Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* arch/sparc64/kernel/traps.c
   3 *
   4 * Copyright (C) 1995,1997,2008,2009,2012 David S. Miller (davem@davemloft.net)
   5 * Copyright (C) 1997,1999,2000 Jakub Jelinek (jakub@redhat.com)
   6 */
   7
   8/*
   9 * I like traps on v9, :))))
  10 */
  11
  12#include <linux/cpu.h>
  13#include <linux/extable.h>
  14#include <linux/sched/mm.h>
  15#include <linux/sched/debug.h>
  16#include <linux/linkage.h>
  17#include <linux/kernel.h>
  18#include <linux/signal.h>
  19#include <linux/smp.h>
  20#include <linux/mm.h>
  21#include <linux/init.h>
  22#include <linux/kallsyms.h>
  23#include <linux/kdebug.h>
  24#include <linux/ftrace.h>
  25#include <linux/reboot.h>
  26#include <linux/gfp.h>
  27#include <linux/context_tracking.h>
  28
  29#include <asm/smp.h>
  30#include <asm/delay.h>
  31#include <asm/ptrace.h>
  32#include <asm/oplib.h>
  33#include <asm/page.h>
 
  34#include <asm/unistd.h>
  35#include <linux/uaccess.h>
  36#include <asm/fpumacro.h>
  37#include <asm/lsu.h>
  38#include <asm/dcu.h>
  39#include <asm/estate.h>
  40#include <asm/chafsr.h>
  41#include <asm/sfafsr.h>
  42#include <asm/psrcompat.h>
  43#include <asm/processor.h>
  44#include <asm/timer.h>
  45#include <asm/head.h>
  46#include <asm/prom.h>
  47#include <asm/memctrl.h>
  48#include <asm/cacheflush.h>
  49#include <asm/setup.h>
  50
  51#include "entry.h"
  52#include "kernel.h"
  53#include "kstack.h"
  54
  55/* When an irrecoverable trap occurs at tl > 0, the trap entry
  56 * code logs the trap state registers at every level in the trap
  57 * stack.  It is found at (pt_regs + sizeof(pt_regs)) and the layout
  58 * is as follows:
  59 */
  60struct tl1_traplog {
  61	struct {
  62		unsigned long tstate;
  63		unsigned long tpc;
  64		unsigned long tnpc;
  65		unsigned long tt;
  66	} trapstack[4];
  67	unsigned long tl;
  68};
  69
  70static void dump_tl1_traplog(struct tl1_traplog *p)
  71{
  72	int i, limit;
  73
  74	printk(KERN_EMERG "TRAPLOG: Error at trap level 0x%lx, "
  75	       "dumping track stack.\n", p->tl);
  76
  77	limit = (tlb_type == hypervisor) ? 2 : 4;
  78	for (i = 0; i < limit; i++) {
  79		printk(KERN_EMERG
  80		       "TRAPLOG: Trap level %d TSTATE[%016lx] TPC[%016lx] "
  81		       "TNPC[%016lx] TT[%lx]\n",
  82		       i + 1,
  83		       p->trapstack[i].tstate, p->trapstack[i].tpc,
  84		       p->trapstack[i].tnpc, p->trapstack[i].tt);
  85		printk("TRAPLOG: TPC<%pS>\n", (void *) p->trapstack[i].tpc);
  86	}
  87}
  88
  89void bad_trap(struct pt_regs *regs, long lvl)
  90{
  91	char buffer[36];
 
  92
  93	if (notify_die(DIE_TRAP, "bad trap", regs,
  94		       0, lvl, SIGTRAP) == NOTIFY_STOP)
  95		return;
  96
  97	if (lvl < 0x100) {
  98		sprintf(buffer, "Bad hw trap %lx at tl0\n", lvl);
  99		die_if_kernel(buffer, regs);
 100	}
 101
 102	lvl -= 0x100;
 103	if (regs->tstate & TSTATE_PRIV) {
 104		sprintf(buffer, "Kernel bad sw trap %lx", lvl);
 105		die_if_kernel(buffer, regs);
 106	}
 107	if (test_thread_flag(TIF_32BIT)) {
 108		regs->tpc &= 0xffffffff;
 109		regs->tnpc &= 0xffffffff;
 110	}
 111	force_sig_fault_trapno(SIGILL, ILL_ILLTRP,
 112			       (void __user *)regs->tpc, lvl);
 
 
 
 
 113}
 114
 115void bad_trap_tl1(struct pt_regs *regs, long lvl)
 116{
 117	char buffer[36];
 118	
 119	if (notify_die(DIE_TRAP_TL1, "bad trap tl1", regs,
 120		       0, lvl, SIGTRAP) == NOTIFY_STOP)
 121		return;
 122
 123	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 124
 125	sprintf (buffer, "Bad trap %lx at tl>0", lvl);
 126	die_if_kernel (buffer, regs);
 127}
 128
 129#ifdef CONFIG_DEBUG_BUGVERBOSE
 130void do_BUG(const char *file, int line)
 131{
 132	bust_spinlocks(1);
 133	printk("kernel BUG at %s:%d!\n", file, line);
 134}
 135EXPORT_SYMBOL(do_BUG);
 136#endif
 137
 138static DEFINE_SPINLOCK(dimm_handler_lock);
 139static dimm_printer_t dimm_handler;
 140
 141static int sprintf_dimm(int synd_code, unsigned long paddr, char *buf, int buflen)
 142{
 143	unsigned long flags;
 144	int ret = -ENODEV;
 145
 146	spin_lock_irqsave(&dimm_handler_lock, flags);
 147	if (dimm_handler) {
 148		ret = dimm_handler(synd_code, paddr, buf, buflen);
 149	} else if (tlb_type == spitfire) {
 150		if (prom_getunumber(synd_code, paddr, buf, buflen) == -1)
 151			ret = -EINVAL;
 152		else
 153			ret = 0;
 154	} else
 155		ret = -ENODEV;
 156	spin_unlock_irqrestore(&dimm_handler_lock, flags);
 157
 158	return ret;
 159}
 160
 161int register_dimm_printer(dimm_printer_t func)
 162{
 163	unsigned long flags;
 164	int ret = 0;
 165
 166	spin_lock_irqsave(&dimm_handler_lock, flags);
 167	if (!dimm_handler)
 168		dimm_handler = func;
 169	else
 170		ret = -EEXIST;
 171	spin_unlock_irqrestore(&dimm_handler_lock, flags);
 172
 173	return ret;
 174}
 175EXPORT_SYMBOL_GPL(register_dimm_printer);
 176
 177void unregister_dimm_printer(dimm_printer_t func)
 178{
 179	unsigned long flags;
 180
 181	spin_lock_irqsave(&dimm_handler_lock, flags);
 182	if (dimm_handler == func)
 183		dimm_handler = NULL;
 184	spin_unlock_irqrestore(&dimm_handler_lock, flags);
 185}
 186EXPORT_SYMBOL_GPL(unregister_dimm_printer);
 187
 188void spitfire_insn_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
 189{
 190	enum ctx_state prev_state = exception_enter();
 
 191
 192	if (notify_die(DIE_TRAP, "instruction access exception", regs,
 193		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 194		goto out;
 195
 196	if (regs->tstate & TSTATE_PRIV) {
 197		printk("spitfire_insn_access_exception: SFSR[%016lx] "
 198		       "SFAR[%016lx], going.\n", sfsr, sfar);
 199		die_if_kernel("Iax", regs);
 200	}
 201	if (test_thread_flag(TIF_32BIT)) {
 202		regs->tpc &= 0xffffffff;
 203		regs->tnpc &= 0xffffffff;
 204	}
 205	force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *)regs->tpc);
 
 
 
 
 
 206out:
 207	exception_exit(prev_state);
 208}
 209
 210void spitfire_insn_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
 211{
 212	if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs,
 213		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 214		return;
 215
 216	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 217	spitfire_insn_access_exception(regs, sfsr, sfar);
 218}
 219
 220void sun4v_insn_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
 221{
 222	unsigned short type = (type_ctx >> 16);
 223	unsigned short ctx  = (type_ctx & 0xffff);
 
 224
 225	if (notify_die(DIE_TRAP, "instruction access exception", regs,
 226		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 227		return;
 228
 229	if (regs->tstate & TSTATE_PRIV) {
 230		printk("sun4v_insn_access_exception: ADDR[%016lx] "
 231		       "CTX[%04x] TYPE[%04x], going.\n",
 232		       addr, ctx, type);
 233		die_if_kernel("Iax", regs);
 234	}
 235
 236	if (test_thread_flag(TIF_32BIT)) {
 237		regs->tpc &= 0xffffffff;
 238		regs->tnpc &= 0xffffffff;
 239	}
 240	force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *) addr);
 
 
 
 
 
 241}
 242
 243void sun4v_insn_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
 244{
 245	if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs,
 246		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 247		return;
 248
 249	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 250	sun4v_insn_access_exception(regs, addr, type_ctx);
 251}
 252
 253bool is_no_fault_exception(struct pt_regs *regs)
 254{
 255	unsigned char asi;
 256	u32 insn;
 257
 258	if (get_user(insn, (u32 __user *)regs->tpc) == -EFAULT)
 259		return false;
 260
 261	/*
 262	 * Must do a little instruction decoding here in order to
 263	 * decide on a course of action. The bits of interest are:
 264	 *  insn[31:30] = op, where 3 indicates the load/store group
 265	 *  insn[24:19] = op3, which identifies individual opcodes
 266	 *  insn[13] indicates an immediate offset
 267	 *  op3[4]=1 identifies alternate space instructions
 268	 *  op3[5:4]=3 identifies floating point instructions
 269	 *  op3[2]=1 identifies stores
 270	 * See "Opcode Maps" in the appendix of any Sparc V9
 271	 * architecture spec for full details.
 272	 */
 273	if ((insn & 0xc0800000) == 0xc0800000) {    /* op=3, op3[4]=1   */
 274		if (insn & 0x2000)		    /* immediate offset */
 275			asi = (regs->tstate >> 24); /* saved %asi       */
 276		else
 277			asi = (insn >> 5);	    /* immediate asi    */
 278		if ((asi & 0xf6) == ASI_PNF) {
 279			if (insn & 0x200000)        /* op3[2], stores   */
 280				return false;
 281			if (insn & 0x1000000)       /* op3[5:4]=3 (fp)  */
 282				handle_ldf_stq(insn, regs);
 283			else
 284				handle_ld_nf(insn, regs);
 285			return true;
 286		}
 287	}
 288	return false;
 289}
 290
 291void spitfire_data_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
 292{
 293	enum ctx_state prev_state = exception_enter();
 
 294
 295	if (notify_die(DIE_TRAP, "data access exception", regs,
 296		       0, 0x30, SIGTRAP) == NOTIFY_STOP)
 297		goto out;
 298
 299	if (regs->tstate & TSTATE_PRIV) {
 300		/* Test if this comes from uaccess places. */
 301		const struct exception_table_entry *entry;
 302
 303		entry = search_exception_tables(regs->tpc);
 304		if (entry) {
 305			/* Ouch, somebody is trying VM hole tricks on us... */
 306#ifdef DEBUG_EXCEPTIONS
 307			printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc);
 308			printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
 309			       regs->tpc, entry->fixup);
 310#endif
 311			regs->tpc = entry->fixup;
 312			regs->tnpc = regs->tpc + 4;
 313			goto out;
 314		}
 315		/* Shit... */
 316		printk("spitfire_data_access_exception: SFSR[%016lx] "
 317		       "SFAR[%016lx], going.\n", sfsr, sfar);
 318		die_if_kernel("Dax", regs);
 319	}
 320
 321	if (is_no_fault_exception(regs))
 322		return;
 323
 324	force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *)sfar);
 
 
 325out:
 326	exception_exit(prev_state);
 327}
 328
 329void spitfire_data_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
 330{
 331	if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs,
 332		       0, 0x30, SIGTRAP) == NOTIFY_STOP)
 333		return;
 334
 335	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 336	spitfire_data_access_exception(regs, sfsr, sfar);
 337}
 338
 339void sun4v_data_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
 340{
 341	unsigned short type = (type_ctx >> 16);
 342	unsigned short ctx  = (type_ctx & 0xffff);
 
 343
 344	if (notify_die(DIE_TRAP, "data access exception", regs,
 345		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 346		return;
 347
 348	if (regs->tstate & TSTATE_PRIV) {
 349		/* Test if this comes from uaccess places. */
 350		const struct exception_table_entry *entry;
 351
 352		entry = search_exception_tables(regs->tpc);
 353		if (entry) {
 354			/* Ouch, somebody is trying VM hole tricks on us... */
 355#ifdef DEBUG_EXCEPTIONS
 356			printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc);
 357			printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
 358			       regs->tpc, entry->fixup);
 359#endif
 360			regs->tpc = entry->fixup;
 361			regs->tnpc = regs->tpc + 4;
 362			return;
 363		}
 364		printk("sun4v_data_access_exception: ADDR[%016lx] "
 365		       "CTX[%04x] TYPE[%04x], going.\n",
 366		       addr, ctx, type);
 367		die_if_kernel("Dax", regs);
 368	}
 369
 370	if (test_thread_flag(TIF_32BIT)) {
 371		regs->tpc &= 0xffffffff;
 372		regs->tnpc &= 0xffffffff;
 373	}
 374	if (is_no_fault_exception(regs))
 375		return;
 376
 377	/* MCD (Memory Corruption Detection) disabled trap (TT=0x19) in HV
 378	 * is vectored thorugh data access exception trap with fault type
 379	 * set to HV_FAULT_TYPE_MCD_DIS. Check for MCD disabled trap.
 380	 * Accessing an address with invalid ASI for the address, for
 381	 * example setting an ADI tag on an address with ASI_MCD_PRIMARY
 382	 * when TTE.mcd is not set for the VA, is also vectored into
 383	 * kerbel by HV as data access exception with fault type set to
 384	 * HV_FAULT_TYPE_INV_ASI.
 385	 */
 386	switch (type) {
 387	case HV_FAULT_TYPE_INV_ASI:
 388		force_sig_fault(SIGILL, ILL_ILLADR, (void __user *)addr);
 389		break;
 390	case HV_FAULT_TYPE_MCD_DIS:
 391		force_sig_fault(SIGSEGV, SEGV_ACCADI, (void __user *)addr);
 392		break;
 393	default:
 394		force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *)addr);
 395		break;
 396	}
 397}
 398
 399void sun4v_data_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
 400{
 401	if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs,
 402		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 403		return;
 404
 405	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 406	sun4v_data_access_exception(regs, addr, type_ctx);
 407}
 408
 409#ifdef CONFIG_PCI
 410#include "pci_impl.h"
 411#endif
 412
 413/* When access exceptions happen, we must do this. */
 414static void spitfire_clean_and_reenable_l1_caches(void)
 415{
 416	unsigned long va;
 417
 418	if (tlb_type != spitfire)
 419		BUG();
 420
 421	/* Clean 'em. */
 422	for (va =  0; va < (PAGE_SIZE << 1); va += 32) {
 423		spitfire_put_icache_tag(va, 0x0);
 424		spitfire_put_dcache_tag(va, 0x0);
 425	}
 426
 427	/* Re-enable in LSU. */
 428	__asm__ __volatile__("flush %%g6\n\t"
 429			     "membar #Sync\n\t"
 430			     "stxa %0, [%%g0] %1\n\t"
 431			     "membar #Sync"
 432			     : /* no outputs */
 433			     : "r" (LSU_CONTROL_IC | LSU_CONTROL_DC |
 434				    LSU_CONTROL_IM | LSU_CONTROL_DM),
 435			     "i" (ASI_LSU_CONTROL)
 436			     : "memory");
 437}
 438
 439static void spitfire_enable_estate_errors(void)
 440{
 441	__asm__ __volatile__("stxa	%0, [%%g0] %1\n\t"
 442			     "membar	#Sync"
 443			     : /* no outputs */
 444			     : "r" (ESTATE_ERR_ALL),
 445			       "i" (ASI_ESTATE_ERROR_EN));
 446}
 447
 448static char ecc_syndrome_table[] = {
 449	0x4c, 0x40, 0x41, 0x48, 0x42, 0x48, 0x48, 0x49,
 450	0x43, 0x48, 0x48, 0x49, 0x48, 0x49, 0x49, 0x4a,
 451	0x44, 0x48, 0x48, 0x20, 0x48, 0x39, 0x4b, 0x48,
 452	0x48, 0x25, 0x31, 0x48, 0x28, 0x48, 0x48, 0x2c,
 453	0x45, 0x48, 0x48, 0x21, 0x48, 0x3d, 0x04, 0x48,
 454	0x48, 0x4b, 0x35, 0x48, 0x2d, 0x48, 0x48, 0x29,
 455	0x48, 0x00, 0x01, 0x48, 0x0a, 0x48, 0x48, 0x4b,
 456	0x0f, 0x48, 0x48, 0x4b, 0x48, 0x49, 0x49, 0x48,
 457	0x46, 0x48, 0x48, 0x2a, 0x48, 0x3b, 0x27, 0x48,
 458	0x48, 0x4b, 0x33, 0x48, 0x22, 0x48, 0x48, 0x2e,
 459	0x48, 0x19, 0x1d, 0x48, 0x1b, 0x4a, 0x48, 0x4b,
 460	0x1f, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48,
 461	0x48, 0x4b, 0x24, 0x48, 0x07, 0x48, 0x48, 0x36,
 462	0x4b, 0x48, 0x48, 0x3e, 0x48, 0x30, 0x38, 0x48,
 463	0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x16, 0x48,
 464	0x48, 0x12, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b,
 465	0x47, 0x48, 0x48, 0x2f, 0x48, 0x3f, 0x4b, 0x48,
 466	0x48, 0x06, 0x37, 0x48, 0x23, 0x48, 0x48, 0x2b,
 467	0x48, 0x05, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x32,
 468	0x26, 0x48, 0x48, 0x3a, 0x48, 0x34, 0x3c, 0x48,
 469	0x48, 0x11, 0x15, 0x48, 0x13, 0x4a, 0x48, 0x4b,
 470	0x17, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48,
 471	0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x1e, 0x48,
 472	0x48, 0x1a, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b,
 473	0x48, 0x08, 0x0d, 0x48, 0x02, 0x48, 0x48, 0x49,
 474	0x03, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x4b, 0x48,
 475	0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x10, 0x48,
 476	0x48, 0x14, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b,
 477	0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x18, 0x48,
 478	0x48, 0x1c, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b,
 479	0x4a, 0x0c, 0x09, 0x48, 0x0e, 0x48, 0x48, 0x4b,
 480	0x0b, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x4b, 0x4a
 481};
 482
 483static char *syndrome_unknown = "<Unknown>";
 484
 485static void spitfire_log_udb_syndrome(unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long bit)
 486{
 487	unsigned short scode;
 488	char memmod_str[64], *p;
 489
 490	if (udbl & bit) {
 491		scode = ecc_syndrome_table[udbl & 0xff];
 492		if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0)
 493			p = syndrome_unknown;
 494		else
 495			p = memmod_str;
 496		printk(KERN_WARNING "CPU[%d]: UDBL Syndrome[%x] "
 497		       "Memory Module \"%s\"\n",
 498		       smp_processor_id(), scode, p);
 499	}
 500
 501	if (udbh & bit) {
 502		scode = ecc_syndrome_table[udbh & 0xff];
 503		if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0)
 504			p = syndrome_unknown;
 505		else
 506			p = memmod_str;
 507		printk(KERN_WARNING "CPU[%d]: UDBH Syndrome[%x] "
 508		       "Memory Module \"%s\"\n",
 509		       smp_processor_id(), scode, p);
 510	}
 511
 512}
 513
 514static void spitfire_cee_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, int tl1, struct pt_regs *regs)
 515{
 516
 517	printk(KERN_WARNING "CPU[%d]: Correctable ECC Error "
 518	       "AFSR[%lx] AFAR[%016lx] UDBL[%lx] UDBH[%lx] TL>1[%d]\n",
 519	       smp_processor_id(), afsr, afar, udbl, udbh, tl1);
 520
 521	spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_CE);
 522
 523	/* We always log it, even if someone is listening for this
 524	 * trap.
 525	 */
 526	notify_die(DIE_TRAP, "Correctable ECC Error", regs,
 527		   0, TRAP_TYPE_CEE, SIGTRAP);
 528
 529	/* The Correctable ECC Error trap does not disable I/D caches.  So
 530	 * we only have to restore the ESTATE Error Enable register.
 531	 */
 532	spitfire_enable_estate_errors();
 533}
 534
 535static void spitfire_ue_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long tt, int tl1, struct pt_regs *regs)
 536{
 
 
 537	printk(KERN_WARNING "CPU[%d]: Uncorrectable Error AFSR[%lx] "
 538	       "AFAR[%lx] UDBL[%lx] UDBH[%ld] TT[%lx] TL>1[%d]\n",
 539	       smp_processor_id(), afsr, afar, udbl, udbh, tt, tl1);
 540
 541	/* XXX add more human friendly logging of the error status
 542	 * XXX as is implemented for cheetah
 543	 */
 544
 545	spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_UE);
 546
 547	/* We always log it, even if someone is listening for this
 548	 * trap.
 549	 */
 550	notify_die(DIE_TRAP, "Uncorrectable Error", regs,
 551		   0, tt, SIGTRAP);
 552
 553	if (regs->tstate & TSTATE_PRIV) {
 554		if (tl1)
 555			dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 556		die_if_kernel("UE", regs);
 557	}
 558
 559	/* XXX need more intelligent processing here, such as is implemented
 560	 * XXX for cheetah errors, in fact if the E-cache still holds the
 561	 * XXX line with bad parity this will loop
 562	 */
 563
 564	spitfire_clean_and_reenable_l1_caches();
 565	spitfire_enable_estate_errors();
 566
 567	if (test_thread_flag(TIF_32BIT)) {
 568		regs->tpc &= 0xffffffff;
 569		regs->tnpc &= 0xffffffff;
 570	}
 571	force_sig_fault(SIGBUS, BUS_OBJERR, (void *)0);
 
 
 
 
 
