Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4 */
5#include <linux/mm.h>
6#include <linux/swap.h>
7#include <linux/bio.h>
8#include <linux/blkdev.h>
9#include <linux/uio.h>
10#include <linux/iocontext.h>
11#include <linux/slab.h>
12#include <linux/init.h>
13#include <linux/kernel.h>
14#include <linux/export.h>
15#include <linux/mempool.h>
16#include <linux/workqueue.h>
17#include <linux/cgroup.h>
18#include <linux/highmem.h>
19#include <linux/sched/sysctl.h>
20#include <linux/blk-crypto.h>
21#include <linux/xarray.h>
22
23#include <trace/events/block.h>
24#include "blk.h"
25#include "blk-rq-qos.h"
26#include "blk-cgroup.h"
27
28#define ALLOC_CACHE_THRESHOLD 16
29#define ALLOC_CACHE_MAX 256
30
31struct bio_alloc_cache {
32 struct bio *free_list;
33 struct bio *free_list_irq;
34 unsigned int nr;
35 unsigned int nr_irq;
36};
37
38static struct biovec_slab {
39 int nr_vecs;
40 char *name;
41 struct kmem_cache *slab;
42} bvec_slabs[] __read_mostly = {
43 { .nr_vecs = 16, .name = "biovec-16" },
44 { .nr_vecs = 64, .name = "biovec-64" },
45 { .nr_vecs = 128, .name = "biovec-128" },
46 { .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" },
47};
48
49static struct biovec_slab *biovec_slab(unsigned short nr_vecs)
50{
51 switch (nr_vecs) {
52 /* smaller bios use inline vecs */
53 case 5 ... 16:
54 return &bvec_slabs[0];
55 case 17 ... 64:
56 return &bvec_slabs[1];
57 case 65 ... 128:
58 return &bvec_slabs[2];
59 case 129 ... BIO_MAX_VECS:
60 return &bvec_slabs[3];
61 default:
62 BUG();
63 return NULL;
64 }
65}
66
67/*
68 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
69 * IO code that does not need private memory pools.
70 */
71struct bio_set fs_bio_set;
72EXPORT_SYMBOL(fs_bio_set);
73
74/*
75 * Our slab pool management
76 */
77struct bio_slab {
78 struct kmem_cache *slab;
79 unsigned int slab_ref;
80 unsigned int slab_size;
81 char name[8];
82};
83static DEFINE_MUTEX(bio_slab_lock);
84static DEFINE_XARRAY(bio_slabs);
85
86static struct bio_slab *create_bio_slab(unsigned int size)
87{
88 struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
89
90 if (!bslab)
91 return NULL;
92
93 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
94 bslab->slab = kmem_cache_create(bslab->name, size,
95 ARCH_KMALLOC_MINALIGN,
96 SLAB_HWCACHE_ALIGN | SLAB_TYPESAFE_BY_RCU, NULL);
97 if (!bslab->slab)
98 goto fail_alloc_slab;
99
100 bslab->slab_ref = 1;
101 bslab->slab_size = size;
102
103 if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
104 return bslab;
105
106 kmem_cache_destroy(bslab->slab);
107
108fail_alloc_slab:
109 kfree(bslab);
110 return NULL;
111}
112
113static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
114{
115 return bs->front_pad + sizeof(struct bio) + bs->back_pad;
116}
117
118static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
119{
120 unsigned int size = bs_bio_slab_size(bs);
121 struct bio_slab *bslab;
122
123 mutex_lock(&bio_slab_lock);
124 bslab = xa_load(&bio_slabs, size);
125 if (bslab)
126 bslab->slab_ref++;
127 else
128 bslab = create_bio_slab(size);
129 mutex_unlock(&bio_slab_lock);
130
131 if (bslab)
132 return bslab->slab;
133 return NULL;
134}
135
136static void bio_put_slab(struct bio_set *bs)
137{
138 struct bio_slab *bslab = NULL;
139 unsigned int slab_size = bs_bio_slab_size(bs);
140
141 mutex_lock(&bio_slab_lock);
142
143 bslab = xa_load(&bio_slabs, slab_size);
144 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
145 goto out;
146
147 WARN_ON_ONCE(bslab->slab != bs->bio_slab);
148
149 WARN_ON(!bslab->slab_ref);
150
151 if (--bslab->slab_ref)
152 goto out;
153
154 xa_erase(&bio_slabs, slab_size);
155
156 kmem_cache_destroy(bslab->slab);
157 kfree(bslab);
158
159out:
160 mutex_unlock(&bio_slab_lock);
161}
162
163void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs)
164{
165 BUG_ON(nr_vecs > BIO_MAX_VECS);
166
167 if (nr_vecs == BIO_MAX_VECS)
168 mempool_free(bv, pool);
169 else if (nr_vecs > BIO_INLINE_VECS)
170 kmem_cache_free(biovec_slab(nr_vecs)->slab, bv);
171}
172
173/*
174 * Make the first allocation restricted and don't dump info on allocation
175 * failures, since we'll fall back to the mempool in case of failure.
176 */
177static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
178{
179 return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
180 __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
181}
182
183struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
184 gfp_t gfp_mask)
185{
186 struct biovec_slab *bvs = biovec_slab(*nr_vecs);
187
188 if (WARN_ON_ONCE(!bvs))
189 return NULL;
190
191 /*
192 * Upgrade the nr_vecs request to take full advantage of the allocation.
193 * We also rely on this in the bvec_free path.
194 */
195 *nr_vecs = bvs->nr_vecs;
196
197 /*
198 * Try a slab allocation first for all smaller allocations. If that
199 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
200 * The mempool is sized to handle up to BIO_MAX_VECS entries.
201 */
202 if (*nr_vecs < BIO_MAX_VECS) {
203 struct bio_vec *bvl;
204
205 bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
206 if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM))
207 return bvl;
208 *nr_vecs = BIO_MAX_VECS;
209 }
210
211 return mempool_alloc(pool, gfp_mask);
212}
213
214void bio_uninit(struct bio *bio)
215{
216#ifdef CONFIG_BLK_CGROUP
217 if (bio->bi_blkg) {
218 blkg_put(bio->bi_blkg);
219 bio->bi_blkg = NULL;
220 }
221#endif
222 if (bio_integrity(bio))
223 bio_integrity_free(bio);
224
225 bio_crypt_free_ctx(bio);
226}
227EXPORT_SYMBOL(bio_uninit);
228
229static void bio_free(struct bio *bio)
230{
231 struct bio_set *bs = bio->bi_pool;
232 void *p = bio;
233
234 WARN_ON_ONCE(!bs);
235
236 bio_uninit(bio);
237 bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs);
238 mempool_free(p - bs->front_pad, &bs->bio_pool);
239}
240
241/*
242 * Users of this function have their own bio allocation. Subsequently,
243 * they must remember to pair any call to bio_init() with bio_uninit()
244 * when IO has completed, or when the bio is released.
245 */
246void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table,
247 unsigned short max_vecs, blk_opf_t opf)
248{
249 bio->bi_next = NULL;
250 bio->bi_bdev = bdev;
251 bio->bi_opf = opf;
252 bio->bi_flags = 0;
253 bio->bi_ioprio = 0;
254 bio->bi_status = 0;
255 bio->bi_iter.bi_sector = 0;
256 bio->bi_iter.bi_size = 0;
257 bio->bi_iter.bi_idx = 0;
258 bio->bi_iter.bi_bvec_done = 0;
259 bio->bi_end_io = NULL;
260 bio->bi_private = NULL;
261#ifdef CONFIG_BLK_CGROUP
262 bio->bi_blkg = NULL;
263 bio->bi_issue.value = 0;
264 if (bdev)
265 bio_associate_blkg(bio);
266#ifdef CONFIG_BLK_CGROUP_IOCOST
267 bio->bi_iocost_cost = 0;
268#endif
269#endif
270#ifdef CONFIG_BLK_INLINE_ENCRYPTION
271 bio->bi_crypt_context = NULL;
272#endif
273#ifdef CONFIG_BLK_DEV_INTEGRITY
274 bio->bi_integrity = NULL;
275#endif
276 bio->bi_vcnt = 0;
277
278 atomic_set(&bio->__bi_remaining, 1);
279 atomic_set(&bio->__bi_cnt, 1);
280 bio->bi_cookie = BLK_QC_T_NONE;
281
282 bio->bi_max_vecs = max_vecs;
283 bio->bi_io_vec = table;
284 bio->bi_pool = NULL;
285}
286EXPORT_SYMBOL(bio_init);
287
288/**
289 * bio_reset - reinitialize a bio
290 * @bio: bio to reset
291 * @bdev: block device to use the bio for
292 * @opf: operation and flags for bio
293 *
294 * Description:
295 * After calling bio_reset(), @bio will be in the same state as a freshly
296 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
297 * preserved are the ones that are initialized by bio_alloc_bioset(). See
298 * comment in struct bio.
299 */
300void bio_reset(struct bio *bio, struct block_device *bdev, blk_opf_t opf)
301{
302 bio_uninit(bio);
303 memset(bio, 0, BIO_RESET_BYTES);
304 atomic_set(&bio->__bi_remaining, 1);
305 bio->bi_bdev = bdev;
306 if (bio->bi_bdev)
307 bio_associate_blkg(bio);
308 bio->bi_opf = opf;
309}
310EXPORT_SYMBOL(bio_reset);
311
312static struct bio *__bio_chain_endio(struct bio *bio)
313{
314 struct bio *parent = bio->bi_private;
315
316 if (bio->bi_status && !parent->bi_status)
317 parent->bi_status = bio->bi_status;
318 bio_put(bio);
319 return parent;
320}
321
322static void bio_chain_endio(struct bio *bio)
323{
324 bio_endio(__bio_chain_endio(bio));
325}
326
327/**
328 * bio_chain - chain bio completions
329 * @bio: the target bio
330 * @parent: the parent bio of @bio
331 *
332 * The caller won't have a bi_end_io called when @bio completes - instead,
333 * @parent's bi_end_io won't be called until both @parent and @bio have
334 * completed; the chained bio will also be freed when it completes.
335 *
336 * The caller must not set bi_private or bi_end_io in @bio.
337 */
338void bio_chain(struct bio *bio, struct bio *parent)
339{
340 BUG_ON(bio->bi_private || bio->bi_end_io);
341
342 bio->bi_private = parent;
343 bio->bi_end_io = bio_chain_endio;
344 bio_inc_remaining(parent);
345}
346EXPORT_SYMBOL(bio_chain);
347
348struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev,
349 unsigned int nr_pages, blk_opf_t opf, gfp_t gfp)
350{
351 struct bio *new = bio_alloc(bdev, nr_pages, opf, gfp);
352
353 if (bio) {
354 bio_chain(bio, new);
355 submit_bio(bio);
356 }
357
358 return new;
359}
360EXPORT_SYMBOL_GPL(blk_next_bio);
361
362static void bio_alloc_rescue(struct work_struct *work)
363{
364 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
365 struct bio *bio;
366
367 while (1) {
368 spin_lock(&bs->rescue_lock);
369 bio = bio_list_pop(&bs->rescue_list);
370 spin_unlock(&bs->rescue_lock);
371
372 if (!bio)
373 break;
374
375 submit_bio_noacct(bio);
376 }
377}
378
379static void punt_bios_to_rescuer(struct bio_set *bs)
380{
381 struct bio_list punt, nopunt;
382 struct bio *bio;
383
384 if (WARN_ON_ONCE(!bs->rescue_workqueue))
385 return;
386 /*
387 * In order to guarantee forward progress we must punt only bios that
388 * were allocated from this bio_set; otherwise, if there was a bio on
389 * there for a stacking driver higher up in the stack, processing it
390 * could require allocating bios from this bio_set, and doing that from
391 * our own rescuer would be bad.
392 *
393 * Since bio lists are singly linked, pop them all instead of trying to
394 * remove from the middle of the list:
395 */
396
397 bio_list_init(&punt);
398 bio_list_init(&nopunt);
399
400 while ((bio = bio_list_pop(¤t->bio_list[0])))
401 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
402 current->bio_list[0] = nopunt;
403
404 bio_list_init(&nopunt);
405 while ((bio = bio_list_pop(¤t->bio_list[1])))
406 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
407 current->bio_list[1] = nopunt;
408
409 spin_lock(&bs->rescue_lock);
410 bio_list_merge(&bs->rescue_list, &punt);
411 spin_unlock(&bs->rescue_lock);
412
413 queue_work(bs->rescue_workqueue, &bs->rescue_work);
414}
415
416static void bio_alloc_irq_cache_splice(struct bio_alloc_cache *cache)
417{
418 unsigned long flags;
419
420 /* cache->free_list must be empty */
421 if (WARN_ON_ONCE(cache->free_list))
422 return;
423
424 local_irq_save(flags);
425 cache->free_list = cache->free_list_irq;
426 cache->free_list_irq = NULL;
427 cache->nr += cache->nr_irq;
428 cache->nr_irq = 0;
429 local_irq_restore(flags);
430}
431
432static struct bio *bio_alloc_percpu_cache(struct block_device *bdev,
433 unsigned short nr_vecs, blk_opf_t opf, gfp_t gfp,
434 struct bio_set *bs)
435{
436 struct bio_alloc_cache *cache;
437 struct bio *bio;
438
439 cache = per_cpu_ptr(bs->cache, get_cpu());
440 if (!cache->free_list) {
441 if (READ_ONCE(cache->nr_irq) >= ALLOC_CACHE_THRESHOLD)
442 bio_alloc_irq_cache_splice(cache);
443 if (!cache->free_list) {
444 put_cpu();
445 return NULL;
446 }
447 }
448 bio = cache->free_list;
449 cache->free_list = bio->bi_next;
450 cache->nr--;
451 put_cpu();
452
453 bio_init(bio, bdev, nr_vecs ? bio->bi_inline_vecs : NULL, nr_vecs, opf);
454 bio->bi_pool = bs;
455 return bio;
456}
457
458/**
459 * bio_alloc_bioset - allocate a bio for I/O
460 * @bdev: block device to allocate the bio for (can be %NULL)
461 * @nr_vecs: number of bvecs to pre-allocate
462 * @opf: operation and flags for bio
463 * @gfp_mask: the GFP_* mask given to the slab allocator
464 * @bs: the bio_set to allocate from.
465 *
466 * Allocate a bio from the mempools in @bs.
467 *
468 * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
469 * allocate a bio. This is due to the mempool guarantees. To make this work,
470 * callers must never allocate more than 1 bio at a time from the general pool.
471 * Callers that need to allocate more than 1 bio must always submit the
472 * previously allocated bio for IO before attempting to allocate a new one.
473 * Failure to do so can cause deadlocks under memory pressure.
474 *
475 * Note that when running under submit_bio_noacct() (i.e. any block driver),
476 * bios are not submitted until after you return - see the code in
477 * submit_bio_noacct() that converts recursion into iteration, to prevent
478 * stack overflows.
