Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
   1// SPDX-License-Identifier: GPL-2.0
   2
   3/*
   4 * Xen mmu operations
   5 *
   6 * This file contains the various mmu fetch and update operations.
   7 * The most important job they must perform is the mapping between the
   8 * domain's pfn and the overall machine mfns.
   9 *
  10 * Xen allows guests to directly update the pagetable, in a controlled
  11 * fashion.  In other words, the guest modifies the same pagetable
  12 * that the CPU actually uses, which eliminates the overhead of having
  13 * a separate shadow pagetable.
  14 *
  15 * In order to allow this, it falls on the guest domain to map its
  16 * notion of a "physical" pfn - which is just a domain-local linear
  17 * address - into a real "machine address" which the CPU's MMU can
  18 * use.
  19 *
  20 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
  21 * inserted directly into the pagetable.  When creating a new
  22 * pte/pmd/pgd, it converts the passed pfn into an mfn.  Conversely,
  23 * when reading the content back with __(pgd|pmd|pte)_val, it converts
  24 * the mfn back into a pfn.
  25 *
  26 * The other constraint is that all pages which make up a pagetable
  27 * must be mapped read-only in the guest.  This prevents uncontrolled
  28 * guest updates to the pagetable.  Xen strictly enforces this, and
  29 * will disallow any pagetable update which will end up mapping a
  30 * pagetable page RW, and will disallow using any writable page as a
  31 * pagetable.
  32 *
  33 * Naively, when loading %cr3 with the base of a new pagetable, Xen
  34 * would need to validate the whole pagetable before going on.
  35 * Naturally, this is quite slow.  The solution is to "pin" a
  36 * pagetable, which enforces all the constraints on the pagetable even
  37 * when it is not actively in use.  This means that Xen can be assured
  38 * that it is still valid when you do load it into %cr3, and doesn't
  39 * need to revalidate it.
  40 *
  41 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
  42 */
  43#include <linux/sched/mm.h>
  44#include <linux/debugfs.h>
  45#include <linux/bug.h>
  46#include <linux/vmalloc.h>
  47#include <linux/export.h>
  48#include <linux/init.h>
  49#include <linux/gfp.h>
  50#include <linux/memblock.h>
  51#include <linux/seq_file.h>
  52#include <linux/crash_dump.h>
  53#include <linux/pgtable.h>
  54#ifdef CONFIG_KEXEC_CORE
  55#include <linux/kexec.h>
  56#endif
  57
  58#include <trace/events/xen.h>
  59
  60#include <asm/tlbflush.h>
  61#include <asm/fixmap.h>
  62#include <asm/mmu_context.h>
  63#include <asm/setup.h>
  64#include <asm/paravirt.h>
  65#include <asm/e820/api.h>
  66#include <asm/linkage.h>
  67#include <asm/page.h>
  68#include <asm/init.h>
  69#include <asm/memtype.h>
  70#include <asm/smp.h>
  71#include <asm/tlb.h>
  72
  73#include <asm/xen/hypercall.h>
  74#include <asm/xen/hypervisor.h>
  75
  76#include <xen/xen.h>
  77#include <xen/page.h>
  78#include <xen/interface/xen.h>
  79#include <xen/interface/hvm/hvm_op.h>
  80#include <xen/interface/version.h>
  81#include <xen/interface/memory.h>
  82#include <xen/hvc-console.h>
  83#include <xen/swiotlb-xen.h>
  84
  85#include "multicalls.h"
  86#include "mmu.h"
  87#include "debugfs.h"
  88
  89/*
  90 * Prototypes for functions called via PV_CALLEE_SAVE_REGS_THUNK() in order
  91 * to avoid warnings with "-Wmissing-prototypes".
  92 */
  93pteval_t xen_pte_val(pte_t pte);
  94pgdval_t xen_pgd_val(pgd_t pgd);
  95pmdval_t xen_pmd_val(pmd_t pmd);
  96pudval_t xen_pud_val(pud_t pud);
  97p4dval_t xen_p4d_val(p4d_t p4d);
  98pte_t xen_make_pte(pteval_t pte);
  99pgd_t xen_make_pgd(pgdval_t pgd);
 100pmd_t xen_make_pmd(pmdval_t pmd);
 101pud_t xen_make_pud(pudval_t pud);
 102p4d_t xen_make_p4d(p4dval_t p4d);
 103pte_t xen_make_pte_init(pteval_t pte);
 104
 105#ifdef CONFIG_X86_VSYSCALL_EMULATION
 106/* l3 pud for userspace vsyscall mapping */
 107static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
 108#endif
 109
 110/*
 111 * Protects atomic reservation decrease/increase against concurrent increases.
 112 * Also protects non-atomic updates of current_pages and balloon lists.
 113 */
 114static DEFINE_SPINLOCK(xen_reservation_lock);
 115
 116/*
 117 * Note about cr3 (pagetable base) values:
 118 *
 119 * xen_cr3 contains the current logical cr3 value; it contains the
 120 * last set cr3.  This may not be the current effective cr3, because
 121 * its update may be being lazily deferred.  However, a vcpu looking
 122 * at its own cr3 can use this value knowing that it everything will
 123 * be self-consistent.
 124 *
 125 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
 126 * hypercall to set the vcpu cr3 is complete (so it may be a little
 127 * out of date, but it will never be set early).  If one vcpu is
 128 * looking at another vcpu's cr3 value, it should use this variable.
 129 */
 130DEFINE_PER_CPU(unsigned long, xen_cr3);	 /* cr3 stored as physaddr */
 131DEFINE_PER_CPU(unsigned long, xen_current_cr3);	 /* actual vcpu cr3 */
 132
 133static phys_addr_t xen_pt_base, xen_pt_size __initdata;
 134
 135static DEFINE_STATIC_KEY_FALSE(xen_struct_pages_ready);
 136
 137/*
 138 * Just beyond the highest usermode address.  STACK_TOP_MAX has a
 139 * redzone above it, so round it up to a PGD boundary.
 140 */
 141#define USER_LIMIT	((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
 142
 143void make_lowmem_page_readonly(void *vaddr)
 144{
 145	pte_t *pte, ptev;
 146	unsigned long address = (unsigned long)vaddr;
 147	unsigned int level;
 148
 149	pte = lookup_address(address, &level);
 150	if (pte == NULL)
 151		return;		/* vaddr missing */
 152
 153	ptev = pte_wrprotect(*pte);
 154
 155	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
 156		BUG();
 157}
 158
 159void make_lowmem_page_readwrite(void *vaddr)
 160{
 161	pte_t *pte, ptev;
 162	unsigned long address = (unsigned long)vaddr;
 163	unsigned int level;
 164
 165	pte = lookup_address(address, &level);
 166	if (pte == NULL)
 167		return;		/* vaddr missing */
 168
 169	ptev = pte_mkwrite_novma(*pte);
 170
 171	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
 172		BUG();
 173}
 174
 175
 176/*
 177 * During early boot all page table pages are pinned, but we do not have struct
 178 * pages, so return true until struct pages are ready.
 179 */
 180static bool xen_page_pinned(void *ptr)
 181{
 182	if (static_branch_likely(&xen_struct_pages_ready)) {
 183		struct page *page = virt_to_page(ptr);
 184
 185		return PagePinned(page);
 186	}
 187	return true;
 188}
 189
 190static void xen_extend_mmu_update(const struct mmu_update *update)
 191{
 192	struct multicall_space mcs;
 193	struct mmu_update *u;
 194
 195	mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
 196
 197	if (mcs.mc != NULL) {
 198		mcs.mc->args[1]++;
 199	} else {
 200		mcs = __xen_mc_entry(sizeof(*u));
 201		MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
 202	}
 203
 204	u = mcs.args;
 205	*u = *update;
 206}
 207
 208static void xen_extend_mmuext_op(const struct mmuext_op *op)
 209{
 210	struct multicall_space mcs;
 211	struct mmuext_op *u;
 212
 213	mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u));
 214
 215	if (mcs.mc != NULL) {
 216		mcs.mc->args[1]++;
 217	} else {
 218		mcs = __xen_mc_entry(sizeof(*u));
 219		MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
 220	}
 221
 222	u = mcs.args;
 223	*u = *op;
 224}
 225
 226static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
 227{
 228	struct mmu_update u;
 229
 230	preempt_disable();
 231
 232	xen_mc_batch();
 233
 234	/* ptr may be ioremapped for 64-bit pagetable setup */
 235	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
 236	u.val = pmd_val_ma(val);
 237	xen_extend_mmu_update(&u);
 238
 239	xen_mc_issue(XEN_LAZY_MMU);
 240
 241	preempt_enable();
 242}
 243
 244static void xen_set_pmd(pmd_t *ptr, pmd_t val)
 245{
 246	trace_xen_mmu_set_pmd(ptr, val);
 247
 248	/* If page is not pinned, we can just update the entry
 249	   directly */
 250	if (!xen_page_pinned(ptr)) {
 251		*ptr = val;
 252		return;
 253	}
 254
 255	xen_set_pmd_hyper(ptr, val);
 256}
 257
 258/*
 259 * Associate a virtual page frame with a given physical page frame
 260 * and protection flags for that frame.
 261 */
 262void __init set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
 263{
 264	if (HYPERVISOR_update_va_mapping(vaddr, mfn_pte(mfn, flags),
 265					 UVMF_INVLPG))
 266		BUG();
 267}
 268
 269static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval)
 270{
 271	struct mmu_update u;
 272
 273	if (xen_get_lazy_mode() != XEN_LAZY_MMU)
 274		return false;
 275
 276	xen_mc_batch();
 277
 278	u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
 279	u.val = pte_val_ma(pteval);
 280	xen_extend_mmu_update(&u);
 281
 282	xen_mc_issue(XEN_LAZY_MMU);
 283
 284	return true;
 285}
 286
 287static inline void __xen_set_pte(pte_t *ptep, pte_t pteval)
 288{
 289	if (!xen_batched_set_pte(ptep, pteval)) {
 290		/*
 291		 * Could call native_set_pte() here and trap and
 292		 * emulate the PTE write, but a hypercall is much cheaper.