 572}
 573
 574void spitfire_access_error(struct pt_regs *regs, unsigned long status_encoded, unsigned long afar)
 575{
 576	unsigned long afsr, tt, udbh, udbl;
 577	int tl1;
 578
 579	afsr = (status_encoded & SFSTAT_AFSR_MASK) >> SFSTAT_AFSR_SHIFT;
 580	tt = (status_encoded & SFSTAT_TRAP_TYPE) >> SFSTAT_TRAP_TYPE_SHIFT;
 581	tl1 = (status_encoded & SFSTAT_TL_GT_ONE) ? 1 : 0;
 582	udbl = (status_encoded & SFSTAT_UDBL_MASK) >> SFSTAT_UDBL_SHIFT;
 583	udbh = (status_encoded & SFSTAT_UDBH_MASK) >> SFSTAT_UDBH_SHIFT;
 584
 585#ifdef CONFIG_PCI
 586	if (tt == TRAP_TYPE_DAE &&
 587	    pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) {
 588		spitfire_clean_and_reenable_l1_caches();
 589		spitfire_enable_estate_errors();
 590
 591		pci_poke_faulted = 1;
 592		regs->tnpc = regs->tpc + 4;
 593		return;
 594	}
 595#endif
 596
 597	if (afsr & SFAFSR_UE)
 598		spitfire_ue_log(afsr, afar, udbh, udbl, tt, tl1, regs);
 599
 600	if (tt == TRAP_TYPE_CEE) {
 601		/* Handle the case where we took a CEE trap, but ACK'd
 602		 * only the UE state in the UDB error registers.
 603		 */
 604		if (afsr & SFAFSR_UE) {
 605			if (udbh & UDBE_CE) {
 606				__asm__ __volatile__(
 607					"stxa	%0, [%1] %2\n\t"
 608					"membar	#Sync"
 609					: /* no outputs */
 610					: "r" (udbh & UDBE_CE),
 611					  "r" (0x0), "i" (ASI_UDB_ERROR_W));
 612			}
 613			if (udbl & UDBE_CE) {
 614				__asm__ __volatile__(
 615					"stxa	%0, [%1] %2\n\t"
 616					"membar	#Sync"
 617					: /* no outputs */
 618					: "r" (udbl & UDBE_CE),
 619					  "r" (0x18), "i" (ASI_UDB_ERROR_W));
 620			}
 621		}
 622
 623		spitfire_cee_log(afsr, afar, udbh, udbl, tl1, regs);
 624	}
 625}
 626
 627int cheetah_pcache_forced_on;
 628
 629void cheetah_enable_pcache(void)
 630{
 631	unsigned long dcr;
 632
 633	printk("CHEETAH: Enabling P-Cache on cpu %d.\n",
 634	       smp_processor_id());
 635
 636	__asm__ __volatile__("ldxa [%%g0] %1, %0"
 637			     : "=r" (dcr)
 638			     : "i" (ASI_DCU_CONTROL_REG));
 639	dcr |= (DCU_PE | DCU_HPE | DCU_SPE | DCU_SL);
 640	__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
 641			     "membar #Sync"
 642			     : /* no outputs */
 643			     : "r" (dcr), "i" (ASI_DCU_CONTROL_REG));
 644}
 645
 646/* Cheetah error trap handling. */
 647static unsigned long ecache_flush_physbase;
 648static unsigned long ecache_flush_linesize;
 649static unsigned long ecache_flush_size;
 650
 651/* This table is ordered in priority of errors and matches the
 652 * AFAR overwrite policy as well.
 653 */
 654
 655struct afsr_error_table {
 656	unsigned long mask;
 657	const char *name;
 658};
 659
 660static const char CHAFSR_PERR_msg[] =
 661	"System interface protocol error";
 662static const char CHAFSR_IERR_msg[] =
 663	"Internal processor error";
 664static const char CHAFSR_ISAP_msg[] =
 665	"System request parity error on incoming address";
 666static const char CHAFSR_UCU_msg[] =
 667	"Uncorrectable E-cache ECC error for ifetch/data";
 668static const char CHAFSR_UCC_msg[] =
 669	"SW Correctable E-cache ECC error for ifetch/data";
 670static const char CHAFSR_UE_msg[] =
 671	"Uncorrectable system bus data ECC error for read";
 672static const char CHAFSR_EDU_msg[] =
 673	"Uncorrectable E-cache ECC error for stmerge/blkld";
 674static const char CHAFSR_EMU_msg[] =
 675	"Uncorrectable system bus MTAG error";
 676static const char CHAFSR_WDU_msg[] =
 677	"Uncorrectable E-cache ECC error for writeback";
 678static const char CHAFSR_CPU_msg[] =
 679	"Uncorrectable ECC error for copyout";
 680static const char CHAFSR_CE_msg[] =
 681	"HW corrected system bus data ECC error for read";
 682static const char CHAFSR_EDC_msg[] =
 683	"HW corrected E-cache ECC error for stmerge/blkld";
 684static const char CHAFSR_EMC_msg[] =
 685	"HW corrected system bus MTAG ECC error";
 686static const char CHAFSR_WDC_msg[] =
 687	"HW corrected E-cache ECC error for writeback";
 688static const char CHAFSR_CPC_msg[] =
 689	"HW corrected ECC error for copyout";
 690static const char CHAFSR_TO_msg[] =
 691	"Unmapped error from system bus";
 692static const char CHAFSR_BERR_msg[] =
 693	"Bus error response from system bus";
 694static const char CHAFSR_IVC_msg[] =
 695	"HW corrected system bus data ECC error for ivec read";
 696static const char CHAFSR_IVU_msg[] =
 697	"Uncorrectable system bus data ECC error for ivec read";
 698static struct afsr_error_table __cheetah_error_table[] = {
 699	{	CHAFSR_PERR,	CHAFSR_PERR_msg		},
 700	{	CHAFSR_IERR,	CHAFSR_IERR_msg		},
 701	{	CHAFSR_ISAP,	CHAFSR_ISAP_msg		},
 702	{	CHAFSR_UCU,	CHAFSR_UCU_msg		},
 703	{	CHAFSR_UCC,	CHAFSR_UCC_msg		},
 704	{	CHAFSR_UE,	CHAFSR_UE_msg		},
 705	{	CHAFSR_EDU,	CHAFSR_EDU_msg		},
 706	{	CHAFSR_EMU,	CHAFSR_EMU_msg		},
 707	{	CHAFSR_WDU,	CHAFSR_WDU_msg		},
 708	{	CHAFSR_CPU,	CHAFSR_CPU_msg		},
 709	{	CHAFSR_CE,	CHAFSR_CE_msg		},
 710	{	CHAFSR_EDC,	CHAFSR_EDC_msg		},
 711	{	CHAFSR_EMC,	CHAFSR_EMC_msg		},
 712	{	CHAFSR_WDC,	CHAFSR_WDC_msg		},
 713	{	CHAFSR_CPC,	CHAFSR_CPC_msg		},
 714	{	CHAFSR_TO,	CHAFSR_TO_msg		},
 715	{	CHAFSR_BERR,	CHAFSR_BERR_msg		},
 716	/* These two do not update the AFAR. */
 717	{	CHAFSR_IVC,	CHAFSR_IVC_msg		},
 718	{	CHAFSR_IVU,	CHAFSR_IVU_msg		},
 719	{	0,		NULL			},
 720};
 721static const char CHPAFSR_DTO_msg[] =
 722	"System bus unmapped error for prefetch/storequeue-read";
 723static const char CHPAFSR_DBERR_msg[] =
 724	"System bus error for prefetch/storequeue-read";
 725static const char CHPAFSR_THCE_msg[] =
 726	"Hardware corrected E-cache Tag ECC error";
 727static const char CHPAFSR_TSCE_msg[] =
 728	"SW handled correctable E-cache Tag ECC error";
 729static const char CHPAFSR_TUE_msg[] =
 730	"Uncorrectable E-cache Tag ECC error";
 731static const char CHPAFSR_DUE_msg[] =
 732	"System bus uncorrectable data ECC error due to prefetch/store-fill";
 733static struct afsr_error_table __cheetah_plus_error_table[] = {
 734	{	CHAFSR_PERR,	CHAFSR_PERR_msg		},
 735	{	CHAFSR_IERR,	CHAFSR_IERR_msg		},
 736	{	CHAFSR_ISAP,	CHAFSR_ISAP_msg		},
 737	{	CHAFSR_UCU,	CHAFSR_UCU_msg		},
 738	{	CHAFSR_UCC,	CHAFSR_UCC_msg		},
 739	{	CHAFSR_UE,	CHAFSR_UE_msg		},
 740	{	CHAFSR_EDU,	CHAFSR_EDU_msg		},
 741	{	CHAFSR_EMU,	CHAFSR_EMU_msg		},
 742	{	CHAFSR_WDU,	CHAFSR_WDU_msg		},
 743	{	CHAFSR_CPU,	CHAFSR_CPU_msg		},
 744	{	CHAFSR_CE,	CHAFSR_CE_msg		},
 745	{	CHAFSR_EDC,	CHAFSR_EDC_msg		},
 746	{	CHAFSR_EMC,	CHAFSR_EMC_msg		},
 747	{	CHAFSR_WDC,	CHAFSR_WDC_msg		},
 748	{	CHAFSR_CPC,	CHAFSR_CPC_msg		},
 749	{	CHAFSR_TO,	CHAFSR_TO_msg		},
 750	{	CHAFSR_BERR,	CHAFSR_BERR_msg		},
 751	{	CHPAFSR_DTO,	CHPAFSR_DTO_msg		},
 752	{	CHPAFSR_DBERR,	CHPAFSR_DBERR_msg	},
 753	{	CHPAFSR_THCE,	CHPAFSR_THCE_msg	},
 754	{	CHPAFSR_TSCE,	CHPAFSR_TSCE_msg	},
 755	{	CHPAFSR_TUE,	CHPAFSR_TUE_msg		},
 756	{	CHPAFSR_DUE,	CHPAFSR_DUE_msg		},
 757	/* These two do not update the AFAR. */
 758	{	CHAFSR_IVC,	CHAFSR_IVC_msg		},
 759	{	CHAFSR_IVU,	CHAFSR_IVU_msg		},
 760	{	0,		NULL			},
 761};
 762static const char JPAFSR_JETO_msg[] =
 763	"System interface protocol error, hw timeout caused";
 764static const char JPAFSR_SCE_msg[] =
 765	"Parity error on system snoop results";
 766static const char JPAFSR_JEIC_msg[] =
 767	"System interface protocol error, illegal command detected";
 768static const char JPAFSR_JEIT_msg[] =
 769	"System interface protocol error, illegal ADTYPE detected";
 770static const char JPAFSR_OM_msg[] =
 771	"Out of range memory error has occurred";
 772static const char JPAFSR_ETP_msg[] =
 773	"Parity error on L2 cache tag SRAM";
 774static const char JPAFSR_UMS_msg[] =
 775	"Error due to unsupported store";
 776static const char JPAFSR_RUE_msg[] =
 777	"Uncorrectable ECC error from remote cache/memory";
 778static const char JPAFSR_RCE_msg[] =
 779	"Correctable ECC error from remote cache/memory";
 780static const char JPAFSR_BP_msg[] =
 781	"JBUS parity error on returned read data";
 782static const char JPAFSR_WBP_msg[] =
 783	"JBUS parity error on data for writeback or block store";
 784static const char JPAFSR_FRC_msg[] =
 785	"Foreign read to DRAM incurring correctable ECC error";
 786static const char JPAFSR_FRU_msg[] =
 787	"Foreign read to DRAM incurring uncorrectable ECC error";
 788static struct afsr_error_table __jalapeno_error_table[] = {
 789	{	JPAFSR_JETO,	JPAFSR_JETO_msg		},
 790	{	JPAFSR_SCE,	JPAFSR_SCE_msg		},
 791	{	JPAFSR_JEIC,	JPAFSR_JEIC_msg		},
 792	{	JPAFSR_JEIT,	JPAFSR_JEIT_msg		},
 793	{	CHAFSR_PERR,	CHAFSR_PERR_msg		},
 794	{	CHAFSR_IERR,	CHAFSR_IERR_msg		},
 795	{	CHAFSR_ISAP,	CHAFSR_ISAP_msg		},
 796	{	CHAFSR_UCU,	CHAFSR_UCU_msg		},
 797	{	CHAFSR_UCC,	CHAFSR_UCC_msg		},
 798	{	CHAFSR_UE,	CHAFSR_UE_msg		},
 799	{	CHAFSR_EDU,	CHAFSR_EDU_msg		},
 800	{	JPAFSR_OM,	JPAFSR_OM_msg		},
 801	{	CHAFSR_WDU,	CHAFSR_WDU_msg		},
 802	{	CHAFSR_CPU,	CHAFSR_CPU_msg		},
 803	{	CHAFSR_CE,	CHAFSR_CE_msg		},
 804	{	CHAFSR_EDC,	CHAFSR_EDC_msg		},
 805	{	JPAFSR_ETP,	JPAFSR_ETP_msg		},
 806	{	CHAFSR_WDC,	CHAFSR_WDC_msg		},
 807	{	CHAFSR_CPC,	CHAFSR_CPC_msg		},
 808	{	CHAFSR_TO,	CHAFSR_TO_msg		},
 809	{	CHAFSR_BERR,	CHAFSR_BERR_msg		},
 810	{	JPAFSR_UMS,	JPAFSR_UMS_msg		},
 811	{	JPAFSR_RUE,	JPAFSR_RUE_msg		},
 812	{	JPAFSR_RCE,	JPAFSR_RCE_msg		},
 813	{	JPAFSR_BP,	JPAFSR_BP_msg		},
 814	{	JPAFSR_WBP,	JPAFSR_WBP_msg		},
 815	{	JPAFSR_FRC,	JPAFSR_FRC_msg		},
 816	{	JPAFSR_FRU,	JPAFSR_FRU_msg		},
 817	/* These two do not update the AFAR. */
 818	{	CHAFSR_IVU,	CHAFSR_IVU_msg		},
 819	{	0,		NULL			},
 820};
 821static struct afsr_error_table *cheetah_error_table;
 822static unsigned long cheetah_afsr_errors;
 823
 824struct cheetah_err_info *cheetah_error_log;
 825
 826static inline struct cheetah_err_info *cheetah_get_error_log(unsigned long afsr)
 827{
 828	struct cheetah_err_info *p;
 829	int cpu = smp_processor_id();
 830
 831	if (!cheetah_error_log)
 832		return NULL;
 833
 834	p = cheetah_error_log + (cpu * 2);
 835	if ((afsr & CHAFSR_TL1) != 0UL)
 836		p++;
 837
 838	return p;
 839}
 840
 841extern unsigned int tl0_icpe[], tl1_icpe[];
 842extern unsigned int tl0_dcpe[], tl1_dcpe[];
 843extern unsigned int tl0_fecc[], tl1_fecc[];
 844extern unsigned int tl0_cee[], tl1_cee[];
 845extern unsigned int tl0_iae[], tl1_iae[];
 846extern unsigned int tl0_dae[], tl1_dae[];
 847extern unsigned int cheetah_plus_icpe_trap_vector[], cheetah_plus_icpe_trap_vector_tl1[];
 848extern unsigned int cheetah_plus_dcpe_trap_vector[], cheetah_plus_dcpe_trap_vector_tl1[];
 849extern unsigned int cheetah_fecc_trap_vector[], cheetah_fecc_trap_vector_tl1[];
 850extern unsigned int cheetah_cee_trap_vector[], cheetah_cee_trap_vector_tl1[];
 851extern unsigned int cheetah_deferred_trap_vector[], cheetah_deferred_trap_vector_tl1[];
 852
 853void __init cheetah_ecache_flush_init(void)
 854{
 855	unsigned long largest_size, smallest_linesize, order, ver;
 856	int i, sz;
 857
 858	/* Scan all cpu device tree nodes, note two values:
 859	 * 1) largest E-cache size
 860	 * 2) smallest E-cache line size
 861	 */
 862	largest_size = 0UL;
 863	smallest_linesize = ~0UL;
 864
 865	for (i = 0; i < NR_CPUS; i++) {
 866		unsigned long val;
 867
 868		val = cpu_data(i).ecache_size;
 869		if (!val)
 870			continue;
 871
 872		if (val > largest_size)
 873			largest_size = val;
 874
 875		val = cpu_data(i).ecache_line_size;
 876		if (val < smallest_linesize)
 877			smallest_linesize = val;
 878
 879	}
 880
 881	if (largest_size == 0UL || smallest_linesize == ~0UL) {
 882		prom_printf("cheetah_ecache_flush_init: Cannot probe cpu E-cache "
 883			    "parameters.\n");
 884		prom_halt();
 885	}
 886
 887	ecache_flush_size = (2 * largest_size);
 888	ecache_flush_linesize = smallest_linesize;
 889
 890	ecache_flush_physbase = find_ecache_flush_span(ecache_flush_size);
 891
 892	if (ecache_flush_physbase == ~0UL) {
 893		prom_printf("cheetah_ecache_flush_init: Cannot find %ld byte "
 894			    "contiguous physical memory.\n",
 895			    ecache_flush_size);
 896		prom_halt();
 897	}
 898
 899	/* Now allocate error trap reporting scoreboard. */
 900	sz = NR_CPUS * (2 * sizeof(struct cheetah_err_info));
 901	for (order = 0; order < NR_PAGE_ORDERS; order++) {
 902		if ((PAGE_SIZE << order) >= sz)
 903			break;
 904	}
 905	cheetah_error_log = (struct cheetah_err_info *)
 906		__get_free_pages(GFP_KERNEL, order);
 907	if (!cheetah_error_log) {
 908		prom_printf("cheetah_ecache_flush_init: Failed to allocate "
 909			    "error logging scoreboard (%d bytes).\n", sz);
 910		prom_halt();
 911	}
 912	memset(cheetah_error_log, 0, PAGE_SIZE << order);
 913
 914	/* Mark all AFSRs as invalid so that the trap handler will
 915	 * log new new information there.
 916	 */
 917	for (i = 0; i < 2 * NR_CPUS; i++)
 918		cheetah_error_log[i].afsr = CHAFSR_INVALID;
 919
 920	__asm__ ("rdpr %%ver, %0" : "=r" (ver));
 921	if ((ver >> 32) == __JALAPENO_ID ||
 922	    (ver >> 32) == __SERRANO_ID) {
 923		cheetah_error_table = &__jalapeno_error_table[0];
 924		cheetah_afsr_errors = JPAFSR_ERRORS;
 925	} else if ((ver >> 32) == 0x003e0015) {
 926		cheetah_error_table = &__cheetah_plus_error_table[0];
 927		cheetah_afsr_errors = CHPAFSR_ERRORS;
 928	} else {
 929		cheetah_error_table = &__cheetah_error_table[0];
 930		cheetah_afsr_errors = CHAFSR_ERRORS;
 931	}
 932
 933	/* Now patch trap tables. */
 934	memcpy(tl0_fecc, cheetah_fecc_trap_vector, (8 * 4));
 935	memcpy(tl1_fecc, cheetah_fecc_trap_vector_tl1, (8 * 4));
 936	memcpy(tl0_cee, cheetah_cee_trap_vector, (8 * 4));
 937	memcpy(tl1_cee, cheetah_cee_trap_vector_tl1, (8 * 4));
 938	memcpy(tl0_iae, cheetah_deferred_trap_vector, (8 * 4));
 939	memcpy(tl1_iae, cheetah_deferred_trap_vector_tl1, (8 * 4));
 940	memcpy(tl0_dae, cheetah_deferred_trap_vector, (8 * 4));
 941	memcpy(tl1_dae, cheetah_deferred_trap_vector_tl1, (8 * 4));
 942	if (tlb_type == cheetah_plus) {
 943		memcpy(tl0_dcpe, cheetah_plus_dcpe_trap_vector, (8 * 4));
 944		memcpy(tl1_dcpe, cheetah_plus_dcpe_trap_vector_tl1, (8 * 4));
 945		memcpy(tl0_icpe, cheetah_plus_icpe_trap_vector, (8 * 4));
 946		memcpy(tl1_icpe, cheetah_plus_icpe_trap_vector_tl1, (8 * 4));
 947	}
 948	flushi(PAGE_OFFSET);
 949}
 950
 951static void cheetah_flush_ecache(void)
 952{
 953	unsigned long flush_base = ecache_flush_physbase;
 954	unsigned long flush_linesize = ecache_flush_linesize;
 955	unsigned long flush_size = ecache_flush_size;
 956
 957	__asm__ __volatile__("1: subcc	%0, %4, %0\n\t"
 958			     "   bne,pt	%%xcc, 1b\n\t"
 959			     "    ldxa	[%2 + %0] %3, %%g0\n\t"
 960			     : "=&r" (flush_size)
 961			     : "0" (flush_size), "r" (flush_base),
 962			       "i" (ASI_PHYS_USE_EC), "r" (flush_linesize));
 963}
 964
 965static void cheetah_flush_ecache_line(unsigned long physaddr)
 966{
 967	unsigned long alias;
 968
 969	physaddr &= ~(8UL - 1UL);
 970	physaddr = (ecache_flush_physbase +
 971		    (physaddr & ((ecache_flush_size>>1UL) - 1UL)));
 972	alias = physaddr + (ecache_flush_size >> 1UL);
 973	__asm__ __volatile__("ldxa [%0] %2, %%g0\n\t"
 974			     "ldxa [%1] %2, %%g0\n\t"
 975			     "membar #Sync"
 976			     : /* no outputs */
 977			     : "r" (physaddr), "r" (alias),
 978			       "i" (ASI_PHYS_USE_EC));
 979}
 980
 981/* Unfortunately, the diagnostic access to the I-cache tags we need to
 982 * use to clear the thing interferes with I-cache coherency transactions.
 983 *
 984 * So we must only flush the I-cache when it is disabled.
 985 */
 986static void __cheetah_flush_icache(void)
 987{
 988	unsigned int icache_size, icache_line_size;
 989	unsigned long addr;
 990
 991	icache_size = local_cpu_data().icache_size;
 992	icache_line_size = local_cpu_data().icache_line_size;
 993
 994	/* Clear the valid bits in all the tags. */
 995	for (addr = 0; addr < icache_size; addr += icache_line_size) {
 996		__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
 997				     "membar #Sync"
 998				     : /* no outputs */
 999				     : "r" (addr | (2 << 3)),
1000				       "i" (ASI_IC_TAG));
1001	}
1002}
1003
1004static void cheetah_flush_icache(void)
1005{
1006	unsigned long dcu_save;
1007
1008	/* Save current DCU, disable I-cache. */
1009	__asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1010			     "or %0, %2, %%g1\n\t"
1011			     "stxa %%g1, [%%g0] %1\n\t"
1012			     "membar #Sync"
1013			     : "=r" (dcu_save)
1014			     : "i" (ASI_DCU_CONTROL_REG), "i" (DCU_IC)
1015			     : "g1");
1016
1017	__cheetah_flush_icache();
1018
1019	/* Restore DCU register */
1020	__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
1021			     "membar #Sync"
1022			     : /* no outputs */
1023			     : "r" (dcu_save), "i" (ASI_DCU_CONTROL_REG));
1024}
1025
1026static void cheetah_flush_dcache(void)
1027{
1028	unsigned int dcache_size, dcache_line_size;
1029	unsigned long addr;
1030
1031	dcache_size = local_cpu_data().dcache_size;
1032	dcache_line_size = local_cpu_data().dcache_line_size;
1033
1034	for (addr = 0; addr < dcache_size; addr += dcache_line_size) {
1035		__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
1036				     "membar #Sync"
1037				     : /* no outputs */
1038				     : "r" (addr), "i" (ASI_DCACHE_TAG));
1039	}
1040}
1041
1042/* In order to make the even parity correct we must do two things.
1043 * First, we clear DC_data_parity and set DC_utag to an appropriate value.
1044 * Next, we clear out all 32-bytes of data for that line.  Data of
1045 * all-zero + tag parity value of zero == correct parity.
1046 */
1047static void cheetah_plus_zap_dcache_parity(void)
1048{
1049	unsigned int dcache_size, dcache_line_size;
1050	unsigned long addr;
1051
1052	dcache_size = local_cpu_data().dcache_size;
1053	dcache_line_size = local_cpu_data().dcache_line_size;
1054
1055	for (addr = 0; addr < dcache_size; addr += dcache_line_size) {
1056		unsigned long tag = (addr >> 14);
1057		unsigned long line;
1058
1059		__asm__ __volatile__("membar	#Sync\n\t"
1060				     "stxa	%0, [%1] %2\n\t"
1061				     "membar	#Sync"
1062				     : /* no outputs */
1063				     : "r" (tag), "r" (addr),
1064				       "i" (ASI_DCACHE_UTAG));
1065		for (line = addr; line < addr + dcache_line_size; line += 8)
1066			__asm__ __volatile__("membar	#Sync\n\t"
1067					     "stxa	%%g0, [%0] %1\n\t"
1068					     "membar	#Sync"
1069					     : /* no outputs */
1070					     : "r" (line),
1071					       "i" (ASI_DCACHE_DATA));
1072	}
1073}
1074
1075/* Conversion tables used to frob Cheetah AFSR syndrome values into
1076 * something palatable to the memory controller driver get_unumber
1077 * routine.
1078 */
1079#define MT0	137
1080#define MT1	138
1081#define MT2	139
1082#define NONE	254
1083#define MTC0	140
1084#define MTC1	141
1085#define MTC2	142
1086#define MTC3	143
1087#define C0	128
1088#define C1	129
1089#define C2	130
1090#define C3	131
1091#define C4	132
1092#define C5	133
1093#define C6	134
1094#define C7	135
1095#define C8	136
1096#define M2	144
1097#define M3	145
1098#define M4	146
1099#define M	147
1100static unsigned char cheetah_ecc_syntab[] = {
1101/*00*/NONE, C0, C1, M2, C2, M2, M3, 47, C3, M2, M2, 53, M2, 41, 29, M,
1102/*01*/C4, M, M, 50, M2, 38, 25, M2, M2, 33, 24, M2, 11, M, M2, 16,
1103/*02*/C5, M, M, 46, M2, 37, 19, M2, M, 31, 32, M, 7, M2, M2, 10,
1104/*03*/M2, 40, 13, M2, 59, M, M2, 66, M, M2, M2, 0, M2, 67, 71, M,
1105/*04*/C6, M, M, 43, M, 36, 18, M, M2, 49, 15, M, 63, M2, M2, 6,
1106/*05*/M2, 44, 28, M2, M, M2, M2, 52, 68, M2, M2, 62, M2, M3, M3, M4,
1107/*06*/M2, 26, 106, M2, 64, M, M2, 2, 120, M, M2, M3, M, M3, M3, M4,
1108/*07*/116, M2, M2, M3, M2, M3, M, M4, M2, 58, 54, M2, M, M4, M4, M3,
1109/*08*/C7, M2, M, 42, M, 35, 17, M2, M, 45, 14, M2, 21, M2, M2, 5,
1110/*09*/M, 27, M, M, 99, M, M, 3, 114, M2, M2, 20, M2, M3, M3, M,
1111/*0a*/M2, 23, 113, M2, 112, M2, M, 51, 95, M, M2, M3, M2, M3, M3, M2,
1112/*0b*/103, M, M2, M3, M2, M3, M3, M4, M2, 48, M, M, 73, M2, M, M3,
1113/*0c*/M2, 22, 110, M2, 109, M2, M, 9, 108, M2, M, M3, M2, M3, M3, M,
1114/*0d*/102, M2, M, M, M2, M3, M3, M, M2, M3, M3, M2, M, M4, M, M3,
1115/*0e*/98, M, M2, M3, M2, M, M3, M4, M2, M3, M3, M4, M3, M, M, M,
1116/*0f*/M2, M3, M3, M, M3, M, M, M, 56, M4, M, M3, M4, M, M, M,
1117/*10*/C8, M, M2, 39, M, 34, 105, M2, M, 30, 104, M, 101, M, M, 4,
1118/*11*/M, M, 100, M, 83, M, M2, 12, 87, M, M, 57, M2, M, M3, M,
1119/*12*/M2, 97, 82, M2, 78, M2, M2, 1, 96, M, M, M, M, M, M3, M2,
1120/*13*/94, M, M2, M3, M2, M, M3, M, M2, M, 79, M, 69, M, M4, M,
1121/*14*/M2, 93, 92, M, 91, M, M2, 8, 90, M2, M2, M, M, M, M, M4,
1122/*15*/89, M, M, M3, M2, M3, M3, M, M, M, M3, M2, M3, M2, M, M3,
1123/*16*/86, M, M2, M3, M2, M, M3, M, M2, M, M3, M, M3, M, M, M3,
1124/*17*/M, M, M3, M2, M3, M2, M4, M, 60, M, M2, M3, M4, M, M, M2,
1125/*18*/M2, 88, 85, M2, 84, M, M2, 55, 81, M2, M2, M3, M2, M3, M3, M4,
1126/*19*/77, M, M, M, M2, M3, M, M, M2, M3, M3, M4, M3, M2, M, M,
1127/*1a*/74, M, M2, M3, M, M, M3, M, M, M, M3, M, M3, M, M4, M3,
1128/*1b*/M2, 70, 107, M4, 65, M2, M2, M, 127, M, M, M, M2, M3, M3, M,
1129/*1c*/80, M2, M2, 72, M, 119, 118, M, M2, 126, 76, M, 125, M, M4, M3,
1130/*1d*/M2, 115, 124, M, 75, M, M, M3, 61, M, M4, M, M4, M, M, M,
1131/*1e*/M, 123, 122, M4, 121, M4, M, M3, 117, M2, M2, M3, M4, M3, M, M,
1132/*1f*/111, M, M, M, M4, M3, M3, M, M, M, M3, M, M3, M2, M, M
1133};
1134static unsigned char cheetah_mtag_syntab[] = {
1135       NONE, MTC0,
1136       MTC1, NONE,
1137       MTC2, NONE,
1138       NONE, MT0,
1139       MTC3, NONE,
1140       NONE, MT1,
1141       NONE, MT2,
1142       NONE, NONE
1143};
1144
1145/* Return the highest priority error conditon mentioned. */
1146static inline unsigned long cheetah_get_hipri(unsigned long afsr)
1147{
1148	unsigned long tmp = 0;
1149	int i;
1150
1151	for (i = 0; cheetah_error_table[i].mask; i++) {
1152		if ((tmp = (afsr & cheetah_error_table[i].mask)) != 0UL)
1153			return tmp;
1154	}
1155	return tmp;
1156}
1157
1158static const char *cheetah_get_string(unsigned long bit)
1159{
1160	int i;
1161
1162	for (i = 0; cheetah_error_table[i].mask; i++) {
1163		if ((bit & cheetah_error_table[i].mask) != 0UL)
1164			return cheetah_error_table[i].name;
1165	}
1166	return "???";
1167}
1168
1169static void cheetah_log_errors(struct pt_regs *regs, struct cheetah_err_info *info,
1170			       unsigned long afsr, unsigned long afar, int recoverable)
1171{
1172	unsigned long hipri;
1173	char unum[256];
1174
1175	printk("%s" "ERROR(%d): Cheetah error trap taken afsr[%016lx] afar[%016lx] TL1(%d)\n",
1176	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1177	       afsr, afar,
1178	       (afsr & CHAFSR_TL1) ? 1 : 0);
1179	printk("%s" "ERROR(%d): TPC[%lx] TNPC[%lx] O7[%lx] TSTATE[%lx]\n",
1180	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1181	       regs->tpc, regs->tnpc, regs->u_regs[UREG_I7], regs->tstate);
1182	printk("%s" "ERROR(%d): ",
1183	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id());
1184	printk("TPC<%pS>\n", (void *) regs->tpc);
1185	printk("%s" "ERROR(%d): M_SYND(%lx),  E_SYND(%lx)%s%s\n",
1186	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1187	       (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT,
1188	       (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT,
1189	       (afsr & CHAFSR_ME) ? ", Multiple Errors" : "",
1190	       (afsr & CHAFSR_PRIV) ? ", Privileged" : "");
1191	hipri = cheetah_get_hipri(afsr);
1192	printk("%s" "ERROR(%d): Highest priority error (%016lx) \"%s\"\n",
1193	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1194	       hipri, cheetah_get_string(hipri));
1195
1196	/* Try to get unumber if relevant. */
1197#define ESYND_ERRORS	(CHAFSR_IVC | CHAFSR_IVU | \
1198			 CHAFSR_CPC | CHAFSR_CPU | \
1199			 CHAFSR_UE  | CHAFSR_CE  | \
1200			 CHAFSR_EDC | CHAFSR_EDU  | \
1201			 CHAFSR_UCC | CHAFSR_UCU  | \
1202			 CHAFSR_WDU | CHAFSR_WDC)
1203#define MSYND_ERRORS	(CHAFSR_EMC | CHAFSR_EMU)
1204	if (afsr & ESYND_ERRORS) {
1205		int syndrome;
1206		int ret;
1207
1208		syndrome = (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT;
1209		syndrome = cheetah_ecc_syntab[syndrome];
1210		ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum));
1211		if (ret != -1)
1212			printk("%s" "ERROR(%d): AFAR E-syndrome [%s]\n",
1213			       (recoverable ? KERN_WARNING : KERN_CRIT),
1214			       smp_processor_id(), unum);
1215	} else if (afsr & MSYND_ERRORS) {
1216		int syndrome;
1217		int ret;
1218
1219		syndrome = (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT;
1220		syndrome = cheetah_mtag_syntab[syndrome];
1221		ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum));
1222		if (ret != -1)
1223			printk("%s" "ERROR(%d): AFAR M-syndrome [%s]\n",
1224			       (recoverable ? KERN_WARNING : KERN_CRIT),
1225			       smp_processor_id(), unum);
1226	}
1227
1228	/* Now dump the cache snapshots. */
1229	printk("%s" "ERROR(%d): D-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx]\n",
1230	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1231	       (int) info->dcache_index,
1232	       info->dcache_tag,
1233	       info->dcache_utag,
1234	       info->dcache_stag);
1235	printk("%s" "ERROR(%d): D-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n",
1236	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1237	       info->dcache_data[0],
1238	       info->dcache_data[1],
1239	       info->dcache_data[2],
1240	       info->dcache_data[3]);
1241	printk("%s" "ERROR(%d): I-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx] "
1242	       "u[%016llx] l[%016llx]\n",
1243	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1244	       (int) info->icache_index,
1245	       info->icache_tag,
1246	       info->icache_utag,
1247	       info->icache_stag,
1248	       info->icache_upper,
1249	       info->icache_lower);
1250	printk("%s" "ERROR(%d): I-cache INSN0[%016llx] INSN1[%016llx] INSN2[%016llx] INSN3[%016llx]\n",
1251	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1252	       info->icache_data[0],
1253	       info->icache_data[1],
1254	       info->icache_data[2],
1255	       info->icache_data[3]);
1256	printk("%s" "ERROR(%d): I-cache INSN4[%016llx] INSN5[%016llx] INSN6[%016llx] INSN7[%016llx]\n",
1257	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1258	       info->icache_data[4],
1259	       info->icache_data[5],
1260	       info->icache_data[6],
1261	       info->icache_data[7]);
1262	printk("%s" "ERROR(%d): E-cache idx[%x] tag[%016llx]\n",
1263	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1264	       (int) info->ecache_index, info->ecache_tag);
1265	printk("%s" "ERROR(%d): E-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n",
1266	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1267	       info->ecache_data[0],
1268	       info->ecache_data[1],
1269	       info->ecache_data[2],
1270	       info->ecache_data[3]);
1271
1272	afsr = (afsr & ~hipri) & cheetah_afsr_errors;
1273	while (afsr != 0UL) {
1274		unsigned long bit = cheetah_get_hipri(afsr);
1275
1276		printk("%s" "ERROR: Multiple-error (%016lx) \"%s\"\n",
1277		       (recoverable ? KERN_WARNING : KERN_CRIT),
1278		       bit, cheetah_get_string(bit));
1279
1280		afsr &= ~bit;
1281	}
1282
1283	if (!recoverable)
1284		printk(KERN_CRIT "ERROR: This condition is not recoverable.\n");
1285}
1286
1287static int cheetah_recheck_errors(struct cheetah_err_info *logp)
1288{
1289	unsigned long afsr, afar;
1290	int ret = 0;
1291
1292	__asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1293			     : "=r" (afsr)
1294			     : "i" (ASI_AFSR));
1295	if ((afsr & cheetah_afsr_errors) != 0) {
1296		if (logp != NULL) {
1297			__asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1298					     : "=r" (afar)
1299					     : "i" (ASI_AFAR));
1300			logp->afsr = afsr;
1301			logp->afar = afar;
1302		}
1303		ret = 1;
1304	}
1305	__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
1306			     "membar #Sync\n\t"
1307			     : : "r" (afsr), "i" (ASI_AFSR));
1308
1309	return ret;
1310}
1311
1312void cheetah_fecc_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1313{
1314	struct cheetah_err_info local_snapshot, *p;
1315	int recoverable;
1316
1317	/* Flush E-cache */
1318	cheetah_flush_ecache();
1319
1320	p = cheetah_get_error_log(afsr);
1321	if (!p) {
1322		prom_printf("ERROR: Early Fast-ECC error afsr[%016lx] afar[%016lx]\n",
1323			    afsr, afar);
1324		prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1325			    smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1326		prom_halt();
1327	}
1328
1329	/* Grab snapshot of logged error. */
1330	memcpy(&local_snapshot, p, sizeof(local_snapshot));
1331
1332	/* If the current trap snapshot does not match what the
1333	 * trap handler passed along into our args, big trouble.
1334	 * In such a case, mark the local copy as invalid.
1335	 *
1336	 * Else, it matches and we mark the afsr in the non-local
1337	 * copy as invalid so we may log new error traps there.
1338	 */
1339	if (p->afsr != afsr || p->afar != afar)
1340		local_snapshot.afsr = CHAFSR_INVALID;
1341	else
1342		p->afsr = CHAFSR_INVALID;
1343
1344	cheetah_flush_icache();
1345	cheetah_flush_dcache();
1346
1347	/* Re-enable I-cache/D-cache */
1348	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1349			     "or %%g1, %1, %%g1\n\t"
1350			     "stxa %%g1, [%%g0] %0\n\t"
1351			     "membar #Sync"
1352			     : /* no outputs */
1353			     : "i" (ASI_DCU_CONTROL_REG),
1354			       "i" (DCU_DC | DCU_IC)
1355			     : "g1");
1356
1357	/* Re-enable error reporting */
1358	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1359			     "or %%g1, %1, %%g1\n\t"
1360			     "stxa %%g1, [%%g0] %0\n\t"
1361			     "membar #Sync"
1362			     : /* no outputs */
1363			     : "i" (ASI_ESTATE_ERROR_EN),
1364			       "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1365			     : "g1");
1366
1367	/* Decide if we can continue after handling this trap and
1368	 * logging the error.
1369	 */
1370	recoverable = 1;
1371	if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1372		recoverable = 0;
1373
1374	/* Re-check AFSR/AFAR.  What we are looking for here is whether a new
1375	 * error was logged while we had error reporting traps disabled.
1376	 */