479 *
480 * This would normally mean allocating multiple bios under submit_bio_noacct()
481 * would be susceptible to deadlocks, but we have
482 * deadlock avoidance code that resubmits any blocked bios from a rescuer
483 * thread.
484 *
485 * However, we do not guarantee forward progress for allocations from other
486 * mempools. Doing multiple allocations from the same mempool under
487 * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
488 * for per bio allocations.
489 *
490 * Returns: Pointer to new bio on success, NULL on failure.
491 */
492struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs,
493 blk_opf_t opf, gfp_t gfp_mask,
494 struct bio_set *bs)
495{
496 gfp_t saved_gfp = gfp_mask;
497 struct bio *bio;
498 void *p;
499
500 /* should not use nobvec bioset for nr_vecs > 0 */
501 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_vecs > 0))
502 return NULL;
503
504 if (opf & REQ_ALLOC_CACHE) {
505 if (bs->cache && nr_vecs <= BIO_INLINE_VECS) {
506 bio = bio_alloc_percpu_cache(bdev, nr_vecs, opf,
507 gfp_mask, bs);
508 if (bio)
509 return bio;
510 /*
511 * No cached bio available, bio returned below marked with
512 * REQ_ALLOC_CACHE to particpate in per-cpu alloc cache.
513 */
514 } else {
515 opf &= ~REQ_ALLOC_CACHE;
516 }
517 }
518
519 /*
520 * submit_bio_noacct() converts recursion to iteration; this means if
521 * we're running beneath it, any bios we allocate and submit will not be
522 * submitted (and thus freed) until after we return.
523 *
524 * This exposes us to a potential deadlock if we allocate multiple bios
525 * from the same bio_set() while running underneath submit_bio_noacct().
526 * If we were to allocate multiple bios (say a stacking block driver
527 * that was splitting bios), we would deadlock if we exhausted the
528 * mempool's reserve.
529 *
530 * We solve this, and guarantee forward progress, with a rescuer
531 * workqueue per bio_set. If we go to allocate and there are bios on
532 * current->bio_list, we first try the allocation without
533 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
534 * blocking to the rescuer workqueue before we retry with the original
535 * gfp_flags.
536 */
537 if (current->bio_list &&
538 (!bio_list_empty(¤t->bio_list[0]) ||
539 !bio_list_empty(¤t->bio_list[1])) &&
540 bs->rescue_workqueue)
541 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
542
543 p = mempool_alloc(&bs->bio_pool, gfp_mask);
544 if (!p && gfp_mask != saved_gfp) {
545 punt_bios_to_rescuer(bs);
546 gfp_mask = saved_gfp;
547 p = mempool_alloc(&bs->bio_pool, gfp_mask);
548 }
549 if (unlikely(!p))
550 return NULL;
551 if (!mempool_is_saturated(&bs->bio_pool))
552 opf &= ~REQ_ALLOC_CACHE;
553
554 bio = p + bs->front_pad;
555 if (nr_vecs > BIO_INLINE_VECS) {
556 struct bio_vec *bvl = NULL;
557
558 bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
559 if (!bvl && gfp_mask != saved_gfp) {
560 punt_bios_to_rescuer(bs);
561 gfp_mask = saved_gfp;
562 bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
563 }
564 if (unlikely(!bvl))
565 goto err_free;
566
567 bio_init(bio, bdev, bvl, nr_vecs, opf);
568 } else if (nr_vecs) {
569 bio_init(bio, bdev, bio->bi_inline_vecs, BIO_INLINE_VECS, opf);
570 } else {
571 bio_init(bio, bdev, NULL, 0, opf);
572 }
573
574 bio->bi_pool = bs;
575 return bio;
576
577err_free:
578 mempool_free(p, &bs->bio_pool);
579 return NULL;
580}
581EXPORT_SYMBOL(bio_alloc_bioset);
582
583/**
584 * bio_kmalloc - kmalloc a bio
585 * @nr_vecs: number of bio_vecs to allocate
586 * @gfp_mask: the GFP_* mask given to the slab allocator
587 *
588 * Use kmalloc to allocate a bio (including bvecs). The bio must be initialized
589 * using bio_init() before use. To free a bio returned from this function use
590 * kfree() after calling bio_uninit(). A bio returned from this function can
591 * be reused by calling bio_uninit() before calling bio_init() again.
592 *
593 * Note that unlike bio_alloc() or bio_alloc_bioset() allocations from this
594 * function are not backed by a mempool can fail. Do not use this function
595 * for allocations in the file system I/O path.
596 *
597 * Returns: Pointer to new bio on success, NULL on failure.
598 */
599struct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask)
600{
601 struct bio *bio;
602
603 if (nr_vecs > UIO_MAXIOV)
604 return NULL;
605 return kmalloc(struct_size(bio, bi_inline_vecs, nr_vecs), gfp_mask);
606}
607EXPORT_SYMBOL(bio_kmalloc);
608
609void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
610{
611 struct bio_vec bv;
612 struct bvec_iter iter;
613
614 __bio_for_each_segment(bv, bio, iter, start)
615 memzero_bvec(&bv);
616}
617EXPORT_SYMBOL(zero_fill_bio_iter);
618
619/**
620 * bio_truncate - truncate the bio to small size of @new_size
621 * @bio: the bio to be truncated
622 * @new_size: new size for truncating the bio
623 *
624 * Description:
625 * Truncate the bio to new size of @new_size. If bio_op(bio) is
626 * REQ_OP_READ, zero the truncated part. This function should only
627 * be used for handling corner cases, such as bio eod.
628 */
629static void bio_truncate(struct bio *bio, unsigned new_size)
630{
631 struct bio_vec bv;
632 struct bvec_iter iter;
633 unsigned int done = 0;
634 bool truncated = false;
635
636 if (new_size >= bio->bi_iter.bi_size)
637 return;
638
639 if (bio_op(bio) != REQ_OP_READ)
640 goto exit;
641
642 bio_for_each_segment(bv, bio, iter) {
643 if (done + bv.bv_len > new_size) {
644 unsigned offset;
645
646 if (!truncated)
647 offset = new_size - done;
648 else
649 offset = 0;
650 zero_user(bv.bv_page, bv.bv_offset + offset,
651 bv.bv_len - offset);
652 truncated = true;
653 }
654 done += bv.bv_len;
655 }
656
657 exit:
658 /*
659 * Don't touch bvec table here and make it really immutable, since
660 * fs bio user has to retrieve all pages via bio_for_each_segment_all
661 * in its .end_bio() callback.
662 *
663 * It is enough to truncate bio by updating .bi_size since we can make
664 * correct bvec with the updated .bi_size for drivers.
665 */
666 bio->bi_iter.bi_size = new_size;
667}
668
669/**
670 * guard_bio_eod - truncate a BIO to fit the block device
671 * @bio: bio to truncate
672 *
673 * This allows us to do IO even on the odd last sectors of a device, even if the
674 * block size is some multiple of the physical sector size.
675 *
676 * We'll just truncate the bio to the size of the device, and clear the end of
677 * the buffer head manually. Truly out-of-range accesses will turn into actual
678 * I/O errors, this only handles the "we need to be able to do I/O at the final
679 * sector" case.
680 */
681void guard_bio_eod(struct bio *bio)
682{
683 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
684
685 if (!maxsector)
686 return;
687
688 /*
689 * If the *whole* IO is past the end of the device,
690 * let it through, and the IO layer will turn it into
691 * an EIO.
692 */
693 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
694 return;
695
696 maxsector -= bio->bi_iter.bi_sector;
697 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
698 return;
699
700 bio_truncate(bio, maxsector << 9);
701}
702
703static int __bio_alloc_cache_prune(struct bio_alloc_cache *cache,
704 unsigned int nr)
705{
706 unsigned int i = 0;
707 struct bio *bio;
708
709 while ((bio = cache->free_list) != NULL) {
710 cache->free_list = bio->bi_next;
711 cache->nr--;
712 bio_free(bio);
713 if (++i == nr)
714 break;
715 }
716 return i;
717}
718
719static void bio_alloc_cache_prune(struct bio_alloc_cache *cache,
720 unsigned int nr)
721{
722 nr -= __bio_alloc_cache_prune(cache, nr);
723 if (!READ_ONCE(cache->free_list)) {
724 bio_alloc_irq_cache_splice(cache);
725 __bio_alloc_cache_prune(cache, nr);
726 }
727}
728
729static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node)
730{
731 struct bio_set *bs;
732
733 bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead);
734 if (bs->cache) {
735 struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu);
736
737 bio_alloc_cache_prune(cache, -1U);
738 }
739 return 0;
740}
741
742static void bio_alloc_cache_destroy(struct bio_set *bs)
743{
744 int cpu;
745
746 if (!bs->cache)
747 return;
748
749 cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
750 for_each_possible_cpu(cpu) {
751 struct bio_alloc_cache *cache;
752
753 cache = per_cpu_ptr(bs->cache, cpu);
754 bio_alloc_cache_prune(cache, -1U);
755 }
756 free_percpu(bs->cache);
757 bs->cache = NULL;
758}
759
760static inline void bio_put_percpu_cache(struct bio *bio)
761{
762 struct bio_alloc_cache *cache;
763
764 cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu());
765 if (READ_ONCE(cache->nr_irq) + cache->nr > ALLOC_CACHE_MAX) {
766 put_cpu();
767 bio_free(bio);
768 return;
769 }
770
771 bio_uninit(bio);
772
773 if ((bio->bi_opf & REQ_POLLED) && !WARN_ON_ONCE(in_interrupt())) {
774 bio->bi_next = cache->free_list;
775 bio->bi_bdev = NULL;
776 cache->free_list = bio;
777 cache->nr++;
778 } else {
779 unsigned long flags;
780
781 local_irq_save(flags);
782 bio->bi_next = cache->free_list_irq;
783 cache->free_list_irq = bio;
784 cache->nr_irq++;
785 local_irq_restore(flags);
786 }
787 put_cpu();
788}
789
790/**
791 * bio_put - release a reference to a bio
792 * @bio: bio to release reference to
793 *
794 * Description:
795 * Put a reference to a &struct bio, either one you have gotten with
796 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
797 **/
798void bio_put(struct bio *bio)
799{
800 if (unlikely(bio_flagged(bio, BIO_REFFED))) {
801 BUG_ON(!atomic_read(&bio->__bi_cnt));
802 if (!atomic_dec_and_test(&bio->__bi_cnt))
803 return;
804 }
805 if (bio->bi_opf & REQ_ALLOC_CACHE)
806 bio_put_percpu_cache(bio);
807 else
808 bio_free(bio);
809}
810EXPORT_SYMBOL(bio_put);
811
812static int __bio_clone(struct bio *bio, struct bio *bio_src, gfp_t gfp)
813{
814 bio_set_flag(bio, BIO_CLONED);
815 bio->bi_ioprio = bio_src->bi_ioprio;
816 bio->bi_iter = bio_src->bi_iter;
817
818 if (bio->bi_bdev) {
819 if (bio->bi_bdev == bio_src->bi_bdev &&
820 bio_flagged(bio_src, BIO_REMAPPED))
821 bio_set_flag(bio, BIO_REMAPPED);
822 bio_clone_blkg_association(bio, bio_src);
823 }
824
825 if (bio_crypt_clone(bio, bio_src, gfp) < 0)
826 return -ENOMEM;
827 if (bio_integrity(bio_src) &&
828 bio_integrity_clone(bio, bio_src, gfp) < 0)
829 return -ENOMEM;
830 return 0;
831}
832
833/**
834 * bio_alloc_clone - clone a bio that shares the original bio's biovec
835 * @bdev: block_device to clone onto
836 * @bio_src: bio to clone from
837 * @gfp: allocation priority
838 * @bs: bio_set to allocate from
839 *
840 * Allocate a new bio that is a clone of @bio_src. The caller owns the returned
841 * bio, but not the actual data it points to.
842 *
843 * The caller must ensure that the return bio is not freed before @bio_src.
844 */
845struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src,
846 gfp_t gfp, struct bio_set *bs)
847{
848 struct bio *bio;
849
850 bio = bio_alloc_bioset(bdev, 0, bio_src->bi_opf, gfp, bs);
851 if (!bio)
852 return NULL;
853
854 if (__bio_clone(bio, bio_src, gfp) < 0) {
855 bio_put(bio);
856 return NULL;
857 }
858 bio->bi_io_vec = bio_src->bi_io_vec;
859
860 return bio;
861}
862EXPORT_SYMBOL(bio_alloc_clone);
863
864/**
865 * bio_init_clone - clone a bio that shares the original bio's biovec
866 * @bdev: block_device to clone onto
867 * @bio: bio to clone into
868 * @bio_src: bio to clone from
869 * @gfp: allocation priority
870 *
871 * Initialize a new bio in caller provided memory that is a clone of @bio_src.
872 * The caller owns the returned bio, but not the actual data it points to.
873 *
874 * The caller must ensure that @bio_src is not freed before @bio.
875 */
876int bio_init_clone(struct block_device *bdev, struct bio *bio,
877 struct bio *bio_src, gfp_t gfp)
878{
879 int ret;
880
881 bio_init(bio, bdev, bio_src->bi_io_vec, 0, bio_src->bi_opf);
882 ret = __bio_clone(bio, bio_src, gfp);
883 if (ret)
884 bio_uninit(bio);
885 return ret;
886}
887EXPORT_SYMBOL(bio_init_clone);
888
889/**
890 * bio_full - check if the bio is full
891 * @bio: bio to check
892 * @len: length of one segment to be added
893 *
894 * Return true if @bio is full and one segment with @len bytes can't be
895 * added to the bio, otherwise return false
896 */
897static inline bool bio_full(struct bio *bio, unsigned len)
898{
899 if (bio->bi_vcnt >= bio->bi_max_vecs)
900 return true;
901 if (bio->bi_iter.bi_size > UINT_MAX - len)
902 return true;
903 return false;
904}
905
906static bool bvec_try_merge_page(struct bio_vec *bv, struct page *page,
907 unsigned int len, unsigned int off, bool *same_page)
908{
909 size_t bv_end = bv->bv_offset + bv->bv_len;
910 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
911 phys_addr_t page_addr = page_to_phys(page);
912
913 if (vec_end_addr + 1 != page_addr + off)
914 return false;
915 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
916 return false;
917 if (!zone_device_pages_have_same_pgmap(bv->bv_page, page))
918 return false;
919
920 *same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
921 if (!*same_page) {
922 if (IS_ENABLED(CONFIG_KMSAN))
923 return false;
924 if (bv->bv_page + bv_end / PAGE_SIZE != page + off / PAGE_SIZE)
925 return false;
926 }
927
928 bv->bv_len += len;
929 return true;
930}
931
932/*
933 * Try to merge a page into a segment, while obeying the hardware segment
934 * size limit. This is not for normal read/write bios, but for passthrough
935 * or Zone Append operations that we can't split.
