))
1590		return true;
 
 
 
 
 
 
 
 
1591
1592	if (expired->next == 0)
1593		expired->next = deadline;
1594	else if (time_after(expired->next, deadline))
1595		expired->next = deadline;
1596	return false;
1597}
1598
1599void blk_mq_put_rq_ref(struct request *rq)
1600{
1601	if (is_flush_rq(rq)) {
1602		if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1603			blk_mq_free_request(rq);
1604	} else if (req_ref_put_and_test(rq)) {
1605		__blk_mq_free_request(rq);
 
 
 
 
 
 
1606	}
1607}
1608
1609static bool blk_mq_check_expired(struct request *rq, void *priv)
 
1610{
1611	struct blk_expired_data *expired = priv;
1612
1613	/*
1614	 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1615	 * be reallocated underneath the timeout handler's processing, then
1616	 * the expire check is reliable. If the request is not expired, then
1617	 * it was completed and reallocated as a new request after returning
1618	 * from blk_mq_check_expired().
1619	 */
1620	if (blk_mq_req_expired(rq, expired)) {
1621		expired->has_timedout_rq = true;
1622		return false;
1623	}
1624	return true;
1625}
1626
1627static bool blk_mq_handle_expired(struct request *rq, void *priv)
1628{
1629	struct blk_expired_data *expired = priv;
1630
1631	if (blk_mq_req_expired(rq, expired))
1632		blk_mq_rq_timed_out(rq);
1633	return true;
 
 
 
 
1634}
1635
1636static void blk_mq_timeout_work(struct work_struct *work)
1637{
1638	struct request_queue *q =
1639		container_of(work, struct request_queue, timeout_work);
1640	struct blk_expired_data expired = {
1641		.timeout_start = jiffies,
 
1642	};
1643	struct blk_mq_hw_ctx *hctx;
1644	unsigned long i;
1645
1646	/* A deadlock might occur if a request is stuck requiring a
1647	 * timeout at the same time a queue freeze is waiting
1648	 * completion, since the timeout code would not be able to
1649	 * acquire the queue reference here.
1650	 *
1651	 * That's why we don't use blk_queue_enter here; instead, we use
1652	 * percpu_ref_tryget directly, because we need to be able to
1653	 * obtain a reference even in the short window between the queue
1654	 * starting to freeze, by dropping the first reference in
1655	 * blk_freeze_queue_start, and the moment the last request is
1656	 * consumed, marked by the instant q_usage_counter reaches
1657	 * zero.
1658	 */
1659	if (!percpu_ref_tryget(&q->q_usage_counter))
1660		return;
1661
1662	/* check if there is any timed-out request */
1663	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1664	if (expired.has_timedout_rq) {
1665		/*
1666		 * Before walking tags, we must ensure any submit started
1667		 * before the current time has finished. Since the submit
1668		 * uses srcu or rcu, wait for a synchronization point to
1669		 * ensure all running submits have finished
1670		 */
1671		blk_mq_wait_quiesce_done(q->tag_set);
1672
1673		expired.next = 0;
1674		blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1675	}
1676
1677	if (expired.next != 0) {
1678		mod_timer(&q->timeout, expired.next);
 
1679	} else {
1680		/*
1681		 * Request timeouts are handled as a forward rolling timer. If
1682		 * we end up here it means that no requests are pending and
1683		 * also that no request has been pending for a while. Mark
1684		 * each hctx as idle.
1685		 */
1686		queue_for_each_hw_ctx(q, hctx, i) {
1687			/* the hctx may be unmapped, so check it here */
1688			if (blk_mq_hw_queue_mapped(hctx))
1689				blk_mq_tag_idle(hctx);
1690		}
1691	}
1692	blk_queue_exit(q);
1693}
1694
1695struct flush_busy_ctx_data {
1696	struct blk_mq_hw_ctx *hctx;
1697	struct list_head *list;
1698};
1699
1700static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1701{
1702	struct flush_busy_ctx_data *flush_data = data;
1703	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1704	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1705	enum hctx_type type = hctx->type;
1706
1707	spin_lock(&ctx->lock);
1708	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1709	sbitmap_clear_bit(sb, bitnr);
1710	spin_unlock(&ctx->lock);
1711	return true;
1712}
1713
1714/*
1715 * Process software queues that have been marked busy, splicing them
1716 * to the for-dispatch
 
1717 */
1718void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
 
1719{
1720	struct flush_busy_ctx_data data = {
1721		.hctx = hctx,
1722		.list = list,
1723	};
1724
1725	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1726}
1727EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1728
1729struct dispatch_rq_data {
1730	struct blk_mq_hw_ctx *hctx;
1731	struct request *rq;
1732};
1733
1734static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1735		void *data)
1736{
1737	struct dispatch_rq_data *dispatch_data = data;
1738	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1739	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1740	enum hctx_type type = hctx->type;
1741
1742	spin_lock(&ctx->lock);
1743	if (!list_empty(&ctx->rq_lists[type])) {
1744		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1745		list_del_init(&dispatch_data->rq->queuelist);
1746		if (list_empty(&ctx->rq_lists[type]))
1747			sbitmap_clear_bit(sb, bitnr);
1748	}
1749	spin_unlock(&ctx->lock);
1750
1751	return !dispatch_data->rq;
1752}
1753
1754struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1755					struct blk_mq_ctx *start)
1756{
1757	unsigned off = start ? start->index_hw[hctx->type] : 0;
1758	struct dispatch_rq_data data = {
1759		.hctx = hctx,
1760		.rq   = NULL,
1761	};
1762
1763	__sbitmap_for_each_set(&hctx->ctx_map, off,
1764			       dispatch_rq_from_ctx, &data);
1765
1766	return data.rq;
1767}
1768
1769bool __blk_mq_alloc_driver_tag(struct request *rq)
1770{
1771	struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1772	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1773	int tag;
1774
1775	blk_mq_tag_busy(rq->mq_hctx);
1776
1777	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1778		bt = &rq->mq_hctx->tags->breserved_tags;
1779		tag_offset = 0;
1780	} else {
1781		if (!hctx_may_queue(rq->mq_hctx, bt))
1782			return false;
1783	}
1784
1785	tag = __sbitmap_queue_get(bt);
1786	if (tag == BLK_MQ_NO_TAG)
1787		return false;
1788
1789	rq->tag = tag + tag_offset;
1790	blk_mq_inc_active_requests(rq->mq_hctx);
1791	return true;
1792}
1793
1794static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1795				int flags, void *key)
1796{
1797	struct blk_mq_hw_ctx *hctx;
1798
1799	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1800
1801	spin_lock(&hctx->dispatch_wait_lock);
1802	if (!list_empty(&wait->entry)) {
1803		struct sbitmap_queue *sbq;
1804
1805		list_del_init(&wait->entry);
1806		sbq = &hctx->tags->bitmap_tags;
1807		atomic_dec(&sbq->ws_active);
 
 
 
 
 
 
 
 
 
 
 
1808	}
1809	spin_unlock(&hctx->dispatch_wait_lock);
1810
1811	blk_mq_run_hw_queue(hctx, true);
1812	return 1;
1813}
1814
1815/*
1816 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1817 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1818 * restart. For both cases, take care to check the condition again after
1819 * marking us as waiting.
1820 */
1821static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1822				 struct request *rq)
1823{
1824	struct sbitmap_queue *sbq;
1825	struct wait_queue_head *wq;
1826	wait_queue_entry_t *wait;
1827	bool ret;
1828
1829	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1830	    !(blk_mq_is_shared_tags(hctx->flags))) {
1831		blk_mq_sched_mark_restart_hctx(hctx);
1832
1833		/*
1834		 * It's possible that a tag was freed in the window between the
1835		 * allocation failure and adding the hardware queue to the wait
1836		 * queue.
1837		 *
1838		 * Don't clear RESTART here, someone else could have set it.
1839		 * At most this will cost an extra queue run.
1840		 */
1841		return blk_mq_get_driver_tag(rq);
1842	}
1843
1844	wait = &hctx->dispatch_wait;
1845	if (!list_empty_careful(&wait->entry))
1846		return false;
1847
1848	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1849		sbq = &hctx->tags->breserved_tags;
1850	else
1851		sbq = &hctx->tags->bitmap_tags;
1852	wq = &bt_wait_ptr(sbq, hctx)->wait;
1853
1854	spin_lock_irq(&wq->lock);
1855	spin_lock(&hctx->dispatch_wait_lock);
1856	if (!list_empty(&wait->entry)) {
1857		spin_unlock(&hctx->dispatch_wait_lock);
1858		spin_unlock_irq(&wq->lock);
1859		return false;
1860	}
1861
1862	atomic_inc(&sbq->ws_active);
1863	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1864	__add_wait_queue(wq, wait);
 
 
1865
1866	/*
1867	 * Add one explicit barrier since blk_mq_get_driver_tag() may
1868	 * not imply barrier in case of failure.
1869	 *
1870	 * Order adding us to wait queue and allocating driver tag.
1871	 *
1872	 * The pair is the one implied in sbitmap_queue_wake_up() which
1873	 * orders clearing sbitmap tag bits and waitqueue_active() in
1874	 * __sbitmap_queue_wake_up(), since waitqueue_active() is lockless
1875	 *
1876	 * Otherwise, re-order of adding wait queue and getting driver tag
1877	 * may cause __sbitmap_queue_wake_up() to wake up nothing because
1878	 * the waitqueue_active() may not observe us in wait queue.
1879	 */
1880	smp_mb();
1881
1882	/*
1883	 * It's possible that a tag was freed in the window between the
1884	 * allocation failure and adding the hardware queue to the wait
1885	 * queue.
1886	 */
1887	ret = blk_mq_get_driver_tag(rq);
1888	if (!ret) {
1889		spin_unlock(&hctx->dispatch_wait_lock);
1890		spin_unlock_irq(&wq->lock);
1891		return false;
1892	}
1893
1894	/*
1895	 * We got a tag, remove ourselves from the wait queue to ensure
1896	 * someone else gets the wakeup.
1897	 */
1898	list_del_init(&wait->entry);
1899	atomic_dec(&sbq->ws_active);
1900	spin_unlock(&hctx->dispatch_wait_lock);
1901	spin_unlock_irq(&wq->lock);
1902
1903	return true;
1904}
1905
1906#define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1907#define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1908/*
1909 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1910 * - EWMA is one simple way to compute running average value
1911 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1912 * - take 4 as factor for avoiding to get too small(0) result, and this
1913 *   factor doesn't matter because EWMA decreases exponentially
1914 */
1915static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1916{
1917	unsigned int ewma;
 
 
 
 
 
1918
1919	ewma = hctx->dispatch_busy;
1920
1921	if (!ewma && !busy)
1922		return;
1923
1924	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1925	if (busy)
1926		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1927	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1928
1929	hctx->dispatch_busy = ewma;
1930}
1931
1932#define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1933
1934static void blk_mq_handle_dev_resource(struct request *rq,
1935				       struct list_head *list)
1936{
1937	list_add(&rq->queuelist, list);
1938	__blk_mq_requeue_request(rq);
1939}
1940
1941static void blk_mq_handle_zone_resource(struct request *rq,
1942					struct list_head *zone_list)
1943{
1944	/*
1945	 * If we end up here it is because we cannot dispatch a request to a
1946	 * specific zone due to LLD level zone-write locking or other zone
1947	 * related resource not being available. In this case, set the request
1948	 * aside in zone_list for retrying it later.
1949	 */
1950	list_add(&rq->queuelist, zone_list);
1951	__blk_mq_requeue_request(rq);
1952}
1953
1954enum prep_dispatch {
1955	PREP_DISPATCH_OK,
1956	PREP_DISPATCH_NO_TAG,
1957	PREP_DISPATCH_NO_BUDGET,
1958};
1959
1960static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1961						  bool need_budget)
1962{
1963	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1964	int budget_token = -1;
1965
1966	if (need_budget) {
1967		budget_token = blk_mq_get_dispatch_budget(rq->q);
1968		if (budget_token < 0) {
1969			blk_mq_put_driver_tag(rq);
1970			return PREP_DISPATCH_NO_BUDGET;
1971		}
1972		blk_mq_set_rq_budget_token(rq, budget_token);
1973	}
1974
1975	if (!blk_mq_get_driver_tag(rq)) {
1976		/*
1977		 * The initial allocation attempt failed, so we need to
1978		 * rerun the hardware queue when a tag is freed. The
1979		 * waitqueue takes care of that. If the queue is run
1980		 * before we add this entry back on the dispatch list,
1981		 * we'll re-run it below.
1982		 */
1983		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1984			/*
1985			 * All budgets not got from this function will be put
1986			 * together during handling partial dispatch
1987			 */
1988			if (need_budget)
1989				blk_mq_put_dispatch_budget(rq->q, budget_token);
1990			return PREP_DISPATCH_NO_TAG;
1991		}
1992	}
1993
1994	return PREP_DISPATCH_OK;
1995}
1996
1997/* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1998static void blk_mq_release_budgets(struct request_queue *q,
1999		struct list_head *list)
2000{
2001	struct request *rq;
2002
2003	list_for_each_entry(rq, list, queuelist) {
2004		int budget_token = blk_mq_get_rq_budget_token(rq);
2005
2006		if (budget_token >= 0)
2007			blk_mq_put_dispatch_budget(q, budget_token);
2008	}
2009}
2010
2011/*
2012 * blk_mq_commit_rqs will notify driver using bd->last that there is no
2013 * more requests. (See comment in struct blk_mq_ops for commit_rqs for
2014 * details)
2015 * Attention, we should explicitly call this in unusual cases:
2016 *  1) did not queue everything initially scheduled to queue
2017 *  2) the last attempt to queue a request failed
2018 */
2019static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
2020			      bool from_schedule)
2021{
2022	if (hctx->queue->mq_ops->commit_rqs && queued) {
2023		trace_block_unplug(hctx->queue, queued, !from_schedule);
2024		hctx->queue->mq_ops->commit_rqs(hctx);
2025	}
2026}
2027
2028/*
2029 * Returns true if we did some work AND can potentially do more.
2030 */
2031bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
2032			     unsigned int nr_budgets)
2033{
2034	enum prep_dispatch prep;
2035	struct request_queue *q = hctx->queue;
2036	struct request *rq;
2037	int queued;
2038	blk_status_t ret = BLK_STS_OK;
2039	LIST_HEAD(zone_list);
2040	bool needs_resource = false;
2041
2042	if (list_empty(list))
2043		return false;
2044
2045	/*
2046	 * Now process all the entries, sending them to the driver.
2047	 */
2048	queued = 0;
2049	do {
2050		struct blk_mq_queue_data bd;
 
2051
2052		rq = list_first_entry(list, struct request, queuelist);
2053
2054		WARN_ON_ONCE(hctx != rq->mq_hctx);
2055		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2056		if (prep != PREP_DISPATCH_OK)
2057			break;
2058
2059		list_del_init(&rq->queuelist);
2060
2061		bd.rq = rq;
2062		bd.last = list_empty(list);
 
2063
2064		/*
2065		 * once the request is queued to lld, no need to cover the
2066		 * budget any more
2067		 */
2068		if (nr_budgets)
2069			nr_budgets--;
2070		ret = q->mq_ops->queue_rq(hctx, &bd);
2071		switch (ret) {
2072		case BLK_STS_OK:
2073			queued++;
2074			break;
2075		case BLK_STS_RESOURCE:
2076			needs_resource = true;
2077			fallthrough;
2078		case BLK_STS_DEV_RESOURCE:
2079			blk_mq_handle_dev_resource(rq, list);
2080			goto out;
2081		case BLK_STS_ZONE_RESOURCE:
2082			/*
2083			 * Move the request to zone_list and keep going through
2084			 * the dispatch list to find more requests the drive can
2085			 * accept.
2086			 */
2087			blk_mq_handle_zone_resource(rq, &zone_list);
2088			needs_resource = true;
2089			break;
2090		default:
2091			blk_mq_end_request(rq, ret);
 
 
 
 
2092		}
2093	} while (!list_empty(list));
2094out:
2095	if (!list_empty(&zone_list))
2096		list_splice_tail_init(&zone_list, list);
2097
2098	/* If we didn't flush the entire list, we could have told the driver
2099	 * there was more coming, but that turned out to be a lie.
2100	 */
2101	if (!list_empty(list) || ret != BLK_STS_OK)
2102		blk_mq_commit_rqs(hctx, queued, false);
 
 
 
 
 
 
 
 
 
 
2103
2104	/*
2105	 * Any items that need requeuing? Stuff them into hctx->dispatch,
2106	 * that is where we will continue on next queue run.
2107	 */
2108	if (!list_empty(list)) {
2109		bool needs_restart;
2110		/* For non-shared tags, the RESTART check will suffice */
2111		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2112			((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2113			blk_mq_is_shared_tags(hctx->flags));
2114
2115		if (nr_budgets)
2116			blk_mq_release_budgets(q, list);
2117
2118		spin_lock(&hctx->lock);
2119		list_splice_tail_init(list, &hctx->dispatch);
2120		spin_unlock(&hctx->lock);
2121
2122		/*
2123		 * Order adding requests to hctx->dispatch and checking
2124		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
2125		 * in blk_mq_sched_restart(). Avoid restart code path to
2126		 * miss the new added requests to hctx->dispatch, meantime
2127		 * SCHED_RESTART is observed here.
2128		 */
2129		smp_mb();
2130
2131		/*
2132		 * If SCHED_RESTART was set by the caller of this function and
2133		 * it is no longer set that means that it was cleared by another
2134		 * thread and hence that a queue rerun is needed.
2135		 *
2136		 * If 'no_tag' is set, that means that we failed getting
2137		 * a driver tag with an I/O scheduler attached. If our dispatch
2138		 * waitqueue is no longer active, ensure that we run the queue
2139		 * AFTER adding our entries back to the list.
2140		 *
2141		 * If no I/O scheduler has been configured it is possible that
2142		 * the hardware queue got stopped and restarted before requests
2143		 * were pushed back onto the dispatch list. Rerun the queue to
2144		 * avoid starvation. Notes:
2145		 * - blk_mq_run_hw_queue() checks whether or not a queue has
2146		 *   been stopped before rerunning a queue.
2147		 * - Some but not all block drivers stop a queue before
2148		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2149		 *   and dm-rq.
2150		 *
2151		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2152		 * bit is set, run queue after a delay to avoid IO stalls
2153		 * that could otherwise occur if the queue is idle.  We'll do
2154		 * similar if we couldn't get budget or couldn't lock a zone
2155		 * and SCHED_RESTART is set.
2156		 */
2157		needs_restart = blk_mq_sched_needs_restart(hctx);
2158		if (prep == PREP_DISPATCH_NO_BUDGET)
2159			needs_resource = true;
2160		if (!needs_restart ||
2161		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2162			blk_mq_run_hw_queue(hctx, true);
2163		else if (needs_resource)
2164			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2165
2166		blk_mq_update_dispatch_busy(hctx, true);
2167		return false;
2168	}
2169
2170	blk_mq_update_dispatch_busy(hctx, false);
2171	return true;
2172}
2173
2174static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2175{
2176	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2177
2178	if (cpu >= nr_cpu_ids)
2179		cpu = cpumask_first(hctx->cpumask);
2180	return cpu;
2181}
2182
2183/*
2184 * It'd be great if the workqueue API had a way to pass
2185 * in a mask and had some smarts for more clever placement.
2186 * For now we just round-robin here, switching for every
2187 * BLK_MQ_CPU_WORK_BATCH queued items.
2188 */
2189static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2190{
2191	bool tried = false;
2192	int next_cpu = hctx->next_cpu;
2193
2194	if (hctx->queue->nr_hw_queues == 1)
2195		return WORK_CPU_UNBOUND;
2196
2197	if (--hctx->next_cpu_batch <= 0) {
2198select_cpu:
2199		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2200				cpu_online_mask);
2201		if (next_cpu >= nr_cpu_ids)
2202			next_cpu = blk_mq_first_mapped_cpu(hctx);
2203		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2204	}
2205
2206	/*
2207	 * Do unbound schedule if we can't find a online CPU for this hctx,
2208	 * and it should only happen in the path of handling CPU DEAD.
2209	 */
2210	if (!cpu_online(next_cpu)) {
2211		if (!tried) {
2212			tried = true;
2213			goto select_cpu;
2214		}
2215
2216		/*
2217		 * Make sure to re-select CPU next time once after CPUs
2218		 * in hctx->cpumask become online again.
2219		 */
2220		hctx->next_cpu = next_cpu;
2221		hctx->next_cpu_batch = 1;
2222		return WORK_CPU_UNBOUND;
 
2223	}
2224
2225	hctx->next_cpu = next_cpu;
2226	return next_cpu;
2227}
2228
2229/**
2230 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2231 * @hctx: Pointer to the hardware queue to run.
2232 * @msecs: Milliseconds of delay to wait before running the queue.
2233 *
2234 * Run a hardware queue asynchronously with a delay of @msecs.
2235 */
2236void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2237{
2238	if (unlikely(blk_mq_hctx_stopped(hctx)))
2239		return;
2240	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2241				    msecs_to_jiffies(msecs));
2242}
2243EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2244
2245/**
2246 * blk_mq_run_hw_queue - Start to run a hardware queue.
2247 * @hctx: Pointer to the hardware queue to run.
2248 * @async: If we want to run the queue asynchronously.
2249 *
2250 * Check if the request queue is not in a quiesced state and if there are
2251 * pending requests to be sent. If this is true, run the queue to send requests
2252 * to hardware.
2253 */
2254void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2255{
2256	bool need_run;
2257
2258	/*
2259	 * We can't run the queue inline with interrupts disabled.
2260	 */
2261	WARN_ON_ONCE(!async && in_interrupt());
2262
2263	might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING);
2264
2265	/*
2266	 * When queue is quiesced, we may be switching io scheduler, or
2267	 * updating nr_hw_queues, or other things, and we can't run queue
2268	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2269	 *
2270	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2271	 * quiesced.
2272	 */
2273	__blk_mq_run_dispatch_ops(hctx->queue, false,
2274		need_run = !blk_queue_quiesced(hctx->queue) &&
2275		blk_mq_hctx_has_pending(hctx));
2276
2277	if (!need_run)
2278		return;
2279
2280	if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2281		blk_mq_delay_run_hw_queue(hctx, 0);
2282		return;
2283	}
2284
2285	blk_mq_run_dispatch_ops(hctx->queue,
2286				blk_mq_sched_dispatch_requests(hctx));
2287}
2288EXPORT_SYMBOL(blk_mq_run_hw_queue);
2289
2290/*
2291 * Return prefered queue to dispatch from (if any) for non-mq aware IO
2292 * scheduler.
2293 */
2294static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2295{
2296	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2297	/*
2298	 * If the IO scheduler does not respect hardware queues when
2299	 * dispatching, we just don't bother with multiple HW queues and
2300	 * dispatch from hctx for the current CPU since running multiple queues
2301	 * just causes lock contention inside the scheduler and pointless cache
2302	 * bouncing.
2303	 */
2304	struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2305
2306	if (!blk_mq_hctx_stopped(hctx))
2307		return hctx;
2308	return NULL;
2309}
2310
2311/**
2312 * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2313 * @q: Pointer to the request queue to run.
2314 * @async: If we want to run the queue asynchronously.
2315 */
2316void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2317{
2318	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2319	unsigned long i;
2320
2321	sq_hctx = NULL;
2322	if (blk_queue_sq_sched(q))
2323		sq_hctx = blk_mq_get_sq_hctx(q);
2324	queue_for_each_hw_ctx(q, hctx, i) {
2325		if (blk_mq_hctx_stopped(hctx))
 