1377	if (cheetah_recheck_errors(&local_snapshot)) {
1378		unsigned long new_afsr = local_snapshot.afsr;
1379
1380		/* If we got a new asynchronous error, die... */
1381		if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU |
1382				CHAFSR_WDU | CHAFSR_CPU |
1383				CHAFSR_IVU | CHAFSR_UE |
1384				CHAFSR_BERR | CHAFSR_TO))
1385			recoverable = 0;
1386	}
1387
1388	/* Log errors. */
1389	cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1390
1391	if (!recoverable)
1392		panic("Irrecoverable Fast-ECC error trap.\n");
1393
1394	/* Flush E-cache to kick the error trap handlers out. */
1395	cheetah_flush_ecache();
1396}
1397
1398/* Try to fix a correctable error by pushing the line out from
1399 * the E-cache.  Recheck error reporting registers to see if the
1400 * problem is intermittent.
1401 */
1402static int cheetah_fix_ce(unsigned long physaddr)
1403{
1404	unsigned long orig_estate;
1405	unsigned long alias1, alias2;
1406	int ret;
1407
1408	/* Make sure correctable error traps are disabled. */
1409	__asm__ __volatile__("ldxa	[%%g0] %2, %0\n\t"
1410			     "andn	%0, %1, %%g1\n\t"
1411			     "stxa	%%g1, [%%g0] %2\n\t"
1412			     "membar	#Sync"
1413			     : "=&r" (orig_estate)
1414			     : "i" (ESTATE_ERROR_CEEN),
1415			       "i" (ASI_ESTATE_ERROR_EN)
1416			     : "g1");
1417
1418	/* We calculate alias addresses that will force the
1419	 * cache line in question out of the E-cache.  Then
1420	 * we bring it back in with an atomic instruction so
1421	 * that we get it in some modified/exclusive state,
1422	 * then we displace it again to try and get proper ECC
1423	 * pushed back into the system.
1424	 */
1425	physaddr &= ~(8UL - 1UL);
1426	alias1 = (ecache_flush_physbase +
1427		  (physaddr & ((ecache_flush_size >> 1) - 1)));
1428	alias2 = alias1 + (ecache_flush_size >> 1);
1429	__asm__ __volatile__("ldxa	[%0] %3, %%g0\n\t"
1430			     "ldxa	[%1] %3, %%g0\n\t"
1431			     "casxa	[%2] %3, %%g0, %%g0\n\t"
1432			     "ldxa	[%0] %3, %%g0\n\t"
1433			     "ldxa	[%1] %3, %%g0\n\t"
1434			     "membar	#Sync"
1435			     : /* no outputs */
1436			     : "r" (alias1), "r" (alias2),
1437			       "r" (physaddr), "i" (ASI_PHYS_USE_EC));
1438
1439	/* Did that trigger another error? */
1440	if (cheetah_recheck_errors(NULL)) {
1441		/* Try one more time. */
1442		__asm__ __volatile__("ldxa [%0] %1, %%g0\n\t"
1443				     "membar #Sync"
1444				     : : "r" (physaddr), "i" (ASI_PHYS_USE_EC));
1445		if (cheetah_recheck_errors(NULL))
1446			ret = 2;
1447		else
1448			ret = 1;
1449	} else {
1450		/* No new error, intermittent problem. */
1451		ret = 0;
1452	}
1453
1454	/* Restore error enables. */
1455	__asm__ __volatile__("stxa	%0, [%%g0] %1\n\t"
1456			     "membar	#Sync"
1457			     : : "r" (orig_estate), "i" (ASI_ESTATE_ERROR_EN));
1458
1459	return ret;
1460}
1461
1462/* Return non-zero if PADDR is a valid physical memory address. */
1463static int cheetah_check_main_memory(unsigned long paddr)
1464{
1465	unsigned long vaddr = PAGE_OFFSET + paddr;
1466
1467	if (vaddr > (unsigned long) high_memory)
1468		return 0;
1469
1470	return kern_addr_valid(vaddr);
1471}
1472
1473void cheetah_cee_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1474{
1475	struct cheetah_err_info local_snapshot, *p;
1476	int recoverable, is_memory;
1477
1478	p = cheetah_get_error_log(afsr);
1479	if (!p) {
1480		prom_printf("ERROR: Early CEE error afsr[%016lx] afar[%016lx]\n",
1481			    afsr, afar);
1482		prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1483			    smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1484		prom_halt();
1485	}
1486
1487	/* Grab snapshot of logged error. */
1488	memcpy(&local_snapshot, p, sizeof(local_snapshot));
1489
1490	/* If the current trap snapshot does not match what the
1491	 * trap handler passed along into our args, big trouble.
1492	 * In such a case, mark the local copy as invalid.
1493	 *
1494	 * Else, it matches and we mark the afsr in the non-local
1495	 * copy as invalid so we may log new error traps there.
1496	 */
1497	if (p->afsr != afsr || p->afar != afar)
1498		local_snapshot.afsr = CHAFSR_INVALID;
1499	else
1500		p->afsr = CHAFSR_INVALID;
1501
1502	is_memory = cheetah_check_main_memory(afar);
1503
1504	if (is_memory && (afsr & CHAFSR_CE) != 0UL) {
1505		/* XXX Might want to log the results of this operation
1506		 * XXX somewhere... -DaveM
1507		 */
1508		cheetah_fix_ce(afar);
1509	}
1510
1511	{
1512		int flush_all, flush_line;
1513
1514		flush_all = flush_line = 0;
1515		if ((afsr & CHAFSR_EDC) != 0UL) {
1516			if ((afsr & cheetah_afsr_errors) == CHAFSR_EDC)
1517				flush_line = 1;
1518			else
1519				flush_all = 1;
1520		} else if ((afsr & CHAFSR_CPC) != 0UL) {
1521			if ((afsr & cheetah_afsr_errors) == CHAFSR_CPC)
1522				flush_line = 1;
1523			else
1524				flush_all = 1;
1525		}
1526
1527		/* Trap handler only disabled I-cache, flush it. */
1528		cheetah_flush_icache();
1529
1530		/* Re-enable I-cache */
1531		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1532				     "or %%g1, %1, %%g1\n\t"
1533				     "stxa %%g1, [%%g0] %0\n\t"
1534				     "membar #Sync"
1535				     : /* no outputs */
1536				     : "i" (ASI_DCU_CONTROL_REG),
1537				     "i" (DCU_IC)
1538				     : "g1");
1539
1540		if (flush_all)
1541			cheetah_flush_ecache();
1542		else if (flush_line)
1543			cheetah_flush_ecache_line(afar);
1544	}
1545
1546	/* Re-enable error reporting */
1547	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1548			     "or %%g1, %1, %%g1\n\t"
1549			     "stxa %%g1, [%%g0] %0\n\t"
1550			     "membar #Sync"
1551			     : /* no outputs */
1552			     : "i" (ASI_ESTATE_ERROR_EN),
1553			       "i" (ESTATE_ERROR_CEEN)
1554			     : "g1");
1555
1556	/* Decide if we can continue after handling this trap and
1557	 * logging the error.
1558	 */
1559	recoverable = 1;
1560	if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1561		recoverable = 0;
1562
1563	/* Re-check AFSR/AFAR */
1564	(void) cheetah_recheck_errors(&local_snapshot);
1565
1566	/* Log errors. */
1567	cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1568
1569	if (!recoverable)
1570		panic("Irrecoverable Correctable-ECC error trap.\n");
1571}
1572
1573void cheetah_deferred_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1574{
1575	struct cheetah_err_info local_snapshot, *p;
1576	int recoverable, is_memory;
1577
1578#ifdef CONFIG_PCI
1579	/* Check for the special PCI poke sequence. */
1580	if (pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) {
1581		cheetah_flush_icache();
1582		cheetah_flush_dcache();
1583
1584		/* Re-enable I-cache/D-cache */
1585		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1586				     "or %%g1, %1, %%g1\n\t"
1587				     "stxa %%g1, [%%g0] %0\n\t"
1588				     "membar #Sync"
1589				     : /* no outputs */
1590				     : "i" (ASI_DCU_CONTROL_REG),
1591				       "i" (DCU_DC | DCU_IC)
1592				     : "g1");
1593
1594		/* Re-enable error reporting */
1595		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1596				     "or %%g1, %1, %%g1\n\t"
1597				     "stxa %%g1, [%%g0] %0\n\t"
1598				     "membar #Sync"
1599				     : /* no outputs */
1600				     : "i" (ASI_ESTATE_ERROR_EN),
1601				       "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1602				     : "g1");
1603
1604		(void) cheetah_recheck_errors(NULL);
1605
1606		pci_poke_faulted = 1;
1607		regs->tpc += 4;
1608		regs->tnpc = regs->tpc + 4;
1609		return;
1610	}
1611#endif
1612
1613	p = cheetah_get_error_log(afsr);
1614	if (!p) {
1615		prom_printf("ERROR: Early deferred error afsr[%016lx] afar[%016lx]\n",
1616			    afsr, afar);
1617		prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1618			    smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1619		prom_halt();
1620	}
1621
1622	/* Grab snapshot of logged error. */
1623	memcpy(&local_snapshot, p, sizeof(local_snapshot));
1624
1625	/* If the current trap snapshot does not match what the
1626	 * trap handler passed along into our args, big trouble.
1627	 * In such a case, mark the local copy as invalid.
1628	 *
1629	 * Else, it matches and we mark the afsr in the non-local
1630	 * copy as invalid so we may log new error traps there.
1631	 */
1632	if (p->afsr != afsr || p->afar != afar)
1633		local_snapshot.afsr = CHAFSR_INVALID;
1634	else
1635		p->afsr = CHAFSR_INVALID;
1636
1637	is_memory = cheetah_check_main_memory(afar);
1638
1639	{
1640		int flush_all, flush_line;
1641
1642		flush_all = flush_line = 0;
1643		if ((afsr & CHAFSR_EDU) != 0UL) {
1644			if ((afsr & cheetah_afsr_errors) == CHAFSR_EDU)
1645				flush_line = 1;
1646			else
1647				flush_all = 1;
1648		} else if ((afsr & CHAFSR_BERR) != 0UL) {
1649			if ((afsr & cheetah_afsr_errors) == CHAFSR_BERR)
1650				flush_line = 1;
1651			else
1652				flush_all = 1;
1653		}
1654
1655		cheetah_flush_icache();
1656		cheetah_flush_dcache();
1657
1658		/* Re-enable I/D caches */
1659		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1660				     "or %%g1, %1, %%g1\n\t"
1661				     "stxa %%g1, [%%g0] %0\n\t"
1662				     "membar #Sync"
1663				     : /* no outputs */
1664				     : "i" (ASI_DCU_CONTROL_REG),
1665				     "i" (DCU_IC | DCU_DC)
1666				     : "g1");
1667
1668		if (flush_all)
1669			cheetah_flush_ecache();
1670		else if (flush_line)
1671			cheetah_flush_ecache_line(afar);
1672	}
1673
1674	/* Re-enable error reporting */
1675	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1676			     "or %%g1, %1, %%g1\n\t"
1677			     "stxa %%g1, [%%g0] %0\n\t"
1678			     "membar #Sync"
1679			     : /* no outputs */
1680			     : "i" (ASI_ESTATE_ERROR_EN),
1681			     "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1682			     : "g1");
1683
1684	/* Decide if we can continue after handling this trap and
1685	 * logging the error.
1686	 */
1687	recoverable = 1;
1688	if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1689		recoverable = 0;
1690
1691	/* Re-check AFSR/AFAR.  What we are looking for here is whether a new
1692	 * error was logged while we had error reporting traps disabled.
1693	 */
1694	if (cheetah_recheck_errors(&local_snapshot)) {
1695		unsigned long new_afsr = local_snapshot.afsr;
1696
1697		/* If we got a new asynchronous error, die... */
1698		if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU |
1699				CHAFSR_WDU | CHAFSR_CPU |
1700				CHAFSR_IVU | CHAFSR_UE |
1701				CHAFSR_BERR | CHAFSR_TO))
1702			recoverable = 0;
1703	}
1704
1705	/* Log errors. */
1706	cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1707
1708	/* "Recoverable" here means we try to yank the page from ever
1709	 * being newly used again.  This depends upon a few things:
1710	 * 1) Must be main memory, and AFAR must be valid.
1711	 * 2) If we trapped from user, OK.
1712	 * 3) Else, if we trapped from kernel we must find exception
1713	 *    table entry (ie. we have to have been accessing user
1714	 *    space).
1715	 *
1716	 * If AFAR is not in main memory, or we trapped from kernel
1717	 * and cannot find an exception table entry, it is unacceptable
1718	 * to try and continue.
1719	 */
1720	if (recoverable && is_memory) {
1721		if ((regs->tstate & TSTATE_PRIV) == 0UL) {
1722			/* OK, usermode access. */
1723			recoverable = 1;
1724		} else {
1725			const struct exception_table_entry *entry;
1726
1727			entry = search_exception_tables(regs->tpc);
1728			if (entry) {
1729				/* OK, kernel access to userspace. */
1730				recoverable = 1;
1731
1732			} else {
1733				/* BAD, privileged state is corrupted. */
1734				recoverable = 0;
1735			}
1736
1737			if (recoverable) {
1738				if (pfn_valid(afar >> PAGE_SHIFT))
1739					get_page(pfn_to_page(afar >> PAGE_SHIFT));
1740				else
1741					recoverable = 0;
1742
1743				/* Only perform fixup if we still have a
1744				 * recoverable condition.
1745				 */
1746				if (recoverable) {
1747					regs->tpc = entry->fixup;
1748					regs->tnpc = regs->tpc + 4;
1749				}
1750			}
1751		}
1752	} else {
1753		recoverable = 0;
1754	}
1755
1756	if (!recoverable)
1757		panic("Irrecoverable deferred error trap.\n");
1758}
1759
1760/* Handle a D/I cache parity error trap.  TYPE is encoded as:
1761 *
1762 * Bit0:	0=dcache,1=icache
1763 * Bit1:	0=recoverable,1=unrecoverable
1764 *
1765 * The hardware has disabled both the I-cache and D-cache in
1766 * the %dcr register.  
1767 */
1768void cheetah_plus_parity_error(int type, struct pt_regs *regs)
1769{
1770	if (type & 0x1)
1771		__cheetah_flush_icache();
1772	else
1773		cheetah_plus_zap_dcache_parity();
1774	cheetah_flush_dcache();
1775
1776	/* Re-enable I-cache/D-cache */
1777	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1778			     "or %%g1, %1, %%g1\n\t"
1779			     "stxa %%g1, [%%g0] %0\n\t"
1780			     "membar #Sync"
1781			     : /* no outputs */
1782			     : "i" (ASI_DCU_CONTROL_REG),
1783			       "i" (DCU_DC | DCU_IC)
1784			     : "g1");
1785
1786	if (type & 0x2) {
1787		printk(KERN_EMERG "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n",
1788		       smp_processor_id(),
1789		       (type & 0x1) ? 'I' : 'D',
1790		       regs->tpc);
1791		printk(KERN_EMERG "TPC<%pS>\n", (void *) regs->tpc);
1792		panic("Irrecoverable Cheetah+ parity error.");
1793	}
1794
1795	printk(KERN_WARNING "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n",
1796	       smp_processor_id(),
1797	       (type & 0x1) ? 'I' : 'D',
1798	       regs->tpc);
1799	printk(KERN_WARNING "TPC<%pS>\n", (void *) regs->tpc);
1800}
1801
1802struct sun4v_error_entry {
1803	/* Unique error handle */
1804/*0x00*/u64		err_handle;
1805
1806	/* %stick value at the time of the error */
1807/*0x08*/u64		err_stick;
1808
1809/*0x10*/u8		reserved_1[3];
1810
1811	/* Error type */
1812/*0x13*/u8		err_type;
1813#define SUN4V_ERR_TYPE_UNDEFINED	0
1814#define SUN4V_ERR_TYPE_UNCORRECTED_RES	1
1815#define SUN4V_ERR_TYPE_PRECISE_NONRES	2
1816#define SUN4V_ERR_TYPE_DEFERRED_NONRES	3
1817#define SUN4V_ERR_TYPE_SHUTDOWN_RQST	4
1818#define SUN4V_ERR_TYPE_DUMP_CORE	5
1819#define SUN4V_ERR_TYPE_SP_STATE_CHANGE	6
1820#define SUN4V_ERR_TYPE_NUM		7
1821
1822	/* Error attributes */
1823/*0x14*/u32		err_attrs;
1824#define SUN4V_ERR_ATTRS_PROCESSOR	0x00000001
1825#define SUN4V_ERR_ATTRS_MEMORY		0x00000002
1826#define SUN4V_ERR_ATTRS_PIO		0x00000004
1827#define SUN4V_ERR_ATTRS_INT_REGISTERS	0x00000008
1828#define SUN4V_ERR_ATTRS_FPU_REGISTERS	0x00000010
1829#define SUN4V_ERR_ATTRS_SHUTDOWN_RQST	0x00000020
1830#define SUN4V_ERR_ATTRS_ASR		0x00000040
1831#define SUN4V_ERR_ATTRS_ASI		0x00000080
1832#define SUN4V_ERR_ATTRS_PRIV_REG	0x00000100
1833#define SUN4V_ERR_ATTRS_SPSTATE_MSK	0x00000600
1834#define SUN4V_ERR_ATTRS_MCD		0x00000800
1835#define SUN4V_ERR_ATTRS_SPSTATE_SHFT	9
1836#define SUN4V_ERR_ATTRS_MODE_MSK	0x03000000
1837#define SUN4V_ERR_ATTRS_MODE_SHFT	24
1838#define SUN4V_ERR_ATTRS_RES_QUEUE_FULL	0x80000000
1839
1840#define SUN4V_ERR_SPSTATE_FAULTED	0
1841#define SUN4V_ERR_SPSTATE_AVAILABLE	1
1842#define SUN4V_ERR_SPSTATE_NOT_PRESENT	2
1843
1844#define SUN4V_ERR_MODE_USER		1
1845#define SUN4V_ERR_MODE_PRIV		2
1846
1847	/* Real address of the memory region or PIO transaction */
1848/*0x18*/u64		err_raddr;
1849
1850	/* Size of the operation triggering the error, in bytes */
1851/*0x20*/u32		err_size;
1852
1853	/* ID of the CPU */
1854/*0x24*/u16		err_cpu;
1855
1856	/* Grace periof for shutdown, in seconds */
1857/*0x26*/u16		err_secs;
1858
1859	/* Value of the %asi register */
1860/*0x28*/u8		err_asi;
1861
1862/*0x29*/u8		reserved_2;
1863
1864	/* Value of the ASR register number */
1865/*0x2a*/u16		err_asr;
1866#define SUN4V_ERR_ASR_VALID		0x8000
1867
1868/*0x2c*/u32		reserved_3;
1869/*0x30*/u64		reserved_4;
1870/*0x38*/u64		reserved_5;
1871};
1872
1873static atomic_t sun4v_resum_oflow_cnt = ATOMIC_INIT(0);
1874static atomic_t sun4v_nonresum_oflow_cnt = ATOMIC_INIT(0);
1875
1876static const char *sun4v_err_type_to_str(u8 type)
1877{
1878	static const char *types[SUN4V_ERR_TYPE_NUM] = {
1879		"undefined",
1880		"uncorrected resumable",
1881		"precise nonresumable",
1882		"deferred nonresumable",
1883		"shutdown request",
1884		"dump core",
1885		"SP state change",
1886	};
1887
1888	if (type < SUN4V_ERR_TYPE_NUM)
1889		return types[type];
1890
1891	return "unknown";
1892}
1893
1894static void sun4v_emit_err_attr_strings(u32 attrs)
1895{
1896	static const char *attr_names[] = {
1897		"processor",
1898		"memory",
1899		"PIO",
1900		"int-registers",
1901		"fpu-registers",
1902		"shutdown-request",
1903		"ASR",
1904		"ASI",
1905		"priv-reg",
1906	};
1907	static const char *sp_states[] = {
1908		"sp-faulted",
1909		"sp-available",
1910		"sp-not-present",
1911		"sp-state-reserved",
1912	};
1913	static const char *modes[] = {
1914		"mode-reserved0",
1915		"user",
1916		"priv",
1917		"mode-reserved1",
1918	};
1919	u32 sp_state, mode;
1920	int i;
1921
1922	for (i = 0; i < ARRAY_SIZE(attr_names); i++) {
1923		if (attrs & (1U << i)) {
1924			const char *s = attr_names[i];
1925
1926			pr_cont("%s ", s);
1927		}
1928	}
1929
1930	sp_state = ((attrs & SUN4V_ERR_ATTRS_SPSTATE_MSK) >>
1931		    SUN4V_ERR_ATTRS_SPSTATE_SHFT);
1932	pr_cont("%s ", sp_states[sp_state]);
1933
1934	mode = ((attrs & SUN4V_ERR_ATTRS_MODE_MSK) >>
1935		SUN4V_ERR_ATTRS_MODE_SHFT);
1936	pr_cont("%s ", modes[mode]);
1937
1938	if (attrs & SUN4V_ERR_ATTRS_RES_QUEUE_FULL)
1939		pr_cont("res-queue-full ");
1940}
1941
1942/* When the report contains a real-address of "-1" it means that the
1943 * hardware did not provide the address.  So we compute the effective
1944 * address of the load or store instruction at regs->tpc and report
1945 * that.  Usually when this happens it's a PIO and in such a case we
1946 * are using physical addresses with bypass ASIs anyways, so what we
1947 * report here is exactly what we want.
1948 */
1949static void sun4v_report_real_raddr(const char *pfx, struct pt_regs *regs)
1950{
1951	unsigned int insn;
1952	u64 addr;
1953
1954	if (!(regs->tstate & TSTATE_PRIV))
1955		return;
1956
1957	insn = *(unsigned int *) regs->tpc;
1958
1959	addr = compute_effective_address(regs, insn, 0);
1960
1961	printk("%s: insn effective address [0x%016llx]\n",
1962	       pfx, addr);
1963}
1964
1965static void sun4v_log_error(struct pt_regs *regs, struct sun4v_error_entry *ent,
1966			    int cpu, const char *pfx, atomic_t *ocnt)
1967{
1968	u64 *raw_ptr = (u64 *) ent;
1969	u32 attrs;
1970	int cnt;
1971
1972	printk("%s: Reporting on cpu %d\n", pfx, cpu);
1973	printk("%s: TPC [0x%016lx] <%pS>\n",
1974	       pfx, regs->tpc, (void *) regs->tpc);
1975
1976	printk("%s: RAW [%016llx:%016llx:%016llx:%016llx\n",
1977	       pfx, raw_ptr[0], raw_ptr[1], raw_ptr[2], raw_ptr[3]);
1978	printk("%s:      %016llx:%016llx:%016llx:%016llx]\n",
1979	       pfx, raw_ptr[4], raw_ptr[5], raw_ptr[6], raw_ptr[7]);
1980
1981	printk("%s: handle [0x%016llx] stick [0x%016llx]\n",
1982	       pfx, ent->err_handle, ent->err_stick);
1983
1984	printk("%s: type [%s]\n", pfx, sun4v_err_type_to_str(ent->err_type));
1985
1986	attrs = ent->err_attrs;
1987	printk("%s: attrs [0x%08x] < ", pfx, attrs);
1988	sun4v_emit_err_attr_strings(attrs);
1989	pr_cont(">\n");
1990
1991	/* Various fields in the error report are only valid if
1992	 * certain attribute bits are set.
1993	 */
1994	if (attrs & (SUN4V_ERR_ATTRS_MEMORY |
1995		     SUN4V_ERR_ATTRS_PIO |
1996		     SUN4V_ERR_ATTRS_ASI)) {
1997		printk("%s: raddr [0x%016llx]\n", pfx, ent->err_raddr);
1998
1999		if (ent->err_raddr == ~(u64)0)
2000			sun4v_report_real_raddr(pfx, regs);
2001	}
2002
2003	if (attrs & (SUN4V_ERR_ATTRS_MEMORY | SUN4V_ERR_ATTRS_ASI))
2004		printk("%s: size [0x%x]\n", pfx, ent->err_size);
2005
2006	if (attrs & (SUN4V_ERR_ATTRS_PROCESSOR |
2007		     SUN4V_ERR_ATTRS_INT_REGISTERS |
2008		     SUN4V_ERR_ATTRS_FPU_REGISTERS |
2009		     SUN4V_ERR_ATTRS_PRIV_REG))
2010		printk("%s: cpu[%u]\n", pfx, ent->err_cpu);
2011
2012	if (attrs & SUN4V_ERR_ATTRS_ASI)
2013		printk("%s: asi [0x%02x]\n", pfx, ent->err_asi);
2014
2015	if ((attrs & (SUN4V_ERR_ATTRS_INT_REGISTERS |
2016		      SUN4V_ERR_ATTRS_FPU_REGISTERS |
2017		      SUN4V_ERR_ATTRS_PRIV_REG)) &&
2018	    (ent->err_asr & SUN4V_ERR_ASR_VALID) != 0)
2019		printk("%s: reg [0x%04x]\n",
2020		       pfx, ent->err_asr & ~SUN4V_ERR_ASR_VALID);
2021
2022	show_regs(regs);
2023
2024	if ((cnt = atomic_read(ocnt)) != 0) {
2025		atomic_set(ocnt, 0);
2026		wmb();
2027		printk("%s: Queue overflowed %d times.\n",
2028		       pfx, cnt);
2029	}
2030}
2031
2032/* Handle memory corruption detected error which is vectored in
2033 * through resumable error trap.
2034 */
2035void do_mcd_err(struct pt_regs *regs, struct sun4v_error_entry ent)
2036{
2037	if (notify_die(DIE_TRAP, "MCD error", regs, 0, 0x34,
2038		       SIGSEGV) == NOTIFY_STOP)
2039		return;
2040
2041	if (regs->tstate & TSTATE_PRIV) {
2042		/* MCD exception could happen because the task was
2043		 * running a system call with MCD enabled and passed a
2044		 * non-versioned pointer or pointer with bad version
2045		 * tag to the system call. In such cases, hypervisor
2046		 * places the address of offending instruction in the
2047		 * resumable error report. This is a deferred error,
2048		 * so the read/write that caused the trap was potentially
2049		 * retired long time back and we may have no choice
2050		 * but to send SIGSEGV to the process.
2051		 */
2052		const struct exception_table_entry *entry;
2053
2054		entry = search_exception_tables(regs->tpc);
2055		if (entry) {
2056			/* Looks like a bad syscall parameter */
2057#ifdef DEBUG_EXCEPTIONS
2058			pr_emerg("Exception: PC<%016lx> faddr<UNKNOWN>\n",
2059				 regs->tpc);
2060			pr_emerg("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
2061				 ent.err_raddr, entry->fixup);
2062#endif
2063			regs->tpc = entry->fixup;
2064			regs->tnpc = regs->tpc + 4;
2065			return;
2066		}
2067	}
2068
2069	/* Send SIGSEGV to the userspace process with the right signal
2070	 * code
2071	 */
2072	force_sig_fault(SIGSEGV, SEGV_ADIDERR, (void __user *)ent.err_raddr);
2073}
2074
2075/* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate.
2076 * Log the event and clear the first word of the entry.
2077 */
2078void sun4v_resum_error(struct pt_regs *regs, unsigned long offset)
2079{
2080	enum ctx_state prev_state = exception_enter();
2081	struct sun4v_error_entry *ent, local_copy;
2082	struct trap_per_cpu *tb;
2083	unsigned long paddr;
2084	int cpu;
2085
2086	cpu = get_cpu();
2087
2088	tb = &trap_block[cpu];
2089	paddr = tb->resum_kernel_buf_pa + offset;
2090	ent = __va(paddr);
2091
2092	memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry));
2093
2094	/* We have a local copy now, so release the entry.  */
2095	ent->err_handle = 0;
2096	wmb();
2097
2098	put_cpu();
2099
2100	if (local_copy.err_type == SUN4V_ERR_TYPE_SHUTDOWN_RQST) {
2101		/* We should really take the seconds field of
2102		 * the error report and use it for the shutdown
2103		 * invocation, but for now do the same thing we
2104		 * do for a DS shutdown request.
2105		 */
2106		pr_info("Shutdown request, %u seconds...\n",
2107			local_copy.err_secs);
2108		orderly_poweroff(true);
2109		goto out;
2110	}
2111
2112	/* If this is a memory corruption detected error vectored in
2113	 * by HV through resumable error trap, call the handler
2114	 */
2115	if (local_copy.err_attrs & SUN4V_ERR_ATTRS_MCD) {
2116		do_mcd_err(regs, local_copy);
2117		return;
2118	}
2119
2120	sun4v_log_error(regs, &local_copy, cpu,
2121			KERN_ERR "RESUMABLE ERROR",
2122			&sun4v_resum_oflow_cnt);
2123out:
2124	exception_exit(prev_state);
2125}
2126
2127/* If we try to printk() we'll probably make matters worse, by trying
2128 * to retake locks this cpu already holds or causing more errors. So
2129 * just bump a counter, and we'll report these counter bumps above.
2130 */
2131void sun4v_resum_overflow(struct pt_regs *regs)
2132{
2133	atomic_inc(&sun4v_resum_oflow_cnt);
2134}
2135
2136/* Given a set of registers, get the virtual addressi that was being accessed
2137 * by the faulting instructions at tpc.
2138 */
2139static unsigned long sun4v_get_vaddr(struct pt_regs *regs)
2140{
2141	unsigned int insn;
2142
2143	if (!copy_from_user(&insn, (void __user *)regs->tpc, 4)) {
2144		return compute_effective_address(regs, insn,
2145						 (insn >> 25) & 0x1f);
2146	}
2147	return 0;
2148}
2149
2150/* Attempt to handle non-resumable errors generated from userspace.
2151 * Returns true if the signal was handled, false otherwise.
2152 */
2153bool sun4v_nonresum_error_user_handled(struct pt_regs *regs,
2154				  struct sun4v_error_entry *ent) {
2155
2156	unsigned int attrs = ent->err_attrs;
2157
2158	if (attrs & SUN4V_ERR_ATTRS_MEMORY) {
2159		unsigned long addr = ent->err_raddr;
2160
2161		if (addr == ~(u64)0) {
2162			/* This seems highly unlikely to ever occur */
2163			pr_emerg("SUN4V NON-RECOVERABLE ERROR: Memory error detected in unknown location!\n");
2164		} else {
2165			unsigned long page_cnt = DIV_ROUND_UP(ent->err_size,
2166							      PAGE_SIZE);
2167
2168			/* Break the unfortunate news. */
2169			pr_emerg("SUN4V NON-RECOVERABLE ERROR: Memory failed at %016lX\n",
2170				 addr);
2171			pr_emerg("SUN4V NON-RECOVERABLE ERROR:   Claiming %lu ages.\n",
2172				 page_cnt);
2173
2174			while (page_cnt-- > 0) {
2175				if (pfn_valid(addr >> PAGE_SHIFT))
2176					get_page(pfn_to_page(addr >> PAGE_SHIFT));
2177				addr += PAGE_SIZE;
2178			}
2179		}
2180		force_sig(SIGKILL);
2181
2182		return true;
2183	}
2184	if (attrs & SUN4V_ERR_ATTRS_PIO) {
2185		force_sig_fault(SIGBUS, BUS_ADRERR,
2186				(void __user *)sun4v_get_vaddr(regs));
2187		return true;
2188	}
2189
2190	/* Default to doing nothing */
2191	return false;
2192}
2193
2194/* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate.
2195 * Log the event, clear the first word of the entry, and die.
2196 */
2197void sun4v_nonresum_error(struct pt_regs *regs, unsigned long offset)
2198{
2199	struct sun4v_error_entry *ent, local_copy;
2200	struct trap_per_cpu *tb;
2201	unsigned long paddr;
2202	int cpu;
2203
2204	cpu = get_cpu();
2205
2206	tb = &trap_block[cpu];
2207	paddr = tb->nonresum_kernel_buf_pa + offset;
2208	ent = __va(paddr);
2209
2210	memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry));
2211
2212	/* We have a local copy now, so release the entry.  */
2213	ent->err_handle = 0;
2214	wmb();
2215
2216	put_cpu();
2217
2218	if (!(regs->tstate & TSTATE_PRIV) &&
2219	    sun4v_nonresum_error_user_handled(regs, &local_copy)) {
2220		/* DON'T PANIC: This userspace error was handled. */
2221		return;
2222	}
2223
2224#ifdef CONFIG_PCI
2225	/* Check for the special PCI poke sequence. */
2226	if (pci_poke_in_progress && pci_poke_cpu == cpu) {
2227		pci_poke_faulted = 1;
2228		regs->tpc += 4;
2229		regs->tnpc = regs->tpc + 4;
2230		return;
2231	}
2232#endif
2233
2234	sun4v_log_error(regs, &local_copy, cpu,
2235			KERN_EMERG "NON-RESUMABLE ERROR",
2236			&sun4v_nonresum_oflow_cnt);
2237
2238	panic("Non-resumable error.");
2239}
2240
2241/* If we try to printk() we'll probably make matters worse, by trying
2242 * to retake locks this cpu already holds or causing more errors. So
2243 * just bump a counter, and we'll report these counter bumps above.
2244 */
2245void sun4v_nonresum_overflow(struct pt_regs *regs)
2246{
2247	/* XXX Actually even this can make not that much sense.  Perhaps
2248	 * XXX we should just pull the plug and panic directly from here?
2249	 */
2250	atomic_inc(&sun4v_nonresum_oflow_cnt);
2251}
2252
2253static void sun4v_tlb_error(struct pt_regs *regs)
2254{
2255	die_if_kernel("TLB/TSB error", regs);
2256}
2257
2258unsigned long sun4v_err_itlb_vaddr;
2259unsigned long sun4v_err_itlb_ctx;
2260unsigned long sun4v_err_itlb_pte;
2261unsigned long sun4v_err_itlb_error;
2262
2263void sun4v_itlb_error_report(struct pt_regs *regs, int tl)
2264{
2265	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2266
2267	printk(KERN_EMERG "SUN4V-ITLB: Error at TPC[%lx], tl %d\n",
2268	       regs->tpc, tl);
2269	printk(KERN_EMERG "SUN4V-ITLB: TPC<%pS>\n", (void *) regs->tpc);
2270	printk(KERN_EMERG "SUN4V-ITLB: O7[%lx]\n", regs->u_regs[UREG_I7]);
2271	printk(KERN_EMERG "SUN4V-ITLB: O7<%pS>\n",
2272	       (void *) regs->u_regs[UREG_I7]);
2273	printk(KERN_EMERG "SUN4V-ITLB: vaddr[%lx] ctx[%lx] "
2274	       "pte[%lx] error[%lx]\n",
2275	       sun4v_err_itlb_vaddr, sun4v_err_itlb_ctx,
2276	       sun4v_err_itlb_pte, sun4v_err_itlb_error);
2277
2278	sun4v_tlb_error(regs);
2279}
2280
2281unsigned long sun4v_err_dtlb_vaddr;
2282unsigned long sun4v_err_dtlb_ctx;
2283unsigned long sun4v_err_dtlb_pte;
2284unsigned long sun4v_err_dtlb_error;
2285
2286void sun4v_dtlb_error_report(struct pt_regs *regs, int tl)
2287{
2288	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2289
2290	printk(KERN_EMERG "SUN4V-DTLB: Error at TPC[%lx], tl %d\n",
2291	       regs->tpc, tl);
2292	printk(KERN_EMERG "SUN4V-DTLB: TPC<%pS>\n", (void *) regs->tpc);
2293	printk(KERN_EMERG "SUN4V-DTLB: O7[%lx]\n", regs->u_regs[UREG_I7]);
2294	printk(KERN_EMERG "SUN4V-DTLB: O7<%pS>\n",
2295	       (void *) regs->u_regs[UREG_I7]);
2296	printk(KERN_EMERG "SUN4V-DTLB: vaddr[%lx] ctx[%lx] "
2297	       "pte[%lx] error[%lx]\n",
2298	       sun4v_err_dtlb_vaddr, sun4v_err_dtlb_ctx,
2299	       sun4v_err_dtlb_pte, sun4v_err_dtlb_error);
2300
2301	sun4v_tlb_error(regs);
2302}
2303
2304void hypervisor_tlbop_error(unsigned long err, unsigned long op)
2305{
2306	printk(KERN_CRIT "SUN4V: TLB hv call error %lu for op %lu\n",
2307	       err, op);
2308}
2309
2310void hypervisor_tlbop_error_xcall(unsigned long err, unsigned long op)
2311{
2312	printk(KERN_CRIT "SUN4V: XCALL TLB hv call error %lu for op %lu\n",
2313	       err, op);
2314}
2315
2316static void do_fpe_common(struct pt_regs *regs)
2317{
2318	if (regs->tstate & TSTATE_PRIV) {
2319		regs->tpc = regs->tnpc;
2320		regs->tnpc += 4;
2321	} else {
2322		unsigned long fsr = current_thread_info()->xfsr[0];
2323		int code;
2324
2325		if (test_thread_flag(TIF_32BIT)) {
2326			regs->tpc &= 0xffffffff;
2327			regs->tnpc &= 0xffffffff;
2328		}
2329		code = FPE_FLTUNK;
 