936 */
937bool bvec_try_merge_hw_page(struct request_queue *q, struct bio_vec *bv,
938 struct page *page, unsigned len, unsigned offset,
939 bool *same_page)
940{
941 unsigned long mask = queue_segment_boundary(q);
942 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
943 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
944
945 if ((addr1 | mask) != (addr2 | mask))
946 return false;
947 if (len > queue_max_segment_size(q) - bv->bv_len)
948 return false;
949 return bvec_try_merge_page(bv, page, len, offset, same_page);
950}
951
952/**
953 * bio_add_hw_page - attempt to add a page to a bio with hw constraints
954 * @q: the target queue
955 * @bio: destination bio
956 * @page: page to add
957 * @len: vec entry length
958 * @offset: vec entry offset
959 * @max_sectors: maximum number of sectors that can be added
960 * @same_page: return if the segment has been merged inside the same page
961 *
962 * Add a page to a bio while respecting the hardware max_sectors, max_segment
963 * and gap limitations.
964 */
965int bio_add_hw_page(struct request_queue *q, struct bio *bio,
966 struct page *page, unsigned int len, unsigned int offset,
967 unsigned int max_sectors, bool *same_page)
968{
969 unsigned int max_size = max_sectors << SECTOR_SHIFT;
970
971 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
972 return 0;
973
974 len = min3(len, max_size, queue_max_segment_size(q));
975 if (len > max_size - bio->bi_iter.bi_size)
976 return 0;
977
978 if (bio->bi_vcnt > 0) {
979 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
980
981 if (bvec_try_merge_hw_page(q, bv, page, len, offset,
982 same_page)) {
983 bio->bi_iter.bi_size += len;
984 return len;
985 }
986
987 if (bio->bi_vcnt >=
988 min(bio->bi_max_vecs, queue_max_segments(q)))
989 return 0;
990
991 /*
992 * If the queue doesn't support SG gaps and adding this segment
993 * would create a gap, disallow it.
994 */
995 if (bvec_gap_to_prev(&q->limits, bv, offset))
996 return 0;
997 }
998
999 bvec_set_page(&bio->bi_io_vec[bio->bi_vcnt], page, len, offset);
1000 bio->bi_vcnt++;
1001 bio->bi_iter.bi_size += len;
1002 return len;
1003}
1004
1005/**
1006 * bio_add_pc_page - attempt to add page to passthrough bio
1007 * @q: the target queue
1008 * @bio: destination bio
1009 * @page: page to add
1010 * @len: vec entry length
1011 * @offset: vec entry offset
1012 *
1013 * Attempt to add a page to the bio_vec maplist. This can fail for a
1014 * number of reasons, such as the bio being full or target block device
1015 * limitations. The target block device must allow bio's up to PAGE_SIZE,
1016 * so it is always possible to add a single page to an empty bio.
1017 *
1018 * This should only be used by passthrough bios.
1019 */
1020int bio_add_pc_page(struct request_queue *q, struct bio *bio,
1021 struct page *page, unsigned int len, unsigned int offset)
1022{
1023 bool same_page = false;
1024 return bio_add_hw_page(q, bio, page, len, offset,
1025 queue_max_hw_sectors(q), &same_page);
1026}
1027EXPORT_SYMBOL(bio_add_pc_page);
1028
1029/**
1030 * bio_add_zone_append_page - attempt to add page to zone-append bio
1031 * @bio: destination bio
1032 * @page: page to add
1033 * @len: vec entry length
1034 * @offset: vec entry offset
1035 *
1036 * Attempt to add a page to the bio_vec maplist of a bio that will be submitted
1037 * for a zone-append request. This can fail for a number of reasons, such as the
1038 * bio being full or the target block device is not a zoned block device or
1039 * other limitations of the target block device. The target block device must
1040 * allow bio's up to PAGE_SIZE, so it is always possible to add a single page
1041 * to an empty bio.
1042 *
1043 * Returns: number of bytes added to the bio, or 0 in case of a failure.
1044 */
1045int bio_add_zone_append_page(struct bio *bio, struct page *page,
1046 unsigned int len, unsigned int offset)
1047{
1048 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1049 bool same_page = false;
1050
1051 if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_ZONE_APPEND))
1052 return 0;
1053
1054 if (WARN_ON_ONCE(!bdev_is_zoned(bio->bi_bdev)))
1055 return 0;
1056
1057 return bio_add_hw_page(q, bio, page, len, offset,
1058 queue_max_zone_append_sectors(q), &same_page);
1059}
1060EXPORT_SYMBOL_GPL(bio_add_zone_append_page);
1061
1062/**
1063 * __bio_add_page - add page(s) to a bio in a new segment
1064 * @bio: destination bio
1065 * @page: start page to add
1066 * @len: length of the data to add, may cross pages
1067 * @off: offset of the data relative to @page, may cross pages
1068 *
1069 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
1070 * that @bio has space for another bvec.
1071 */
1072void __bio_add_page(struct bio *bio, struct page *page,
1073 unsigned int len, unsigned int off)
1074{
1075 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
1076 WARN_ON_ONCE(bio_full(bio, len));
1077
1078 bvec_set_page(&bio->bi_io_vec[bio->bi_vcnt], page, len, off);
1079 bio->bi_iter.bi_size += len;
1080 bio->bi_vcnt++;
1081}
1082EXPORT_SYMBOL_GPL(__bio_add_page);
1083
1084/**
1085 * bio_add_page - attempt to add page(s) to bio
1086 * @bio: destination bio
1087 * @page: start page to add
1088 * @len: vec entry length, may cross pages
1089 * @offset: vec entry offset relative to @page, may cross pages
1090 *
1091 * Attempt to add page(s) to the bio_vec maplist. This will only fail
1092 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
1093 */
1094int bio_add_page(struct bio *bio, struct page *page,
1095 unsigned int len, unsigned int offset)
1096{
1097 bool same_page = false;
1098
1099 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
1100 return 0;
1101 if (bio->bi_iter.bi_size > UINT_MAX - len)
1102 return 0;
1103
1104 if (bio->bi_vcnt > 0 &&
1105 bvec_try_merge_page(&bio->bi_io_vec[bio->bi_vcnt - 1],
1106 page, len, offset, &same_page)) {
1107 bio->bi_iter.bi_size += len;
1108 return len;
1109 }
1110
1111 if (bio->bi_vcnt >= bio->bi_max_vecs)
1112 return 0;
1113 __bio_add_page(bio, page, len, offset);
1114 return len;
1115}
1116EXPORT_SYMBOL(bio_add_page);
1117
1118void bio_add_folio_nofail(struct bio *bio, struct folio *folio, size_t len,
1119 size_t off)
1120{
1121 WARN_ON_ONCE(len > UINT_MAX);
1122 WARN_ON_ONCE(off > UINT_MAX);
1123 __bio_add_page(bio, &folio->page, len, off);
1124}
1125
1126/**
1127 * bio_add_folio - Attempt to add part of a folio to a bio.
1128 * @bio: BIO to add to.
1129 * @folio: Folio to add.
1130 * @len: How many bytes from the folio to add.
1131 * @off: First byte in this folio to add.
1132 *
1133 * Filesystems that use folios can call this function instead of calling
1134 * bio_add_page() for each page in the folio. If @off is bigger than
1135 * PAGE_SIZE, this function can create a bio_vec that starts in a page
1136 * after the bv_page. BIOs do not support folios that are 4GiB or larger.
1137 *
1138 * Return: Whether the addition was successful.
1139 */
1140bool bio_add_folio(struct bio *bio, struct folio *folio, size_t len,
1141 size_t off)
1142{
1143 if (len > UINT_MAX || off > UINT_MAX)
1144 return false;
1145 return bio_add_page(bio, &folio->page, len, off) > 0;
1146}
1147EXPORT_SYMBOL(bio_add_folio);
1148
1149void __bio_release_pages(struct bio *bio, bool mark_dirty)
1150{
1151 struct folio_iter fi;
1152
1153 bio_for_each_folio_all(fi, bio) {
1154 struct page *page;
1155 size_t done = 0;
1156
1157 if (mark_dirty) {
1158 folio_lock(fi.folio);
1159 folio_mark_dirty(fi.folio);
1160 folio_unlock(fi.folio);
1161 }
1162 page = folio_page(fi.folio, fi.offset / PAGE_SIZE);
1163 do {
1164 bio_release_page(bio, page++);
1165 done += PAGE_SIZE;
1166 } while (done < fi.length);
1167 }
1168}
1169EXPORT_SYMBOL_GPL(__bio_release_pages);
1170
1171void bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
1172{
1173 size_t size = iov_iter_count(iter);
1174
1175 WARN_ON_ONCE(bio->bi_max_vecs);
1176
1177 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
1178 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1179 size_t max_sectors = queue_max_zone_append_sectors(q);
1180
1181 size = min(size, max_sectors << SECTOR_SHIFT);
1182 }
1183
1184 bio->bi_vcnt = iter->nr_segs;
1185 bio->bi_io_vec = (struct bio_vec *)iter->bvec;
1186 bio->bi_iter.bi_bvec_done = iter->iov_offset;
1187 bio->bi_iter.bi_size = size;
1188 bio_set_flag(bio, BIO_CLONED);
1189}
1190
1191static int bio_iov_add_page(struct bio *bio, struct page *page,
1192 unsigned int len, unsigned int offset)
1193{
1194 bool same_page = false;
1195
1196 if (WARN_ON_ONCE(bio->bi_iter.bi_size > UINT_MAX - len))
1197 return -EIO;
1198
1199 if (bio->bi_vcnt > 0 &&
1200 bvec_try_merge_page(&bio->bi_io_vec[bio->bi_vcnt - 1],
1201 page, len, offset, &same_page)) {
1202 bio->bi_iter.bi_size += len;
1203 if (same_page)
1204 bio_release_page(bio, page);
1205 return 0;
1206 }
1207 __bio_add_page(bio, page, len, offset);
1208 return 0;
1209}
1210
1211static int bio_iov_add_zone_append_page(struct bio *bio, struct page *page,
1212 unsigned int len, unsigned int offset)
1213{
1214 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1215 bool same_page = false;
1216
1217 if (bio_add_hw_page(q, bio, page, len, offset,
1218 queue_max_zone_append_sectors(q), &same_page) != len)
1219 return -EINVAL;
1220 if (same_page)
1221 bio_release_page(bio, page);
1222 return 0;
1223}
1224
1225#define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
1226
1227/**
1228 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
1229 * @bio: bio to add pages to
1230 * @iter: iov iterator describing the region to be mapped
1231 *
1232 * Extracts pages from *iter and appends them to @bio's bvec array. The pages
1233 * will have to be cleaned up in the way indicated by the BIO_PAGE_PINNED flag.
1234 * For a multi-segment *iter, this function only adds pages from the next
1235 * non-empty segment of the iov iterator.
1236 */
1237static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1238{
1239 iov_iter_extraction_t extraction_flags = 0;
1240 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1241 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1242 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1243 struct page **pages = (struct page **)bv;
1244 ssize_t size, left;
1245 unsigned len, i = 0;
1246 size_t offset;
1247 int ret = 0;
1248
1249 /*
1250 * Move page array up in the allocated memory for the bio vecs as far as
1251 * possible so that we can start filling biovecs from the beginning
1252 * without overwriting the temporary page array.
1253 */
1254 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1255 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1256
1257 if (bio->bi_bdev && blk_queue_pci_p2pdma(bio->bi_bdev->bd_disk->queue))
1258 extraction_flags |= ITER_ALLOW_P2PDMA;
1259
1260 /*
1261 * Each segment in the iov is required to be a block size multiple.
1262 * However, we may not be able to get the entire segment if it spans
1263 * more pages than bi_max_vecs allows, so we have to ALIGN_DOWN the
1264 * result to ensure the bio's total size is correct. The remainder of
1265 * the iov data will be picked up in the next bio iteration.
1266 */
1267 size = iov_iter_extract_pages(iter, &pages,
1268 UINT_MAX - bio->bi_iter.bi_size,
1269 nr_pages, extraction_flags, &offset);
1270 if (unlikely(size <= 0))
1271 return size ? size : -EFAULT;
1272
1273 nr_pages = DIV_ROUND_UP(offset + size, PAGE_SIZE);
1274
1275 if (bio->bi_bdev) {
1276 size_t trim = size & (bdev_logical_block_size(bio->bi_bdev) - 1);
1277 iov_iter_revert(iter, trim);
1278 size -= trim;
1279 }
1280
1281 if (unlikely(!size)) {
1282 ret = -EFAULT;
1283 goto out;
1284 }
1285
1286 for (left = size, i = 0; left > 0; left -= len, i++) {
1287 struct page *page = pages[i];
1288
1289 len = min_t(size_t, PAGE_SIZE - offset, left);
1290 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
1291 ret = bio_iov_add_zone_append_page(bio, page, len,
1292 offset);
1293 if (ret)
1294 break;
1295 } else
1296 bio_iov_add_page(bio, page, len, offset);
1297
1298 offset = 0;
1299 }
1300
1301 iov_iter_revert(iter, left);
1302out:
1303 while (i < nr_pages)
1304 bio_release_page(bio, pages[i++]);
1305
1306 return ret;
1307}
1308
1309/**
1310 * bio_iov_iter_get_pages - add user or kernel pages to a bio
1311 * @bio: bio to add pages to
1312 * @iter: iov iterator describing the region to be added
1313 *
1314 * This takes either an iterator pointing to user memory, or one pointing to
1315 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1316 * map them into the kernel. On IO completion, the caller should put those
1317 * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
1318 * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
1319 * to ensure the bvecs and pages stay referenced until the submitted I/O is
1320 * completed by a call to ->ki_complete() or returns with an error other than
1321 * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
1322 * on IO completion. If it isn't, then pages should be released.
1323 *
1324 * The function tries, but does not guarantee, to pin as many pages as
1325 * fit into the bio, or are requested in @iter, whatever is smaller. If
1326 * MM encounters an error pinning the requested pages, it stops. Error
1327 * is returned only if 0 pages could be pinned.
1328 */
1329int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1330{
1331 int ret = 0;
1332
1333 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
1334 return -EIO;
1335
1336 if (iov_iter_is_bvec(iter)) {
1337 bio_iov_bvec_set(bio, iter);
1338 iov_iter_advance(iter, bio->bi_iter.bi_size);
1339 return 0;
1340 }
1341
1342 if (iov_iter_extract_will_pin(iter))
1343 bio_set_flag(bio, BIO_PAGE_PINNED);
1344 do {
1345 ret = __bio_iov_iter_get_pages(bio, iter);
1346 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
1347
1348 return bio->bi_vcnt ? 0 : ret;
1349}
1350EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
1351
1352static void submit_bio_wait_endio(struct bio *bio)
1353{
1354 complete(bio->bi_private);
1355}
1356
1357/**
1358 * submit_bio_wait - submit a bio, and wait until it completes
1359 * @bio: The &struct bio which describes the I/O
1360 *
1361 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1362 * bio_endio() on failure.
