Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/* arch/sparc64/kernel/traps.c
3 *
4 * Copyright (C) 1995,1997,2008,2009,2012 David S. Miller (davem@davemloft.net)
5 * Copyright (C) 1997,1999,2000 Jakub Jelinek (jakub@redhat.com)
6 */
7
8/*
9 * I like traps on v9, :))))
10 */
11
12#include <linux/cpu.h>
13#include <linux/extable.h>
14#include <linux/sched/mm.h>
15#include <linux/sched/debug.h>
16#include <linux/linkage.h>
17#include <linux/kernel.h>
18#include <linux/signal.h>
19#include <linux/smp.h>
20#include <linux/mm.h>
21#include <linux/init.h>
22#include <linux/kallsyms.h>
23#include <linux/kdebug.h>
24#include <linux/ftrace.h>
25#include <linux/reboot.h>
26#include <linux/gfp.h>
27#include <linux/context_tracking.h>
28
29#include <asm/smp.h>
30#include <asm/delay.h>
31#include <asm/ptrace.h>
32#include <asm/oplib.h>
33#include <asm/page.h>
34#include <asm/unistd.h>
35#include <linux/uaccess.h>
36#include <asm/fpumacro.h>
37#include <asm/lsu.h>
38#include <asm/dcu.h>
39#include <asm/estate.h>
40#include <asm/chafsr.h>
41#include <asm/sfafsr.h>
42#include <asm/psrcompat.h>
43#include <asm/processor.h>
44#include <asm/timer.h>
45#include <asm/head.h>
46#include <asm/prom.h>
47#include <asm/memctrl.h>
48#include <asm/cacheflush.h>
49#include <asm/setup.h>
50
51#include "entry.h"
52#include "kernel.h"
53#include "kstack.h"
54
55/* When an irrecoverable trap occurs at tl > 0, the trap entry
56 * code logs the trap state registers at every level in the trap
57 * stack. It is found at (pt_regs + sizeof(pt_regs)) and the layout
58 * is as follows:
59 */
60struct tl1_traplog {
61 struct {
62 unsigned long tstate;
63 unsigned long tpc;
64 unsigned long tnpc;
65 unsigned long tt;
66 } trapstack[4];
67 unsigned long tl;
68};
69
70static void dump_tl1_traplog(struct tl1_traplog *p)
71{
72 int i, limit;
73
74 printk(KERN_EMERG "TRAPLOG: Error at trap level 0x%lx, "
75 "dumping track stack.\n", p->tl);
76
77 limit = (tlb_type == hypervisor) ? 2 : 4;
78 for (i = 0; i < limit; i++) {
79 printk(KERN_EMERG
80 "TRAPLOG: Trap level %d TSTATE[%016lx] TPC[%016lx] "
81 "TNPC[%016lx] TT[%lx]\n",
82 i + 1,
83 p->trapstack[i].tstate, p->trapstack[i].tpc,
84 p->trapstack[i].tnpc, p->trapstack[i].tt);
85 printk("TRAPLOG: TPC<%pS>\n", (void *) p->trapstack[i].tpc);
86 }
87}
88
89void bad_trap(struct pt_regs *regs, long lvl)
90{
91 char buffer[36];
92
93 if (notify_die(DIE_TRAP, "bad trap", regs,
94 0, lvl, SIGTRAP) == NOTIFY_STOP)
95 return;
96
97 if (lvl < 0x100) {
98 sprintf(buffer, "Bad hw trap %lx at tl0\n", lvl);
99 die_if_kernel(buffer, regs);
100 }
101
102 lvl -= 0x100;
103 if (regs->tstate & TSTATE_PRIV) {
104 sprintf(buffer, "Kernel bad sw trap %lx", lvl);
105 die_if_kernel(buffer, regs);
106 }
107 if (test_thread_flag(TIF_32BIT)) {
108 regs->tpc &= 0xffffffff;
109 regs->tnpc &= 0xffffffff;
110 }
111 force_sig_fault_trapno(SIGILL, ILL_ILLTRP,
112 (void __user *)regs->tpc, lvl);
113}
114
115void bad_trap_tl1(struct pt_regs *regs, long lvl)
116{
117 char buffer[36];
118
119 if (notify_die(DIE_TRAP_TL1, "bad trap tl1", regs,
120 0, lvl, SIGTRAP) == NOTIFY_STOP)
121 return;
122
123 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
124
125 sprintf (buffer, "Bad trap %lx at tl>0", lvl);
126 die_if_kernel (buffer, regs);
127}
128
129#ifdef CONFIG_DEBUG_BUGVERBOSE
130void do_BUG(const char *file, int line)
131{
132 bust_spinlocks(1);
133 printk("kernel BUG at %s:%d!\n", file, line);
134}
135EXPORT_SYMBOL(do_BUG);
136#endif
137
138static DEFINE_SPINLOCK(dimm_handler_lock);
139static dimm_printer_t dimm_handler;
140
141static int sprintf_dimm(int synd_code, unsigned long paddr, char *buf, int buflen)
142{
143 unsigned long flags;
144 int ret = -ENODEV;
145
146 spin_lock_irqsave(&dimm_handler_lock, flags);
147 if (dimm_handler) {
148 ret = dimm_handler(synd_code, paddr, buf, buflen);
149 } else if (tlb_type == spitfire) {
150 if (prom_getunumber(synd_code, paddr, buf, buflen) == -1)
151 ret = -EINVAL;
152 else
153 ret = 0;
154 } else
155 ret = -ENODEV;
156 spin_unlock_irqrestore(&dimm_handler_lock, flags);
157
158 return ret;
159}
160
161int register_dimm_printer(dimm_printer_t func)
162{
163 unsigned long flags;
164 int ret = 0;
165
166 spin_lock_irqsave(&dimm_handler_lock, flags);
167 if (!dimm_handler)
168 dimm_handler = func;
169 else
170 ret = -EEXIST;
171 spin_unlock_irqrestore(&dimm_handler_lock, flags);
172
173 return ret;
174}
175EXPORT_SYMBOL_GPL(register_dimm_printer);
176
177void unregister_dimm_printer(dimm_printer_t func)
178{
179 unsigned long flags;
180
181 spin_lock_irqsave(&dimm_handler_lock, flags);
182 if (dimm_handler == func)
183 dimm_handler = NULL;
184 spin_unlock_irqrestore(&dimm_handler_lock, flags);
185}
186EXPORT_SYMBOL_GPL(unregister_dimm_printer);
187
188void spitfire_insn_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
189{
190 enum ctx_state prev_state = exception_enter();
191
192 if (notify_die(DIE_TRAP, "instruction access exception", regs,
193 0, 0x8, SIGTRAP) == NOTIFY_STOP)
194 goto out;
195
196 if (regs->tstate & TSTATE_PRIV) {
197 printk("spitfire_insn_access_exception: SFSR[%016lx] "
198 "SFAR[%016lx], going.\n", sfsr, sfar);
199 die_if_kernel("Iax", regs);
200 }
201 if (test_thread_flag(TIF_32BIT)) {
202 regs->tpc &= 0xffffffff;
203 regs->tnpc &= 0xffffffff;
204 }
205 force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *)regs->tpc);
206out:
207 exception_exit(prev_state);
208}
209
210void spitfire_insn_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
211{
212 if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs,
213 0, 0x8, SIGTRAP) == NOTIFY_STOP)
214 return;
215
216 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
217 spitfire_insn_access_exception(regs, sfsr, sfar);
218}
219
220void sun4v_insn_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
221{
222 unsigned short type = (type_ctx >> 16);
223 unsigned short ctx = (type_ctx & 0xffff);
224
225 if (notify_die(DIE_TRAP, "instruction access exception", regs,
226 0, 0x8, SIGTRAP) == NOTIFY_STOP)
227 return;
228
229 if (regs->tstate & TSTATE_PRIV) {
230 printk("sun4v_insn_access_exception: ADDR[%016lx] "
231 "CTX[%04x] TYPE[%04x], going.\n",
232 addr, ctx, type);
233 die_if_kernel("Iax", regs);
234 }
235
236 if (test_thread_flag(TIF_32BIT)) {
237 regs->tpc &= 0xffffffff;
238 regs->tnpc &= 0xffffffff;
239 }
240 force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *) addr);
241}
242
243void sun4v_insn_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
244{
245 if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs,
246 0, 0x8, SIGTRAP) == NOTIFY_STOP)
247 return;
248
249 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
250 sun4v_insn_access_exception(regs, addr, type_ctx);
251}
252
253bool is_no_fault_exception(struct pt_regs *regs)
254{
255 unsigned char asi;
256 u32 insn;
257
258 if (get_user(insn, (u32 __user *)regs->tpc) == -EFAULT)
259 return false;
260
261 /*
262 * Must do a little instruction decoding here in order to
263 * decide on a course of action. The bits of interest are:
264 * insn[31:30] = op, where 3 indicates the load/store group
265 * insn[24:19] = op3, which identifies individual opcodes
266 * insn[13] indicates an immediate offset
267 * op3[4]=1 identifies alternate space instructions
268 * op3[5:4]=3 identifies floating point instructions
269 * op3[2]=1 identifies stores
270 * See "Opcode Maps" in the appendix of any Sparc V9
271 * architecture spec for full details.
272 */
273 if ((insn & 0xc0800000) == 0xc0800000) { /* op=3, op3[4]=1 */
274 if (insn & 0x2000) /* immediate offset */
275 asi = (regs->tstate >> 24); /* saved %asi */
276 else
277 asi = (insn >> 5); /* immediate asi */
278 if ((asi & 0xf6) == ASI_PNF) {
279 if (insn & 0x200000) /* op3[2], stores */
280 return false;
281 if (insn & 0x1000000) /* op3[5:4]=3 (fp) */
282 handle_ldf_stq(insn, regs);
283 else
284 handle_ld_nf(insn, regs);
285 return true;
286 }
287 }
288 return false;
289}
290
291void spitfire_data_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
292{
293 enum ctx_state prev_state = exception_enter();
294
295 if (notify_die(DIE_TRAP, "data access exception", regs,
296 0, 0x30, SIGTRAP) == NOTIFY_STOP)
297 goto out;
298
299 if (regs->tstate & TSTATE_PRIV) {
300 /* Test if this comes from uaccess places. */
301 const struct exception_table_entry *entry;
302
303 entry = search_exception_tables(regs->tpc);
304 if (entry) {
305 /* Ouch, somebody is trying VM hole tricks on us... */
306#ifdef DEBUG_EXCEPTIONS
307 printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc);
308 printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
309 regs->tpc, entry->fixup);
310#endif
311 regs->tpc = entry->fixup;
312 regs->tnpc = regs->tpc + 4;
313 goto out;
314 }
315 /* Shit... */
316 printk("spitfire_data_access_exception: SFSR[%016lx] "
317 "SFAR[%016lx], going.\n", sfsr, sfar);
318 die_if_kernel("Dax", regs);
319 }
320
321 if (is_no_fault_exception(regs))
322 return;
323
324 force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *)sfar);
325out:
326 exception_exit(prev_state);
327}
328
329void spitfire_data_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
330{
331 if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs,
332 0, 0x30, SIGTRAP) == NOTIFY_STOP)
333 return;
334
335 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
336 spitfire_data_access_exception(regs, sfsr, sfar);
337}
338
339void sun4v_data_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
340{
341 unsigned short type = (type_ctx >> 16);
342 unsigned short ctx = (type_ctx & 0xffff);
343
344 if (notify_die(DIE_TRAP, "data access exception", regs,
345 0, 0x8, SIGTRAP) == NOTIFY_STOP)
346 return;
347
348 if (regs->tstate & TSTATE_PRIV) {
349 /* Test if this comes from uaccess places. */
350 const struct exception_table_entry *entry;
351
352 entry = search_exception_tables(regs->tpc);
353 if (entry) {
354 /* Ouch, somebody is trying VM hole tricks on us... */
355#ifdef DEBUG_EXCEPTIONS
356 printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc);
357 printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
358 regs->tpc, entry->fixup);
359#endif
360 regs->tpc = entry->fixup;
361 regs->tnpc = regs->tpc + 4;
362 return;
363 }
364 printk("sun4v_data_access_exception: ADDR[%016lx] "
365 "CTX[%04x] TYPE[%04x], going.\n",
366 addr, ctx, type);
367 die_if_kernel("Dax", regs);
368 }
369
370 if (test_thread_flag(TIF_32BIT)) {
371 regs->tpc &= 0xffffffff;
372 regs->tnpc &= 0xffffffff;
373 }
374 if (is_no_fault_exception(regs))
375 return;
376
377 /* MCD (Memory Corruption Detection) disabled trap (TT=0x19) in HV
378 * is vectored thorugh data access exception trap with fault type
379 * set to HV_FAULT_TYPE_MCD_DIS. Check for MCD disabled trap.
380 * Accessing an address with invalid ASI for the address, for
381 * example setting an ADI tag on an address with ASI_MCD_PRIMARY
382 * when TTE.mcd is not set for the VA, is also vectored into
383 * kerbel by HV as data access exception with fault type set to
384 * HV_FAULT_TYPE_INV_ASI.