 
2326			continue;
2327		/*
2328		 * Dispatch from this hctx either if there's no hctx preferred
2329		 * by IO scheduler or if it has requests that bypass the
2330		 * scheduler.
2331		 */
2332		if (!sq_hctx || sq_hctx == hctx ||
2333		    !list_empty_careful(&hctx->dispatch))
2334			blk_mq_run_hw_queue(hctx, async);
2335	}
2336}
2337EXPORT_SYMBOL(blk_mq_run_hw_queues);
2338
2339/**
2340 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2341 * @q: Pointer to the request queue to run.
2342 * @msecs: Milliseconds of delay to wait before running the queues.
2343 */
2344void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2345{
2346	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2347	unsigned long i;
2348
2349	sq_hctx = NULL;
2350	if (blk_queue_sq_sched(q))
2351		sq_hctx = blk_mq_get_sq_hctx(q);
2352	queue_for_each_hw_ctx(q, hctx, i) {
2353		if (blk_mq_hctx_stopped(hctx))
2354			continue;
2355		/*
2356		 * If there is already a run_work pending, leave the
2357		 * pending delay untouched. Otherwise, a hctx can stall
2358		 * if another hctx is re-delaying the other's work
2359		 * before the work executes.
2360		 */
2361		if (delayed_work_pending(&hctx->run_work))
2362			continue;
2363		/*
2364		 * Dispatch from this hctx either if there's no hctx preferred
2365		 * by IO scheduler or if it has requests that bypass the
2366		 * scheduler.
2367		 */
2368		if (!sq_hctx || sq_hctx == hctx ||
2369		    !list_empty_careful(&hctx->dispatch))
2370			blk_mq_delay_run_hw_queue(hctx, msecs);
2371	}
2372}
2373EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2374
2375/*
2376 * This function is often used for pausing .queue_rq() by driver when
2377 * there isn't enough resource or some conditions aren't satisfied, and
2378 * BLK_STS_RESOURCE is usually returned.
2379 *
2380 * We do not guarantee that dispatch can be drained or blocked
2381 * after blk_mq_stop_hw_queue() returns. Please use
2382 * blk_mq_quiesce_queue() for that requirement.
2383 */
2384void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2385{
2386	cancel_delayed_work(&hctx->run_work);
2387
2388	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2389}
2390EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2391
2392/*
2393 * This function is often used for pausing .queue_rq() by driver when
2394 * there isn't enough resource or some conditions aren't satisfied, and
2395 * BLK_STS_RESOURCE is usually returned.
2396 *
2397 * We do not guarantee that dispatch can be drained or blocked
2398 * after blk_mq_stop_hw_queues() returns. Please use
2399 * blk_mq_quiesce_queue() for that requirement.
2400 */
2401void blk_mq_stop_hw_queues(struct request_queue *q)
2402{
2403	struct blk_mq_hw_ctx *hctx;
2404	unsigned long i;
2405
2406	queue_for_each_hw_ctx(q, hctx, i)
2407		blk_mq_stop_hw_queue(hctx);
2408}
2409EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2410
2411void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2412{
2413	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2414
2415	blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
2416}
2417EXPORT_SYMBOL(blk_mq_start_hw_queue);
2418
2419void blk_mq_start_hw_queues(struct request_queue *q)
2420{
2421	struct blk_mq_hw_ctx *hctx;
2422	unsigned long i;
2423
2424	queue_for_each_hw_ctx(q, hctx, i)
2425		blk_mq_start_hw_queue(hctx);
2426}
2427EXPORT_SYMBOL(blk_mq_start_hw_queues);
2428
2429void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2430{
2431	if (!blk_mq_hctx_stopped(hctx))
2432		return;
2433
2434	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2435	blk_mq_run_hw_queue(hctx, async);
 
 
 
 
 
2436}
2437EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2438
2439void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2440{
2441	struct blk_mq_hw_ctx *hctx;
2442	unsigned long i;
2443
2444	queue_for_each_hw_ctx(q, hctx, i)
2445		blk_mq_start_stopped_hw_queue(hctx, async ||
2446					(hctx->flags & BLK_MQ_F_BLOCKING));
2447}
2448EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2449
2450static void blk_mq_run_work_fn(struct work_struct *work)
2451{
2452	struct blk_mq_hw_ctx *hctx =
2453		container_of(work, struct blk_mq_hw_ctx, run_work.work);
2454
2455	blk_mq_run_dispatch_ops(hctx->queue,
2456				blk_mq_sched_dispatch_requests(hctx));
 
 
2457}
2458
2459/**
2460 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2461 * @rq: Pointer to request to be inserted.
2462 * @flags: BLK_MQ_INSERT_*
2463 *
2464 * Should only be used carefully, when the caller knows we want to
2465 * bypass a potential IO scheduler on the target device.
2466 */
2467static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags)
2468{
2469	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
 
2470
2471	spin_lock(&hctx->lock);
2472	if (flags & BLK_MQ_INSERT_AT_HEAD)
2473		list_add(&rq->queuelist, &hctx->dispatch);
2474	else
2475		list_add_tail(&rq->queuelist, &hctx->dispatch);
2476	spin_unlock(&hctx->lock);
2477}
 
2478
2479static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx,
2480		struct blk_mq_ctx *ctx, struct list_head *list,
2481		bool run_queue_async)
 
2482{
2483	struct request *rq;
2484	enum hctx_type type = hctx->type;
2485
2486	/*
2487	 * Try to issue requests directly if the hw queue isn't busy to save an
2488	 * extra enqueue & dequeue to the sw queue.
2489	 */
2490	if (!hctx->dispatch_busy && !run_queue_async) {
2491		blk_mq_run_dispatch_ops(hctx->queue,
2492			blk_mq_try_issue_list_directly(hctx, list));
2493		if (list_empty(list))
2494			goto out;
2495	}
2496
2497	/*
2498	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2499	 * offline now
2500	 */
2501	list_for_each_entry(rq, list, queuelist) {
2502		BUG_ON(rq->mq_ctx != ctx);
2503		trace_block_rq_insert(rq);
2504		if (rq->cmd_flags & REQ_NOWAIT)
2505			run_queue_async = true;
2506	}
2507
2508	spin_lock(&ctx->lock);
2509	list_splice_tail_init(list, &ctx->rq_lists[type]);
2510	blk_mq_hctx_mark_pending(hctx, ctx);
2511	spin_unlock(&ctx->lock);
2512out:
2513	blk_mq_run_hw_queue(hctx, run_queue_async);
2514}
2515
2516static void blk_mq_insert_request(struct request *rq, blk_insert_t flags)
 
2517{
2518	struct request_queue *q = rq->q;
2519	struct blk_mq_ctx *ctx = rq->mq_ctx;
2520	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2521
2522	if (blk_rq_is_passthrough(rq)) {
2523		/*
2524		 * Passthrough request have to be added to hctx->dispatch
2525		 * directly.  The device may be in a situation where it can't
2526		 * handle FS request, and always returns BLK_STS_RESOURCE for
2527		 * them, which gets them added to hctx->dispatch.
2528		 *
2529		 * If a passthrough request is required to unblock the queues,
2530		 * and it is added to the scheduler queue, there is no chance to
2531		 * dispatch it given we prioritize requests in hctx->dispatch.
2532		 */
2533		blk_mq_request_bypass_insert(rq, flags);
2534	} else if (req_op(rq) == REQ_OP_FLUSH) {
2535		/*
2536		 * Firstly normal IO request is inserted to scheduler queue or
2537		 * sw queue, meantime we add flush request to dispatch queue(
2538		 * hctx->dispatch) directly and there is at most one in-flight
2539		 * flush request for each hw queue, so it doesn't matter to add
2540		 * flush request to tail or front of the dispatch queue.
2541		 *
2542		 * Secondly in case of NCQ, flush request belongs to non-NCQ
2543		 * command, and queueing it will fail when there is any
2544		 * in-flight normal IO request(NCQ command). When adding flush
2545		 * rq to the front of hctx->dispatch, it is easier to introduce
2546		 * extra time to flush rq's latency because of S_SCHED_RESTART
2547		 * compared with adding to the tail of dispatch queue, then
2548		 * chance of flush merge is increased, and less flush requests
2549		 * will be issued to controller. It is observed that ~10% time
2550		 * is saved in blktests block/004 on disk attached to AHCI/NCQ
2551		 * drive when adding flush rq to the front of hctx->dispatch.
2552		 *
2553		 * Simply queue flush rq to the front of hctx->dispatch so that
2554		 * intensive flush workloads can benefit in case of NCQ HW.
2555		 */
2556		blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD);
2557	} else if (q->elevator) {
2558		LIST_HEAD(list);
2559
2560		WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG);
2561
2562		list_add(&rq->queuelist, &list);
2563		q->elevator->type->ops.insert_requests(hctx, &list, flags);
2564	} else {
2565		trace_block_rq_insert(rq);
2566
2567		spin_lock(&ctx->lock);
2568		if (flags & BLK_MQ_INSERT_AT_HEAD)
2569			list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]);
2570		else
2571			list_add_tail(&rq->queuelist,
2572				      &ctx->rq_lists[hctx->type]);
2573		blk_mq_hctx_mark_pending(hctx, ctx);
2574		spin_unlock(&ctx->lock);
2575	}
2576}
2577
2578static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2579		unsigned int nr_segs)
2580{
2581	int err;
2582
2583	if (bio->bi_opf & REQ_RAHEAD)
2584		rq->cmd_flags |= REQ_FAILFAST_MASK;
 
 
 
2585
2586	rq->__sector = bio->bi_iter.bi_sector;
2587	blk_rq_bio_prep(rq, bio, nr_segs);
 
2588
2589	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2590	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2591	WARN_ON_ONCE(err);
2592
2593	blk_account_io_start(rq);
2594}
2595
2596static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2597					    struct request *rq, bool last)
2598{
2599	struct request_queue *q = rq->q;
2600	struct blk_mq_queue_data bd = {
2601		.rq = rq,
2602		.last = last,
2603	};
2604	blk_status_t ret;
2605
2606	/*
2607	 * For OK queue, we are done. For error, caller may kill it.
2608	 * Any other error (busy), just add it to our list as we
2609	 * previously would have done.
2610	 */
2611	ret = q->mq_ops->queue_rq(hctx, &bd);
2612	switch (ret) {
2613	case BLK_STS_OK:
2614		blk_mq_update_dispatch_busy(hctx, false);
2615		break;
2616	case BLK_STS_RESOURCE:
2617	case BLK_STS_DEV_RESOURCE:
2618		blk_mq_update_dispatch_busy(hctx, true);
2619		__blk_mq_requeue_request(rq);
2620		break;
2621	default:
2622		blk_mq_update_dispatch_busy(hctx, false);
2623		break;
2624	}
 
 
2625
2626	return ret;
 
2627}
2628
2629static bool blk_mq_get_budget_and_tag(struct request *rq)
2630{
2631	int budget_token;
 
2632
2633	budget_token = blk_mq_get_dispatch_budget(rq->q);
2634	if (budget_token < 0)
2635		return false;
2636	blk_mq_set_rq_budget_token(rq, budget_token);
2637	if (!blk_mq_get_driver_tag(rq)) {
2638		blk_mq_put_dispatch_budget(rq->q, budget_token);
2639		return false;
2640	}
2641	return true;
2642}
2643
2644/**
2645 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2646 * @hctx: Pointer of the associated hardware queue.
2647 * @rq: Pointer to request to be sent.
2648 *
2649 * If the device has enough resources to accept a new request now, send the
2650 * request directly to device driver. Else, insert at hctx->dispatch queue, so
2651 * we can try send it another time in the future. Requests inserted at this
2652 * queue have higher priority.
2653 */
2654static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2655		struct request *rq)
2656{
2657	blk_status_t ret;
 
 
 
 
 
2658
2659	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2660		blk_mq_insert_request(rq, 0);
2661		return;
2662	}
2663
2664	if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) {
2665		blk_mq_insert_request(rq, 0);
2666		blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT);
2667		return;
2668	}
2669
2670	ret = __blk_mq_issue_directly(hctx, rq, true);
2671	switch (ret) {
2672	case BLK_STS_OK:
2673		break;
2674	case BLK_STS_RESOURCE:
2675	case BLK_STS_DEV_RESOURCE:
2676		blk_mq_request_bypass_insert(rq, 0);
2677		blk_mq_run_hw_queue(hctx, false);
2678		break;
2679	default:
2680		blk_mq_end_request(rq, ret);
2681		break;
2682	}
2683}
2684
2685static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2686{
2687	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
 
 
 
 
 
 
 
 
 
 
 
 
2688
2689	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2690		blk_mq_insert_request(rq, 0);
2691		return BLK_STS_OK;
2692	}
2693
2694	if (!blk_mq_get_budget_and_tag(rq))
2695		return BLK_STS_RESOURCE;
2696	return __blk_mq_issue_directly(hctx, rq, last);
 
 
 
 
 
2697}
2698
2699static void blk_mq_plug_issue_direct(struct blk_plug *plug)
2700{
2701	struct blk_mq_hw_ctx *hctx = NULL;
2702	struct request *rq;
2703	int queued = 0;
2704	blk_status_t ret = BLK_STS_OK;
2705
2706	while ((rq = rq_list_pop(&plug->mq_list))) {
2707		bool last = rq_list_empty(plug->mq_list);
2708
2709		if (hctx != rq->mq_hctx) {
2710			if (hctx) {
2711				blk_mq_commit_rqs(hctx, queued, false);
2712				queued = 0;
2713			}
2714			hctx = rq->mq_hctx;
2715		}
2716
2717		ret = blk_mq_request_issue_directly(rq, last);
2718		switch (ret) {
2719		case BLK_STS_OK:
2720			queued++;
2721			break;
2722		case BLK_STS_RESOURCE:
2723		case BLK_STS_DEV_RESOURCE:
2724			blk_mq_request_bypass_insert(rq, 0);
2725			blk_mq_run_hw_queue(hctx, false);
2726			goto out;
2727		default:
2728			blk_mq_end_request(rq, ret);
2729			break;
2730		}
2731	}
2732
2733out:
2734	if (ret != BLK_STS_OK)
2735		blk_mq_commit_rqs(hctx, queued, false);
2736}
2737
2738static void __blk_mq_flush_plug_list(struct request_queue *q,
2739				     struct blk_plug *plug)
2740{
2741	if (blk_queue_quiesced(q))
2742		return;
2743	q->mq_ops->queue_rqs(&plug->mq_list);
2744}
2745
2746static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
 
 
2747{
2748	struct blk_mq_hw_ctx *this_hctx = NULL;
2749	struct blk_mq_ctx *this_ctx = NULL;
2750	struct request *requeue_list = NULL;
2751	struct request **requeue_lastp = &requeue_list;
2752	unsigned int depth = 0;
2753	bool is_passthrough = false;
2754	LIST_HEAD(list);
2755
2756	do {
2757		struct request *rq = rq_list_pop(&plug->mq_list);
2758
2759		if (!this_hctx) {
2760			this_hctx = rq->mq_hctx;
2761			this_ctx = rq->mq_ctx;
2762			is_passthrough = blk_rq_is_passthrough(rq);
2763		} else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx ||
2764			   is_passthrough != blk_rq_is_passthrough(rq)) {
2765			rq_list_add_tail(&requeue_lastp, rq);
2766			continue;
2767		}
2768		list_add(&rq->queuelist, &list);
2769		depth++;
2770	} while (!rq_list_empty(plug->mq_list));
2771
2772	plug->mq_list = requeue_list;
2773	trace_block_unplug(this_hctx->queue, depth, !from_sched);
2774
2775	percpu_ref_get(&this_hctx->queue->q_usage_counter);
2776	/* passthrough requests should never be issued to the I/O scheduler */
2777	if (is_passthrough) {
2778		spin_lock(&this_hctx->lock);
2779		list_splice_tail_init(&list, &this_hctx->dispatch);
2780		spin_unlock(&this_hctx->lock);
2781		blk_mq_run_hw_queue(this_hctx, from_sched);
2782	} else if (this_hctx->queue->elevator) {
2783		this_hctx->queue->elevator->type->ops.insert_requests(this_hctx,
2784				&list, 0);
2785		blk_mq_run_hw_queue(this_hctx, from_sched);
2786	} else {
2787		blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched);
2788	}
2789	percpu_ref_put(&this_hctx->queue->q_usage_counter);
2790}
2791
2792void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
 
 
 
 
 
 
 
2793{
 
 
2794	struct request *rq;
 
 
2795
2796	/*
2797	 * We may have been called recursively midway through handling
2798	 * plug->mq_list via a schedule() in the driver's queue_rq() callback.
2799	 * To avoid mq_list changing under our feet, clear rq_count early and
2800	 * bail out specifically if rq_count is 0 rather than checking
2801	 * whether the mq_list is empty.
2802	 */
2803	if (plug->rq_count == 0)
2804		return;
2805	plug->rq_count = 0;
2806
2807	if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2808		struct request_queue *q;
2809
2810		rq = rq_list_peek(&plug->mq_list);
2811		q = rq->q;
2812
2813		/*
2814		 * Peek first request and see if we have a ->queue_rqs() hook.
2815		 * If we do, we can dispatch the whole plug list in one go. We
2816		 * already know at this point that all requests belong to the
2817		 * same queue, caller must ensure that's the case.
2818		 */
2819		if (q->mq_ops->queue_rqs) {
2820			blk_mq_run_dispatch_ops(q,
2821				__blk_mq_flush_plug_list(q, plug));
2822			if (rq_list_empty(plug->mq_list))
2823				return;
2824		}
2825
2826		blk_mq_run_dispatch_ops(q,
2827				blk_mq_plug_issue_direct(plug));
2828		if (rq_list_empty(plug->mq_list))
2829			return;
2830	}
2831
2832	do {
2833		blk_mq_dispatch_plug_list(plug, from_schedule);
2834	} while (!rq_list_empty(plug->mq_list));
 
2835}
2836
2837static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2838		struct list_head *list)
2839{
2840	int queued = 0;
2841	blk_status_t ret = BLK_STS_OK;
2842
2843	while (!list_empty(list)) {
2844		struct request *rq = list_first_entry(list, struct request,
2845				queuelist);
 
 
 
 
2846
2847		list_del_init(&rq->queuelist);
2848		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2849		switch (ret) {
2850		case BLK_STS_OK:
2851			queued++;
2852			break;
2853		case BLK_STS_RESOURCE:
2854		case BLK_STS_DEV_RESOURCE:
2855			blk_mq_request_bypass_insert(rq, 0);
2856			if (list_empty(list))
2857				blk_mq_run_hw_queue(hctx, false);
2858			goto out;
2859		default:
2860			blk_mq_end_request(rq, ret);
2861			break;
2862		}
2863	}
2864
2865out:
2866	if (ret != BLK_STS_OK)
2867		blk_mq_commit_rqs(hctx, queued, false);
2868}
2869
2870static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2871				     struct bio *bio, unsigned int nr_segs)
2872{
2873	if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2874		if (blk_attempt_plug_merge(q, bio, nr_segs))
2875			return true;
2876		if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2877			return true;
2878	}
2879	return false;
 
2880}
2881
2882static struct request *blk_mq_get_new_requests(struct request_queue *q,
2883					       struct blk_plug *plug,
2884					       struct bio *bio,
2885					       unsigned int nsegs)
2886{
2887	struct blk_mq_alloc_data data = {
2888		.q		= q,
2889		.nr_tags	= 1,
2890		.cmd_flags	= bio->bi_opf,
2891	};
2892	struct request *rq;
 
 
 
 
2893
2894	if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2895		return NULL;
2896
2897	rq_qos_throttle(q, bio);
2898
2899	if (plug) {
2900		data.nr_tags = plug->nr_ios;
2901		plug->nr_ios = 1;
2902		data.cached_rq = &plug->cached_rq;
2903	}
2904
2905	rq = __blk_mq_alloc_requests(&data);
2906	if (rq)
2907		return rq;
2908	rq_qos_cleanup(q, bio);
2909	if (bio->bi_opf & REQ_NOWAIT)
2910		bio_wouldblock_error(bio);
2911	return NULL;
2912}
2913
2914/*
2915 * Check if we can use the passed on request for submitting the passed in bio,
2916 * and remove it from the request list if it can be used.
2917 */
2918static bool blk_mq_use_cached_rq(struct request *rq, struct blk_plug *plug,
2919		struct bio *bio)
2920{
2921	enum hctx_type type = blk_mq_get_hctx_type(bio->bi_opf);
2922	enum hctx_type hctx_type = rq->mq_hctx->type;
2923
2924	WARN_ON_ONCE(rq_list_peek(&plug->cached_rq) != rq);
 
 
2925
2926	if (type != hctx_type &&
2927	    !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT))
2928		return false;
2929	if (op_is_flush(rq->cmd_flags) != op_is_flush(bio->bi_opf))
2930		return false;
2931
 
 
 
 
 
 
 
2932	/*
2933	 * If any qos ->throttle() end up blocking, we will have flushed the
2934	 * plug and hence killed the cached_rq list as well. Pop this entry
2935	 * before we throttle.
2936	 */
2937	plug->cached_rq = rq_list_next(rq);
2938	rq_qos_throttle(rq->q, bio);
2939
2940	blk_mq_rq_time_init(rq, 0);
2941	rq->cmd_flags = bio->bi_opf;
2942	INIT_LIST_HEAD(&rq->queuelist);
2943	return true;
2944}
2945
2946/**
2947 * blk_mq_submit_bio - Create and send a request to block device.
2948 * @bio: Bio pointer.
2949 *
2950 * Builds up a request structure from @q and @bio and send to the device. The
2951 * request may not be queued directly to hardware if:
2952 * * This request can be merged with another one
2953 * * We want to place request at plug queue for possible future merging
2954 * * There is an IO scheduler active at this queue
2955 *
2956 * It will not queue the request if there is an error with the bio, or at the
2957 * request creation.
2958 */
2959void blk_mq_submit_bio(struct bio *bio)
2960{
2961	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2962	struct blk_plug *plug = blk_mq_plug(bio);
2963	const int is_sync = op_is_sync(bio->bi_opf);
2964	struct blk_mq_hw_ctx *hctx;
2965	struct request *rq = NULL;
2966	unsigned int nr_segs = 1;
2967	blk_status_t ret;
2968
2969	bio = blk_queue_bounce(bio, q);
2970
2971	if (plug) {
2972		rq = rq_list_peek(&plug->cached_rq);
2973		if (rq && rq->q != q)
2974			rq = NULL;
2975	}
2976	if (rq) {
2977		if (unlikely(bio_may_exceed_limits(bio, &q->limits))) {
2978			bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2979			if (!bio)
2980				return;
2981		}
2982		if (!bio_integrity_prep(bio))
2983			return;
2984		if (blk_mq_attempt_bio_merge(q, bio, nr_segs))
2985			return;
2986		if (blk_mq_use_cached_rq(rq, plug, bio))
 