 293		 */
 294		struct mmu_update u;
 295
 296		u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
 297		u.val = pte_val_ma(pteval);
 298		HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF);
 299	}
 300}
 301
 302static void xen_set_pte(pte_t *ptep, pte_t pteval)
 303{
 304	trace_xen_mmu_set_pte(ptep, pteval);
 305	__xen_set_pte(ptep, pteval);
 306}
 307
 308pte_t xen_ptep_modify_prot_start(struct vm_area_struct *vma,
 309				 unsigned long addr, pte_t *ptep)
 310{
 311	/* Just return the pte as-is.  We preserve the bits on commit */
 312	trace_xen_mmu_ptep_modify_prot_start(vma->vm_mm, addr, ptep, *ptep);
 313	return *ptep;
 314}
 315
 316void xen_ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr,
 317				 pte_t *ptep, pte_t pte)
 318{
 319	struct mmu_update u;
 320
 321	trace_xen_mmu_ptep_modify_prot_commit(vma->vm_mm, addr, ptep, pte);
 322	xen_mc_batch();
 323
 324	u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
 325	u.val = pte_val_ma(pte);
 326	xen_extend_mmu_update(&u);
 327
 328	xen_mc_issue(XEN_LAZY_MMU);
 329}
 330
 331/* Assume pteval_t is equivalent to all the other *val_t types. */
 332static pteval_t pte_mfn_to_pfn(pteval_t val)
 333{
 334	if (val & _PAGE_PRESENT) {
 335		unsigned long mfn = (val & XEN_PTE_MFN_MASK) >> PAGE_SHIFT;
 336		unsigned long pfn = mfn_to_pfn(mfn);
 337
 338		pteval_t flags = val & PTE_FLAGS_MASK;
 339		if (unlikely(pfn == ~0))
 340			val = flags & ~_PAGE_PRESENT;
 341		else
 342			val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
 343	}
 344
 345	return val;
 346}
 347
 348static pteval_t pte_pfn_to_mfn(pteval_t val)
 349{
 350	if (val & _PAGE_PRESENT) {
 351		unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
 352		pteval_t flags = val & PTE_FLAGS_MASK;
 353		unsigned long mfn;
 354
 355		mfn = __pfn_to_mfn(pfn);
 356
 357		/*
 358		 * If there's no mfn for the pfn, then just create an
 359		 * empty non-present pte.  Unfortunately this loses
 360		 * information about the original pfn, so
 361		 * pte_mfn_to_pfn is asymmetric.
 362		 */
 363		if (unlikely(mfn == INVALID_P2M_ENTRY)) {
 364			mfn = 0;
 365			flags = 0;
 366		} else
 367			mfn &= ~(FOREIGN_FRAME_BIT | IDENTITY_FRAME_BIT);
 368		val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
 369	}
 370
 371	return val;
 372}
 373
 374__visible pteval_t xen_pte_val(pte_t pte)
 375{
 376	pteval_t pteval = pte.pte;
 377
 378	return pte_mfn_to_pfn(pteval);
 379}
 380PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
 381
 382__visible pgdval_t xen_pgd_val(pgd_t pgd)
 383{
 384	return pte_mfn_to_pfn(pgd.pgd);
 385}
 386PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
 387
 388__visible pte_t xen_make_pte(pteval_t pte)
 389{
 390	pte = pte_pfn_to_mfn(pte);
 391
 392	return native_make_pte(pte);
 393}
 394PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
 395
 396__visible pgd_t xen_make_pgd(pgdval_t pgd)
 397{
 398	pgd = pte_pfn_to_mfn(pgd);
 399	return native_make_pgd(pgd);
 400}
 401PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
 402
 403__visible pmdval_t xen_pmd_val(pmd_t pmd)
 404{
 405	return pte_mfn_to_pfn(pmd.pmd);
 406}
 407PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
 408
 409static void xen_set_pud_hyper(pud_t *ptr, pud_t val)
 410{
 411	struct mmu_update u;
 412
 413	preempt_disable();
 414
 415	xen_mc_batch();
 416
 417	/* ptr may be ioremapped for 64-bit pagetable setup */
 418	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
 419	u.val = pud_val_ma(val);
 420	xen_extend_mmu_update(&u);
 421
 422	xen_mc_issue(XEN_LAZY_MMU);
 423
 424	preempt_enable();
 425}
 426
 427static void xen_set_pud(pud_t *ptr, pud_t val)
 428{
 429	trace_xen_mmu_set_pud(ptr, val);
 430
 431	/* If page is not pinned, we can just update the entry
 432	   directly */
 433	if (!xen_page_pinned(ptr)) {
 434		*ptr = val;
 435		return;
 436	}
 437
 438	xen_set_pud_hyper(ptr, val);
 439}
 440
 441__visible pmd_t xen_make_pmd(pmdval_t pmd)
 442{
 443	pmd = pte_pfn_to_mfn(pmd);
 444	return native_make_pmd(pmd);
 445}
 446PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
 447
 448__visible pudval_t xen_pud_val(pud_t pud)
 449{
 450	return pte_mfn_to_pfn(pud.pud);
 451}
 452PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
 453
 454__visible pud_t xen_make_pud(pudval_t pud)
 455{
 456	pud = pte_pfn_to_mfn(pud);
 457
 458	return native_make_pud(pud);
 459}
 460PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
 461
 462static pgd_t *xen_get_user_pgd(pgd_t *pgd)
 463{
 464	pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
 465	unsigned offset = pgd - pgd_page;
 466	pgd_t *user_ptr = NULL;
 467
 468	if (offset < pgd_index(USER_LIMIT)) {
 469		struct page *page = virt_to_page(pgd_page);
 470		user_ptr = (pgd_t *)page->private;
 471		if (user_ptr)
 472			user_ptr += offset;
 473	}
 474
 475	return user_ptr;
 476}
 477
 478static void __xen_set_p4d_hyper(p4d_t *ptr, p4d_t val)
 479{
 480	struct mmu_update u;
 481
 482	u.ptr = virt_to_machine(ptr).maddr;
 483	u.val = p4d_val_ma(val);
 484	xen_extend_mmu_update(&u);
 485}
 486
 487/*
 488 * Raw hypercall-based set_p4d, intended for in early boot before
 489 * there's a page structure.  This implies:
 490 *  1. The only existing pagetable is the kernel's
 491 *  2. It is always pinned
 492 *  3. It has no user pagetable attached to it
 493 */
 494static void __init xen_set_p4d_hyper(p4d_t *ptr, p4d_t val)
 495{
 496	preempt_disable();
 497
 498	xen_mc_batch();
 499
 500	__xen_set_p4d_hyper(ptr, val);
 501
 502	xen_mc_issue(XEN_LAZY_MMU);
 503
 504	preempt_enable();
 505}
 506
 507static void xen_set_p4d(p4d_t *ptr, p4d_t val)
 508{
 509	pgd_t *user_ptr = xen_get_user_pgd((pgd_t *)ptr);
 510	pgd_t pgd_val;
 511
 512	trace_xen_mmu_set_p4d(ptr, (p4d_t *)user_ptr, val);
 513
 514	/* If page is not pinned, we can just update the entry
 515	   directly */
 516	if (!xen_page_pinned(ptr)) {
 517		*ptr = val;
 518		if (user_ptr) {
 519			WARN_ON(xen_page_pinned(user_ptr));
 520			pgd_val.pgd = p4d_val_ma(val);
 521			*user_ptr = pgd_val;
 522		}
 523		return;
 524	}
 525
 526	/* If it's pinned, then we can at least batch the kernel and
 527	   user updates together. */
 528	xen_mc_batch();
 529
 530	__xen_set_p4d_hyper(ptr, val);
 531	if (user_ptr)
 532		__xen_set_p4d_hyper((p4d_t *)user_ptr, val);
 533
 534	xen_mc_issue(XEN_LAZY_MMU);
 535}
 536
 537#if CONFIG_PGTABLE_LEVELS >= 5
 538__visible p4dval_t xen_p4d_val(p4d_t p4d)
 539{
 540	return pte_mfn_to_pfn(p4d.p4d);
 541}
 542PV_CALLEE_SAVE_REGS_THUNK(xen_p4d_val);
 543
 544__visible p4d_t xen_make_p4d(p4dval_t p4d)
 545{
 546	p4d = pte_pfn_to_mfn(p4d);
 547
 548	return native_make_p4d(p4d);
 549}
 550PV_CALLEE_SAVE_REGS_THUNK(xen_make_p4d);
 551#endif  /* CONFIG_PGTABLE_LEVELS >= 5 */
 552
 553static void xen_pmd_walk(struct mm_struct *mm, pmd_t *pmd,
 554			 void (*func)(struct mm_struct *mm, struct page *,
 555				      enum pt_level),
 556			 bool last, unsigned long limit)
 557{
 558	int i, nr;
 559
 560	nr = last ? pmd_index(limit) + 1 : PTRS_PER_PMD;
 561	for (i = 0; i < nr; i++) {
 562		if (!pmd_none(pmd[i]))
 563			(*func)(mm, pmd_page(pmd[i]), PT_PTE);
 564	}
 565}
 566
 567static void xen_pud_walk(struct mm_struct *mm, pud_t *pud,
 568			 void (*func)(struct mm_struct *mm, struct page *,
 569				      enum pt_level),
 570			 bool last, unsigned long limit)
 571{
 572	int i, nr;
 573
 574	nr = last ? pud_index(limit) + 1 : PTRS_PER_PUD;
 575	for (i = 0; i < nr; i++) {
 576		pmd_t *pmd;
 577
 578		if (pud_none(pud[i]))
 579			continue;
 580
 581		pmd = pmd_offset(&pud[i], 0);
 582		if (PTRS_PER_PMD > 1)
 583			(*func)(mm, virt_to_page(pmd), PT_PMD);
 584		xen_pmd_walk(mm, pmd, func, last && i == nr - 1, limit);
 585	}
 586}
 587
 588static void xen_p4d_walk(struct mm_struct *mm, p4d_t *p4d,
 589			 void (*func)(struct mm_struct *mm, struct page *,
 590				      enum pt_level),
 591			 bool last, unsigned long limit)
 592{
 593	pud_t *pud;
 594
 595
 596	if (p4d_none(*p4d))
 597		return;
 598
 599	pud = pud_offset(p4d, 0);
 600	if (PTRS_PER_PUD > 1)
 601		(*func)(mm, virt_to_page(pud), PT_PUD);
 602	xen_pud_walk(mm, pud, func, last, limit);
 603}
 604
 605/*
 606 * (Yet another) pagetable walker.  This one is intended for pinning a
 607 * pagetable.  This means that it walks a pagetable and calls the
 608 * callback function on each page it finds making up the page table,
 609 * at every level.  It walks the entire pagetable, but it only bothers
 610 * pinning pte pages which are below limit.  In the normal case this
 611 * will be STACK_TOP_MAX, but at boot we need to pin up to
 612 * FIXADDR_TOP.
 613 *
 614 * We must skip the Xen hole in the middle of the address space, just after
 615 * the big x86-64 virtual hole.
 616 */
 617static void __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
 618			   void (*func)(struct mm_struct *mm, struct page *,
 619					enum pt_level),
 620			   unsigned long limit)
 621{
 622	int i, nr;
 623	unsigned hole_low = 0, hole_high = 0;
 624
 625	/* The limit is the last byte to be touched */
 626	limit--;
 627	BUG_ON(limit >= FIXADDR_TOP);
 628
 629	/*
 630	 * 64-bit has a great big hole in the middle of the address
 631	 * space, which contains the Xen mappings.