385 */
386 switch (type) {
387 case HV_FAULT_TYPE_INV_ASI:
388 force_sig_fault(SIGILL, ILL_ILLADR, (void __user *)addr);
389 break;
390 case HV_FAULT_TYPE_MCD_DIS:
391 force_sig_fault(SIGSEGV, SEGV_ACCADI, (void __user *)addr);
392 break;
393 default:
394 force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *)addr);
395 break;
396 }
397}
398
399void sun4v_data_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
400{
401 if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs,
402 0, 0x8, SIGTRAP) == NOTIFY_STOP)
403 return;
404
405 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
406 sun4v_data_access_exception(regs, addr, type_ctx);
407}
408
409#ifdef CONFIG_PCI
410#include "pci_impl.h"
411#endif
412
413/* When access exceptions happen, we must do this. */
414static void spitfire_clean_and_reenable_l1_caches(void)
415{
416 unsigned long va;
417
418 if (tlb_type != spitfire)
419 BUG();
420
421 /* Clean 'em. */
422 for (va = 0; va < (PAGE_SIZE << 1); va += 32) {
423 spitfire_put_icache_tag(va, 0x0);
424 spitfire_put_dcache_tag(va, 0x0);
425 }
426
427 /* Re-enable in LSU. */
428 __asm__ __volatile__("flush %%g6\n\t"
429 "membar #Sync\n\t"
430 "stxa %0, [%%g0] %1\n\t"
431 "membar #Sync"
432 : /* no outputs */
433 : "r" (LSU_CONTROL_IC | LSU_CONTROL_DC |
434 LSU_CONTROL_IM | LSU_CONTROL_DM),
435 "i" (ASI_LSU_CONTROL)
436 : "memory");
437}
438
439static void spitfire_enable_estate_errors(void)
440{
441 __asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
442 "membar #Sync"
443 : /* no outputs */
444 : "r" (ESTATE_ERR_ALL),
445 "i" (ASI_ESTATE_ERROR_EN));
446}
447
448static char ecc_syndrome_table[] = {
449 0x4c, 0x40, 0x41, 0x48, 0x42, 0x48, 0x48, 0x49,
450 0x43, 0x48, 0x48, 0x49, 0x48, 0x49, 0x49, 0x4a,
451 0x44, 0x48, 0x48, 0x20, 0x48, 0x39, 0x4b, 0x48,
452 0x48, 0x25, 0x31, 0x48, 0x28, 0x48, 0x48, 0x2c,
453 0x45, 0x48, 0x48, 0x21, 0x48, 0x3d, 0x04, 0x48,
454 0x48, 0x4b, 0x35, 0x48, 0x2d, 0x48, 0x48, 0x29,
455 0x48, 0x00, 0x01, 0x48, 0x0a, 0x48, 0x48, 0x4b,
456 0x0f, 0x48, 0x48, 0x4b, 0x48, 0x49, 0x49, 0x48,
457 0x46, 0x48, 0x48, 0x2a, 0x48, 0x3b, 0x27, 0x48,
458 0x48, 0x4b, 0x33, 0x48, 0x22, 0x48, 0x48, 0x2e,
459 0x48, 0x19, 0x1d, 0x48, 0x1b, 0x4a, 0x48, 0x4b,
460 0x1f, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48,
461 0x48, 0x4b, 0x24, 0x48, 0x07, 0x48, 0x48, 0x36,
462 0x4b, 0x48, 0x48, 0x3e, 0x48, 0x30, 0x38, 0x48,
463 0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x16, 0x48,
464 0x48, 0x12, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b,
465 0x47, 0x48, 0x48, 0x2f, 0x48, 0x3f, 0x4b, 0x48,
466 0x48, 0x06, 0x37, 0x48, 0x23, 0x48, 0x48, 0x2b,
467 0x48, 0x05, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x32,
468 0x26, 0x48, 0x48, 0x3a, 0x48, 0x34, 0x3c, 0x48,
469 0x48, 0x11, 0x15, 0x48, 0x13, 0x4a, 0x48, 0x4b,
470 0x17, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48,
471 0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x1e, 0x48,
472 0x48, 0x1a, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b,
473 0x48, 0x08, 0x0d, 0x48, 0x02, 0x48, 0x48, 0x49,
474 0x03, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x4b, 0x48,
475 0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x10, 0x48,
476 0x48, 0x14, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b,
477 0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x18, 0x48,
478 0x48, 0x1c, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b,
479 0x4a, 0x0c, 0x09, 0x48, 0x0e, 0x48, 0x48, 0x4b,
480 0x0b, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x4b, 0x4a
481};
482
483static char *syndrome_unknown = "<Unknown>";
484
485static void spitfire_log_udb_syndrome(unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long bit)
486{
487 unsigned short scode;
488 char memmod_str[64], *p;
489
490 if (udbl & bit) {
491 scode = ecc_syndrome_table[udbl & 0xff];
492 if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0)
493 p = syndrome_unknown;
494 else
495 p = memmod_str;
496 printk(KERN_WARNING "CPU[%d]: UDBL Syndrome[%x] "
497 "Memory Module \"%s\"\n",
498 smp_processor_id(), scode, p);
499 }
500
501 if (udbh & bit) {
502 scode = ecc_syndrome_table[udbh & 0xff];
503 if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0)
504 p = syndrome_unknown;
505 else
506 p = memmod_str;
507 printk(KERN_WARNING "CPU[%d]: UDBH Syndrome[%x] "
508 "Memory Module \"%s\"\n",
509 smp_processor_id(), scode, p);
510 }
511
512}
513
514static void spitfire_cee_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, int tl1, struct pt_regs *regs)
515{
516
517 printk(KERN_WARNING "CPU[%d]: Correctable ECC Error "
518 "AFSR[%lx] AFAR[%016lx] UDBL[%lx] UDBH[%lx] TL>1[%d]\n",
519 smp_processor_id(), afsr, afar, udbl, udbh, tl1);
520
521 spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_CE);
522
523 /* We always log it, even if someone is listening for this
524 * trap.
525 */
526 notify_die(DIE_TRAP, "Correctable ECC Error", regs,
527 0, TRAP_TYPE_CEE, SIGTRAP);
528
529 /* The Correctable ECC Error trap does not disable I/D caches. So
530 * we only have to restore the ESTATE Error Enable register.
531 */
532 spitfire_enable_estate_errors();
533}
534
535static void spitfire_ue_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long tt, int tl1, struct pt_regs *regs)
536{
537 printk(KERN_WARNING "CPU[%d]: Uncorrectable Error AFSR[%lx] "
538 "AFAR[%lx] UDBL[%lx] UDBH[%ld] TT[%lx] TL>1[%d]\n",
539 smp_processor_id(), afsr, afar, udbl, udbh, tt, tl1);
540
541 /* XXX add more human friendly logging of the error status
542 * XXX as is implemented for cheetah
543 */
544
545 spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_UE);
546
547 /* We always log it, even if someone is listening for this
548 * trap.
549 */
550 notify_die(DIE_TRAP, "Uncorrectable Error", regs,
551 0, tt, SIGTRAP);
552
553 if (regs->tstate & TSTATE_PRIV) {
554 if (tl1)
555 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
556 die_if_kernel("UE", regs);
557 }
558
559 /* XXX need more intelligent processing here, such as is implemented
560 * XXX for cheetah errors, in fact if the E-cache still holds the
561 * XXX line with bad parity this will loop
562 */
563
564 spitfire_clean_and_reenable_l1_caches();
565 spitfire_enable_estate_errors();
566
567 if (test_thread_flag(TIF_32BIT)) {
568 regs->tpc &= 0xffffffff;
569 regs->tnpc &= 0xffffffff;
570 }
571 force_sig_fault(SIGBUS, BUS_OBJERR, (void *)0);
572}
573
574void spitfire_access_error(struct pt_regs *regs, unsigned long status_encoded, unsigned long afar)
575{
576 unsigned long afsr, tt, udbh, udbl;
577 int tl1;
578
579 afsr = (status_encoded & SFSTAT_AFSR_MASK) >> SFSTAT_AFSR_SHIFT;
580 tt = (status_encoded & SFSTAT_TRAP_TYPE) >> SFSTAT_TRAP_TYPE_SHIFT;
581 tl1 = (status_encoded & SFSTAT_TL_GT_ONE) ? 1 : 0;
582 udbl = (status_encoded & SFSTAT_UDBL_MASK) >> SFSTAT_UDBL_SHIFT;
583 udbh = (status_encoded & SFSTAT_UDBH_MASK) >> SFSTAT_UDBH_SHIFT;
584
585#ifdef CONFIG_PCI
586 if (tt == TRAP_TYPE_DAE &&
587 pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) {
588 spitfire_clean_and_reenable_l1_caches();
589 spitfire_enable_estate_errors();
590
591 pci_poke_faulted = 1;
592 regs->tnpc = regs->tpc + 4;
593 return;
594 }
595#endif
596
597 if (afsr & SFAFSR_UE)
598 spitfire_ue_log(afsr, afar, udbh, udbl, tt, tl1, regs);
599
600 if (tt == TRAP_TYPE_CEE) {
601 /* Handle the case where we took a CEE trap, but ACK'd
602 * only the UE state in the UDB error registers.
603 */
604 if (afsr & SFAFSR_UE) {
605 if (udbh & UDBE_CE) {
606 __asm__ __volatile__(
607 "stxa %0, [%1] %2\n\t"
608 "membar #Sync"
609 : /* no outputs */
610 : "r" (udbh & UDBE_CE),
611 "r" (0x0), "i" (ASI_UDB_ERROR_W));
612 }
613 if (udbl & UDBE_CE) {
614 __asm__ __volatile__(
615 "stxa %0, [%1] %2\n\t"
616 "membar #Sync"
617 : /* no outputs */
618 : "r" (udbl & UDBE_CE),
619 "r" (0x18), "i" (ASI_UDB_ERROR_W));
620 }
621 }
622
623 spitfire_cee_log(afsr, afar, udbh, udbl, tl1, regs);
624 }
625}
626
627int cheetah_pcache_forced_on;
628
629void cheetah_enable_pcache(void)
630{
631 unsigned long dcr;
632
633 printk("CHEETAH: Enabling P-Cache on cpu %d.\n",
634 smp_processor_id());
635
636 __asm__ __volatile__("ldxa [%%g0] %1, %0"
637 : "=r" (dcr)
638 : "i" (ASI_DCU_CONTROL_REG));
639 dcr |= (DCU_PE | DCU_HPE | DCU_SPE | DCU_SL);
640 __asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
641 "membar #Sync"
642 : /* no outputs */
643 : "r" (dcr), "i" (ASI_DCU_CONTROL_REG));
644}
645
646/* Cheetah error trap handling. */
647static unsigned long ecache_flush_physbase;
648static unsigned long ecache_flush_linesize;
649static unsigned long ecache_flush_size;
650
651/* This table is ordered in priority of errors and matches the
652 * AFAR overwrite policy as well.
653 */
654
655struct afsr_error_table {
656 unsigned long mask;
657 const char *name;
658};
659
660static const char CHAFSR_PERR_msg[] =
661 "System interface protocol error";
662static const char CHAFSR_IERR_msg[] =
663 "Internal processor error";
664static const char CHAFSR_ISAP_msg[] =
665 "System request parity error on incoming address";
666static const char CHAFSR_UCU_msg[] =
667 "Uncorrectable E-cache ECC error for ifetch/data";
668static const char CHAFSR_UCC_msg[] =
669 "SW Correctable E-cache ECC error for ifetch/data";
670static const char CHAFSR_UE_msg[] =
671 "Uncorrectable system bus data ECC error for read";
672static const char CHAFSR_EDU_msg[] =
673 "Uncorrectable E-cache ECC error for stmerge/blkld";
674static const char CHAFSR_EMU_msg[] =
675 "Uncorrectable system bus MTAG error";
676static const char CHAFSR_WDU_msg[] =
677 "Uncorrectable E-cache ECC error for writeback";
678static const char CHAFSR_CPU_msg[] =
679 "Uncorrectable ECC error for copyout";
680static const char CHAFSR_CE_msg[] =
681 "HW corrected system bus data ECC error for read";
682static const char CHAFSR_EDC_msg[] =
683 "HW corrected E-cache ECC error for stmerge/blkld";
684static const char CHAFSR_EMC_msg[] =
685 "HW corrected system bus MTAG ECC error";
686static const char CHAFSR_WDC_msg[] =
687 "HW corrected E-cache ECC error for writeback";
688static const char CHAFSR_CPC_msg[] =
689 "HW corrected ECC error for copyout";
690static const char CHAFSR_TO_msg[] =
691 "Unmapped error from system bus";
692static const char CHAFSR_BERR_msg[] =
693 "Bus error response from system bus";
694static const char CHAFSR_IVC_msg[] =
695 "HW corrected system bus data ECC error for ivec read";
696static const char CHAFSR_IVU_msg[] =
697 "Uncorrectable system bus data ECC error for ivec read";
698static struct afsr_error_table __cheetah_error_table[] = {
699 { CHAFSR_PERR, CHAFSR_PERR_msg },
700 { CHAFSR_IERR, CHAFSR_IERR_msg },
701 { CHAFSR_ISAP, CHAFSR_ISAP_msg },
702 { CHAFSR_UCU, CHAFSR_UCU_msg },
703 { CHAFSR_UCC, CHAFSR_UCC_msg },
704 { CHAFSR_UE, CHAFSR_UE_msg },
705 { CHAFSR_EDU, CHAFSR_EDU_msg },
706 { CHAFSR_EMU, CHAFSR_EMU_msg },
707 { CHAFSR_WDU, CHAFSR_WDU_msg },
708 { CHAFSR_CPU, CHAFSR_CPU_msg },
709 { CHAFSR_CE, CHAFSR_CE_msg },
710 { CHAFSR_EDC, CHAFSR_EDC_msg },
711 { CHAFSR_EMC, CHAFSR_EMC_msg },
712 { CHAFSR_WDC, CHAFSR_WDC_msg },
713 { CHAFSR_CPC, CHAFSR_CPC_msg },
714 { CHAFSR_TO, CHAFSR_TO_msg },
715 { CHAFSR_BERR, CHAFSR_BERR_msg },
716 /* These two do not update the AFAR. */
717 { CHAFSR_IVC, CHAFSR_IVC_msg },
718 { CHAFSR_IVU, CHAFSR_IVU_msg },
719 { 0, NULL },
720};
721static const char CHPAFSR_DTO_msg[] =
722 "System bus unmapped error for prefetch/storequeue-read";
723static const char CHPAFSR_DBERR_msg[] =
724 "System bus error for prefetch/storequeue-read";
725static const char CHPAFSR_THCE_msg[] =
726 "Hardware corrected E-cache Tag ECC error";
727static const char CHPAFSR_TSCE_msg[] =
728 "SW handled correctable E-cache Tag ECC error";
729static const char CHPAFSR_TUE_msg[] =
730 "Uncorrectable E-cache Tag ECC error";
731static const char CHPAFSR_DUE_msg[] =
732 "System bus uncorrectable data ECC error due to prefetch/store-fill";