 
 
 
2987			goto done;
2988		percpu_ref_get(&q->q_usage_counter);
2989	} else {
2990		if (unlikely(bio_queue_enter(bio)))
2991			return;
2992		if (unlikely(bio_may_exceed_limits(bio, &q->limits))) {
2993			bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2994			if (!bio)
2995				goto fail;
2996		}
2997		if (!bio_integrity_prep(bio))
2998			goto fail;
2999	}
3000
3001	rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
3002	if (unlikely(!rq)) {
3003fail:
3004		blk_queue_exit(q);
3005		return;
 
 
 
 
3006	}
3007
3008done:
3009	trace_block_getrq(bio);
3010
3011	rq_qos_track(q, rq, bio);
3012
3013	blk_mq_bio_to_request(rq, bio, nr_segs);
3014
3015	ret = blk_crypto_rq_get_keyslot(rq);
3016	if (ret != BLK_STS_OK) {
3017		bio->bi_status = ret;
3018		bio_endio(bio);
3019		blk_mq_free_request(rq);
3020		return;
3021	}
3022
3023	if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq))
3024		return;
3025
3026	if (plug) {
3027		blk_add_rq_to_plug(plug, rq);
3028		return;
3029	}
3030
3031	hctx = rq->mq_hctx;
3032	if ((rq->rq_flags & RQF_USE_SCHED) ||
3033	    (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) {
3034		blk_mq_insert_request(rq, 0);
3035		blk_mq_run_hw_queue(hctx, true);
3036	} else {
3037		blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq));
3038	}
3039}
3040
3041#ifdef CONFIG_BLK_MQ_STACKING
3042/**
3043 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
3044 * @rq: the request being queued
3045 */
3046blk_status_t blk_insert_cloned_request(struct request *rq)
3047{
3048	struct request_queue *q = rq->q;
3049	unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
3050	unsigned int max_segments = blk_rq_get_max_segments(rq);
3051	blk_status_t ret;
 
 
 
3052
3053	if (blk_rq_sectors(rq) > max_sectors) {
3054		/*
3055		 * SCSI device does not have a good way to return if
3056		 * Write Same/Zero is actually supported. If a device rejects
3057		 * a non-read/write command (discard, write same,etc.) the
3058		 * low-level device driver will set the relevant queue limit to
3059		 * 0 to prevent blk-lib from issuing more of the offending
3060		 * operations. Commands queued prior to the queue limit being
3061		 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3062		 * errors being propagated to upper layers.
3063		 */
3064		if (max_sectors == 0)
3065			return BLK_STS_NOTSUPP;
3066
3067		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3068			__func__, blk_rq_sectors(rq), max_sectors);
3069		return BLK_STS_IOERR;
3070	}
3071
3072	/*
3073	 * The queue settings related to segment counting may differ from the
3074	 * original queue.
3075	 */
3076	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3077	if (rq->nr_phys_segments > max_segments) {
3078		printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3079			__func__, rq->nr_phys_segments, max_segments);
3080		return BLK_STS_IOERR;
3081	}
3082
3083	if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3084		return BLK_STS_IOERR;
 
3085
3086	ret = blk_crypto_rq_get_keyslot(rq);
3087	if (ret != BLK_STS_OK)
3088		return ret;
3089
3090	blk_account_io_start(rq);
 
 
 
 
3091
3092	/*
3093	 * Since we have a scheduler attached on the top device,
3094	 * bypass a potential scheduler on the bottom device for
3095	 * insert.
3096	 */
3097	blk_mq_run_dispatch_ops(q,
3098			ret = blk_mq_request_issue_directly(rq, true));
3099	if (ret)
3100		blk_account_io_done(rq, ktime_get_ns());
3101	return ret;
3102}
3103EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3104
3105/**
3106 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3107 * @rq: the clone request to be cleaned up
3108 *
3109 * Description:
3110 *     Free all bios in @rq for a cloned request.
3111 */
3112void blk_rq_unprep_clone(struct request *rq)
3113{
3114	struct bio *bio;
3115
3116	while ((bio = rq->bio) != NULL) {
3117		rq->bio = bio->bi_next;
3118
3119		bio_put(bio);
3120	}
3121}
3122EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3123
3124/**
3125 * blk_rq_prep_clone - Helper function to setup clone request
3126 * @rq: the request to be setup
3127 * @rq_src: original request to be cloned
3128 * @bs: bio_set that bios for clone are allocated from
3129 * @gfp_mask: memory allocation mask for bio
3130 * @bio_ctr: setup function to be called for each clone bio.
3131 *           Returns %0 for success, non %0 for failure.
3132 * @data: private data to be passed to @bio_ctr
3133 *
3134 * Description:
3135 *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3136 *     Also, pages which the original bios are pointing to are not copied
3137 *     and the cloned bios just point same pages.
3138 *     So cloned bios must be completed before original bios, which means
3139 *     the caller must complete @rq before @rq_src.
3140 */
3141int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3142		      struct bio_set *bs, gfp_t gfp_mask,
3143		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3144		      void *data)
3145{
3146	struct bio *bio, *bio_src;
3147
3148	if (!bs)
3149		bs = &fs_bio_set;
3150
3151	__rq_for_each_bio(bio_src, rq_src) {
3152		bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3153				      bs);
3154		if (!bio)
3155			goto free_and_out;
3156
3157		if (bio_ctr && bio_ctr(bio, bio_src, data))
3158			goto free_and_out;
3159
3160		if (rq->bio) {
3161			rq->biotail->bi_next = bio;
3162			rq->biotail = bio;
3163		} else {
3164			rq->bio = rq->biotail = bio;
3165		}
3166		bio = NULL;
3167	}
3168
3169	/* Copy attributes of the original request to the clone request. */
3170	rq->__sector = blk_rq_pos(rq_src);
3171	rq->__data_len = blk_rq_bytes(rq_src);
3172	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3173		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3174		rq->special_vec = rq_src->special_vec;
3175	}
3176	rq->nr_phys_segments = rq_src->nr_phys_segments;
3177	rq->ioprio = rq_src->ioprio;
3178
3179	if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3180		goto free_and_out;
3181
3182	return 0;
3183
3184free_and_out:
3185	if (bio)
3186		bio_put(bio);
3187	blk_rq_unprep_clone(rq);
 
 
 
 
 
 
3188
3189	return -ENOMEM;
 
3190}
3191EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3192#endif /* CONFIG_BLK_MQ_STACKING */
3193
3194/*
3195 * Steal bios from a request and add them to a bio list.
3196 * The request must not have been partially completed before.
3197 */
3198void blk_steal_bios(struct bio_list *list, struct request *rq)
3199{
3200	if (rq->bio) {
3201		if (list->tail)
3202			list->tail->bi_next = rq->bio;
3203		else
3204			list->head = rq->bio;
3205		list->tail = rq->biotail;
3206
3207		rq->bio = NULL;
3208		rq->biotail = NULL;
3209	}
3210
3211	rq->__data_len = 0;
3212}
3213EXPORT_SYMBOL_GPL(blk_steal_bios);
3214
3215static size_t order_to_size(unsigned int order)
3216{
3217	return (size_t)PAGE_SIZE << order;
3218}
3219
3220/* called before freeing request pool in @tags */
3221static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3222				    struct blk_mq_tags *tags)
3223{
3224	struct page *page;
3225	unsigned long flags;
3226
3227	/*
3228	 * There is no need to clear mapping if driver tags is not initialized
3229	 * or the mapping belongs to the driver tags.
3230	 */
3231	if (!drv_tags || drv_tags == tags)
3232		return;
3233
3234	list_for_each_entry(page, &tags->page_list, lru) {
3235		unsigned long start = (unsigned long)page_address(page);
3236		unsigned long end = start + order_to_size(page->private);
3237		int i;
3238
3239		for (i = 0; i < drv_tags->nr_tags; i++) {
3240			struct request *rq = drv_tags->rqs[i];
3241			unsigned long rq_addr = (unsigned long)rq;
3242
3243			if (rq_addr >= start && rq_addr < end) {
3244				WARN_ON_ONCE(req_ref_read(rq) != 0);
3245				cmpxchg(&drv_tags->rqs[i], rq, NULL);
3246			}
3247		}
3248	}
3249
3250	/*
3251	 * Wait until all pending iteration is done.
3252	 *
3253	 * Request reference is cleared and it is guaranteed to be observed
3254	 * after the ->lock is released.
3255	 */
3256	spin_lock_irqsave(&drv_tags->lock, flags);
3257	spin_unlock_irqrestore(&drv_tags->lock, flags);
3258}
 
3259
3260void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3261		     unsigned int hctx_idx)
3262{
3263	struct blk_mq_tags *drv_tags;
3264	struct page *page;
3265
3266	if (list_empty(&tags->page_list))
3267		return;
3268
3269	if (blk_mq_is_shared_tags(set->flags))
3270		drv_tags = set->shared_tags;
3271	else
3272		drv_tags = set->tags[hctx_idx];
3273
3274	if (tags->static_rqs && set->ops->exit_request) {
3275		int i;
3276
3277		for (i = 0; i < tags->nr_tags; i++) {
3278			struct request *rq = tags->static_rqs[i];
3279
3280			if (!rq)
3281				continue;
3282			set->ops->exit_request(set, rq, hctx_idx);
3283			tags->static_rqs[i] = NULL;
 
3284		}
3285	}
3286
3287	blk_mq_clear_rq_mapping(drv_tags, tags);
3288
3289	while (!list_empty(&tags->page_list)) {
3290		page = list_first_entry(&tags->page_list, struct page, lru);
3291		list_del_init(&page->lru);
3292		/*
3293		 * Remove kmemleak object previously allocated in
3294		 * blk_mq_alloc_rqs().
3295		 */
3296		kmemleak_free(page_address(page));
3297		__free_pages(page, page->private);
3298	}
3299}
3300
3301void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3302{
3303	kfree(tags->rqs);
3304	tags->rqs = NULL;
3305	kfree(tags->static_rqs);
3306	tags->static_rqs = NULL;
3307
3308	blk_mq_free_tags(tags);
3309}
3310
3311static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3312		unsigned int hctx_idx)
3313{
3314	int i;
3315
3316	for (i = 0; i < set->nr_maps; i++) {
3317		unsigned int start = set->map[i].queue_offset;
3318		unsigned int end = start + set->map[i].nr_queues;
3319
3320		if (hctx_idx >= start && hctx_idx < end)
3321			break;
3322	}
3323
3324	if (i >= set->nr_maps)
3325		i = HCTX_TYPE_DEFAULT;
3326
3327	return i;
3328}
3329
3330static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3331		unsigned int hctx_idx)
3332{
3333	enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3334
3335	return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3336}
3337
3338static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3339					       unsigned int hctx_idx,
3340					       unsigned int nr_tags,
3341					       unsigned int reserved_tags)
3342{
3343	int node = blk_mq_get_hctx_node(set, hctx_idx);
3344	struct blk_mq_tags *tags;
 
 
3345
3346	if (node == NUMA_NO_NODE)
3347		node = set->numa_node;
3348
3349	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3350				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3351	if (!tags)
3352		return NULL;
3353
3354	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3355				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3356				 node);
3357	if (!tags->rqs)
3358		goto err_free_tags;
3359
3360	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3361					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3362					node);
3363	if (!tags->static_rqs)
3364		goto err_free_rqs;
3365
3366	return tags;
3367
3368err_free_rqs:
3369	kfree(tags->rqs);
3370err_free_tags:
3371	blk_mq_free_tags(tags);
3372	return NULL;
3373}
3374
3375static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3376			       unsigned int hctx_idx, int node)
3377{
3378	int ret;
3379
3380	if (set->ops->init_request) {
3381		ret = set->ops->init_request(set, rq, hctx_idx, node);
3382		if (ret)
3383			return ret;
 
 
3384	}
3385
3386	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3387	return 0;
3388}
3389
3390static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3391			    struct blk_mq_tags *tags,
3392			    unsigned int hctx_idx, unsigned int depth)
3393{
3394	unsigned int i, j, entries_per_page, max_order = 4;
3395	int node = blk_mq_get_hctx_node(set, hctx_idx);
3396	size_t rq_size, left;
3397
3398	if (node == NUMA_NO_NODE)
3399		node = set->numa_node;
3400
3401	INIT_LIST_HEAD(&tags->page_list);
3402
3403	/*
3404	 * rq_size is the size of the request plus driver payload, rounded
3405	 * to the cacheline size
3406	 */
3407	rq_size = round_up(sizeof(struct request) + set->cmd_size,
3408				cache_line_size());
3409	left = rq_size * depth;
3410
3411	for (i = 0; i < depth; ) {
3412		int this_order = max_order;
3413		struct page *page;
3414		int to_do;
3415		void *p;
3416
3417		while (this_order && left < order_to_size(this_order - 1))
3418			this_order--;
3419
3420		do {
3421			page = alloc_pages_node(node,
3422				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3423				this_order);
3424			if (page)
3425				break;
3426			if (!this_order--)
3427				break;
3428			if (order_to_size(this_order) < rq_size)
3429				break;
3430		} while (1);
3431
3432		if (!page)
3433			goto fail;
3434
3435		page->private = this_order;
3436		list_add_tail(&page->lru, &tags->page_list);
3437
3438		p = page_address(page);
3439		/*
3440		 * Allow kmemleak to scan these pages as they contain pointers
3441		 * to additional allocations like via ops->init_request().
3442		 */
3443		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3444		entries_per_page = order_to_size(this_order) / rq_size;
3445		to_do = min(entries_per_page, depth - i);
3446		left -= to_do * rq_size;
3447		for (j = 0; j < to_do; j++) {
3448			struct request *rq = p;
3449
3450			tags->static_rqs[i] = rq;
3451			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3452				tags->static_rqs[i] = NULL;
3453				goto fail;
 
 
3454			}
3455
3456			p += rq_size;
3457			i++;
3458		}
3459	}
3460	return 0;
3461
3462fail:
3463	blk_mq_free_rqs(set, tags, hctx_idx);
3464	return -ENOMEM;
3465}
3466
3467struct rq_iter_data {
3468	struct blk_mq_hw_ctx *hctx;
3469	bool has_rq;
3470};
3471
3472static bool blk_mq_has_request(struct request *rq, void *data)
3473{
3474	struct rq_iter_data *iter_data = data;
3475
3476	if (rq->mq_hctx != iter_data->hctx)
3477		return true;
3478	iter_data->has_rq = true;
3479	return false;
3480}
3481
3482static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3483{
3484	struct blk_mq_tags *tags = hctx->sched_tags ?
3485			hctx->sched_tags : hctx->tags;
3486	struct rq_iter_data data = {
3487		.hctx	= hctx,
3488	};
3489
3490	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3491	return data.has_rq;
3492}
3493
3494static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3495		struct blk_mq_hw_ctx *hctx)
3496{
3497	if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3498		return false;
3499	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3500		return false;
3501	return true;
3502}
3503
3504static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3505{
3506	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3507			struct blk_mq_hw_ctx, cpuhp_online);
3508
3509	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3510	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
3511		return 0;
3512
3513	/*
3514	 * Prevent new request from being allocated on the current hctx.
3515	 *
3516	 * The smp_mb__after_atomic() Pairs with the implied barrier in
3517	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3518	 * seen once we return from the tag allocator.
3519	 */
3520	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3521	smp_mb__after_atomic();
3522
3523	/*
3524	 * Try to grab a reference to the queue and wait for any outstanding
3525	 * requests.  If we could not grab a reference the queue has been
3526	 * frozen and there are no requests.
3527	 */
3528	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3529		while (blk_mq_hctx_has_requests(hctx))
3530			msleep(5);
3531		percpu_ref_put(&hctx->queue->q_usage_counter);
3532	}
3533
3534	return 0;
3535}
3536
3537static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3538{
3539	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3540			struct blk_mq_hw_ctx, cpuhp_online);
3541
3542	if (cpumask_test_cpu(cpu, hctx->cpumask))
3543		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3544	return 0;
3545}
3546
3547/*
3548 * 'cpu' is going away. splice any existing rq_list entries from this
3549 * software queue to the hw queue dispatch list, and ensure that it
3550 * gets run.
3551 */
3552static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3553{
3554	struct blk_mq_hw_ctx *hctx;
3555	struct blk_mq_ctx *ctx;
3556	LIST_HEAD(tmp);
3557	enum hctx_type type;
3558
3559	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3560	if (!cpumask_test_cpu(cpu, hctx->cpumask))
3561		return 0;
3562
3563	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3564	type = hctx->type;
 
 
3565
3566	spin_lock(&ctx->lock);
3567	if (!list_empty(&ctx->rq_lists[type])) {
3568		list_splice_init(&ctx->rq_lists[type], &tmp);
3569		blk_mq_hctx_clear_pending(hctx, ctx);
3570	}
3571	spin_unlock(&ctx->lock);
3572
3573	if (list_empty(&tmp))
3574		return 0;
3575
3576	spin_lock(&hctx->lock);
3577	list_splice_tail_init(&tmp, &hctx->dispatch);
3578	spin_unlock(&hctx->lock);
3579
3580	blk_mq_run_hw_queue(hctx, true);
3581	return 0;
3582}
3583
3584static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3585{
3586	if (!(hctx->flags & BLK_MQ_F_STACKING))
3587		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3588						    &hctx->cpuhp_online);
3589	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3590					    &hctx->cpuhp_dead);
3591}
3592
3593/*
3594 * Before freeing hw queue, clearing the flush request reference in
3595 * tags->rqs[] for avoiding potential UAF.
3596 */
3597static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3598		unsigned int queue_depth, struct request *flush_rq)
3599{
3600	int i;
3601	unsigned long flags;
3602
3603	/* The hw queue may not be mapped yet */
3604	if (!tags)
3605		return;
3606
3607	WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
 
 
 
3608
3609	for (i = 0; i < queue_depth; i++)
3610		cmpxchg(&tags->rqs[i], flush_rq, NULL);
 
 
 
 
 
3611
3612	/*
3613	 * Wait until all pending iteration is done.
3614	 *
3615	 * Request reference is cleared and it is guaranteed to be observed
3616	 * after the ->lock is released.
3617	 */
3618	spin_lock_irqsave(&tags->lock, flags);
3619	spin_unlock_irqrestore(&tags->lock, flags);
3620}
3621
3622/* hctx->ctxs will be freed in queue's release handler */
3623static void blk_mq_exit_hctx(struct request_queue *q,
3624		struct blk_mq_tag_set *set,
3625		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3626{
3627	struct request *flush_rq = hctx->fq->flush_rq;
3628
3629	if (blk_mq_hw_queue_mapped(hctx))
3630		blk_mq_tag_idle(hctx);
3631
3632	if (blk_queue_init_done(q))
3633		blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3634				set->queue_depth, flush_rq);
3635	if (set->ops->exit_request)
3636		set->ops->exit_request(set, flush_rq, hctx_idx);
 
 
3637
3638	if (set->ops->exit_hctx)
3639		set->ops->exit_hctx(hctx, hctx_idx);
3640
3641	blk_mq_remove_cpuhp(hctx);
3642
3643	xa_erase(&q->hctx_table, hctx_idx);
3644
3645	spin_lock(&q->unused_hctx_lock);
3646	list_add(&hctx->hctx_list, &q->unused_hctx_list);
3647	spin_unlock(&q->unused_hctx_lock);
3648}
3649
3650static void blk_mq_exit_hw_queues(struct request_queue *q,
3651		struct blk_mq_tag_set *set, int nr_queue)
3652{
3653	struct blk_mq_hw_ctx *hctx;
3654	unsigned long i;
3655
3656	queue_for_each_hw_ctx(q, hctx, i) {
3657		if (i == nr_queue)
3658			break;
3659		blk_mq_exit_hctx(q, set, hctx, i);
3660	}
3661}
3662
3663static int blk_mq_init_hctx(struct request_queue *q,
3664		struct blk_mq_tag_set *set,
3665		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3666{
3667	hctx->queue_num = hctx_idx;
3668
3669	if (!(hctx->flags & BLK_MQ_F_STACKING))
3670		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3671				&hctx->cpuhp_online);
3672	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3673
3674	hctx->tags = set->tags[hctx_idx];
3675
3676	if (set->ops->init_hctx &&
3677	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3678		goto unregister_cpu_notifier;
3679
3680	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3681				hctx->numa_node))
3682		goto exit_hctx;
3683
3684	if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3685		goto exit_flush_rq;
3686
3687	return 0;
3688
3689 exit_flush_rq:
3690	if (set->ops->exit_request)
3691		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3692 exit_hctx:
3693	if (set->ops->exit_hctx)
3694		set->ops->exit_hctx(hctx, hctx_idx);
3695 unregister_cpu_notifier:
3696	blk_mq_remove_cpuhp(hctx);
3697	return -1;
3698}
3699
3700static struct blk_mq_hw_ctx *
3701blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3702		int node)
3703{
3704	struct blk_mq_hw_ctx *hctx;
3705	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3706
3707	hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3708	if (!hctx)
3709		goto fail_alloc_hctx;
3710
3711	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3712		goto free_hctx;
3713
3714	atomic_set(&hctx->nr_active, 0);
3715	if (node == NUMA_NO_NODE)
3716		node = set->numa_node;
3717	hctx->numa_node = node;
3718
3719	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
 
3720	spin_lock_init(&hctx->lock);
3721	INIT_LIST_HEAD(&hctx->dispatch);
3722	hctx->queue = q;
3723	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
 
3724
3725	INIT_LIST_HEAD(&hctx->hctx_list);
 
 
 
 
3726
3727	/*
3728	 * Allocate space for all possible cpus to avoid allocation at
3729	 * runtime
3730	 */
3731	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3732			gfp, node);
3733	if (!hctx->ctxs)
3734		goto free_cpumask;
3735
3736	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3737				gfp, node, false, false))
3738		goto free_ctxs;
 
3739	hctx->nr_ctx = 0;
3740
3741	spin_lock_init(&hctx->dispatch_wait_lock);
3742	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3743	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3744
3745	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3746	if (!hctx->fq)
3747		goto free_bitmap;
3748
3749	blk_mq_hctx_kobj_init(hctx);
 