 632	 */
 633	hole_low = pgd_index(GUARD_HOLE_BASE_ADDR);
 634	hole_high = pgd_index(GUARD_HOLE_END_ADDR);
 635
 636	nr = pgd_index(limit) + 1;
 637	for (i = 0; i < nr; i++) {
 638		p4d_t *p4d;
 639
 640		if (i >= hole_low && i < hole_high)
 641			continue;
 642
 643		if (pgd_none(pgd[i]))
 644			continue;
 645
 646		p4d = p4d_offset(&pgd[i], 0);
 647		xen_p4d_walk(mm, p4d, func, i == nr - 1, limit);
 648	}
 649
 650	/* Do the top level last, so that the callbacks can use it as
 651	   a cue to do final things like tlb flushes. */
 652	(*func)(mm, virt_to_page(pgd), PT_PGD);
 653}
 654
 655static void xen_pgd_walk(struct mm_struct *mm,
 656			 void (*func)(struct mm_struct *mm, struct page *,
 657				      enum pt_level),
 658			 unsigned long limit)
 659{
 660	__xen_pgd_walk(mm, mm->pgd, func, limit);
 661}
 662
 663/* If we're using split pte locks, then take the page's lock and
 664   return a pointer to it.  Otherwise return NULL. */
 665static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
 666{
 667	spinlock_t *ptl = NULL;
 668
 669#if USE_SPLIT_PTE_PTLOCKS
 670	ptl = ptlock_ptr(page_ptdesc(page));
 671	spin_lock_nest_lock(ptl, &mm->page_table_lock);
 672#endif
 673
 674	return ptl;
 675}
 676
 677static void xen_pte_unlock(void *v)
 678{
 679	spinlock_t *ptl = v;
 680	spin_unlock(ptl);
 681}
 682
 683static void xen_do_pin(unsigned level, unsigned long pfn)
 684{
 685	struct mmuext_op op;
 686
 687	op.cmd = level;
 688	op.arg1.mfn = pfn_to_mfn(pfn);
 689
 690	xen_extend_mmuext_op(&op);
 691}
 692
 693static void xen_pin_page(struct mm_struct *mm, struct page *page,
 694			 enum pt_level level)
 695{
 696	unsigned pgfl = TestSetPagePinned(page);
 697
 698	if (!pgfl) {
 699		void *pt = lowmem_page_address(page);
 700		unsigned long pfn = page_to_pfn(page);
 701		struct multicall_space mcs = __xen_mc_entry(0);
 702		spinlock_t *ptl;
 703
 704		/*
 705		 * We need to hold the pagetable lock between the time
 706		 * we make the pagetable RO and when we actually pin
 707		 * it.  If we don't, then other users may come in and
 708		 * attempt to update the pagetable by writing it,
 709		 * which will fail because the memory is RO but not
 710		 * pinned, so Xen won't do the trap'n'emulate.
 711		 *
 712		 * If we're using split pte locks, we can't hold the
 713		 * entire pagetable's worth of locks during the
 714		 * traverse, because we may wrap the preempt count (8
 715		 * bits).  The solution is to mark RO and pin each PTE
 716		 * page while holding the lock.  This means the number
 717		 * of locks we end up holding is never more than a
 718		 * batch size (~32 entries, at present).
 719		 *
 720		 * If we're not using split pte locks, we needn't pin
 721		 * the PTE pages independently, because we're
 722		 * protected by the overall pagetable lock.
 723		 */
 724		ptl = NULL;
 725		if (level == PT_PTE)
 726			ptl = xen_pte_lock(page, mm);
 727
 728		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
 729					pfn_pte(pfn, PAGE_KERNEL_RO),
 730					level == PT_PGD ? UVMF_TLB_FLUSH : 0);
 731
 732		if (ptl) {
 733			xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
 734
 735			/* Queue a deferred unlock for when this batch
 736			   is completed. */
 737			xen_mc_callback(xen_pte_unlock, ptl);
 738		}
 739	}
 740}
 741
 742/* This is called just after a mm has been created, but it has not
 743   been used yet.  We need to make sure that its pagetable is all
 744   read-only, and can be pinned. */
 745static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
 746{
 747	pgd_t *user_pgd = xen_get_user_pgd(pgd);
 748
 749	trace_xen_mmu_pgd_pin(mm, pgd);
 750
 751	xen_mc_batch();
 752
 753	__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT);
 754
 755	xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
 756
 757	if (user_pgd) {
 758		xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
 759		xen_do_pin(MMUEXT_PIN_L4_TABLE,
 760			   PFN_DOWN(__pa(user_pgd)));
 761	}
 762
 763	xen_mc_issue(0);
 764}
 765
 766static void xen_pgd_pin(struct mm_struct *mm)
 767{
 768	__xen_pgd_pin(mm, mm->pgd);
 769}
 770
 771/*
 772 * On save, we need to pin all pagetables to make sure they get their
 773 * mfns turned into pfns.  Search the list for any unpinned pgds and pin
 774 * them (unpinned pgds are not currently in use, probably because the
 775 * process is under construction or destruction).
 776 *
 777 * Expected to be called in stop_machine() ("equivalent to taking
 778 * every spinlock in the system"), so the locking doesn't really
 779 * matter all that much.
 780 */
 781void xen_mm_pin_all(void)
 782{
 783	struct page *page;
 784
 785	spin_lock(&pgd_lock);
 786
 787	list_for_each_entry(page, &pgd_list, lru) {
 788		if (!PagePinned(page)) {
 789			__xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
 790			SetPageSavePinned(page);
 791		}
 792	}
 793
 794	spin_unlock(&pgd_lock);
 795}
 796
 797static void __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
 798				   enum pt_level level)
 799{
 800	SetPagePinned(page);
 801}
 802
 803/*
 804 * The init_mm pagetable is really pinned as soon as its created, but
 805 * that's before we have page structures to store the bits.  So do all
 806 * the book-keeping now once struct pages for allocated pages are
 807 * initialized. This happens only after memblock_free_all() is called.
 808 */
 809static void __init xen_after_bootmem(void)
 810{
 811	static_branch_enable(&xen_struct_pages_ready);
 812#ifdef CONFIG_X86_VSYSCALL_EMULATION
 813	SetPagePinned(virt_to_page(level3_user_vsyscall));
 814#endif
 815	xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
 816}
 817
 818static void xen_unpin_page(struct mm_struct *mm, struct page *page,
 819			   enum pt_level level)
 820{
 821	unsigned pgfl = TestClearPagePinned(page);
 822
 823	if (pgfl) {
 824		void *pt = lowmem_page_address(page);
 825		unsigned long pfn = page_to_pfn(page);
 826		spinlock_t *ptl = NULL;
 827		struct multicall_space mcs;
 828
 829		/*
 830		 * Do the converse to pin_page.  If we're using split
 831		 * pte locks, we must be holding the lock for while
 832		 * the pte page is unpinned but still RO to prevent
 833		 * concurrent updates from seeing it in this
 834		 * partially-pinned state.
 835		 */
 836		if (level == PT_PTE) {
 837			ptl = xen_pte_lock(page, mm);
 838
 839			if (ptl)
 840				xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
 841		}
 842
 843		mcs = __xen_mc_entry(0);
 844
 845		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
 846					pfn_pte(pfn, PAGE_KERNEL),
 847					level == PT_PGD ? UVMF_TLB_FLUSH : 0);
 848
 849		if (ptl) {
 850			/* unlock when batch completed */
 851			xen_mc_callback(xen_pte_unlock, ptl);
 852		}
 853	}
 854}
 855
 856/* Release a pagetables pages back as normal RW */
 857static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
 858{
 859	pgd_t *user_pgd = xen_get_user_pgd(pgd);
 860
 861	trace_xen_mmu_pgd_unpin(mm, pgd);
 862
 863	xen_mc_batch();
 864
 865	xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
 866
 867	if (user_pgd) {
 868		xen_do_pin(MMUEXT_UNPIN_TABLE,
 869			   PFN_DOWN(__pa(user_pgd)));
 870		xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
 871	}
 872
 873	__xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
 874
 875	xen_mc_issue(0);
 876}
 877
 878static void xen_pgd_unpin(struct mm_struct *mm)
 879{
 880	__xen_pgd_unpin(mm, mm->pgd);
 881}
 882
 883/*
 884 * On resume, undo any pinning done at save, so that the rest of the
 885 * kernel doesn't see any unexpected pinned pagetables.
 886 */
 887void xen_mm_unpin_all(void)
 888{
 889	struct page *page;
 890
 891	spin_lock(&pgd_lock);
 892
 893	list_for_each_entry(page, &pgd_list, lru) {
 894		if (PageSavePinned(page)) {
 895			BUG_ON(!PagePinned(page));
 896			__xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
 897			ClearPageSavePinned(page);
 898		}
 899	}
 900
 901	spin_unlock(&pgd_lock);
 902}
 903
 904static void xen_enter_mmap(struct mm_struct *mm)
 905{
 906	spin_lock(&mm->page_table_lock);
 907	xen_pgd_pin(mm);
 908	spin_unlock(&mm->page_table_lock);
 909}
 910
 911static void drop_mm_ref_this_cpu(void *info)
 912{
 913	struct mm_struct *mm = info;
 914
 915	if (this_cpu_read(cpu_tlbstate.loaded_mm) == mm)
 916		leave_mm(smp_processor_id());
 917
 918	/*
 919	 * If this cpu still has a stale cr3 reference, then make sure
 920	 * it has been flushed.
 921	 */
 922	if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd))
 923		xen_mc_flush();
 924}
 925
 926#ifdef CONFIG_SMP
 927/*
 928 * Another cpu may still have their %cr3 pointing at the pagetable, so
 929 * we need to repoint it somewhere else before we can unpin it.
 930 */
 931static void xen_drop_mm_ref(struct mm_struct *mm)
 932{
 933	cpumask_var_t mask;
 934	unsigned cpu;
 935
 936	drop_mm_ref_this_cpu(mm);
 937
 938	/* Get the "official" set of cpus referring to our pagetable. */
 939	if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
 940		for_each_online_cpu(cpu) {
 941			if (per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
 942				continue;
 943			smp_call_function_single(cpu, drop_mm_ref_this_cpu, mm, 1);
 944		}
 945		return;
 946	}
 947
 948	/*
 949	 * It's possible that a vcpu may have a stale reference to our
 950	 * cr3, because its in lazy mode, and it hasn't yet flushed
 951	 * its set of pending hypercalls yet.  In this case, we can
 952	 * look at its actual current cr3 value, and force it to flush
 953	 * if needed.
 954	 */
 955	cpumask_clear(mask);
 956	for_each_online_cpu(cpu) {
 957		if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
 958			cpumask_set_cpu(cpu, mask);
 959	}
 960
 961	smp_call_function_many(mask, drop_mm_ref_this_cpu, mm, 1);
 962	free_cpumask_var(mask);
 963}
 964#else
 965static void xen_drop_mm_ref(struct mm_struct *mm)
 966{
 967	drop_mm_ref_this_cpu(mm);
 968}
 969#endif
 970
 971/*
 972 * While a process runs, Xen pins its pagetables, which means that the
 973 * hypervisor forces it to be read-only, and it controls all updates
 974 * to it.  This means that all pagetable updates have to go via the
 975 * hypervisor, which is moderately expensive.
 976 *
 977 * Since we're pulling the pagetable down, we switch to use init_mm,
 978 * unpin old process pagetable and mark it all read-write, which
 979 * allows further operations on it to be simple memory accesses.
 980 *
 981 * The only subtle point is that another CPU may be still using the
 982 * pagetable because of lazy tlb flushing.  This means we need need to
 983 * switch all CPUs off this pagetable before we can unpin it.