 
 
 
2330		if ((fsr & 0x1c000) == (1 << 14)) {
2331			if (fsr & 0x10)
2332				code = FPE_FLTINV;
2333			else if (fsr & 0x08)
2334				code = FPE_FLTOVF;
2335			else if (fsr & 0x04)
2336				code = FPE_FLTUND;
2337			else if (fsr & 0x02)
2338				code = FPE_FLTDIV;
2339			else if (fsr & 0x01)
2340				code = FPE_FLTRES;
2341		}
2342		force_sig_fault(SIGFPE, code, (void __user *)regs->tpc);
2343	}
2344}
2345
2346void do_fpieee(struct pt_regs *regs)
2347{
2348	enum ctx_state prev_state = exception_enter();
2349
2350	if (notify_die(DIE_TRAP, "fpu exception ieee", regs,
2351		       0, 0x24, SIGFPE) == NOTIFY_STOP)
2352		goto out;
2353
2354	do_fpe_common(regs);
2355out:
2356	exception_exit(prev_state);
2357}
2358
2359void do_fpother(struct pt_regs *regs)
2360{
2361	enum ctx_state prev_state = exception_enter();
2362	struct fpustate *f = FPUSTATE;
2363	int ret = 0;
2364
2365	if (notify_die(DIE_TRAP, "fpu exception other", regs,
2366		       0, 0x25, SIGFPE) == NOTIFY_STOP)
2367		goto out;
2368
2369	switch ((current_thread_info()->xfsr[0] & 0x1c000)) {
2370	case (2 << 14): /* unfinished_FPop */
2371	case (3 << 14): /* unimplemented_FPop */
2372		ret = do_mathemu(regs, f, false);
2373		break;
2374	}
2375	if (ret)
2376		goto out;
2377	do_fpe_common(regs);
2378out:
2379	exception_exit(prev_state);
2380}
2381
2382void do_tof(struct pt_regs *regs)
2383{
2384	enum ctx_state prev_state = exception_enter();
 
2385
2386	if (notify_die(DIE_TRAP, "tagged arithmetic overflow", regs,
2387		       0, 0x26, SIGEMT) == NOTIFY_STOP)
2388		goto out;
2389
2390	if (regs->tstate & TSTATE_PRIV)
2391		die_if_kernel("Penguin overflow trap from kernel mode", regs);
2392	if (test_thread_flag(TIF_32BIT)) {
2393		regs->tpc &= 0xffffffff;
2394		regs->tnpc &= 0xffffffff;
2395	}
2396	force_sig_fault(SIGEMT, EMT_TAGOVF, (void __user *)regs->tpc);
 
 
 
 
 
2397out:
2398	exception_exit(prev_state);
2399}
2400
2401void do_div0(struct pt_regs *regs)
2402{
2403	enum ctx_state prev_state = exception_enter();
 
2404
2405	if (notify_die(DIE_TRAP, "integer division by zero", regs,
2406		       0, 0x28, SIGFPE) == NOTIFY_STOP)
2407		goto out;
2408
2409	if (regs->tstate & TSTATE_PRIV)
2410		die_if_kernel("TL0: Kernel divide by zero.", regs);
2411	if (test_thread_flag(TIF_32BIT)) {
2412		regs->tpc &= 0xffffffff;
2413		regs->tnpc &= 0xffffffff;
2414	}
2415	force_sig_fault(SIGFPE, FPE_INTDIV, (void __user *)regs->tpc);
 
 
 
 
 
2416out:
2417	exception_exit(prev_state);
2418}
2419
2420static void instruction_dump(unsigned int *pc)
2421{
2422	int i;
2423
2424	if ((((unsigned long) pc) & 3))
2425		return;
2426
2427	printk("Instruction DUMP:");
2428	for (i = -3; i < 6; i++)
2429		printk("%c%08x%c",i?' ':'<',pc[i],i?' ':'>');
2430	printk("\n");
2431}
2432
2433static void user_instruction_dump(unsigned int __user *pc)
2434{
2435	int i;
2436	unsigned int buf[9];
2437	
2438	if ((((unsigned long) pc) & 3))
2439		return;
2440		
2441	if (copy_from_user(buf, pc - 3, sizeof(buf)))
2442		return;
2443
2444	printk("Instruction DUMP:");
2445	for (i = 0; i < 9; i++)
2446		printk("%c%08x%c",i==3?' ':'<',buf[i],i==3?' ':'>');
2447	printk("\n");
2448}
2449
2450void show_stack(struct task_struct *tsk, unsigned long *_ksp, const char *loglvl)
2451{
2452	unsigned long fp, ksp;
2453	struct thread_info *tp;
2454	int count = 0;
2455#ifdef CONFIG_FUNCTION_GRAPH_TRACER
2456	int graph = 0;
2457#endif
2458
2459	ksp = (unsigned long) _ksp;
2460	if (!tsk)
2461		tsk = current;
2462	tp = task_thread_info(tsk);
2463	if (ksp == 0UL) {
2464		if (tsk == current)
2465			asm("mov %%fp, %0" : "=r" (ksp));
2466		else
2467			ksp = tp->ksp;
2468	}
2469	if (tp == current_thread_info())
2470		flushw_all();
2471
2472	fp = ksp + STACK_BIAS;
2473
2474	printk("%sCall Trace:\n", loglvl);
2475	do {
2476		struct sparc_stackf *sf;
2477		struct pt_regs *regs;
2478		unsigned long pc;
2479
2480		if (!kstack_valid(tp, fp))
2481			break;
2482		sf = (struct sparc_stackf *) fp;
2483		regs = (struct pt_regs *) (sf + 1);
2484
2485		if (kstack_is_trap_frame(tp, regs)) {
2486			if (!(regs->tstate & TSTATE_PRIV))
2487				break;
2488			pc = regs->tpc;
2489			fp = regs->u_regs[UREG_I6] + STACK_BIAS;
2490		} else {
2491			pc = sf->callers_pc;
2492			fp = (unsigned long)sf->fp + STACK_BIAS;
2493		}
2494
2495		print_ip_sym(loglvl, pc);
2496#ifdef CONFIG_FUNCTION_GRAPH_TRACER
2497		if ((pc + 8UL) == (unsigned long) &return_to_handler) {
2498			struct ftrace_ret_stack *ret_stack;
2499			ret_stack = ftrace_graph_get_ret_stack(tsk, graph);
2500			if (ret_stack) {
2501				pc = ret_stack->ret;
2502				print_ip_sym(loglvl, pc);
2503				graph++;
2504			}
2505		}
2506#endif
2507	} while (++count < 16);
2508}
2509
2510static inline struct reg_window *kernel_stack_up(struct reg_window *rw)
2511{
2512	unsigned long fp = rw->ins[6];
2513
2514	if (!fp)
2515		return NULL;
2516
2517	return (struct reg_window *) (fp + STACK_BIAS);
2518}
2519
2520void __noreturn die_if_kernel(char *str, struct pt_regs *regs)
2521{
2522	static int die_counter;
2523	int count = 0;
2524	
2525	/* Amuse the user. */
2526	printk(
2527"              \\|/ ____ \\|/\n"
2528"              \"@'/ .. \\`@\"\n"
2529"              /_| \\__/ |_\\\n"
2530"                 \\__U_/\n");
2531
2532	printk("%s(%d): %s [#%d]\n", current->comm, task_pid_nr(current), str, ++die_counter);
2533	notify_die(DIE_OOPS, str, regs, 0, 255, SIGSEGV);
2534	__asm__ __volatile__("flushw");
2535	show_regs(regs);
2536	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
2537	if (regs->tstate & TSTATE_PRIV) {
2538		struct thread_info *tp = current_thread_info();
2539		struct reg_window *rw = (struct reg_window *)
2540			(regs->u_regs[UREG_FP] + STACK_BIAS);
2541
2542		/* Stop the back trace when we hit userland or we
2543		 * find some badly aligned kernel stack.
2544		 */
2545		while (rw &&
2546		       count++ < 30 &&
2547		       kstack_valid(tp, (unsigned long) rw)) {
2548			printk("Caller[%016lx]: %pS\n", rw->ins[7],
2549			       (void *) rw->ins[7]);
2550
2551			rw = kernel_stack_up(rw);
2552		}
2553		instruction_dump ((unsigned int *) regs->tpc);
2554	} else {
2555		if (test_thread_flag(TIF_32BIT)) {
2556			regs->tpc &= 0xffffffff;
2557			regs->tnpc &= 0xffffffff;
2558		}
2559		user_instruction_dump ((unsigned int __user *) regs->tpc);
2560	}
2561	if (panic_on_oops)
2562		panic("Fatal exception");
2563	make_task_dead((regs->tstate & TSTATE_PRIV)? SIGKILL : SIGSEGV);
 
 
2564}
2565EXPORT_SYMBOL(die_if_kernel);
2566
2567#define VIS_OPCODE_MASK	((0x3 << 30) | (0x3f << 19))
2568#define VIS_OPCODE_VAL	((0x2 << 30) | (0x36 << 19))
2569
2570void do_illegal_instruction(struct pt_regs *regs)
2571{
2572	enum ctx_state prev_state = exception_enter();
2573	unsigned long pc = regs->tpc;
2574	unsigned long tstate = regs->tstate;
2575	u32 insn;
 
2576
2577	if (notify_die(DIE_TRAP, "illegal instruction", regs,
2578		       0, 0x10, SIGILL) == NOTIFY_STOP)
2579		goto out;
2580
2581	if (tstate & TSTATE_PRIV)
2582		die_if_kernel("Kernel illegal instruction", regs);
2583	if (test_thread_flag(TIF_32BIT))
2584		pc = (u32)pc;
2585	if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
2586		if ((insn & 0xc1ffc000) == 0x81700000) /* POPC */ {
2587			if (handle_popc(insn, regs))
2588				goto out;
2589		} else if ((insn & 0xc1580000) == 0xc1100000) /* LDQ/STQ */ {
2590			if (handle_ldf_stq(insn, regs))
2591				goto out;
2592		} else if (tlb_type == hypervisor) {
2593			if ((insn & VIS_OPCODE_MASK) == VIS_OPCODE_VAL) {
2594				if (!vis_emul(regs, insn))
2595					goto out;
2596			} else {
2597				struct fpustate *f = FPUSTATE;
2598
2599				/* On UltraSPARC T2 and later, FPU insns which
2600				 * are not implemented in HW signal an illegal
2601				 * instruction trap and do not set the FP Trap
2602				 * Trap in the %fsr to unimplemented_FPop.
2603				 */
2604				if (do_mathemu(regs, f, true))
2605					goto out;
2606			}
2607		}
2608	}
2609	force_sig_fault(SIGILL, ILL_ILLOPC, (void __user *)pc);
 
 
 
 
 
2610out:
2611	exception_exit(prev_state);
2612}
2613
2614void mem_address_unaligned(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
2615{
2616	enum ctx_state prev_state = exception_enter();
 
2617
2618	if (notify_die(DIE_TRAP, "memory address unaligned", regs,
2619		       0, 0x34, SIGSEGV) == NOTIFY_STOP)
2620		goto out;
2621
2622	if (regs->tstate & TSTATE_PRIV) {
2623		kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc));
2624		goto out;
2625	}
2626	if (is_no_fault_exception(regs))
2627		return;
2628
2629	force_sig_fault(SIGBUS, BUS_ADRALN, (void __user *)sfar);
 
 
2630out:
2631	exception_exit(prev_state);
2632}
2633
2634void sun4v_do_mna(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
2635{
 
 
2636	if (notify_die(DIE_TRAP, "memory address unaligned", regs,
2637		       0, 0x34, SIGSEGV) == NOTIFY_STOP)
2638		return;
2639
2640	if (regs->tstate & TSTATE_PRIV) {
2641		kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc));
2642		return;
2643	}
2644	if (is_no_fault_exception(regs))
2645		return;
2646
2647	force_sig_fault(SIGBUS, BUS_ADRALN, (void __user *) addr);
2648}
2649
2650/* sun4v_mem_corrupt_detect_precise() - Handle precise exception on an ADI
2651 * tag mismatch.
2652 *
2653 * ADI version tag mismatch on a load from memory always results in a
2654 * precise exception. Tag mismatch on a store to memory will result in
2655 * precise exception if MCDPER or PMCDPER is set to 1.
2656 */
2657void sun4v_mem_corrupt_detect_precise(struct pt_regs *regs, unsigned long addr,
2658				      unsigned long context)
2659{
2660	if (notify_die(DIE_TRAP, "memory corruption precise exception", regs,
2661		       0, 0x8, SIGSEGV) == NOTIFY_STOP)
2662		return;
2663
2664	if (regs->tstate & TSTATE_PRIV) {
2665		/* MCD exception could happen because the task was running
2666		 * a system call with MCD enabled and passed a non-versioned
2667		 * pointer or pointer with bad version tag to  the system
2668		 * call.
2669		 */
2670		const struct exception_table_entry *entry;
2671
2672		entry = search_exception_tables(regs->tpc);
2673		if (entry) {
2674			/* Looks like a bad syscall parameter */
2675#ifdef DEBUG_EXCEPTIONS
2676			pr_emerg("Exception: PC<%016lx> faddr<UNKNOWN>\n",
2677				 regs->tpc);
2678			pr_emerg("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
2679				 regs->tpc, entry->fixup);
2680#endif
2681			regs->tpc = entry->fixup;
2682			regs->tnpc = regs->tpc + 4;
2683			return;
2684		}
2685		pr_emerg("%s: ADDR[%016lx] CTX[%lx], going.\n",
2686			 __func__, addr, context);
2687		die_if_kernel("MCD precise", regs);
2688	}
2689
2690	if (test_thread_flag(TIF_32BIT)) {
2691		regs->tpc &= 0xffffffff;
2692		regs->tnpc &= 0xffffffff;
2693	}
2694	force_sig_fault(SIGSEGV, SEGV_ADIPERR, (void __user *)addr);
2695}
2696
2697void do_privop(struct pt_regs *regs)
2698{
2699	enum ctx_state prev_state = exception_enter();
 
2700
2701	if (notify_die(DIE_TRAP, "privileged operation", regs,
2702		       0, 0x11, SIGILL) == NOTIFY_STOP)
2703		goto out;
2704
2705	if (test_thread_flag(TIF_32BIT)) {
2706		regs->tpc &= 0xffffffff;
2707		regs->tnpc &= 0xffffffff;
2708	}
2709	force_sig_fault(SIGILL, ILL_PRVOPC, (void __user *)regs->tpc);
 
 
 
 
 
2710out:
2711	exception_exit(prev_state);
2712}
2713
2714void do_privact(struct pt_regs *regs)
2715{
2716	do_privop(regs);
2717}
2718
2719/* Trap level 1 stuff or other traps we should never see... */
2720void do_cee(struct pt_regs *regs)
2721{
2722	exception_enter();
2723	die_if_kernel("TL0: Cache Error Exception", regs);
2724}
2725
2726void do_div0_tl1(struct pt_regs *regs)
2727{
2728	exception_enter();
2729	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2730	die_if_kernel("TL1: DIV0 Exception", regs);
2731}
2732
2733void do_fpieee_tl1(struct pt_regs *regs)
2734{
2735	exception_enter();
2736	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2737	die_if_kernel("TL1: FPU IEEE Exception", regs);
2738}
2739
2740void do_fpother_tl1(struct pt_regs *regs)
2741{
2742	exception_enter();
2743	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2744	die_if_kernel("TL1: FPU Other Exception", regs);
2745}
2746
2747void do_ill_tl1(struct pt_regs *regs)
2748{
2749	exception_enter();
2750	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2751	die_if_kernel("TL1: Illegal Instruction Exception", regs);
2752}
2753
2754void do_irq_tl1(struct pt_regs *regs)
2755{
2756	exception_enter();
2757	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2758	die_if_kernel("TL1: IRQ Exception", regs);
2759}
2760
2761void do_lddfmna_tl1(struct pt_regs *regs)
2762{
2763	exception_enter();
2764	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2765	die_if_kernel("TL1: LDDF Exception", regs);
2766}
2767
2768void do_stdfmna_tl1(struct pt_regs *regs)
2769{
2770	exception_enter();
2771	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2772	die_if_kernel("TL1: STDF Exception", regs);
2773}
2774
2775void do_paw(struct pt_regs *regs)
2776{
2777	exception_enter();
2778	die_if_kernel("TL0: Phys Watchpoint Exception", regs);
2779}
2780
2781void do_paw_tl1(struct pt_regs *regs)
2782{
2783	exception_enter();
2784	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2785	die_if_kernel("TL1: Phys Watchpoint Exception", regs);
2786}
2787
2788void do_vaw(struct pt_regs *regs)
2789{
2790	exception_enter();
2791	die_if_kernel("TL0: Virt Watchpoint Exception", regs);
2792}
2793
2794void do_vaw_tl1(struct pt_regs *regs)
2795{
2796	exception_enter();
2797	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2798	die_if_kernel("TL1: Virt Watchpoint Exception", regs);
2799}
2800
2801void do_tof_tl1(struct pt_regs *regs)
2802{
2803	exception_enter();
2804	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2805	die_if_kernel("TL1: Tag Overflow Exception", regs);
2806}
2807
2808void do_getpsr(struct pt_regs *regs)
2809{
2810	regs->u_regs[UREG_I0] = tstate_to_psr(regs->tstate);
2811	regs->tpc   = regs->tnpc;
2812	regs->tnpc += 4;
2813	if (test_thread_flag(TIF_32BIT)) {
2814		regs->tpc &= 0xffffffff;
2815		regs->tnpc &= 0xffffffff;
2816	}
2817}
2818
2819u64 cpu_mondo_counter[NR_CPUS] = {0};
2820struct trap_per_cpu trap_block[NR_CPUS];
2821EXPORT_SYMBOL(trap_block);
2822
2823/* This can get invoked before sched_init() so play it super safe
2824 * and use hard_smp_processor_id().
2825 */
2826void notrace init_cur_cpu_trap(struct thread_info *t)
2827{
2828	int cpu = hard_smp_processor_id();
2829	struct trap_per_cpu *p = &trap_block[cpu];
2830
2831	p->thread = t;
2832	p->pgd_paddr = 0;
2833}
2834
2835extern void thread_info_offsets_are_bolixed_dave(void);
2836extern void trap_per_cpu_offsets_are_bolixed_dave(void);
2837extern void tsb_config_offsets_are_bolixed_dave(void);
2838
2839/* Only invoked on boot processor. */
2840void __init trap_init(void)
2841{
2842	/* Compile time sanity check. */
2843	BUILD_BUG_ON(TI_TASK != offsetof(struct thread_info, task) ||
2844		     TI_FLAGS != offsetof(struct thread_info, flags) ||
2845		     TI_CPU != offsetof(struct thread_info, cpu) ||
2846		     TI_FPSAVED != offsetof(struct thread_info, fpsaved) ||
2847		     TI_KSP != offsetof(struct thread_info, ksp) ||
2848		     TI_FAULT_ADDR != offsetof(struct thread_info,
2849					       fault_address) ||
2850		     TI_KREGS != offsetof(struct thread_info, kregs) ||
2851		     TI_UTRAPS != offsetof(struct thread_info, utraps) ||
2852		     TI_REG_WINDOW != offsetof(struct thread_info,
2853					       reg_window) ||
2854		     TI_RWIN_SPTRS != offsetof(struct thread_info,
2855					       rwbuf_stkptrs) ||
2856		     TI_GSR != offsetof(struct thread_info, gsr) ||
2857		     TI_XFSR != offsetof(struct thread_info, xfsr) ||
2858		     TI_PRE_COUNT != offsetof(struct thread_info,
2859					      preempt_count) ||
2860		     TI_NEW_CHILD != offsetof(struct thread_info, new_child) ||
 