 
 
 
3750
3751	return hctx;
3752
 
 
 
 
 
3753 free_bitmap:
3754	sbitmap_free(&hctx->ctx_map);
3755 free_ctxs:
3756	kfree(hctx->ctxs);
3757 free_cpumask:
3758	free_cpumask_var(hctx->cpumask);
3759 free_hctx:
3760	kfree(hctx);
3761 fail_alloc_hctx:
3762	return NULL;
3763}
3764
3765static void blk_mq_init_cpu_queues(struct request_queue *q,
3766				   unsigned int nr_hw_queues)
3767{
3768	struct blk_mq_tag_set *set = q->tag_set;
3769	unsigned int i, j;
3770
3771	for_each_possible_cpu(i) {
3772		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3773		struct blk_mq_hw_ctx *hctx;
3774		int k;
3775
 
3776		__ctx->cpu = i;
3777		spin_lock_init(&__ctx->lock);
3778		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3779			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3780
3781		__ctx->queue = q;
3782
 
 
 
 
 
 
3783		/*
3784		 * Set local node, IFF we have more than one hw queue. If
3785		 * not, we remain on the home node of the device
3786		 */
3787		for (j = 0; j < set->nr_maps; j++) {
3788			hctx = blk_mq_map_queue_type(q, j, i);
3789			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3790				hctx->numa_node = cpu_to_node(i);
3791		}
3792	}
3793}
3794
3795struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3796					     unsigned int hctx_idx,
3797					     unsigned int depth)
3798{
3799	struct blk_mq_tags *tags;
3800	int ret;
3801
3802	tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3803	if (!tags)
3804		return NULL;
3805
3806	ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3807	if (ret) {
3808		blk_mq_free_rq_map(tags);
3809		return NULL;
3810	}
3811
3812	return tags;
3813}
3814
3815static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3816				       int hctx_idx)
3817{
3818	if (blk_mq_is_shared_tags(set->flags)) {
3819		set->tags[hctx_idx] = set->shared_tags;
3820
3821		return true;
3822	}
3823
3824	set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3825						       set->queue_depth);
3826
3827	return set->tags[hctx_idx];
3828}
3829
3830void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3831			     struct blk_mq_tags *tags,
3832			     unsigned int hctx_idx)
3833{
3834	if (tags) {
3835		blk_mq_free_rqs(set, tags, hctx_idx);
3836		blk_mq_free_rq_map(tags);
3837	}
3838}
3839
3840static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3841				      unsigned int hctx_idx)
3842{
3843	if (!blk_mq_is_shared_tags(set->flags))
3844		blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3845
3846	set->tags[hctx_idx] = NULL;
3847}
3848
3849static void blk_mq_map_swqueue(struct request_queue *q)
3850{
3851	unsigned int j, hctx_idx;
3852	unsigned long i;
3853	struct blk_mq_hw_ctx *hctx;
3854	struct blk_mq_ctx *ctx;
3855	struct blk_mq_tag_set *set = q->tag_set;
3856
 
 
 
 
 
3857	queue_for_each_hw_ctx(q, hctx, i) {
3858		cpumask_clear(hctx->cpumask);
3859		hctx->nr_ctx = 0;
3860		hctx->dispatch_from = NULL;
3861	}
3862
3863	/*
3864	 * Map software to hardware queues.
3865	 *
3866	 * If the cpu isn't present, the cpu is mapped to first hctx.
3867	 */
3868	for_each_possible_cpu(i) {
 
 
 
3869
3870		ctx = per_cpu_ptr(q->queue_ctx, i);
3871		for (j = 0; j < set->nr_maps; j++) {
3872			if (!set->map[j].nr_queues) {
3873				ctx->hctxs[j] = blk_mq_map_queue_type(q,
3874						HCTX_TYPE_DEFAULT, i);
3875				continue;
3876			}
3877			hctx_idx = set->map[j].mq_map[i];
3878			/* unmapped hw queue can be remapped after CPU topo changed */
3879			if (!set->tags[hctx_idx] &&
3880			    !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3881				/*
3882				 * If tags initialization fail for some hctx,
3883				 * that hctx won't be brought online.  In this
3884				 * case, remap the current ctx to hctx[0] which
3885				 * is guaranteed to always have tags allocated
3886				 */
3887				set->map[j].mq_map[i] = 0;
3888			}
3889
3890			hctx = blk_mq_map_queue_type(q, j, i);
3891			ctx->hctxs[j] = hctx;
3892			/*
3893			 * If the CPU is already set in the mask, then we've
3894			 * mapped this one already. This can happen if
3895			 * devices share queues across queue maps.
3896			 */
3897			if (cpumask_test_cpu(i, hctx->cpumask))
3898				continue;
3899
3900			cpumask_set_cpu(i, hctx->cpumask);
3901			hctx->type = j;
3902			ctx->index_hw[hctx->type] = hctx->nr_ctx;
3903			hctx->ctxs[hctx->nr_ctx++] = ctx;
3904
3905			/*
3906			 * If the nr_ctx type overflows, we have exceeded the
3907			 * amount of sw queues we can support.
3908			 */
3909			BUG_ON(!hctx->nr_ctx);
3910		}
3911
3912		for (; j < HCTX_MAX_TYPES; j++)
3913			ctx->hctxs[j] = blk_mq_map_queue_type(q,
3914					HCTX_TYPE_DEFAULT, i);
3915	}
3916
 
 
3917	queue_for_each_hw_ctx(q, hctx, i) {
 
 
3918		/*
3919		 * If no software queues are mapped to this hardware queue,
3920		 * disable it and free the request entries.
3921		 */
3922		if (!hctx->nr_ctx) {
3923			/* Never unmap queue 0.  We need it as a
3924			 * fallback in case of a new remap fails
3925			 * allocation
3926			 */
3927			if (i)
3928				__blk_mq_free_map_and_rqs(set, i);
3929
3930			hctx->tags = NULL;
3931			continue;
3932		}
3933
 
 
 
3934		hctx->tags = set->tags[i];
3935		WARN_ON(!hctx->tags);
3936
 
3937		/*
3938		 * Set the map size to the number of mapped software queues.
3939		 * This is more accurate and more efficient than looping
3940		 * over all possibly mapped software queues.
3941		 */
3942		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3943
3944		/*
3945		 * Initialize batch roundrobin counts
3946		 */
3947		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3948		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3949	}
3950}
3951
3952/*
3953 * Caller needs to ensure that we're either frozen/quiesced, or that
3954 * the queue isn't live yet.
3955 */
3956static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3957{
3958	struct blk_mq_hw_ctx *hctx;
3959	unsigned long i;
3960
3961	queue_for_each_hw_ctx(q, hctx, i) {
3962		if (shared) {
3963			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3964		} else {
3965			blk_mq_tag_idle(hctx);
3966			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3967		}
3968	}
3969}
3970
3971static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3972					 bool shared)
3973{
3974	struct request_queue *q;
3975
3976	lockdep_assert_held(&set->tag_list_lock);
3977
3978	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3979		blk_mq_freeze_queue(q);
3980		queue_set_hctx_shared(q, shared);
3981		blk_mq_unfreeze_queue(q);
3982	}
3983}
3984
3985static void blk_mq_del_queue_tag_set(struct request_queue *q)
3986{
3987	struct blk_mq_tag_set *set = q->tag_set;
3988
3989	mutex_lock(&set->tag_list_lock);
3990	list_del(&q->tag_set_list);
3991	if (list_is_singular(&set->tag_list)) {
3992		/* just transitioned to unshared */
3993		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3994		/* update existing queue */
3995		blk_mq_update_tag_set_shared(set, false);
3996	}
3997	mutex_unlock(&set->tag_list_lock);
3998	INIT_LIST_HEAD(&q->tag_set_list);
3999}
4000
4001static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
4002				     struct request_queue *q)
4003{
 
 
4004	mutex_lock(&set->tag_list_lock);
4005
4006	/*
4007	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
4008	 */
4009	if (!list_empty(&set->tag_list) &&
4010	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
4011		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
4012		/* update existing queue */
4013		blk_mq_update_tag_set_shared(set, true);
4014	}
4015	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
4016		queue_set_hctx_shared(q, true);
4017	list_add_tail(&q->tag_set_list, &set->tag_list);
4018
4019	mutex_unlock(&set->tag_list_lock);
4020}
4021
4022/* All allocations will be freed in release handler of q->mq_kobj */
4023static int blk_mq_alloc_ctxs(struct request_queue *q)
4024{
4025	struct blk_mq_ctxs *ctxs;
4026	int cpu;
4027
4028	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
4029	if (!ctxs)
4030		return -ENOMEM;
4031
4032	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
4033	if (!ctxs->queue_ctx)
4034		goto fail;
4035
4036	for_each_possible_cpu(cpu) {
4037		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
4038		ctx->ctxs = ctxs;
4039	}
4040
4041	q->mq_kobj = &ctxs->kobj;
4042	q->queue_ctx = ctxs->queue_ctx;
4043
4044	return 0;
4045 fail:
4046	kfree(ctxs);
4047	return -ENOMEM;
4048}
4049
4050/*
4051 * It is the actual release handler for mq, but we do it from
4052 * request queue's release handler for avoiding use-after-free
4053 * and headache because q->mq_kobj shouldn't have been introduced,
4054 * but we can't group ctx/kctx kobj without it.
4055 */
4056void blk_mq_release(struct request_queue *q)
4057{
4058	struct blk_mq_hw_ctx *hctx, *next;
4059	unsigned long i;
4060
4061	queue_for_each_hw_ctx(q, hctx, i)
4062		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4063
4064	/* all hctx are in .unused_hctx_list now */
4065	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4066		list_del_init(&hctx->hctx_list);
4067		kobject_put(&hctx->kobj);
 
 
4068	}
4069
4070	xa_destroy(&q->hctx_table);
 
4071
4072	/*
4073	 * release .mq_kobj and sw queue's kobject now because
4074	 * both share lifetime with request queue.
4075	 */
4076	blk_mq_sysfs_deinit(q);
4077}
4078
4079static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
4080		void *queuedata)
4081{
4082	struct request_queue *q;
4083	int ret;
4084
4085	q = blk_alloc_queue(set->numa_node);
4086	if (!q)
4087		return ERR_PTR(-ENOMEM);
4088	q->queuedata = queuedata;
4089	ret = blk_mq_init_allocated_queue(set, q);
4090	if (ret) {
4091		blk_put_queue(q);
4092		return ERR_PTR(ret);
4093	}
4094	return q;
4095}
4096
4097struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
4098{
4099	return blk_mq_init_queue_data(set, NULL);
4100}
4101EXPORT_SYMBOL(blk_mq_init_queue);
4102
4103/**
4104 * blk_mq_destroy_queue - shutdown a request queue
4105 * @q: request queue to shutdown
4106 *
4107 * This shuts down a request queue allocated by blk_mq_init_queue(). All future
4108 * requests will be failed with -ENODEV. The caller is responsible for dropping
4109 * the reference from blk_mq_init_queue() by calling blk_put_queue().
4110 *
4111 * Context: can sleep
4112 */
4113void blk_mq_destroy_queue(struct request_queue *q)
4114{
4115	WARN_ON_ONCE(!queue_is_mq(q));
4116	WARN_ON_ONCE(blk_queue_registered(q));
4117
4118	might_sleep();
4119
4120	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4121	blk_queue_start_drain(q);
4122	blk_mq_freeze_queue_wait(q);
4123
4124	blk_sync_queue(q);
4125	blk_mq_cancel_work_sync(q);
4126	blk_mq_exit_queue(q);
4127}
4128EXPORT_SYMBOL(blk_mq_destroy_queue);
4129
4130struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
4131		struct lock_class_key *lkclass)
4132{
4133	struct request_queue *q;
4134	struct gendisk *disk;
4135
4136	q = blk_mq_init_queue_data(set, queuedata);
4137	if (IS_ERR(q))
4138		return ERR_CAST(q);
4139
4140	disk = __alloc_disk_node(q, set->numa_node, lkclass);
4141	if (!disk) {
4142		blk_mq_destroy_queue(q);
4143		blk_put_queue(q);
4144		return ERR_PTR(-ENOMEM);
4145	}
4146	set_bit(GD_OWNS_QUEUE, &disk->state);
4147	return disk;
4148}
4149EXPORT_SYMBOL(__blk_mq_alloc_disk);
4150
4151struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4152		struct lock_class_key *lkclass)
4153{
4154	struct gendisk *disk;
4155
4156	if (!blk_get_queue(q))
4157		return NULL;
4158	disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4159	if (!disk)
4160		blk_put_queue(q);
4161	return disk;
4162}
4163EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4164
4165static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4166		struct blk_mq_tag_set *set, struct request_queue *q,
4167		int hctx_idx, int node)
4168{
4169	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4170
4171	/* reuse dead hctx first */
4172	spin_lock(&q->unused_hctx_lock);
4173	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4174		if (tmp->numa_node == node) {
4175			hctx = tmp;
4176			break;
4177		}
4178	}
4179	if (hctx)
4180		list_del_init(&hctx->hctx_list);
4181	spin_unlock(&q->unused_hctx_lock);
4182
4183	if (!hctx)
4184		hctx = blk_mq_alloc_hctx(q, set, node);
4185	if (!hctx)
4186		goto fail;
4187
4188	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4189		goto free_hctx;
4190
4191	return hctx;
4192
4193 free_hctx:
4194	kobject_put(&hctx->kobj);
4195 fail:
4196	return NULL;
4197}
 
4198
4199static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4200						struct request_queue *q)
4201{
4202	struct blk_mq_hw_ctx *hctx;
4203	unsigned long i, j;
4204
4205	/* protect against switching io scheduler  */
4206	mutex_lock(&q->sysfs_lock);
4207	for (i = 0; i < set->nr_hw_queues; i++) {
4208		int old_node;
4209		int node = blk_mq_get_hctx_node(set, i);
4210		struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4211
4212		if (old_hctx) {
4213			old_node = old_hctx->numa_node;
4214			blk_mq_exit_hctx(q, set, old_hctx, i);
 
 
 
 
 
 
 
 
 
4215		}
4216
4217		if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4218			if (!old_hctx)
4219				break;
4220			pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4221					node, old_node);
4222			hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4223			WARN_ON_ONCE(!hctx);
 
 
4224		}
 
4225	}
4226	/*
4227	 * Increasing nr_hw_queues fails. Free the newly allocated
4228	 * hctxs and keep the previous q->nr_hw_queues.
4229	 */
4230	if (i != set->nr_hw_queues) {
4231		j = q->nr_hw_queues;
4232	} else {
4233		j = i;
4234		q->nr_hw_queues = set->nr_hw_queues;
4235	}
4236
4237	xa_for_each_start(&q->hctx_table, j, hctx, j)
4238		blk_mq_exit_hctx(q, set, hctx, j);
4239	mutex_unlock(&q->sysfs_lock);
4240}
4241
4242static void blk_mq_update_poll_flag(struct request_queue *q)
4243{
4244	struct blk_mq_tag_set *set = q->tag_set;
 
 
 
 
 
 
 
 
4245
4246	if (set->nr_maps > HCTX_TYPE_POLL &&
4247	    set->map[HCTX_TYPE_POLL].nr_queues)
4248		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4249	else
4250		blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4251}
4252
4253int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4254		struct request_queue *q)
4255{
4256	/* mark the queue as mq asap */
4257	q->mq_ops = set->ops;
4258
4259	if (blk_mq_alloc_ctxs(q))
4260		goto err_exit;
4261
4262	/* init q->mq_kobj and sw queues' kobjects */
4263	blk_mq_sysfs_init(q);
4264
4265	INIT_LIST_HEAD(&q->unused_hctx_list);
4266	spin_lock_init(&q->unused_hctx_lock);
4267
4268	xa_init(&q->hctx_table);
 
 
 
 
 
 
 
4269
4270	blk_mq_realloc_hw_ctxs(set, q);
4271	if (!q->nr_hw_queues)
4272		goto err_hctxs;
4273
4274	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4275	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4276
4277	q->tag_set = set;
4278
4279	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4280	blk_mq_update_poll_flag(q);
4281
4282	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4283	INIT_LIST_HEAD(&q->flush_list);
 
 
 
 
4284	INIT_LIST_HEAD(&q->requeue_list);
4285	spin_lock_init(&q->requeue_lock);
4286
 
 
 
 
 
 
 
 
4287	q->nr_requests = set->queue_depth;
4288
 
 
 
4289	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
 
 
 
 
 
4290	blk_mq_add_queue_tag_set(set, q);
4291	blk_mq_map_swqueue(q);
4292	return 0;
 
 
 
 
4293
4294err_hctxs:
4295	blk_mq_release(q);
4296err_exit:
4297	q->mq_ops = NULL;
4298	return -ENOMEM;
 
 
4299}
4300EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4301
4302/* tags can _not_ be used after returning from blk_mq_exit_queue */
4303void blk_mq_exit_queue(struct request_queue *q)
4304{
4305	struct blk_mq_tag_set *set = q->tag_set;
 
 
 
 
4306
4307	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4308	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4309	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4310	blk_mq_del_queue_tag_set(q);
 
 
 
4311}
4312
4313static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
 
 
4314{
4315	int i;
 
 
 
 
4316
4317	if (blk_mq_is_shared_tags(set->flags)) {
4318		set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4319						BLK_MQ_NO_HCTX_IDX,
4320						set->queue_depth);
4321		if (!set->shared_tags)
4322			return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4323	}
4324
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4325	for (i = 0; i < set->nr_hw_queues; i++) {
4326		if (!__blk_mq_alloc_map_and_rqs(set, i))
 
4327			goto out_unwind;
4328		cond_resched();
4329	}
4330
4331	return 0;
4332
4333out_unwind:
4334	while (--i >= 0)
4335		__blk_mq_free_map_and_rqs(set, i);
4336
4337	if (blk_mq_is_shared_tags(set->flags)) {
4338		blk_mq_free_map_and_rqs(set, set->shared_tags,
4339					BLK_MQ_NO_HCTX_IDX);
4340	}
4341
4342	return -ENOMEM;
4343}
4344
4345/*
4346 * Allocate the request maps associated with this tag_set. Note that this
4347 * may reduce the depth asked for, if memory is tight. set->queue_depth
4348 * will be updated to reflect the allocated depth.
4349 */
4350static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4351{
4352	unsigned int depth;
4353	int err;
4354
4355	depth = set->queue_depth;
4356	do {
4357		err = __blk_mq_alloc_rq_maps(set);
4358		if (!err)
4359			break;
4360
4361		set->queue_depth >>= 1;
4362		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4363			err = -ENOMEM;
4364			break;
4365		}
4366	} while (set->queue_depth);
4367
4368	if (!set->queue_depth || err) {
4369		pr_err("blk-mq: failed to allocate request map\n");
4370		return -ENOMEM;
4371	}
4372
4373	if (depth != set->queue_depth)
4374		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4375						depth, set->queue_depth);
4376
4377	return 0;
4378}
4379
4380static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4381{
4382	/*
4383	 * blk_mq_map_queues() and multiple .map_queues() implementations
4384	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4385	 * number of hardware queues.
4386	 */
4387	if (set->nr_maps == 1)
4388		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4389
4390	if (set->ops->map_queues && !is_kdump_kernel()) {
4391		int i;
4392
4393		/*
4394		 * transport .map_queues is usually done in the following
4395		 * way:
4396		 *
4397		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4398		 * 	mask = get_cpu_mask(queue)
4399		 * 	for_each_cpu(cpu, mask)
4400		 * 		set->map[x].mq_map[cpu] = queue;
4401		 * }
4402		 *
4403		 * When we need to remap, the table has to be cleared for
4404		 * killing stale mapping since one CPU may not be mapped
4405		 * to any hw queue.
4406		 */
4407		for (i = 0; i < set->nr_maps; i++)
4408			blk_mq_clear_mq_map(&set->map[i]);
4409
4410		set->ops->map_queues(set);
4411	} else {
4412		BUG_ON(set->nr_maps > 1);
4413		blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4414	}
4415}
4416
4417static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4418				       int new_nr_hw_queues)
4419{
4420	struct blk_mq_tags **new_tags;
4421	int i;
4422
4423	if (set->nr_hw_queues >= new_nr_hw_queues)
4424		goto done;
4425
4426	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4427				GFP_KERNEL, set->numa_node);
4428	if (!new_tags)
4429		return -ENOMEM;
4430
4431	if (set->tags)
4432		memcpy(new_tags, set->tags, set->nr_hw_queues *
4433		       sizeof(*set->tags));
4434	kfree(set->tags);
4435	set->tags = new_tags;
4436
4437	for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) {
4438		if (!__blk_mq_alloc_map_and_rqs(set, i)) {
4439			while (--i >= set->nr_hw_queues)
4440				__blk_mq_free_map_and_rqs(set, i);
4441			return -ENOMEM;
4442		}
4443		cond_resched();
4444	}
4445
4446done:
4447	set->nr_hw_queues = new_nr_hw_queues;
4448	return 0;
4449}
 