1363 *
1364 * WARNING: Unlike to how submit_bio() is usually used, this function does not
1365 * result in bio reference to be consumed. The caller must drop the reference
1366 * on his own.
1367 */
1368int submit_bio_wait(struct bio *bio)
1369{
1370 DECLARE_COMPLETION_ONSTACK_MAP(done,
1371 bio->bi_bdev->bd_disk->lockdep_map);
1372 unsigned long hang_check;
1373
1374 bio->bi_private = &done;
1375 bio->bi_end_io = submit_bio_wait_endio;
1376 bio->bi_opf |= REQ_SYNC;
1377 submit_bio(bio);
1378
1379 /* Prevent hang_check timer from firing at us during very long I/O */
1380 hang_check = sysctl_hung_task_timeout_secs;
1381 if (hang_check)
1382 while (!wait_for_completion_io_timeout(&done,
1383 hang_check * (HZ/2)))
1384 ;
1385 else
1386 wait_for_completion_io(&done);
1387
1388 return blk_status_to_errno(bio->bi_status);
1389}
1390EXPORT_SYMBOL(submit_bio_wait);
1391
1392void __bio_advance(struct bio *bio, unsigned bytes)
1393{
1394 if (bio_integrity(bio))
1395 bio_integrity_advance(bio, bytes);
1396
1397 bio_crypt_advance(bio, bytes);
1398 bio_advance_iter(bio, &bio->bi_iter, bytes);
1399}
1400EXPORT_SYMBOL(__bio_advance);
1401
1402void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1403 struct bio *src, struct bvec_iter *src_iter)
1404{
1405 while (src_iter->bi_size && dst_iter->bi_size) {
1406 struct bio_vec src_bv = bio_iter_iovec(src, *src_iter);
1407 struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter);
1408 unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len);
1409 void *src_buf = bvec_kmap_local(&src_bv);
1410 void *dst_buf = bvec_kmap_local(&dst_bv);
1411
1412 memcpy(dst_buf, src_buf, bytes);
1413
1414 kunmap_local(dst_buf);
1415 kunmap_local(src_buf);
1416
1417 bio_advance_iter_single(src, src_iter, bytes);
1418 bio_advance_iter_single(dst, dst_iter, bytes);
1419 }
1420}
1421EXPORT_SYMBOL(bio_copy_data_iter);
1422
1423/**
1424 * bio_copy_data - copy contents of data buffers from one bio to another
1425 * @src: source bio
1426 * @dst: destination bio
1427 *
1428 * Stops when it reaches the end of either @src or @dst - that is, copies
1429 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1430 */
1431void bio_copy_data(struct bio *dst, struct bio *src)
1432{
1433 struct bvec_iter src_iter = src->bi_iter;
1434 struct bvec_iter dst_iter = dst->bi_iter;
1435
1436 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1437}
1438EXPORT_SYMBOL(bio_copy_data);
1439
1440void bio_free_pages(struct bio *bio)
1441{
1442 struct bio_vec *bvec;
1443 struct bvec_iter_all iter_all;
1444
1445 bio_for_each_segment_all(bvec, bio, iter_all)
1446 __free_page(bvec->bv_page);
1447}
1448EXPORT_SYMBOL(bio_free_pages);
1449
1450/*
1451 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1452 * for performing direct-IO in BIOs.
1453 *
1454 * The problem is that we cannot run folio_mark_dirty() from interrupt context
1455 * because the required locks are not interrupt-safe. So what we can do is to
1456 * mark the pages dirty _before_ performing IO. And in interrupt context,
1457 * check that the pages are still dirty. If so, fine. If not, redirty them
1458 * in process context.
1459 *
1460 * Note that this code is very hard to test under normal circumstances because
1461 * direct-io pins the pages with get_user_pages(). This makes
1462 * is_page_cache_freeable return false, and the VM will not clean the pages.
1463 * But other code (eg, flusher threads) could clean the pages if they are mapped
1464 * pagecache.
1465 *
1466 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1467 * deferred bio dirtying paths.
1468 */
1469
1470/*
1471 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1472 */
1473void bio_set_pages_dirty(struct bio *bio)
1474{
1475 struct folio_iter fi;
1476
1477 bio_for_each_folio_all(fi, bio) {
1478 folio_lock(fi.folio);
1479 folio_mark_dirty(fi.folio);
1480 folio_unlock(fi.folio);
1481 }
1482}
1483EXPORT_SYMBOL_GPL(bio_set_pages_dirty);
1484
1485/*
1486 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1487 * If they are, then fine. If, however, some pages are clean then they must
1488 * have been written out during the direct-IO read. So we take another ref on
1489 * the BIO and re-dirty the pages in process context.
1490 *
1491 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1492 * here on. It will unpin each page and will run one bio_put() against the
1493 * BIO.
1494 */
1495
1496static void bio_dirty_fn(struct work_struct *work);
1497
1498static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1499static DEFINE_SPINLOCK(bio_dirty_lock);
1500static struct bio *bio_dirty_list;
1501
1502/*
1503 * This runs in process context
1504 */
1505static void bio_dirty_fn(struct work_struct *work)
1506{
1507 struct bio *bio, *next;
1508
1509 spin_lock_irq(&bio_dirty_lock);
1510 next = bio_dirty_list;
1511 bio_dirty_list = NULL;
1512 spin_unlock_irq(&bio_dirty_lock);
1513
1514 while ((bio = next) != NULL) {
1515 next = bio->bi_private;
1516
1517 bio_release_pages(bio, true);
1518 bio_put(bio);
1519 }
1520}
1521
1522void bio_check_pages_dirty(struct bio *bio)
1523{
1524 struct folio_iter fi;
1525 unsigned long flags;
1526
1527 bio_for_each_folio_all(fi, bio) {
1528 if (!folio_test_dirty(fi.folio))
1529 goto defer;
1530 }
1531
1532 bio_release_pages(bio, false);
1533 bio_put(bio);
1534 return;
1535defer:
1536 spin_lock_irqsave(&bio_dirty_lock, flags);
1537 bio->bi_private = bio_dirty_list;
1538 bio_dirty_list = bio;
1539 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1540 schedule_work(&bio_dirty_work);
1541}
1542EXPORT_SYMBOL_GPL(bio_check_pages_dirty);
1543
1544static inline bool bio_remaining_done(struct bio *bio)
1545{
1546 /*
1547 * If we're not chaining, then ->__bi_remaining is always 1 and
1548 * we always end io on the first invocation.
1549 */
1550 if (!bio_flagged(bio, BIO_CHAIN))
1551 return true;
1552
1553 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1554
1555 if (atomic_dec_and_test(&bio->__bi_remaining)) {
1556 bio_clear_flag(bio, BIO_CHAIN);
1557 return true;
1558 }
1559
1560 return false;
1561}
1562
1563/**
1564 * bio_endio - end I/O on a bio
1565 * @bio: bio
1566 *
1567 * Description:
1568 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1569 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1570 * bio unless they own it and thus know that it has an end_io function.
1571 *
1572 * bio_endio() can be called several times on a bio that has been chained
1573 * using bio_chain(). The ->bi_end_io() function will only be called the
1574 * last time.
1575 **/
1576void bio_endio(struct bio *bio)
1577{
1578again:
1579 if (!bio_remaining_done(bio))
1580 return;
1581 if (!bio_integrity_endio(bio))
1582 return;
1583
1584 rq_qos_done_bio(bio);
1585
1586 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1587 trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio);
1588 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1589 }
1590
1591 /*
1592 * Need to have a real endio function for chained bios, otherwise
1593 * various corner cases will break (like stacking block devices that
1594 * save/restore bi_end_io) - however, we want to avoid unbounded
1595 * recursion and blowing the stack. Tail call optimization would
1596 * handle this, but compiling with frame pointers also disables
1597 * gcc's sibling call optimization.
1598 */
1599 if (bio->bi_end_io == bio_chain_endio) {
1600 bio = __bio_chain_endio(bio);
1601 goto again;
1602 }
1603
1604 blk_throtl_bio_endio(bio);
1605 /* release cgroup info */
1606 bio_uninit(bio);
1607 if (bio->bi_end_io)
1608 bio->bi_end_io(bio);
1609}
1610EXPORT_SYMBOL(bio_endio);
1611
1612/**
1613 * bio_split - split a bio
1614 * @bio: bio to split
1615 * @sectors: number of sectors to split from the front of @bio
1616 * @gfp: gfp mask
1617 * @bs: bio set to allocate from
1618 *
1619 * Allocates and returns a new bio which represents @sectors from the start of
1620 * @bio, and updates @bio to represent the remaining sectors.
1621 *
1622 * Unless this is a discard request the newly allocated bio will point
1623 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1624 * neither @bio nor @bs are freed before the split bio.
1625 */
1626struct bio *bio_split(struct bio *bio, int sectors,
1627 gfp_t gfp, struct bio_set *bs)
1628{
1629 struct bio *split;
1630
1631 BUG_ON(sectors <= 0);
1632 BUG_ON(sectors >= bio_sectors(bio));
1633
1634 /* Zone append commands cannot be split */
1635 if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1636 return NULL;
1637
1638 split = bio_alloc_clone(bio->bi_bdev, bio, gfp, bs);
1639 if (!split)
1640 return NULL;
1641
1642 split->bi_iter.bi_size = sectors << 9;
1643
1644 if (bio_integrity(split))
1645 bio_integrity_trim(split);
1646
1647 bio_advance(bio, split->bi_iter.bi_size);
1648
1649 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1650 bio_set_flag(split, BIO_TRACE_COMPLETION);
1651
1652 return split;
1653}
1654EXPORT_SYMBOL(bio_split);
1655
1656/**
1657 * bio_trim - trim a bio
1658 * @bio: bio to trim
1659 * @offset: number of sectors to trim from the front of @bio
1660 * @size: size we want to trim @bio to, in sectors
1661 *
1662 * This function is typically used for bios that are cloned and submitted
1663 * to the underlying device in parts.
1664 */
1665void bio_trim(struct bio *bio, sector_t offset, sector_t size)
1666{
1667 if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS ||
1668 offset + size > bio_sectors(bio)))
1669 return;
1670
1671 size <<= 9;
1672 if (offset == 0 && size == bio->bi_iter.bi_size)
1673 return;
1674
1675 bio_advance(bio, offset << 9);
1676 bio->bi_iter.bi_size = size;
1677
1678 if (bio_integrity(bio))
1679 bio_integrity_trim(bio);
1680}
1681EXPORT_SYMBOL_GPL(bio_trim);
1682
1683/*
1684 * create memory pools for biovec's in a bio_set.
1685 * use the global biovec slabs created for general use.
1686 */
1687int biovec_init_pool(mempool_t *pool, int pool_entries)
1688{
1689 struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1;
1690
1691 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1692}
1693
1694/*
1695 * bioset_exit - exit a bioset initialized with bioset_init()
1696 *
1697 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1698 * kzalloc()).
1699 */
1700void bioset_exit(struct bio_set *bs)
1701{
1702 bio_alloc_cache_destroy(bs);
1703 if (bs->rescue_workqueue)
1704 destroy_workqueue(bs->rescue_workqueue);
1705 bs->rescue_workqueue = NULL;
1706
1707 mempool_exit(&bs->bio_pool);
1708 mempool_exit(&bs->bvec_pool);
1709
1710 bioset_integrity_free(bs);
1711 if (bs->bio_slab)
1712 bio_put_slab(bs);
1713 bs->bio_slab = NULL;
1714}
1715EXPORT_SYMBOL(bioset_exit);
1716
1717/**
1718 * bioset_init - Initialize a bio_set
1719 * @bs: pool to initialize
1720 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1721 * @front_pad: Number of bytes to allocate in front of the returned bio
1722 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1723 * and %BIOSET_NEED_RESCUER
1724 *
1725 * Description:
1726 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1727 * to ask for a number of bytes to be allocated in front of the bio.
1728 * Front pad allocation is useful for embedding the bio inside
1729 * another structure, to avoid allocating extra data to go with the bio.
1730 * Note that the bio must be embedded at the END of that structure always,
1731 * or things will break badly.
1732 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1733 * for allocating iovecs. This pool is not needed e.g. for bio_init_clone().
1734 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used
1735 * to dispatch queued requests when the mempool runs out of space.
1736 *
1737 */
1738int bioset_init(struct bio_set *bs,
1739 unsigned int pool_size,
1740 unsigned int front_pad,
1741 int flags)
1742{
1743 bs->front_pad = front_pad;
1744 if (flags & BIOSET_NEED_BVECS)
1745 bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1746 else
1747 bs->back_pad = 0;
1748
1749 spin_lock_init(&bs->rescue_lock);
1750 bio_list_init(&bs->rescue_list);
1751 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1752
1753 bs->bio_slab = bio_find_or_create_slab(bs);
1754 if (!bs->bio_slab)
1755 return -ENOMEM;
1756
1757 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1758 goto bad;
1759
1760 if ((flags & BIOSET_NEED_BVECS) &&
1761 biovec_init_pool(&bs->bvec_pool, pool_size))
1762 goto bad;
1763
1764 if (flags & BIOSET_NEED_RESCUER) {
1765 bs->rescue_workqueue = alloc_workqueue("bioset",
1766 WQ_MEM_RECLAIM, 0);
1767 if (!bs->rescue_workqueue)
1768 goto bad;
1769 }
1770 if (flags & BIOSET_PERCPU_CACHE) {
1771 bs->cache = alloc_percpu(struct bio_alloc_cache);
1772 if (!bs->cache)
1773 goto bad;
1774 cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
1775 }
1776
1777 return 0;
1778bad:
1779 bioset_exit(bs);
1780 return -ENOMEM;
1781}
1782EXPORT_SYMBOL(bioset_init);
1783
1784static int __init init_bio(void)
1785{
1786 int i;
1787
1788 BUILD_BUG_ON(BIO_FLAG_LAST > 8 * sizeof_field(struct bio, bi_flags));
1789
1790 bio_integrity_init();
1791
1792 for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) {
1793 struct biovec_slab *bvs = bvec_slabs + i;
1794
1795 bvs->slab = kmem_cache_create(bvs->name,
1796 bvs->nr_vecs * sizeof(struct bio_vec), 0,
1797 SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1798 }
1799
1800 cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL,
1801 bio_cpu_dead);
1802
1803 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0,
1804 BIOSET_NEED_BVECS | BIOSET_PERCPU_CACHE))
1805 panic("bio: can't allocate bios\n");
1806
1807 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
1808 panic("bio: can't create integrity pool\n");
1809
1810 return 0;
1811}
1812subsys_initcall(init_bio);
1/*
2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/bio.h>
21#include <linux/blkdev.h>
22#include <linux/uio.h>
23#include <linux/iocontext.h>
24#include <linux/slab.h>
25#include <linux/init.h>
26#include <linux/kernel.h>
27#include <linux/export.h>
28#include <linux/mempool.h>
29#include <linux/workqueue.h>
30#include <linux/cgroup.h>
31
32#include <trace/events/block.h>
33
34/*
35 * Test patch to inline a certain number of bi_io_vec's inside the bio
36 * itself, to shrink a bio data allocation from two mempool calls to one
37 */
38#define BIO_INLINE_VECS 4
39
40/*
41 * if you change this list, also change bvec_alloc or things will
42 * break badly! cannot be bigger than what you can fit into an
43 * unsigned short
44 */
45#define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
46static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
47 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
48};
49#undef BV
50
51/*
52 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
53 * IO code that does not need private memory pools.