733static struct afsr_error_table __cheetah_plus_error_table[] = {
734 { CHAFSR_PERR, CHAFSR_PERR_msg },
735 { CHAFSR_IERR, CHAFSR_IERR_msg },
736 { CHAFSR_ISAP, CHAFSR_ISAP_msg },
737 { CHAFSR_UCU, CHAFSR_UCU_msg },
738 { CHAFSR_UCC, CHAFSR_UCC_msg },
739 { CHAFSR_UE, CHAFSR_UE_msg },
740 { CHAFSR_EDU, CHAFSR_EDU_msg },
741 { CHAFSR_EMU, CHAFSR_EMU_msg },
742 { CHAFSR_WDU, CHAFSR_WDU_msg },
743 { CHAFSR_CPU, CHAFSR_CPU_msg },
744 { CHAFSR_CE, CHAFSR_CE_msg },
745 { CHAFSR_EDC, CHAFSR_EDC_msg },
746 { CHAFSR_EMC, CHAFSR_EMC_msg },
747 { CHAFSR_WDC, CHAFSR_WDC_msg },
748 { CHAFSR_CPC, CHAFSR_CPC_msg },
749 { CHAFSR_TO, CHAFSR_TO_msg },
750 { CHAFSR_BERR, CHAFSR_BERR_msg },
751 { CHPAFSR_DTO, CHPAFSR_DTO_msg },
752 { CHPAFSR_DBERR, CHPAFSR_DBERR_msg },
753 { CHPAFSR_THCE, CHPAFSR_THCE_msg },
754 { CHPAFSR_TSCE, CHPAFSR_TSCE_msg },
755 { CHPAFSR_TUE, CHPAFSR_TUE_msg },
756 { CHPAFSR_DUE, CHPAFSR_DUE_msg },
757 /* These two do not update the AFAR. */
758 { CHAFSR_IVC, CHAFSR_IVC_msg },
759 { CHAFSR_IVU, CHAFSR_IVU_msg },
760 { 0, NULL },
761};
762static const char JPAFSR_JETO_msg[] =
763 "System interface protocol error, hw timeout caused";
764static const char JPAFSR_SCE_msg[] =
765 "Parity error on system snoop results";
766static const char JPAFSR_JEIC_msg[] =
767 "System interface protocol error, illegal command detected";
768static const char JPAFSR_JEIT_msg[] =
769 "System interface protocol error, illegal ADTYPE detected";
770static const char JPAFSR_OM_msg[] =
771 "Out of range memory error has occurred";
772static const char JPAFSR_ETP_msg[] =
773 "Parity error on L2 cache tag SRAM";
774static const char JPAFSR_UMS_msg[] =
775 "Error due to unsupported store";
776static const char JPAFSR_RUE_msg[] =
777 "Uncorrectable ECC error from remote cache/memory";
778static const char JPAFSR_RCE_msg[] =
779 "Correctable ECC error from remote cache/memory";
780static const char JPAFSR_BP_msg[] =
781 "JBUS parity error on returned read data";
782static const char JPAFSR_WBP_msg[] =
783 "JBUS parity error on data for writeback or block store";
784static const char JPAFSR_FRC_msg[] =
785 "Foreign read to DRAM incurring correctable ECC error";
786static const char JPAFSR_FRU_msg[] =
787 "Foreign read to DRAM incurring uncorrectable ECC error";
788static struct afsr_error_table __jalapeno_error_table[] = {
789 { JPAFSR_JETO, JPAFSR_JETO_msg },
790 { JPAFSR_SCE, JPAFSR_SCE_msg },
791 { JPAFSR_JEIC, JPAFSR_JEIC_msg },
792 { JPAFSR_JEIT, JPAFSR_JEIT_msg },
793 { CHAFSR_PERR, CHAFSR_PERR_msg },
794 { CHAFSR_IERR, CHAFSR_IERR_msg },
795 { CHAFSR_ISAP, CHAFSR_ISAP_msg },
796 { CHAFSR_UCU, CHAFSR_UCU_msg },
797 { CHAFSR_UCC, CHAFSR_UCC_msg },
798 { CHAFSR_UE, CHAFSR_UE_msg },
799 { CHAFSR_EDU, CHAFSR_EDU_msg },
800 { JPAFSR_OM, JPAFSR_OM_msg },
801 { CHAFSR_WDU, CHAFSR_WDU_msg },
802 { CHAFSR_CPU, CHAFSR_CPU_msg },
803 { CHAFSR_CE, CHAFSR_CE_msg },
804 { CHAFSR_EDC, CHAFSR_EDC_msg },
805 { JPAFSR_ETP, JPAFSR_ETP_msg },
806 { CHAFSR_WDC, CHAFSR_WDC_msg },
807 { CHAFSR_CPC, CHAFSR_CPC_msg },
808 { CHAFSR_TO, CHAFSR_TO_msg },
809 { CHAFSR_BERR, CHAFSR_BERR_msg },
810 { JPAFSR_UMS, JPAFSR_UMS_msg },
811 { JPAFSR_RUE, JPAFSR_RUE_msg },
812 { JPAFSR_RCE, JPAFSR_RCE_msg },
813 { JPAFSR_BP, JPAFSR_BP_msg },
814 { JPAFSR_WBP, JPAFSR_WBP_msg },
815 { JPAFSR_FRC, JPAFSR_FRC_msg },
816 { JPAFSR_FRU, JPAFSR_FRU_msg },
817 /* These two do not update the AFAR. */
818 { CHAFSR_IVU, CHAFSR_IVU_msg },
819 { 0, NULL },
820};
821static struct afsr_error_table *cheetah_error_table;
822static unsigned long cheetah_afsr_errors;
823
824struct cheetah_err_info *cheetah_error_log;
825
826static inline struct cheetah_err_info *cheetah_get_error_log(unsigned long afsr)
827{
828 struct cheetah_err_info *p;
829 int cpu = smp_processor_id();
830
831 if (!cheetah_error_log)
832 return NULL;
833
834 p = cheetah_error_log + (cpu * 2);
835 if ((afsr & CHAFSR_TL1) != 0UL)
836 p++;
837
838 return p;
839}
840
841extern unsigned int tl0_icpe[], tl1_icpe[];
842extern unsigned int tl0_dcpe[], tl1_dcpe[];
843extern unsigned int tl0_fecc[], tl1_fecc[];
844extern unsigned int tl0_cee[], tl1_cee[];
845extern unsigned int tl0_iae[], tl1_iae[];
846extern unsigned int tl0_dae[], tl1_dae[];
847extern unsigned int cheetah_plus_icpe_trap_vector[], cheetah_plus_icpe_trap_vector_tl1[];
848extern unsigned int cheetah_plus_dcpe_trap_vector[], cheetah_plus_dcpe_trap_vector_tl1[];
849extern unsigned int cheetah_fecc_trap_vector[], cheetah_fecc_trap_vector_tl1[];
850extern unsigned int cheetah_cee_trap_vector[], cheetah_cee_trap_vector_tl1[];
851extern unsigned int cheetah_deferred_trap_vector[], cheetah_deferred_trap_vector_tl1[];
852
853void __init cheetah_ecache_flush_init(void)
854{
855 unsigned long largest_size, smallest_linesize, order, ver;
856 int i, sz;
857
858 /* Scan all cpu device tree nodes, note two values:
859 * 1) largest E-cache size
860 * 2) smallest E-cache line size
861 */
862 largest_size = 0UL;
863 smallest_linesize = ~0UL;
864
865 for (i = 0; i < NR_CPUS; i++) {
866 unsigned long val;
867
868 val = cpu_data(i).ecache_size;
869 if (!val)
870 continue;
871
872 if (val > largest_size)
873 largest_size = val;
874
875 val = cpu_data(i).ecache_line_size;
876 if (val < smallest_linesize)
877 smallest_linesize = val;
878
879 }
880
881 if (largest_size == 0UL || smallest_linesize == ~0UL) {
882 prom_printf("cheetah_ecache_flush_init: Cannot probe cpu E-cache "
883 "parameters.\n");
884 prom_halt();
885 }
886
887 ecache_flush_size = (2 * largest_size);
888 ecache_flush_linesize = smallest_linesize;
889
890 ecache_flush_physbase = find_ecache_flush_span(ecache_flush_size);
891
892 if (ecache_flush_physbase == ~0UL) {
893 prom_printf("cheetah_ecache_flush_init: Cannot find %ld byte "
894 "contiguous physical memory.\n",
895 ecache_flush_size);
896 prom_halt();
897 }
898
899 /* Now allocate error trap reporting scoreboard. */
900 sz = NR_CPUS * (2 * sizeof(struct cheetah_err_info));
901 for (order = 0; order < NR_PAGE_ORDERS; order++) {
902 if ((PAGE_SIZE << order) >= sz)
903 break;
904 }
905 cheetah_error_log = (struct cheetah_err_info *)
906 __get_free_pages(GFP_KERNEL, order);
907 if (!cheetah_error_log) {
908 prom_printf("cheetah_ecache_flush_init: Failed to allocate "
909 "error logging scoreboard (%d bytes).\n", sz);
910 prom_halt();
911 }
912 memset(cheetah_error_log, 0, PAGE_SIZE << order);
913
914 /* Mark all AFSRs as invalid so that the trap handler will
915 * log new new information there.
916 */
917 for (i = 0; i < 2 * NR_CPUS; i++)
918 cheetah_error_log[i].afsr = CHAFSR_INVALID;
919
920 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
921 if ((ver >> 32) == __JALAPENO_ID ||
922 (ver >> 32) == __SERRANO_ID) {
923 cheetah_error_table = &__jalapeno_error_table[0];
924 cheetah_afsr_errors = JPAFSR_ERRORS;
925 } else if ((ver >> 32) == 0x003e0015) {
926 cheetah_error_table = &__cheetah_plus_error_table[0];
927 cheetah_afsr_errors = CHPAFSR_ERRORS;
928 } else {
929 cheetah_error_table = &__cheetah_error_table[0];
930 cheetah_afsr_errors = CHAFSR_ERRORS;
931 }
932
933 /* Now patch trap tables. */
934 memcpy(tl0_fecc, cheetah_fecc_trap_vector, (8 * 4));
935 memcpy(tl1_fecc, cheetah_fecc_trap_vector_tl1, (8 * 4));
936 memcpy(tl0_cee, cheetah_cee_trap_vector, (8 * 4));
937 memcpy(tl1_cee, cheetah_cee_trap_vector_tl1, (8 * 4));
938 memcpy(tl0_iae, cheetah_deferred_trap_vector, (8 * 4));
939 memcpy(tl1_iae, cheetah_deferred_trap_vector_tl1, (8 * 4));
940 memcpy(tl0_dae, cheetah_deferred_trap_vector, (8 * 4));
941 memcpy(tl1_dae, cheetah_deferred_trap_vector_tl1, (8 * 4));
942 if (tlb_type == cheetah_plus) {
943 memcpy(tl0_dcpe, cheetah_plus_dcpe_trap_vector, (8 * 4));
944 memcpy(tl1_dcpe, cheetah_plus_dcpe_trap_vector_tl1, (8 * 4));
945 memcpy(tl0_icpe, cheetah_plus_icpe_trap_vector, (8 * 4));
946 memcpy(tl1_icpe, cheetah_plus_icpe_trap_vector_tl1, (8 * 4));
947 }
948 flushi(PAGE_OFFSET);
949}
950
951static void cheetah_flush_ecache(void)
952{
953 unsigned long flush_base = ecache_flush_physbase;
954 unsigned long flush_linesize = ecache_flush_linesize;
955 unsigned long flush_size = ecache_flush_size;
956
957 __asm__ __volatile__("1: subcc %0, %4, %0\n\t"
958 " bne,pt %%xcc, 1b\n\t"
959 " ldxa [%2 + %0] %3, %%g0\n\t"
960 : "=&r" (flush_size)
961 : "0" (flush_size), "r" (flush_base),
962 "i" (ASI_PHYS_USE_EC), "r" (flush_linesize));
963}
964
965static void cheetah_flush_ecache_line(unsigned long physaddr)
966{
967 unsigned long alias;
968
969 physaddr &= ~(8UL - 1UL);
970 physaddr = (ecache_flush_physbase +
971 (physaddr & ((ecache_flush_size>>1UL) - 1UL)));
972 alias = physaddr + (ecache_flush_size >> 1UL);
973 __asm__ __volatile__("ldxa [%0] %2, %%g0\n\t"
974 "ldxa [%1] %2, %%g0\n\t"
975 "membar #Sync"
976 : /* no outputs */
977 : "r" (physaddr), "r" (alias),
978 "i" (ASI_PHYS_USE_EC));
979}
980
981/* Unfortunately, the diagnostic access to the I-cache tags we need to
982 * use to clear the thing interferes with I-cache coherency transactions.
983 *
984 * So we must only flush the I-cache when it is disabled.
985 */
986static void __cheetah_flush_icache(void)
987{
988 unsigned int icache_size, icache_line_size;
989 unsigned long addr;
990
991 icache_size = local_cpu_data().icache_size;
992 icache_line_size = local_cpu_data().icache_line_size;
993
994 /* Clear the valid bits in all the tags. */
995 for (addr = 0; addr < icache_size; addr += icache_line_size) {
996 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
997 "membar #Sync"
998 : /* no outputs */
999 : "r" (addr | (2 << 3)),
1000 "i" (ASI_IC_TAG));
1001 }
1002}
1003
1004static void cheetah_flush_icache(void)
1005{
1006 unsigned long dcu_save;
1007
1008 /* Save current DCU, disable I-cache. */
1009 __asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1010 "or %0, %2, %%g1\n\t"
1011 "stxa %%g1, [%%g0] %1\n\t"
1012 "membar #Sync"
1013 : "=r" (dcu_save)
1014 : "i" (ASI_DCU_CONTROL_REG), "i" (DCU_IC)
1015 : "g1");
1016
1017 __cheetah_flush_icache();
1018
1019 /* Restore DCU register */
1020 __asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
1021 "membar #Sync"
1022 : /* no outputs */
1023 : "r" (dcu_save), "i" (ASI_DCU_CONTROL_REG));
1024}
1025
1026static void cheetah_flush_dcache(void)
1027{
1028 unsigned int dcache_size, dcache_line_size;
1029 unsigned long addr;
1030
1031 dcache_size = local_cpu_data().dcache_size;
1032 dcache_line_size = local_cpu_data().dcache_line_size;
1033
1034 for (addr = 0; addr < dcache_size; addr += dcache_line_size) {
1035 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
1036 "membar #Sync"
1037 : /* no outputs */
1038 : "r" (addr), "i" (ASI_DCACHE_TAG));
1039 }
1040}
1041
1042/* In order to make the even parity correct we must do two things.
1043 * First, we clear DC_data_parity and set DC_utag to an appropriate value.
1044 * Next, we clear out all 32-bytes of data for that line. Data of
1045 * all-zero + tag parity value of zero == correct parity.
1046 */
1047static void cheetah_plus_zap_dcache_parity(void)
1048{
1049 unsigned int dcache_size, dcache_line_size;
1050 unsigned long addr;
1051
1052 dcache_size = local_cpu_data().dcache_size;
1053 dcache_line_size = local_cpu_data().dcache_line_size;
1054
1055 for (addr = 0; addr < dcache_size; addr += dcache_line_size) {
1056 unsigned long tag = (addr >> 14);
1057 unsigned long line;
1058
1059 __asm__ __volatile__("membar #Sync\n\t"
1060 "stxa %0, [%1] %2\n\t"
1061 "membar #Sync"
1062 : /* no outputs */
1063 : "r" (tag), "r" (addr),
1064 "i" (ASI_DCACHE_UTAG));
1065 for (line = addr; line < addr + dcache_line_size; line += 8)
1066 __asm__ __volatile__("membar #Sync\n\t"
1067 "stxa %%g0, [%0] %1\n\t"
1068 "membar #Sync"
1069 : /* no outputs */
1070 : "r" (line),
1071 "i" (ASI_DCACHE_DATA));
1072 }
1073}
1074
1075/* Conversion tables used to frob Cheetah AFSR syndrome values into
1076 * something palatable to the memory controller driver get_unumber
1077 * routine.