 984 */
 985static void xen_exit_mmap(struct mm_struct *mm)
 986{
 987	get_cpu();		/* make sure we don't move around */
 988	xen_drop_mm_ref(mm);
 989	put_cpu();
 990
 991	spin_lock(&mm->page_table_lock);
 992
 993	/* pgd may not be pinned in the error exit path of execve */
 994	if (xen_page_pinned(mm->pgd))
 995		xen_pgd_unpin(mm);
 996
 997	spin_unlock(&mm->page_table_lock);
 998}
 999
1000static void xen_post_allocator_init(void);
1001
1002static void __init pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1003{
1004	struct mmuext_op op;
1005
1006	op.cmd = cmd;
1007	op.arg1.mfn = pfn_to_mfn(pfn);
1008	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1009		BUG();
1010}
1011
1012static void __init xen_cleanhighmap(unsigned long vaddr,
1013				    unsigned long vaddr_end)
1014{
1015	unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
1016	pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr);
1017
1018	/* NOTE: The loop is more greedy than the cleanup_highmap variant.
1019	 * We include the PMD passed in on _both_ boundaries. */
1020	for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PTRS_PER_PMD));
1021			pmd++, vaddr += PMD_SIZE) {
1022		if (pmd_none(*pmd))
1023			continue;
1024		if (vaddr < (unsigned long) _text || vaddr > kernel_end)
1025			set_pmd(pmd, __pmd(0));
1026	}
1027	/* In case we did something silly, we should crash in this function
1028	 * instead of somewhere later and be confusing. */
1029	xen_mc_flush();
1030}
1031
1032/*
1033 * Make a page range writeable and free it.
1034 */
1035static void __init xen_free_ro_pages(unsigned long paddr, unsigned long size)
1036{
1037	void *vaddr = __va(paddr);
1038	void *vaddr_end = vaddr + size;
1039
1040	for (; vaddr < vaddr_end; vaddr += PAGE_SIZE)
1041		make_lowmem_page_readwrite(vaddr);
1042
1043	memblock_phys_free(paddr, size);
1044}
1045
1046static void __init xen_cleanmfnmap_free_pgtbl(void *pgtbl, bool unpin)
1047{
1048	unsigned long pa = __pa(pgtbl) & PHYSICAL_PAGE_MASK;
1049
1050	if (unpin)
1051		pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(pa));
1052	ClearPagePinned(virt_to_page(__va(pa)));
1053	xen_free_ro_pages(pa, PAGE_SIZE);
1054}
1055
1056static void __init xen_cleanmfnmap_pmd(pmd_t *pmd, bool unpin)
1057{
1058	unsigned long pa;
1059	pte_t *pte_tbl;
1060	int i;
1061
1062	if (pmd_large(*pmd)) {
1063		pa = pmd_val(*pmd) & PHYSICAL_PAGE_MASK;
1064		xen_free_ro_pages(pa, PMD_SIZE);
1065		return;
1066	}
1067
1068	pte_tbl = pte_offset_kernel(pmd, 0);
1069	for (i = 0; i < PTRS_PER_PTE; i++) {
1070		if (pte_none(pte_tbl[i]))
1071			continue;
1072		pa = pte_pfn(pte_tbl[i]) << PAGE_SHIFT;
1073		xen_free_ro_pages(pa, PAGE_SIZE);
1074	}
1075	set_pmd(pmd, __pmd(0));
1076	xen_cleanmfnmap_free_pgtbl(pte_tbl, unpin);
1077}
1078
1079static void __init xen_cleanmfnmap_pud(pud_t *pud, bool unpin)
1080{
1081	unsigned long pa;
1082	pmd_t *pmd_tbl;
1083	int i;
1084
1085	if (pud_large(*pud)) {
1086		pa = pud_val(*pud) & PHYSICAL_PAGE_MASK;
1087		xen_free_ro_pages(pa, PUD_SIZE);
1088		return;
1089	}
1090
1091	pmd_tbl = pmd_offset(pud, 0);
1092	for (i = 0; i < PTRS_PER_PMD; i++) {
1093		if (pmd_none(pmd_tbl[i]))
1094			continue;
1095		xen_cleanmfnmap_pmd(pmd_tbl + i, unpin);
1096	}
1097	set_pud(pud, __pud(0));
1098	xen_cleanmfnmap_free_pgtbl(pmd_tbl, unpin);
1099}
1100
1101static void __init xen_cleanmfnmap_p4d(p4d_t *p4d, bool unpin)
1102{
1103	unsigned long pa;
1104	pud_t *pud_tbl;
1105	int i;
1106
1107	if (p4d_large(*p4d)) {
1108		pa = p4d_val(*p4d) & PHYSICAL_PAGE_MASK;
1109		xen_free_ro_pages(pa, P4D_SIZE);
1110		return;
1111	}
1112
1113	pud_tbl = pud_offset(p4d, 0);
1114	for (i = 0; i < PTRS_PER_PUD; i++) {
1115		if (pud_none(pud_tbl[i]))
1116			continue;
1117		xen_cleanmfnmap_pud(pud_tbl + i, unpin);
1118	}
1119	set_p4d(p4d, __p4d(0));
1120	xen_cleanmfnmap_free_pgtbl(pud_tbl, unpin);
1121}
1122
1123/*
1124 * Since it is well isolated we can (and since it is perhaps large we should)
1125 * also free the page tables mapping the initial P->M table.
1126 */
1127static void __init xen_cleanmfnmap(unsigned long vaddr)
1128{
1129	pgd_t *pgd;
1130	p4d_t *p4d;
1131	bool unpin;
1132
1133	unpin = (vaddr == 2 * PGDIR_SIZE);
1134	vaddr &= PMD_MASK;
1135	pgd = pgd_offset_k(vaddr);
1136	p4d = p4d_offset(pgd, 0);
1137	if (!p4d_none(*p4d))
1138		xen_cleanmfnmap_p4d(p4d, unpin);
1139}
1140
1141static void __init xen_pagetable_p2m_free(void)
1142{
1143	unsigned long size;
1144	unsigned long addr;
1145
1146	size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1147
1148	/* No memory or already called. */
1149	if ((unsigned long)xen_p2m_addr == xen_start_info->mfn_list)
1150		return;
1151
1152	/* using __ka address and sticking INVALID_P2M_ENTRY! */
1153	memset((void *)xen_start_info->mfn_list, 0xff, size);
1154
1155	addr = xen_start_info->mfn_list;
1156	/*
1157	 * We could be in __ka space.
1158	 * We roundup to the PMD, which means that if anybody at this stage is
1159	 * using the __ka address of xen_start_info or
1160	 * xen_start_info->shared_info they are in going to crash. Fortunately
1161	 * we have already revectored in xen_setup_kernel_pagetable.
1162	 */
1163	size = roundup(size, PMD_SIZE);
1164
1165	if (addr >= __START_KERNEL_map) {
1166		xen_cleanhighmap(addr, addr + size);
1167		size = PAGE_ALIGN(xen_start_info->nr_pages *
1168				  sizeof(unsigned long));
1169		memblock_free((void *)addr, size);
1170	} else {
1171		xen_cleanmfnmap(addr);
1172	}
1173}
1174
1175static void __init xen_pagetable_cleanhighmap(void)
1176{
1177	unsigned long size;
1178	unsigned long addr;
1179
1180	/* At this stage, cleanup_highmap has already cleaned __ka space
1181	 * from _brk_limit way up to the max_pfn_mapped (which is the end of
1182	 * the ramdisk). We continue on, erasing PMD entries that point to page
1183	 * tables - do note that they are accessible at this stage via __va.
1184	 * As Xen is aligning the memory end to a 4MB boundary, for good
1185	 * measure we also round up to PMD_SIZE * 2 - which means that if
1186	 * anybody is using __ka address to the initial boot-stack - and try
1187	 * to use it - they are going to crash. The xen_start_info has been
1188	 * taken care of already in xen_setup_kernel_pagetable. */
1189	addr = xen_start_info->pt_base;
1190	size = xen_start_info->nr_pt_frames * PAGE_SIZE;
1191
1192	xen_cleanhighmap(addr, roundup(addr + size, PMD_SIZE * 2));
1193	xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base));
1194}
1195
1196static void __init xen_pagetable_p2m_setup(void)
1197{
1198	xen_vmalloc_p2m_tree();
1199
1200	xen_pagetable_p2m_free();
1201
1202	xen_pagetable_cleanhighmap();
1203
1204	/* And revector! Bye bye old array */
1205	xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
1206}
1207
1208static void __init xen_pagetable_init(void)
1209{
1210	/*
1211	 * The majority of further PTE writes is to pagetables already
1212	 * announced as such to Xen. Hence it is more efficient to use
1213	 * hypercalls for these updates.