54 */
55struct bio_set *fs_bio_set;
56EXPORT_SYMBOL(fs_bio_set);
57
58/*
59 * Our slab pool management
60 */
61struct bio_slab {
62 struct kmem_cache *slab;
63 unsigned int slab_ref;
64 unsigned int slab_size;
65 char name[8];
66};
67static DEFINE_MUTEX(bio_slab_lock);
68static struct bio_slab *bio_slabs;
69static unsigned int bio_slab_nr, bio_slab_max;
70
71static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
72{
73 unsigned int sz = sizeof(struct bio) + extra_size;
74 struct kmem_cache *slab = NULL;
75 struct bio_slab *bslab, *new_bio_slabs;
76 unsigned int new_bio_slab_max;
77 unsigned int i, entry = -1;
78
79 mutex_lock(&bio_slab_lock);
80
81 i = 0;
82 while (i < bio_slab_nr) {
83 bslab = &bio_slabs[i];
84
85 if (!bslab->slab && entry == -1)
86 entry = i;
87 else if (bslab->slab_size == sz) {
88 slab = bslab->slab;
89 bslab->slab_ref++;
90 break;
91 }
92 i++;
93 }
94
95 if (slab)
96 goto out_unlock;
97
98 if (bio_slab_nr == bio_slab_max && entry == -1) {
99 new_bio_slab_max = bio_slab_max << 1;
100 new_bio_slabs = krealloc(bio_slabs,
101 new_bio_slab_max * sizeof(struct bio_slab),
102 GFP_KERNEL);
103 if (!new_bio_slabs)
104 goto out_unlock;
105 bio_slab_max = new_bio_slab_max;
106 bio_slabs = new_bio_slabs;
107 }
108 if (entry == -1)
109 entry = bio_slab_nr++;
110
111 bslab = &bio_slabs[entry];
112
113 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
114 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
115 SLAB_HWCACHE_ALIGN, NULL);
116 if (!slab)
117 goto out_unlock;
118
119 bslab->slab = slab;
120 bslab->slab_ref = 1;
121 bslab->slab_size = sz;
122out_unlock:
123 mutex_unlock(&bio_slab_lock);
124 return slab;
125}
126
127static void bio_put_slab(struct bio_set *bs)
128{
129 struct bio_slab *bslab = NULL;
130 unsigned int i;
131
132 mutex_lock(&bio_slab_lock);
133
134 for (i = 0; i < bio_slab_nr; i++) {
135 if (bs->bio_slab == bio_slabs[i].slab) {
136 bslab = &bio_slabs[i];
137 break;
138 }
139 }
140
141 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
142 goto out;
143
144 WARN_ON(!bslab->slab_ref);
145
146 if (--bslab->slab_ref)
147 goto out;
148
149 kmem_cache_destroy(bslab->slab);
150 bslab->slab = NULL;
151
152out:
153 mutex_unlock(&bio_slab_lock);
154}
155
156unsigned int bvec_nr_vecs(unsigned short idx)
157{
158 return bvec_slabs[idx].nr_vecs;
159}
160
161void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
162{
163 BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
164
165 if (idx == BIOVEC_MAX_IDX)
166 mempool_free(bv, pool);
167 else {
168 struct biovec_slab *bvs = bvec_slabs + idx;
169
170 kmem_cache_free(bvs->slab, bv);
171 }
172}
173
174struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
175 mempool_t *pool)
176{
177 struct bio_vec *bvl;
178
179 /*
180 * see comment near bvec_array define!
181 */
182 switch (nr) {
183 case 1:
184 *idx = 0;
185 break;
186 case 2 ... 4:
187 *idx = 1;
188 break;
189 case 5 ... 16:
190 *idx = 2;
191 break;
192 case 17 ... 64:
193 *idx = 3;
194 break;
195 case 65 ... 128:
196 *idx = 4;
197 break;
198 case 129 ... BIO_MAX_PAGES:
199 *idx = 5;
200 break;
201 default:
202 return NULL;
203 }
204
205 /*
206 * idx now points to the pool we want to allocate from. only the
207 * 1-vec entry pool is mempool backed.
208 */
209 if (*idx == BIOVEC_MAX_IDX) {
210fallback:
211 bvl = mempool_alloc(pool, gfp_mask);
212 } else {
213 struct biovec_slab *bvs = bvec_slabs + *idx;
214 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
215
216 /*
217 * Make this allocation restricted and don't dump info on
218 * allocation failures, since we'll fallback to the mempool
219 * in case of failure.
220 */
221 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
222
223 /*
224 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
225 * is set, retry with the 1-entry mempool
226 */
227 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
228 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
229 *idx = BIOVEC_MAX_IDX;
230 goto fallback;
231 }
232 }
233
234 return bvl;
235}
236
237static void __bio_free(struct bio *bio)
238{
239 bio_disassociate_task(bio);
240
241 if (bio_integrity(bio))
242 bio_integrity_free(bio);
243}
244
245static void bio_free(struct bio *bio)
246{
247 struct bio_set *bs = bio->bi_pool;
248 void *p;
249
250 __bio_free(bio);
251
252 if (bs) {
253 if (bio_flagged(bio, BIO_OWNS_VEC))
254 bvec_free(bs->bvec_pool, bio->bi_io_vec, BIO_POOL_IDX(bio));
255
256 /*
257 * If we have front padding, adjust the bio pointer before freeing
258 */
259 p = bio;
260 p -= bs->front_pad;
261
262 mempool_free(p, bs->bio_pool);
263 } else {
264 /* Bio was allocated by bio_kmalloc() */
265 kfree(bio);
266 }
267}
268
269void bio_init(struct bio *bio)
270{
271 memset(bio, 0, sizeof(*bio));
272 atomic_set(&bio->__bi_remaining, 1);
273 atomic_set(&bio->__bi_cnt, 1);
274}
275EXPORT_SYMBOL(bio_init);
276
277/**
278 * bio_reset - reinitialize a bio
279 * @bio: bio to reset
280 *
281 * Description:
282 * After calling bio_reset(), @bio will be in the same state as a freshly
283 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
284 * preserved are the ones that are initialized by bio_alloc_bioset(). See
285 * comment in struct bio.
286 */
287void bio_reset(struct bio *bio)
288{
289 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
290
291 __bio_free(bio);
292
293 memset(bio, 0, BIO_RESET_BYTES);
294 bio->bi_flags = flags;
295 atomic_set(&bio->__bi_remaining, 1);
296}
297EXPORT_SYMBOL(bio_reset);
298
299static struct bio *__bio_chain_endio(struct bio *bio)
300{
301 struct bio *parent = bio->bi_private;
302
303 if (!parent->bi_error)
304 parent->bi_error = bio->bi_error;
305 bio_put(bio);
306 return parent;
307}
308
309static void bio_chain_endio(struct bio *bio)
310{
311 bio_endio(__bio_chain_endio(bio));
312}
313
314/*
315 * Increment chain count for the bio. Make sure the CHAIN flag update
316 * is visible before the raised count.
317 */
318static inline void bio_inc_remaining(struct bio *bio)
319{
320 bio_set_flag(bio, BIO_CHAIN);
321 smp_mb__before_atomic();
322 atomic_inc(&bio->__bi_remaining);
323}
324
325/**
326 * bio_chain - chain bio completions
327 * @bio: the target bio
328 * @parent: the @bio's parent bio
329 *
330 * The caller won't have a bi_end_io called when @bio completes - instead,
331 * @parent's bi_end_io won't be called until both @parent and @bio have
332 * completed; the chained bio will also be freed when it completes.
333 *
334 * The caller must not set bi_private or bi_end_io in @bio.
335 */
336void bio_chain(struct bio *bio, struct bio *parent)
337{
338 BUG_ON(bio->bi_private || bio->bi_end_io);
339
340 bio->bi_private = parent;
341 bio->bi_end_io = bio_chain_endio;
342 bio_inc_remaining(parent);
343}
344EXPORT_SYMBOL(bio_chain);
345
346static void bio_alloc_rescue(struct work_struct *work)
347{
348 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
349 struct bio *bio;
350
351 while (1) {
352 spin_lock(&bs->rescue_lock);
353 bio = bio_list_pop(&bs->rescue_list);
354 spin_unlock(&bs->rescue_lock);
355
356 if (!bio)
357 break;
358
359 generic_make_request(bio);
360 }
361}
362
363static void punt_bios_to_rescuer(struct bio_set *bs)
364{
365 struct bio_list punt, nopunt;
366 struct bio *bio;
367
368 /*
369 * In order to guarantee forward progress we must punt only bios that
370 * were allocated from this bio_set; otherwise, if there was a bio on
371 * there for a stacking driver higher up in the stack, processing it
372 * could require allocating bios from this bio_set, and doing that from
373 * our own rescuer would be bad.
374 *
375 * Since bio lists are singly linked, pop them all instead of trying to
376 * remove from the middle of the list:
377 */
378
379 bio_list_init(&punt);
380 bio_list_init(&nopunt);
381
382 while ((bio = bio_list_pop(current->bio_list)))
383 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
384
385 *current->bio_list = nopunt;
386
387 spin_lock(&bs->rescue_lock);
388 bio_list_merge(&bs->rescue_list, &punt);
389 spin_unlock(&bs->rescue_lock);
390
391 queue_work(bs->rescue_workqueue, &bs->rescue_work);
392}
393
394/**
395 * bio_alloc_bioset - allocate a bio for I/O
396 * @gfp_mask: the GFP_ mask given to the slab allocator
397 * @nr_iovecs: number of iovecs to pre-allocate
398 * @bs: the bio_set to allocate from.
399 *
400 * Description:
401 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
402 * backed by the @bs's mempool.
403 *
404 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
405 * always be able to allocate a bio. This is due to the mempool guarantees.
406 * To make this work, callers must never allocate more than 1 bio at a time
407 * from this pool. Callers that need to allocate more than 1 bio must always
408 * submit the previously allocated bio for IO before attempting to allocate
409 * a new one. Failure to do so can cause deadlocks under memory pressure.
410 *
411 * Note that when running under generic_make_request() (i.e. any block
412 * driver), bios are not submitted until after you return - see the code in
413 * generic_make_request() that converts recursion into iteration, to prevent
414 * stack overflows.
415 *
416 * This would normally mean allocating multiple bios under
417 * generic_make_request() would be susceptible to deadlocks, but we have
418 * deadlock avoidance code that resubmits any blocked bios from a rescuer
419 * thread.
420 *
421 * However, we do not guarantee forward progress for allocations from other
422 * mempools. Doing multiple allocations from the same mempool under
423 * generic_make_request() should be avoided - instead, use bio_set's front_pad
424 * for per bio allocations.
425 *
426 * RETURNS:
427 * Pointer to new bio on success, NULL on failure.
428 */
429struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
430{
431 gfp_t saved_gfp = gfp_mask;
432 unsigned front_pad;
433 unsigned inline_vecs;
434 unsigned long idx = BIO_POOL_NONE;
435 struct bio_vec *bvl = NULL;
436 struct bio *bio;
437 void *p;
438
439 if (!bs) {
440 if (nr_iovecs > UIO_MAXIOV)
441 return NULL;
442
443 p = kmalloc(sizeof(struct bio) +
444 nr_iovecs * sizeof(struct bio_vec),
445 gfp_mask);
446 front_pad = 0;
447 inline_vecs = nr_iovecs;
448 } else {
449 /* should not use nobvec bioset for nr_iovecs > 0 */
450 if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0))
451 return NULL;
452 /*
453 * generic_make_request() converts recursion to iteration; this
454 * means if we're running beneath it, any bios we allocate and
455 * submit will not be submitted (and thus freed) until after we
456 * return.
457 *
458 * This exposes us to a potential deadlock if we allocate
459 * multiple bios from the same bio_set() while running
460 * underneath generic_make_request(). If we were to allocate
461 * multiple bios (say a stacking block driver that was splitting
462 * bios), we would deadlock if we exhausted the mempool's
463 * reserve.
464 *
465 * We solve this, and guarantee forward progress, with a rescuer
466 * workqueue per bio_set. If we go to allocate and there are
467 * bios on current->bio_list, we first try the allocation
468 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
469 * bios we would be blocking to the rescuer workqueue before
470 * we retry with the original gfp_flags.
471 */
472
473 if (current->bio_list && !bio_list_empty(current->bio_list))
474 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
475
476 p = mempool_alloc(bs->bio_pool, gfp_mask);
477 if (!p && gfp_mask != saved_gfp) {
478 punt_bios_to_rescuer(bs);
479 gfp_mask = saved_gfp;
480 p = mempool_alloc(bs->bio_pool, gfp_mask);
481 }
482
483 front_pad = bs->front_pad;
484 inline_vecs = BIO_INLINE_VECS;
485 }
486
487 if (unlikely(!p))
488 return NULL;
489
490 bio = p + front_pad;
491 bio_init(bio);
492
493 if (nr_iovecs > inline_vecs) {
494 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
495 if (!bvl && gfp_mask != saved_gfp) {
496 punt_bios_to_rescuer(bs);
497 gfp_mask = saved_gfp;
498 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
499 }
500
501 if (unlikely(!bvl))
502 goto err_free;
503
504 bio_set_flag(bio, BIO_OWNS_VEC);
505 } else if (nr_iovecs) {
506 bvl = bio->bi_inline_vecs;
507 }
508
509 bio->bi_pool = bs;
510 bio->bi_flags |= idx << BIO_POOL_OFFSET;
511 bio->bi_max_vecs = nr_iovecs;
512 bio->bi_io_vec = bvl;
513 return bio;
514
515err_free:
516 mempool_free(p, bs->bio_pool);
517 return NULL;
518}
519EXPORT_SYMBOL(bio_alloc_bioset);
520
521void zero_fill_bio(struct bio *bio)
522{
523 unsigned long flags;
524 struct bio_vec bv;
525 struct bvec_iter iter;
526
527 bio_for_each_segment(bv, bio, iter) {
528 char *data = bvec_kmap_irq(&bv, &flags);
529 memset(data, 0, bv.bv_len);
530 flush_dcache_page(bv.bv_page);
531 bvec_kunmap_irq(data, &flags);
532 }
533}
534EXPORT_SYMBOL(zero_fill_bio);
535
536/**
537 * bio_put - release a reference to a bio
538 * @bio: bio to release reference to
539 *
540 * Description:
541 * Put a reference to a &struct bio, either one you have gotten with
542 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
543 **/
544void bio_put(struct bio *bio)
545{
546 if (!bio_flagged(bio, BIO_REFFED))
547 bio_free(bio);
548 else {
549 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
550
551 /*
552 * last put frees it
553 */
554 if (atomic_dec_and_test(&bio->__bi_cnt))
555 bio_free(bio);
556 }
557}
558EXPORT_SYMBOL(bio_put);
559
560inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
561{
562 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
563 blk_recount_segments(q, bio);
564
565 return bio->bi_phys_segments;
566}
567EXPORT_SYMBOL(bio_phys_segments);
568
569/**
570 * __bio_clone_fast - clone a bio that shares the original bio's biovec
571 * @bio: destination bio
572 * @bio_src: bio to clone
573 *
574 * Clone a &bio. Caller will own the returned bio, but not
575 * the actual data it points to. Reference count of returned
576 * bio will be one.