1078 */
1079#define MT0 137
1080#define MT1 138
1081#define MT2 139
1082#define NONE 254
1083#define MTC0 140
1084#define MTC1 141
1085#define MTC2 142
1086#define MTC3 143
1087#define C0 128
1088#define C1 129
1089#define C2 130
1090#define C3 131
1091#define C4 132
1092#define C5 133
1093#define C6 134
1094#define C7 135
1095#define C8 136
1096#define M2 144
1097#define M3 145
1098#define M4 146
1099#define M 147
1100static unsigned char cheetah_ecc_syntab[] = {
1101/*00*/NONE, C0, C1, M2, C2, M2, M3, 47, C3, M2, M2, 53, M2, 41, 29, M,
1102/*01*/C4, M, M, 50, M2, 38, 25, M2, M2, 33, 24, M2, 11, M, M2, 16,
1103/*02*/C5, M, M, 46, M2, 37, 19, M2, M, 31, 32, M, 7, M2, M2, 10,
1104/*03*/M2, 40, 13, M2, 59, M, M2, 66, M, M2, M2, 0, M2, 67, 71, M,
1105/*04*/C6, M, M, 43, M, 36, 18, M, M2, 49, 15, M, 63, M2, M2, 6,
1106/*05*/M2, 44, 28, M2, M, M2, M2, 52, 68, M2, M2, 62, M2, M3, M3, M4,
1107/*06*/M2, 26, 106, M2, 64, M, M2, 2, 120, M, M2, M3, M, M3, M3, M4,
1108/*07*/116, M2, M2, M3, M2, M3, M, M4, M2, 58, 54, M2, M, M4, M4, M3,
1109/*08*/C7, M2, M, 42, M, 35, 17, M2, M, 45, 14, M2, 21, M2, M2, 5,
1110/*09*/M, 27, M, M, 99, M, M, 3, 114, M2, M2, 20, M2, M3, M3, M,
1111/*0a*/M2, 23, 113, M2, 112, M2, M, 51, 95, M, M2, M3, M2, M3, M3, M2,
1112/*0b*/103, M, M2, M3, M2, M3, M3, M4, M2, 48, M, M, 73, M2, M, M3,
1113/*0c*/M2, 22, 110, M2, 109, M2, M, 9, 108, M2, M, M3, M2, M3, M3, M,
1114/*0d*/102, M2, M, M, M2, M3, M3, M, M2, M3, M3, M2, M, M4, M, M3,
1115/*0e*/98, M, M2, M3, M2, M, M3, M4, M2, M3, M3, M4, M3, M, M, M,
1116/*0f*/M2, M3, M3, M, M3, M, M, M, 56, M4, M, M3, M4, M, M, M,
1117/*10*/C8, M, M2, 39, M, 34, 105, M2, M, 30, 104, M, 101, M, M, 4,
1118/*11*/M, M, 100, M, 83, M, M2, 12, 87, M, M, 57, M2, M, M3, M,
1119/*12*/M2, 97, 82, M2, 78, M2, M2, 1, 96, M, M, M, M, M, M3, M2,
1120/*13*/94, M, M2, M3, M2, M, M3, M, M2, M, 79, M, 69, M, M4, M,
1121/*14*/M2, 93, 92, M, 91, M, M2, 8, 90, M2, M2, M, M, M, M, M4,
1122/*15*/89, M, M, M3, M2, M3, M3, M, M, M, M3, M2, M3, M2, M, M3,
1123/*16*/86, M, M2, M3, M2, M, M3, M, M2, M, M3, M, M3, M, M, M3,
1124/*17*/M, M, M3, M2, M3, M2, M4, M, 60, M, M2, M3, M4, M, M, M2,
1125/*18*/M2, 88, 85, M2, 84, M, M2, 55, 81, M2, M2, M3, M2, M3, M3, M4,
1126/*19*/77, M, M, M, M2, M3, M, M, M2, M3, M3, M4, M3, M2, M, M,
1127/*1a*/74, M, M2, M3, M, M, M3, M, M, M, M3, M, M3, M, M4, M3,
1128/*1b*/M2, 70, 107, M4, 65, M2, M2, M, 127, M, M, M, M2, M3, M3, M,
1129/*1c*/80, M2, M2, 72, M, 119, 118, M, M2, 126, 76, M, 125, M, M4, M3,
1130/*1d*/M2, 115, 124, M, 75, M, M, M3, 61, M, M4, M, M4, M, M, M,
1131/*1e*/M, 123, 122, M4, 121, M4, M, M3, 117, M2, M2, M3, M4, M3, M, M,
1132/*1f*/111, M, M, M, M4, M3, M3, M, M, M, M3, M, M3, M2, M, M
1133};
1134static unsigned char cheetah_mtag_syntab[] = {
1135 NONE, MTC0,
1136 MTC1, NONE,
1137 MTC2, NONE,
1138 NONE, MT0,
1139 MTC3, NONE,
1140 NONE, MT1,
1141 NONE, MT2,
1142 NONE, NONE
1143};
1144
1145/* Return the highest priority error conditon mentioned. */
1146static inline unsigned long cheetah_get_hipri(unsigned long afsr)
1147{
1148 unsigned long tmp = 0;
1149 int i;
1150
1151 for (i = 0; cheetah_error_table[i].mask; i++) {
1152 if ((tmp = (afsr & cheetah_error_table[i].mask)) != 0UL)
1153 return tmp;
1154 }
1155 return tmp;
1156}
1157
1158static const char *cheetah_get_string(unsigned long bit)
1159{
1160 int i;
1161
1162 for (i = 0; cheetah_error_table[i].mask; i++) {
1163 if ((bit & cheetah_error_table[i].mask) != 0UL)
1164 return cheetah_error_table[i].name;
1165 }
1166 return "???";
1167}
1168
1169static void cheetah_log_errors(struct pt_regs *regs, struct cheetah_err_info *info,
1170 unsigned long afsr, unsigned long afar, int recoverable)
1171{
1172 unsigned long hipri;
1173 char unum[256];
1174
1175 printk("%s" "ERROR(%d): Cheetah error trap taken afsr[%016lx] afar[%016lx] TL1(%d)\n",
1176 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1177 afsr, afar,
1178 (afsr & CHAFSR_TL1) ? 1 : 0);
1179 printk("%s" "ERROR(%d): TPC[%lx] TNPC[%lx] O7[%lx] TSTATE[%lx]\n",
1180 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1181 regs->tpc, regs->tnpc, regs->u_regs[UREG_I7], regs->tstate);
1182 printk("%s" "ERROR(%d): ",
1183 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id());
1184 printk("TPC<%pS>\n", (void *) regs->tpc);
1185 printk("%s" "ERROR(%d): M_SYND(%lx), E_SYND(%lx)%s%s\n",
1186 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1187 (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT,
1188 (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT,
1189 (afsr & CHAFSR_ME) ? ", Multiple Errors" : "",
1190 (afsr & CHAFSR_PRIV) ? ", Privileged" : "");
1191 hipri = cheetah_get_hipri(afsr);
1192 printk("%s" "ERROR(%d): Highest priority error (%016lx) \"%s\"\n",
1193 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1194 hipri, cheetah_get_string(hipri));
1195
1196 /* Try to get unumber if relevant. */
1197#define ESYND_ERRORS (CHAFSR_IVC | CHAFSR_IVU | \
1198 CHAFSR_CPC | CHAFSR_CPU | \
1199 CHAFSR_UE | CHAFSR_CE | \
1200 CHAFSR_EDC | CHAFSR_EDU | \
1201 CHAFSR_UCC | CHAFSR_UCU | \
1202 CHAFSR_WDU | CHAFSR_WDC)
1203#define MSYND_ERRORS (CHAFSR_EMC | CHAFSR_EMU)
1204 if (afsr & ESYND_ERRORS) {
1205 int syndrome;
1206 int ret;
1207
1208 syndrome = (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT;
1209 syndrome = cheetah_ecc_syntab[syndrome];
1210 ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum));
1211 if (ret != -1)
1212 printk("%s" "ERROR(%d): AFAR E-syndrome [%s]\n",
1213 (recoverable ? KERN_WARNING : KERN_CRIT),
1214 smp_processor_id(), unum);
1215 } else if (afsr & MSYND_ERRORS) {
1216 int syndrome;
1217 int ret;
1218
1219 syndrome = (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT;
1220 syndrome = cheetah_mtag_syntab[syndrome];
1221 ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum));
1222 if (ret != -1)
1223 printk("%s" "ERROR(%d): AFAR M-syndrome [%s]\n",
1224 (recoverable ? KERN_WARNING : KERN_CRIT),
1225 smp_processor_id(), unum);
1226 }
1227
1228 /* Now dump the cache snapshots. */
1229 printk("%s" "ERROR(%d): D-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx]\n",
1230 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1231 (int) info->dcache_index,
1232 info->dcache_tag,
1233 info->dcache_utag,
1234 info->dcache_stag);
1235 printk("%s" "ERROR(%d): D-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n",
1236 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1237 info->dcache_data[0],
1238 info->dcache_data[1],
1239 info->dcache_data[2],
1240 info->dcache_data[3]);
1241 printk("%s" "ERROR(%d): I-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx] "
1242 "u[%016llx] l[%016llx]\n",
1243 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1244 (int) info->icache_index,
1245 info->icache_tag,
1246 info->icache_utag,
1247 info->icache_stag,
1248 info->icache_upper,
1249 info->icache_lower);
1250 printk("%s" "ERROR(%d): I-cache INSN0[%016llx] INSN1[%016llx] INSN2[%016llx] INSN3[%016llx]\n",
1251 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1252 info->icache_data[0],
1253 info->icache_data[1],
1254 info->icache_data[2],
1255 info->icache_data[3]);
1256 printk("%s" "ERROR(%d): I-cache INSN4[%016llx] INSN5[%016llx] INSN6[%016llx] INSN7[%016llx]\n",
1257 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1258 info->icache_data[4],
1259 info->icache_data[5],
1260 info->icache_data[6],
1261 info->icache_data[7]);
1262 printk("%s" "ERROR(%d): E-cache idx[%x] tag[%016llx]\n",
1263 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1264 (int) info->ecache_index, info->ecache_tag);
1265 printk("%s" "ERROR(%d): E-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n",
1266 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1267 info->ecache_data[0],
1268 info->ecache_data[1],
1269 info->ecache_data[2],
1270 info->ecache_data[3]);
1271
1272 afsr = (afsr & ~hipri) & cheetah_afsr_errors;
1273 while (afsr != 0UL) {
1274 unsigned long bit = cheetah_get_hipri(afsr);
1275
1276 printk("%s" "ERROR: Multiple-error (%016lx) \"%s\"\n",
1277 (recoverable ? KERN_WARNING : KERN_CRIT),
1278 bit, cheetah_get_string(bit));
1279
1280 afsr &= ~bit;
1281 }
1282
1283 if (!recoverable)
1284 printk(KERN_CRIT "ERROR: This condition is not recoverable.\n");
1285}
1286
1287static int cheetah_recheck_errors(struct cheetah_err_info *logp)
1288{
1289 unsigned long afsr, afar;
1290 int ret = 0;
1291
1292 __asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1293 : "=r" (afsr)
1294 : "i" (ASI_AFSR));
1295 if ((afsr & cheetah_afsr_errors) != 0) {
1296 if (logp != NULL) {
1297 __asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1298 : "=r" (afar)
1299 : "i" (ASI_AFAR));
1300 logp->afsr = afsr;
1301 logp->afar = afar;
1302 }
1303 ret = 1;
1304 }
1305 __asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
1306 "membar #Sync\n\t"
1307 : : "r" (afsr), "i" (ASI_AFSR));
1308
1309 return ret;
1310}
1311
1312void cheetah_fecc_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1313{
1314 struct cheetah_err_info local_snapshot, *p;
1315 int recoverable;
1316
1317 /* Flush E-cache */
1318 cheetah_flush_ecache();
1319
1320 p = cheetah_get_error_log(afsr);
1321 if (!p) {
1322 prom_printf("ERROR: Early Fast-ECC error afsr[%016lx] afar[%016lx]\n",
1323 afsr, afar);
1324 prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1325 smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1326 prom_halt();
1327 }
1328
1329 /* Grab snapshot of logged error. */
1330 memcpy(&local_snapshot, p, sizeof(local_snapshot));
1331
1332 /* If the current trap snapshot does not match what the
1333 * trap handler passed along into our args, big trouble.
1334 * In such a case, mark the local copy as invalid.
1335 *
1336 * Else, it matches and we mark the afsr in the non-local
1337 * copy as invalid so we may log new error traps there.
1338 */
1339 if (p->afsr != afsr || p->afar != afar)
1340 local_snapshot.afsr = CHAFSR_INVALID;
1341 else
1342 p->afsr = CHAFSR_INVALID;
1343
1344 cheetah_flush_icache();
1345 cheetah_flush_dcache();
1346
1347 /* Re-enable I-cache/D-cache */
1348 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1349 "or %%g1, %1, %%g1\n\t"
1350 "stxa %%g1, [%%g0] %0\n\t"
1351 "membar #Sync"
1352 : /* no outputs */
1353 : "i" (ASI_DCU_CONTROL_REG),
1354 "i" (DCU_DC | DCU_IC)
1355 : "g1");
1356
1357 /* Re-enable error reporting */
1358 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1359 "or %%g1, %1, %%g1\n\t"
1360 "stxa %%g1, [%%g0] %0\n\t"
1361 "membar #Sync"
1362 : /* no outputs */
1363 : "i" (ASI_ESTATE_ERROR_EN),
1364 "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1365 : "g1");
1366
1367 /* Decide if we can continue after handling this trap and
1368 * logging the error.
1369 */
1370 recoverable = 1;
1371 if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1372 recoverable = 0;
1373
1374 /* Re-check AFSR/AFAR. What we are looking for here is whether a new
1375 * error was logged while we had error reporting traps disabled.
1376 */
1377 if (cheetah_recheck_errors(&local_snapshot)) {
1378 unsigned long new_afsr = local_snapshot.afsr;
1379
1380 /* If we got a new asynchronous error, die... */
1381 if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU |
1382 CHAFSR_WDU | CHAFSR_CPU |
1383 CHAFSR_IVU | CHAFSR_UE |
1384 CHAFSR_BERR | CHAFSR_TO))
1385 recoverable = 0;
1386 }
1387
1388 /* Log errors. */
1389 cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1390
1391 if (!recoverable)
1392 panic("Irrecoverable Fast-ECC error trap.\n");
1393
1394 /* Flush E-cache to kick the error trap handlers out. */
1395 cheetah_flush_ecache();
1396}
1397
1398/* Try to fix a correctable error by pushing the line out from
1399 * the E-cache. Recheck error reporting registers to see if the
1400 * problem is intermittent.
1401 */
1402static int cheetah_fix_ce(unsigned long physaddr)
1403{
1404 unsigned long orig_estate;
1405 unsigned long alias1, alias2;
1406 int ret;
1407
1408 /* Make sure correctable error traps are disabled. */
1409 __asm__ __volatile__("ldxa [%%g0] %2, %0\n\t"
1410 "andn %0, %1, %%g1\n\t"
1411 "stxa %%g1, [%%g0] %2\n\t"
1412 "membar #Sync"
1413 : "=&r" (orig_estate)
1414 : "i" (ESTATE_ERROR_CEEN),
1415 "i" (ASI_ESTATE_ERROR_EN)
1416 : "g1");
1417
1418 /* We calculate alias addresses that will force the
1419 * cache line in question out of the E-cache. Then
1420 * we bring it back in with an atomic instruction so
1421 * that we get it in some modified/exclusive state,
1422 * then we displace it again to try and get proper ECC
1423 * pushed back into the system.