1214	 */
1215	pv_ops.mmu.set_pte = __xen_set_pte;
1216
1217	paging_init();
1218	xen_post_allocator_init();
1219
1220	xen_pagetable_p2m_setup();
1221
1222	/* Allocate and initialize top and mid mfn levels for p2m structure */
1223	xen_build_mfn_list_list();
1224
1225	/* Remap memory freed due to conflicts with E820 map */
1226	xen_remap_memory();
1227	xen_setup_mfn_list_list();
1228}
1229
1230static noinstr void xen_write_cr2(unsigned long cr2)
1231{
1232	this_cpu_read(xen_vcpu)->arch.cr2 = cr2;
1233}
1234
1235static noinline void xen_flush_tlb(void)
1236{
1237	struct mmuext_op *op;
1238	struct multicall_space mcs;
1239
1240	preempt_disable();
1241
1242	mcs = xen_mc_entry(sizeof(*op));
1243
1244	op = mcs.args;
1245	op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1246	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1247
1248	xen_mc_issue(XEN_LAZY_MMU);
1249
1250	preempt_enable();
1251}
1252
1253static void xen_flush_tlb_one_user(unsigned long addr)
1254{
1255	struct mmuext_op *op;
1256	struct multicall_space mcs;
1257
1258	trace_xen_mmu_flush_tlb_one_user(addr);
1259
1260	preempt_disable();
1261
1262	mcs = xen_mc_entry(sizeof(*op));
1263	op = mcs.args;
1264	op->cmd = MMUEXT_INVLPG_LOCAL;
1265	op->arg1.linear_addr = addr & PAGE_MASK;
1266	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1267
1268	xen_mc_issue(XEN_LAZY_MMU);
1269
1270	preempt_enable();
1271}
1272
1273static void xen_flush_tlb_multi(const struct cpumask *cpus,
1274				const struct flush_tlb_info *info)
1275{
1276	struct {
1277		struct mmuext_op op;
1278		DECLARE_BITMAP(mask, NR_CPUS);
1279	} *args;
1280	struct multicall_space mcs;
1281	const size_t mc_entry_size = sizeof(args->op) +
1282		sizeof(args->mask[0]) * BITS_TO_LONGS(num_possible_cpus());
1283
1284	trace_xen_mmu_flush_tlb_multi(cpus, info->mm, info->start, info->end);
1285
1286	if (cpumask_empty(cpus))
1287		return;		/* nothing to do */
1288
1289	mcs = xen_mc_entry(mc_entry_size);
1290	args = mcs.args;
1291	args->op.arg2.vcpumask = to_cpumask(args->mask);
1292
1293	/* Remove any offline CPUs */
1294	cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1295
1296	args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1297	if (info->end != TLB_FLUSH_ALL &&
1298	    (info->end - info->start) <= PAGE_SIZE) {
1299		args->op.cmd = MMUEXT_INVLPG_MULTI;
1300		args->op.arg1.linear_addr = info->start;
1301	}
1302
1303	MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1304
1305	xen_mc_issue(XEN_LAZY_MMU);
1306}
1307
1308static unsigned long xen_read_cr3(void)
1309{
1310	return this_cpu_read(xen_cr3);
1311}
1312
1313static void set_current_cr3(void *v)
1314{
1315	this_cpu_write(xen_current_cr3, (unsigned long)v);
1316}
1317
1318static void __xen_write_cr3(bool kernel, unsigned long cr3)
1319{
1320	struct mmuext_op op;
1321	unsigned long mfn;
1322
1323	trace_xen_mmu_write_cr3(kernel, cr3);
1324
1325	if (cr3)
1326		mfn = pfn_to_mfn(PFN_DOWN(cr3));
1327	else
1328		mfn = 0;
1329
1330	WARN_ON(mfn == 0 && kernel);
1331
1332	op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1333	op.arg1.mfn = mfn;
1334
1335	xen_extend_mmuext_op(&op);
1336
1337	if (kernel) {
1338		this_cpu_write(xen_cr3, cr3);
1339
1340		/* Update xen_current_cr3 once the batch has actually
1341		   been submitted. */
1342		xen_mc_callback(set_current_cr3, (void *)cr3);
1343	}
1344}
1345static void xen_write_cr3(unsigned long cr3)
1346{
1347	pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1348
1349	BUG_ON(preemptible());
1350
1351	xen_mc_batch();  /* disables interrupts */
1352
1353	/* Update while interrupts are disabled, so its atomic with
1354	   respect to ipis */
1355	this_cpu_write(xen_cr3, cr3);
1356
1357	__xen_write_cr3(true, cr3);
1358
1359	if (user_pgd)
1360		__xen_write_cr3(false, __pa(user_pgd));
1361	else
1362		__xen_write_cr3(false, 0);
1363
1364	xen_mc_issue(XEN_LAZY_CPU);  /* interrupts restored */
1365}
1366
1367/*
1368 * At the start of the day - when Xen launches a guest, it has already
1369 * built pagetables for the guest. We diligently look over them
1370 * in xen_setup_kernel_pagetable and graft as appropriate them in the
1371 * init_top_pgt and its friends. Then when we are happy we load
1372 * the new init_top_pgt - and continue on.
1373 *
1374 * The generic code starts (start_kernel) and 'init_mem_mapping' sets
1375 * up the rest of the pagetables. When it has completed it loads the cr3.
1376 * N.B. that baremetal would start at 'start_kernel' (and the early
1377 * #PF handler would create bootstrap pagetables) - so we are running
1378 * with the same assumptions as what to do when write_cr3 is executed
1379 * at this point.
1380 *
1381 * Since there are no user-page tables at all, we have two variants
1382 * of xen_write_cr3 - the early bootup (this one), and the late one
1383 * (xen_write_cr3). The reason we have to do that is that in 64-bit
1384 * the Linux kernel and user-space are both in ring 3 while the
1385 * hypervisor is in ring 0.
1386 */
1387static void __init xen_write_cr3_init(unsigned long cr3)
1388{
1389	BUG_ON(preemptible());
1390
1391	xen_mc_batch();  /* disables interrupts */
1392
1393	/* Update while interrupts are disabled, so its atomic with
1394	   respect to ipis */
1395	this_cpu_write(xen_cr3, cr3);
1396
1397	__xen_write_cr3(true, cr3);
1398
1399	xen_mc_issue(XEN_LAZY_CPU);  /* interrupts restored */
1400}
1401
1402static int xen_pgd_alloc(struct mm_struct *mm)
1403{
1404	pgd_t *pgd = mm->pgd;
1405	struct page *page = virt_to_page(pgd);
1406	pgd_t *user_pgd;
1407	int ret = -ENOMEM;
1408
1409	BUG_ON(PagePinned(virt_to_page(pgd)));
1410	BUG_ON(page->private != 0);
1411
1412	user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1413	page->private = (unsigned long)user_pgd;
1414
1415	if (user_pgd != NULL) {
1416#ifdef CONFIG_X86_VSYSCALL_EMULATION
1417		user_pgd[pgd_index(VSYSCALL_ADDR)] =
1418			__pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1419#endif
1420		ret = 0;
1421	}
1422
1423	BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1424
1425	return ret;
1426}
1427
1428static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1429{
1430	pgd_t *user_pgd = xen_get_user_pgd(pgd);
1431
1432	if (user_pgd)
1433		free_page((unsigned long)user_pgd);
1434}
1435
1436/*
1437 * Init-time set_pte while constructing initial pagetables, which
1438 * doesn't allow RO page table pages to be remapped RW.
1439 *
1440 * If there is no MFN for this PFN then this page is initially
1441 * ballooned out so clear the PTE (as in decrease_reservation() in
1442 * drivers/xen/balloon.c).
1443 *
1444 * Many of these PTE updates are done on unpinned and writable pages
1445 * and doing a hypercall for these is unnecessary and expensive.  At
1446 * this point it is rarely possible to tell if a page is pinned, so
1447 * mostly write the PTE directly and rely on Xen trapping and
1448 * emulating any updates as necessary.
1449 */
1450static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
1451{
1452	if (unlikely(is_early_ioremap_ptep(ptep)))
1453		__xen_set_pte(ptep, pte);
1454	else
1455		native_set_pte(ptep, pte);
1456}
1457
1458__visible pte_t xen_make_pte_init(pteval_t pte)
1459{
1460	unsigned long pfn;
1461
1462	/*
1463	 * Pages belonging to the initial p2m list mapped outside the default
1464	 * address range must be mapped read-only. This region contains the
1465	 * page tables for mapping the p2m list, too, and page tables MUST be
1466	 * mapped read-only.
1467	 */
1468	pfn = (pte & PTE_PFN_MASK) >> PAGE_SHIFT;
1469	if (xen_start_info->mfn_list < __START_KERNEL_map &&
1470	    pfn >= xen_start_info->first_p2m_pfn &&
1471	    pfn < xen_start_info->first_p2m_pfn + xen_start_info->nr_p2m_frames)
1472		pte &= ~_PAGE_RW;
1473
1474	pte = pte_pfn_to_mfn(pte);
1475	return native_make_pte(pte);
1476}
1477PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte_init);
1478
1479/* Early in boot, while setting up the initial pagetable, assume
1480   everything is pinned. */
1481static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1482{
1483#ifdef CONFIG_FLATMEM
1484	BUG_ON(mem_map);	/* should only be used early */
1485#endif
1486	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1487	pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1488}
1489
1490/* Used for pmd and pud */
1491static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1492{
1493#ifdef CONFIG_FLATMEM
1494	BUG_ON(mem_map);	/* should only be used early */
1495#endif
1496	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1497}
1498
1499/* Early release_pte assumes that all pts are pinned, since there's
1500   only init_mm and anything attached to that is pinned. */
1501static void __init xen_release_pte_init(unsigned long pfn)
1502{
1503	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1504	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1505}
1506
1507static void __init xen_release_pmd_init(unsigned long pfn)
1508{
1509	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1510}
1511
1512static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1513{
1514	struct multicall_space mcs;
1515	struct mmuext_op *op;
1516
1517	mcs = __xen_mc_entry(sizeof(*op));
1518	op = mcs.args;
1519	op->cmd = cmd;
1520	op->arg1.mfn = pfn_to_mfn(pfn);
1521
1522	MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
1523}
1524
1525static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot)
1526{
1527	struct multicall_space mcs;
1528	unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT);
1529
1530	mcs = __xen_mc_entry(0);
1531	MULTI_update_va_mapping(mcs.mc, (unsigned long)addr,
1532				pfn_pte(pfn, prot), 0);
1533}
1534
1535/* This needs to make sure the new pte page is pinned iff its being
1536   attached to a pinned pagetable. */
1537static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn,
1538				    unsigned level)
1539{
1540	bool pinned = xen_page_pinned(mm->pgd);
1541
1542	trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned);
1543
1544	if (pinned) {
1545		struct page *page = pfn_to_page(pfn);
1546
1547		pinned = false;
1548		if (static_branch_likely(&xen_struct_pages_ready)) {
1549			pinned = PagePinned(page);
1550			SetPagePinned(page);
1551		}
1552
1553		xen_mc_batch();
1554
1555		__set_pfn_prot(pfn, PAGE_KERNEL_RO);
1556
1557		if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS && !pinned)
1558			__pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1559
1560		xen_mc_issue(XEN_LAZY_MMU);
1561	}
1562}
1563
1564static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1565{
1566	xen_alloc_ptpage(mm, pfn, PT_PTE);
1567}
1568
1569static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1570{
1571	xen_alloc_ptpage(mm, pfn, PT_PMD);
1572}
1573
1574/* This should never happen until we're OK to use struct page */
1575static inline void xen_release_ptpage(unsigned long pfn, unsigned level)
1576{
1577	struct page *page = pfn_to_page(pfn);
1578	bool pinned = PagePinned(page);
1579
1580	trace_xen_mmu_release_ptpage(pfn, level, pinned);
1581
1582	if (pinned) {
1583		xen_mc_batch();
1584
1585		if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1586			__pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1587
1588		__set_pfn_prot(pfn, PAGE_KERNEL);
1589
1590		xen_mc_issue(XEN_LAZY_MMU);
1591
1592		ClearPagePinned(page);
1593	}
1594}
1595
1596static void xen_release_pte(unsigned long pfn)
1597{
1598	xen_release_ptpage(pfn, PT_PTE);
1599}
1600
1601static void xen_release_pmd(unsigned long pfn)
1602{
1603	xen_release_ptpage(pfn, PT_PMD);
1604}
1605
1606static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1607{
1608	xen_alloc_ptpage(mm, pfn, PT_PUD);
1609}
1610
1611static void xen_release_pud(unsigned long pfn)
1612{
1613	xen_release_ptpage(pfn, PT_PUD);
1614}
1615
1616/*
1617 * Like __va(), but returns address in the kernel mapping (which is
1618 * all we have until the physical memory mapping has been set up.