 
2861		     TI_KUNA_REGS != offsetof(struct thread_info,
2862					      kern_una_regs) ||
2863		     TI_KUNA_INSN != offsetof(struct thread_info,
2864					      kern_una_insn) ||
2865		     TI_FPREGS != offsetof(struct thread_info, fpregs) ||
2866		     (TI_FPREGS & (64 - 1)));
2867
2868	BUILD_BUG_ON(TRAP_PER_CPU_THREAD != offsetof(struct trap_per_cpu,
2869						     thread) ||
2870		     (TRAP_PER_CPU_PGD_PADDR !=
2871		      offsetof(struct trap_per_cpu, pgd_paddr)) ||
2872		     (TRAP_PER_CPU_CPU_MONDO_PA !=
2873		      offsetof(struct trap_per_cpu, cpu_mondo_pa)) ||
2874		     (TRAP_PER_CPU_DEV_MONDO_PA !=
2875		      offsetof(struct trap_per_cpu, dev_mondo_pa)) ||
2876		     (TRAP_PER_CPU_RESUM_MONDO_PA !=
2877		      offsetof(struct trap_per_cpu, resum_mondo_pa)) ||
2878		     (TRAP_PER_CPU_RESUM_KBUF_PA !=
2879		      offsetof(struct trap_per_cpu, resum_kernel_buf_pa)) ||
2880		     (TRAP_PER_CPU_NONRESUM_MONDO_PA !=
2881		      offsetof(struct trap_per_cpu, nonresum_mondo_pa)) ||
2882		     (TRAP_PER_CPU_NONRESUM_KBUF_PA !=
2883		      offsetof(struct trap_per_cpu, nonresum_kernel_buf_pa)) ||
2884		     (TRAP_PER_CPU_FAULT_INFO !=
2885		      offsetof(struct trap_per_cpu, fault_info)) ||
2886		     (TRAP_PER_CPU_CPU_MONDO_BLOCK_PA !=
2887		      offsetof(struct trap_per_cpu, cpu_mondo_block_pa)) ||
2888		     (TRAP_PER_CPU_CPU_LIST_PA !=
2889		      offsetof(struct trap_per_cpu, cpu_list_pa)) ||
2890		     (TRAP_PER_CPU_TSB_HUGE !=
2891		      offsetof(struct trap_per_cpu, tsb_huge)) ||
2892		     (TRAP_PER_CPU_TSB_HUGE_TEMP !=
2893		      offsetof(struct trap_per_cpu, tsb_huge_temp)) ||
2894		     (TRAP_PER_CPU_IRQ_WORKLIST_PA !=
2895		      offsetof(struct trap_per_cpu, irq_worklist_pa)) ||
2896		     (TRAP_PER_CPU_CPU_MONDO_QMASK !=
2897		      offsetof(struct trap_per_cpu, cpu_mondo_qmask)) ||
2898		     (TRAP_PER_CPU_DEV_MONDO_QMASK !=
2899		      offsetof(struct trap_per_cpu, dev_mondo_qmask)) ||
2900		     (TRAP_PER_CPU_RESUM_QMASK !=
2901		      offsetof(struct trap_per_cpu, resum_qmask)) ||
2902		     (TRAP_PER_CPU_NONRESUM_QMASK !=
2903		      offsetof(struct trap_per_cpu, nonresum_qmask)) ||
2904		     (TRAP_PER_CPU_PER_CPU_BASE !=
2905		      offsetof(struct trap_per_cpu, __per_cpu_base)));
2906
2907	BUILD_BUG_ON((TSB_CONFIG_TSB !=
2908		      offsetof(struct tsb_config, tsb)) ||
2909		     (TSB_CONFIG_RSS_LIMIT !=
2910		      offsetof(struct tsb_config, tsb_rss_limit)) ||
2911		     (TSB_CONFIG_NENTRIES !=
2912		      offsetof(struct tsb_config, tsb_nentries)) ||
2913		     (TSB_CONFIG_REG_VAL !=
2914		      offsetof(struct tsb_config, tsb_reg_val)) ||
2915		     (TSB_CONFIG_MAP_VADDR !=
2916		      offsetof(struct tsb_config, tsb_map_vaddr)) ||
2917		     (TSB_CONFIG_MAP_PTE !=
2918		      offsetof(struct tsb_config, tsb_map_pte)));
2919
2920	/* Attach to the address space of init_task.  On SMP we
2921	 * do this in smp.c:smp_callin for other cpus.
2922	 */
2923	mmgrab(&init_mm);
2924	current->active_mm = &init_mm;
2925}
v4.6
 
   1/* arch/sparc64/kernel/traps.c
   2 *
   3 * Copyright (C) 1995,1997,2008,2009,2012 David S. Miller (davem@davemloft.net)
   4 * Copyright (C) 1997,1999,2000 Jakub Jelinek (jakub@redhat.com)
   5 */
   6
   7/*
   8 * I like traps on v9, :))))
   9 */
  10
  11#include <linux/module.h>
  12#include <linux/sched.h>
 
 
  13#include <linux/linkage.h>
  14#include <linux/kernel.h>
  15#include <linux/signal.h>
  16#include <linux/smp.h>
  17#include <linux/mm.h>
  18#include <linux/init.h>
 