1424 */
1425 physaddr &= ~(8UL - 1UL);
1426 alias1 = (ecache_flush_physbase +
1427 (physaddr & ((ecache_flush_size >> 1) - 1)));
1428 alias2 = alias1 + (ecache_flush_size >> 1);
1429 __asm__ __volatile__("ldxa [%0] %3, %%g0\n\t"
1430 "ldxa [%1] %3, %%g0\n\t"
1431 "casxa [%2] %3, %%g0, %%g0\n\t"
1432 "ldxa [%0] %3, %%g0\n\t"
1433 "ldxa [%1] %3, %%g0\n\t"
1434 "membar #Sync"
1435 : /* no outputs */
1436 : "r" (alias1), "r" (alias2),
1437 "r" (physaddr), "i" (ASI_PHYS_USE_EC));
1438
1439 /* Did that trigger another error? */
1440 if (cheetah_recheck_errors(NULL)) {
1441 /* Try one more time. */
1442 __asm__ __volatile__("ldxa [%0] %1, %%g0\n\t"
1443 "membar #Sync"
1444 : : "r" (physaddr), "i" (ASI_PHYS_USE_EC));
1445 if (cheetah_recheck_errors(NULL))
1446 ret = 2;
1447 else
1448 ret = 1;
1449 } else {
1450 /* No new error, intermittent problem. */
1451 ret = 0;
1452 }
1453
1454 /* Restore error enables. */
1455 __asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
1456 "membar #Sync"
1457 : : "r" (orig_estate), "i" (ASI_ESTATE_ERROR_EN));
1458
1459 return ret;
1460}
1461
1462/* Return non-zero if PADDR is a valid physical memory address. */
1463static int cheetah_check_main_memory(unsigned long paddr)
1464{
1465 unsigned long vaddr = PAGE_OFFSET + paddr;
1466
1467 if (vaddr > (unsigned long) high_memory)
1468 return 0;
1469
1470 return kern_addr_valid(vaddr);
1471}
1472
1473void cheetah_cee_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1474{
1475 struct cheetah_err_info local_snapshot, *p;
1476 int recoverable, is_memory;
1477
1478 p = cheetah_get_error_log(afsr);
1479 if (!p) {
1480 prom_printf("ERROR: Early CEE error afsr[%016lx] afar[%016lx]\n",
1481 afsr, afar);
1482 prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1483 smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1484 prom_halt();
1485 }
1486
1487 /* Grab snapshot of logged error. */
1488 memcpy(&local_snapshot, p, sizeof(local_snapshot));
1489
1490 /* If the current trap snapshot does not match what the
1491 * trap handler passed along into our args, big trouble.
1492 * In such a case, mark the local copy as invalid.
1493 *
1494 * Else, it matches and we mark the afsr in the non-local
1495 * copy as invalid so we may log new error traps there.
1496 */
1497 if (p->afsr != afsr || p->afar != afar)
1498 local_snapshot.afsr = CHAFSR_INVALID;
1499 else
1500 p->afsr = CHAFSR_INVALID;
1501
1502 is_memory = cheetah_check_main_memory(afar);
1503
1504 if (is_memory && (afsr & CHAFSR_CE) != 0UL) {
1505 /* XXX Might want to log the results of this operation
1506 * XXX somewhere... -DaveM
1507 */
1508 cheetah_fix_ce(afar);
1509 }
1510
1511 {
1512 int flush_all, flush_line;
1513
1514 flush_all = flush_line = 0;
1515 if ((afsr & CHAFSR_EDC) != 0UL) {
1516 if ((afsr & cheetah_afsr_errors) == CHAFSR_EDC)
1517 flush_line = 1;
1518 else
1519 flush_all = 1;
1520 } else if ((afsr & CHAFSR_CPC) != 0UL) {
1521 if ((afsr & cheetah_afsr_errors) == CHAFSR_CPC)
1522 flush_line = 1;
1523 else
1524 flush_all = 1;
1525 }
1526
1527 /* Trap handler only disabled I-cache, flush it. */
1528 cheetah_flush_icache();
1529
1530 /* Re-enable I-cache */
1531 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1532 "or %%g1, %1, %%g1\n\t"
1533 "stxa %%g1, [%%g0] %0\n\t"
1534 "membar #Sync"
1535 : /* no outputs */
1536 : "i" (ASI_DCU_CONTROL_REG),
1537 "i" (DCU_IC)
1538 : "g1");
1539
1540 if (flush_all)
1541 cheetah_flush_ecache();
1542 else if (flush_line)
1543 cheetah_flush_ecache_line(afar);
1544 }
1545
1546 /* Re-enable error reporting */
1547 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1548 "or %%g1, %1, %%g1\n\t"
1549 "stxa %%g1, [%%g0] %0\n\t"
1550 "membar #Sync"
1551 : /* no outputs */
1552 : "i" (ASI_ESTATE_ERROR_EN),
1553 "i" (ESTATE_ERROR_CEEN)
1554 : "g1");
1555
1556 /* Decide if we can continue after handling this trap and
1557 * logging the error.
1558 */
1559 recoverable = 1;
1560 if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1561 recoverable = 0;
1562
1563 /* Re-check AFSR/AFAR */
1564 (void) cheetah_recheck_errors(&local_snapshot);
1565
1566 /* Log errors. */
1567 cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1568
1569 if (!recoverable)
1570 panic("Irrecoverable Correctable-ECC error trap.\n");
1571}
1572
1573void cheetah_deferred_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1574{
1575 struct cheetah_err_info local_snapshot, *p;
1576 int recoverable, is_memory;
1577
1578#ifdef CONFIG_PCI
1579 /* Check for the special PCI poke sequence. */
1580 if (pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) {
1581 cheetah_flush_icache();
1582 cheetah_flush_dcache();
1583
1584 /* Re-enable I-cache/D-cache */
1585 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1586 "or %%g1, %1, %%g1\n\t"
1587 "stxa %%g1, [%%g0] %0\n\t"
1588 "membar #Sync"
1589 : /* no outputs */
1590 : "i" (ASI_DCU_CONTROL_REG),
1591 "i" (DCU_DC | DCU_IC)
1592 : "g1");
1593
1594 /* Re-enable error reporting */
1595 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1596 "or %%g1, %1, %%g1\n\t"
1597 "stxa %%g1, [%%g0] %0\n\t"
1598 "membar #Sync"
1599 : /* no outputs */
1600 : "i" (ASI_ESTATE_ERROR_EN),
1601 "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1602 : "g1");
1603
1604 (void) cheetah_recheck_errors(NULL);
1605
1606 pci_poke_faulted = 1;
1607 regs->tpc += 4;
1608 regs->tnpc = regs->tpc + 4;
1609 return;
1610 }
1611#endif
1612
1613 p = cheetah_get_error_log(afsr);
1614 if (!p) {
1615 prom_printf("ERROR: Early deferred error afsr[%016lx] afar[%016lx]\n",
1616 afsr, afar);
1617 prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1618 smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1619 prom_halt();
1620 }
1621
1622 /* Grab snapshot of logged error. */
1623 memcpy(&local_snapshot, p, sizeof(local_snapshot));
1624
1625 /* If the current trap snapshot does not match what the
1626 * trap handler passed along into our args, big trouble.
1627 * In such a case, mark the local copy as invalid.
1628 *
1629 * Else, it matches and we mark the afsr in the non-local
1630 * copy as invalid so we may log new error traps there.
1631 */
1632 if (p->afsr != afsr || p->afar != afar)
1633 local_snapshot.afsr = CHAFSR_INVALID;
1634 else
1635 p->afsr = CHAFSR_INVALID;
1636
1637 is_memory = cheetah_check_main_memory(afar);
1638
1639 {
1640 int flush_all, flush_line;
1641
1642 flush_all = flush_line = 0;
1643 if ((afsr & CHAFSR_EDU) != 0UL) {
1644 if ((afsr & cheetah_afsr_errors) == CHAFSR_EDU)
1645 flush_line = 1;
1646 else
1647 flush_all = 1;
1648 } else if ((afsr & CHAFSR_BERR) != 0UL) {
1649 if ((afsr & cheetah_afsr_errors) == CHAFSR_BERR)
1650 flush_line = 1;
1651 else
1652 flush_all = 1;
1653 }
1654
1655 cheetah_flush_icache();
1656 cheetah_flush_dcache();
1657
1658 /* Re-enable I/D caches */
1659 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1660 "or %%g1, %1, %%g1\n\t"
1661 "stxa %%g1, [%%g0] %0\n\t"
1662 "membar #Sync"
1663 : /* no outputs */
1664 : "i" (ASI_DCU_CONTROL_REG),
1665 "i" (DCU_IC | DCU_DC)
1666 : "g1");
1667
1668 if (flush_all)
1669 cheetah_flush_ecache();
1670 else if (flush_line)
1671 cheetah_flush_ecache_line(afar);
1672 }
1673
1674 /* Re-enable error reporting */
1675 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1676 "or %%g1, %1, %%g1\n\t"
1677 "stxa %%g1, [%%g0] %0\n\t"
1678 "membar #Sync"
1679 : /* no outputs */
1680 : "i" (ASI_ESTATE_ERROR_EN),
1681 "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1682 : "g1");
1683
1684 /* Decide if we can continue after handling this trap and
1685 * logging the error.
1686 */
1687 recoverable = 1;
1688 if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1689 recoverable = 0;
1690
1691 /* Re-check AFSR/AFAR. What we are looking for here is whether a new
1692 * error was logged while we had error reporting traps disabled.
1693 */
1694 if (cheetah_recheck_errors(&local_snapshot)) {
1695 unsigned long new_afsr = local_snapshot.afsr;
1696
1697 /* If we got a new asynchronous error, die... */
1698 if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU |
1699 CHAFSR_WDU | CHAFSR_CPU |
1700 CHAFSR_IVU | CHAFSR_UE |
1701 CHAFSR_BERR | CHAFSR_TO))
1702 recoverable = 0;
1703 }
1704
1705 /* Log errors. */
1706 cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1707
1708 /* "Recoverable" here means we try to yank the page from ever
1709 * being newly used again. This depends upon a few things:
1710 * 1) Must be main memory, and AFAR must be valid.
1711 * 2) If we trapped from user, OK.
1712 * 3) Else, if we trapped from kernel we must find exception
1713 * table entry (ie. we have to have been accessing user
1714 * space).
1715 *
1716 * If AFAR is not in main memory, or we trapped from kernel
1717 * and cannot find an exception table entry, it is unacceptable
1718 * to try and continue.
1719 */
1720 if (recoverable && is_memory) {
1721 if ((regs->tstate & TSTATE_PRIV) == 0UL) {
1722 /* OK, usermode access. */
1723 recoverable = 1;
1724 } else {
1725 const struct exception_table_entry *entry;
1726
1727 entry = search_exception_tables(regs->tpc);
1728 if (entry) {
1729 /* OK, kernel access to userspace. */
1730 recoverable = 1;
1731
1732 } else {
1733 /* BAD, privileged state is corrupted. */
1734 recoverable = 0;
1735 }
1736
1737 if (recoverable) {
1738 if (pfn_valid(afar >> PAGE_SHIFT))
1739 get_page(pfn_to_page(afar >> PAGE_SHIFT));
1740 else
1741 recoverable = 0;
1742
1743 /* Only perform fixup if we still have a
1744 * recoverable condition.
1745 */
1746 if (recoverable) {
1747 regs->tpc = entry->fixup;
1748 regs->tnpc = regs->tpc + 4;
1749 }
1750 }
1751 }
1752 } else {
1753 recoverable = 0;
1754 }
1755
1756 if (!recoverable)
1757 panic("Irrecoverable deferred error trap.\n");
1758}
1759
1760/* Handle a D/I cache parity error trap. TYPE is encoded as:
1761 *
1762 * Bit0: 0=dcache,1=icache
1763 * Bit1: 0=recoverable,1=unrecoverable
1764 *
1765 * The hardware has disabled both the I-cache and D-cache in
1766 * the %dcr register.
1767 */
1768void cheetah_plus_parity_error(int type, struct pt_regs *regs)
1769{
1770 if (type & 0x1)
1771 __cheetah_flush_icache();
1772 else
1773 cheetah_plus_zap_dcache_parity();
1774 cheetah_flush_dcache();
1775
1776 /* Re-enable I-cache/D-cache */
1777 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1778 "or %%g1, %1, %%g1\n\t"
1779 "stxa %%g1, [%%g0] %0\n\t"
1780 "membar #Sync"
1781 : /* no outputs */
1782 : "i" (ASI_DCU_CONTROL_REG),
1783 "i" (DCU_DC | DCU_IC)
1784 : "g1");
1785
1786 if (type & 0x2) {
1787 printk(KERN_EMERG "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n",
1788 smp_processor_id(),
1789 (type & 0x1) ? 'I' : 'D',
1790 regs->tpc);
1791 printk(KERN_EMERG "TPC<%pS>\n", (void *) regs->tpc);
1792 panic("Irrecoverable Cheetah+ parity error.");
1793 }
1794
1795 printk(KERN_WARNING "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n",
1796 smp_processor_id(),
1797 (type & 0x1) ? 'I' : 'D',
1798 regs->tpc);
1799 printk(KERN_WARNING "TPC<%pS>\n", (void *) regs->tpc);
1800}
1801
1802struct sun4v_error_entry {
1803 /* Unique error handle */
1804/*0x00*/u64 err_handle;
1805
1806 /* %stick value at the time of the error */
1807/*0x08*/u64 err_stick;
1808
1809/*0x10*/u8 reserved_1[3];
1810
1811 /* Error type */
1812/*0x13*/u8 err_type;
1813#define SUN4V_ERR_TYPE_UNDEFINED 0
1814#define SUN4V_ERR_TYPE_UNCORRECTED_RES 1
1815#define SUN4V_ERR_TYPE_PRECISE_NONRES 2
1816#define SUN4V_ERR_TYPE_DEFERRED_NONRES 3
1817#define SUN4V_ERR_TYPE_SHUTDOWN_RQST 4
1818#define SUN4V_ERR_TYPE_DUMP_CORE 5
1819#define SUN4V_ERR_TYPE_SP_STATE_CHANGE 6
1820#define SUN4V_ERR_TYPE_NUM 7
1821
1822 /* Error attributes */
1823/*0x14*/u32 err_attrs;
1824#define SUN4V_ERR_ATTRS_PROCESSOR 0x00000001
1825#define SUN4V_ERR_ATTRS_MEMORY 0x00000002
1826#define SUN4V_ERR_ATTRS_PIO 0x00000004
1827#define SUN4V_ERR_ATTRS_INT_REGISTERS 0x00000008
1828#define SUN4V_ERR_ATTRS_FPU_REGISTERS 0x00000010
1829#define SUN4V_ERR_ATTRS_SHUTDOWN_RQST 0x00000020
1830#define SUN4V_ERR_ATTRS_ASR 0x00000040
1831#define SUN4V_ERR_ATTRS_ASI 0x00000080
1832#define SUN4V_ERR_ATTRS_PRIV_REG 0x00000100
1833#define SUN4V_ERR_ATTRS_SPSTATE_MSK 0x00000600
1834#define SUN4V_ERR_ATTRS_MCD 0x00000800
1835#define SUN4V_ERR_ATTRS_SPSTATE_SHFT 9
1836#define SUN4V_ERR_ATTRS_MODE_MSK 0x03000000
1837#define SUN4V_ERR_ATTRS_MODE_SHFT 24
1838#define SUN4V_ERR_ATTRS_RES_QUEUE_FULL 0x80000000
1839
1840#define SUN4V_ERR_SPSTATE_FAULTED 0
1841#define SUN4V_ERR_SPSTATE_AVAILABLE 1
1842#define SUN4V_ERR_SPSTATE_NOT_PRESENT 2
1843
1844#define SUN4V_ERR_MODE_USER 1
1845#define SUN4V_ERR_MODE_PRIV 2
1846
1847 /* Real address of the memory region or PIO transaction */
1848/*0x18*/u64 err_raddr;
1849
1850 /* Size of the operation triggering the error, in bytes */
1851/*0x20*/u32 err_size;
1852
1853 /* ID of the CPU */
1854/*0x24*/u16 err_cpu;
1855
1856 /* Grace periof for shutdown, in seconds */
1857/*0x26*/u16 err_secs;
1858
1859 /* Value of the %asi register */
1860/*0x28*/u8 err_asi;
1861
1862/*0x29*/u8 reserved_2;
1863
1864 /* Value of the ASR register number */
1865/*0x2a*/u16 err_asr;
1866#define SUN4V_ERR_ASR_VALID 0x8000
1867
1868/*0x2c*/u32 reserved_3;
1869/*0x30*/u64 reserved_4;
1870/*0x38*/u64 reserved_5;
1871};
1872
1873static atomic_t sun4v_resum_oflow_cnt = ATOMIC_INIT(0);
1874static atomic_t sun4v_nonresum_oflow_cnt = ATOMIC_INIT(0);
1875
1876static const char *sun4v_err_type_to_str(u8 type)
1877{
1878 static const char *types[SUN4V_ERR_TYPE_NUM] = {
1879 "undefined",
1880 "uncorrected resumable",
1881 "precise nonresumable",
1882 "deferred nonresumable",
1883 "shutdown request",
1884 "dump core",
1885 "SP state change",
1886 };
1887
1888 if (type < SUN4V_ERR_TYPE_NUM)
1889 return types[type];
1890
1891 return "unknown";
1892}
1893
1894static void sun4v_emit_err_attr_strings(u32 attrs)
1895{
1896 static const char *attr_names[] = {
1897 "processor",
1898 "memory",
1899 "PIO",
1900 "int-registers",
1901 "fpu-registers",
1902 "shutdown-request",
1903 "ASR",
1904 "ASI",
1905 "priv-reg",
1906 };
1907 static const char *sp_states[] = {
1908 "sp-faulted",
1909 "sp-available",
1910 "sp-not-present",
1911 "sp-state-reserved",
1912 };
1913 static const char *modes[] = {
1914 "mode-reserved0",
1915 "user",
1916 "priv",
1917 "mode-reserved1",
1918 };
1919 u32 sp_state, mode;
1920 int i;
1921
1922 for (i = 0; i < ARRAY_SIZE(attr_names); i++) {
1923 if (attrs & (1U << i)) {
1924 const char *s = attr_names[i];
1925
1926 pr_cont("%s ", s);
1927 }
1928 }
1929
1930 sp_state = ((attrs & SUN4V_ERR_ATTRS_SPSTATE_MSK) >>
1931 SUN4V_ERR_ATTRS_SPSTATE_SHFT);
1932 pr_cont("%s ", sp_states[sp_state]);
1933
1934 mode = ((attrs & SUN4V_ERR_ATTRS_MODE_MSK) >>
1935 SUN4V_ERR_ATTRS_MODE_SHFT);
1936 pr_cont("%s ", modes[mode]);
1937
1938 if (attrs & SUN4V_ERR_ATTRS_RES_QUEUE_FULL)
1939 pr_cont("res-queue-full ");
1940}
1941
1942/* When the report contains a real-address of "-1" it means that the
1943 * hardware did not provide the address. So we compute the effective
1944 * address of the load or store instruction at regs->tpc and report
1945 * that. Usually when this happens it's a PIO and in such a case we
1946 * are using physical addresses with bypass ASIs anyways, so what we
1947 * report here is exactly what we want.