1619 */
1620static void * __init __ka(phys_addr_t paddr)
1621{
1622	return (void *)(paddr + __START_KERNEL_map);
1623}
1624
1625/* Convert a machine address to physical address */
1626static unsigned long __init m2p(phys_addr_t maddr)
1627{
1628	phys_addr_t paddr;
1629
1630	maddr &= XEN_PTE_MFN_MASK;
1631	paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1632
1633	return paddr;
1634}
1635
1636/* Convert a machine address to kernel virtual */
1637static void * __init m2v(phys_addr_t maddr)
1638{
1639	return __ka(m2p(maddr));
1640}
1641
1642/* Set the page permissions on an identity-mapped pages */
1643static void __init set_page_prot_flags(void *addr, pgprot_t prot,
1644				       unsigned long flags)
1645{
1646	unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1647	pte_t pte = pfn_pte(pfn, prot);
1648
1649	if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, flags))
1650		BUG();
1651}
1652static void __init set_page_prot(void *addr, pgprot_t prot)
1653{
1654	return set_page_prot_flags(addr, prot, UVMF_NONE);
1655}
1656
1657void __init xen_setup_machphys_mapping(void)
1658{
1659	struct xen_machphys_mapping mapping;
1660
1661	if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
1662		machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1663		machine_to_phys_nr = mapping.max_mfn + 1;
1664	} else {
1665		machine_to_phys_nr = MACH2PHYS_NR_ENTRIES;
1666	}
1667}
1668
1669static void __init convert_pfn_mfn(void *v)
1670{
1671	pte_t *pte = v;
1672	int i;
1673
1674	/* All levels are converted the same way, so just treat them
1675	   as ptes. */
1676	for (i = 0; i < PTRS_PER_PTE; i++)
1677		pte[i] = xen_make_pte(pte[i].pte);
1678}
1679static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end,
1680				 unsigned long addr)
1681{
1682	if (*pt_base == PFN_DOWN(__pa(addr))) {
1683		set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1684		clear_page((void *)addr);
1685		(*pt_base)++;
1686	}
1687	if (*pt_end == PFN_DOWN(__pa(addr))) {
1688		set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1689		clear_page((void *)addr);
1690		(*pt_end)--;
1691	}
1692}
1693/*
1694 * Set up the initial kernel pagetable.
1695 *
1696 * We can construct this by grafting the Xen provided pagetable into
1697 * head_64.S's preconstructed pagetables.  We copy the Xen L2's into
1698 * level2_ident_pgt, and level2_kernel_pgt.  This means that only the
1699 * kernel has a physical mapping to start with - but that's enough to
1700 * get __va working.  We need to fill in the rest of the physical
1701 * mapping once some sort of allocator has been set up.
1702 */
1703void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1704{
1705	pud_t *l3;
1706	pmd_t *l2;
1707	unsigned long addr[3];
1708	unsigned long pt_base, pt_end;
1709	unsigned i;
1710
1711	/* max_pfn_mapped is the last pfn mapped in the initial memory
1712	 * mappings. Considering that on Xen after the kernel mappings we
1713	 * have the mappings of some pages that don't exist in pfn space, we
1714	 * set max_pfn_mapped to the last real pfn mapped. */
1715	if (xen_start_info->mfn_list < __START_KERNEL_map)
1716		max_pfn_mapped = xen_start_info->first_p2m_pfn;
1717	else
1718		max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1719
1720	pt_base = PFN_DOWN(__pa(xen_start_info->pt_base));
1721	pt_end = pt_base + xen_start_info->nr_pt_frames;
1722
1723	/* Zap identity mapping */
1724	init_top_pgt[0] = __pgd(0);
1725
1726	/* Pre-constructed entries are in pfn, so convert to mfn */
1727	/* L4[273] -> level3_ident_pgt  */
1728	/* L4[511] -> level3_kernel_pgt */
1729	convert_pfn_mfn(init_top_pgt);
1730
1731	/* L3_i[0] -> level2_ident_pgt */
1732	convert_pfn_mfn(level3_ident_pgt);
1733	/* L3_k[510] -> level2_kernel_pgt */
1734	/* L3_k[511] -> level2_fixmap_pgt */
1735	convert_pfn_mfn(level3_kernel_pgt);
1736
1737	/* L3_k[511][508-FIXMAP_PMD_NUM ... 507] -> level1_fixmap_pgt */
1738	convert_pfn_mfn(level2_fixmap_pgt);
1739
1740	/* We get [511][511] and have Xen's version of level2_kernel_pgt */
1741	l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1742	l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1743
1744	addr[0] = (unsigned long)pgd;
1745	addr[1] = (unsigned long)l3;
1746	addr[2] = (unsigned long)l2;
1747	/* Graft it onto L4[273][0]. Note that we creating an aliasing problem:
1748	 * Both L4[273][0] and L4[511][510] have entries that point to the same
1749	 * L2 (PMD) tables. Meaning that if you modify it in __va space
1750	 * it will be also modified in the __ka space! (But if you just
1751	 * modify the PMD table to point to other PTE's or none, then you
1752	 * are OK - which is what cleanup_highmap does) */
1753	copy_page(level2_ident_pgt, l2);
1754	/* Graft it onto L4[511][510] */
1755	copy_page(level2_kernel_pgt, l2);
1756
1757	/*
1758	 * Zap execute permission from the ident map. Due to the sharing of
1759	 * L1 entries we need to do this in the L2.
1760	 */
1761	if (__supported_pte_mask & _PAGE_NX) {
1762		for (i = 0; i < PTRS_PER_PMD; ++i) {
1763			if (pmd_none(level2_ident_pgt[i]))
1764				continue;
1765			level2_ident_pgt[i] = pmd_set_flags(level2_ident_pgt[i], _PAGE_NX);
1766		}
1767	}
1768
1769	/* Copy the initial P->M table mappings if necessary. */
1770	i = pgd_index(xen_start_info->mfn_list);
1771	if (i && i < pgd_index(__START_KERNEL_map))
1772		init_top_pgt[i] = ((pgd_t *)xen_start_info->pt_base)[i];
1773
1774	/* Make pagetable pieces RO */
1775	set_page_prot(init_top_pgt, PAGE_KERNEL_RO);
1776	set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1777	set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1778	set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO);
1779	set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1780	set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1781
1782	for (i = 0; i < FIXMAP_PMD_NUM; i++) {
1783		set_page_prot(level1_fixmap_pgt + i * PTRS_PER_PTE,
1784			      PAGE_KERNEL_RO);
1785	}
1786
1787	/* Pin down new L4 */
1788	pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1789			  PFN_DOWN(__pa_symbol(init_top_pgt)));
1790
1791	/* Unpin Xen-provided one */
1792	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1793
1794#ifdef CONFIG_X86_VSYSCALL_EMULATION
1795	/* Pin user vsyscall L3 */
1796	set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1797	pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
1798			  PFN_DOWN(__pa_symbol(level3_user_vsyscall)));
1799#endif
1800
1801	/*
1802	 * At this stage there can be no user pgd, and no page structure to
1803	 * attach it to, so make sure we just set kernel pgd.
1804	 */
1805	xen_mc_batch();
1806	__xen_write_cr3(true, __pa(init_top_pgt));
1807	xen_mc_issue(XEN_LAZY_CPU);
1808
1809	/* We can't that easily rip out L3 and L2, as the Xen pagetables are
1810	 * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ...  for
1811	 * the initial domain. For guests using the toolstack, they are in:
1812	 * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only
1813	 * rip out the [L4] (pgd), but for guests we shave off three pages.
1814	 */
1815	for (i = 0; i < ARRAY_SIZE(addr); i++)
1816		check_pt_base(&pt_base, &pt_end, addr[i]);
1817
1818	/* Our (by three pages) smaller Xen pagetable that we are using */
1819	xen_pt_base = PFN_PHYS(pt_base);
1820	xen_pt_size = (pt_end - pt_base) * PAGE_SIZE;
1821	memblock_reserve(xen_pt_base, xen_pt_size);
1822
1823	/* Revector the xen_start_info */
1824	xen_start_info = (struct start_info *)__va(__pa(xen_start_info));
1825}
1826
1827/*
1828 * Read a value from a physical address.
1829 */
1830static unsigned long __init xen_read_phys_ulong(phys_addr_t addr)
1831{
1832	unsigned long *vaddr;
1833	unsigned long val;
1834
1835	vaddr = early_memremap_ro(addr, sizeof(val));
1836	val = *vaddr;
1837	early_memunmap(vaddr, sizeof(val));
1838	return val;
1839}
1840
1841/*
1842 * Translate a virtual address to a physical one without relying on mapped
1843 * page tables. Don't rely on big pages being aligned in (guest) physical
1844 * space!
1845 */
1846static phys_addr_t __init xen_early_virt_to_phys(unsigned long vaddr)
1847{
1848	phys_addr_t pa;
1849	pgd_t pgd;
1850	pud_t pud;
1851	pmd_t pmd;
1852	pte_t pte;
1853
1854	pa = read_cr3_pa();
1855	pgd = native_make_pgd(xen_read_phys_ulong(pa + pgd_index(vaddr) *
1856						       sizeof(pgd)));
1857	if (!pgd_present(pgd))
1858		return 0;
1859
1860	pa = pgd_val(pgd) & PTE_PFN_MASK;
1861	pud = native_make_pud(xen_read_phys_ulong(pa + pud_index(vaddr) *
1862						       sizeof(pud)));
1863	if (!pud_present(pud))
1864		return 0;
1865	pa = pud_val(pud) & PTE_PFN_MASK;
1866	if (pud_large(pud))
1867		return pa + (vaddr & ~PUD_MASK);
1868
1869	pmd = native_make_pmd(xen_read_phys_ulong(pa + pmd_index(vaddr) *
1870						       sizeof(pmd)));
1871	if (!pmd_present(pmd))
1872		return 0;
1873	pa = pmd_val(pmd) & PTE_PFN_MASK;
1874	if (pmd_large(pmd))
1875		return pa + (vaddr & ~PMD_MASK);
1876
1877	pte = native_make_pte(xen_read_phys_ulong(pa + pte_index(vaddr) *
1878						       sizeof(pte)));
1879	if (!pte_present(pte))
1880		return 0;
1881	pa = pte_pfn(pte) << PAGE_SHIFT;
1882
1883	return pa | (vaddr & ~PAGE_MASK);
1884}
1885
1886/*
1887 * Find a new area for the hypervisor supplied p2m list and relocate the p2m to
1888 * this area.
1889 */
1890void __init xen_relocate_p2m(void)
1891{
1892	phys_addr_t size, new_area, pt_phys, pmd_phys, pud_phys;
1893	unsigned long p2m_pfn, p2m_pfn_end, n_frames, pfn, pfn_end;
1894	int n_pte, n_pt, n_pmd, n_pud, idx_pte, idx_pt, idx_pmd, idx_pud;
1895	pte_t *pt;
1896	pmd_t *pmd;
1897	pud_t *pud;
1898	pgd_t *pgd;
1899	unsigned long *new_p2m;
1900
1901	size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1902	n_pte = roundup(size, PAGE_SIZE) >> PAGE_SHIFT;
1903	n_pt = roundup(size, PMD_SIZE) >> PMD_SHIFT;
1904	n_pmd = roundup(size, PUD_SIZE) >> PUD_SHIFT;
1905	n_pud = roundup(size, P4D_SIZE) >> P4D_SHIFT;
1906	n_frames = n_pte + n_pt + n_pmd + n_pud;
1907
1908	new_area = xen_find_free_area(PFN_PHYS(n_frames));
1909	if (!new_area) {
1910		xen_raw_console_write("Can't find new memory area for p2m needed due to E820 map conflict\n");
1911		BUG();
1912	}
1913
1914	/*
1915	 * Setup the page tables for addressing the new p2m list.
1916	 * We have asked the hypervisor to map the p2m list at the user address
1917	 * PUD_SIZE. It may have done so, or it may have used a kernel space
1918	 * address depending on the Xen version.