  19#include <linux/kdebug.h>
  20#include <linux/ftrace.h>
  21#include <linux/reboot.h>
  22#include <linux/gfp.h>
  23#include <linux/context_tracking.h>
  24
  25#include <asm/smp.h>
  26#include <asm/delay.h>
  27#include <asm/ptrace.h>
  28#include <asm/oplib.h>
  29#include <asm/page.h>
  30#include <asm/pgtable.h>
  31#include <asm/unistd.h>
  32#include <asm/uaccess.h>
  33#include <asm/fpumacro.h>
  34#include <asm/lsu.h>
  35#include <asm/dcu.h>
  36#include <asm/estate.h>
  37#include <asm/chafsr.h>
  38#include <asm/sfafsr.h>
  39#include <asm/psrcompat.h>
  40#include <asm/processor.h>
  41#include <asm/timer.h>
  42#include <asm/head.h>
  43#include <asm/prom.h>
  44#include <asm/memctrl.h>
  45#include <asm/cacheflush.h>
  46#include <asm/setup.h>
  47
  48#include "entry.h"
  49#include "kernel.h"
  50#include "kstack.h"
  51
  52/* When an irrecoverable trap occurs at tl > 0, the trap entry
  53 * code logs the trap state registers at every level in the trap
  54 * stack.  It is found at (pt_regs + sizeof(pt_regs)) and the layout
  55 * is as follows:
  56 */
  57struct tl1_traplog {
  58	struct {
  59		unsigned long tstate;
  60		unsigned long tpc;
  61		unsigned long tnpc;
  62		unsigned long tt;
  63	} trapstack[4];
  64	unsigned long tl;
  65};
  66
  67static void dump_tl1_traplog(struct tl1_traplog *p)
  68{
  69	int i, limit;
  70
  71	printk(KERN_EMERG "TRAPLOG: Error at trap level 0x%lx, "
  72	       "dumping track stack.\n", p->tl);
  73
  74	limit = (tlb_type == hypervisor) ? 2 : 4;
  75	for (i = 0; i < limit; i++) {
  76		printk(KERN_EMERG
  77		       "TRAPLOG: Trap level %d TSTATE[%016lx] TPC[%016lx] "
  78		       "TNPC[%016lx] TT[%lx]\n",
  79		       i + 1,
  80		       p->trapstack[i].tstate, p->trapstack[i].tpc,
  81		       p->trapstack[i].tnpc, p->trapstack[i].tt);
  82		printk("TRAPLOG: TPC<%pS>\n", (void *) p->trapstack[i].tpc);
  83	}
  84}
  85
  86void bad_trap(struct pt_regs *regs, long lvl)
  87{
  88	char buffer[32];
  89	siginfo_t info;
  90
  91	if (notify_die(DIE_TRAP, "bad trap", regs,
  92		       0, lvl, SIGTRAP) == NOTIFY_STOP)
  93		return;
  94
  95	if (lvl < 0x100) {
  96		sprintf(buffer, "Bad hw trap %lx at tl0\n", lvl);
  97		die_if_kernel(buffer, regs);
  98	}
  99
 100	lvl -= 0x100;
 101	if (regs->tstate & TSTATE_PRIV) {
 102		sprintf(buffer, "Kernel bad sw trap %lx", lvl);
 103		die_if_kernel(buffer, regs);
 104	}
 105	if (test_thread_flag(TIF_32BIT)) {
 106		regs->tpc &= 0xffffffff;
 107		regs->tnpc &= 0xffffffff;
 108	}
 109	info.si_signo = SIGILL;
 110	info.si_errno = 0;
 111	info.si_code = ILL_ILLTRP;
 112	info.si_addr = (void __user *)regs->tpc;
 113	info.si_trapno = lvl;
 114	force_sig_info(SIGILL, &info, current);
 115}
 116
 117void bad_trap_tl1(struct pt_regs *regs, long lvl)
 118{
 119	char buffer[32];
 120	
 121	if (notify_die(DIE_TRAP_TL1, "bad trap tl1", regs,
 122		       0, lvl, SIGTRAP) == NOTIFY_STOP)
 123		return;
 124
 125	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 126
 127	sprintf (buffer, "Bad trap %lx at tl>0", lvl);
 128	die_if_kernel (buffer, regs);
 129}
 130
 131#ifdef CONFIG_DEBUG_BUGVERBOSE
 132void do_BUG(const char *file, int line)
 133{
 134	bust_spinlocks(1);
 135	printk("kernel BUG at %s:%d!\n", file, line);
 136}
 137EXPORT_SYMBOL(do_BUG);
 138#endif
 139
 140static DEFINE_SPINLOCK(dimm_handler_lock);
 141static dimm_printer_t dimm_handler;
 142
 143static int sprintf_dimm(int synd_code, unsigned long paddr, char *buf, int buflen)
 144{
 145	unsigned long flags;
 146	int ret = -ENODEV;
 147
 148	spin_lock_irqsave(&dimm_handler_lock, flags);
 149	if (dimm_handler) {
 150		ret = dimm_handler(synd_code, paddr, buf, buflen);
 151	} else if (tlb_type == spitfire) {
 152		if (prom_getunumber(synd_code, paddr, buf, buflen) == -1)
 153			ret = -EINVAL;
 154		else
 155			ret = 0;
 156	} else
 157		ret = -ENODEV;
 158	spin_unlock_irqrestore(&dimm_handler_lock, flags);
 159
 160	return ret;
 161}
 162
 163int register_dimm_printer(dimm_printer_t func)
 164{
 165	unsigned long flags;
 166	int ret = 0;
 167
 168	spin_lock_irqsave(&dimm_handler_lock, flags);
 169	if (!dimm_handler)
 170		dimm_handler = func;
 171	else
 172		ret = -EEXIST;
 173	spin_unlock_irqrestore(&dimm_handler_lock, flags);
 174
 175	return ret;
 176}
 177EXPORT_SYMBOL_GPL(register_dimm_printer);
 178
 179void unregister_dimm_printer(dimm_printer_t func)
 180{
 181	unsigned long flags;
 182
 183	spin_lock_irqsave(&dimm_handler_lock, flags);
 184	if (dimm_handler == func)
 185		dimm_handler = NULL;
 186	spin_unlock_irqrestore(&dimm_handler_lock, flags);
 187}
 188EXPORT_SYMBOL_GPL(unregister_dimm_printer);
 189
 190void spitfire_insn_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
 191{
 192	enum ctx_state prev_state = exception_enter();
 193	siginfo_t info;
 194
 195	if (notify_die(DIE_TRAP, "instruction access exception", regs,
 196		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 197		goto out;
 198
 199	if (regs->tstate & TSTATE_PRIV) {
 200		printk("spitfire_insn_access_exception: SFSR[%016lx] "
 201		       "SFAR[%016lx], going.\n", sfsr, sfar);
 202		die_if_kernel("Iax", regs);
 203	}
 204	if (test_thread_flag(TIF_32BIT)) {
 205		regs->tpc &= 0xffffffff;
 206		regs->tnpc &= 0xffffffff;
 207	}
 208	info.si_signo = SIGSEGV;
 209	info.si_errno = 0;
 210	info.si_code = SEGV_MAPERR;
 211	info.si_addr = (void __user *)regs->tpc;
 212	info.si_trapno = 0;
 213	force_sig_info(SIGSEGV, &info, current);
 214out:
 215	exception_exit(prev_state);
 216}
 217
 218void spitfire_insn_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
 219{
 220	if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs,
 221		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 222		return;
 223
 224	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 225	spitfire_insn_access_exception(regs, sfsr, sfar);
 226}
 227
 228void sun4v_insn_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
 229{
 230	unsigned short type = (type_ctx >> 16);
 231	unsigned short ctx  = (type_ctx & 0xffff);
 232	siginfo_t info;
 233
 234	if (notify_die(DIE_TRAP, "instruction access exception", regs,
 235		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 236		return;
 237
 238	if (regs->tstate & TSTATE_PRIV) {
 239		printk("sun4v_insn_access_exception: ADDR[%016lx] "
 240		       "CTX[%04x] TYPE[%04x], going.\n",
 241		       addr, ctx, type);
 242		die_if_kernel("Iax", regs);
 243	}
 244
 245	if (test_thread_flag(TIF_32BIT)) {
 246		regs->tpc &= 0xffffffff;
 247		regs->tnpc &= 0xffffffff;
 248	}
 249	info.si_signo = SIGSEGV;
 250	info.si_errno = 0;
 251	info.si_code = SEGV_MAPERR;
 252	info.si_addr = (void __user *) addr;
 253	info.si_trapno = 0;
 254	force_sig_info(SIGSEGV, &info, current);
 255}
 256
 257void sun4v_insn_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
 258{
 259	if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs,
 260		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 261		return;
 262
 263	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 264	sun4v_insn_access_exception(regs, addr, type_ctx);
 265}
 266
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 267void spitfire_data_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
 268{
 269	enum ctx_state prev_state = exception_enter();
 270	siginfo_t info;
 271
 272	if (notify_die(DIE_TRAP, "data access exception", regs,
 273		       0, 0x30, SIGTRAP) == NOTIFY_STOP)
 274		goto out;
 275
 276	if (regs->tstate & TSTATE_PRIV) {
 277		/* Test if this comes from uaccess places. */
 278		const struct exception_table_entry *entry;
 279
 280		entry = search_exception_tables(regs->tpc);
 281		if (entry) {
 282			/* Ouch, somebody is trying VM hole tricks on us... */
 283#ifdef DEBUG_EXCEPTIONS
 284			printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc);
 285			printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
 286			       regs->tpc, entry->fixup);
 287#endif
 288			regs->tpc = entry->fixup;
 289			regs->tnpc = regs->tpc + 4;
 290			goto out;
 291		}
 292		/* Shit... */
 293		printk("spitfire_data_access_exception: SFSR[%016lx] "
 294		       "SFAR[%016lx], going.\n", sfsr, sfar);
 295		die_if_kernel("Dax", regs);
 296	}
 297
 298	info.si_signo = SIGSEGV;
 299	info.si_errno = 0;
 300	info.si_code = SEGV_MAPERR;
 301	info.si_addr = (void __user *)sfar;
 302	info.si_trapno = 0;
 303	force_sig_info(SIGSEGV, &info, current);
 304out:
 305	exception_exit(prev_state);
 306}
 307
 308void spitfire_data_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
 309{
 310	if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs,
 311		       0, 0x30, SIGTRAP) == NOTIFY_STOP)
 312		return;
 313
 314	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 315	spitfire_data_access_exception(regs, sfsr, sfar);
 316}
 317
 318void sun4v_data_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
 319{
 320	unsigned short type = (type_ctx >> 16);
 321	unsigned short ctx  = (type_ctx & 0xffff);
 322	siginfo_t info;
 323
 324	if (notify_die(DIE_TRAP, "data access exception", regs,
 325		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 326		return;
 327
 328	if (regs->tstate & TSTATE_PRIV) {
 329		/* Test if this comes from uaccess places. */
 330		const struct exception_table_entry *entry;
 331
 332		entry = search_exception_tables(regs->tpc);
 333		if (entry) {
 334			/* Ouch, somebody is trying VM hole tricks on us... */
 335#ifdef DEBUG_EXCEPTIONS
 336			printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc);
 337			printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
 338			       regs->tpc, entry->fixup);
 339#endif
 340			regs->tpc = entry->fixup;
 341			regs->tnpc = regs->tpc + 4;
 342			return;
 343		}
 344		printk("sun4v_data_access_exception: ADDR[%016lx] "
 345		       "CTX[%04x] TYPE[%04x], going.\n",
 346		       addr, ctx, type);
 347		die_if_kernel("Dax", regs);
 348	}
 349
 350	if (test_thread_flag(TIF_32BIT)) {
 351		regs->tpc &= 0xffffffff;
 352		regs->tnpc &= 0xffffffff;
 353	}
 354	info.si_signo = SIGSEGV;
 355	info.si_errno = 0;
 356	info.si_code = SEGV_MAPERR;
 357	info.si_addr = (void __user *) addr;
 358	info.si_trapno = 0;
 359	force_sig_info(SIGSEGV, &info, current);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 360}
 361
 362void sun4v_data_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
 363{
 364	if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs,
 365		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 366		return;
 367
 368	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 369	sun4v_data_access_exception(regs, addr, type_ctx);
 370}
 371
 372#ifdef CONFIG_PCI
 373#include "pci_impl.h"
 374#endif
 375
 376/* When access exceptions happen, we must do this. */
 377static void spitfire_clean_and_reenable_l1_caches(void)
 378{
 379	unsigned long va;
 380
 381	if (tlb_type != spitfire)
 382		BUG();
 383
 384	/* Clean 'em. */
 385	for (va =  0; va < (PAGE_SIZE << 1); va += 32) {
 386		spitfire_put_icache_tag(va, 0x0);
 387		spitfire_put_dcache_tag(va, 0x0);
 388	}
 389
 390	/* Re-enable in LSU. */
 391	__asm__ __volatile__("flush %%g6\n\t"
 392			     "membar #Sync\n\t"
 393			     "stxa %0, [%%g0] %1\n\t"
 394			     "membar #Sync"
 395			     : /* no outputs */
 396			     : "r" (LSU_CONTROL_IC | LSU_CONTROL_DC |
 397				    LSU_CONTROL_IM | LSU_CONTROL_DM),
 398			     "i" (ASI_LSU_CONTROL)
 399			     : "memory");
 400}
 401
 402static void spitfire_enable_estate_errors(void)
 403{
 404	__asm__ __volatile__("stxa	%0, [%%g0] %1\n\t"
 405			     "membar	#Sync"
 406			     : /* no outputs */
 407			     : "r" (ESTATE_ERR_ALL),
 408			       "i" (ASI_ESTATE_ERROR_EN));
 409}
 410
 411static char ecc_syndrome_table[] = {
 412	0x4c, 0x40, 0x41, 0x48, 0x42, 0x48, 0x48, 0x49,
 413	0x43, 0x48, 0x48, 0x49, 0x48, 0x49, 0x49, 0x4a,
 414	0x44, 0x48, 0x48, 0x20, 0x48, 0x39, 0x4b, 0x48,
 415	0x48, 0x25, 0x31, 0x48, 0x28, 0x48, 0x48, 0x2c,
 416	0x45, 0x48, 0x48, 0x21, 0x48, 0x3d, 0x04, 0x48,
 417	0x48, 0x4b, 0x35, 0x48, 0x2d, 0x48, 0x48, 0x29,
 418	0x48, 0x00, 0x01, 0x48, 0x0a, 0x48, 0x48, 0x4b,
 419	0x0f, 0x48, 0x48, 0x4b, 0x48, 0x49, 0x49, 0x48,
 420	0x46, 0x48, 0x48, 0x2a, 0x48, 0x3b, 0x27, 0x48,
 421	0x48, 0x4b, 0x33, 0x48, 0x22, 0x48, 0x48, 0x2e,
 422	0x48, 0x19, 0x1d, 0x48, 0x1b, 0x4a, 0x48, 0x4b,
 423	0x1f, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48,
 424	0x48, 0x4b, 0x24, 0x48, 0x07, 0x48, 0x48, 0x36,
 425	0x4b, 0x48, 0x48, 0x3e, 0x48, 0x30, 0x38, 0x48,
 426	0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x16, 0x48,
 427	0x48, 0x12, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b,
 428	0x47, 0x48, 0x48, 0x2f, 0x48, 0x3f, 0x4b, 0x48,
 429	0x48, 0x06, 0x37, 0x48, 0x23, 0x48, 0x48, 0x2b,
 430	0x48, 0x05, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x32,
 431	0x26, 0x48, 0x48, 0x3a, 0x48, 0x34, 0x3c, 0x48,
 432	0x48, 0x11, 0x15, 0x48, 0x13, 0x4a, 0x48, 0x4b,
 433	0x17, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48,
 434	0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x1e, 0x48,
 435	0x48, 0x1a, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b,
 436	0x48, 0x08, 0x0d, 0x48, 0x02, 0x48, 0x48, 0x49,
 437	0x03, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x4b, 0x48,
 438	0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x10, 0x48,
 439	0x48, 0x14, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b,
 440	0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x18, 0x48,
 441	0x48, 0x1c, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b,
 442	0x4a, 0x0c, 0x09, 0x48, 0x0e, 0x48, 0x48, 0x4b,
 443	0x0b, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x4b, 0x4a
 444};
 445
 446static char *syndrome_unknown = "<Unknown>";
 447
 448static void spitfire_log_udb_syndrome(unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long bit)
 449{
 450	unsigned short scode;
 451	char memmod_str[64], *p;
 452
 453	if (udbl & bit) {
 454		scode = ecc_syndrome_table[udbl & 0xff];
 455		if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0)
 456			p = syndrome_unknown;
 457		else
 458			p = memmod_str;
 459		printk(KERN_WARNING "CPU[%d]: UDBL Syndrome[%x] "
 460		       "Memory Module \"%s\"\n",
 461		       smp_processor_id(), scode, p);
 462	}
 463
 464	if (udbh & bit) {
 465		scode = ecc_syndrome_table[udbh & 0xff];
 466		if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0)
 467			p = syndrome_unknown;
 468		else
 469			p = memmod_str;
 470		printk(KERN_WARNING "CPU[%d]: UDBH Syndrome[%x] "
 471		       "Memory Module \"%s\"\n",
 472		       smp_processor_id(), scode, p);
 473	}
 474
 475}
 476
 477static void spitfire_cee_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, int tl1, struct pt_regs *regs)
 478{
 479
 480	printk(KERN_WARNING "CPU[%d]: Correctable ECC Error "
 481	       "AFSR[%lx] AFAR[%016lx] UDBL[%lx] UDBH[%lx] TL>1[%d]\n",
 482	       smp_processor_id(), afsr, afar, udbl, udbh, tl1);
 483
 484	spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_CE);
 485
 486	/* We always log it, even if someone is listening for this
 487	 * trap.
 488	 */
 489	notify_die(DIE_TRAP, "Correctable ECC Error", regs,
 490		   0, TRAP_TYPE_CEE, SIGTRAP);
 491
 492	/* The Correctable ECC Error trap does not disable I/D caches.  So
 493	 * we only have to restore the ESTATE Error Enable register.
 494	 */
 495	spitfire_enable_estate_errors();
 496}
 497
 498static void spitfire_ue_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long tt, int tl1, struct pt_regs *regs)
 499{
 500	siginfo_t info;
 501
 502	printk(KERN_WARNING "CPU[%d]: Uncorrectable Error AFSR[%lx] "
 503	       "AFAR[%lx] UDBL[%lx] UDBH[%ld] TT[%lx] TL>1[%d]\n",
 504	       smp_processor_id(), afsr, afar, udbl, udbh, tt, tl1);
 505
 506	/* XXX add more human friendly logging of the error status
 507	 * XXX as is implemented for cheetah
 508	 */
 509
 510	spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_UE);
 511
 512	/* We always log it, even if someone is listening for this
 513	 * trap.
 514	 */
 515	notify_die(DIE_TRAP, "Uncorrectable Error", regs,
 516		   0, tt, SIGTRAP);
 517
 518	if (regs->tstate & TSTATE_PRIV) {
 519		if (tl1)
 520			dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 521		die_if_kernel("UE", regs);
 522	}
 523
 524	/* XXX need more intelligent processing here, such as is implemented
 525	 * XXX for cheetah errors, in fact if the E-cache still holds the
 526	 * XXX line with bad parity this will loop
 527	 */
 528
 529	spitfire_clean_and_reenable_l1_caches();
 530	spitfire_enable_estate_errors();
 531
 532	if (test_thread_flag(TIF_32BIT)) {
 533		regs->tpc &= 0xffffffff;
 534		regs->tnpc &= 0xffffffff;
 535	}
 536	info.si_signo = SIGBUS;
 537	info.si_errno = 0;
 538	info.si_code = BUS_OBJERR;
 539	info.si_addr = (void *)0;
 540	info.si_trapno = 0;
 541	force_sig_info(SIGBUS, &info, current);
 542}
 543
 544void spitfire_access_error(struct pt_regs *regs, unsigned long status_encoded, unsigned long afar)
 545{
 546	unsigned long afsr, tt, udbh, udbl;
 547	int tl1;
 548
 549	afsr = (status_encoded & SFSTAT_AFSR_MASK) >> SFSTAT_AFSR_SHIFT;
 550	tt = (status_encoded & SFSTAT_TRAP_TYPE) >> SFSTAT_TRAP_TYPE_SHIFT;
 551	tl1 = (status_encoded & SFSTAT_TL_GT_ONE) ? 1 : 0;
 552	udbl = (status_encoded & SFSTAT_UDBL_MASK) >> SFSTAT_UDBL_SHIFT;
 553	udbh = (status_encoded & SFSTAT_UDBH_MASK) >> SFSTAT_UDBH_SHIFT;
 554
 555#ifdef CONFIG_PCI
 556	if (tt == TRAP_TYPE_DAE &&
 557	    pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) {
 558		spitfire_clean_and_reenable_l1_caches();
 559		spitfire_enable_estate_errors();
 560
 561		pci_poke_faulted = 1;
 562		regs->tnpc = regs->tpc + 4;
 563		return;
 564	}
 565#endif
 566
 567	if (afsr & SFAFSR_UE)
 568		spitfire_ue_log(afsr, afar, udbh, udbl, tt, tl1, regs);
 569
 570	if (tt == TRAP_TYPE_CEE) {
 571		/* Handle the case where we took a CEE trap, but ACK'd
 572		 * only the UE state in the UDB error registers.
 573		 */
 574		if (afsr & SFAFSR_UE) {
 575			if (udbh & UDBE_CE) {
 576				__asm__ __volatile__(
 577					"stxa	%0, [%1] %2\n\t"
 578					"membar	#Sync"
 579					: /* no outputs */
 580					: "r" (udbh & UDBE_CE),
 581					  "r" (0x0), "i" (ASI_UDB_ERROR_W));
 582			}
 583			if (udbl & UDBE_CE) {
 584				__asm__ __volatile__(
 585					"stxa	%0, [%1] %2\n\t"
 586					"membar	#Sync"
 587					: /* no outputs */
 588					: "r" (udbl & UDBE_CE),
 589					  "r" (0x18), "i" (ASI_UDB_ERROR_W));
 590			}
 591		}
 592
 593		spitfire_cee_log(afsr, afar, udbh, udbl, tl1, regs);
 594	}
 595}
 596
 597int cheetah_pcache_forced_on;
 598
 599void cheetah_enable_pcache(void)
 600{
 601	unsigned long dcr;
 602
 603	printk("CHEETAH: Enabling P-Cache on cpu %d.\n",
 604	       smp_processor_id());
 605
 606	__asm__ __volatile__("ldxa [%%g0] %1, %0"
 607			     : "=r" (dcr)
 608			     : "i" (ASI_DCU_CONTROL_REG));
 609	dcr |= (DCU_PE | DCU_HPE | DCU_SPE | DCU_SL);
 610	__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
 611			     "membar #Sync"
 612			     : /* no outputs */
 613			     : "r" (dcr), "i" (ASI_DCU_CONTROL_REG));
 614}
 615
 616/* Cheetah error trap handling. */
 617static unsigned long ecache_flush_physbase;
 618static unsigned long ecache_flush_linesize;
 619static unsigned long ecache_flush_size;
 620
 621/* This table is ordered in priority of errors and matches the
 622 * AFAR overwrite policy as well.
 623 */
 624
 625struct afsr_error_table {
 626	unsigned long mask;
 627	const char *name;
 628};
 629
 630static const char CHAFSR_PERR_msg[] =
 631	"System interface protocol error";
 632static const char CHAFSR_IERR_msg[] =
 633	"Internal processor error";
 634static const char CHAFSR_ISAP_msg[] =
 635	"System request parity error on incoming address";
 636static const char CHAFSR_UCU_msg[] =
 637	"Uncorrectable E-cache ECC error for ifetch/data";
 638static const char CHAFSR_UCC_msg[] =
 639	"SW Correctable E-cache ECC error for ifetch/data";
 640static const char CHAFSR_UE_msg[] =
 641	"Uncorrectable system bus data ECC error for read";
 642static const char CHAFSR_EDU_msg[] =
 643	"Uncorrectable E-cache ECC error for stmerge/blkld";
 644static const char CHAFSR_EMU_msg[] =
 645	"Uncorrectable system bus MTAG error";
 646static const char CHAFSR_WDU_msg[] =
 647	"Uncorrectable E-cache ECC error for writeback";
 648static const char CHAFSR_CPU_msg[] =
 649	"Uncorrectable ECC error for copyout";
 650static const char CHAFSR_CE_msg[] =
 651	"HW corrected system bus data ECC error for read";
 652static const char CHAFSR_EDC_msg[] =
 653	"HW corrected E-cache ECC error for stmerge/blkld";
 654static const char CHAFSR_EMC_msg[] =
 655	"HW corrected system bus MTAG ECC error";
 656static const char CHAFSR_WDC_msg[] =
 657	"HW corrected E-cache ECC error for writeback";
 658static const char CHAFSR_CPC_msg[] =
 659	"HW corrected ECC error for copyout";
 660static const char CHAFSR_TO_msg[] =
 661	"Unmapped error from system bus";
 662static const char CHAFSR_BERR_msg[] =
 663	"Bus error response from system bus";
 664static const char CHAFSR_IVC_msg[] =
 665	"HW corrected system bus data ECC error for ivec read";
 666static const char CHAFSR_IVU_msg[] =
 667	"Uncorrectable system bus data ECC error for ivec read";
 668static struct afsr_error_table __cheetah_error_table[] = {
 669	{	CHAFSR_PERR,	CHAFSR_PERR_msg		},
 670	{	CHAFSR_IERR,	CHAFSR_IERR_msg		},
 671	{	CHAFSR_ISAP,	CHAFSR_ISAP_msg		},
 672	{	CHAFSR_UCU,	CHAFSR_UCU_msg		},
 673	{	CHAFSR_UCC,	CHAFSR_UCC_msg		},
 674	{	CHAFSR_UE,	CHAFSR_UE_msg		},
 675	{	CHAFSR_EDU,	CHAFSR_EDU_msg		},
 676	{	CHAFSR_EMU,	CHAFSR_EMU_msg		},
 677	{	CHAFSR_WDU,	CHAFSR_WDU_msg		},
 678	{	CHAFSR_CPU,	CHAFSR_CPU_msg		},
 679	{	CHAFSR_CE,	CHAFSR_CE_msg		},
 680	{	CHAFSR_EDC,	CHAFSR_EDC_msg		},
 681	{	CHAFSR_EMC,	CHAFSR_EMC_msg		},
 682	{	CHAFSR_WDC,	CHAFSR_WDC_msg		},
 683	{	CHAFSR_CPC,	CHAFSR_CPC_msg		},
 684	{	CHAFSR_TO,	CHAFSR_TO_msg		},
 685	{	CHAFSR_BERR,	CHAFSR_BERR_msg		},
 686	/* These two do not update the AFAR. */
 687	{	CHAFSR_IVC,	CHAFSR_IVC_msg		},
 688	{	CHAFSR_IVU,	CHAFSR_IVU_msg		},
 689	{	0,		NULL			},
 690};
 691static const char CHPAFSR_DTO_msg[] =
 692	"System bus unmapped error for prefetch/storequeue-read";
 693static const char CHPAFSR_DBERR_msg[] =
 694	"System bus error for prefetch/storequeue-read";
 695static const char CHPAFSR_THCE_msg[] =
 696	"Hardware corrected E-cache Tag ECC error";
 697static const char CHPAFSR_TSCE_msg[] =
 698	"SW handled correctable E-cache Tag ECC error";
 699static const char CHPAFSR_TUE_msg[] =
 700	"Uncorrectable E-cache Tag ECC error";
 701static const char CHPAFSR_DUE_msg[] =
 702	"System bus uncorrectable data ECC error due to prefetch/store-fill";
 703static struct afsr_error_table __cheetah_plus_error_table[] = {
 704	{	CHAFSR_PERR,	CHAFSR_PERR_msg		},
 705	{	CHAFSR_IERR,	CHAFSR_IERR_msg		},
 706	{	CHAFSR_ISAP,	CHAFSR_ISAP_msg		},
 707	{	CHAFSR_UCU,	CHAFSR_UCU_msg		},
 708	{	CHAFSR_UCC,	CHAFSR_UCC_msg		},
 709	{	CHAFSR_UE,	CHAFSR_UE_msg		},
 710	{	CHAFSR_EDU,	CHAFSR_EDU_msg		},
 711	{	CHAFSR_EMU,	CHAFSR_EMU_msg		},
 712	{	CHAFSR_WDU,	CHAFSR_WDU_msg		},
 713	{	CHAFSR_CPU,	CHAFSR_CPU_msg		},
 714	{	CHAFSR_CE,	CHAFSR_CE_msg		},
 715	{	CHAFSR_EDC,	CHAFSR_EDC_msg		},
 716	{	CHAFSR_EMC,	CHAFSR_EMC_msg		},
 717	{	CHAFSR_WDC,	CHAFSR_WDC_msg		},
 718	{	CHAFSR_CPC,	CHAFSR_CPC_msg		},
 719	{	CHAFSR_TO,	CHAFSR_TO_msg		},
 720	{	CHAFSR_BERR,	CHAFSR_BERR_msg		},
 721	{	CHPAFSR_DTO,	CHPAFSR_DTO_msg		},
 722	{	CHPAFSR_DBERR,	CHPAFSR_DBERR_msg	},
 723	{	CHPAFSR_THCE,	CHPAFSR_THCE_msg	},
 724	{	CHPAFSR_TSCE,	CHPAFSR_TSCE_msg	},
 725	{	CHPAFSR_TUE,	CHPAFSR_TUE_msg		},
 726	{	CHPAFSR_DUE,	CHPAFSR_DUE_msg		},
 727	/* These two do not update the AFAR. */
 728	{	CHAFSR_IVC,	CHAFSR_IVC_msg		},
 729	{	CHAFSR_IVU,	CHAFSR_IVU_msg		},
 730	{	0,		NULL			},
 731};
 732static const char JPAFSR_JETO_msg[] =
 733	"System interface protocol error, hw timeout caused";
 734static const char JPAFSR_SCE_msg[] =
 735	"Parity error on system snoop results";
 736static const char JPAFSR_JEIC_msg[] =
 737	"System interface protocol error, illegal command detected";
 738static const char JPAFSR_JEIT_msg[] =
 739	"System interface protocol error, illegal ADTYPE detected";
 740static const char JPAFSR_OM_msg[] =
 741	"Out of range memory error has occurred";
 742static const char JPAFSR_ETP_msg[] =
 743	"Parity error on L2 cache tag SRAM";
 744static const char JPAFSR_UMS_msg[] =
 745	"Error due to unsupported store";
 746static const char JPAFSR_RUE_msg[] =
 747	"Uncorrectable ECC error from remote cache/memory";
 748static const char JPAFSR_RCE_msg[] =
 749	"Correctable ECC error from remote cache/memory";
 750static const char JPAFSR_BP_msg[] =
 751	"JBUS parity error on returned read data";
 752static const char JPAFSR_WBP_msg[] =
 753	"JBUS parity error on data for writeback or block store";
 754static const char JPAFSR_FRC_msg[] =
 755	"Foreign read to DRAM incurring correctable ECC error";
 756static const char JPAFSR_FRU_msg[] =
 757	"Foreign read to DRAM incurring uncorrectable ECC error";
 758static struct afsr_error_table __jalapeno_error_table[] = {
 759	{	JPAFSR_JETO,	JPAFSR_JETO_msg		},
 760	{	JPAFSR_SCE,	JPAFSR_SCE_msg		},
 761	{	JPAFSR_JEIC,	JPAFSR_JEIC_msg		},
 762	{	JPAFSR_JEIT,	JPAFSR_JEIT_msg		},
 763	{	CHAFSR_PERR,	CHAFSR_PERR_msg		},
 764	{	CHAFSR_IERR,	CHAFSR_IERR_msg		},
 765	{	CHAFSR_ISAP,	CHAFSR_ISAP_msg		},
 766	{	CHAFSR_UCU,	CHAFSR_UCU_msg		},
 767	{	CHAFSR_UCC,	CHAFSR_UCC_msg		},
 768	{	CHAFSR_UE,	CHAFSR_UE_msg		},
 769	{	CHAFSR_EDU,	CHAFSR_EDU_msg		},
 770	{	JPAFSR_OM,	JPAFSR_OM_msg		},
 771	{	CHAFSR_WDU,	CHAFSR_WDU_msg		},
 772	{	CHAFSR_CPU,	CHAFSR_CPU_msg		},
 773	{	CHAFSR_CE,	CHAFSR_CE_msg		},
 774	{	CHAFSR_EDC,	CHAFSR_EDC_msg		},
 775	{	JPAFSR_ETP,	JPAFSR_ETP_msg		},
 776	{	CHAFSR_WDC,	CHAFSR_WDC_msg		},
 777	{	CHAFSR_CPC,	CHAFSR_CPC_msg		},
 778	{	CHAFSR_TO,	CHAFSR_TO_msg		},
 779	{	CHAFSR_BERR,	CHAFSR_BERR_msg		},
 780	{	JPAFSR_UMS,	JPAFSR_UMS_msg		},
 781	{	JPAFSR_RUE,	JPAFSR_RUE_msg		},
 782	{	JPAFSR_RCE,	JPAFSR_RCE_msg		},
 783	{	JPAFSR_BP,	JPAFSR_BP_msg		},
 784	{	JPAFSR_WBP,	JPAFSR_WBP_msg		},
 785	{	JPAFSR_FRC,	JPAFSR_FRC_msg		},
 786	{	JPAFSR_FRU,	JPAFSR_FRU_msg		},
 787	/* These two do not update the AFAR. */
 788	{	CHAFSR_IVU,	CHAFSR_IVU_msg		},
 789	{	0,		NULL			},
 790};
 791static struct afsr_error_table *cheetah_error_table;
 792static unsigned long cheetah_afsr_errors;
 793
 794struct cheetah_err_info *cheetah_error_log;
 795
 796static inline struct cheetah_err_info *cheetah_get_error_log(unsigned long afsr)
 797{
 798	struct cheetah_err_info *p;
 799	int cpu = smp_processor_id();
 800
 801	if (!cheetah_error_log)
 802		return NULL;
 803
 804	p = cheetah_error_log + (cpu * 2);
 805	if ((afsr & CHAFSR_TL1) != 0UL)
 806		p++;
 807
 808	return p;
 809}
 810
 811extern unsigned int tl0_icpe[], tl1_icpe[];
 812extern unsigned int tl0_dcpe[], tl1_dcpe[];
 813extern unsigned int tl0_fecc[], tl1_fecc[];
 814extern unsigned int tl0_cee[], tl1_cee[];
 815extern unsigned int tl0_iae[], tl1_iae[];
 816extern unsigned int tl0_dae[], tl1_dae[];
 817extern unsigned int cheetah_plus_icpe_trap_vector[], cheetah_plus_icpe_trap_vector_tl1[];
 818extern unsigned int cheetah_plus_dcpe_trap_vector[], cheetah_plus_dcpe_trap_vector_tl1[];
 819extern unsigned int cheetah_fecc_trap_vector[], cheetah_fecc_trap_vector_tl1[];
 820extern unsigned int cheetah_cee_trap_vector[], cheetah_cee_trap_vector_tl1[];
 821extern unsigned int cheetah_deferred_trap_vector[], cheetah_deferred_trap_vector_tl1[];
 822
 823void __init cheetah_ecache_flush_init(void)
 824{
 825	unsigned long largest_size, smallest_linesize, order, ver;
 826	int i, sz;
 827
 828	/* Scan all cpu device tree nodes, note two values:
 829	 * 1) largest E-cache size
 830	 * 2) smallest E-cache line size
 831	 */
 832	largest_size = 0UL;
 833	smallest_linesize = ~0UL;
 834
 835	for (i = 0; i < NR_CPUS; i++) {
 836		unsigned long val;
 837
 838		val = cpu_data(i).ecache_size;
 839		if (!val)
 840			continue;
 841
 842		if (val > largest_size)
 843			largest_size = val;
 844
 845		val = cpu_data(i).ecache_line_size;
 846		if (val < smallest_linesize)
 847			smallest_linesize = val;
 848
 849	}
 850
 851	if (largest_size == 0UL || smallest_linesize == ~0UL) {
 852		prom_printf("cheetah_ecache_flush_init: Cannot probe cpu E-cache "
 853			    "parameters.\n");
 854		prom_halt();
 855	}
 856
 857	ecache_flush_size = (2 * largest_size);
 858	ecache_flush_linesize = smallest_linesize;
 859
 860	ecache_flush_physbase = find_ecache_flush_span(ecache_flush_size);
 861
 862	if (ecache_flush_physbase == ~0UL) {
 863		prom_printf("cheetah_ecache_flush_init: Cannot find %ld byte "
 864			    "contiguous physical memory.\n",
 865			    ecache_flush_size);
 866		prom_halt();
 867	}
 868
 869	/* Now allocate error trap reporting scoreboard. */
 870	sz = NR_CPUS * (2 * sizeof(struct cheetah_err_info));
 871	for (order = 0; order < MAX_ORDER; order++) {
 872		if ((PAGE_SIZE << order) >= sz)
 873			break;
 874	}
 875	cheetah_error_log = (struct cheetah_err_info *)
 876		__get_free_pages(GFP_KERNEL, order);
 877	if (!cheetah_error_log) {
 878		prom_printf("cheetah_ecache_flush_init: Failed to allocate "
 879			    "error logging scoreboard (%d bytes).\n", sz);
 880		prom_halt();
 881	}
 882	memset(cheetah_error_log, 0, PAGE_SIZE << order);
 883
 884	/* Mark all AFSRs as invalid so that the trap handler will
 885	 * log new new information there.
 886	 */
 887	for (i = 0; i < 2 * NR_CPUS; i++)
 888		cheetah_error_log[i].afsr = CHAFSR_INVALID;
 889
 890	__asm__ ("rdpr %%ver, %0" : "=r" (ver));
 891	if ((ver >> 32) == __JALAPENO_ID ||
 892	    (ver >> 32) == __SERRANO_ID) {
 893		cheetah_error_table = &__jalapeno_error_table[0];
 894		cheetah_afsr_errors = JPAFSR_ERRORS;
 895	} else if ((ver >> 32) == 0x003e0015) {
 896		cheetah_error_table = &__cheetah_plus_error_table[0];
 897		cheetah_afsr_errors = CHPAFSR_ERRORS;
 898	} else {
 899		cheetah_error_table = &__cheetah_error_table[0];
 900		cheetah_afsr_errors = CHAFSR_ERRORS;
 901	}
 902
 903	/* Now patch trap tables. */
 904	memcpy(tl0_fecc, cheetah_fecc_trap_vector, (8 * 4));
 905	memcpy(tl1_fecc, cheetah_fecc_trap_vector_tl1, (8 * 4));
 906	memcpy(tl0_cee, cheetah_cee_trap_vector, (8 * 4));
 907	memcpy(tl1_cee, cheetah_cee_trap_vector_tl1, (8 * 4));
 908	memcpy(tl0_iae, cheetah_deferred_trap_vector, (8 * 4));
 909	memcpy(tl1_iae, cheetah_deferred_trap_vector_tl1, (8 * 4));
 910	memcpy(tl0_dae, cheetah_deferred_trap_vector, (8 * 4));
 911	memcpy(tl1_dae, cheetah_deferred_trap_vector_tl1, (8 * 4));
 912	if (tlb_type == cheetah_plus) {
 913		memcpy(tl0_dcpe, cheetah_plus_dcpe_trap_vector, (8 * 4));
 914		memcpy(tl1_dcpe, cheetah_plus_dcpe_trap_vector_tl1, (8 * 4));
 915		memcpy(tl0_icpe, cheetah_plus_icpe_trap_vector, (8 * 4));
 916		memcpy(tl1_icpe, cheetah_plus_icpe_trap_vector_tl1, (8 * 4));
 917	}
 918	flushi(PAGE_OFFSET);
 919}
 920
 921static void cheetah_flush_ecache(void)
 922{
 923	unsigned long flush_base = ecache_flush_physbase;
 924	unsigned long flush_linesize = ecache_flush_linesize;
 925	unsigned long flush_size = ecache_flush_size;
 926
 927	__asm__ __volatile__("1: subcc	%0, %4, %0\n\t"
 928			     "   bne,pt	%%xcc, 1b\n\t"
 929			     "    ldxa	[%2 + %0] %3, %%g0\n\t"
 930			     : "=&r" (flush_size)
 931			     : "0" (flush_size), "r" (flush_base),
 932			       "i" (ASI_PHYS_USE_EC), "r" (flush_linesize));
 933}
 934
 935static void cheetah_flush_ecache_line(unsigned long physaddr)
 936{
 937	unsigned long alias;
 938
 939	physaddr &= ~(8UL - 1UL);
 940	physaddr = (ecache_flush_physbase +
 941		    (physaddr & ((ecache_flush_size>>1UL) - 1UL)));
 942	alias = physaddr + (ecache_flush_size >> 1UL);
 943	__asm__ __volatile__("ldxa [%0] %2, %%g0\n\t"
 944			     "ldxa [%1] %2, %%g0\n\t"
 945			     "membar #Sync"
 946			     : /* no outputs */
 947			     : "r" (physaddr), "r" (alias),
 948			       "i" (ASI_PHYS_USE_EC));
 949}
 950
 951/* Unfortunately, the diagnostic access to the I-cache tags we need to
 952 * use to clear the thing interferes with I-cache coherency transactions.
 953 *
 954 * So we must only flush the I-cache when it is disabled.
 955 */
 956static void __cheetah_flush_icache(void)
 957{
 958	unsigned int icache_size, icache_line_size;
 959	unsigned long addr;
 960
 961	icache_size = local_cpu_data().icache_size;
 962	icache_line_size = local_cpu_data().icache_line_size;
 963
 964	/* Clear the valid bits in all the tags. */
 965	for (addr = 0; addr < icache_size; addr += icache_line_size) {
 966		__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
 967				     "membar #Sync"
 968				     : /* no outputs */
 969				     : "r" (addr | (2 << 3)),
 970				       "i" (ASI_IC_TAG));
 971	}
 972}
 973
 974static void cheetah_flush_icache(void)
 975{
 976	unsigned long dcu_save;
 977
 978	/* Save current DCU, disable I-cache. */
 979	__asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
 980			     "or %0, %2, %%g1\n\t"
 981			     "stxa %%g1, [%%g0] %1\n\t"
 982			     "membar #Sync"
 983			     : "=r" (dcu_save)
 984			     : "i" (ASI_DCU_CONTROL_REG), "i" (DCU_IC)
 985			     : "g1");
 986
 987	__cheetah_flush_icache();
 988
 989	/* Restore DCU register */
 990	__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
 991			     "membar #Sync"
 992			     : /* no outputs */
 993			     : "r" (dcu_save), "i" (ASI_DCU_CONTROL_REG));
 994}
 995
 996static void cheetah_flush_dcache(void)
 997{
 998	unsigned int dcache_size, dcache_line_size;
 999	unsigned long addr;
1000
1001	dcache_size = local_cpu_data().dcache_size;
1002	dcache_line_size = local_cpu_data().dcache_line_size;
1003
1004	for (addr = 0; addr < dcache_size; addr += dcache_line_size) {
1005		__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
1006				     "membar #Sync"
1007				     : /* no outputs */
1008				     : "r" (addr), "i" (ASI_DCACHE_TAG));
1009	}
1010}
1011
1012/* In order to make the even parity correct we must do two things.
1013 * First, we clear DC_data_parity and set DC_utag to an appropriate value.
1014 * Next, we clear out all 32-bytes of data for that line.  Data of
1015 * all-zero + tag parity value of zero == correct parity.
1016 */
1017static void cheetah_plus_zap_dcache_parity(void)
1018{
1019	unsigned int dcache_size, dcache_line_size;
1020	unsigned long addr;
1021
1022	dcache_size = local_cpu_data().dcache_size;
1023	dcache_line_size = local_cpu_data().dcache_line_size;
1024
1025	for (addr = 0; addr < dcache_size; addr += dcache_line_size) {
1026		unsigned long tag = (addr >> 14);
1027		unsigned long line;
1028
1029		__asm__ __volatile__("membar	#Sync\n\t"
1030				     "stxa	%0, [%1] %2\n\t"
1031				     "membar	#Sync"
1032				     : /* no outputs */
1033				     : "r" (tag), "r" (addr),
1034				       "i" (ASI_DCACHE_UTAG));
1035		for (line = addr; line < addr + dcache_line_size; line += 8)
1036			__asm__ __volatile__("membar	#Sync\n\t"
1037					     "stxa	%%g0, [%0] %1\n\t"
1038					     "membar	#Sync"
1039					     : /* no outputs */
1040					     : "r" (line),
1041					       "i" (ASI_DCACHE_DATA));
1042	}
1043}
1044
1045/* Conversion tables used to frob Cheetah AFSR syndrome values into
1046 * something palatable to the memory controller driver get_unumber
1047 * routine.
1048 */
1049#define MT0	137
1050#define MT1	138
1051#define MT2	139
1052#define NONE	254
1053#define MTC0	140
1054#define MTC1	141
1055#define MTC2	142
1056#define MTC3	143
1057#define C0	128
1058#define C1	129
1059#define C2	130
1060#define C3	131
1061#define C4	132
1062#define C5	133
1063#define C6	134
1064#define C7	135
1065#define C8	136
1066#define M2	144
1067#define M3	145
1068#define M4	146
1069#define M	147
1070static unsigned char cheetah_ecc_syntab[] = {
1071/*00*/NONE, C0, C1, M2, C2, M2, M3, 47, C3, M2, M2, 53, M2, 41, 29, M,
1072/*01*/C4, M, M, 50, M2, 38, 25, M2, M2, 33, 24, M2, 11, M, M2, 16,
1073/*02*/C5, M, M, 46, M2, 37, 19, M2, M, 31, 32, M, 7, M2, M2, 10,
1074/*03*/M2, 40, 13, M2, 59, M, M2, 66, M, M2, M2, 0, M2, 67, 71, M,
1075/*04*/C6, M, M, 43, M, 36, 18, M, M2, 49, 15, M, 63, M2, M2, 6,
1076/*05*/M2, 44, 28, M2, M, M2, M2, 52, 68, M2, M2, 62, M2, M3, M3, M4,
1077/*06*/M2, 26, 106, M2, 64, M, M2, 2, 120, M, M2, M3, M, M3, M3, M4,
1078/*07*/116, M2, M2, M3, M2, M3, M, M4, M2, 58, 54, M2, M, M4, M4, M3,
1079/*08*/C7, M2, M, 42, M, 35, 17, M2, M, 45, 14, M2, 21, M2, M2, 5,
1080/*09*/M, 27, M, M, 99, M, M, 3, 114, M2, M2, 20, M2, M3, M3, M,
1081/*0a*/M2, 23, 113, M2, 112, M2, M, 51, 95, M, M2, M3, M2, M3, M3, M2,
1082/*0b*/103, M, M2, M3, M2, M3, M3, M4, M2, 48, M, M, 73, M2, M, M3,
1083/*0c*/M2, 22, 110, M2, 109, M2, M, 9, 108, M2, M, M3, M2, M3, M3, M,
1084/*0d*/102, M2, M, M, M2, M3, M3, M, M2, M3, M3, M2, M, M4, M, M3,
1085/*0e*/98, M, M2, M3, M2, M, M3, M4, M2, M3, M3, M4, M3, M, M, M,
1086/*0f*/M2, M3, M3, M, M3, M, M, M, 56, M4, M, M3, M4, M, M, M,
1087/*10*/C8, M, M2, 39, M, 34, 105, M2, M, 30, 104, M, 101, M, M, 4,
1088/*11*/M, M, 100, M, 83, M, M2, 12, 87, M, M, 57, M2, M, M3, M,
1089/*12*/M2, 97, 82, M2, 78, M2, M2, 1, 96, M, M, M, M, M, M3, M2,
1090/*13*/94, M, M2, M3, M2, M, M3, M, M2, M, 79, M, 69, M, M4, M,
1091/*14*/M2, 93, 92, M, 91, M, M2, 8, 90, M2, M2, M, M, M, M, M4,
1092/*15*/89, M, M, M3, M2, M3, M3, M, M, M, M3, M2, M3, M2, M, M3,
1093/*16*/86, M, M2, M3, M2, M, M3, M, M2, M, M3, M, M3, M, M, M3,
1094/*17*/M, M, M3, M2, M3, M2, M4, M, 60, M, M2, M3, M4, M, M, M2,
1095/*18*/M2, 88, 85, M2, 84, M, M2, 55, 81, M2, M2, M3, M2, M3, M3, M4,
1096/*19*/77, M, M, M, M2, M3, M, M, M2, M3, M3, M4, M3, M2, M, M,
1097/*1a*/74, M, M2, M3, M, M, M3, M, M, M, M3, M, M3, M, M4, M3,
1098/*1b*/M2, 70, 107, M4, 65, M2, M2, M, 127, M, M, M, M2, M3, M3, M,
1099/*1c*/80, M2, M2, 72, M, 119, 118, M, M2, 126, 76, M, 125, M, M4, M3,
1100/*1d*/M2, 115, 124, M, 75, M, M, M3, 61, M, M4, M, M4, M, M, M,
1101/*1e*/M, 123, 122, M4, 121, M4, M, M3, 117, M2, M2, M3, M4, M3, M, M,
1102/*1f*/111, M, M, M, M4, M3, M3, M, M, M, M3, M, M3, M2, M, M
1103};
1104static unsigned char cheetah_mtag_syntab[] = {
1105       NONE, MTC0,
1106       MTC1, NONE,
1107       MTC2, NONE,
1108       NONE, MT0,
1109       MTC3, NONE,
1110       NONE, MT1,
1111       NONE, MT2,
1112       NONE, NONE
1113};
1114
1115/* Return the highest priority error conditon mentioned. */
1116static inline unsigned long cheetah_get_hipri(unsigned long afsr)
1117{
1118	unsigned long tmp = 0;
1119	int i;
1120
1121	for (i = 0; cheetah_error_table[i].mask; i++) {
1122		if ((tmp = (afsr & cheetah_error_table[i].mask)) != 0UL)
1123			return tmp;
1124	}
1125	return tmp;
1126}
1127
1128static const char *cheetah_get_string(unsigned long bit)
1129{
1130	int i;
1131
1132	for (i = 0; cheetah_error_table[i].mask; i++) {
1133		if ((bit & cheetah_error_table[i].mask) != 0UL)
1134			return cheetah_error_table[i].name;
1135	}
1136	return "???";
1137}
1138
1139static void cheetah_log_errors(struct pt_regs *regs, struct cheetah_err_info *info,
1140			       unsigned long afsr, unsigned long afar, int recoverable)
1141{
1142	unsigned long hipri;
1143	char unum[256];
1144
1145	printk("%s" "ERROR(%d): Cheetah error trap taken afsr[%016lx] afar[%016lx] TL1(%d)\n",
1146	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1147	       afsr, afar,
1148	       (afsr & CHAFSR_TL1) ? 1 : 0);
1149	printk("%s" "ERROR(%d): TPC[%lx] TNPC[%lx] O7[%lx] TSTATE[%lx]\n",
1150	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1151	       regs->tpc, regs->tnpc, regs->u_regs[UREG_I7], regs->tstate);
1152	printk("%s" "ERROR(%d): ",
1153	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id());
1154	printk("TPC<%pS>\n", (void *) regs->tpc);
1155	printk("%s" "ERROR(%d): M_SYND(%lx),  E_SYND(%lx)%s%s\n",
1156	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1157	       (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT,
1158	       (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT,
1159	       (afsr & CHAFSR_ME) ? ", Multiple Errors" : "",
1160	       (afsr & CHAFSR_PRIV) ? ", Privileged" : "");
1161	hipri = cheetah_get_hipri(afsr);
1162	printk("%s" "ERROR(%d): Highest priority error (%016lx) \"%s\"\n",
1163	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1164	       hipri, cheetah_get_string(hipri));
1165
1166	/* Try to get unumber if relevant. */
1167#define ESYND_ERRORS	(CHAFSR_IVC | CHAFSR_IVU | \
1168			 CHAFSR_CPC | CHAFSR_CPU | \
1169			 CHAFSR_UE  | CHAFSR_CE  | \
1170			 CHAFSR_EDC | CHAFSR_EDU  | \
1171			 CHAFSR_UCC | CHAFSR_UCU  | \
1172			 CHAFSR_WDU | CHAFSR_WDC)
1173#define MSYND_ERRORS	(CHAFSR_EMC | CHAFSR_EMU)
1174	if (afsr & ESYND_ERRORS) {
1175		int syndrome;
1176		int ret;
1177
1178		syndrome = (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT;
1179		syndrome = cheetah_ecc_syntab[syndrome];
1180		ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum));
1181		if (ret != -1)
1182			printk("%s" "ERROR(%d): AFAR E-syndrome [%s]\n",
1183			       (recoverable ? KERN_WARNING : KERN_CRIT),
1184			       smp_processor_id(), unum);
1185	} else if (afsr & MSYND_ERRORS) {
1186		int syndrome;
1187		int ret;
1188
1189		syndrome = (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT;
1190		syndrome = cheetah_mtag_syntab[syndrome];
1191		ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum));
1192		if (ret != -1)
1193			printk("%s" "ERROR(%d): AFAR M-syndrome [%s]\n",
1194			       (recoverable ? KERN_WARNING : KERN_CRIT),
1195			       smp_processor_id(), unum);
1196	}
1197
1198	/* Now dump the cache snapshots. */
1199	printk("%s" "ERROR(%d): D-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx]\n",
1200	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1201	       (int) info->dcache_index,
1202	       info->dcache_tag,
1203	       info->dcache_utag,
1204	       info->dcache_stag);
1205	printk("%s" "ERROR(%d): D-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n",
1206	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1207	       info->dcache_data[0],
1208	       info->dcache_data[1],
1209	       info->dcache_data[2],
1210	       info->dcache_data[3]);
1211	printk("%s" "ERROR(%d): I-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx] "
1212	       "u[%016llx] l[%016llx]\n",
1213	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1214	       (int) info->icache_index,
1215	       info->icache_tag,
1216	       info->icache_utag,
1217	       info->icache_stag,
1218	       info->icache_upper,
1219	       info->icache_lower);
1220	printk("%s" "ERROR(%d): I-cache INSN0[%016llx] INSN1[%016llx] INSN2[%016llx] INSN3[%016llx]\n",
1221	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1222	       info->icache_data[0],
1223	       info->icache_data[1],
1224	       info->icache_data[2],
1225	       info->icache_data[3]);
1226	printk("%s" "ERROR(%d): I-cache INSN4[%016llx] INSN5[%016llx] INSN6[%016llx] INSN7[%016llx]\n",
1227	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1228	       info->icache_data[4],
1229	       info->icache_data[5],
1230	       info->icache_data[6],
1231	       info->icache_data[7]);
1232	printk("%s" "ERROR(%d): E-cache idx[%x] tag[%016llx]\n",
1233	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1234	       (int) info->ecache_index, info->ecache_tag);
1235	printk("%s" "ERROR(%d): E-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n",
1236	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1237	       info->ecache_data[0],
1238	       info->ecache_data[1],
1239	       info->ecache_data[2],
1240	       info->ecache_data[3]);
1241
1242	afsr = (afsr & ~hipri) & cheetah_afsr_errors;
1243	while (afsr != 0UL) {
1244		unsigned long bit = cheetah_get_hipri(afsr);
1245
1246		printk("%s" "ERROR: Multiple-error (%016lx) \"%s\"\n",
1247		       (recoverable ? KERN_WARNING : KERN_CRIT),
1248		       bit, cheetah_get_string(bit));
1249
1250		afsr &= ~bit;
1251	}
1252
1253	if (!recoverable)
1254		printk(KERN_CRIT "ERROR: This condition is not recoverable.\n");
1255}
1256
1257static int cheetah_recheck_errors(struct cheetah_err_info *logp)
1258{
1259	unsigned long afsr, afar;
1260	int ret = 0;
1261
1262	__asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1263			     : "=r" (afsr)
1264			     : "i" (ASI_AFSR));
1265	if ((afsr & cheetah_afsr_errors) != 0) {
1266		if (logp != NULL) {
1267			__asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1268					     : "=r" (afar)
1269					     : "i" (ASI_AFAR));
1270			logp->afsr = afsr;
1271			logp->afar = afar;
1272		}
1273		ret = 1;
1274	}
1275	__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
1276			     "membar #Sync\n\t"
1277			     : : "r" (afsr), "i" (ASI_AFSR));
1278
1279	return ret;
1280}
1281
1282void cheetah_fecc_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1283{
1284	struct cheetah_err_info local_snapshot, *p;
1285	int recoverable;
1286
1287	/* Flush E-cache */
1288	cheetah_flush_ecache();
1289
1290	p = cheetah_get_error_log(afsr);
1291	if (!p) {
1292		prom_printf("ERROR: Early Fast-ECC error afsr[%016lx] afar[%016lx]\n",
1293			    afsr, afar);
1294		prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1295			    smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1296		prom_halt();
1297	}
1298
1299	/* Grab snapshot of logged error. */
1300	memcpy(&local_snapshot, p, sizeof(local_snapshot));
1301
1302	/* If the current trap snapshot does not match what the
1303	 * trap handler passed along into our args, big trouble.
1304	 * In such a case, mark the local copy as invalid.
1305	 *
1306	 * Else, it matches and we mark the afsr in the non-local
1307	 * copy as invalid so we may log new error traps there.
1308	 */
1309	if (p->afsr != afsr || p->afar != afar)
1310		local_snapshot.afsr = CHAFSR_INVALID;
1311	else
1312		p->afsr = CHAFSR_INVALID;
1313
1314	cheetah_flush_icache();
1315	cheetah_flush_dcache();
1316
1317	/* Re-enable I-cache/D-cache */
1318	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1319			     "or %%g1, %1, %%g1\n\t"
1320			     "stxa %%g1, [%%g0] %0\n\t"
1321			     "membar #Sync"
1322			     : /* no outputs */
1323			     : "i" (ASI_DCU_CONTROL_REG),
1324			       "i" (DCU_DC | DCU_IC)
1325			     : "g1");
1326
1327	/* Re-enable error reporting */
1328	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1329			     "or %%g1, %1, %%g1\n\t"
1330			     "stxa %%g1, [%%g0] %0\n\t"
1331			     "membar #Sync"
1332			     : /* no outputs */
1333			     : "i" (ASI_ESTATE_ERROR_EN),
1334			       "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1335			     : "g1");
1336
1337	/* Decide if we can continue after handling this trap and
1338	 * logging the error.
1339	 */
1340	recoverable = 1;
1341	if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1342		recoverable = 0;
1343
1344	/* Re-check AFSR/AFAR.  What we are looking for here is whether a new
1345	 * error was logged while we had error reporting traps disabled.
1346	 */
1347	if (cheetah_recheck_errors(&local_snapshot)) {
1348		unsigned long new_afsr = local_snapshot.afsr;
1349
1350		/* If we got a new asynchronous error, die... */
1351		if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU |
1352				CHAFSR_WDU | CHAFSR_CPU |
1353				CHAFSR_IVU | CHAFSR_UE |
1354				CHAFSR_BERR | CHAFSR_TO))
1355			recoverable = 0;
1356	}
1357
1358	/* Log errors. */
1359	cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1360
1361	if (!recoverable)
1362		panic("Irrecoverable Fast-ECC error trap.\n");
1363
1364	/* Flush E-cache to kick the error trap handlers out. */
1365	cheetah_flush_ecache();
1366}
1367
1368/* Try to fix a correctable error by pushing the line out from
1369 * the E-cache.  Recheck error reporting registers to see if the
1370 * problem is intermittent.
1371 */
1372static int cheetah_fix_ce(unsigned long physaddr)
1373{
1374	unsigned long orig_estate;
1375	unsigned long alias1, alias2;
1376	int ret;
1377
1378	/* Make sure correctable error traps are disabled. */
1379	__asm__ __volatile__("ldxa	[%%g0] %2, %0\n\t"
1380			     "andn	%0, %1, %%g1\n\t"
1381			     "stxa	%%g1, [%%g0] %2\n\t"
1382			     "membar	#Sync"
1383			     : "=&r" (orig_estate)
1384			     : "i" (ESTATE_ERROR_CEEN),
1385			       "i" (ASI_ESTATE_ERROR_EN)
1386			     : "g1");
1387
1388	/* We calculate alias addresses that will force the
1389	 * cache line in question out of the E-cache.  Then
1390	 * we bring it back in with an atomic instruction so
1391	 * that we get it in some modified/exclusive state,
1392	 * then we displace it again to try and get proper ECC
1393	 * pushed back into the system.
1394	 */
1395	physaddr &= ~(8UL - 1UL);
1396	alias1 = (ecache_flush_physbase +
1397		  (physaddr & ((ecache_flush_size >> 1) - 1)));
1398	alias2 = alias1 + (ecache_flush_size >> 1);
1399	__asm__ __volatile__("ldxa	[%0] %3, %%g0\n\t"
1400			     "ldxa	[%1] %3, %%g0\n\t"
1401			     "casxa	[%2] %3, %%g0, %%g0\n\t"
1402			     "ldxa	[%0] %3, %%g0\n\t"
1403			     "ldxa	[%1] %3, %%g0\n\t"
1404			     "membar	#Sync"
1405			     : /* no outputs */
1406			     : "r" (alias1), "r" (alias2),
1407			       "r" (physaddr), "i" (ASI_PHYS_USE_EC));
1408
1409	/* Did that trigger another error? */
1410	if (cheetah_recheck_errors(NULL)) {
1411		/* Try one more time. */
1412		__asm__ __volatile__("ldxa [%0] %1, %%g0\n\t"
1413				     "membar #Sync"
1414				     : : "r" (physaddr), "i" (ASI_PHYS_USE_EC));
1415		if (cheetah_recheck_errors(NULL))
1416			ret = 2;
1417		else
1418			ret = 1;
1419	} else {
1420		/* No new error, intermittent problem. */
1421		ret = 0;
1422	}
1423
1424	/* Restore error enables. */
1425	__asm__ __volatile__("stxa	%0, [%%g0] %1\n\t"
1426			     "membar	#Sync"
1427			     : : "r" (orig_estate), "i" (ASI_ESTATE_ERROR_EN));
1428
1429	return ret;
1430}
1431
1432/* Return non-zero if PADDR is a valid physical memory address. */
1433static int cheetah_check_main_memory(unsigned long paddr)
1434{
1435	unsigned long vaddr = PAGE_OFFSET + paddr;
1436
1437	if (vaddr > (unsigned long) high_memory)
1438		return 0;
1439
1440	return kern_addr_valid(vaddr);
1441}
1442
1443void cheetah_cee_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1444{
1445	struct cheetah_err_info local_snapshot, *p;
1446	int recoverable, is_memory;
1447
1448	p = cheetah_get_error_log(afsr);
1449	if (!p) {
1450		prom_printf("ERROR: Early CEE error afsr[%016lx] afar[%016lx]\n",
1451			    afsr, afar);
1452		prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1453			    smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1454		prom_halt();
1455	}
1456
1457	/* Grab snapshot of logged error. */
1458	memcpy(&local_snapshot, p, sizeof(local_snapshot));
1459
1460	/* If the current trap snapshot does not match what the
1461	 * trap handler passed along into our args, big trouble.
1462	 * In such a case, mark the local copy as invalid.
1463	 *
1464	 * Else, it matches and we mark the afsr in the non-local
1465	 * copy as invalid so we may log new error traps there.
1466	 */
1467	if (p->afsr != afsr || p->afar != afar)
1468		local_snapshot.afsr = CHAFSR_INVALID;
1469	else
1470		p->afsr = CHAFSR_INVALID;
1471
1472	is_memory = cheetah_check_main_memory(afar);
1473
1474	if (is_memory && (afsr & CHAFSR_CE) != 0UL) {
1475		/* XXX Might want to log the results of this operation
1476		 * XXX somewhere... -DaveM
1477		 */
1478		cheetah_fix_ce(afar);
1479	}
1480
1481	{
1482		int flush_all, flush_line;
1483
1484		flush_all = flush_line = 0;
1485		if ((afsr & CHAFSR_EDC) != 0UL) {
1486			if ((afsr & cheetah_afsr_errors) == CHAFSR_EDC)
1487				flush_line = 1;
1488			else
1489				flush_all = 1;
1490		} else if ((afsr & CHAFSR_CPC) != 0UL) {
1491			if ((afsr & cheetah_afsr_errors) == CHAFSR_CPC)
1492				flush_line = 1;
1493			else
1494				flush_all = 1;
1495		}
1496
1497		/* Trap handler only disabled I-cache, flush it. */
1498		cheetah_flush_icache();
1499
1500		/* Re-enable I-cache */
1501		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1502				     "or %%g1, %1, %%g1\n\t"
1503				     "stxa %%g1, [%%g0] %0\n\t"
1504				     "membar #Sync"
1505				     : /* no outputs */
1506				     : "i" (ASI_DCU_CONTROL_REG),
1507				     "i" (DCU_IC)
1508				     : "g1");
1509
1510		if (flush_all)
1511			cheetah_flush_ecache();
1512		else if (flush_line)
1513			cheetah_flush_ecache_line(afar);
1514	}
1515
1516	/* Re-enable error reporting */
1517	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1518			     "or %%g1, %1, %%g1\n\t"
1519			     "stxa %%g1, [%%g0] %0\n\t"
1520			     "membar #Sync"
1521			     : /* no outputs */
1522			     : "i" (ASI_ESTATE_ERROR_EN),
1523			       "i" (ESTATE_ERROR_CEEN)
1524			     : "g1");
1525
1526	/* Decide if we can continue after handling this trap and
1527	 * logging the error.
1528	 */
1529	recoverable = 1;
1530	if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1531		recoverable = 0;
1532
1533	/* Re-check AFSR/AFAR */
1534	(void) cheetah_recheck_errors(&local_snapshot);
1535
1536	/* Log errors. */
1537	cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1538
1539	if (!recoverable)
1540		panic("Irrecoverable Correctable-ECC error trap.\n");
1541}
1542
1543void cheetah_deferred_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1544{
1545	struct cheetah_err_info local_snapshot, *p;
1546	int recoverable, is_memory;
1547
1548#ifdef CONFIG_PCI
1549	/* Check for the special PCI poke sequence. */
1550	if (pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) {
1551		cheetah_flush_icache();
1552		cheetah_flush_dcache();
1553
1554		/* Re-enable I-cache/D-cache */
1555		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1556				     "or %%g1, %1, %%g1\n\t"
1557				     "stxa %%g1, [%%g0] %0\n\t"
1558				     "membar #Sync"
1559				     : /* no outputs */
1560				     : "i" (ASI_DCU_CONTROL_REG),
1561				       "i" (DCU_DC | DCU_IC)
1562				     : "g1");
1563
1564		/* Re-enable error reporting */
1565		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1566				     "or %%g1, %1, %%g1\n\t"
1567				     "stxa %%g1, [%%g0] %0\n\t"
1568				     "membar #Sync"
1569				     : /* no outputs */
1570				     : "i" (ASI_ESTATE_ERROR_EN),
1571				       "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1572				     : "g1");
1573
1574		(void) cheetah_recheck_errors(NULL);
1575
1576		pci_poke_faulted = 1;
1577		regs->tpc += 4;
1578		regs->tnpc = regs->tpc + 4;
1579		return;
1580	}
1581#endif
1582
1583	p = cheetah_get_error_log(afsr);
1584	if (!p) {
1585		prom_printf("ERROR: Early deferred error afsr[%016lx] afar[%016lx]\n",
1586			    afsr, afar);
1587		prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1588			    smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1589		prom_halt();
1590	}
1591
1592	/* Grab snapshot of logged error. */
1593	memcpy(&local_snapshot, p, sizeof(local_snapshot));
1594
1595	/* If the current trap snapshot does not match what the
1596	 * trap handler passed along into our args, big trouble.
1597	 * In such a case, mark the local copy as invalid.
1598	 *
1599	 * Else, it matches and we mark the afsr in the non-local
1600	 * copy as invalid so we may log new error traps there.
1601	 */
1602	if (p->afsr != afsr || p->afar != afar)
1603		local_snapshot.afsr = CHAFSR_INVALID;
1604	else
1605		p->afsr = CHAFSR_INVALID;
1606
1607	is_memory = cheetah_check_main_memory(afar);
1608
1609	{
1610		int flush_all, flush_line;
1611
1612		flush_all = flush_line = 0;
1613		if ((afsr & CHAFSR_EDU) != 0UL) {
1614			if ((afsr & cheetah_afsr_errors) == CHAFSR_EDU)
1615				flush_line = 1;
1616			else
1617				flush_all = 1;
1618		} else if ((afsr & CHAFSR_BERR) != 0UL) {
1619			if ((afsr & cheetah_afsr_errors) == CHAFSR_BERR)
1620				flush_line = 1;
1621			else
1622				flush_all = 1;
1623		}
1624
1625		cheetah_flush_icache();
1626		cheetah_flush_dcache();
1627
1628		/* Re-enable I/D caches */
1629		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1630				     "or %%g1, %1, %%g1\n\t"
1631				     "stxa %%g1, [%%g0] %0\n\t"
1632				     "membar #Sync"
1633				     : /* no outputs */
1634				     : "i" (ASI_DCU_CONTROL_REG),
1635				     "i" (DCU_IC | DCU_DC)
1636				     : "g1");
1637
1638		if (flush_all)
1639			cheetah_flush_ecache();
1640		else if (flush_line)
1641			cheetah_flush_ecache_line(afar);
1642	}
1643
1644	/* Re-enable error reporting */
1645	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1646			     "or %%g1, %1, %%g1\n\t"
1647			     "stxa %%g1, [%%g0] %0\n\t"
1648			     "membar #Sync"
1649			     : /* no outputs */
1650			     : "i" (ASI_ESTATE_ERROR_EN),
1651			     "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1652			     : "g1");
1653
1654	/* Decide if we can continue after handling this trap and
1655	 * logging the error.
1656	 */
1657	recoverable = 1;
1658	if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1659		recoverable = 0;
1660
1661	/* Re-check AFSR/AFAR.  What we are looking for here is whether a new
1662	 * error was logged while we had error reporting traps disabled.
1663	 */
1664	if (cheetah_recheck_errors(&local_snapshot)) {
1665		unsigned long new_afsr = local_snapshot.afsr;
1666
1667		/* If we got a new asynchronous error, die... */
1668		if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU |
1669				CHAFSR_WDU | CHAFSR_CPU |
1670				CHAFSR_IVU | CHAFSR_UE |
1671				CHAFSR_BERR | CHAFSR_TO))
1672			recoverable = 0;
1673	}
1674
1675	/* Log errors. */
1676	cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1677
1678	/* "Recoverable" here means we try to yank the page from ever
1679	 * being newly used again.  This depends upon a few things:
1680	 * 1) Must be main memory, and AFAR must be valid.
1681	 * 2) If we trapped from user, OK.
1682	 * 3) Else, if we trapped from kernel we must find exception
1683	 *    table entry (ie. we have to have been accessing user
1684	 *    space).
1685	 *
1686	 * If AFAR is not in main memory, or we trapped from kernel
1687	 * and cannot find an exception table entry, it is unacceptable
1688	 * to try and continue.
1689	 */
1690	if (recoverable && is_memory) {
1691		if ((regs->tstate & TSTATE_PRIV) == 0UL) {
1692			/* OK, usermode access. */
1693			recoverable = 1;
1694		} else {
1695			const struct exception_table_entry *entry;
1696
1697			entry = search_exception_tables(regs->tpc);
1698			if (entry) {
1699				/* OK, kernel access to userspace. */
1700				recoverable = 1;
1701
1702			} else {
1703				/* BAD, privileged state is corrupted. */
1704				recoverable = 0;
1705			}
1706
1707			if (recoverable) {
1708				if (pfn_valid(afar >> PAGE_SHIFT))
1709					get_page(pfn_to_page(afar >> PAGE_SHIFT));
1710				else
1711					recoverable = 0;
1712
1713				/* Only perform fixup if we still have a
1714				 * recoverable condition.
1715				 */
1716				if (recoverable) {
1717					regs->tpc = entry->fixup;
1718					regs->tnpc = regs->tpc + 4;
1719				}
1720			}
1721		}
1722	} else {
1723		recoverable = 0;
1724	}
1725
1726	if (!recoverable)
1727		panic("Irrecoverable deferred error trap.\n");
1728}
1729
1730/* Handle a D/I cache parity error trap.  TYPE is encoded as:
1731 *
1732 * Bit0:	0=dcache,1=icache
1733 * Bit1:	0=recoverable,1=unrecoverable
1734 *
1735 * The hardware has disabled both the I-cache and D-cache in
1736 * the %dcr register.  
1737 */
1738void cheetah_plus_parity_error(int type, struct pt_regs *regs)
1739{
1740	if (type & 0x1)
1741		__cheetah_flush_icache();
1742	else
1743		cheetah_plus_zap_dcache_parity();
1744	cheetah_flush_dcache();
1745
1746	/* Re-enable I-cache/D-cache */
1747	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1748			     "or %%g1, %1, %%g1\n\t"
1749			     "stxa %%g1, [%%g0] %0\n\t"
1750			     "membar #Sync"
1751			     : /* no outputs */
1752			     : "i" (ASI_DCU_CONTROL_REG),
1753			       "i" (DCU_DC | DCU_IC)
1754			     : "g1");
1755
1756	if (type & 0x2) {
1757		printk(KERN_EMERG "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n",
1758		       smp_processor_id(),
1759		       (type & 0x1) ? 'I' : 'D',
1760		       regs->tpc);
1761		printk(KERN_EMERG "TPC<%pS>\n", (void *) regs->tpc);
1762		panic("Irrecoverable Cheetah+ parity error.");
1763	}
1764
1765	printk(KERN_WARNING "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n",
1766	       smp_processor_id(),
1767	       (type & 0x1) ? 'I' : 'D',
1768	       regs->tpc);
1769	printk(KERN_WARNING "TPC<%pS>\n", (void *) regs->tpc);
1770}
1771
1772struct sun4v_error_entry {
1773	/* Unique error handle */
1774/*0x00*/u64		err_handle;
1775
1776	/* %stick value at the time of the error */
1777/*0x08*/u64		err_stick;
1778
1779/*0x10*/u8		reserved_1[3];
1780
1781	/* Error type */
1782/*0x13*/u8		err_type;
1783#define SUN4V_ERR_TYPE_UNDEFINED	0
1784#define SUN4V_ERR_TYPE_UNCORRECTED_RES	1
1785#define SUN4V_ERR_TYPE_PRECISE_NONRES	2
1786#define SUN4V_ERR_TYPE_DEFERRED_NONRES	3
1787#define SUN4V_ERR_TYPE_SHUTDOWN_RQST	4
1788#define SUN4V_ERR_TYPE_DUMP_CORE	5
1789#define SUN4V_ERR_TYPE_SP_STATE_CHANGE	6
1790#define SUN4V_ERR_TYPE_NUM		7
1791
1792	/* Error attributes */
1793/*0x14*/u32		err_attrs;
1794#define SUN4V_ERR_ATTRS_PROCESSOR	0x00000001
1795#define SUN4V_ERR_ATTRS_MEMORY		0x00000002
1796#define SUN4V_ERR_ATTRS_PIO		0x00000004
1797#define SUN4V_ERR_ATTRS_INT_REGISTERS	0x00000008
1798#define SUN4V_ERR_ATTRS_FPU_REGISTERS	0x00000010
1799#define SUN4V_ERR_ATTRS_SHUTDOWN_RQST	0x00000020
1800#define SUN4V_ERR_ATTRS_ASR		0x00000040
1801#define SUN4V_ERR_ATTRS_ASI		0x00000080
1802#define SUN4V_ERR_ATTRS_PRIV_REG	0x00000100
1803#define SUN4V_ERR_ATTRS_SPSTATE_MSK	0x00000600
 