1948 */
1949static void sun4v_report_real_raddr(const char *pfx, struct pt_regs *regs)
1950{
1951 unsigned int insn;
1952 u64 addr;
1953
1954 if (!(regs->tstate & TSTATE_PRIV))
1955 return;
1956
1957 insn = *(unsigned int *) regs->tpc;
1958
1959 addr = compute_effective_address(regs, insn, 0);
1960
1961 printk("%s: insn effective address [0x%016llx]\n",
1962 pfx, addr);
1963}
1964
1965static void sun4v_log_error(struct pt_regs *regs, struct sun4v_error_entry *ent,
1966 int cpu, const char *pfx, atomic_t *ocnt)
1967{
1968 u64 *raw_ptr = (u64 *) ent;
1969 u32 attrs;
1970 int cnt;
1971
1972 printk("%s: Reporting on cpu %d\n", pfx, cpu);
1973 printk("%s: TPC [0x%016lx] <%pS>\n",
1974 pfx, regs->tpc, (void *) regs->tpc);
1975
1976 printk("%s: RAW [%016llx:%016llx:%016llx:%016llx\n",
1977 pfx, raw_ptr[0], raw_ptr[1], raw_ptr[2], raw_ptr[3]);
1978 printk("%s: %016llx:%016llx:%016llx:%016llx]\n",
1979 pfx, raw_ptr[4], raw_ptr[5], raw_ptr[6], raw_ptr[7]);
1980
1981 printk("%s: handle [0x%016llx] stick [0x%016llx]\n",
1982 pfx, ent->err_handle, ent->err_stick);
1983
1984 printk("%s: type [%s]\n", pfx, sun4v_err_type_to_str(ent->err_type));
1985
1986 attrs = ent->err_attrs;
1987 printk("%s: attrs [0x%08x] < ", pfx, attrs);
1988 sun4v_emit_err_attr_strings(attrs);
1989 pr_cont(">\n");
1990
1991 /* Various fields in the error report are only valid if
1992 * certain attribute bits are set.
1993 */
1994 if (attrs & (SUN4V_ERR_ATTRS_MEMORY |
1995 SUN4V_ERR_ATTRS_PIO |
1996 SUN4V_ERR_ATTRS_ASI)) {
1997 printk("%s: raddr [0x%016llx]\n", pfx, ent->err_raddr);
1998
1999 if (ent->err_raddr == ~(u64)0)
2000 sun4v_report_real_raddr(pfx, regs);
2001 }
2002
2003 if (attrs & (SUN4V_ERR_ATTRS_MEMORY | SUN4V_ERR_ATTRS_ASI))
2004 printk("%s: size [0x%x]\n", pfx, ent->err_size);
2005
2006 if (attrs & (SUN4V_ERR_ATTRS_PROCESSOR |
2007 SUN4V_ERR_ATTRS_INT_REGISTERS |
2008 SUN4V_ERR_ATTRS_FPU_REGISTERS |
2009 SUN4V_ERR_ATTRS_PRIV_REG))
2010 printk("%s: cpu[%u]\n", pfx, ent->err_cpu);
2011
2012 if (attrs & SUN4V_ERR_ATTRS_ASI)
2013 printk("%s: asi [0x%02x]\n", pfx, ent->err_asi);
2014
2015 if ((attrs & (SUN4V_ERR_ATTRS_INT_REGISTERS |
2016 SUN4V_ERR_ATTRS_FPU_REGISTERS |
2017 SUN4V_ERR_ATTRS_PRIV_REG)) &&
2018 (ent->err_asr & SUN4V_ERR_ASR_VALID) != 0)
2019 printk("%s: reg [0x%04x]\n",
2020 pfx, ent->err_asr & ~SUN4V_ERR_ASR_VALID);
2021
2022 show_regs(regs);
2023
2024 if ((cnt = atomic_read(ocnt)) != 0) {
2025 atomic_set(ocnt, 0);
2026 wmb();
2027 printk("%s: Queue overflowed %d times.\n",
2028 pfx, cnt);
2029 }
2030}
2031
2032/* Handle memory corruption detected error which is vectored in
2033 * through resumable error trap.
2034 */
2035void do_mcd_err(struct pt_regs *regs, struct sun4v_error_entry ent)
2036{
2037 if (notify_die(DIE_TRAP, "MCD error", regs, 0, 0x34,
2038 SIGSEGV) == NOTIFY_STOP)
2039 return;
2040
2041 if (regs->tstate & TSTATE_PRIV) {
2042 /* MCD exception could happen because the task was
2043 * running a system call with MCD enabled and passed a
2044 * non-versioned pointer or pointer with bad version
2045 * tag to the system call. In such cases, hypervisor
2046 * places the address of offending instruction in the
2047 * resumable error report. This is a deferred error,
2048 * so the read/write that caused the trap was potentially
2049 * retired long time back and we may have no choice
2050 * but to send SIGSEGV to the process.
2051 */
2052 const struct exception_table_entry *entry;
2053
2054 entry = search_exception_tables(regs->tpc);
2055 if (entry) {
2056 /* Looks like a bad syscall parameter */
2057#ifdef DEBUG_EXCEPTIONS
2058 pr_emerg("Exception: PC<%016lx> faddr<UNKNOWN>\n",
2059 regs->tpc);
2060 pr_emerg("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
2061 ent.err_raddr, entry->fixup);
2062#endif
2063 regs->tpc = entry->fixup;
2064 regs->tnpc = regs->tpc + 4;
2065 return;
2066 }
2067 }
2068
2069 /* Send SIGSEGV to the userspace process with the right signal
2070 * code
2071 */
2072 force_sig_fault(SIGSEGV, SEGV_ADIDERR, (void __user *)ent.err_raddr);
2073}
2074
2075/* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate.
2076 * Log the event and clear the first word of the entry.
2077 */
2078void sun4v_resum_error(struct pt_regs *regs, unsigned long offset)
2079{
2080 enum ctx_state prev_state = exception_enter();
2081 struct sun4v_error_entry *ent, local_copy;
2082 struct trap_per_cpu *tb;
2083 unsigned long paddr;
2084 int cpu;
2085
2086 cpu = get_cpu();
2087
2088 tb = &trap_block[cpu];
2089 paddr = tb->resum_kernel_buf_pa + offset;
2090 ent = __va(paddr);
2091
2092 memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry));
2093
2094 /* We have a local copy now, so release the entry. */
2095 ent->err_handle = 0;
2096 wmb();
2097
2098 put_cpu();
2099
2100 if (local_copy.err_type == SUN4V_ERR_TYPE_SHUTDOWN_RQST) {
2101 /* We should really take the seconds field of
2102 * the error report and use it for the shutdown
2103 * invocation, but for now do the same thing we
2104 * do for a DS shutdown request.
2105 */
2106 pr_info("Shutdown request, %u seconds...\n",
2107 local_copy.err_secs);
2108 orderly_poweroff(true);
2109 goto out;
2110 }
2111
2112 /* If this is a memory corruption detected error vectored in
2113 * by HV through resumable error trap, call the handler
2114 */
2115 if (local_copy.err_attrs & SUN4V_ERR_ATTRS_MCD) {
2116 do_mcd_err(regs, local_copy);
2117 return;
2118 }
2119
2120 sun4v_log_error(regs, &local_copy, cpu,
2121 KERN_ERR "RESUMABLE ERROR",
2122 &sun4v_resum_oflow_cnt);
2123out:
2124 exception_exit(prev_state);
2125}
2126
2127/* If we try to printk() we'll probably make matters worse, by trying
2128 * to retake locks this cpu already holds or causing more errors. So
2129 * just bump a counter, and we'll report these counter bumps above.
2130 */
2131void sun4v_resum_overflow(struct pt_regs *regs)
2132{
2133 atomic_inc(&sun4v_resum_oflow_cnt);
2134}
2135
2136/* Given a set of registers, get the virtual addressi that was being accessed
2137 * by the faulting instructions at tpc.
2138 */
2139static unsigned long sun4v_get_vaddr(struct pt_regs *regs)
2140{
2141 unsigned int insn;
2142
2143 if (!copy_from_user(&insn, (void __user *)regs->tpc, 4)) {
2144 return compute_effective_address(regs, insn,
2145 (insn >> 25) & 0x1f);
2146 }
2147 return 0;
2148}
2149
2150/* Attempt to handle non-resumable errors generated from userspace.
2151 * Returns true if the signal was handled, false otherwise.
2152 */
2153bool sun4v_nonresum_error_user_handled(struct pt_regs *regs,
2154 struct sun4v_error_entry *ent) {
2155
2156 unsigned int attrs = ent->err_attrs;
2157
2158 if (attrs & SUN4V_ERR_ATTRS_MEMORY) {
2159 unsigned long addr = ent->err_raddr;
2160
2161 if (addr == ~(u64)0) {
2162 /* This seems highly unlikely to ever occur */
2163 pr_emerg("SUN4V NON-RECOVERABLE ERROR: Memory error detected in unknown location!\n");
2164 } else {
2165 unsigned long page_cnt = DIV_ROUND_UP(ent->err_size,
2166 PAGE_SIZE);
2167
2168 /* Break the unfortunate news. */
2169 pr_emerg("SUN4V NON-RECOVERABLE ERROR: Memory failed at %016lX\n",
2170 addr);
2171 pr_emerg("SUN4V NON-RECOVERABLE ERROR: Claiming %lu ages.\n",
2172 page_cnt);
2173
2174 while (page_cnt-- > 0) {
2175 if (pfn_valid(addr >> PAGE_SHIFT))
2176 get_page(pfn_to_page(addr >> PAGE_SHIFT));
2177 addr += PAGE_SIZE;
2178 }
2179 }
2180 force_sig(SIGKILL);
2181
2182 return true;
2183 }
2184 if (attrs & SUN4V_ERR_ATTRS_PIO) {
2185 force_sig_fault(SIGBUS, BUS_ADRERR,
2186 (void __user *)sun4v_get_vaddr(regs));
2187 return true;
2188 }
2189
2190 /* Default to doing nothing */
2191 return false;
2192}
2193
2194/* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate.
2195 * Log the event, clear the first word of the entry, and die.
2196 */
2197void sun4v_nonresum_error(struct pt_regs *regs, unsigned long offset)
2198{
2199 struct sun4v_error_entry *ent, local_copy;
2200 struct trap_per_cpu *tb;
2201 unsigned long paddr;
2202 int cpu;
2203
2204 cpu = get_cpu();
2205
2206 tb = &trap_block[cpu];
2207 paddr = tb->nonresum_kernel_buf_pa + offset;
2208 ent = __va(paddr);
2209
2210 memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry));
2211
2212 /* We have a local copy now, so release the entry. */
2213 ent->err_handle = 0;
2214 wmb();
2215
2216 put_cpu();
2217
2218 if (!(regs->tstate & TSTATE_PRIV) &&
2219 sun4v_nonresum_error_user_handled(regs, &local_copy)) {
2220 /* DON'T PANIC: This userspace error was handled. */
2221 return;
2222 }
2223
2224#ifdef CONFIG_PCI
2225 /* Check for the special PCI poke sequence. */
2226 if (pci_poke_in_progress && pci_poke_cpu == cpu) {
2227 pci_poke_faulted = 1;
2228 regs->tpc += 4;
2229 regs->tnpc = regs->tpc + 4;
2230 return;
2231 }
2232#endif
2233
2234 sun4v_log_error(regs, &local_copy, cpu,
2235 KERN_EMERG "NON-RESUMABLE ERROR",
2236 &sun4v_nonresum_oflow_cnt);
2237
2238 panic("Non-resumable error.");
2239}
2240
2241/* If we try to printk() we'll probably make matters worse, by trying
2242 * to retake locks this cpu already holds or causing more errors. So
2243 * just bump a counter, and we'll report these counter bumps above.
2244 */
2245void sun4v_nonresum_overflow(struct pt_regs *regs)
2246{
2247 /* XXX Actually even this can make not that much sense. Perhaps
2248 * XXX we should just pull the plug and panic directly from here?