1919	 * To avoid any possible virtual address collision, just use
1920	 * 2 * PUD_SIZE for the new area.
1921	 */
1922	pud_phys = new_area;
1923	pmd_phys = pud_phys + PFN_PHYS(n_pud);
1924	pt_phys = pmd_phys + PFN_PHYS(n_pmd);
1925	p2m_pfn = PFN_DOWN(pt_phys) + n_pt;
1926
1927	pgd = __va(read_cr3_pa());
1928	new_p2m = (unsigned long *)(2 * PGDIR_SIZE);
1929	for (idx_pud = 0; idx_pud < n_pud; idx_pud++) {
1930		pud = early_memremap(pud_phys, PAGE_SIZE);
1931		clear_page(pud);
1932		for (idx_pmd = 0; idx_pmd < min(n_pmd, PTRS_PER_PUD);
1933				idx_pmd++) {
1934			pmd = early_memremap(pmd_phys, PAGE_SIZE);
1935			clear_page(pmd);
1936			for (idx_pt = 0; idx_pt < min(n_pt, PTRS_PER_PMD);
1937					idx_pt++) {
1938				pt = early_memremap(pt_phys, PAGE_SIZE);
1939				clear_page(pt);
1940				for (idx_pte = 0;
1941				     idx_pte < min(n_pte, PTRS_PER_PTE);
1942				     idx_pte++) {
1943					pt[idx_pte] = pfn_pte(p2m_pfn,
1944							      PAGE_KERNEL);
1945					p2m_pfn++;
1946				}
1947				n_pte -= PTRS_PER_PTE;
1948				early_memunmap(pt, PAGE_SIZE);
1949				make_lowmem_page_readonly(__va(pt_phys));
1950				pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE,
1951						PFN_DOWN(pt_phys));
1952				pmd[idx_pt] = __pmd(_PAGE_TABLE | pt_phys);
1953				pt_phys += PAGE_SIZE;
1954			}
1955			n_pt -= PTRS_PER_PMD;
1956			early_memunmap(pmd, PAGE_SIZE);
1957			make_lowmem_page_readonly(__va(pmd_phys));
1958			pin_pagetable_pfn(MMUEXT_PIN_L2_TABLE,
1959					PFN_DOWN(pmd_phys));
1960			pud[idx_pmd] = __pud(_PAGE_TABLE | pmd_phys);
1961			pmd_phys += PAGE_SIZE;
1962		}
1963		n_pmd -= PTRS_PER_PUD;
1964		early_memunmap(pud, PAGE_SIZE);
1965		make_lowmem_page_readonly(__va(pud_phys));
1966		pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(pud_phys));
1967		set_pgd(pgd + 2 + idx_pud, __pgd(_PAGE_TABLE | pud_phys));
1968		pud_phys += PAGE_SIZE;
1969	}
1970
1971	/* Now copy the old p2m info to the new area. */
1972	memcpy(new_p2m, xen_p2m_addr, size);
1973	xen_p2m_addr = new_p2m;
1974
1975	/* Release the old p2m list and set new list info. */
1976	p2m_pfn = PFN_DOWN(xen_early_virt_to_phys(xen_start_info->mfn_list));
1977	BUG_ON(!p2m_pfn);
1978	p2m_pfn_end = p2m_pfn + PFN_DOWN(size);
1979
1980	if (xen_start_info->mfn_list < __START_KERNEL_map) {
1981		pfn = xen_start_info->first_p2m_pfn;
1982		pfn_end = xen_start_info->first_p2m_pfn +
1983			  xen_start_info->nr_p2m_frames;
1984		set_pgd(pgd + 1, __pgd(0));
1985	} else {
1986		pfn = p2m_pfn;
1987		pfn_end = p2m_pfn_end;
1988	}
1989
1990	memblock_phys_free(PFN_PHYS(pfn), PAGE_SIZE * (pfn_end - pfn));
1991	while (pfn < pfn_end) {
1992		if (pfn == p2m_pfn) {
1993			pfn = p2m_pfn_end;
1994			continue;
1995		}
1996		make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1997		pfn++;
1998	}
1999
2000	xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
2001	xen_start_info->first_p2m_pfn =  PFN_DOWN(new_area);
2002	xen_start_info->nr_p2m_frames = n_frames;
2003}
2004
2005void __init xen_reserve_special_pages(void)
2006{
2007	phys_addr_t paddr;
2008
2009	memblock_reserve(__pa(xen_start_info), PAGE_SIZE);
2010	if (xen_start_info->store_mfn) {
2011		paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->store_mfn));
2012		memblock_reserve(paddr, PAGE_SIZE);
2013	}
2014	if (!xen_initial_domain()) {
2015		paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->console.domU.mfn));
2016		memblock_reserve(paddr, PAGE_SIZE);
2017	}
2018}
2019
2020void __init xen_pt_check_e820(void)
2021{
2022	if (xen_is_e820_reserved(xen_pt_base, xen_pt_size)) {
2023		xen_raw_console_write("Xen hypervisor allocated page table memory conflicts with E820 map\n");
2024		BUG();
2025	}
2026}
2027
2028static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
2029
2030static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
2031{
2032	pte_t pte;
2033	unsigned long vaddr;
2034
2035	phys >>= PAGE_SHIFT;
2036
2037	switch (idx) {
2038	case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
2039#ifdef CONFIG_X86_VSYSCALL_EMULATION
2040	case VSYSCALL_PAGE:
2041#endif
2042		/* All local page mappings */
2043		pte = pfn_pte(phys, prot);
2044		break;
2045
2046#ifdef CONFIG_X86_LOCAL_APIC
2047	case FIX_APIC_BASE:	/* maps dummy local APIC */
2048		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2049		break;
2050#endif
2051
2052#ifdef CONFIG_X86_IO_APIC
2053	case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
2054		/*
2055		 * We just don't map the IO APIC - all access is via
2056		 * hypercalls.  Keep the address in the pte for reference.
2057		 */
2058		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2059		break;
2060#endif
2061
2062	case FIX_PARAVIRT_BOOTMAP:
2063		/* This is an MFN, but it isn't an IO mapping from the
2064		   IO domain */
2065		pte = mfn_pte(phys, prot);
2066		break;
2067
2068	default:
2069		/* By default, set_fixmap is used for hardware mappings */
2070		pte = mfn_pte(phys, prot);
2071		break;
2072	}
2073
2074	vaddr = __fix_to_virt(idx);
2075	if (HYPERVISOR_update_va_mapping(vaddr, pte, UVMF_INVLPG))
2076		BUG();
2077
2078#ifdef CONFIG_X86_VSYSCALL_EMULATION
2079	/* Replicate changes to map the vsyscall page into the user
2080	   pagetable vsyscall mapping. */
2081	if (idx == VSYSCALL_PAGE)
2082		set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
2083#endif
2084}
2085
2086static void xen_enter_lazy_mmu(void)
2087{
2088	enter_lazy(XEN_LAZY_MMU);
2089}
2090
2091static void xen_flush_lazy_mmu(void)
2092{
2093	preempt_disable();
2094
2095	if (xen_get_lazy_mode() == XEN_LAZY_MMU) {
2096		arch_leave_lazy_mmu_mode();
2097		arch_enter_lazy_mmu_mode();
2098	}
2099
2100	preempt_enable();
2101}
2102
2103static void __init xen_post_allocator_init(void)
2104{
2105	pv_ops.mmu.set_pte = xen_set_pte;
2106	pv_ops.mmu.set_pmd = xen_set_pmd;
2107	pv_ops.mmu.set_pud = xen_set_pud;
2108	pv_ops.mmu.set_p4d = xen_set_p4d;
2109
2110	/* This will work as long as patching hasn't happened yet
2111	   (which it hasn't) */
2112	pv_ops.mmu.alloc_pte = xen_alloc_pte;
2113	pv_ops.mmu.alloc_pmd = xen_alloc_pmd;
2114	pv_ops.mmu.release_pte = xen_release_pte;
2115	pv_ops.mmu.release_pmd = xen_release_pmd;
2116	pv_ops.mmu.alloc_pud = xen_alloc_pud;
2117	pv_ops.mmu.release_pud = xen_release_pud;
2118	pv_ops.mmu.make_pte = PV_CALLEE_SAVE(xen_make_pte);
2119
2120	pv_ops.mmu.write_cr3 = &xen_write_cr3;
2121}
2122
2123static void xen_leave_lazy_mmu(void)
2124{
2125	preempt_disable();
2126	xen_mc_flush();
2127	leave_lazy(XEN_LAZY_MMU);
2128	preempt_enable();
2129}
2130
2131static const typeof(pv_ops) xen_mmu_ops __initconst = {
2132	.mmu = {
2133		.read_cr2 = __PV_IS_CALLEE_SAVE(xen_read_cr2),
2134		.write_cr2 = xen_write_cr2,
2135
2136		.read_cr3 = xen_read_cr3,
2137		.write_cr3 = xen_write_cr3_init,
2138
2139		.flush_tlb_user = xen_flush_tlb,
2140		.flush_tlb_kernel = xen_flush_tlb,
2141		.flush_tlb_one_user = xen_flush_tlb_one_user,
2142		.flush_tlb_multi = xen_flush_tlb_multi,
2143		.tlb_remove_table = tlb_remove_table,
2144
2145		.pgd_alloc = xen_pgd_alloc,
2146		.pgd_free = xen_pgd_free,
2147
2148		.alloc_pte = xen_alloc_pte_init,
2149		.release_pte = xen_release_pte_init,
2150		.alloc_pmd = xen_alloc_pmd_init,
2151		.release_pmd = xen_release_pmd_init,
2152
2153		.set_pte = xen_set_pte_init,
2154		.set_pmd = xen_set_pmd_hyper,
2155
2156		.ptep_modify_prot_start = xen_ptep_modify_prot_start,
2157		.ptep_modify_prot_commit = xen_ptep_modify_prot_commit,
2158
2159		.pte_val = PV_CALLEE_SAVE(xen_pte_val),
2160		.pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2161
2162		.make_pte = PV_CALLEE_SAVE(xen_make_pte_init),
2163		.make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2164
2165		.set_pud = xen_set_pud_hyper,
2166
2167		.make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2168		.pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2169
2170		.pud_val = PV_CALLEE_SAVE(xen_pud_val),
2171		.make_pud = PV_CALLEE_SAVE(xen_make_pud),
2172		.set_p4d = xen_set_p4d_hyper,
2173
2174		.alloc_pud = xen_alloc_pmd_init,
2175		.release_pud = xen_release_pmd_init,
2176
2177#if CONFIG_PGTABLE_LEVELS >= 5
2178		.p4d_val = PV_CALLEE_SAVE(xen_p4d_val),
2179		.make_p4d = PV_CALLEE_SAVE(xen_make_p4d),
2180#endif
2181
2182		.enter_mmap = xen_enter_mmap,
2183		.exit_mmap = xen_exit_mmap,
2184
2185		.lazy_mode = {
2186			.enter = xen_enter_lazy_mmu,
2187			.leave = xen_leave_lazy_mmu,
2188			.flush = xen_flush_lazy_mmu,
2189		},
2190
2191		.set_fixmap = xen_set_fixmap,
2192	},
2193};
2194
2195void __init xen_init_mmu_ops(void)
2196{
2197	x86_init.paging.pagetable_init = xen_pagetable_init;
2198	x86_init.hyper.init_after_bootmem = xen_after_bootmem;
2199
2200	pv_ops.mmu = xen_mmu_ops.mmu;
2201
2202	memset(dummy_mapping, 0xff, PAGE_SIZE);
2203}
2204
2205/* Protected by xen_reservation_lock. */
2206#define MAX_CONTIG_ORDER 9 /* 2MB */
2207static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2208
2209#define VOID_PTE (mfn_pte(0, __pgprot(0)))
2210static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2211				unsigned long *in_frames,
2212				unsigned long *out_frames)
2213{
2214	int i;
2215	struct multicall_space mcs;
2216
2217	xen_mc_batch();
2218	for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2219		mcs = __xen_mc_entry(0);
2220
2221		if (in_frames)
2222			in_frames[i] = virt_to_mfn((void *)vaddr);
2223
2224		MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2225		__set_phys_to_machine(virt_to_pfn((void *)vaddr), INVALID_P2M_ENTRY);
2226
2227		if (out_frames)
2228			out_frames[i] = virt_to_pfn((void *)vaddr);
2229	}
2230	xen_mc_issue(0);
2231}
2232
2233/*
2234 * Update the pfn-to-mfn mappings for a virtual address range, either to
2235 * point to an array of mfns, or contiguously from a single starting
2236 * mfn.