577 *
578 * Caller must ensure that @bio_src is not freed before @bio.
579 */
580void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
581{
582 BUG_ON(bio->bi_pool && BIO_POOL_IDX(bio) != BIO_POOL_NONE);
583
584 /*
585 * most users will be overriding ->bi_bdev with a new target,
586 * so we don't set nor calculate new physical/hw segment counts here
587 */
588 bio->bi_bdev = bio_src->bi_bdev;
589 bio_set_flag(bio, BIO_CLONED);
590 bio->bi_rw = bio_src->bi_rw;
591 bio->bi_iter = bio_src->bi_iter;
592 bio->bi_io_vec = bio_src->bi_io_vec;
593}
594EXPORT_SYMBOL(__bio_clone_fast);
595
596/**
597 * bio_clone_fast - clone a bio that shares the original bio's biovec
598 * @bio: bio to clone
599 * @gfp_mask: allocation priority
600 * @bs: bio_set to allocate from
601 *
602 * Like __bio_clone_fast, only also allocates the returned bio
603 */
604struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
605{
606 struct bio *b;
607
608 b = bio_alloc_bioset(gfp_mask, 0, bs);
609 if (!b)
610 return NULL;
611
612 __bio_clone_fast(b, bio);
613
614 if (bio_integrity(bio)) {
615 int ret;
616
617 ret = bio_integrity_clone(b, bio, gfp_mask);
618
619 if (ret < 0) {
620 bio_put(b);
621 return NULL;
622 }
623 }
624
625 return b;
626}
627EXPORT_SYMBOL(bio_clone_fast);
628
629/**
630 * bio_clone_bioset - clone a bio
631 * @bio_src: bio to clone
632 * @gfp_mask: allocation priority
633 * @bs: bio_set to allocate from
634 *
635 * Clone bio. Caller will own the returned bio, but not the actual data it
636 * points to. Reference count of returned bio will be one.
637 */
638struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
639 struct bio_set *bs)
640{
641 struct bvec_iter iter;
642 struct bio_vec bv;
643 struct bio *bio;
644
645 /*
646 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
647 * bio_src->bi_io_vec to bio->bi_io_vec.
648 *
649 * We can't do that anymore, because:
650 *
651 * - The point of cloning the biovec is to produce a bio with a biovec
652 * the caller can modify: bi_idx and bi_bvec_done should be 0.
653 *
654 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if
655 * we tried to clone the whole thing bio_alloc_bioset() would fail.
656 * But the clone should succeed as long as the number of biovecs we
657 * actually need to allocate is fewer than BIO_MAX_PAGES.
658 *
659 * - Lastly, bi_vcnt should not be looked at or relied upon by code
660 * that does not own the bio - reason being drivers don't use it for
661 * iterating over the biovec anymore, so expecting it to be kept up
662 * to date (i.e. for clones that share the parent biovec) is just
663 * asking for trouble and would force extra work on
664 * __bio_clone_fast() anyways.
665 */
666
667 bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
668 if (!bio)
669 return NULL;
670
671 bio->bi_bdev = bio_src->bi_bdev;
672 bio->bi_rw = bio_src->bi_rw;
673 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector;
674 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size;
675
676 if (bio->bi_rw & REQ_DISCARD)
677 goto integrity_clone;
678
679 if (bio->bi_rw & REQ_WRITE_SAME) {
680 bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
681 goto integrity_clone;
682 }
683
684 bio_for_each_segment(bv, bio_src, iter)
685 bio->bi_io_vec[bio->bi_vcnt++] = bv;
686
687integrity_clone:
688 if (bio_integrity(bio_src)) {
689 int ret;
690
691 ret = bio_integrity_clone(bio, bio_src, gfp_mask);
692 if (ret < 0) {
693 bio_put(bio);
694 return NULL;
695 }
696 }
697
698 return bio;
699}
700EXPORT_SYMBOL(bio_clone_bioset);
701
702/**
703 * bio_add_pc_page - attempt to add page to bio
704 * @q: the target queue
705 * @bio: destination bio
706 * @page: page to add
707 * @len: vec entry length
708 * @offset: vec entry offset
709 *
710 * Attempt to add a page to the bio_vec maplist. This can fail for a
711 * number of reasons, such as the bio being full or target block device
712 * limitations. The target block device must allow bio's up to PAGE_SIZE,
713 * so it is always possible to add a single page to an empty bio.
714 *
715 * This should only be used by REQ_PC bios.
716 */
717int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
718 *page, unsigned int len, unsigned int offset)
719{
720 int retried_segments = 0;
721 struct bio_vec *bvec;
722
723 /*
724 * cloned bio must not modify vec list
725 */
726 if (unlikely(bio_flagged(bio, BIO_CLONED)))
727 return 0;
728
729 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
730 return 0;
731
732 /*
733 * For filesystems with a blocksize smaller than the pagesize
734 * we will often be called with the same page as last time and
735 * a consecutive offset. Optimize this special case.
736 */
737 if (bio->bi_vcnt > 0) {
738 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
739
740 if (page == prev->bv_page &&
741 offset == prev->bv_offset + prev->bv_len) {
742 prev->bv_len += len;
743 bio->bi_iter.bi_size += len;
744 goto done;
745 }
746
747 /*
748 * If the queue doesn't support SG gaps and adding this
749 * offset would create a gap, disallow it.
750 */
751 if (bvec_gap_to_prev(q, prev, offset))
752 return 0;
753 }
754
755 if (bio->bi_vcnt >= bio->bi_max_vecs)
756 return 0;
757
758 /*
759 * setup the new entry, we might clear it again later if we
760 * cannot add the page
761 */
762 bvec = &bio->bi_io_vec[bio->bi_vcnt];
763 bvec->bv_page = page;
764 bvec->bv_len = len;
765 bvec->bv_offset = offset;
766 bio->bi_vcnt++;
767 bio->bi_phys_segments++;
768 bio->bi_iter.bi_size += len;
769
770 /*
771 * Perform a recount if the number of segments is greater
772 * than queue_max_segments(q).
773 */
774
775 while (bio->bi_phys_segments > queue_max_segments(q)) {
776
777 if (retried_segments)
778 goto failed;
779
780 retried_segments = 1;
781 blk_recount_segments(q, bio);
782 }
783
784 /* If we may be able to merge these biovecs, force a recount */
785 if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
786 bio_clear_flag(bio, BIO_SEG_VALID);
787
788 done:
789 return len;
790
791 failed:
792 bvec->bv_page = NULL;
793 bvec->bv_len = 0;
794 bvec->bv_offset = 0;
795 bio->bi_vcnt--;
796 bio->bi_iter.bi_size -= len;
797 blk_recount_segments(q, bio);
798 return 0;
799}
800EXPORT_SYMBOL(bio_add_pc_page);
801
802/**
803 * bio_add_page - attempt to add page to bio
804 * @bio: destination bio
805 * @page: page to add
806 * @len: vec entry length
807 * @offset: vec entry offset
808 *
809 * Attempt to add a page to the bio_vec maplist. This will only fail
810 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
811 */
812int bio_add_page(struct bio *bio, struct page *page,
813 unsigned int len, unsigned int offset)
814{
815 struct bio_vec *bv;
816
817 /*
818 * cloned bio must not modify vec list
819 */
820 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
821 return 0;
822
823 /*
824 * For filesystems with a blocksize smaller than the pagesize
825 * we will often be called with the same page as last time and
826 * a consecutive offset. Optimize this special case.
827 */
828 if (bio->bi_vcnt > 0) {
829 bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
830
831 if (page == bv->bv_page &&
832 offset == bv->bv_offset + bv->bv_len) {
833 bv->bv_len += len;
834 goto done;
835 }
836 }
837
838 if (bio->bi_vcnt >= bio->bi_max_vecs)
839 return 0;
840
841 bv = &bio->bi_io_vec[bio->bi_vcnt];
842 bv->bv_page = page;
843 bv->bv_len = len;
844 bv->bv_offset = offset;
845
846 bio->bi_vcnt++;
847done:
848 bio->bi_iter.bi_size += len;
849 return len;
850}
851EXPORT_SYMBOL(bio_add_page);
852
853struct submit_bio_ret {
854 struct completion event;
855 int error;
856};
857
858static void submit_bio_wait_endio(struct bio *bio)
859{
860 struct submit_bio_ret *ret = bio->bi_private;
861
862 ret->error = bio->bi_error;
863 complete(&ret->event);
864}
865
866/**
867 * submit_bio_wait - submit a bio, and wait until it completes
868 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
869 * @bio: The &struct bio which describes the I/O
870 *
871 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
872 * bio_endio() on failure.
873 */
874int submit_bio_wait(int rw, struct bio *bio)
875{
876 struct submit_bio_ret ret;
877
878 rw |= REQ_SYNC;
879 init_completion(&ret.event);
880 bio->bi_private = &ret;
881 bio->bi_end_io = submit_bio_wait_endio;
882 submit_bio(rw, bio);
883 wait_for_completion_io(&ret.event);
884
885 return ret.error;
886}
887EXPORT_SYMBOL(submit_bio_wait);
888
889/**
890 * bio_advance - increment/complete a bio by some number of bytes
891 * @bio: bio to advance
892 * @bytes: number of bytes to complete
893 *
894 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
895 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
896 * be updated on the last bvec as well.
897 *
898 * @bio will then represent the remaining, uncompleted portion of the io.
899 */
900void bio_advance(struct bio *bio, unsigned bytes)
901{
902 if (bio_integrity(bio))
903 bio_integrity_advance(bio, bytes);
904
905 bio_advance_iter(bio, &bio->bi_iter, bytes);
906}
907EXPORT_SYMBOL(bio_advance);
908
909/**
910 * bio_alloc_pages - allocates a single page for each bvec in a bio
911 * @bio: bio to allocate pages for
912 * @gfp_mask: flags for allocation
913 *
914 * Allocates pages up to @bio->bi_vcnt.
915 *
916 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
917 * freed.
918 */
919int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
920{
921 int i;
922 struct bio_vec *bv;
923
924 bio_for_each_segment_all(bv, bio, i) {
925 bv->bv_page = alloc_page(gfp_mask);
926 if (!bv->bv_page) {
927 while (--bv >= bio->bi_io_vec)
928 __free_page(bv->bv_page);
929 return -ENOMEM;
930 }
931 }
932
933 return 0;
934}
935EXPORT_SYMBOL(bio_alloc_pages);
936
937/**
938 * bio_copy_data - copy contents of data buffers from one chain of bios to
939 * another
940 * @src: source bio list
941 * @dst: destination bio list
942 *
943 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
944 * @src and @dst as linked lists of bios.
945 *
946 * Stops when it reaches the end of either @src or @dst - that is, copies
947 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
948 */
949void bio_copy_data(struct bio *dst, struct bio *src)
950{
951 struct bvec_iter src_iter, dst_iter;
952 struct bio_vec src_bv, dst_bv;
953 void *src_p, *dst_p;
954 unsigned bytes;
955
956 src_iter = src->bi_iter;
957 dst_iter = dst->bi_iter;
958
959 while (1) {
960 if (!src_iter.bi_size) {
961 src = src->bi_next;
962 if (!src)
963 break;
964
965 src_iter = src->bi_iter;
966 }
967
968 if (!dst_iter.bi_size) {
969 dst = dst->bi_next;
970 if (!dst)
971 break;
972
973 dst_iter = dst->bi_iter;
974 }
975
976 src_bv = bio_iter_iovec(src, src_iter);
977 dst_bv = bio_iter_iovec(dst, dst_iter);
978
979 bytes = min(src_bv.bv_len, dst_bv.bv_len);
980
981 src_p = kmap_atomic(src_bv.bv_page);
982 dst_p = kmap_atomic(dst_bv.bv_page);
983
984 memcpy(dst_p + dst_bv.bv_offset,
985 src_p + src_bv.bv_offset,
986 bytes);
987
988 kunmap_atomic(dst_p);
989 kunmap_atomic(src_p);
990
991 bio_advance_iter(src, &src_iter, bytes);
992 bio_advance_iter(dst, &dst_iter, bytes);
993 }
994}
995EXPORT_SYMBOL(bio_copy_data);
996
997struct bio_map_data {
998 int is_our_pages;
999 struct iov_iter iter;
1000 struct iovec iov[];
1001};
1002
1003static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count,
1004 gfp_t gfp_mask)
1005{
1006 if (iov_count > UIO_MAXIOV)
1007 return NULL;
1008
1009 return kmalloc(sizeof(struct bio_map_data) +
1010 sizeof(struct iovec) * iov_count, gfp_mask);
1011}
1012
1013/**
1014 * bio_copy_from_iter - copy all pages from iov_iter to bio
1015 * @bio: The &struct bio which describes the I/O as destination
1016 * @iter: iov_iter as source
1017 *
1018 * Copy all pages from iov_iter to bio.
1019 * Returns 0 on success, or error on failure.
1020 */
1021static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter)
1022{
1023 int i;
1024 struct bio_vec *bvec;
1025
1026 bio_for_each_segment_all(bvec, bio, i) {
1027 ssize_t ret;
1028
1029 ret = copy_page_from_iter(bvec->bv_page,
1030 bvec->bv_offset,
1031 bvec->bv_len,
1032 &iter);
1033
1034 if (!iov_iter_count(&iter))
1035 break;
1036
1037 if (ret < bvec->bv_len)
1038 return -EFAULT;
1039 }
1040
1041 return 0;
1042}
1043
1044/**
1045 * bio_copy_to_iter - copy all pages from bio to iov_iter
1046 * @bio: The &struct bio which describes the I/O as source
1047 * @iter: iov_iter as destination
1048 *
1049 * Copy all pages from bio to iov_iter.
1050 * Returns 0 on success, or error on failure.