1804#define SUN4V_ERR_ATTRS_SPSTATE_SHFT	9
1805#define SUN4V_ERR_ATTRS_MODE_MSK	0x03000000
1806#define SUN4V_ERR_ATTRS_MODE_SHFT	24
1807#define SUN4V_ERR_ATTRS_RES_QUEUE_FULL	0x80000000
1808
1809#define SUN4V_ERR_SPSTATE_FAULTED	0
1810#define SUN4V_ERR_SPSTATE_AVAILABLE	1
1811#define SUN4V_ERR_SPSTATE_NOT_PRESENT	2
1812
1813#define SUN4V_ERR_MODE_USER		1
1814#define SUN4V_ERR_MODE_PRIV		2
1815
1816	/* Real address of the memory region or PIO transaction */
1817/*0x18*/u64		err_raddr;
1818
1819	/* Size of the operation triggering the error, in bytes */
1820/*0x20*/u32		err_size;
1821
1822	/* ID of the CPU */
1823/*0x24*/u16		err_cpu;
1824
1825	/* Grace periof for shutdown, in seconds */
1826/*0x26*/u16		err_secs;
1827
1828	/* Value of the %asi register */
1829/*0x28*/u8		err_asi;
1830
1831/*0x29*/u8		reserved_2;
1832
1833	/* Value of the ASR register number */
1834/*0x2a*/u16		err_asr;
1835#define SUN4V_ERR_ASR_VALID		0x8000
1836
1837/*0x2c*/u32		reserved_3;
1838/*0x30*/u64		reserved_4;
1839/*0x38*/u64		reserved_5;
1840};
1841
1842static atomic_t sun4v_resum_oflow_cnt = ATOMIC_INIT(0);
1843static atomic_t sun4v_nonresum_oflow_cnt = ATOMIC_INIT(0);
1844
1845static const char *sun4v_err_type_to_str(u8 type)
1846{
1847	static const char *types[SUN4V_ERR_TYPE_NUM] = {
1848		"undefined",
1849		"uncorrected resumable",
1850		"precise nonresumable",
1851		"deferred nonresumable",
1852		"shutdown request",
1853		"dump core",
1854		"SP state change",
1855	};
1856
1857	if (type < SUN4V_ERR_TYPE_NUM)
1858		return types[type];
1859
1860	return "unknown";
1861}
1862
1863static void sun4v_emit_err_attr_strings(u32 attrs)
1864{
1865	static const char *attr_names[] = {
1866		"processor",
1867		"memory",
1868		"PIO",
1869		"int-registers",
1870		"fpu-registers",
1871		"shutdown-request",
1872		"ASR",
1873		"ASI",
1874		"priv-reg",
1875	};
1876	static const char *sp_states[] = {
1877		"sp-faulted",
1878		"sp-available",
1879		"sp-not-present",
1880		"sp-state-reserved",
1881	};
1882	static const char *modes[] = {
1883		"mode-reserved0",
1884		"user",
1885		"priv",
1886		"mode-reserved1",
1887	};
1888	u32 sp_state, mode;
1889	int i;
1890
1891	for (i = 0; i < ARRAY_SIZE(attr_names); i++) {
1892		if (attrs & (1U << i)) {
1893			const char *s = attr_names[i];
1894
1895			pr_cont("%s ", s);
1896		}
1897	}
1898
1899	sp_state = ((attrs & SUN4V_ERR_ATTRS_SPSTATE_MSK) >>
1900		    SUN4V_ERR_ATTRS_SPSTATE_SHFT);
1901	pr_cont("%s ", sp_states[sp_state]);
1902
1903	mode = ((attrs & SUN4V_ERR_ATTRS_MODE_MSK) >>
1904		SUN4V_ERR_ATTRS_MODE_SHFT);
1905	pr_cont("%s ", modes[mode]);
1906
1907	if (attrs & SUN4V_ERR_ATTRS_RES_QUEUE_FULL)
1908		pr_cont("res-queue-full ");
1909}
1910
1911/* When the report contains a real-address of "-1" it means that the
1912 * hardware did not provide the address.  So we compute the effective
1913 * address of the load or store instruction at regs->tpc and report
1914 * that.  Usually when this happens it's a PIO and in such a case we
1915 * are using physical addresses with bypass ASIs anyways, so what we
1916 * report here is exactly what we want.
1917 */
1918static void sun4v_report_real_raddr(const char *pfx, struct pt_regs *regs)
1919{
1920	unsigned int insn;
1921	u64 addr;
1922
1923	if (!(regs->tstate & TSTATE_PRIV))
1924		return;
1925
1926	insn = *(unsigned int *) regs->tpc;
1927
1928	addr = compute_effective_address(regs, insn, 0);
1929
1930	printk("%s: insn effective address [0x%016llx]\n",
1931	       pfx, addr);
1932}
1933
1934static void sun4v_log_error(struct pt_regs *regs, struct sun4v_error_entry *ent,
1935			    int cpu, const char *pfx, atomic_t *ocnt)
1936{
1937	u64 *raw_ptr = (u64 *) ent;
1938	u32 attrs;
1939	int cnt;
1940
1941	printk("%s: Reporting on cpu %d\n", pfx, cpu);
1942	printk("%s: TPC [0x%016lx] <%pS>\n",
1943	       pfx, regs->tpc, (void *) regs->tpc);
1944
1945	printk("%s: RAW [%016llx:%016llx:%016llx:%016llx\n",
1946	       pfx, raw_ptr[0], raw_ptr[1], raw_ptr[2], raw_ptr[3]);
1947	printk("%s:      %016llx:%016llx:%016llx:%016llx]\n",
1948	       pfx, raw_ptr[4], raw_ptr[5], raw_ptr[6], raw_ptr[7]);
1949
1950	printk("%s: handle [0x%016llx] stick [0x%016llx]\n",
1951	       pfx, ent->err_handle, ent->err_stick);
1952
1953	printk("%s: type [%s]\n", pfx, sun4v_err_type_to_str(ent->err_type));
1954
1955	attrs = ent->err_attrs;
1956	printk("%s: attrs [0x%08x] < ", pfx, attrs);
1957	sun4v_emit_err_attr_strings(attrs);
1958	pr_cont(">\n");
1959
1960	/* Various fields in the error report are only valid if
1961	 * certain attribute bits are set.
1962	 */
1963	if (attrs & (SUN4V_ERR_ATTRS_MEMORY |
1964		     SUN4V_ERR_ATTRS_PIO |
1965		     SUN4V_ERR_ATTRS_ASI)) {
1966		printk("%s: raddr [0x%016llx]\n", pfx, ent->err_raddr);
1967
1968		if (ent->err_raddr == ~(u64)0)
1969			sun4v_report_real_raddr(pfx, regs);
1970	}
1971
1972	if (attrs & (SUN4V_ERR_ATTRS_MEMORY | SUN4V_ERR_ATTRS_ASI))
1973		printk("%s: size [0x%x]\n", pfx, ent->err_size);
1974
1975	if (attrs & (SUN4V_ERR_ATTRS_PROCESSOR |
1976		     SUN4V_ERR_ATTRS_INT_REGISTERS |
1977		     SUN4V_ERR_ATTRS_FPU_REGISTERS |
1978		     SUN4V_ERR_ATTRS_PRIV_REG))
1979		printk("%s: cpu[%u]\n", pfx, ent->err_cpu);
1980
1981	if (attrs & SUN4V_ERR_ATTRS_ASI)
1982		printk("%s: asi [0x%02x]\n", pfx, ent->err_asi);
1983
1984	if ((attrs & (SUN4V_ERR_ATTRS_INT_REGISTERS |
1985		      SUN4V_ERR_ATTRS_FPU_REGISTERS |
1986		      SUN4V_ERR_ATTRS_PRIV_REG)) &&
1987	    (ent->err_asr & SUN4V_ERR_ASR_VALID) != 0)
1988		printk("%s: reg [0x%04x]\n",
1989		       pfx, ent->err_asr & ~SUN4V_ERR_ASR_VALID);
1990
1991	show_regs(regs);
1992
1993	if ((cnt = atomic_read(ocnt)) != 0) {
1994		atomic_set(ocnt, 0);
1995		wmb();
1996		printk("%s: Queue overflowed %d times.\n",
1997		       pfx, cnt);
1998	}
1999}
2000
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2001/* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate.
2002 * Log the event and clear the first word of the entry.
2003 */
2004void sun4v_resum_error(struct pt_regs *regs, unsigned long offset)
2005{
2006	enum ctx_state prev_state = exception_enter();
2007	struct sun4v_error_entry *ent, local_copy;
2008	struct trap_per_cpu *tb;
2009	unsigned long paddr;
2010	int cpu;
2011
2012	cpu = get_cpu();
2013
2014	tb = &trap_block[cpu];
2015	paddr = tb->resum_kernel_buf_pa + offset;
2016	ent = __va(paddr);
2017
2018	memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry));
2019
2020	/* We have a local copy now, so release the entry.  */
2021	ent->err_handle = 0;
2022	wmb();
2023
2024	put_cpu();
2025
2026	if (local_copy.err_type == SUN4V_ERR_TYPE_SHUTDOWN_RQST) {
2027		/* We should really take the seconds field of
2028		 * the error report and use it for the shutdown
2029		 * invocation, but for now do the same thing we
2030		 * do for a DS shutdown request.
2031		 */
2032		pr_info("Shutdown request, %u seconds...\n",
2033			local_copy.err_secs);
2034		orderly_poweroff(true);
2035		goto out;
2036	}
2037
 