2237 */
2238static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2239				     unsigned long *mfns,
2240				     unsigned long first_mfn)
2241{
2242	unsigned i, limit;
2243	unsigned long mfn;
2244
2245	xen_mc_batch();
2246
2247	limit = 1u << order;
2248	for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2249		struct multicall_space mcs;
2250		unsigned flags;
2251
2252		mcs = __xen_mc_entry(0);
2253		if (mfns)
2254			mfn = mfns[i];
2255		else
2256			mfn = first_mfn + i;
2257
2258		if (i < (limit - 1))
2259			flags = 0;
2260		else {
2261			if (order == 0)
2262				flags = UVMF_INVLPG | UVMF_ALL;
2263			else
2264				flags = UVMF_TLB_FLUSH | UVMF_ALL;
2265		}
2266
2267		MULTI_update_va_mapping(mcs.mc, vaddr,
2268				mfn_pte(mfn, PAGE_KERNEL), flags);
2269
2270		set_phys_to_machine(virt_to_pfn((void *)vaddr), mfn);
2271	}
2272
2273	xen_mc_issue(0);
2274}
2275
2276/*
2277 * Perform the hypercall to exchange a region of our pfns to point to
2278 * memory with the required contiguous alignment.  Takes the pfns as
2279 * input, and populates mfns as output.
2280 *
2281 * Returns a success code indicating whether the hypervisor was able to
2282 * satisfy the request or not.
2283 */
2284static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2285			       unsigned long *pfns_in,
2286			       unsigned long extents_out,
2287			       unsigned int order_out,
2288			       unsigned long *mfns_out,
2289			       unsigned int address_bits)
2290{
2291	long rc;
2292	int success;
2293
2294	struct xen_memory_exchange exchange = {
2295		.in = {
2296			.nr_extents   = extents_in,
2297			.extent_order = order_in,
2298			.extent_start = pfns_in,
2299			.domid        = DOMID_SELF
2300		},
2301		.out = {
2302			.nr_extents   = extents_out,
2303			.extent_order = order_out,
2304			.extent_start = mfns_out,
2305			.address_bits = address_bits,
2306			.domid        = DOMID_SELF
2307		}
2308	};
2309
2310	BUG_ON(extents_in << order_in != extents_out << order_out);
2311
2312	rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2313	success = (exchange.nr_exchanged == extents_in);
2314
2315	BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2316	BUG_ON(success && (rc != 0));
2317
2318	return success;
2319}
2320
2321int xen_create_contiguous_region(phys_addr_t pstart, unsigned int order,
2322				 unsigned int address_bits,
2323				 dma_addr_t *dma_handle)
2324{
2325	unsigned long *in_frames = discontig_frames, out_frame;
2326	unsigned long  flags;
2327	int            success;
2328	unsigned long vstart = (unsigned long)phys_to_virt(pstart);
2329
2330	if (unlikely(order > MAX_CONTIG_ORDER))
2331		return -ENOMEM;
2332
2333	memset((void *) vstart, 0, PAGE_SIZE << order);
2334
2335	spin_lock_irqsave(&xen_reservation_lock, flags);
2336
2337	/* 1. Zap current PTEs, remembering MFNs. */
2338	xen_zap_pfn_range(vstart, order, in_frames, NULL);
2339
2340	/* 2. Get a new contiguous memory extent. */
2341	out_frame = virt_to_pfn((void *)vstart);
2342	success = xen_exchange_memory(1UL << order, 0, in_frames,
2343				      1, order, &out_frame,
2344				      address_bits);
2345
2346	/* 3. Map the new extent in place of old pages. */
2347	if (success)
2348		xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2349	else
2350		xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2351
2352	spin_unlock_irqrestore(&xen_reservation_lock, flags);
2353
2354	*dma_handle = virt_to_machine(vstart).maddr;
2355	return success ? 0 : -ENOMEM;
2356}
2357
2358void xen_destroy_contiguous_region(phys_addr_t pstart, unsigned int order)
2359{
2360	unsigned long *out_frames = discontig_frames, in_frame;
2361	unsigned long  flags;
2362	int success;
2363	unsigned long vstart;
2364
2365	if (unlikely(order > MAX_CONTIG_ORDER))
2366		return;
2367
2368	vstart = (unsigned long)phys_to_virt(pstart);
2369	memset((void *) vstart, 0, PAGE_SIZE << order);
2370
2371	spin_lock_irqsave(&xen_reservation_lock, flags);
2372
2373	/* 1. Find start MFN of contiguous extent. */
2374	in_frame = virt_to_mfn((void *)vstart);
2375
2376	/* 2. Zap current PTEs. */
2377	xen_zap_pfn_range(vstart, order, NULL, out_frames);
2378
2379	/* 3. Do the exchange for non-contiguous MFNs. */
2380	success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2381					0, out_frames, 0);
2382
2383	/* 4. Map new pages in place of old pages. */
2384	if (success)
2385		xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2386	else
2387		xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2388
2389	spin_unlock_irqrestore(&xen_reservation_lock, flags);
2390}
2391
2392static noinline void xen_flush_tlb_all(void)
2393{
2394	struct mmuext_op *op;
2395	struct multicall_space mcs;
2396
2397	preempt_disable();
2398
2399	mcs = xen_mc_entry(sizeof(*op));
2400
2401	op = mcs.args;
2402	op->cmd = MMUEXT_TLB_FLUSH_ALL;
2403	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
2404
2405	xen_mc_issue(XEN_LAZY_MMU);
2406
2407	preempt_enable();
2408}
2409
2410#define REMAP_BATCH_SIZE 16
2411
2412struct remap_data {
2413	xen_pfn_t *pfn;
2414	bool contiguous;
2415	bool no_translate;
2416	pgprot_t prot;
2417	struct mmu_update *mmu_update;
2418};
2419
2420static int remap_area_pfn_pte_fn(pte_t *ptep, unsigned long addr, void *data)
2421{
2422	struct remap_data *rmd = data;
2423	pte_t pte = pte_mkspecial(mfn_pte(*rmd->pfn, rmd->prot));
2424
2425	/*
2426	 * If we have a contiguous range, just update the pfn itself,
2427	 * else update pointer to be "next pfn".
2428	 */
2429	if (rmd->contiguous)
2430		(*rmd->pfn)++;
2431	else
2432		rmd->pfn++;
2433
2434	rmd->mmu_update->ptr = virt_to_machine(ptep).maddr;
2435	rmd->mmu_update->ptr |= rmd->no_translate ?
2436		MMU_PT_UPDATE_NO_TRANSLATE :
2437		MMU_NORMAL_PT_UPDATE;
2438	rmd->mmu_update->val = pte_val_ma(pte);
2439	rmd->mmu_update++;
2440
2441	return 0;
2442}
2443
2444int xen_remap_pfn(struct vm_area_struct *vma, unsigned long addr,
2445		  xen_pfn_t *pfn, int nr, int *err_ptr, pgprot_t prot,
2446		  unsigned int domid, bool no_translate)
2447{
2448	int err = 0;
2449	struct remap_data rmd;
2450	struct mmu_update mmu_update[REMAP_BATCH_SIZE];
2451	unsigned long range;
2452	int mapped = 0;
2453
2454	BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_IO)) == (VM_PFNMAP | VM_IO)));
2455
2456	rmd.pfn = pfn;
2457	rmd.prot = prot;
2458	/*
2459	 * We use the err_ptr to indicate if there we are doing a contiguous
2460	 * mapping or a discontiguous mapping.
2461	 */
2462	rmd.contiguous = !err_ptr;
2463	rmd.no_translate = no_translate;
2464
2465	while (nr) {
2466		int index = 0;
2467		int done = 0;
2468		int batch = min(REMAP_BATCH_SIZE, nr);
2469		int batch_left = batch;
2470
2471		range = (unsigned long)batch << PAGE_SHIFT;
2472
2473		rmd.mmu_update = mmu_update;
2474		err = apply_to_page_range(vma->vm_mm, addr, range,
2475					  remap_area_pfn_pte_fn, &rmd);
2476		if (err)
2477			goto out;
2478
2479		/*
2480		 * We record the error for each page that gives an error, but
2481		 * continue mapping until the whole set is done
2482		 */
2483		do {
2484			int i;
2485
2486			err = HYPERVISOR_mmu_update(&mmu_update[index],
2487						    batch_left, &done, domid);
2488
2489			/*
2490			 * @err_ptr may be the same buffer as @gfn, so
2491			 * only clear it after each chunk of @gfn is
2492			 * used.
2493			 */
2494			if (err_ptr) {
2495				for (i = index; i < index + done; i++)
2496					err_ptr[i] = 0;
2497			}
2498			if (err < 0) {
2499				if (!err_ptr)
2500					goto out;
2501				err_ptr[i] = err;
2502				done++; /* Skip failed frame. */
2503			} else
2504				mapped += done;
2505			batch_left -= done;
2506			index += done;
2507		} while (batch_left);
2508
2509		nr -= batch;
2510		addr += range;
2511		if (err_ptr)
2512			err_ptr += batch;
2513		cond_resched();
2514	}
2515out:
2516
2517	xen_flush_tlb_all();
2518
2519	return err < 0 ? err : mapped;
2520}
2521EXPORT_SYMBOL_GPL(xen_remap_pfn);
2522
2523#ifdef CONFIG_KEXEC_CORE
2524phys_addr_t paddr_vmcoreinfo_note(void)
2525{
2526	if (xen_pv_domain())
2527		return virt_to_machine(vmcoreinfo_note).maddr;
2528	else
2529		return __pa(vmcoreinfo_note);
2530}
2531#endif /* CONFIG_KEXEC_CORE */