1051 */
1052static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1053{
1054 int i;
1055 struct bio_vec *bvec;
1056
1057 bio_for_each_segment_all(bvec, bio, i) {
1058 ssize_t ret;
1059
1060 ret = copy_page_to_iter(bvec->bv_page,
1061 bvec->bv_offset,
1062 bvec->bv_len,
1063 &iter);
1064
1065 if (!iov_iter_count(&iter))
1066 break;
1067
1068 if (ret < bvec->bv_len)
1069 return -EFAULT;
1070 }
1071
1072 return 0;
1073}
1074
1075static void bio_free_pages(struct bio *bio)
1076{
1077 struct bio_vec *bvec;
1078 int i;
1079
1080 bio_for_each_segment_all(bvec, bio, i)
1081 __free_page(bvec->bv_page);
1082}
1083
1084/**
1085 * bio_uncopy_user - finish previously mapped bio
1086 * @bio: bio being terminated
1087 *
1088 * Free pages allocated from bio_copy_user_iov() and write back data
1089 * to user space in case of a read.
1090 */
1091int bio_uncopy_user(struct bio *bio)
1092{
1093 struct bio_map_data *bmd = bio->bi_private;
1094 int ret = 0;
1095
1096 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1097 /*
1098 * if we're in a workqueue, the request is orphaned, so
1099 * don't copy into a random user address space, just free
1100 * and return -EINTR so user space doesn't expect any data.
1101 */
1102 if (!current->mm)
1103 ret = -EINTR;
1104 else if (bio_data_dir(bio) == READ)
1105 ret = bio_copy_to_iter(bio, bmd->iter);
1106 if (bmd->is_our_pages)
1107 bio_free_pages(bio);
1108 }
1109 kfree(bmd);
1110 bio_put(bio);
1111 return ret;
1112}
1113EXPORT_SYMBOL(bio_uncopy_user);
1114
1115/**
1116 * bio_copy_user_iov - copy user data to bio
1117 * @q: destination block queue
1118 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1119 * @iter: iovec iterator
1120 * @gfp_mask: memory allocation flags
1121 *
1122 * Prepares and returns a bio for indirect user io, bouncing data
1123 * to/from kernel pages as necessary. Must be paired with
1124 * call bio_uncopy_user() on io completion.
1125 */
1126struct bio *bio_copy_user_iov(struct request_queue *q,
1127 struct rq_map_data *map_data,
1128 const struct iov_iter *iter,
1129 gfp_t gfp_mask)
1130{
1131 struct bio_map_data *bmd;
1132 struct page *page;
1133 struct bio *bio;
1134 int i, ret;
1135 int nr_pages = 0;
1136 unsigned int len = iter->count;
1137 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1138
1139 for (i = 0; i < iter->nr_segs; i++) {
1140 unsigned long uaddr;
1141 unsigned long end;
1142 unsigned long start;
1143
1144 uaddr = (unsigned long) iter->iov[i].iov_base;
1145 end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1)
1146 >> PAGE_SHIFT;
1147 start = uaddr >> PAGE_SHIFT;
1148
1149 /*
1150 * Overflow, abort
1151 */
1152 if (end < start)
1153 return ERR_PTR(-EINVAL);
1154
1155 nr_pages += end - start;
1156 }
1157
1158 if (offset)
1159 nr_pages++;
1160
1161 bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask);
1162 if (!bmd)
1163 return ERR_PTR(-ENOMEM);
1164
1165 /*
1166 * We need to do a deep copy of the iov_iter including the iovecs.
1167 * The caller provided iov might point to an on-stack or otherwise
1168 * shortlived one.
1169 */
1170 bmd->is_our_pages = map_data ? 0 : 1;
1171 memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs);
1172 iov_iter_init(&bmd->iter, iter->type, bmd->iov,
1173 iter->nr_segs, iter->count);
1174
1175 ret = -ENOMEM;
1176 bio = bio_kmalloc(gfp_mask, nr_pages);
1177 if (!bio)
1178 goto out_bmd;
1179
1180 if (iter->type & WRITE)
1181 bio->bi_rw |= REQ_WRITE;
1182
1183 ret = 0;
1184
1185 if (map_data) {
1186 nr_pages = 1 << map_data->page_order;
1187 i = map_data->offset / PAGE_SIZE;
1188 }
1189 while (len) {
1190 unsigned int bytes = PAGE_SIZE;
1191
1192 bytes -= offset;
1193
1194 if (bytes > len)
1195 bytes = len;
1196
1197 if (map_data) {
1198 if (i == map_data->nr_entries * nr_pages) {
1199 ret = -ENOMEM;
1200 break;
1201 }
1202
1203 page = map_data->pages[i / nr_pages];
1204 page += (i % nr_pages);
1205
1206 i++;
1207 } else {
1208 page = alloc_page(q->bounce_gfp | gfp_mask);
1209 if (!page) {
1210 ret = -ENOMEM;
1211 break;
1212 }
1213 }
1214
1215 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1216 break;
1217
1218 len -= bytes;
1219 offset = 0;
1220 }
1221
1222 if (ret)
1223 goto cleanup;
1224
1225 /*
1226 * success
1227 */
1228 if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
1229 (map_data && map_data->from_user)) {
1230 ret = bio_copy_from_iter(bio, *iter);
1231 if (ret)
1232 goto cleanup;
1233 }
1234
1235 bio->bi_private = bmd;
1236 return bio;
1237cleanup:
1238 if (!map_data)
1239 bio_free_pages(bio);
1240 bio_put(bio);
1241out_bmd:
1242 kfree(bmd);
1243 return ERR_PTR(ret);
1244}
1245
1246/**
1247 * bio_map_user_iov - map user iovec into bio
1248 * @q: the struct request_queue for the bio
1249 * @iter: iovec iterator
1250 * @gfp_mask: memory allocation flags
1251 *
1252 * Map the user space address into a bio suitable for io to a block
1253 * device. Returns an error pointer in case of error.
1254 */
1255struct bio *bio_map_user_iov(struct request_queue *q,
1256 const struct iov_iter *iter,
1257 gfp_t gfp_mask)
1258{
1259 int j;
1260 int nr_pages = 0;
1261 struct page **pages;
1262 struct bio *bio;
1263 int cur_page = 0;
1264 int ret, offset;
1265 struct iov_iter i;
1266 struct iovec iov;
1267
1268 iov_for_each(iov, i, *iter) {
1269 unsigned long uaddr = (unsigned long) iov.iov_base;
1270 unsigned long len = iov.iov_len;
1271 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1272 unsigned long start = uaddr >> PAGE_SHIFT;
1273
1274 /*
1275 * Overflow, abort
1276 */
1277 if (end < start)
1278 return ERR_PTR(-EINVAL);
1279
1280 nr_pages += end - start;
1281 /*
1282 * buffer must be aligned to at least hardsector size for now
1283 */
1284 if (uaddr & queue_dma_alignment(q))
1285 return ERR_PTR(-EINVAL);
1286 }
1287
1288 if (!nr_pages)
1289 return ERR_PTR(-EINVAL);
1290
1291 bio = bio_kmalloc(gfp_mask, nr_pages);
1292 if (!bio)
1293 return ERR_PTR(-ENOMEM);
1294
1295 ret = -ENOMEM;
1296 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1297 if (!pages)
1298 goto out;
1299
1300 iov_for_each(iov, i, *iter) {
1301 unsigned long uaddr = (unsigned long) iov.iov_base;
1302 unsigned long len = iov.iov_len;
1303 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1304 unsigned long start = uaddr >> PAGE_SHIFT;
1305 const int local_nr_pages = end - start;
1306 const int page_limit = cur_page + local_nr_pages;
1307
1308 ret = get_user_pages_fast(uaddr, local_nr_pages,
1309 (iter->type & WRITE) != WRITE,
1310 &pages[cur_page]);
1311 if (ret < local_nr_pages) {
1312 ret = -EFAULT;
1313 goto out_unmap;
1314 }
1315
1316 offset = offset_in_page(uaddr);
1317 for (j = cur_page; j < page_limit; j++) {
1318 unsigned int bytes = PAGE_SIZE - offset;
1319
1320 if (len <= 0)
1321 break;
1322
1323 if (bytes > len)
1324 bytes = len;
1325
1326 /*
1327 * sorry...
1328 */
1329 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1330 bytes)
1331 break;
1332
1333 len -= bytes;
1334 offset = 0;
1335 }
1336
1337 cur_page = j;
1338 /*
1339 * release the pages we didn't map into the bio, if any
1340 */
1341 while (j < page_limit)
1342 put_page(pages[j++]);
1343 }
1344
1345 kfree(pages);
1346
1347 /*
1348 * set data direction, and check if mapped pages need bouncing
1349 */
1350 if (iter->type & WRITE)
1351 bio->bi_rw |= REQ_WRITE;
1352
1353 bio_set_flag(bio, BIO_USER_MAPPED);
1354
1355 /*
1356 * subtle -- if __bio_map_user() ended up bouncing a bio,
1357 * it would normally disappear when its bi_end_io is run.
1358 * however, we need it for the unmap, so grab an extra
1359 * reference to it
1360 */
1361 bio_get(bio);
1362 return bio;
1363
1364 out_unmap:
1365 for (j = 0; j < nr_pages; j++) {
1366 if (!pages[j])
1367 break;
1368 put_page(pages[j]);
1369 }
1370 out:
1371 kfree(pages);
1372 bio_put(bio);
1373 return ERR_PTR(ret);
1374}
1375
1376static void __bio_unmap_user(struct bio *bio)
1377{
1378 struct bio_vec *bvec;
1379 int i;
1380
1381 /*
1382 * make sure we dirty pages we wrote to
1383 */
1384 bio_for_each_segment_all(bvec, bio, i) {
1385 if (bio_data_dir(bio) == READ)
1386 set_page_dirty_lock(bvec->bv_page);
1387
1388 put_page(bvec->bv_page);
1389 }
1390
1391 bio_put(bio);
1392}
1393
1394/**
1395 * bio_unmap_user - unmap a bio
1396 * @bio: the bio being unmapped
1397 *
1398 * Unmap a bio previously mapped by bio_map_user(). Must be called with
1399 * a process context.
1400 *
1401 * bio_unmap_user() may sleep.
1402 */
1403void bio_unmap_user(struct bio *bio)
1404{
1405 __bio_unmap_user(bio);
1406 bio_put(bio);
1407}
1408EXPORT_SYMBOL(bio_unmap_user);
1409
1410static void bio_map_kern_endio(struct bio *bio)
1411{
1412 bio_put(bio);
1413}
1414
1415/**
1416 * bio_map_kern - map kernel address into bio
1417 * @q: the struct request_queue for the bio
1418 * @data: pointer to buffer to map
1419 * @len: length in bytes
1420 * @gfp_mask: allocation flags for bio allocation
1421 *
1422 * Map the kernel address into a bio suitable for io to a block
1423 * device. Returns an error pointer in case of error.
1424 */
1425struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1426 gfp_t gfp_mask)
1427{
1428 unsigned long kaddr = (unsigned long)data;
1429 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1430 unsigned long start = kaddr >> PAGE_SHIFT;
1431 const int nr_pages = end - start;
1432 int offset, i;
1433 struct bio *bio;
1434
1435 bio = bio_kmalloc(gfp_mask, nr_pages);
1436 if (!bio)
1437 return ERR_PTR(-ENOMEM);
1438
1439 offset = offset_in_page(kaddr);
1440 for (i = 0; i < nr_pages; i++) {
1441 unsigned int bytes = PAGE_SIZE - offset;
1442
1443 if (len <= 0)
1444 break;
1445
1446 if (bytes > len)
1447 bytes = len;
1448
1449 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1450 offset) < bytes) {
1451 /* we don't support partial mappings */
1452 bio_put(bio);
1453 return ERR_PTR(-EINVAL);
1454 }
1455
1456 data += bytes;
1457 len -= bytes;
1458 offset = 0;
1459 }
1460
1461 bio->bi_end_io = bio_map_kern_endio;
1462 return bio;
1463}
1464EXPORT_SYMBOL(bio_map_kern);
1465
1466static void bio_copy_kern_endio(struct bio *bio)
1467{
1468 bio_free_pages(bio);
1469 bio_put(bio);
1470}
1471
1472static void bio_copy_kern_endio_read(struct bio *bio)
1473{
1474 char *p = bio->bi_private;
1475 struct bio_vec *bvec;
1476 int i;
1477
1478 bio_for_each_segment_all(bvec, bio, i) {
1479 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1480 p += bvec->bv_len;
1481 }
1482
1483 bio_copy_kern_endio(bio);
1484}
1485
1486/**
1487 * bio_copy_kern - copy kernel address into bio
1488 * @q: the struct request_queue for the bio
1489 * @data: pointer to buffer to copy
1490 * @len: length in bytes
1491 * @gfp_mask: allocation flags for bio and page allocation
1492 * @reading: data direction is READ
1493 *
1494 * copy the kernel address into a bio suitable for io to a block
1495 * device. Returns an error pointer in case of error.
1496 */
1497struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1498 gfp_t gfp_mask, int reading)
1499{
1500 unsigned long kaddr = (unsigned long)data;
1501 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1502 unsigned long start = kaddr >> PAGE_SHIFT;
1503 struct bio *bio;
1504 void *p = data;
1505 int nr_pages = 0;
1506
1507 /*
1508 * Overflow, abort
1509 */
1510 if (end < start)
1511 return ERR_PTR(-EINVAL);
1512
1513 nr_pages = end - start;
1514 bio = bio_kmalloc(gfp_mask, nr_pages);
1515 if (!bio)
1516 return ERR_PTR(-ENOMEM);
1517
1518 while (len) {
1519 struct page *page;
1520 unsigned int bytes = PAGE_SIZE;
1521
1522 if (bytes > len)
1523 bytes = len;
1524
1525 page = alloc_page(q->bounce_gfp | gfp_mask);
1526 if (!page)
1527 goto cleanup;
1528
1529 if (!reading)
1530 memcpy(page_address(page), p, bytes);
1531
1532 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1533 break;
1534
1535 len -= bytes;
1536 p += bytes;
1537 }
1538
1539 if (reading) {
1540 bio->bi_end_io = bio_copy_kern_endio_read;
1541 bio->bi_private = data;
1542 } else {
1543 bio->bi_end_io = bio_copy_kern_endio;
1544 bio->bi_rw |= REQ_WRITE;
1545 }
1546
1547 return bio;
1548
1549cleanup:
1550 bio_free_pages(bio);
1551 bio_put(bio);
1552 return ERR_PTR(-ENOMEM);
1553}
1554EXPORT_SYMBOL(bio_copy_kern);
1555
1556/*
1557 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1558 * for performing direct-IO in BIOs.
1559 *
1560 * The problem is that we cannot run set_page_dirty() from interrupt context
1561 * because the required locks are not interrupt-safe. So what we can do is to
1562 * mark the pages dirty _before_ performing IO. And in interrupt context,
1563 * check that the pages are still dirty. If so, fine. If not, redirty them
1564 * in process context.
1565 *
1566 * We special-case compound pages here: normally this means reads into hugetlb
1567 * pages. The logic in here doesn't really work right for compound pages
1568 * because the VM does not uniformly chase down the head page in all cases.
1569 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1570 * handle them at all. So we skip compound pages here at an early stage.