4450
4451/*
4452 * Alloc a tag set to be associated with one or more request queues.
4453 * May fail with EINVAL for various error conditions. May adjust the
4454 * requested depth down, if it's too large. In that case, the set
4455 * value will be stored in set->queue_depth.
4456 */
4457int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4458{
4459	int i, ret;
4460
4461	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4462
4463	if (!set->nr_hw_queues)
4464		return -EINVAL;
4465	if (!set->queue_depth)
4466		return -EINVAL;
4467	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4468		return -EINVAL;
4469
4470	if (!set->ops->queue_rq)
4471		return -EINVAL;
4472
4473	if (!set->ops->get_budget ^ !set->ops->put_budget)
4474		return -EINVAL;
4475
4476	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4477		pr_info("blk-mq: reduced tag depth to %u\n",
4478			BLK_MQ_MAX_DEPTH);
4479		set->queue_depth = BLK_MQ_MAX_DEPTH;
4480	}
4481
4482	if (!set->nr_maps)
4483		set->nr_maps = 1;
4484	else if (set->nr_maps > HCTX_MAX_TYPES)
4485		return -EINVAL;
4486
4487	/*
4488	 * If a crashdump is active, then we are potentially in a very
4489	 * memory constrained environment. Limit us to 1 queue and
4490	 * 64 tags to prevent using too much memory.
4491	 */
4492	if (is_kdump_kernel()) {
4493		set->nr_hw_queues = 1;
4494		set->nr_maps = 1;
4495		set->queue_depth = min(64U, set->queue_depth);
4496	}
4497	/*
4498	 * There is no use for more h/w queues than cpus if we just have
4499	 * a single map
4500	 */
4501	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4502		set->nr_hw_queues = nr_cpu_ids;
4503
4504	if (set->flags & BLK_MQ_F_BLOCKING) {
4505		set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4506		if (!set->srcu)
4507			return -ENOMEM;
4508		ret = init_srcu_struct(set->srcu);
4509		if (ret)
4510			goto out_free_srcu;
4511	}
4512
4513	ret = -ENOMEM;
4514	set->tags = kcalloc_node(set->nr_hw_queues,
4515				 sizeof(struct blk_mq_tags *), GFP_KERNEL,
4516				 set->numa_node);
4517	if (!set->tags)
4518		goto out_cleanup_srcu;
4519
4520	for (i = 0; i < set->nr_maps; i++) {
4521		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4522						  sizeof(set->map[i].mq_map[0]),
4523						  GFP_KERNEL, set->numa_node);
4524		if (!set->map[i].mq_map)
4525			goto out_free_mq_map;
4526		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4527	}
4528
4529	blk_mq_update_queue_map(set);
4530
4531	ret = blk_mq_alloc_set_map_and_rqs(set);
4532	if (ret)
4533		goto out_free_mq_map;
4534
4535	mutex_init(&set->tag_list_lock);
4536	INIT_LIST_HEAD(&set->tag_list);
4537
4538	return 0;
4539
4540out_free_mq_map:
4541	for (i = 0; i < set->nr_maps; i++) {
4542		kfree(set->map[i].mq_map);
4543		set->map[i].mq_map = NULL;
4544	}
4545	kfree(set->tags);
4546	set->tags = NULL;
4547out_cleanup_srcu:
4548	if (set->flags & BLK_MQ_F_BLOCKING)
4549		cleanup_srcu_struct(set->srcu);
4550out_free_srcu:
4551	if (set->flags & BLK_MQ_F_BLOCKING)
4552		kfree(set->srcu);
4553	return ret;
4554}
4555EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4556
4557/* allocate and initialize a tagset for a simple single-queue device */
4558int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4559		const struct blk_mq_ops *ops, unsigned int queue_depth,
4560		unsigned int set_flags)
4561{
4562	memset(set, 0, sizeof(*set));
4563	set->ops = ops;
4564	set->nr_hw_queues = 1;
4565	set->nr_maps = 1;
4566	set->queue_depth = queue_depth;
4567	set->numa_node = NUMA_NO_NODE;
4568	set->flags = set_flags;
4569	return blk_mq_alloc_tag_set(set);
4570}
4571EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4572
4573void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4574{
4575	int i, j;
4576
4577	for (i = 0; i < set->nr_hw_queues; i++)
4578		__blk_mq_free_map_and_rqs(set, i);
4579
4580	if (blk_mq_is_shared_tags(set->flags)) {
4581		blk_mq_free_map_and_rqs(set, set->shared_tags,
4582					BLK_MQ_NO_HCTX_IDX);
4583	}
4584
4585	for (j = 0; j < set->nr_maps; j++) {
4586		kfree(set->map[j].mq_map);
4587		set->map[j].mq_map = NULL;
4588	}
4589
4590	kfree(set->tags);
4591	set->tags = NULL;
4592	if (set->flags & BLK_MQ_F_BLOCKING) {
4593		cleanup_srcu_struct(set->srcu);
4594		kfree(set->srcu);
4595	}
4596}
4597EXPORT_SYMBOL(blk_mq_free_tag_set);
4598
4599int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4600{
4601	struct blk_mq_tag_set *set = q->tag_set;
4602	struct blk_mq_hw_ctx *hctx;
4603	int ret;
4604	unsigned long i;
4605
4606	if (!set)
4607		return -EINVAL;
4608
4609	if (q->nr_requests == nr)
4610		return 0;
4611
4612	blk_mq_freeze_queue(q);
4613	blk_mq_quiesce_queue(q);
4614
4615	ret = 0;
4616	queue_for_each_hw_ctx(q, hctx, i) {
4617		if (!hctx->tags)
4618			continue;
4619		/*
4620		 * If we're using an MQ scheduler, just update the scheduler
4621		 * queue depth. This is similar to what the old code would do.
4622		 */
4623		if (hctx->sched_tags) {
4624			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4625						      nr, true);
4626		} else {
4627			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4628						      false);
4629		}
4630		if (ret)
4631			break;
4632		if (q->elevator && q->elevator->type->ops.depth_updated)
4633			q->elevator->type->ops.depth_updated(hctx);
4634	}
4635	if (!ret) {
4636		q->nr_requests = nr;
4637		if (blk_mq_is_shared_tags(set->flags)) {
4638			if (q->elevator)
4639				blk_mq_tag_update_sched_shared_tags(q);
4640			else
4641				blk_mq_tag_resize_shared_tags(set, nr);
4642		}
4643	}
4644
4645	blk_mq_unquiesce_queue(q);
4646	blk_mq_unfreeze_queue(q);
4647
4648	return ret;
4649}
4650
4651/*
4652 * request_queue and elevator_type pair.
4653 * It is just used by __blk_mq_update_nr_hw_queues to cache
4654 * the elevator_type associated with a request_queue.
4655 */
4656struct blk_mq_qe_pair {
4657	struct list_head node;
4658	struct request_queue *q;
4659	struct elevator_type *type;
4660};
4661
4662/*
4663 * Cache the elevator_type in qe pair list and switch the
4664 * io scheduler to 'none'
4665 */
4666static bool blk_mq_elv_switch_none(struct list_head *head,
4667		struct request_queue *q)
4668{
4669	struct blk_mq_qe_pair *qe;
4670
4671	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4672	if (!qe)
4673		return false;
4674
4675	/* q->elevator needs protection from ->sysfs_lock */
4676	mutex_lock(&q->sysfs_lock);
4677
4678	/* the check has to be done with holding sysfs_lock */
4679	if (!q->elevator) {
4680		kfree(qe);
4681		goto unlock;
4682	}
4683
4684	INIT_LIST_HEAD(&qe->node);
4685	qe->q = q;
4686	qe->type = q->elevator->type;
4687	/* keep a reference to the elevator module as we'll switch back */
4688	__elevator_get(qe->type);
4689	list_add(&qe->node, head);
4690	elevator_disable(q);
4691unlock:
4692	mutex_unlock(&q->sysfs_lock);
4693
4694	return true;
4695}
4696
4697static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4698						struct request_queue *q)
4699{
4700	struct blk_mq_qe_pair *qe;
4701
4702	list_for_each_entry(qe, head, node)
4703		if (qe->q == q)
4704			return qe;
4705
4706	return NULL;
4707}
4708
4709static void blk_mq_elv_switch_back(struct list_head *head,
4710				  struct request_queue *q)
4711{
4712	struct blk_mq_qe_pair *qe;
4713	struct elevator_type *t;
4714
4715	qe = blk_lookup_qe_pair(head, q);
4716	if (!qe)
4717		return;
4718	t = qe->type;
4719	list_del(&qe->node);
4720	kfree(qe);
4721
4722	mutex_lock(&q->sysfs_lock);
4723	elevator_switch(q, t);
4724	/* drop the reference acquired in blk_mq_elv_switch_none */
4725	elevator_put(t);
4726	mutex_unlock(&q->sysfs_lock);
4727}
4728
4729static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4730							int nr_hw_queues)
4731{
4732	struct request_queue *q;
4733	LIST_HEAD(head);
4734	int prev_nr_hw_queues = set->nr_hw_queues;
4735	int i;
4736
4737	lockdep_assert_held(&set->tag_list_lock);
4738
4739	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4740		nr_hw_queues = nr_cpu_ids;
4741	if (nr_hw_queues < 1)
4742		return;
4743	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4744		return;
4745
4746	list_for_each_entry(q, &set->tag_list, tag_set_list)
4747		blk_mq_freeze_queue(q);
4748	/*
4749	 * Switch IO scheduler to 'none', cleaning up the data associated
4750	 * with the previous scheduler. We will switch back once we are done
4751	 * updating the new sw to hw queue mappings.
4752	 */
4753	list_for_each_entry(q, &set->tag_list, tag_set_list)
4754		if (!blk_mq_elv_switch_none(&head, q))
4755			goto switch_back;
4756
4757	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4758		blk_mq_debugfs_unregister_hctxs(q);
4759		blk_mq_sysfs_unregister_hctxs(q);
4760	}
4761
4762	if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
4763		goto reregister;
4764
4765fallback:
4766	blk_mq_update_queue_map(set);
4767	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4768		blk_mq_realloc_hw_ctxs(set, q);
4769		blk_mq_update_poll_flag(q);
4770		if (q->nr_hw_queues != set->nr_hw_queues) {
4771			int i = prev_nr_hw_queues;
4772
4773			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4774					nr_hw_queues, prev_nr_hw_queues);
4775			for (; i < set->nr_hw_queues; i++)
4776				__blk_mq_free_map_and_rqs(set, i);
4777
4778			set->nr_hw_queues = prev_nr_hw_queues;
4779			goto fallback;
4780		}
4781		blk_mq_map_swqueue(q);
4782	}
4783
4784reregister:
4785	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4786		blk_mq_sysfs_register_hctxs(q);
4787		blk_mq_debugfs_register_hctxs(q);
4788	}
4789
4790switch_back:
4791	list_for_each_entry(q, &set->tag_list, tag_set_list)
4792		blk_mq_elv_switch_back(&head, q);
4793
4794	list_for_each_entry(q, &set->tag_list, tag_set_list)
4795		blk_mq_unfreeze_queue(q);
4796
4797	/* Free the excess tags when nr_hw_queues shrink. */
4798	for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++)
4799		__blk_mq_free_map_and_rqs(set, i);
4800}
4801
4802void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4803{
4804	mutex_lock(&set->tag_list_lock);
4805	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4806	mutex_unlock(&set->tag_list_lock);
4807}
4808EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4809
4810static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
4811			 struct io_comp_batch *iob, unsigned int flags)
4812{
4813	long state = get_current_state();
4814	int ret;
4815
4816	do {
4817		ret = q->mq_ops->poll(hctx, iob);
4818		if (ret > 0) {
4819			__set_current_state(TASK_RUNNING);
4820			return ret;
4821		}
4822
4823		if (signal_pending_state(state, current))
4824			__set_current_state(TASK_RUNNING);
4825		if (task_is_running(current))
4826			return 1;
4827
4828		if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4829			break;
4830		cpu_relax();
4831	} while (!need_resched());
4832
4833	__set_current_state(TASK_RUNNING);
4834	return 0;
4835}
4836
4837int blk_mq_poll(struct request_queue *q, blk_qc_t cookie,
4838		struct io_comp_batch *iob, unsigned int flags)
4839{
4840	struct blk_mq_hw_ctx *hctx = xa_load(&q->hctx_table, cookie);
4841
4842	return blk_hctx_poll(q, hctx, iob, flags);
4843}
4844
4845int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
4846		unsigned int poll_flags)
4847{
4848	struct request_queue *q = rq->q;
4849	int ret;
4850
4851	if (!blk_rq_is_poll(rq))
4852		return 0;
4853	if (!percpu_ref_tryget(&q->q_usage_counter))
4854		return 0;
4855
4856	ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags);
4857	blk_queue_exit(q);
4858
4859	return ret;
4860}
4861EXPORT_SYMBOL_GPL(blk_rq_poll);
4862
4863unsigned int blk_mq_rq_cpu(struct request *rq)
4864{
4865	return rq->mq_ctx->cpu;
4866}
4867EXPORT_SYMBOL(blk_mq_rq_cpu);
4868
4869void blk_mq_cancel_work_sync(struct request_queue *q)
4870{
4871	struct blk_mq_hw_ctx *hctx;
4872	unsigned long i;
4873
4874	cancel_delayed_work_sync(&q->requeue_work);
4875
4876	queue_for_each_hw_ctx(q, hctx, i)
4877		cancel_delayed_work_sync(&hctx->run_work);
4878}
4879
4880static int __init blk_mq_init(void)
4881{
4882	int i;
 
 
4883
4884	for_each_possible_cpu(i)
4885		init_llist_head(&per_cpu(blk_cpu_done, i));
4886	for_each_possible_cpu(i)
4887		INIT_CSD(&per_cpu(blk_cpu_csd, i),
4888			 __blk_mq_complete_request_remote, NULL);
4889	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4890
4891	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4892				  "block/softirq:dead", NULL,
4893				  blk_softirq_cpu_dead);
4894	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4895				blk_mq_hctx_notify_dead);
4896	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4897				blk_mq_hctx_notify_online,
4898				blk_mq_hctx_notify_offline);
4899	return 0;
4900}
4901subsys_initcall(blk_mq_init);
v4.6
 
   1/*
   2 * Block multiqueue core code
   3 *
   4 * Copyright (C) 2013-2014 Jens Axboe
   5 * Copyright (C) 2013-2014 Christoph Hellwig
   6 */
   7#include <linux/kernel.h>
   8#include <linux/module.h>
   9#include <linux/backing-dev.h>
  10#include <linux/bio.h>
  11#include <linux/blkdev.h>
 
  12#include <linux/kmemleak.h>
  13#include <linux/mm.h>
  14#include <linux/init.h>
  15#include <linux/slab.h>
  16#include <linux/workqueue.h>
  17#include <linux/smp.h>
 
  18#include <linux/llist.h>
  19#include <linux/list_sort.h>
  20#include <linux/cpu.h>
  21#include <linux/cache.h>
  22#include <linux/sched/sysctl.h>
 
 
  23#include <linux/delay.h>
  24#include <linux/crash_dump.h>
 
 
 
  25
  26#include <trace/events/block.h>
  27
  28#include <linux/blk-mq.h>
  29#include "blk.h"
  30#include "blk-mq.h"
  31#include "blk-mq-tag.h"
  32
  33static DEFINE_MUTEX(all_q_mutex);
  34static LIST_HEAD(all_q_list);
  35
  36static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
 
 
 
 
 
 
 
 
 
 
  37
  38/*
  39 * Check if any of the ctx's have pending work in this hardware queue
 
  40 */
  41static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
  42{
  43	unsigned int i;
  44
  45	for (i = 0; i < hctx->ctx_map.size; i++)
  46		if (hctx->ctx_map.map[i].word)
  47			return true;
  48
  49	return false;
  50}
  51
  52static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
  53					      struct blk_mq_ctx *ctx)
  54{
  55	return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
  56}
  57
  58#define CTX_TO_BIT(hctx, ctx)	\
  59	((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
  60
  61/*
  62 * Mark this ctx as having pending work in this hardware queue
  63 */
  64static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
  65				     struct blk_mq_ctx *ctx)
  66{
  67	struct blk_align_bitmap *bm = get_bm(hctx, ctx);
  68
  69	if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
  70		set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
  71}
  72
  73static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
  74				      struct blk_mq_ctx *ctx)
  75{
  76	struct blk_align_bitmap *bm = get_bm(hctx, ctx);
  77
  78	clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
  79}
  80
  81void blk_mq_freeze_queue_start(struct request_queue *q)
 
 
 
 
 
  82{
  83	int freeze_depth;
 
 
 
 
 
  84
  85	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
  86	if (freeze_depth == 1) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  87		percpu_ref_kill(&q->q_usage_counter);
  88		blk_mq_run_hw_queues(q, false);
 
 
 
 
  89	}
  90}
  91EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
  92
  93static void blk_mq_freeze_queue_wait(struct request_queue *q)
  94{
  95	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
  96}
 
 
 
 
 
 
 
 
 
 
  97
  98/*
  99 * Guarantee no request is in use, so we can change any data structure of
 100 * the queue afterward.
 101 */
 102void blk_freeze_queue(struct request_queue *q)
 103{
 104	/*
 105	 * In the !blk_mq case we are only calling this to kill the
 106	 * q_usage_counter, otherwise this increases the freeze depth
 107	 * and waits for it to return to zero.  For this reason there is
 108	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
 109	 * exported to drivers as the only user for unfreeze is blk_mq.
 110	 */
 111	blk_mq_freeze_queue_start(q);
 112	blk_mq_freeze_queue_wait(q);
 113}
 114
 115void blk_mq_freeze_queue(struct request_queue *q)
 116{
 117	/*
 118	 * ...just an alias to keep freeze and unfreeze actions balanced
 119	 * in the blk_mq_* namespace
 120	 */
 121	blk_freeze_queue(q);
 122}
 123EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
 124
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 125void blk_mq_unfreeze_queue(struct request_queue *q)
 126{
 127	int freeze_depth;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 128
 129	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
 130	WARN_ON_ONCE(freeze_depth < 0);
 131	if (!freeze_depth) {
 132		percpu_ref_reinit(&q->q_usage_counter);
 133		wake_up_all(&q->mq_freeze_wq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 134	}
 
 135}
 136EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
 137
 138void blk_mq_wake_waiters(struct request_queue *q)
 139{
 140	struct blk_mq_hw_ctx *hctx;
 141	unsigned int i;
 142
 143	queue_for_each_hw_ctx(q, hctx, i)
 144		if (blk_mq_hw_queue_mapped(hctx))
 145			blk_mq_tag_wakeup_all(hctx->tags, true);
 
 
 
 
 
 146
 147	/*
 148	 * If we are called because the queue has now been marked as
 149	 * dying, we need to ensure that processes currently waiting on
 150	 * the queue are notified as well.
 151	 */
 152	wake_up_all(&q->mq_freeze_wq);
 
 
 
 
 153}
 
 154
 155bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
 
 156{
 157	return blk_mq_has_free_tags(hctx->tags);
 
 
 
 
 
 
 
 
 
 
 158}
 159EXPORT_SYMBOL(blk_mq_can_queue);
 160
 161static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
 162			       struct request *rq, unsigned int rw_flags)
 163{
 164	if (blk_queue_io_stat(q))
 165		rw_flags |= REQ_IO_STAT;
 
 
 166
 167	INIT_LIST_HEAD(&rq->queuelist);
 168	/* csd/requeue_work/fifo_time is initialized before use */
 169	rq->q = q;
 170	rq->mq_ctx = ctx;
 171	rq->cmd_flags |= rw_flags;
 172	/* do not touch atomic flags, it needs atomic ops against the timer */
 173	rq->cpu = -1;
 174	INIT_HLIST_NODE(&rq->hash);
 175	RB_CLEAR_NODE(&rq->rb_node);
 176	rq->rq_disk = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 177	rq->part = NULL;
 178	rq->start_time = jiffies;
 179#ifdef CONFIG_BLK_CGROUP
 180	rq->rl = NULL;
 181	set_start_time_ns(rq);
 182	rq->io_start_time_ns = 0;
 183#endif
 184	rq->nr_phys_segments = 0;
 185#if defined(CONFIG_BLK_DEV_INTEGRITY)
 186	rq->nr_integrity_segments = 0;
 187#endif
 188	rq->special = NULL;
 
 
 
 
 189	/* tag was already set */
 190	rq->errors = 0;
 
 191
 192	rq->cmd = rq->__cmd;
 
 193
 194	rq->extra_len = 0;
 195	rq->sense_len = 0;
 196	rq->resid_len = 0;
 197	rq->sense = NULL;
 
 
 
 
 
 198
 199	INIT_LIST_HEAD(&rq->timeout_list);
 200	rq->timeout = 0;
 
 
 
 
 
 
 
 
 
 
 201
 202	rq->end_io = NULL;
 203	rq->end_io_data = NULL;
 204	rq->next_rq = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 205
 206	ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
 207}
 208
 209static struct request *
 210__blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
 211{
 
 
 212	struct request *rq;
 213	unsigned int tag;
 214
 215	tag = blk_mq_get_tag(data);
 216	if (tag != BLK_MQ_TAG_FAIL) {
 217		rq = data->hctx->tags->rqs[tag];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 218
 219		if (blk_mq_tag_busy(data->hctx)) {
 220			rq->cmd_flags = REQ_MQ_INFLIGHT;
 221			atomic_inc(&data->hctx->nr_active);
 
 
 
 
 
 222		}
 
 
 223
 224		rq->tag = tag;
 225		blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
 226		return rq;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 227	}
 228
 229	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 230}
 231
 232struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
 233		unsigned int flags)
 
 234{
 235	struct blk_mq_ctx *ctx;
 236	struct blk_mq_hw_ctx *hctx;
 237	struct request *rq;
 238	struct blk_mq_alloc_data alloc_data;
 239	int ret;
 240
 241	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
 242	if (ret)
 243		return ERR_PTR(ret);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 244
 245	ctx = blk_mq_get_ctx(q);
 246	hctx = q->mq_ops->map_queue(q, ctx->cpu);
 247	blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
 248
 249	rq = __blk_mq_alloc_request(&alloc_data, rw);
 250	if (!rq && !(flags & BLK_MQ_REQ_NOWAIT)) {
 251		__blk_mq_run_hw_queue(hctx);
 252		blk_mq_put_ctx(ctx);
 253
 254		ctx = blk_mq_get_ctx(q);
 255		hctx = q->mq_ops->map_queue(q, ctx->cpu);
 256		blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
 257		rq =  __blk_mq_alloc_request(&alloc_data, rw);
 258		ctx = alloc_data.ctx;
 259	}
 260	blk_mq_put_ctx(ctx);
 
 
 
 
 
 
 
 
 
 
 
 261	if (!rq) {
 262		blk_queue_exit(q);
 263		return ERR_PTR(-EWOULDBLOCK);
 264	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 265	return rq;
 
 
 
 266}
 267EXPORT_SYMBOL(blk_mq_alloc_request);
 268
 269static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
 270				  struct blk_mq_ctx *ctx, struct request *rq)
 271{
 272	const int tag = rq->tag;
 273	struct request_queue *q = rq->q;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 274
 275	if (rq->cmd_flags & REQ_MQ_INFLIGHT)
 276		atomic_dec(&hctx->nr_active);
 277	rq->cmd_flags = 0;
 
 
 
 
 
 
 
 
 
 278
 279	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
 280	blk_mq_put_tag(hctx, tag, &ctx->last_tag);
 281	blk_queue_exit(q);
 
 282}
 
 283
 284void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
 285{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 286	struct blk_mq_ctx *ctx = rq->mq_ctx;
 
 
 287
 288	ctx->rq_completed[rq_is_sync(rq)]++;
 289	__blk_mq_free_request(hctx, ctx, rq);
 290
 
 
 
 
 
 
 
 
 
 291}
 292EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
 293
 294void blk_mq_free_request(struct request *rq)
 295{
 296	struct blk_mq_hw_ctx *hctx;
 297	struct request_queue *q = rq->q;
 298
 299	hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
 300	blk_mq_free_hctx_request(hctx, rq);
 
 
 
 
 
 
 
 
 301}
 302EXPORT_SYMBOL_GPL(blk_mq_free_request);
 303
 304inline void __blk_mq_end_request(struct request *rq, int error)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 305{
 306	blk_account_io_done(rq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 307
 308	if (rq->end_io) {
 309		rq->end_io(rq, error);
 
 
 310	} else {
 311		if (unlikely(blk_bidi_rq(rq)))
 312			blk_mq_free_request(rq->next_rq);
 313		blk_mq_free_request(rq);
 314	}
 315}
 316EXPORT_SYMBOL(__blk_mq_end_request);
 317
 318void blk_mq_end_request(struct request *rq, int error)
 319{
 320	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
 321		BUG();
 322	__blk_mq_end_request(rq, error);
 323}
 324EXPORT_SYMBOL(blk_mq_end_request);
 325
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 326static void __blk_mq_complete_request_remote(void *data)
 327{
 328	struct request *rq = data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 329
 330	rq->q->softirq_done_fn(rq);
 
 331}
 332
 333static void blk_mq_ipi_complete_request(struct request *rq)
 334{
 335	struct blk_mq_ctx *ctx = rq->mq_ctx;
 336	bool shared = false;
 337	int cpu;
 338
 339	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
 340		rq->q->softirq_done_fn(rq);
 341		return;
 342	}
 343
 344	cpu = get_cpu();
 345	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
 346		shared = cpus_share_cache(cpu, ctx->cpu);
 347
 348	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
 349		rq->csd.func = __blk_mq_complete_request_remote;
 350		rq->csd.info = rq;
 351		rq->csd.flags = 0;
 352		smp_call_function_single_async(ctx->cpu, &rq->csd);
 353	} else {
 354		rq->q->softirq_done_fn(rq);
 355	}
 356	put_cpu();
 357}
 358
 359static void __blk_mq_complete_request(struct request *rq)
 360{
 361	struct request_queue *q = rq->q;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 362
 363	if (!q->softirq_done_fn)
 364		blk_mq_end_request(rq, rq->errors);
 365	else
 366		blk_mq_ipi_complete_request(rq);
 
 367}
 
 368
 369/**
 370 * blk_mq_complete_request - end I/O on a request
 371 * @rq:		the request being processed
 372 *
 373 * Description:
 374 *	Ends all I/O on a request. It does not handle partial completions.
 375 *	The actual completion happens out-of-order, through a IPI handler.
 376 **/
 377void blk_mq_complete_request(struct request *rq, int error)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 378{
 379	struct request_queue *q = rq->q;
 380
 381	if (unlikely(blk_should_fake_timeout(q)))
 382		return;
 383	if (!blk_mark_rq_complete(rq)) {
 384		rq->errors = error;
 385		__blk_mq_complete_request(rq);
 
 
 
 386	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 387}
 388EXPORT_SYMBOL(blk_mq_complete_request);
 389
 390int blk_mq_request_started(struct request *rq)
 
 
 
 
 
 391{
 392	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
 
 
 393}
 394EXPORT_SYMBOL_GPL(blk_mq_request_started);
 395
 396void blk_mq_start_request(struct request *rq)
 397{
 398	struct request_queue *q = rq->q;
 399
 400	trace_block_rq_issue(q, rq);
 
 
 
 
 
 
 
 
 401
 402	rq->resid_len = blk_rq_bytes(rq);
 403	if (unlikely(blk_bidi_rq(rq)))
 404		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
 
 
 
 
 
 
 
 
 
 405
 406	blk_add_timer(rq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 407
 408	/*
 409	 * Ensure that ->deadline is visible before set the started
 410	 * flag and clear the completed flag.
 