 
 
 
 
 
 
 
2038	sun4v_log_error(regs, &local_copy, cpu,
2039			KERN_ERR "RESUMABLE ERROR",
2040			&sun4v_resum_oflow_cnt);
2041out:
2042	exception_exit(prev_state);
2043}
2044
2045/* If we try to printk() we'll probably make matters worse, by trying
2046 * to retake locks this cpu already holds or causing more errors. So
2047 * just bump a counter, and we'll report these counter bumps above.
2048 */
2049void sun4v_resum_overflow(struct pt_regs *regs)
2050{
2051	atomic_inc(&sun4v_resum_oflow_cnt);
2052}
2053
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2054/* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate.
2055 * Log the event, clear the first word of the entry, and die.
2056 */
2057void sun4v_nonresum_error(struct pt_regs *regs, unsigned long offset)
2058{
2059	struct sun4v_error_entry *ent, local_copy;
2060	struct trap_per_cpu *tb;
2061	unsigned long paddr;
2062	int cpu;
2063
2064	cpu = get_cpu();
2065
2066	tb = &trap_block[cpu];
2067	paddr = tb->nonresum_kernel_buf_pa + offset;
2068	ent = __va(paddr);
2069
2070	memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry));
2071
2072	/* We have a local copy now, so release the entry.  */
2073	ent->err_handle = 0;
2074	wmb();
2075
2076	put_cpu();
2077
 
 
 
 
 
 
2078#ifdef CONFIG_PCI
2079	/* Check for the special PCI poke sequence. */
2080	if (pci_poke_in_progress && pci_poke_cpu == cpu) {
2081		pci_poke_faulted = 1;
2082		regs->tpc += 4;
2083		regs->tnpc = regs->tpc + 4;
2084		return;
2085	}
2086#endif
2087
2088	sun4v_log_error(regs, &local_copy, cpu,
2089			KERN_EMERG "NON-RESUMABLE ERROR",
2090			&sun4v_nonresum_oflow_cnt);
2091
2092	panic("Non-resumable error.");
2093}
2094
2095/* If we try to printk() we'll probably make matters worse, by trying
2096 * to retake locks this cpu already holds or causing more errors. So
2097 * just bump a counter, and we'll report these counter bumps above.
2098 */
2099void sun4v_nonresum_overflow(struct pt_regs *regs)
2100{
2101	/* XXX Actually even this can make not that much sense.  Perhaps
2102	 * XXX we should just pull the plug and panic directly from here?
2103	 */
2104	atomic_inc(&sun4v_nonresum_oflow_cnt);
2105}
2106
2107static void sun4v_tlb_error(struct pt_regs *regs)
2108{
2109	die_if_kernel("TLB/TSB error", regs);
2110}
2111
2112unsigned long sun4v_err_itlb_vaddr;
2113unsigned long sun4v_err_itlb_ctx;
2114unsigned long sun4v_err_itlb_pte;
2115unsigned long sun4v_err_itlb_error;
2116
2117void sun4v_itlb_error_report(struct pt_regs *regs, int tl)
2118{
2119	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2120
2121	printk(KERN_EMERG "SUN4V-ITLB: Error at TPC[%lx], tl %d\n",
2122	       regs->tpc, tl);
2123	printk(KERN_EMERG "SUN4V-ITLB: TPC<%pS>\n", (void *) regs->tpc);
2124	printk(KERN_EMERG "SUN4V-ITLB: O7[%lx]\n", regs->u_regs[UREG_I7]);
2125	printk(KERN_EMERG "SUN4V-ITLB: O7<%pS>\n",
2126	       (void *) regs->u_regs[UREG_I7]);
2127	printk(KERN_EMERG "SUN4V-ITLB: vaddr[%lx] ctx[%lx] "
2128	       "pte[%lx] error[%lx]\n",
2129	       sun4v_err_itlb_vaddr, sun4v_err_itlb_ctx,
2130	       sun4v_err_itlb_pte, sun4v_err_itlb_error);
2131
2132	sun4v_tlb_error(regs);
2133}
2134
2135unsigned long sun4v_err_dtlb_vaddr;
2136unsigned long sun4v_err_dtlb_ctx;
2137unsigned long sun4v_err_dtlb_pte;
2138unsigned long sun4v_err_dtlb_error;
2139
2140void sun4v_dtlb_error_report(struct pt_regs *regs, int tl)
2141{
2142	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2143
2144	printk(KERN_EMERG "SUN4V-DTLB: Error at TPC[%lx], tl %d\n",
2145	       regs->tpc, tl);
2146	printk(KERN_EMERG "SUN4V-DTLB: TPC<%pS>\n", (void *) regs->tpc);
2147	printk(KERN_EMERG "SUN4V-DTLB: O7[%lx]\n", regs->u_regs[UREG_I7]);
2148	printk(KERN_EMERG "SUN4V-DTLB: O7<%pS>\n",
2149	       (void *) regs->u_regs[UREG_I7]);
2150	printk(KERN_EMERG "SUN4V-DTLB: vaddr[%lx] ctx[%lx] "
2151	       "pte[%lx] error[%lx]\n",
2152	       sun4v_err_dtlb_vaddr, sun4v_err_dtlb_ctx,
2153	       sun4v_err_dtlb_pte, sun4v_err_dtlb_error);
2154
2155	sun4v_tlb_error(regs);
2156}
2157
2158void hypervisor_tlbop_error(unsigned long err, unsigned long op)
2159{
2160	printk(KERN_CRIT "SUN4V: TLB hv call error %lu for op %lu\n",
2161	       err, op);
2162}
2163
2164void hypervisor_tlbop_error_xcall(unsigned long err, unsigned long op)
2165{
2166	printk(KERN_CRIT "SUN4V: XCALL TLB hv call error %lu for op %lu\n",
2167	       err, op);
2168}
2169
2170static void do_fpe_common(struct pt_regs *regs)
2171{
2172	if (regs->tstate & TSTATE_PRIV) {
2173		regs->tpc = regs->tnpc;
2174		regs->tnpc += 4;
2175	} else {
2176		unsigned long fsr = current_thread_info()->xfsr[0];
2177		siginfo_t info;
2178
2179		if (test_thread_flag(TIF_32BIT)) {
2180			regs->tpc &= 0xffffffff;
2181			regs->tnpc &= 0xffffffff;
2182		}
2183		info.si_signo = SIGFPE;
2184		info.si_errno = 0;
2185		info.si_addr = (void __user *)regs->tpc;
2186		info.si_trapno = 0;
2187		info.si_code = __SI_FAULT;
2188		if ((fsr & 0x1c000) == (1 << 14)) {
2189			if (fsr & 0x10)
2190				info.si_code = FPE_FLTINV;
2191			else if (fsr & 0x08)
2192				info.si_code = FPE_FLTOVF;
2193			else if (fsr & 0x04)
2194				info.si_code = FPE_FLTUND;
2195			else if (fsr & 0x02)
2196				info.si_code = FPE_FLTDIV;
2197			else if (fsr & 0x01)
2198				info.si_code = FPE_FLTRES;
2199		}
2200		force_sig_info(SIGFPE, &info, current);
2201	}
2202}
2203
2204void do_fpieee(struct pt_regs *regs)
2205{
2206	enum ctx_state prev_state = exception_enter();
2207
2208	if (notify_die(DIE_TRAP, "fpu exception ieee", regs,
2209		       0, 0x24, SIGFPE) == NOTIFY_STOP)
2210		goto out;
2211
2212	do_fpe_common(regs);
2213out:
2214	exception_exit(prev_state);
2215}
2216
2217void do_fpother(struct pt_regs *regs)
2218{
2219	enum ctx_state prev_state = exception_enter();
2220	struct fpustate *f = FPUSTATE;
2221	int ret = 0;
2222
2223	if (notify_die(DIE_TRAP, "fpu exception other", regs,
2224		       0, 0x25, SIGFPE) == NOTIFY_STOP)
2225		goto out;
2226
2227	switch ((current_thread_info()->xfsr[0] & 0x1c000)) {
2228	case (2 << 14): /* unfinished_FPop */
2229	case (3 << 14): /* unimplemented_FPop */
2230		ret = do_mathemu(regs, f, false);
2231		break;
2232	}
2233	if (ret)
2234		goto out;
2235	do_fpe_common(regs);
2236out:
2237	exception_exit(prev_state);
2238}
2239
2240void do_tof(struct pt_regs *regs)
2241{
2242	enum ctx_state prev_state = exception_enter();
2243	siginfo_t info;
2244
2245	if (notify_die(DIE_TRAP, "tagged arithmetic overflow", regs,
2246		       0, 0x26, SIGEMT) == NOTIFY_STOP)
2247		goto out;
2248
2249	if (regs->tstate & TSTATE_PRIV)
2250		die_if_kernel("Penguin overflow trap from kernel mode", regs);
2251	if (test_thread_flag(TIF_32BIT)) {
2252		regs->tpc &= 0xffffffff;
2253		regs->tnpc &= 0xffffffff;
2254	}
2255	info.si_signo = SIGEMT;
2256	info.si_errno = 0;
2257	info.si_code = EMT_TAGOVF;
2258	info.si_addr = (void __user *)regs->tpc;
2259	info.si_trapno = 0;
2260	force_sig_info(SIGEMT, &info, current);
2261out:
2262	exception_exit(prev_state);
2263}
2264
2265void do_div0(struct pt_regs *regs)
2266{
2267	enum ctx_state prev_state = exception_enter();
2268	siginfo_t info;
2269
2270	if (notify_die(DIE_TRAP, "integer division by zero", regs,
2271		       0, 0x28, SIGFPE) == NOTIFY_STOP)
2272		goto out;
2273
2274	if (regs->tstate & TSTATE_PRIV)
2275		die_if_kernel("TL0: Kernel divide by zero.", regs);
2276	if (test_thread_flag(TIF_32BIT)) {
2277		regs->tpc &= 0xffffffff;
2278		regs->tnpc &= 0xffffffff;
2279	}
2280	info.si_signo = SIGFPE;
2281	info.si_errno = 0;
2282	info.si_code = FPE_INTDIV;
2283	info.si_addr = (void __user *)regs->tpc;
2284	info.si_trapno = 0;
2285	force_sig_info(SIGFPE, &info, current);
2286out:
2287	exception_exit(prev_state);
2288}
2289
2290static void instruction_dump(unsigned int *pc)
2291{
2292	int i;
2293
2294	if ((((unsigned long) pc) & 3))
2295		return;
2296
2297	printk("Instruction DUMP:");
2298	for (i = -3; i < 6; i++)
2299		printk("%c%08x%c",i?' ':'<',pc[i],i?' ':'>');
2300	printk("\n");
2301}
2302
2303static void user_instruction_dump(unsigned int __user *pc)
2304{
2305	int i;
2306	unsigned int buf[9];
2307	
2308	if ((((unsigned long) pc) & 3))
2309		return;
2310		
2311	if (copy_from_user(buf, pc - 3, sizeof(buf)))
2312		return;
2313
2314	printk("Instruction DUMP:");
2315	for (i = 0; i < 9; i++)
2316		printk("%c%08x%c",i==3?' ':'<',buf[i],i==3?' ':'>');
2317	printk("\n");
2318}
2319
2320void show_stack(struct task_struct *tsk, unsigned long *_ksp)
2321{
2322	unsigned long fp, ksp;
2323	struct thread_info *tp;
2324	int count = 0;
2325#ifdef CONFIG_FUNCTION_GRAPH_TRACER
2326	int graph = 0;
2327#endif
2328
2329	ksp = (unsigned long) _ksp;
2330	if (!tsk)
2331		tsk = current;
2332	tp = task_thread_info(tsk);
2333	if (ksp == 0UL) {
2334		if (tsk == current)
2335			asm("mov %%fp, %0" : "=r" (ksp));
2336		else
2337			ksp = tp->ksp;
2338	}
2339	if (tp == current_thread_info())
2340		flushw_all();
2341
2342	fp = ksp + STACK_BIAS;
2343
2344	printk("Call Trace:\n");
2345	do {
2346		struct sparc_stackf *sf;
2347		struct pt_regs *regs;
2348		unsigned long pc;
2349
2350		if (!kstack_valid(tp, fp))
2351			break;
2352		sf = (struct sparc_stackf *) fp;
2353		regs = (struct pt_regs *) (sf + 1);
2354
2355		if (kstack_is_trap_frame(tp, regs)) {
2356			if (!(regs->tstate & TSTATE_PRIV))
2357				break;
2358			pc = regs->tpc;
2359			fp = regs->u_regs[UREG_I6] + STACK_BIAS;
2360		} else {
2361			pc = sf->callers_pc;
2362			fp = (unsigned long)sf->fp + STACK_BIAS;
2363		}
2364
2365		printk(" [%016lx] %pS\n", pc, (void *) pc);
2366#ifdef CONFIG_FUNCTION_GRAPH_TRACER
2367		if ((pc + 8UL) == (unsigned long) &return_to_handler) {
2368			int index = tsk->curr_ret_stack;
2369			if (tsk->ret_stack && index >= graph) {
2370				pc = tsk->ret_stack[index - graph].ret;
2371				printk(" [%016lx] %pS\n", pc, (void *) pc);
 
2372				graph++;
2373			}
2374		}
2375#endif
2376	} while (++count < 16);
2377}
2378
2379static inline struct reg_window *kernel_stack_up(struct reg_window *rw)
2380{
2381	unsigned long fp = rw->ins[6];
2382
2383	if (!fp)
2384		return NULL;
2385
2386	return (struct reg_window *) (fp + STACK_BIAS);
2387}
2388
2389void __noreturn die_if_kernel(char *str, struct pt_regs *regs)
2390{
2391	static int die_counter;
2392	int count = 0;
2393	
2394	/* Amuse the user. */
2395	printk(
2396"              \\|/ ____ \\|/\n"
2397"              \"@'/ .. \\`@\"\n"
2398"              /_| \\__/ |_\\\n"
2399"                 \\__U_/\n");
2400
2401	printk("%s(%d): %s [#%d]\n", current->comm, task_pid_nr(current), str, ++die_counter);
2402	notify_die(DIE_OOPS, str, regs, 0, 255, SIGSEGV);
2403	__asm__ __volatile__("flushw");
2404	show_regs(regs);
2405	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
2406	if (regs->tstate & TSTATE_PRIV) {
2407		struct thread_info *tp = current_thread_info();
2408		struct reg_window *rw = (struct reg_window *)
2409			(regs->u_regs[UREG_FP] + STACK_BIAS);
2410
2411		/* Stop the back trace when we hit userland or we
2412		 * find some badly aligned kernel stack.
2413		 */
2414		while (rw &&
2415		       count++ < 30 &&
2416		       kstack_valid(tp, (unsigned long) rw)) {
2417			printk("Caller[%016lx]: %pS\n", rw->ins[7],
2418			       (void *) rw->ins[7]);
2419
2420			rw = kernel_stack_up(rw);
2421		}
2422		instruction_dump ((unsigned int *) regs->tpc);
2423	} else {
2424		if (test_thread_flag(TIF_32BIT)) {
2425			regs->tpc &= 0xffffffff;
2426			regs->tnpc &= 0xffffffff;
2427		}
2428		user_instruction_dump ((unsigned int __user *) regs->tpc);
2429	}
2430	if (panic_on_oops)
2431		panic("Fatal exception");
2432	if (regs->tstate & TSTATE_PRIV)
2433		do_exit(SIGKILL);
2434	do_exit(SIGSEGV);
2435}
2436EXPORT_SYMBOL(die_if_kernel);
2437
2438#define VIS_OPCODE_MASK	((0x3 << 30) | (0x3f << 19))
2439#define VIS_OPCODE_VAL	((0x2 << 30) | (0x36 << 19))
2440
2441void do_illegal_instruction(struct pt_regs *regs)
2442{
2443	enum ctx_state prev_state = exception_enter();
2444	unsigned long pc = regs->tpc;
2445	unsigned long tstate = regs->tstate;
2446	u32 insn;
2447	siginfo_t info;
2448
2449	if (notify_die(DIE_TRAP, "illegal instruction", regs,
2450		       0, 0x10, SIGILL) == NOTIFY_STOP)
2451		goto out;
2452
2453	if (tstate & TSTATE_PRIV)
2454		die_if_kernel("Kernel illegal instruction", regs);
2455	if (test_thread_flag(TIF_32BIT))
2456		pc = (u32)pc;
2457	if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
2458		if ((insn & 0xc1ffc000) == 0x81700000) /* POPC */ {
2459			if (handle_popc(insn, regs))
2460				goto out;
2461		} else if ((insn & 0xc1580000) == 0xc1100000) /* LDQ/STQ */ {
2462			if (handle_ldf_stq(insn, regs))
2463				goto out;
2464		} else if (tlb_type == hypervisor) {
2465			if ((insn & VIS_OPCODE_MASK) == VIS_OPCODE_VAL) {
2466				if (!vis_emul(regs, insn))
2467					goto out;
2468			} else {
2469				struct fpustate *f = FPUSTATE;
2470
2471				/* On UltraSPARC T2 and later, FPU insns which
2472				 * are not implemented in HW signal an illegal
2473				 * instruction trap and do not set the FP Trap
2474				 * Trap in the %fsr to unimplemented_FPop.
2475				 */
2476				if (do_mathemu(regs, f, true))
2477					goto out;
2478			}
2479		}
2480	}
2481	info.si_signo = SIGILL;
2482	info.si_errno = 0;
2483	info.si_code = ILL_ILLOPC;
2484	info.si_addr = (void __user *)pc;
2485	info.si_trapno = 0;
2486	force_sig_info(SIGILL, &info, current);
2487out:
2488	exception_exit(prev_state);
2489}
2490
2491void mem_address_unaligned(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
2492{
2493	enum ctx_state prev_state = exception_enter();
2494	siginfo_t info;
2495
2496	if (notify_die(DIE_TRAP, "memory address unaligned", regs,
2497		       0, 0x34, SIGSEGV) == NOTIFY_STOP)
2498		goto out;
2499
2500	if (regs->tstate & TSTATE_PRIV) {
2501		kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc));
2502		goto out;
2503	}
2504	info.si_signo = SIGBUS;
2505	info.si_errno = 0;
2506	info.si_code = BUS_ADRALN;
2507	info.si_addr = (void __user *)sfar;
2508	info.si_trapno = 0;
2509	force_sig_info(SIGBUS, &info, current);
2510out:
2511	exception_exit(prev_state);
2512}
2513
2514void sun4v_do_mna(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
2515{
2516	siginfo_t info;
2517
2518	if (notify_die(DIE_TRAP, "memory address unaligned", regs,
2519		       0, 0x34, SIGSEGV) == NOTIFY_STOP)
2520		return;
2521
2522	if (regs->tstate & TSTATE_PRIV) {
2523		kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc));
2524		return;
2525	}
2526	info.si_signo = SIGBUS;
2527	info.si_errno = 0;
2528	info.si_code = BUS_ADRALN;
2529	info.si_addr = (void __user *) addr;
2530	info.si_trapno = 0;
2531	force_sig_info(SIGBUS, &info, current);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2532}
2533
2534void do_privop(struct pt_regs *regs)
2535{
2536	enum ctx_state prev_state = exception_enter();
2537	siginfo_t info;
2538
2539	if (notify_die(DIE_TRAP, "privileged operation", regs,
2540		       0, 0x11, SIGILL) == NOTIFY_STOP)
2541		goto out;
2542
2543	if (test_thread_flag(TIF_32BIT)) {
2544		regs->tpc &= 0xffffffff;
2545		regs->tnpc &= 0xffffffff;
2546	}
2547	info.si_signo = SIGILL;
2548	info.si_errno = 0;
2549	info.si_code = ILL_PRVOPC;
2550	info.si_addr = (void __user *)regs->tpc;
2551	info.si_trapno = 0;
2552	force_sig_info(SIGILL, &info, current);
2553out:
2554	exception_exit(prev_state);
2555}
2556
2557void do_privact(struct pt_regs *regs)
2558{
2559	do_privop(regs);
2560}
2561
2562/* Trap level 1 stuff or other traps we should never see... */
2563void do_cee(struct pt_regs *regs)
2564{
2565	exception_enter();
2566	die_if_kernel("TL0: Cache Error Exception", regs);
2567}
2568
2569void do_div0_tl1(struct pt_regs *regs)
2570{
2571	exception_enter();
2572	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2573	die_if_kernel("TL1: DIV0 Exception", regs);
2574}
2575
2576void do_fpieee_tl1(struct pt_regs *regs)
2577{
2578	exception_enter();
2579	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2580	die_if_kernel("TL1: FPU IEEE Exception", regs);
2581}
2582
2583void do_fpother_tl1(struct pt_regs *regs)
2584{
2585	exception_enter();
2586	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2587	die_if_kernel("TL1: FPU Other Exception", regs);
2588}
2589
2590void do_ill_tl1(struct pt_regs *regs)
2591{
2592	exception_enter();
2593	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2594	die_if_kernel("TL1: Illegal Instruction Exception", regs);
2595}
2596
2597void do_irq_tl1(struct pt_regs *regs)
2598{
2599	exception_enter();
2600	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2601	die_if_kernel("TL1: IRQ Exception", regs);
2602}
2603
2604void do_lddfmna_tl1(struct pt_regs *regs)
2605{
2606	exception_enter();
2607	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2608	die_if_kernel("TL1: LDDF Exception", regs);
2609}
2610
2611void do_stdfmna_tl1(struct pt_regs *regs)
2612{
2613	exception_enter();
2614	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2615	die_if_kernel("TL1: STDF Exception", regs);
2616}
2617
2618void do_paw(struct pt_regs *regs)
2619{
2620	exception_enter();
2621	die_if_kernel("TL0: Phys Watchpoint Exception", regs);
2622}
2623
2624void do_paw_tl1(struct pt_regs *regs)
2625{
2626	exception_enter();
2627	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2628	die_if_kernel("TL1: Phys Watchpoint Exception", regs);
2629}
2630
2631void do_vaw(struct pt_regs *regs)
2632{
2633	exception_enter();
2634	die_if_kernel("TL0: Virt Watchpoint Exception", regs);
2635}
2636
2637void do_vaw_tl1(struct pt_regs *regs)
2638{
2639	exception_enter();
2640	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2641	die_if_kernel("TL1: Virt Watchpoint Exception", regs);
2642}
2643
2644void do_tof_tl1(struct pt_regs *regs)
2645{
2646	exception_enter();
2647	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2648	die_if_kernel("TL1: Tag Overflow Exception", regs);
2649}
2650
2651void do_getpsr(struct pt_regs *regs)
2652{
2653	regs->u_regs[UREG_I0] = tstate_to_psr(regs->tstate);
2654	regs->tpc   = regs->tnpc;
2655	regs->tnpc += 4;
2656	if (test_thread_flag(TIF_32BIT)) {
2657		regs->tpc &= 0xffffffff;
2658		regs->tnpc &= 0xffffffff;
2659	}
2660}
2661
 
2662struct trap_per_cpu trap_block[NR_CPUS];
2663EXPORT_SYMBOL(trap_block);
2664
2665/* This can get invoked before sched_init() so play it super safe
2666 * and use hard_smp_processor_id().
2667 */
2668void notrace init_cur_cpu_trap(struct thread_info *t)
2669{
2670	int cpu = hard_smp_processor_id();
2671	struct trap_per_cpu *p = &trap_block[cpu];
2672
2673	p->thread = t;
2674	p->pgd_paddr = 0;
2675}
2676
2677extern void thread_info_offsets_are_bolixed_dave(void);
2678extern void trap_per_cpu_offsets_are_bolixed_dave(void);
2679extern void tsb_config_offsets_are_bolixed_dave(void);
2680
2681/* Only invoked on boot processor. */
2682void __init trap_init(void)
2683{
2684	/* Compile time sanity check. */
2685	BUILD_BUG_ON(TI_TASK != offsetof(struct thread_info, task) ||
2686		     TI_FLAGS != offsetof(struct thread_info, flags) ||
2687		     TI_CPU != offsetof(struct thread_info, cpu) ||
2688		     TI_FPSAVED != offsetof(struct thread_info, fpsaved) ||
2689		     TI_KSP != offsetof(struct thread_info, ksp) ||
2690		     TI_FAULT_ADDR != offsetof(struct thread_info,
2691					       fault_address) ||
2692		     TI_KREGS != offsetof(struct thread_info, kregs) ||
2693		     TI_UTRAPS != offsetof(struct thread_info, utraps) ||
2694		     TI_REG_WINDOW != offsetof(struct thread_info,
2695					       reg_window) ||
2696		     TI_RWIN_SPTRS != offsetof(struct thread_info,
2697					       rwbuf_stkptrs) ||
2698		     TI_GSR != offsetof(struct thread_info, gsr) ||
2699		     TI_XFSR != offsetof(struct thread_info, xfsr) ||
2700		     TI_PRE_COUNT != offsetof(struct thread_info,
2701					      preempt_count) ||
2702		     TI_NEW_CHILD != offsetof(struct thread_info, new_child) ||
2703		     TI_CURRENT_DS != offsetof(struct thread_info,
2704						current_ds) ||
2705		     TI_KUNA_REGS != offsetof(struct thread_info,
2706					      kern_una_regs) ||
2707		     TI_KUNA_INSN != offsetof(struct thread_info,
2708					      kern_una_insn) ||
2709		     TI_FPREGS != offsetof(struct thread_info, fpregs) ||
2710		     (TI_FPREGS & (64 - 1)));
2711
2712	BUILD_BUG_ON(TRAP_PER_CPU_THREAD != offsetof(struct trap_per_cpu,
2713						     thread) ||
2714		     (TRAP_PER_CPU_PGD_PADDR !=
2715		      offsetof(struct trap_per_cpu, pgd_paddr)) ||
2716		     (TRAP_PER_CPU_CPU_MONDO_PA !=
2717		      offsetof(struct trap_per_cpu, cpu_mondo_pa)) ||
2718		     (TRAP_PER_CPU_DEV_MONDO_PA !=
2719		      offsetof(struct trap_per_cpu, dev_mondo_pa)) ||
2720		     (TRAP_PER_CPU_RESUM_MONDO_PA !=
2721		      offsetof(struct trap_per_cpu, resum_mondo_pa)) ||
2722		     (TRAP_PER_CPU_RESUM_KBUF_PA !=
2723		      offsetof(struct trap_per_cpu, resum_kernel_buf_pa)) ||
2724		     (TRAP_PER_CPU_NONRESUM_MONDO_PA !=
2725		      offsetof(struct trap_per_cpu, nonresum_mondo_pa)) ||
2726		     (TRAP_PER_CPU_NONRESUM_KBUF_PA !=
2727		      offsetof(struct trap_per_cpu, nonresum_kernel_buf_pa)) ||
2728		     (TRAP_PER_CPU_FAULT_INFO !=
2729		      offsetof(struct trap_per_cpu, fault_info)) ||
2730		     (TRAP_PER_CPU_CPU_MONDO_BLOCK_PA !=
2731		      offsetof(struct trap_per_cpu, cpu_mondo_block_pa)) ||
2732		     (TRAP_PER_CPU_CPU_LIST_PA !=
2733		      offsetof(struct trap_per_cpu, cpu_list_pa)) ||
2734		     (TRAP_PER_CPU_TSB_HUGE !=
2735		      offsetof(struct trap_per_cpu, tsb_huge)) ||
2736		     (TRAP_PER_CPU_TSB_HUGE_TEMP !=
2737		      offsetof(struct trap_per_cpu, tsb_huge_temp)) ||
2738		     (TRAP_PER_CPU_IRQ_WORKLIST_PA !=
2739		      offsetof(struct trap_per_cpu, irq_worklist_pa)) ||
2740		     (TRAP_PER_CPU_CPU_MONDO_QMASK !=
2741		      offsetof(struct trap_per_cpu, cpu_mondo_qmask)) ||
2742		     (TRAP_PER_CPU_DEV_MONDO_QMASK !=
2743		      offsetof(struct trap_per_cpu, dev_mondo_qmask)) ||
2744		     (TRAP_PER_CPU_RESUM_QMASK !=
2745		      offsetof(struct trap_per_cpu, resum_qmask)) ||
2746		     (TRAP_PER_CPU_NONRESUM_QMASK !=
2747		      offsetof(struct trap_per_cpu, nonresum_qmask)) ||
2748		     (TRAP_PER_CPU_PER_CPU_BASE !=
2749		      offsetof(struct trap_per_cpu, __per_cpu_base)));
2750
2751	BUILD_BUG_ON((TSB_CONFIG_TSB !=
2752		      offsetof(struct tsb_config, tsb)) ||
2753		     (TSB_CONFIG_RSS_LIMIT !=
2754		      offsetof(struct tsb_config, tsb_rss_limit)) ||
2755		     (TSB_CONFIG_NENTRIES !=
2756		      offsetof(struct tsb_config, tsb_nentries)) ||
2757		     (TSB_CONFIG_REG_VAL !=
2758		      offsetof(struct tsb_config, tsb_reg_val)) ||
2759		     (TSB_CONFIG_MAP_VADDR !=
2760		      offsetof(struct tsb_config, tsb_map_vaddr)) ||
2761		     (TSB_CONFIG_MAP_PTE !=
2762		      offsetof(struct tsb_config, tsb_map_pte)));
2763
2764	/* Attach to the address space of init_task.  On SMP we
2765	 * do this in smp.c:smp_callin for other cpus.
2766	 */
2767	atomic_inc(&init_mm.mm_count);
2768	current->active_mm = &init_mm;
2769}