1571 *
1572 * Note that this code is very hard to test under normal circumstances because
1573 * direct-io pins the pages with get_user_pages(). This makes
1574 * is_page_cache_freeable return false, and the VM will not clean the pages.
1575 * But other code (eg, flusher threads) could clean the pages if they are mapped
1576 * pagecache.
1577 *
1578 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1579 * deferred bio dirtying paths.
1580 */
1581
1582/*
1583 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1584 */
1585void bio_set_pages_dirty(struct bio *bio)
1586{
1587 struct bio_vec *bvec;
1588 int i;
1589
1590 bio_for_each_segment_all(bvec, bio, i) {
1591 struct page *page = bvec->bv_page;
1592
1593 if (page && !PageCompound(page))
1594 set_page_dirty_lock(page);
1595 }
1596}
1597
1598static void bio_release_pages(struct bio *bio)
1599{
1600 struct bio_vec *bvec;
1601 int i;
1602
1603 bio_for_each_segment_all(bvec, bio, i) {
1604 struct page *page = bvec->bv_page;
1605
1606 if (page)
1607 put_page(page);
1608 }
1609}
1610
1611/*
1612 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1613 * If they are, then fine. If, however, some pages are clean then they must
1614 * have been written out during the direct-IO read. So we take another ref on
1615 * the BIO and the offending pages and re-dirty the pages in process context.
1616 *
1617 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1618 * here on. It will run one put_page() against each page and will run one
1619 * bio_put() against the BIO.
1620 */
1621
1622static void bio_dirty_fn(struct work_struct *work);
1623
1624static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1625static DEFINE_SPINLOCK(bio_dirty_lock);
1626static struct bio *bio_dirty_list;
1627
1628/*
1629 * This runs in process context
1630 */
1631static void bio_dirty_fn(struct work_struct *work)
1632{
1633 unsigned long flags;
1634 struct bio *bio;
1635
1636 spin_lock_irqsave(&bio_dirty_lock, flags);
1637 bio = bio_dirty_list;
1638 bio_dirty_list = NULL;
1639 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1640
1641 while (bio) {
1642 struct bio *next = bio->bi_private;
1643
1644 bio_set_pages_dirty(bio);
1645 bio_release_pages(bio);
1646 bio_put(bio);
1647 bio = next;
1648 }
1649}
1650
1651void bio_check_pages_dirty(struct bio *bio)
1652{
1653 struct bio_vec *bvec;
1654 int nr_clean_pages = 0;
1655 int i;
1656
1657 bio_for_each_segment_all(bvec, bio, i) {
1658 struct page *page = bvec->bv_page;
1659
1660 if (PageDirty(page) || PageCompound(page)) {
1661 put_page(page);
1662 bvec->bv_page = NULL;
1663 } else {
1664 nr_clean_pages++;
1665 }
1666 }
1667
1668 if (nr_clean_pages) {
1669 unsigned long flags;
1670
1671 spin_lock_irqsave(&bio_dirty_lock, flags);
1672 bio->bi_private = bio_dirty_list;
1673 bio_dirty_list = bio;
1674 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1675 schedule_work(&bio_dirty_work);
1676 } else {
1677 bio_put(bio);
1678 }
1679}
1680
1681void generic_start_io_acct(int rw, unsigned long sectors,
1682 struct hd_struct *part)
1683{
1684 int cpu = part_stat_lock();
1685
1686 part_round_stats(cpu, part);
1687 part_stat_inc(cpu, part, ios[rw]);
1688 part_stat_add(cpu, part, sectors[rw], sectors);
1689 part_inc_in_flight(part, rw);
1690
1691 part_stat_unlock();
1692}
1693EXPORT_SYMBOL(generic_start_io_acct);
1694
1695void generic_end_io_acct(int rw, struct hd_struct *part,
1696 unsigned long start_time)
1697{
1698 unsigned long duration = jiffies - start_time;
1699 int cpu = part_stat_lock();
1700
1701 part_stat_add(cpu, part, ticks[rw], duration);
1702 part_round_stats(cpu, part);
1703 part_dec_in_flight(part, rw);
1704
1705 part_stat_unlock();
1706}
1707EXPORT_SYMBOL(generic_end_io_acct);
1708
1709#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1710void bio_flush_dcache_pages(struct bio *bi)
1711{
1712 struct bio_vec bvec;
1713 struct bvec_iter iter;
1714
1715 bio_for_each_segment(bvec, bi, iter)
1716 flush_dcache_page(bvec.bv_page);
1717}
1718EXPORT_SYMBOL(bio_flush_dcache_pages);
1719#endif
1720
1721static inline bool bio_remaining_done(struct bio *bio)
1722{
1723 /*
1724 * If we're not chaining, then ->__bi_remaining is always 1 and
1725 * we always end io on the first invocation.
1726 */
1727 if (!bio_flagged(bio, BIO_CHAIN))
1728 return true;
1729
1730 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1731
1732 if (atomic_dec_and_test(&bio->__bi_remaining)) {
1733 bio_clear_flag(bio, BIO_CHAIN);
1734 return true;
1735 }
1736
1737 return false;
1738}
1739
1740/**
1741 * bio_endio - end I/O on a bio
1742 * @bio: bio
1743 *
1744 * Description:
1745 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1746 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1747 * bio unless they own it and thus know that it has an end_io function.
1748 **/
1749void bio_endio(struct bio *bio)
1750{
1751again:
1752 if (!bio_remaining_done(bio))
1753 return;
1754
1755 /*
1756 * Need to have a real endio function for chained bios, otherwise
1757 * various corner cases will break (like stacking block devices that
1758 * save/restore bi_end_io) - however, we want to avoid unbounded
1759 * recursion and blowing the stack. Tail call optimization would
1760 * handle this, but compiling with frame pointers also disables
1761 * gcc's sibling call optimization.
1762 */
1763 if (bio->bi_end_io == bio_chain_endio) {
1764 bio = __bio_chain_endio(bio);
1765 goto again;
1766 }
1767
1768 if (bio->bi_end_io)
1769 bio->bi_end_io(bio);
1770}
1771EXPORT_SYMBOL(bio_endio);
1772
1773/**
1774 * bio_split - split a bio
1775 * @bio: bio to split
1776 * @sectors: number of sectors to split from the front of @bio
1777 * @gfp: gfp mask
1778 * @bs: bio set to allocate from
1779 *
1780 * Allocates and returns a new bio which represents @sectors from the start of
1781 * @bio, and updates @bio to represent the remaining sectors.
1782 *
1783 * Unless this is a discard request the newly allocated bio will point
1784 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1785 * @bio is not freed before the split.
1786 */
1787struct bio *bio_split(struct bio *bio, int sectors,
1788 gfp_t gfp, struct bio_set *bs)
1789{
1790 struct bio *split = NULL;
1791
1792 BUG_ON(sectors <= 0);
1793 BUG_ON(sectors >= bio_sectors(bio));
1794
1795 /*
1796 * Discards need a mutable bio_vec to accommodate the payload
1797 * required by the DSM TRIM and UNMAP commands.
1798 */
1799 if (bio->bi_rw & REQ_DISCARD)
1800 split = bio_clone_bioset(bio, gfp, bs);
1801 else
1802 split = bio_clone_fast(bio, gfp, bs);
1803
1804 if (!split)
1805 return NULL;
1806
1807 split->bi_iter.bi_size = sectors << 9;
1808
1809 if (bio_integrity(split))
1810 bio_integrity_trim(split, 0, sectors);
1811
1812 bio_advance(bio, split->bi_iter.bi_size);
1813
1814 return split;
1815}
1816EXPORT_SYMBOL(bio_split);
1817
1818/**
1819 * bio_trim - trim a bio
1820 * @bio: bio to trim
1821 * @offset: number of sectors to trim from the front of @bio
1822 * @size: size we want to trim @bio to, in sectors
1823 */
1824void bio_trim(struct bio *bio, int offset, int size)
1825{
1826 /* 'bio' is a cloned bio which we need to trim to match
1827 * the given offset and size.
1828 */
1829
1830 size <<= 9;
1831 if (offset == 0 && size == bio->bi_iter.bi_size)
1832 return;
1833
1834 bio_clear_flag(bio, BIO_SEG_VALID);
1835
1836 bio_advance(bio, offset << 9);
1837
1838 bio->bi_iter.bi_size = size;
1839}
1840EXPORT_SYMBOL_GPL(bio_trim);
1841
1842/*
1843 * create memory pools for biovec's in a bio_set.
1844 * use the global biovec slabs created for general use.
1845 */
1846mempool_t *biovec_create_pool(int pool_entries)
1847{
1848 struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
1849
1850 return mempool_create_slab_pool(pool_entries, bp->slab);
1851}
1852
1853void bioset_free(struct bio_set *bs)
1854{
1855 if (bs->rescue_workqueue)
1856 destroy_workqueue(bs->rescue_workqueue);
1857
1858 if (bs->bio_pool)
1859 mempool_destroy(bs->bio_pool);
1860
1861 if (bs->bvec_pool)
1862 mempool_destroy(bs->bvec_pool);
1863
1864 bioset_integrity_free(bs);
1865 bio_put_slab(bs);
1866
1867 kfree(bs);
1868}
1869EXPORT_SYMBOL(bioset_free);
1870
1871static struct bio_set *__bioset_create(unsigned int pool_size,
1872 unsigned int front_pad,
1873 bool create_bvec_pool)
1874{
1875 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1876 struct bio_set *bs;
1877
1878 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1879 if (!bs)
1880 return NULL;
1881
1882 bs->front_pad = front_pad;
1883
1884 spin_lock_init(&bs->rescue_lock);
1885 bio_list_init(&bs->rescue_list);
1886 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1887
1888 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1889 if (!bs->bio_slab) {
1890 kfree(bs);
1891 return NULL;
1892 }
1893
1894 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1895 if (!bs->bio_pool)
1896 goto bad;
1897
1898 if (create_bvec_pool) {
1899 bs->bvec_pool = biovec_create_pool(pool_size);
1900 if (!bs->bvec_pool)
1901 goto bad;
1902 }
1903
1904 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1905 if (!bs->rescue_workqueue)
1906 goto bad;
1907
1908 return bs;
1909bad:
1910 bioset_free(bs);
1911 return NULL;
1912}
1913
1914/**
1915 * bioset_create - Create a bio_set
1916 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1917 * @front_pad: Number of bytes to allocate in front of the returned bio
1918 *
1919 * Description:
1920 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1921 * to ask for a number of bytes to be allocated in front of the bio.
1922 * Front pad allocation is useful for embedding the bio inside
1923 * another structure, to avoid allocating extra data to go with the bio.
1924 * Note that the bio must be embedded at the END of that structure always,
1925 * or things will break badly.
1926 */
1927struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1928{
1929 return __bioset_create(pool_size, front_pad, true);
1930}
1931EXPORT_SYMBOL(bioset_create);
1932
1933/**
1934 * bioset_create_nobvec - Create a bio_set without bio_vec mempool
1935 * @pool_size: Number of bio to cache in the mempool
1936 * @front_pad: Number of bytes to allocate in front of the returned bio
1937 *
1938 * Description:
1939 * Same functionality as bioset_create() except that mempool is not
1940 * created for bio_vecs. Saving some memory for bio_clone_fast() users.
1941 */
1942struct bio_set *bioset_create_nobvec(unsigned int pool_size, unsigned int front_pad)
1943{
1944 return __bioset_create(pool_size, front_pad, false);
1945}
1946EXPORT_SYMBOL(bioset_create_nobvec);
1947
1948#ifdef CONFIG_BLK_CGROUP
1949
1950/**
1951 * bio_associate_blkcg - associate a bio with the specified blkcg
1952 * @bio: target bio
1953 * @blkcg_css: css of the blkcg to associate
1954 *
1955 * Associate @bio with the blkcg specified by @blkcg_css. Block layer will
1956 * treat @bio as if it were issued by a task which belongs to the blkcg.
1957 *
1958 * This function takes an extra reference of @blkcg_css which will be put
1959 * when @bio is released. The caller must own @bio and is responsible for
1960 * synchronizing calls to this function.
1961 */
1962int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
1963{
1964 if (unlikely(bio->bi_css))
1965 return -EBUSY;
1966 css_get(blkcg_css);
1967 bio->bi_css = blkcg_css;
1968 return 0;
1969}
1970EXPORT_SYMBOL_GPL(bio_associate_blkcg);
1971
1972/**
1973 * bio_associate_current - associate a bio with %current
1974 * @bio: target bio
1975 *
1976 * Associate @bio with %current if it hasn't been associated yet. Block
1977 * layer will treat @bio as if it were issued by %current no matter which
1978 * task actually issues it.
1979 *
1980 * This function takes an extra reference of @task's io_context and blkcg
1981 * which will be put when @bio is released. The caller must own @bio,
1982 * ensure %current->io_context exists, and is responsible for synchronizing
1983 * calls to this function.
1984 */
1985int bio_associate_current(struct bio *bio)
1986{
1987 struct io_context *ioc;
1988
1989 if (bio->bi_css)
1990 return -EBUSY;
1991
1992 ioc = current->io_context;
1993 if (!ioc)
1994 return -ENOENT;
1995
1996 get_io_context_active(ioc);
1997 bio->bi_ioc = ioc;
1998 bio->bi_css = task_get_css(current, io_cgrp_id);
1999 return 0;
2000}
2001EXPORT_SYMBOL_GPL(bio_associate_current);
2002
2003/**
2004 * bio_disassociate_task - undo bio_associate_current()
2005 * @bio: target bio
2006 */
2007void bio_disassociate_task(struct bio *bio)
2008{
2009 if (bio->bi_ioc) {
2010 put_io_context(bio->bi_ioc);
2011 bio->bi_ioc = NULL;
2012 }
2013 if (bio->bi_css) {
2014 css_put(bio->bi_css);
2015 bio->bi_css = NULL;
2016 }
2017}
2018
2019#endif /* CONFIG_BLK_CGROUP */
2020
2021static void __init biovec_init_slabs(void)
2022{
2023 int i;
2024
2025 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
2026 int size;
2027 struct biovec_slab *bvs = bvec_slabs + i;
2028
2029 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2030 bvs->slab = NULL;
2031 continue;
2032 }
2033
2034 size = bvs->nr_vecs * sizeof(struct bio_vec);
2035 bvs->slab = kmem_cache_create(bvs->name, size, 0,
2036 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2037 }
2038}
2039
2040static int __init init_bio(void)
2041{
2042 bio_slab_max = 2;
2043 bio_slab_nr = 0;
2044 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2045 if (!bio_slabs)
2046 panic("bio: can't allocate bios\n");
2047
2048 bio_integrity_init();
2049 biovec_init_slabs();
2050
2051 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
2052 if (!fs_bio_set)
2053 panic("bio: can't allocate bios\n");
2054
2055 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2056 panic("bio: can't create integrity pool\n");
2057
2058 return 0;
2059}
2060subsys_initcall(init_bio);