 411	 */
 412	smp_mb__before_atomic();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 413
 414	/*
 415	 * Mark us as started and clear complete. Complete might have been
 416	 * set if requeue raced with timeout, which then marked it as
 417	 * complete. So be sure to clear complete again when we start
 418	 * the request, otherwise we'll ignore the completion event.
 419	 */
 420	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
 421		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
 422	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
 423		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 424
 425	if (q->dma_drain_size && blk_rq_bytes(rq)) {
 
 
 426		/*
 427		 * Make sure space for the drain appears.  We know we can do
 428		 * this because max_hw_segments has been adjusted to be one
 429		 * fewer than the device can handle.
 430		 */
 431		rq->nr_phys_segments++;
 
 
 
 
 
 
 
 432	}
 
 
 433}
 434EXPORT_SYMBOL(blk_mq_start_request);
 435
 436static void __blk_mq_requeue_request(struct request *rq)
 437{
 438	struct request_queue *q = rq->q;
 439
 440	trace_block_rq_requeue(q, rq);
 441
 442	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
 443		if (q->dma_drain_size && blk_rq_bytes(rq))
 444			rq->nr_phys_segments--;
 
 
 
 445	}
 446}
 447
 448void blk_mq_requeue_request(struct request *rq)
 449{
 
 
 
 450	__blk_mq_requeue_request(rq);
 451
 452	BUG_ON(blk_queued_rq(rq));
 453	blk_mq_add_to_requeue_list(rq, true);
 
 
 
 
 
 
 
 454}
 455EXPORT_SYMBOL(blk_mq_requeue_request);
 456
 457static void blk_mq_requeue_work(struct work_struct *work)
 458{
 459	struct request_queue *q =
 460		container_of(work, struct request_queue, requeue_work);
 461	LIST_HEAD(rq_list);
 462	struct request *rq, *next;
 463	unsigned long flags;
 464
 465	spin_lock_irqsave(&q->requeue_lock, flags);
 466	list_splice_init(&q->requeue_list, &rq_list);
 467	spin_unlock_irqrestore(&q->requeue_lock, flags);
 
 468
 469	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
 470		if (!(rq->cmd_flags & REQ_SOFTBARRIER))
 471			continue;
 472
 473		rq->cmd_flags &= ~REQ_SOFTBARRIER;
 474		list_del_init(&rq->queuelist);
 475		blk_mq_insert_request(rq, true, false, false);
 
 
 
 
 
 
 
 
 476	}
 477
 478	while (!list_empty(&rq_list)) {
 479		rq = list_entry(rq_list.next, struct request, queuelist);
 480		list_del_init(&rq->queuelist);
 481		blk_mq_insert_request(rq, false, false, false);
 482	}
 483
 484	/*
 485	 * Use the start variant of queue running here, so that running
 486	 * the requeue work will kick stopped queues.
 487	 */
 488	blk_mq_start_hw_queues(q);
 489}
 490
 491void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
 492{
 493	struct request_queue *q = rq->q;
 494	unsigned long flags;
 495
 496	/*
 497	 * We abuse this flag that is otherwise used by the I/O scheduler to
 498	 * request head insertation from the workqueue.
 499	 */
 500	BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
 501
 502	spin_lock_irqsave(&q->requeue_lock, flags);
 503	if (at_head) {
 504		rq->cmd_flags |= REQ_SOFTBARRIER;
 505		list_add(&rq->queuelist, &q->requeue_list);
 506	} else {
 507		list_add_tail(&rq->queuelist, &q->requeue_list);
 508	}
 509	spin_unlock_irqrestore(&q->requeue_lock, flags);
 510}
 511EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
 512
 513void blk_mq_cancel_requeue_work(struct request_queue *q)
 
 514{
 515	cancel_work_sync(&q->requeue_work);
 
 516}
 517EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);
 518
 519void blk_mq_kick_requeue_list(struct request_queue *q)
 520{
 521	kblockd_schedule_work(&q->requeue_work);
 522}
 523EXPORT_SYMBOL(blk_mq_kick_requeue_list);
 524
 525void blk_mq_abort_requeue_list(struct request_queue *q)
 526{
 527	unsigned long flags;
 528	LIST_HEAD(rq_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 529
 530	spin_lock_irqsave(&q->requeue_lock, flags);
 531	list_splice_init(&q->requeue_list, &rq_list);
 532	spin_unlock_irqrestore(&q->requeue_lock, flags);
 533
 534	while (!list_empty(&rq_list)) {
 535		struct request *rq;
 
 536
 537		rq = list_first_entry(&rq_list, struct request, queuelist);
 538		list_del_init(&rq->queuelist);
 539		rq->errors = -EIO;
 540		blk_mq_end_request(rq, rq->errors);
 541	}
 542}
 543EXPORT_SYMBOL(blk_mq_abort_requeue_list);
 544
 545struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
 546{
 547	if (tag < tags->nr_tags)
 548		return tags->rqs[tag];
 
 
 
 
 
 
 
 549
 550	return NULL;
 551}
 552EXPORT_SYMBOL(blk_mq_tag_to_rq);
 553
 554struct blk_mq_timeout_data {
 
 555	unsigned long next;
 556	unsigned int next_set;
 557};
 558
 559void blk_mq_rq_timed_out(struct request *req, bool reserved)
 560{
 561	struct blk_mq_ops *ops = req->q->mq_ops;
 562	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
 
 
 
 
 563
 564	/*
 565	 * We know that complete is set at this point. If STARTED isn't set
 566	 * anymore, then the request isn't active and the "timeout" should
 567	 * just be ignored. This can happen due to the bitflag ordering.
 568	 * Timeout first checks if STARTED is set, and if it is, assumes
 569	 * the request is active. But if we race with completion, then
 570	 * we both flags will get cleared. So check here again, and ignore
 571	 * a timeout event with a request that isn't active.
 572	 */
 573	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
 574		return;
 575
 576	if (ops->timeout)
 577		ret = ops->timeout(req, reserved);
 
 
 
 
 578
 579	switch (ret) {
 580	case BLK_EH_HANDLED:
 581		__blk_mq_complete_request(req);
 582		break;
 583	case BLK_EH_RESET_TIMER:
 584		blk_add_timer(req);
 585		blk_clear_rq_complete(req);
 586		break;
 587	case BLK_EH_NOT_HANDLED:
 588		break;
 589	default:
 590		printk(KERN_ERR "block: bad eh return: %d\n", ret);
 591		break;
 592	}
 593}
 594
 595static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
 596		struct request *rq, void *priv, bool reserved)
 597{
 598	struct blk_mq_timeout_data *data = priv;
 599
 600	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
 601		/*
 602		 * If a request wasn't started before the queue was
 603		 * marked dying, kill it here or it'll go unnoticed.
 604		 */
 605		if (unlikely(blk_queue_dying(rq->q))) {
 606			rq->errors = -EIO;
 607			blk_mq_end_request(rq, rq->errors);
 608		}
 609		return;
 610	}
 
 
 
 
 
 
 611
 612	if (time_after_eq(jiffies, rq->deadline)) {
 613		if (!blk_mark_rq_complete(rq))
 614			blk_mq_rq_timed_out(rq, reserved);
 615	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
 616		data->next = rq->deadline;
 617		data->next_set = 1;
 618	}
 619}
 620
 621static void blk_mq_timeout_work(struct work_struct *work)
 622{
 623	struct request_queue *q =
 624		container_of(work, struct request_queue, timeout_work);
 625	struct blk_mq_timeout_data data = {
 626		.next		= 0,
 627		.next_set	= 0,
 628	};
 629	int i;
 
 630
 631	if (blk_queue_enter(q, true))
 
 
 
 
 
 
 
 
 
 
 
 
 
 632		return;
 633
 634	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 635
 636	if (data.next_set) {
 637		data.next = blk_rq_timeout(round_jiffies_up(data.next));
 638		mod_timer(&q->timeout, data.next);
 639	} else {
 640		struct blk_mq_hw_ctx *hctx;
 641
 
 
 
 
 642		queue_for_each_hw_ctx(q, hctx, i) {
 643			/* the hctx may be unmapped, so check it here */
 644			if (blk_mq_hw_queue_mapped(hctx))
 645				blk_mq_tag_idle(hctx);
 646		}
 647	}
 648	blk_queue_exit(q);
 649}
 650
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 651/*
 652 * Reverse check our software queue for entries that we could potentially
 653 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 654 * too much time checking for merges.
 655 */
 656static bool blk_mq_attempt_merge(struct request_queue *q,
 657				 struct blk_mq_ctx *ctx, struct bio *bio)
 658{
 
 
 
 
 
 
 
 
 
 
 
 659	struct request *rq;
 660	int checked = 8;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 661
 662	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
 663		int el_ret;
 
 
 
 
 
 664
 665		if (!checked--)
 666			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 667
 668		if (!blk_rq_merge_ok(rq, bio))
 669			continue;
 
 670
 671		el_ret = blk_try_merge(rq, bio);
 672		if (el_ret == ELEVATOR_BACK_MERGE) {
 673			if (bio_attempt_back_merge(q, rq, bio)) {
 674				ctx->rq_merged++;
 675				return true;
 676			}
 677			break;
 678		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
 679			if (bio_attempt_front_merge(q, rq, bio)) {
 680				ctx->rq_merged++;
 681				return true;
 682			}
 683			break;
 684		}
 685	}
 
 686
 687	return false;
 
 688}
 689
 690/*
 691 * Process software queues that have been marked busy, splicing them
 692 * to the for-dispatch
 
 
 693 */
 694static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
 
 695{
 696	struct blk_mq_ctx *ctx;
 697	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 698
 699	for (i = 0; i < hctx->ctx_map.size; i++) {
 700		struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
 701		unsigned int off, bit;
 702
 703		if (!bm->word)
 704			continue;
 
 
 
 705
 706		bit = 0;
 707		off = i * hctx->ctx_map.bits_per_word;
 708		do {
 709			bit = find_next_bit(&bm->word, bm->depth, bit);
 710			if (bit >= bm->depth)
 711				break;
 
 712
 713			ctx = hctx->ctxs[bit + off];
 714			clear_bit(bit, &bm->word);
 715			spin_lock(&ctx->lock);
 716			list_splice_tail_init(&ctx->rq_list, list);
 717			spin_unlock(&ctx->lock);
 718
 719			bit++;
 720		} while (1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 721	}
 
 
 
 
 
 
 
 
 
 
 
 722}
 723
 
 
 724/*
 725 * Run this hardware queue, pulling any software queues mapped to it in.
 726 * Note that this function currently has various problems around ordering
 727 * of IO. In particular, we'd like FIFO behaviour on handling existing
 728 * items on the hctx->dispatch list. Ignore that for now.
 
 729 */
 730static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
 731{
 732	struct request_queue *q = hctx->queue;
 733	struct request *rq;
 734	LIST_HEAD(rq_list);
 735	LIST_HEAD(driver_list);
 736	struct list_head *dptr;
 737	int queued;
 738
 739	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
 740
 741	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
 742		return;
 743
 744	hctx->run++;
 
 
 
 
 
 
 
 
 745
 
 
 
 
 
 
 
 
 
 
 746	/*
 747	 * Touch any software queue that has pending entries.
 
 
 
 748	 */
 749	flush_busy_ctxs(hctx, &rq_list);
 
 
 
 
 
 
 
 
 750
 751	/*
 752	 * If we have previous entries on our dispatch list, grab them
 753	 * and stuff them at the front for more fair dispatch.
 754	 */
 755	if (!list_empty_careful(&hctx->dispatch)) {
 756		spin_lock(&hctx->lock);
 757		if (!list_empty(&hctx->dispatch))
 758			list_splice_init(&hctx->dispatch, &rq_list);
 759		spin_unlock(&hctx->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 760	}
 
 761
 762	/*
 763	 * Start off with dptr being NULL, so we start the first request
 764	 * immediately, even if we have more pending.
 765	 */
 766	dptr = NULL;
 
 
 
 
 
 
 
 
 
 
 
 767
 768	/*
 769	 * Now process all the entries, sending them to the driver.
 770	 */
 771	queued = 0;
 772	while (!list_empty(&rq_list)) {
 773		struct blk_mq_queue_data bd;
 774		int ret;
 775
 776		rq = list_first_entry(&rq_list, struct request, queuelist);
 
 
 
 
 
 
 777		list_del_init(&rq->queuelist);
 778
 779		bd.rq = rq;
 780		bd.list = dptr;
 781		bd.last = list_empty(&rq_list);
 782
 
 
 
 
 
 
 783		ret = q->mq_ops->queue_rq(hctx, &bd);
 784		switch (ret) {
 785		case BLK_MQ_RQ_QUEUE_OK:
 786			queued++;
 787			continue;
 788		case BLK_MQ_RQ_QUEUE_BUSY:
 789			list_add(&rq->queuelist, &rq_list);
 790			__blk_mq_requeue_request(rq);
 
 
 
 
 
 
 
 
 
 
 
 791			break;
 792		default:
 793			pr_err("blk-mq: bad return on queue: %d\n", ret);
 794		case BLK_MQ_RQ_QUEUE_ERROR:
 795			rq->errors = -EIO;
 796			blk_mq_end_request(rq, rq->errors);
 797			break;
 798		}
 
 
 
 
 799
 800		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
 801			break;
 802
 803		/*
 804		 * We've done the first request. If we have more than 1
 805		 * left in the list, set dptr to defer issue.
 806		 */
 807		if (!dptr && rq_list.next != rq_list.prev)
 808			dptr = &driver_list;
 809	}
 810
 811	if (!queued)
 812		hctx->dispatched[0]++;
 813	else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
 814		hctx->dispatched[ilog2(queued) + 1]++;
 815
 816	/*
 817	 * Any items that need requeuing? Stuff them into hctx->dispatch,
 818	 * that is where we will continue on next queue run.
 819	 */
 820	if (!list_empty(&rq_list)) {
 
 
 
 
 
 
 
 
 
 821		spin_lock(&hctx->lock);
 822		list_splice(&rq_list, &hctx->dispatch);
 823		spin_unlock(&hctx->lock);
 
 
 
 
 
 
 
 
 
 
 824		/*
 825		 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
 826		 * it's possible the queue is stopped and restarted again
 827		 * before this. Queue restart will dispatch requests. And since
 828		 * requests in rq_list aren't added into hctx->dispatch yet,
 829		 * the requests in rq_list might get lost.
 
 
 
 830		 *
 831		 * blk_mq_run_hw_queue() already checks the STOPPED bit
 832		 **/
 833		blk_mq_run_hw_queue(hctx, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 834	}
 
 
 
 
 
 
 
 
 
 
 
 
 835}
 836
 837/*
 838 * It'd be great if the workqueue API had a way to pass
 839 * in a mask and had some smarts for more clever placement.
 840 * For now we just round-robin here, switching for every
 841 * BLK_MQ_CPU_WORK_BATCH queued items.
 842 */
 843static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
 844{
 
 
 
 845	if (hctx->queue->nr_hw_queues == 1)
 846		return WORK_CPU_UNBOUND;
 847
 848	if (--hctx->next_cpu_batch <= 0) {
 849		int cpu = hctx->next_cpu, next_cpu;
 
 
 
 
 
 
 850
 851		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
 852		if (next_cpu >= nr_cpu_ids)
 853			next_cpu = cpumask_first(hctx->cpumask);
 
 
 
 
 
 
 854
 
 
 
 
 855		hctx->next_cpu = next_cpu;
 856		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
 857
 858		return cpu;
 859	}
 860
 861	return hctx->next_cpu;
 
 862}
 863
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 864void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
 865{
 866	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
 867	    !blk_mq_hw_queue_mapped(hctx)))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 868		return;
 869
 870	if (!async) {
 871		int cpu = get_cpu();
 872		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
 873			__blk_mq_run_hw_queue(hctx);
 874			put_cpu();
 875			return;
 876		}
 
 
 877
 878		put_cpu();
 879	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 880
 881	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
 882			&hctx->run_work, 0);
 
 883}
 884
 
 
 
 
 
 885void blk_mq_run_hw_queues(struct request_queue *q, bool async)
 886{
 887	struct blk_mq_hw_ctx *hctx;
 888	int i;
 889
 
 
 
 890	queue_for_each_hw_ctx(q, hctx, i) {
 891		if ((!blk_mq_hctx_has_pending(hctx) &&
 892		    list_empty_careful(&hctx->dispatch)) ||
 893		    test_bit(BLK_MQ_S_STOPPED, &hctx->state))
 894			continue;
 
 
 
 
 
 
 
 
 
 
 
 895
 896		blk_mq_run_hw_queue(hctx, async);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 897	}
 898}
 899EXPORT_SYMBOL(blk_mq_run_hw_queues);
 900
 
 
 
 
 
 
 
 
 
 901void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
 902{
 903	cancel_delayed_work(&hctx->run_work);
 904	cancel_delayed_work(&hctx->delay_work);
 905	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
 906}
 907EXPORT_SYMBOL(blk_mq_stop_hw_queue);
 908
 
 
 
 
 
 
 
 
 
 909void blk_mq_stop_hw_queues(struct request_queue *q)
 910{
 911	struct blk_mq_hw_ctx *hctx;
 912	int i;
 913
 914	queue_for_each_hw_ctx(q, hctx, i)
 915		blk_mq_stop_hw_queue(hctx);
 916}
 917EXPORT_SYMBOL(blk_mq_stop_hw_queues);
 918
 919void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
 920{
 921	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
 922
 923	blk_mq_run_hw_queue(hctx, false);
 924}
 925EXPORT_SYMBOL(blk_mq_start_hw_queue);
 926
 927void blk_mq_start_hw_queues(struct request_queue *q)
 928{
 929	struct blk_mq_hw_ctx *hctx;
 930	int i;
 931
 932	queue_for_each_hw_ctx(q, hctx, i)
 933		blk_mq_start_hw_queue(hctx);
 934}
 935EXPORT_SYMBOL(blk_mq_start_hw_queues);
 936
 937void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
 938{
 939	struct blk_mq_hw_ctx *hctx;
 940	int i;
 941
 942	queue_for_each_hw_ctx(q, hctx, i) {
 943		if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
 944			continue;
 945
 946		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
 947		blk_mq_run_hw_queue(hctx, async);
 948	}
 949}
 950EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
 951
 952static void blk_mq_run_work_fn(struct work_struct *work)
 953{
 954	struct blk_mq_hw_ctx *hctx;
 
 955
 956	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
 957
 958	__blk_mq_run_hw_queue(hctx);
 959}
 
 960
 961static void blk_mq_delay_work_fn(struct work_struct *work)
 962{
 963	struct blk_mq_hw_ctx *hctx;
 
 964
 965	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
 966
 967	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
 968		__blk_mq_run_hw_queue(hctx);
 969}
 970
 971void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
 
 
 
 
 
 
 
 
 972{
 973	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
 974		return;
 975
 976	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
 977			&hctx->delay_work, msecs_to_jiffies(msecs));
 
 
 
 
 978}
 979EXPORT_SYMBOL(blk_mq_delay_queue);
 980
 981static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
 982					    struct blk_mq_ctx *ctx,
 983					    struct request *rq,
 984					    bool at_head)
 985{
 986	trace_block_rq_insert(hctx->queue, rq);
 
 987
 988	if (at_head)
 989		list_add(&rq->queuelist, &ctx->rq_list);
 990	else
 991		list_add_tail(&rq->queuelist, &ctx->rq_list);
 992}
 
 
 
 
 
 993
 994static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
 995				    struct request *rq, bool at_head)
 996{
 997	struct blk_mq_ctx *ctx = rq->mq_ctx;
 
 
 
 
 
 
 998
 999	__blk_mq_insert_req_list(hctx, ctx, rq, at_head);
 
1000	blk_mq_hctx_mark_pending(hctx, ctx);
 
 
 