2249 */
2250 atomic_inc(&sun4v_nonresum_oflow_cnt);
2251}
2252
2253static void sun4v_tlb_error(struct pt_regs *regs)
2254{
2255 die_if_kernel("TLB/TSB error", regs);
2256}
2257
2258unsigned long sun4v_err_itlb_vaddr;
2259unsigned long sun4v_err_itlb_ctx;
2260unsigned long sun4v_err_itlb_pte;
2261unsigned long sun4v_err_itlb_error;
2262
2263void sun4v_itlb_error_report(struct pt_regs *regs, int tl)
2264{
2265 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2266
2267 printk(KERN_EMERG "SUN4V-ITLB: Error at TPC[%lx], tl %d\n",
2268 regs->tpc, tl);
2269 printk(KERN_EMERG "SUN4V-ITLB: TPC<%pS>\n", (void *) regs->tpc);
2270 printk(KERN_EMERG "SUN4V-ITLB: O7[%lx]\n", regs->u_regs[UREG_I7]);
2271 printk(KERN_EMERG "SUN4V-ITLB: O7<%pS>\n",
2272 (void *) regs->u_regs[UREG_I7]);
2273 printk(KERN_EMERG "SUN4V-ITLB: vaddr[%lx] ctx[%lx] "
2274 "pte[%lx] error[%lx]\n",
2275 sun4v_err_itlb_vaddr, sun4v_err_itlb_ctx,
2276 sun4v_err_itlb_pte, sun4v_err_itlb_error);
2277
2278 sun4v_tlb_error(regs);
2279}
2280
2281unsigned long sun4v_err_dtlb_vaddr;
2282unsigned long sun4v_err_dtlb_ctx;
2283unsigned long sun4v_err_dtlb_pte;
2284unsigned long sun4v_err_dtlb_error;
2285
2286void sun4v_dtlb_error_report(struct pt_regs *regs, int tl)
2287{
2288 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2289
2290 printk(KERN_EMERG "SUN4V-DTLB: Error at TPC[%lx], tl %d\n",
2291 regs->tpc, tl);
2292 printk(KERN_EMERG "SUN4V-DTLB: TPC<%pS>\n", (void *) regs->tpc);
2293 printk(KERN_EMERG "SUN4V-DTLB: O7[%lx]\n", regs->u_regs[UREG_I7]);
2294 printk(KERN_EMERG "SUN4V-DTLB: O7<%pS>\n",
2295 (void *) regs->u_regs[UREG_I7]);
2296 printk(KERN_EMERG "SUN4V-DTLB: vaddr[%lx] ctx[%lx] "
2297 "pte[%lx] error[%lx]\n",
2298 sun4v_err_dtlb_vaddr, sun4v_err_dtlb_ctx,
2299 sun4v_err_dtlb_pte, sun4v_err_dtlb_error);
2300
2301 sun4v_tlb_error(regs);
2302}
2303
2304void hypervisor_tlbop_error(unsigned long err, unsigned long op)
2305{
2306 printk(KERN_CRIT "SUN4V: TLB hv call error %lu for op %lu\n",
2307 err, op);
2308}
2309
2310void hypervisor_tlbop_error_xcall(unsigned long err, unsigned long op)
2311{
2312 printk(KERN_CRIT "SUN4V: XCALL TLB hv call error %lu for op %lu\n",
2313 err, op);
2314}
2315
2316static void do_fpe_common(struct pt_regs *regs)
2317{
2318 if (regs->tstate & TSTATE_PRIV) {
2319 regs->tpc = regs->tnpc;
2320 regs->tnpc += 4;
2321 } else {
2322 unsigned long fsr = current_thread_info()->xfsr[0];
2323 int code;
2324
2325 if (test_thread_flag(TIF_32BIT)) {
2326 regs->tpc &= 0xffffffff;
2327 regs->tnpc &= 0xffffffff;
2328 }
2329 code = FPE_FLTUNK;
2330 if ((fsr & 0x1c000) == (1 << 14)) {
2331 if (fsr & 0x10)
2332 code = FPE_FLTINV;
2333 else if (fsr & 0x08)
2334 code = FPE_FLTOVF;
2335 else if (fsr & 0x04)
2336 code = FPE_FLTUND;
2337 else if (fsr & 0x02)
2338 code = FPE_FLTDIV;
2339 else if (fsr & 0x01)
2340 code = FPE_FLTRES;
2341 }
2342 force_sig_fault(SIGFPE, code, (void __user *)regs->tpc);
2343 }
2344}
2345
2346void do_fpieee(struct pt_regs *regs)
2347{
2348 enum ctx_state prev_state = exception_enter();
2349
2350 if (notify_die(DIE_TRAP, "fpu exception ieee", regs,
2351 0, 0x24, SIGFPE) == NOTIFY_STOP)
2352 goto out;
2353
2354 do_fpe_common(regs);
2355out:
2356 exception_exit(prev_state);
2357}
2358
2359void do_fpother(struct pt_regs *regs)
2360{
2361 enum ctx_state prev_state = exception_enter();
2362 struct fpustate *f = FPUSTATE;
2363 int ret = 0;
2364
2365 if (notify_die(DIE_TRAP, "fpu exception other", regs,
2366 0, 0x25, SIGFPE) == NOTIFY_STOP)
2367 goto out;
2368
2369 switch ((current_thread_info()->xfsr[0] & 0x1c000)) {
2370 case (2 << 14): /* unfinished_FPop */
2371 case (3 << 14): /* unimplemented_FPop */
2372 ret = do_mathemu(regs, f, false);
2373 break;
2374 }
2375 if (ret)
2376 goto out;
2377 do_fpe_common(regs);
2378out:
2379 exception_exit(prev_state);
2380}
2381
2382void do_tof(struct pt_regs *regs)
2383{
2384 enum ctx_state prev_state = exception_enter();
2385
2386 if (notify_die(DIE_TRAP, "tagged arithmetic overflow", regs,
2387 0, 0x26, SIGEMT) == NOTIFY_STOP)
2388 goto out;
2389
2390 if (regs->tstate & TSTATE_PRIV)
2391 die_if_kernel("Penguin overflow trap from kernel mode", regs);
2392 if (test_thread_flag(TIF_32BIT)) {
2393 regs->tpc &= 0xffffffff;
2394 regs->tnpc &= 0xffffffff;
2395 }
2396 force_sig_fault(SIGEMT, EMT_TAGOVF, (void __user *)regs->tpc);
2397out:
2398 exception_exit(prev_state);
2399}
2400
2401void do_div0(struct pt_regs *regs)
2402{
2403 enum ctx_state prev_state = exception_enter();
2404
2405 if (notify_die(DIE_TRAP, "integer division by zero", regs,
2406 0, 0x28, SIGFPE) == NOTIFY_STOP)
2407 goto out;
2408
2409 if (regs->tstate & TSTATE_PRIV)
2410 die_if_kernel("TL0: Kernel divide by zero.", regs);
2411 if (test_thread_flag(TIF_32BIT)) {
2412 regs->tpc &= 0xffffffff;
2413 regs->tnpc &= 0xffffffff;
2414 }
2415 force_sig_fault(SIGFPE, FPE_INTDIV, (void __user *)regs->tpc);
2416out:
2417 exception_exit(prev_state);
2418}
2419
2420static void instruction_dump(unsigned int *pc)
2421{
2422 int i;
2423
2424 if ((((unsigned long) pc) & 3))
2425 return;
2426
2427 printk("Instruction DUMP:");
2428 for (i = -3; i < 6; i++)
2429 printk("%c%08x%c",i?' ':'<',pc[i],i?' ':'>');
2430 printk("\n");
2431}
2432
2433static void user_instruction_dump(unsigned int __user *pc)
2434{
2435 int i;
2436 unsigned int buf[9];
2437
2438 if ((((unsigned long) pc) & 3))
2439 return;
2440
2441 if (copy_from_user(buf, pc - 3, sizeof(buf)))
2442 return;
2443
2444 printk("Instruction DUMP:");
2445 for (i = 0; i < 9; i++)
2446 printk("%c%08x%c",i==3?' ':'<',buf[i],i==3?' ':'>');
2447 printk("\n");
2448}
2449
2450void show_stack(struct task_struct *tsk, unsigned long *_ksp, const char *loglvl)
2451{
2452 unsigned long fp, ksp;
2453 struct thread_info *tp;
2454 int count = 0;
2455#ifdef CONFIG_FUNCTION_GRAPH_TRACER
2456 int graph = 0;
2457#endif
2458
2459 ksp = (unsigned long) _ksp;
2460 if (!tsk)
2461 tsk = current;
2462 tp = task_thread_info(tsk);
2463 if (ksp == 0UL) {
2464 if (tsk == current)
2465 asm("mov %%fp, %0" : "=r" (ksp));
2466 else
2467 ksp = tp->ksp;
2468 }
2469 if (tp == current_thread_info())
2470 flushw_all();
2471
2472 fp = ksp + STACK_BIAS;
2473
2474 printk("%sCall Trace:\n", loglvl);
2475 do {
2476 struct sparc_stackf *sf;
2477 struct pt_regs *regs;
2478 unsigned long pc;
2479
2480 if (!kstack_valid(tp, fp))
2481 break;
2482 sf = (struct sparc_stackf *) fp;
2483 regs = (struct pt_regs *) (sf + 1);
2484
2485 if (kstack_is_trap_frame(tp, regs)) {
2486 if (!(regs->tstate & TSTATE_PRIV))
2487 break;
2488 pc = regs->tpc;
2489 fp = regs->u_regs[UREG_I6] + STACK_BIAS;
2490 } else {
2491 pc = sf->callers_pc;
2492 fp = (unsigned long)sf->fp + STACK_BIAS;
2493 }
2494
2495 print_ip_sym(loglvl, pc);
2496#ifdef CONFIG_FUNCTION_GRAPH_TRACER
2497 if ((pc + 8UL) == (unsigned long) &return_to_handler) {
2498 struct ftrace_ret_stack *ret_stack;
2499 ret_stack = ftrace_graph_get_ret_stack(tsk, graph);
2500 if (ret_stack) {
2501 pc = ret_stack->ret;
2502 print_ip_sym(loglvl, pc);
2503 graph++;
2504 }
2505 }
2506#endif
2507 } while (++count < 16);
2508}
2509
2510static inline struct reg_window *kernel_stack_up(struct reg_window *rw)
2511{
2512 unsigned long fp = rw->ins[6];
2513
2514 if (!fp)
2515 return NULL;
2516
2517 return (struct reg_window *) (fp + STACK_BIAS);
2518}
2519
2520void __noreturn die_if_kernel(char *str, struct pt_regs *regs)
2521{
2522 static int die_counter;
2523 int count = 0;
2524
2525 /* Amuse the user. */
2526 printk(
2527" \\|/ ____ \\|/\n"
2528" \"@'/ .. \\`@\"\n"
2529" /_| \\__/ |_\\\n"
2530" \\__U_/\n");
2531
2532 printk("%s(%d): %s [#%d]\n", current->comm, task_pid_nr(current), str, ++die_counter);
2533 notify_die(DIE_OOPS, str, regs, 0, 255, SIGSEGV);
2534 __asm__ __volatile__("flushw");
2535 show_regs(regs);
2536 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
2537 if (regs->tstate & TSTATE_PRIV) {
2538 struct thread_info *tp = current_thread_info();
2539 struct reg_window *rw = (struct reg_window *)
2540 (regs->u_regs[UREG_FP] + STACK_BIAS);
2541
2542 /* Stop the back trace when we hit userland or we
2543 * find some badly aligned kernel stack.
2544 */
2545 while (rw &&
2546 count++ < 30 &&
2547 kstack_valid(tp, (unsigned long) rw)) {
2548 printk("Caller[%016lx]: %pS\n", rw->ins[7],
2549 (void *) rw->ins[7]);
2550
2551 rw = kernel_stack_up(rw);
2552 }
2553 instruction_dump ((unsigned int *) regs->tpc);
2554 } else {
2555 if (test_thread_flag(TIF_32BIT)) {
2556 regs->tpc &= 0xffffffff;
2557 regs->tnpc &= 0xffffffff;
2558 }
2559 user_instruction_dump ((unsigned int __user *) regs->tpc);
2560 }
2561 if (panic_on_oops)
2562 panic("Fatal exception");
2563 make_task_dead((regs->tstate & TSTATE_PRIV)? SIGKILL : SIGSEGV);
2564}
2565EXPORT_SYMBOL(die_if_kernel);
2566
2567#define VIS_OPCODE_MASK ((0x3 << 30) | (0x3f << 19))
2568#define VIS_OPCODE_VAL ((0x2 << 30) | (0x36 << 19))
2569
2570void do_illegal_instruction(struct pt_regs *regs)
2571{
2572 enum ctx_state prev_state = exception_enter();
2573 unsigned long pc = regs->tpc;
2574 unsigned long tstate = regs->tstate;
2575 u32 insn;
2576
2577 if (notify_die(DIE_TRAP, "illegal instruction", regs,
2578 0, 0x10, SIGILL) == NOTIFY_STOP)
2579 goto out;
2580
2581 if (tstate & TSTATE_PRIV)
2582 die_if_kernel("Kernel illegal instruction", regs);
2583 if (test_thread_flag(TIF_32BIT))
2584 pc = (u32)pc;
2585 if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
2586 if ((insn & 0xc1ffc000) == 0x81700000) /* POPC */ {
2587 if (handle_popc(insn, regs))
2588 goto out;
2589 } else if ((insn & 0xc1580000) == 0xc1100000) /* LDQ/STQ */ {
2590 if (handle_ldf_stq(insn, regs))
2591 goto out;
2592 } else if (tlb_type == hypervisor) {
2593 if ((insn & VIS_OPCODE_MASK) == VIS_OPCODE_VAL) {
2594 if (!vis_emul(regs, insn))
2595 goto out;
2596 } else {
2597 struct fpustate *f = FPUSTATE;
2598
2599 /* On UltraSPARC T2 and later, FPU insns which
2600 * are not implemented in HW signal an illegal
2601 * instruction trap and do not set the FP Trap
2602 * Trap in the %fsr to unimplemented_FPop.
2603 */
2604 if (do_mathemu(regs, f, true))
2605 goto out;
2606 }
2607 }
2608 }
2609 force_sig_fault(SIGILL, ILL_ILLOPC, (void __user *)pc);
2610out:
2611 exception_exit(prev_state);
2612}
2613
2614void mem_address_unaligned(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
2615{
2616 enum ctx_state prev_state = exception_enter();
2617
2618 if (notify_die(DIE_TRAP, "memory address unaligned", regs,
2619 0, 0x34, SIGSEGV) == NOTIFY_STOP)
2620 goto out;
2621
2622 if (regs->tstate & TSTATE_PRIV) {
2623 kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc));
2624 goto out;
2625 }
2626 if (is_no_fault_exception(regs))
2627 return;
2628
2629 force_sig_fault(SIGBUS, BUS_ADRALN, (void __user *)sfar);
2630out:
2631 exception_exit(prev_state);
2632}
2633
2634void sun4v_do_mna(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
2635{
2636 if (notify_die(DIE_TRAP, "memory address unaligned", regs,
2637 0, 0x34, SIGSEGV) == NOTIFY_STOP)
2638 return;
2639
2640 if (regs->tstate & TSTATE_PRIV) {
2641 kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc));
2642 return;
2643 }
2644 if (is_no_fault_exception(regs))
2645 return;
2646
2647 force_sig_fault(SIGBUS, BUS_ADRALN, (void __user *) addr);
2648}
2649
2650/* sun4v_mem_corrupt_detect_precise() - Handle precise exception on an ADI
2651 * tag mismatch.