1001}
1002
1003void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
1004		bool async)
1005{
1006	struct request_queue *q = rq->q;
1007	struct blk_mq_hw_ctx *hctx;
1008	struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
1009
1010	current_ctx = blk_mq_get_ctx(q);
1011	if (!cpu_online(ctx->cpu))
1012		rq->mq_ctx = ctx = current_ctx;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1013
1014	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1015
1016	spin_lock(&ctx->lock);
1017	__blk_mq_insert_request(hctx, rq, at_head);
1018	spin_unlock(&ctx->lock);
 
1019
1020	if (run_queue)
1021		blk_mq_run_hw_queue(hctx, async);
 
 
 
 
 
 
 
 
1022
1023	blk_mq_put_ctx(current_ctx);
1024}
 
 
1025
1026static void blk_mq_insert_requests(struct request_queue *q,
1027				     struct blk_mq_ctx *ctx,
1028				     struct list_head *list,
1029				     int depth,
1030				     bool from_schedule)
1031
1032{
1033	struct blk_mq_hw_ctx *hctx;
1034	struct blk_mq_ctx *current_ctx;
1035
1036	trace_block_unplug(q, depth, !from_schedule);
 
 
1037
1038	current_ctx = blk_mq_get_ctx(q);
 
1039
1040	if (!cpu_online(ctx->cpu))
1041		ctx = current_ctx;
1042	hctx = q->mq_ops->map_queue(q, ctx->cpu);
 
 
 
 
 
 
1043
1044	/*
1045	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1046	 * offline now
 
1047	 */
1048	spin_lock(&ctx->lock);
1049	while (!list_empty(list)) {
1050		struct request *rq;
1051
1052		rq = list_first_entry(list, struct request, queuelist);
1053		list_del_init(&rq->queuelist);
1054		rq->mq_ctx = ctx;
1055		__blk_mq_insert_req_list(hctx, ctx, rq, false);
 
 
 
 
 
1056	}
1057	blk_mq_hctx_mark_pending(hctx, ctx);
1058	spin_unlock(&ctx->lock);
1059
1060	blk_mq_run_hw_queue(hctx, from_schedule);
1061	blk_mq_put_ctx(current_ctx);
1062}
1063
1064static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1065{
1066	struct request *rqa = container_of(a, struct request, queuelist);
1067	struct request *rqb = container_of(b, struct request, queuelist);
1068
1069	return !(rqa->mq_ctx < rqb->mq_ctx ||
1070		 (rqa->mq_ctx == rqb->mq_ctx &&
1071		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
 
 
 
 
 
 
1072}
1073
1074void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
 
 
 
 
 
 
 
 
 
 
 
1075{
1076	struct blk_mq_ctx *this_ctx;
1077	struct request_queue *this_q;
1078	struct request *rq;
1079	LIST_HEAD(list);
1080	LIST_HEAD(ctx_list);
1081	unsigned int depth;
1082
1083	list_splice_init(&plug->mq_list, &list);
 
 
 
1084
1085	list_sort(NULL, &list, plug_ctx_cmp);
 
 
 
 
1086
1087	this_q = NULL;
1088	this_ctx = NULL;
1089	depth = 0;
 
 
 
 
 
 
 
 
 
 
 
1090
1091	while (!list_empty(&list)) {
1092		rq = list_entry_rq(list.next);
1093		list_del_init(&rq->queuelist);
1094		BUG_ON(!rq->q);
1095		if (rq->mq_ctx != this_ctx) {
1096			if (this_ctx) {
1097				blk_mq_insert_requests(this_q, this_ctx,
1098							&ctx_list, depth,
1099							from_schedule);
1100			}
1101
1102			this_ctx = rq->mq_ctx;
1103			this_q = rq->q;
1104			depth = 0;
1105		}
1106
1107		depth++;
1108		list_add_tail(&rq->queuelist, &ctx_list);
 
1109	}
1110
1111	/*
1112	 * If 'this_ctx' is set, we know we have entries to complete
1113	 * on 'ctx_list'. Do those.
1114	 */
1115	if (this_ctx) {
1116		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1117				       from_schedule);
1118	}
1119}
1120
1121static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1122{
1123	init_request_from_bio(rq, bio);
 
 
 
 
 
 
1124
1125	if (blk_do_io_stat(rq))
1126		blk_account_io_start(rq, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1127}
1128
1129static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
 
1130{
1131	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1132		!blk_queue_nomerges(hctx->queue);
 
1133}
1134
1135static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1136					 struct blk_mq_ctx *ctx,
1137					 struct request *rq, struct bio *bio)
1138{
1139	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1140		blk_mq_bio_to_request(rq, bio);
1141		spin_lock(&ctx->lock);
1142insert_rq:
1143		__blk_mq_insert_request(hctx, rq, false);
1144		spin_unlock(&ctx->lock);
1145		return false;
1146	} else {
1147		struct request_queue *q = hctx->queue;
 
1148
1149		spin_lock(&ctx->lock);
1150		if (!blk_mq_attempt_merge(q, ctx, bio)) {
1151			blk_mq_bio_to_request(rq, bio);
1152			goto insert_rq;
 
 
 
 
1153		}
 
 
 
1154
1155		spin_unlock(&ctx->lock);
1156		__blk_mq_free_request(hctx, ctx, rq);
1157		return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
1158	}
 
1159}
1160
1161struct blk_map_ctx {
1162	struct blk_mq_hw_ctx *hctx;
1163	struct blk_mq_ctx *ctx;
1164};
1165
1166static struct request *blk_mq_map_request(struct request_queue *q,
1167					  struct bio *bio,
1168					  struct blk_map_ctx *data)
1169{
1170	struct blk_mq_hw_ctx *hctx;
1171	struct blk_mq_ctx *ctx;
1172	struct request *rq;
1173	int rw = bio_data_dir(bio);
1174	struct blk_mq_alloc_data alloc_data;
1175
1176	blk_queue_enter_live(q);
1177	ctx = blk_mq_get_ctx(q);
1178	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1179
1180	if (rw_is_sync(bio->bi_rw))
1181		rw |= REQ_SYNC;
1182
1183	trace_block_getrq(q, bio, rw);
1184	blk_mq_set_alloc_data(&alloc_data, q, BLK_MQ_REQ_NOWAIT, ctx, hctx);
1185	rq = __blk_mq_alloc_request(&alloc_data, rw);
1186	if (unlikely(!rq)) {
1187		__blk_mq_run_hw_queue(hctx);
1188		blk_mq_put_ctx(ctx);
1189		trace_block_sleeprq(q, bio, rw);
1190
1191		ctx = blk_mq_get_ctx(q);
1192		hctx = q->mq_ops->map_queue(q, ctx->cpu);
1193		blk_mq_set_alloc_data(&alloc_data, q, 0, ctx, hctx);
1194		rq = __blk_mq_alloc_request(&alloc_data, rw);
1195		ctx = alloc_data.ctx;
1196		hctx = alloc_data.hctx;
 
 
 
 
 
 
 
 
 
 
 
 
 
1197	}
1198
1199	hctx->queued++;
1200	data->hctx = hctx;
1201	data->ctx = ctx;
1202	return rq;
1203}
1204
1205static int blk_mq_direct_issue_request(struct request *rq, blk_qc_t *cookie)
 
1206{
1207	int ret;
1208	struct request_queue *q = rq->q;
1209	struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q,
1210			rq->mq_ctx->cpu);
1211	struct blk_mq_queue_data bd = {
1212		.rq = rq,
1213		.list = NULL,
1214		.last = 1
1215	};
1216	blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num);
1217
1218	/*
1219	 * For OK queue, we are done. For error, kill it. Any other
1220	 * error (busy), just add it to our list as we previously
1221	 * would have done
1222	 */
1223	ret = q->mq_ops->queue_rq(hctx, &bd);
1224	if (ret == BLK_MQ_RQ_QUEUE_OK) {
1225		*cookie = new_cookie;
1226		return 0;
 
 
 
 
 
 
 
1227	}
1228
1229	__blk_mq_requeue_request(rq);
 
 
 
1230
1231	if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1232		*cookie = BLK_QC_T_NONE;
1233		rq->errors = -EIO;
1234		blk_mq_end_request(rq, rq->errors);
1235		return 0;
 
 
 
1236	}
1237
1238	return -1;
1239}
1240
1241/*
1242 * Multiple hardware queue variant. This will not use per-process plugs,
1243 * but will attempt to bypass the hctx queueing if we can go straight to
1244 * hardware for SYNC IO.
1245 */
1246static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1247{
1248	const int is_sync = rw_is_sync(bio->bi_rw);
1249	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1250	struct blk_map_ctx data;
1251	struct request *rq;
1252	unsigned int request_count = 0;
1253	struct blk_plug *plug;
1254	struct request *same_queue_rq = NULL;
1255	blk_qc_t cookie;
1256
1257	blk_queue_bounce(q, &bio);
 
 
 
1258
1259	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1260		bio_io_error(bio);
1261		return BLK_QC_T_NONE;
 
1262	}
1263
1264	blk_queue_split(q, &bio, q->bio_split);
 
 
 
 
 
 
 
1265
1266	if (!is_flush_fua && !blk_queue_nomerges(q)) {
1267		if (blk_attempt_plug_merge(q, bio, &request_count,
1268					   &same_queue_rq))
1269			return BLK_QC_T_NONE;
1270	} else
1271		request_count = blk_plug_queued_count(q);
 
 
 
1272
1273	rq = blk_mq_map_request(q, bio, &data);
1274	if (unlikely(!rq))
1275		return BLK_QC_T_NONE;
1276
1277	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
 
 
 
 
1278
1279	if (unlikely(is_flush_fua)) {
1280		blk_mq_bio_to_request(rq, bio);
1281		blk_insert_flush(rq);
1282		goto run_queue;
1283	}
1284
1285	plug = current->plug;
1286	/*
1287	 * If the driver supports defer issued based on 'last', then
1288	 * queue it up like normal since we can potentially save some
1289	 * CPU this way.
1290	 */
1291	if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1292	    !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1293		struct request *old_rq = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1294
1295		blk_mq_bio_to_request(rq, bio);
1296
1297		/*
1298		 * We do limited pluging. If the bio can be merged, do that.
1299		 * Otherwise the existing request in the plug list will be
1300		 * issued. So the plug list will have one request at most
1301		 */
1302		if (plug) {
1303			/*
1304			 * The plug list might get flushed before this. If that
1305			 * happens, same_queue_rq is invalid and plug list is
1306			 * empty
1307			 */
1308			if (same_queue_rq && !list_empty(&plug->mq_list)) {
1309				old_rq = same_queue_rq;
1310				list_del_init(&old_rq->queuelist);
1311			}
1312			list_add_tail(&rq->queuelist, &plug->mq_list);
1313		} else /* is_sync */
1314			old_rq = rq;
1315		blk_mq_put_ctx(data.ctx);
1316		if (!old_rq)
1317			goto done;
1318		if (!blk_mq_direct_issue_request(old_rq, &cookie))
1319			goto done;
1320		blk_mq_insert_request(old_rq, false, true, true);
1321		goto done;
 
 
 
 
 
 
 
1322	}
1323
1324	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1325		/*
1326		 * For a SYNC request, send it to the hardware immediately. For
1327		 * an ASYNC request, just ensure that we run it later on. The
1328		 * latter allows for merging opportunities and more efficient
1329		 * dispatching.
1330		 */
1331run_queue:
1332		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1333	}
1334	blk_mq_put_ctx(data.ctx);
1335done:
1336	return cookie;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1337}
1338
1339/*
1340 * Single hardware queue variant. This will attempt to use any per-process
1341 * plug for merging and IO deferral.
 
1342 */
1343static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1344{
1345	const int is_sync = rw_is_sync(bio->bi_rw);
1346	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1347	struct blk_plug *plug;
1348	unsigned int request_count = 0;
1349	struct blk_map_ctx data;
1350	struct request *rq;
1351	blk_qc_t cookie;
1352
1353	blk_queue_bounce(q, &bio);
 
 
 
 
 
 
 
 
 
 
 
 
1354
1355	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1356		bio_io_error(bio);
1357		return BLK_QC_T_NONE;
1358	}
1359
1360	blk_queue_split(q, &bio, q->bio_split);
1361
1362	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1363	    blk_attempt_plug_merge(q, bio, &request_count, NULL))
1364		return BLK_QC_T_NONE;
 
 
 
 
 
1365
1366	rq = blk_mq_map_request(q, bio, &data);
1367	if (unlikely(!rq))
1368		return BLK_QC_T_NONE;
1369
1370	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
 
 
1371
1372	if (unlikely(is_flush_fua)) {
1373		blk_mq_bio_to_request(rq, bio);
1374		blk_insert_flush(rq);
1375		goto run_queue;
1376	}
1377
1378	/*
1379	 * A task plug currently exists. Since this is completely lockless,
1380	 * utilize that to temporarily store requests until the task is
1381	 * either done or scheduled away.
1382	 */
1383	plug = current->plug;
1384	if (plug) {
1385		blk_mq_bio_to_request(rq, bio);
1386		if (!request_count)
1387			trace_block_plug(q);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1388
1389		blk_mq_put_ctx(data.ctx);
 
 
 
1390
1391		if (request_count >= BLK_MAX_REQUEST_COUNT) {
1392			blk_flush_plug_list(plug, false);
1393			trace_block_plug(q);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1394		}
 
 
1395
1396		list_add_tail(&rq->queuelist, &plug->mq_list);
1397		return cookie;
 
 
 
 
1398	}
 
 
 
 
 
 
 
1399
1400	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1401		/*
1402		 * For a SYNC request, send it to the hardware immediately. For
1403		 * an ASYNC request, just ensure that we run it later on. The
1404		 * latter allows for merging opportunities and more efficient
1405		 * dispatching.
1406		 */
1407run_queue:
1408		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1409	}
1410
1411	blk_mq_put_ctx(data.ctx);
1412	return cookie;
1413}
 
 
1414
1415/*
1416 * Default mapping to a software queue, since we use one per CPU.
 
1417 */
1418struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1419{
1420	return q->queue_hw_ctx[q->mq_map[cpu]];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1421}
1422EXPORT_SYMBOL(blk_mq_map_queue);
1423
1424static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1425		struct blk_mq_tags *tags, unsigned int hctx_idx)
1426{
 
1427	struct page *page;
1428
1429	if (tags->rqs && set->ops->exit_request) {
 
 
 
 
 
 
 
 
1430		int i;
1431
1432		for (i = 0; i < tags->nr_tags; i++) {
1433			if (!tags->rqs[i])
 
 
1434				continue;
1435			set->ops->exit_request(set->driver_data, tags->rqs[i],
1436						hctx_idx, i);
1437			tags->rqs[i] = NULL;
1438		}
1439	}
1440
 
 
1441	while (!list_empty(&tags->page_list)) {
1442		page = list_first_entry(&tags->page_list, struct page, lru);
1443		list_del_init(&page->lru);
1444		/*
1445		 * Remove kmemleak object previously allocated in
1446		 * blk_mq_init_rq_map().
1447		 */
1448		kmemleak_free(page_address(page));
1449		__free_pages(page, page->private);
1450	}
 
1451
 
 
1452	kfree(tags->rqs);
 
 
 
1453
1454	blk_mq_free_tags(tags);
1455}
1456
1457static size_t order_to_size(unsigned int order)
 
1458{
1459	return (size_t)PAGE_SIZE << order;
 
 
 
 
 
 
 
 
 
 
 
 
 
1460}
1461
1462static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1463		unsigned int hctx_idx)
1464{
 
 
 
 
 
 
 
 
 
 
 
1465	struct blk_mq_tags *tags;
1466	unsigned int i, j, entries_per_page, max_order = 4;
1467	size_t rq_size, left;
1468
1469	tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1470				set->numa_node,
 
 
1471				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1472	if (!tags)
1473		return NULL;
1474
1475	INIT_LIST_HEAD(&tags->page_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1476
1477	tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1478				 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1479				 set->numa_node);
1480	if (!tags->rqs) {
1481		blk_mq_free_tags(tags);
1482		return NULL;
1483	}
1484
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1485	/*
1486	 * rq_size is the size of the request plus driver payload, rounded
1487	 * to the cacheline size
1488	 */
1489	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1490				cache_line_size());
1491	left = rq_size * set->queue_depth;
1492
1493	for (i = 0; i < set->queue_depth; ) {
1494		int this_order = max_order;
1495		struct page *page;
1496		int to_do;
1497		void *p;
1498
1499		while (left < order_to_size(this_order - 1) && this_order)
1500			this_order--;
1501
1502		do {
1503			page = alloc_pages_node(set->numa_node,
1504				GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1505				this_order);
1506			if (page)
1507				break;
1508			if (!this_order--)
1509				break;
1510			if (order_to_size(this_order) < rq_size)
1511				break;
1512		} while (1);
1513
1514		if (!page)
1515			goto fail;
1516
1517		page->private = this_order;
1518		list_add_tail(&page->lru, &tags->page_list);
1519
1520		p = page_address(page);
1521		/*
1522		 * Allow kmemleak to scan these pages as they contain pointers
1523		 * to additional allocations like via ops->init_request().
1524		 */
1525		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_KERNEL);
1526		entries_per_page = order_to_size(this_order) / rq_size;
1527		to_do = min(entries_per_page, set->queue_depth - i);
1528		left -= to_do * rq_size;
1529		for (j = 0; j < to_do; j++) {
1530			tags->rqs[i] = p;
1531			if (set->ops->init_request) {
1532				if (set->ops->init_request(set->driver_data,
1533						tags->rqs[i], hctx_idx, i,
1534						set->numa_node)) {
1535					tags->rqs[i] = NULL;
1536					goto fail;
1537				}
1538			}
1539
1540			p += rq_size;
1541			i++;
1542		}
1543	}
1544	return tags;
1545
1546fail:
1547	blk_mq_free_rq_map(set, tags, hctx_idx);
1548	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1549}
1550
1551static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
 
1552{
1553	kfree(bitmap->map);
 
 
 
 
1554}
1555
1556static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1557{
1558	unsigned int bpw = 8, total, num_maps, i;
 
1559
1560	bitmap->bits_per_word = bpw;
 
 
1561
1562	num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1563	bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1564					GFP_KERNEL, node);
1565	if (!bitmap->map)
1566		return -ENOMEM;
 
 
 
 
1567
1568	total = nr_cpu_ids;
1569	for (i = 0; i < num_maps; i++) {
1570		bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1571		total -= bitmap->map[i].depth;
 
 
 
 
 
1572	}
1573
1574	return 0;
1575}
1576
1577static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1578{
1579	struct request_queue *q = hctx->queue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1580	struct blk_mq_ctx *ctx;
1581	LIST_HEAD(tmp);
 
 
 
 
 
1582
1583	/*
1584	 * Move ctx entries to new CPU, if this one is going away.
1585	 */
1586	ctx = __blk_mq_get_ctx(q, cpu);
1587
1588	spin_lock(&ctx->lock);
1589	if (!list_empty(&ctx->rq_list)) {
1590		list_splice_init(&ctx->rq_list, &tmp);
1591		blk_mq_hctx_clear_pending(hctx, ctx);
1592	}
1593	spin_unlock(&ctx->lock);
1594
1595	if (list_empty(&tmp))
1596		return NOTIFY_OK;
1597
1598	ctx = blk_mq_get_ctx(q);
1599	spin_lock(&ctx->lock);
 
1600
1601	while (!list_empty(&tmp)) {
1602		struct request *rq;
 
1603
1604		rq = list_first_entry(&tmp, struct request, queuelist);
1605		rq->mq_ctx = ctx;
1606		list_move_tail(&rq->queuelist, &ctx->rq_list);
1607	}
 
 
 
 
1608
1609	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1610	blk_mq_hctx_mark_pending(hctx, ctx);
 
 
 
 
 
 
 
1611
1612	spin_unlock(&ctx->lock);
 
 
1613
1614	blk_mq_run_hw_queue(hctx, true);
1615	blk_mq_put_ctx(ctx);
1616	return NOTIFY_OK;
1617}
1618
1619static int blk_mq_hctx_notify(void *data, unsigned long action,
1620			      unsigned int cpu)
1621{
1622	struct blk_mq_hw_ctx *hctx = data;
1623
1624	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1625		return blk_mq_hctx_cpu_offline(hctx, cpu);
1626
1627	/*
1628	 * In case of CPU online, tags may be reallocated
1629	 * in blk_mq_map_swqueue() after mapping is updated.
 
 
1630	 */
1631
1632	return NOTIFY_OK;
1633}
1634
1635/* hctx->ctxs will be freed in queue's release handler */
1636static void blk_mq_exit_hctx(struct request_queue *q,
1637		struct blk_mq_tag_set *set,
1638		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1639{
1640	unsigned flush_start_tag = set->queue_depth;
1641
1642	blk_mq_tag_idle(hctx);
 
1643
 
 
 
1644	if (set->ops->exit_request)
1645		set->ops->exit_request(set->driver_data,
1646				       hctx->fq->flush_rq, hctx_idx,
1647				       flush_start_tag + hctx_idx);
1648
1649	if (set->ops->exit_hctx)
1650		set->ops->exit_hctx(hctx, hctx_idx);
1651
1652	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1653	blk_free_flush_queue(hctx->fq);
1654	blk_mq_free_bitmap(&hctx->ctx_map);
 
 
 
 
1655}
1656
1657static void blk_mq_exit_hw_queues(struct request_queue *q,
1658		struct blk_mq_tag_set *set, int nr_queue)
1659{
1660	struct blk_mq_hw_ctx *hctx;
1661	unsigned int i;
1662
1663	queue_for_each_hw_ctx(q, hctx, i) {
1664		if (i == nr_queue)
1665			break;
1666		blk_mq_exit_hctx(q, set, hctx, i);
1667	}
1668}
1669
1670static void blk_mq_free_hw_queues(struct request_queue *q,
1671		struct blk_mq_tag_set *set)
 
1672{
1673	struct blk_mq_hw_ctx *hctx;
1674	unsigned int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1675
1676	queue_for_each_hw_ctx(q, hctx, i)
1677		free_cpumask_var(hctx->cpumask);
 
 
 
 
 
 
 
1678}
1679
1680static int blk_mq_init_hctx(struct request_queue *q,
1681		struct blk_mq_tag_set *set,
1682		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1683{
1684	int node;
1685	unsigned flush_start_tag = set->queue_depth;
1686
1687	node = hctx->numa_node;
 
 
 
 
 
 
 
1688	if (node == NUMA_NO_NODE)
1689		node = hctx->numa_node = set->numa_node;
 
1690
1691	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1692	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1693	spin_lock_init(&hctx->lock);
1694	INIT_LIST_HEAD(&hctx->dispatch);
1695	hctx->queue = q;
1696	hctx->queue_num = hctx_idx;
1697	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1698
1699	blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1700					blk_mq_hctx_notify, hctx);
1701	blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1702
1703	hctx->tags = set->tags[hctx_idx];
1704
1705	/*
1706	 * Allocate space for all possible cpus to avoid allocation at
1707	 * runtime
1708	 */
1709	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1710					GFP_KERNEL, node);
1711	if (!hctx->ctxs)
1712		goto unregister_cpu_notifier;
1713
1714	if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
 
1715		goto free_ctxs;
1716
1717	hctx->nr_ctx = 0;
1718
1719	if (set->ops->init_hctx &&
1720	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1721		goto free_bitmap;
1722
1723	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1724	if (!hctx->fq)
1725		goto exit_hctx;
1726
1727	if (set->ops->init_request &&
1728	    set->ops->init_request(set->driver_data,
1729				   hctx->fq->flush_rq, hctx_idx,
1730				   flush_start_tag + hctx_idx, node))
1731		goto free_fq;
1732
1733	return 0;
1734
1735 free_fq:
1736	kfree(hctx->fq);
1737 exit_hctx:
1738	if (set->ops->exit_hctx)
1739		set->ops->exit_hctx(hctx, hctx_idx);
1740 free_bitmap:
1741	blk_mq_free_bitmap(&hctx->ctx_map);
1742 free_ctxs:
1743	kfree(hctx->ctxs);
1744 unregister_cpu_notifier:
1745	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1746
1747	return -1;
 
 
1748}
1749
1750static void blk_mq_init_cpu_queues(struct request_queue *q,
1751				   unsigned int nr_hw_queues)
1752{
1753	unsigned int i;
 
1754
1755	for_each_possible_cpu(i) {
1756		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1757		struct blk_mq_hw_ctx *hctx;
 
1758
1759		memset(__ctx, 0, sizeof(*__ctx));
1760		__ctx->cpu = i;
1761		spin_lock_init(&__ctx->lock);
1762		INIT_LIST_HEAD(&__ctx->rq_list);
 
 
1763		__ctx->queue = q;
1764
1765		/* If the cpu isn't online, the cpu is mapped to first hctx */
1766		if (!cpu_online(i))
1767			continue;
1768
1769		hctx = q->mq_ops->map_queue(q, i);
1770
1771		/*
1772		 * Set local node, IFF we have more than one hw queue. If
1773		 * not, we remain on the home node of the device
1774		 */
1775		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1776			hctx->numa_node = local_memory_node(cpu_to_node(i));
 
 
 
1777	}
1778}
1779
1780static void blk_mq_map_swqueue(struct request_queue *q,
1781			       const struct cpumask *online_mask)
 
1782{
1783	unsigned int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1784	struct blk_mq_hw_ctx *hctx;
1785	struct blk_mq_ctx *ctx;
1786	struct blk_mq_tag_set *set = q->tag_set;
1787
1788	/*
1789	 * Avoid others reading imcomplete hctx->cpumask through sysfs
1790	 */
1791	mutex_lock(&q->sysfs_lock);
1792
1793	queue_for_each_hw_ctx(q, hctx, i) {
1794		cpumask_clear(hctx->cpumask);
1795		hctx->nr_ctx = 0;
 
1796	}
1797
1798	/*
1799	 * Map software to hardware queues
 
 
1800	 */
1801	for_each_possible_cpu(i) {
1802		/* If the cpu isn't online, the cpu is mapped to first hctx */
1803		if (!cpumask_test_cpu(i, online_mask))
1804			continue;
1805
1806		ctx = per_cpu_ptr(q->queue_ctx, i);
1807		hctx = q->mq_ops->map_queue(q, i);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1808
1809		cpumask_set_cpu(i, hctx->cpumask);
1810		ctx->index_hw = hctx->nr_ctx;
1811		hctx->ctxs[hctx->nr_ctx++] = ctx;
1812	}
1813
1814	mutex_unlock(&q->sysfs_lock);
1815
1816	queue_for_each_hw_ctx(q, hctx, i) {
1817		struct blk_mq_ctxmap *map = &hctx->ctx_map;
1818
1819		/*
1820		 * If no software queues are mapped to this hardware queue,
1821		 * disable it and free the request entries.
1822		 */
1823		if (!hctx->nr_ctx) {
1824			if (set->tags[i]) {
1825				blk_mq_free_rq_map(set, set->tags[i], i);
1826				set->tags[i] = NULL;
1827			}
 
 
 
1828			hctx->tags = NULL;
1829			continue;
1830		}
1831
1832		/* unmapped hw queue can be remapped after CPU topo changed */
1833		if (!set->tags[i])
1834			set->tags[i] = blk_mq_init_rq_map(set, i);
1835		hctx->tags = set->tags[i];
1836		WARN_ON(!hctx->tags);
1837
1838		cpumask_copy(hctx->tags->cpumask, hctx->cpumask);
1839		/*
1840		 * Set the map size to the number of mapped software queues.
1841		 * This is more accurate and more efficient than looping
1842		 * over all possibly mapped software queues.
1843		 */
1844		map->size = DIV_ROUND_UP(hctx->nr_ctx, map->bits_per_word);
1845
1846		/*
1847		 * Initialize batch roundrobin counts
1848		 */
1849		hctx->next_cpu = cpumask_first(hctx->cpumask);
1850		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1851	}
1852}
1853
 
 
 
 
1854static void queue_set_hctx_shared(struct request_queue *q, bool shared)
1855{
1856	struct blk_mq_hw_ctx *hctx;
1857	int i;
1858
1859	queue_for_each_hw_ctx(q, hctx, i) {
1860		if (shared)
1861			hctx->flags |= BLK_MQ_F_TAG_SHARED;
1862		else
1863			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
 
 
1864	}
1865}
1866
1867static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
 
1868{
1869	struct request_queue *q;
1870
 
 
1871	list_for_each_entry(q, &set->tag_list, tag_set_list) {
1872		blk_mq_freeze_queue(q);
1873		queue_set_hctx_shared(q, shared);
1874		blk_mq_unfreeze_queue(q);
1875	}
1876}
1877
1878static void blk_mq_del_queue_tag_set(struct request_queue *q)
1879{
1880	struct blk_mq_tag_set *set = q->tag_set;
1881
1882	mutex_lock(&set->tag_list_lock);
1883	list_del_init(&q->tag_set_list);
1884	if (list_is_singular(&set->tag_list)) {
1885		/* just transitioned to unshared */
1886		set->flags &= ~BLK_MQ_F_TAG_SHARED;
1887		/* update existing queue */
1888		blk_mq_update_tag_set_depth(set, false);
1889	}
1890	mutex_unlock(&set->tag_list_lock);
 
1891}
1892
1893static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1894				     struct request_queue *q)
1895{
1896	q->tag_set = set;
1897
1898	mutex_lock(&set->tag_list_lock);
1899
1900	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
1901	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
1902		set->flags |= BLK_MQ_F_TAG_SHARED;
 
 
 
1903		/* update existing queue */
1904		blk_mq_update_tag_set_depth(set, true);
1905	}
1906	if (set->flags & BLK_MQ_F_TAG_SHARED)
1907		queue_set_hctx_shared(q, true);
1908	list_add_tail(&q->tag_set_list, &set->tag_list);
1909
1910	mutex_unlock(&set->tag_list_lock);
1911}
1912
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1913/*
1914 * It is the actual release handler for mq, but we do it from
1915 * request queue's release handler for avoiding use-after-free
1916 * and headache because q->mq_kobj shouldn't have been introduced,
1917 * but we can't group ctx/kctx kobj without it.
1918 */
1919void blk_mq_release(struct request_queue *q)
1920{
1921	struct blk_mq_hw_ctx *hctx;
1922	unsigned int i;
 
 
 
1923
1924	/* hctx kobj stays in hctx */
1925	queue_for_each_hw_ctx(q, hctx, i) {
1926		if (!hctx)
1927			continue;
1928		kfree(hctx->ctxs);
1929		kfree(hctx);
1930	}
1931
1932	kfree(q->mq_map);
1933	q->mq_map = NULL;
1934
1935	kfree(q->queue_hw_ctx);
 
 
 
 
 
1936
1937	/* ctx kobj stays in queue_ctx */
1938	free_percpu(q->queue_ctx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1939}
1940
1941struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1942{
1943	struct request_queue *uninit_q, *q;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1944
1945	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1946	if (!uninit_q)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1947		return ERR_PTR(-ENOMEM);
 
 
 
 
 
1948
1949	q = blk_mq_init_allocated_queue(set, uninit_q);
1950	if (IS_ERR(q))
1951		blk_cleanup_queue(uninit_q);
 
1952
1953	return q;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1954}
1955EXPORT_SYMBOL(blk_mq_init_queue);
1956
1957static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
1958						struct request_queue *q)
1959{
1960	int i, j;
1961	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
1962
1963	blk_mq_sysfs_unregister(q);
 
1964	for (i = 0; i < set->nr_hw_queues; i++) {
1965		int node;
1966
1967		if (hctxs[i])
1968			continue;
1969
1970		node = blk_mq_hw_queue_to_node(q->mq_map, i);
1971		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1972					GFP_KERNEL, node);
1973		if (!hctxs[i])
1974			break;
1975
1976		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
1977						node)) {
1978			kfree(hctxs[i]);
1979			hctxs[i] = NULL;
1980			break;
1981		}
1982
1983		atomic_set(&hctxs[i]->nr_active, 0);
1984		hctxs[i]->numa_node = node;
1985		hctxs[i]->queue_num = i;
1986
1987		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
1988			free_cpumask_var(hctxs[i]->cpumask);
1989			kfree(hctxs[i]);
1990			hctxs[i] = NULL;
1991			break;
1992		}
1993		blk_mq_hctx_kobj_init(hctxs[i]);
1994	}
1995	for (j = i; j < q->nr_hw_queues; j++) {
1996		struct blk_mq_hw_ctx *hctx = hctxs[j];
 
 
 
 
 
 
 
 
 
 
 
 
 
1997
1998		if (hctx) {
1999			if (hctx->tags) {
2000				blk_mq_free_rq_map(set, hctx->tags, j);
2001				set->tags[j] = NULL;
2002			}
2003			blk_mq_exit_hctx(q, set, hctx, j);
2004			free_cpumask_var(hctx->cpumask);
2005			kobject_put(&hctx->kobj);
2006			kfree(hctx->ctxs);
2007			kfree(hctx);
2008			hctxs[j] = NULL;
2009
2010		}
2011	}
2012	q->nr_hw_queues = i;
2013	blk_mq_sysfs_register(q);
 
2014}
2015
2016struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2017						  struct request_queue *q)
2018{
2019	/* mark the queue as mq asap */
2020	q->mq_ops = set->ops;
2021
2022	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2023	if (!q->queue_ctx)
2024		return ERR_PTR(-ENOMEM);
 
 
 
 
 
2025
2026	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2027						GFP_KERNEL, set->numa_node);
2028	if (!q->queue_hw_ctx)
2029		goto err_percpu;
2030
2031	q->mq_map = blk_mq_make_queue_map(set);
2032	if (!q->mq_map)
2033		goto err_map;
2034
2035	blk_mq_realloc_hw_ctxs(set, q);
2036	if (!q->nr_hw_queues)
2037		goto err_hctxs;
2038
2039	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2040	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2041
2042	q->nr_queues = nr_cpu_ids;
2043
2044	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
 
2045
2046	if (!(set->flags & BLK_MQ_F_SG_MERGE))
2047		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2048
2049	q->sg_reserved_size = INT_MAX;
2050
2051	INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
2052	INIT_LIST_HEAD(&q->requeue_list);
2053	spin_lock_init(&q->requeue_lock);
2054
2055	if (q->nr_hw_queues > 1)
2056		blk_queue_make_request(q, blk_mq_make_request);
2057	else
2058		blk_queue_make_request(q, blk_sq_make_request);
2059
2060	/*
2061	 * Do this after blk_queue_make_request() overrides it...
2062	 */
2063	q->nr_requests = set->queue_depth;
2064
2065	if (set->ops->complete)
2066		blk_queue_softirq_done(q, set->ops->complete);
2067
2068	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2069
2070	get_online_cpus();
2071	mutex_lock(&all_q_mutex);
2072
2073	list_add_tail(&q->all_q_node, &all_q_list);
2074	blk_mq_add_queue_tag_set(set, q);
2075	blk_mq_map_swqueue(q, cpu_online_mask);
2076
2077	mutex_unlock(&all_q_mutex);
2078	put_online_cpus();
2079
2080	return q;
2081
2082err_hctxs:
2083	kfree(q->mq_map);
2084err_map:
2085	kfree(q->queue_hw_ctx);
2086err_percpu:
2087	free_percpu(q->queue_ctx);
2088	return ERR_PTR(-ENOMEM);
2089}
2090EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2091
2092void blk_mq_free_queue(struct request_queue *q)
 
2093{
2094	struct blk_mq_tag_set	*set = q->tag_set;
2095
2096	mutex_lock(&all_q_mutex);
2097	list_del_init(&q->all_q_node);
2098	mutex_unlock(&all_q_mutex);
2099
 
 
 
2100	blk_mq_del_queue_tag_set(q);
2101
2102	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2103	blk_mq_free_hw_queues(q, set);
2104}
2105
2106/* Basically redo blk_mq_init_queue with queue frozen */
2107static void blk_mq_queue_reinit(struct request_queue *q,
2108				const struct cpumask *online_mask)
2109{
2110	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2111
2112	blk_mq_sysfs_unregister(q);
2113
2114	blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues, online_mask);
2115
2116	/*
2117	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2118	 * we should change hctx numa_node according to new topology (this
2119	 * involves free and re-allocate memory, worthy doing?)
2120	 */
2121
2122	blk_mq_map_swqueue(q, online_mask);
2123
2124	blk_mq_sysfs_register(q);
2125}
2126
2127static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
2128				      unsigned long action, void *hcpu)
2129{
2130	struct request_queue *q;
2131	int cpu = (unsigned long)hcpu;
2132	/*
2133	 * New online cpumask which is going to be set in this hotplug event.
2134	 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2135	 * one-by-one and dynamically allocating this could result in a failure.
2136	 */
2137	static struct cpumask online_new;
2138
2139	/*
2140	 * Before hotadded cpu starts handling requests, new mappings must
2141	 * be established.  Otherwise, these requests in hw queue might
2142	 * never be dispatched.
2143	 *
2144	 * For example, there is a single hw queue (hctx) and two CPU queues
2145	 * (ctx0 for CPU0, and ctx1 for CPU1).
2146	 *
2147	 * Now CPU1 is just onlined and a request is inserted into
2148	 * ctx1->rq_list and set bit0 in pending bitmap as ctx1->index_hw is
2149	 * still zero.
2150	 *
2151	 * And then while running hw queue, flush_busy_ctxs() finds bit0 is
2152	 * set in pending bitmap and tries to retrieve requests in
2153	 * hctx->ctxs[0]->rq_list.  But htx->ctxs[0] is a pointer to ctx0,
2154	 * so the request in ctx1->rq_list is ignored.
2155	 */
2156	switch (action & ~CPU_TASKS_FROZEN) {
2157	case CPU_DEAD:
2158	case CPU_UP_CANCELED:
2159		cpumask_copy(&online_new, cpu_online_mask);
2160		break;
2161	case CPU_UP_PREPARE:
2162		cpumask_copy(&online_new, cpu_online_mask);
2163		cpumask_set_cpu(cpu, &online_new);
2164		break;
2165	default:
2166		return NOTIFY_OK;
2167	}
2168
2169	mutex_lock(&all_q_mutex);
2170
2171	/*
2172	 * We need to freeze and reinit all existing queues.  Freezing
2173	 * involves synchronous wait for an RCU grace period and doing it
2174	 * one by one may take a long time.  Start freezing all queues in
2175	 * one swoop and then wait for the completions so that freezing can
2176	 * take place in parallel.
2177	 */
2178	list_for_each_entry(q, &all_q_list, all_q_node)
2179		blk_mq_freeze_queue_start(q);
2180	list_for_each_entry(q, &all_q_list, all_q_node) {
2181		blk_mq_freeze_queue_wait(q);
2182
2183		/*
2184		 * timeout handler can't touch hw queue during the
2185		 * reinitialization
2186		 */
2187		del_timer_sync(&q->timeout);
2188	}
2189
2190	list_for_each_entry(q, &all_q_list, all_q_node)
2191		blk_mq_queue_reinit(q, &online_new);
2192
2193	list_for_each_entry(q, &all_q_list, all_q_node)
2194		blk_mq_unfreeze_queue(q);
2195
2196	mutex_unlock(&all_q_mutex);
2197	return NOTIFY_OK;
2198}
2199
2200static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2201{
2202	int i;
2203
2204	for (i = 0; i < set->nr_hw_queues; i++) {
2205		set->tags[i] = blk_mq_init_rq_map(set, i);
2206		if (!set->tags[i])
2207			goto out_unwind;
 
2208	}
2209
2210	return 0;
2211
2212out_unwind:
2213	while (--i >= 0)
2214		blk_mq_free_rq_map(set, set->tags[i], i);
 
 
 
 
 
2215
2216	return -ENOMEM;
2217}
2218
2219/*
2220 * Allocate the request maps associated with this tag_set. Note that this
2221 * may reduce the depth asked for, if memory is tight. set->queue_depth
2222 * will be updated to reflect the allocated depth.
2223 */
2224static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2225{
2226	unsigned int depth;
2227	int err;
2228
2229	depth = set->queue_depth;
2230	do {
2231		err = __blk_mq_alloc_rq_maps(set);
2232		if (!err)
2233			break;
2234
2235		set->queue_depth >>= 1;
2236		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2237			err = -ENOMEM;
2238			break;
2239		}
2240	} while (set->queue_depth);
2241
2242	if (!set->queue_depth || err) {
2243		pr_err("blk-mq: failed to allocate request map\n");
2244		return -ENOMEM;
2245	}
2246
2247	if (depth != set->queue_depth)
2248		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2249						depth, set->queue_depth);
2250
2251	return 0;
2252}
2253
2254struct cpumask *blk_mq_tags_cpumask(struct blk_mq_tags *tags)
2255{
2256	return tags->cpumask;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2257}
2258EXPORT_SYMBOL_GPL(blk_mq_tags_cpumask);
2259
2260/*
2261 * Alloc a tag set to be associated with one or more request queues.
2262 * May fail with EINVAL for various error conditions. May adjust the
2263 * requested depth down, if if it too large. In that case, the set
2264 * value will be stored in set->queue_depth.
2265 */
2266int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2267{
 
 
2268	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2269
2270	if (!set->nr_hw_queues)
2271		return -EINVAL;
2272	if (!set->queue_depth)
2273		return -EINVAL;
2274	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2275		return -EINVAL;
2276
2277	if (!set->ops->queue_rq || !set->ops->map_queue)
 
 
 
2278		return -EINVAL;
2279
2280	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2281		pr_info("blk-mq: reduced tag depth to %u\n",
2282			BLK_MQ_MAX_DEPTH);
2283		set->queue_depth = BLK_MQ_MAX_DEPTH;
2284	}
2285
 
 
 
 
 
2286	/*
2287	 * If a crashdump is active, then we are potentially in a very
2288	 * memory constrained environment. Limit us to 1 queue and
2289	 * 64 tags to prevent using too much memory.
2290	 */
2291	if (is_kdump_kernel()) {
2292		set->nr_hw_queues = 1;
 
2293		set->queue_depth = min(64U, set->queue_depth);
2294	}
2295	/*
2296	 * There is no use for more h/w queues than cpus.
 
2297	 */
2298	if (set->nr_hw_queues > nr_cpu_ids)
2299		set->nr_hw_queues = nr_cpu_ids;
2300
2301	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2302				 GFP_KERNEL, set->numa_node);
 
 
 
 
 
 
 
 
 
 
 
2303	if (!set->tags)
2304		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
2305
2306	if (blk_mq_alloc_rq_maps(set))
2307		goto enomem;
 
2308
2309	mutex_init(&set->tag_list_lock);
2310	INIT_LIST_HEAD(&set->tag_list);
2311
2312	return 0;
2313enomem:
 
 
 
 
 
2314	kfree(set->tags);
2315	set->tags = NULL;
2316	return -ENOMEM;
 
 
 
 
 
 
2317}
2318EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2319
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2320void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2321{
2322	int i;
 
 
 
 
 
 
 
 
2323
2324	for (i = 0; i < nr_cpu_ids; i++) {
2325		if (set->tags[i])
2326			blk_mq_free_rq_map(set, set->tags[i], i);
2327	}
2328
2329	kfree(set->tags);
2330	set->tags = NULL;
 
 
 
 
2331}
2332EXPORT_SYMBOL(blk_mq_free_tag_set);
2333
2334int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2335{
2336	struct blk_mq_tag_set *set = q->tag_set;
2337	struct blk_mq_hw_ctx *hctx;
2338	int i, ret;
 
2339
2340	if (!set || nr > set->queue_depth)
2341		return -EINVAL;
2342
 
 
 
 
 
 
2343	ret = 0;
2344	queue_for_each_hw_ctx(q, hctx, i) {
2345		if (!hctx->tags)
2346			continue;
2347		ret = blk_mq_tag_update_depth(hctx->tags, nr);
 
 
 
 
 
 
 
 
 
 
2348		if (ret)
2349			break;
 
 
 
 
 
 
 
 
 
 
 
2350	}
2351
2352	if (!ret)
2353		q->nr_requests = nr;
2354
2355	return ret;
2356}
2357
2358void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2359{
2360	struct request_queue *q;
 
 
 
 
 
2361
2362	if (nr_hw_queues > nr_cpu_ids)
2363		nr_hw_queues = nr_cpu_ids;
2364	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
 
 
2365		return;
2366
2367	list_for_each_entry(q, &set->tag_list, tag_set_list)
2368		blk_mq_freeze_queue(q);
 
 
 
 
 
 
 
 
2369
2370	set->nr_hw_queues = nr_hw_queues;
 
 
 
 
 
 
 
 
 
2371	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2372		blk_mq_realloc_hw_ctxs(set, q);
 
 
 
 
 
 
 
 
2373
2374		if (q->nr_hw_queues > 1)
2375			blk_queue_make_request(q, blk_mq_make_request);
2376		else
2377			blk_queue_make_request(q, blk_sq_make_request);
 
2378
2379		blk_mq_queue_reinit(q, cpu_online_mask);
 
 
 
2380	}
2381
 
 
 
 
2382	list_for_each_entry(q, &set->tag_list, tag_set_list)
2383		blk_mq_unfreeze_queue(q);
 
 
 
 
 
 
 
 
 
 
 
2384}
2385EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2386
2387void blk_mq_disable_hotplug(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2388{
2389	mutex_lock(&all_q_mutex);
2390}
 
2391
2392void blk_mq_enable_hotplug(void)
2393{
2394	mutex_unlock(&all_q_mutex);
 
 
 
 
 
 
2395}
2396
2397static int __init blk_mq_init(void)
2398{
2399	blk_mq_cpu_init();
2400
2401	hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2402
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2403	return 0;
2404}
2405subsys_initcall(blk_mq_init);