2652 *
2653 * ADI version tag mismatch on a load from memory always results in a
2654 * precise exception. Tag mismatch on a store to memory will result in
2655 * precise exception if MCDPER or PMCDPER is set to 1.
2656 */
2657void sun4v_mem_corrupt_detect_precise(struct pt_regs *regs, unsigned long addr,
2658 unsigned long context)
2659{
2660 if (notify_die(DIE_TRAP, "memory corruption precise exception", regs,
2661 0, 0x8, SIGSEGV) == NOTIFY_STOP)
2662 return;
2663
2664 if (regs->tstate & TSTATE_PRIV) {
2665 /* MCD exception could happen because the task was running
2666 * a system call with MCD enabled and passed a non-versioned
2667 * pointer or pointer with bad version tag to the system
2668 * call.
2669 */
2670 const struct exception_table_entry *entry;
2671
2672 entry = search_exception_tables(regs->tpc);
2673 if (entry) {
2674 /* Looks like a bad syscall parameter */
2675#ifdef DEBUG_EXCEPTIONS
2676 pr_emerg("Exception: PC<%016lx> faddr<UNKNOWN>\n",
2677 regs->tpc);
2678 pr_emerg("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
2679 regs->tpc, entry->fixup);
2680#endif
2681 regs->tpc = entry->fixup;
2682 regs->tnpc = regs->tpc + 4;
2683 return;
2684 }
2685 pr_emerg("%s: ADDR[%016lx] CTX[%lx], going.\n",
2686 __func__, addr, context);
2687 die_if_kernel("MCD precise", regs);
2688 }
2689
2690 if (test_thread_flag(TIF_32BIT)) {
2691 regs->tpc &= 0xffffffff;
2692 regs->tnpc &= 0xffffffff;
2693 }
2694 force_sig_fault(SIGSEGV, SEGV_ADIPERR, (void __user *)addr);
2695}
2696
2697void do_privop(struct pt_regs *regs)
2698{
2699 enum ctx_state prev_state = exception_enter();
2700
2701 if (notify_die(DIE_TRAP, "privileged operation", regs,
2702 0, 0x11, SIGILL) == NOTIFY_STOP)
2703 goto out;
2704
2705 if (test_thread_flag(TIF_32BIT)) {
2706 regs->tpc &= 0xffffffff;
2707 regs->tnpc &= 0xffffffff;
2708 }
2709 force_sig_fault(SIGILL, ILL_PRVOPC, (void __user *)regs->tpc);
2710out:
2711 exception_exit(prev_state);
2712}
2713
2714void do_privact(struct pt_regs *regs)
2715{
2716 do_privop(regs);
2717}
2718
2719/* Trap level 1 stuff or other traps we should never see... */
2720void do_cee(struct pt_regs *regs)
2721{
2722 exception_enter();
2723 die_if_kernel("TL0: Cache Error Exception", regs);
2724}
2725
2726void do_div0_tl1(struct pt_regs *regs)
2727{
2728 exception_enter();
2729 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2730 die_if_kernel("TL1: DIV0 Exception", regs);
2731}
2732
2733void do_fpieee_tl1(struct pt_regs *regs)
2734{
2735 exception_enter();
2736 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2737 die_if_kernel("TL1: FPU IEEE Exception", regs);
2738}
2739
2740void do_fpother_tl1(struct pt_regs *regs)
2741{
2742 exception_enter();
2743 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2744 die_if_kernel("TL1: FPU Other Exception", regs);
2745}
2746
2747void do_ill_tl1(struct pt_regs *regs)
2748{
2749 exception_enter();
2750 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2751 die_if_kernel("TL1: Illegal Instruction Exception", regs);
2752}
2753
2754void do_irq_tl1(struct pt_regs *regs)
2755{
2756 exception_enter();
2757 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2758 die_if_kernel("TL1: IRQ Exception", regs);
2759}
2760
2761void do_lddfmna_tl1(struct pt_regs *regs)
2762{
2763 exception_enter();
2764 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2765 die_if_kernel("TL1: LDDF Exception", regs);
2766}
2767
2768void do_stdfmna_tl1(struct pt_regs *regs)
2769{
2770 exception_enter();
2771 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2772 die_if_kernel("TL1: STDF Exception", regs);
2773}
2774
2775void do_paw(struct pt_regs *regs)
2776{
2777 exception_enter();
2778 die_if_kernel("TL0: Phys Watchpoint Exception", regs);
2779}
2780
2781void do_paw_tl1(struct pt_regs *regs)
2782{
2783 exception_enter();
2784 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2785 die_if_kernel("TL1: Phys Watchpoint Exception", regs);
2786}
2787
2788void do_vaw(struct pt_regs *regs)
2789{
2790 exception_enter();
2791 die_if_kernel("TL0: Virt Watchpoint Exception", regs);
2792}
2793
2794void do_vaw_tl1(struct pt_regs *regs)
2795{
2796 exception_enter();
2797 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2798 die_if_kernel("TL1: Virt Watchpoint Exception", regs);
2799}
2800
2801void do_tof_tl1(struct pt_regs *regs)
2802{
2803 exception_enter();
2804 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2805 die_if_kernel("TL1: Tag Overflow Exception", regs);
2806}
2807
2808void do_getpsr(struct pt_regs *regs)
2809{
2810 regs->u_regs[UREG_I0] = tstate_to_psr(regs->tstate);
2811 regs->tpc = regs->tnpc;
2812 regs->tnpc += 4;
2813 if (test_thread_flag(TIF_32BIT)) {
2814 regs->tpc &= 0xffffffff;
2815 regs->tnpc &= 0xffffffff;
2816 }
2817}
2818
2819u64 cpu_mondo_counter[NR_CPUS] = {0};
2820struct trap_per_cpu trap_block[NR_CPUS];
2821EXPORT_SYMBOL(trap_block);
2822
2823/* This can get invoked before sched_init() so play it super safe
2824 * and use hard_smp_processor_id().
2825 */
2826void notrace init_cur_cpu_trap(struct thread_info *t)
2827{
2828 int cpu = hard_smp_processor_id();
2829 struct trap_per_cpu *p = &trap_block[cpu];
2830
2831 p->thread = t;
2832 p->pgd_paddr = 0;
2833}
2834
2835extern void thread_info_offsets_are_bolixed_dave(void);
2836extern void trap_per_cpu_offsets_are_bolixed_dave(void);
2837extern void tsb_config_offsets_are_bolixed_dave(void);
2838
2839/* Only invoked on boot processor. */
2840void __init trap_init(void)
2841{
2842 /* Compile time sanity check. */
2843 BUILD_BUG_ON(TI_TASK != offsetof(struct thread_info, task) ||
2844 TI_FLAGS != offsetof(struct thread_info, flags) ||
2845 TI_CPU != offsetof(struct thread_info, cpu) ||
2846 TI_FPSAVED != offsetof(struct thread_info, fpsaved) ||
2847 TI_KSP != offsetof(struct thread_info, ksp) ||
2848 TI_FAULT_ADDR != offsetof(struct thread_info,
2849 fault_address) ||
2850 TI_KREGS != offsetof(struct thread_info, kregs) ||
2851 TI_UTRAPS != offsetof(struct thread_info, utraps) ||
2852 TI_REG_WINDOW != offsetof(struct thread_info,
2853 reg_window) ||
2854 TI_RWIN_SPTRS != offsetof(struct thread_info,
2855 rwbuf_stkptrs) ||
2856 TI_GSR != offsetof(struct thread_info, gsr) ||
2857 TI_XFSR != offsetof(struct thread_info, xfsr) ||
2858 TI_PRE_COUNT != offsetof(struct thread_info,
2859 preempt_count) ||
2860 TI_NEW_CHILD != offsetof(struct thread_info, new_child) ||
2861 TI_KUNA_REGS != offsetof(struct thread_info,
2862 kern_una_regs) ||
2863 TI_KUNA_INSN != offsetof(struct thread_info,
2864 kern_una_insn) ||
2865 TI_FPREGS != offsetof(struct thread_info, fpregs) ||
2866 (TI_FPREGS & (64 - 1)));
2867
2868 BUILD_BUG_ON(TRAP_PER_CPU_THREAD != offsetof(struct trap_per_cpu,
2869 thread) ||
2870 (TRAP_PER_CPU_PGD_PADDR !=
2871 offsetof(struct trap_per_cpu, pgd_paddr)) ||
2872 (TRAP_PER_CPU_CPU_MONDO_PA !=
2873 offsetof(struct trap_per_cpu, cpu_mondo_pa)) ||
2874 (TRAP_PER_CPU_DEV_MONDO_PA !=
2875 offsetof(struct trap_per_cpu, dev_mondo_pa)) ||
2876 (TRAP_PER_CPU_RESUM_MONDO_PA !=
2877 offsetof(struct trap_per_cpu, resum_mondo_pa)) ||
2878 (TRAP_PER_CPU_RESUM_KBUF_PA !=
2879 offsetof(struct trap_per_cpu, resum_kernel_buf_pa)) ||
2880 (TRAP_PER_CPU_NONRESUM_MONDO_PA !=
2881 offsetof(struct trap_per_cpu, nonresum_mondo_pa)) ||
2882 (TRAP_PER_CPU_NONRESUM_KBUF_PA !=
2883 offsetof(struct trap_per_cpu, nonresum_kernel_buf_pa)) ||
2884 (TRAP_PER_CPU_FAULT_INFO !=
2885 offsetof(struct trap_per_cpu, fault_info)) ||
2886 (TRAP_PER_CPU_CPU_MONDO_BLOCK_PA !=
2887 offsetof(struct trap_per_cpu, cpu_mondo_block_pa)) ||
2888 (TRAP_PER_CPU_CPU_LIST_PA !=
2889 offsetof(struct trap_per_cpu, cpu_list_pa)) ||
2890 (TRAP_PER_CPU_TSB_HUGE !=
2891 offsetof(struct trap_per_cpu, tsb_huge)) ||
2892 (TRAP_PER_CPU_TSB_HUGE_TEMP !=
2893 offsetof(struct trap_per_cpu, tsb_huge_temp)) ||
2894 (TRAP_PER_CPU_IRQ_WORKLIST_PA !=
2895 offsetof(struct trap_per_cpu, irq_worklist_pa)) ||
2896 (TRAP_PER_CPU_CPU_MONDO_QMASK !=
2897 offsetof(struct trap_per_cpu, cpu_mondo_qmask)) ||
2898 (TRAP_PER_CPU_DEV_MONDO_QMASK !=
2899 offsetof(struct trap_per_cpu, dev_mondo_qmask)) ||
2900 (TRAP_PER_CPU_RESUM_QMASK !=
2901 offsetof(struct trap_per_cpu, resum_qmask)) ||
2902 (TRAP_PER_CPU_NONRESUM_QMASK !=
2903 offsetof(struct trap_per_cpu, nonresum_qmask)) ||
2904 (TRAP_PER_CPU_PER_CPU_BASE !=
2905 offsetof(struct trap_per_cpu, __per_cpu_base)));
2906
2907 BUILD_BUG_ON((TSB_CONFIG_TSB !=
2908 offsetof(struct tsb_config, tsb)) ||
2909 (TSB_CONFIG_RSS_LIMIT !=
2910 offsetof(struct tsb_config, tsb_rss_limit)) ||
2911 (TSB_CONFIG_NENTRIES !=
2912 offsetof(struct tsb_config, tsb_nentries)) ||
2913 (TSB_CONFIG_REG_VAL !=
2914 offsetof(struct tsb_config, tsb_reg_val)) ||
2915 (TSB_CONFIG_MAP_VADDR !=
2916 offsetof(struct tsb_config, tsb_map_vaddr)) ||
2917 (TSB_CONFIG_MAP_PTE !=
2918 offsetof(struct tsb_config, tsb_map_pte)));
2919
2920 /* Attach to the address space of init_task. On SMP we
2921 * do this in smp.c:smp_callin for other cpus.
2922 */
2923 mmgrab(&init_mm);
2924 current->active_mm = &init_mm;
2925}
1/* arch/sparc64/kernel/traps.c
2 *
3 * Copyright (C) 1995,1997,2008,2009,2012 David S. Miller (davem@davemloft.net)
4 * Copyright (C) 1997,1999,2000 Jakub Jelinek (jakub@redhat.com)
5 */
6
7/*
8 * I like traps on v9, :))))
9 */
10
11#include <linux/module.h>
12#include <linux/sched.h>
13#include <linux/linkage.h>
14#include <linux/kernel.h>
15#include <linux/signal.h>
16#include <linux/smp.h>
17#include <linux/mm.h>
18#include <linux/init.h>
19#include <linux/kdebug.h>
20#include <linux/ftrace.h>
21#include <linux/reboot.h>
22#include <linux/gfp.h>
23#include <linux/context_tracking.h>
24
25#include <asm/smp.h>
26#include <asm/delay.h>
27#include <asm/ptrace.h>
28#include <asm/oplib.h>
29#include <asm/page.h>
30#include <asm/pgtable.h>
31#include <asm/unistd.h>
32#include <asm/uaccess.h>
33#include <asm/fpumacro.h>
34#include <asm/lsu.h>
35#include <asm/dcu.h>
36#include <asm/estate.h>
37#include <asm/chafsr.h>
38#include <asm/sfafsr.h>
39#include <asm/psrcompat.h>
40#include <asm/processor.h>
41#include <asm/timer.h>
42#include <asm/head.h>
43#include <asm/prom.h>
44#include <asm/memctrl.h>
45#include <asm/cacheflush.h>
46#include <asm/setup.h>
47
48#include "entry.h"
49#include "kernel.h"
50#include "kstack.h"
51
52/* When an irrecoverable trap occurs at tl > 0, the trap entry
53 * code logs the trap state registers at every level in the trap
54 * stack. It is found at (pt_regs + sizeof(pt_regs)) and the layout
55 * is as follows:
56 */
57struct tl1_traplog {
58 struct {
59 unsigned long tstate;
60 unsigned long tpc;
61 unsigned long tnpc;
62 unsigned long tt;
63 } trapstack[4];
64 unsigned long tl;
65};
66
67static void dump_tl1_traplog(struct tl1_traplog *p)
68{
69 int i, limit;
70
71 printk(KERN_EMERG "TRAPLOG: Error at trap level 0x%lx, "
72 "dumping track stack.\n", p->tl);
73
74 limit = (tlb_type == hypervisor) ? 2 : 4;
75 for (i = 0; i < limit; i++) {
76 printk(KERN_EMERG
77 "TRAPLOG: Trap level %d TSTATE[%016lx] TPC[%016lx] "
78 "TNPC[%016lx] TT[%lx]\n",
79 i + 1,
80 p->trapstack[i].tstate, p->trapstack[i].tpc,
81 p->trapstack[i].tnpc, p->trapstack[i].tt);
82 printk("TRAPLOG: TPC<%pS>\n", (void *) p->trapstack[i].tpc);
83 }
84}
85
86void bad_trap(struct pt_regs *regs, long lvl)
87{
88 char buffer[32];
89 siginfo_t info;
90
91 if (notify_die(DIE_TRAP, "bad trap", regs,
92 0, lvl, SIGTRAP) == NOTIFY_STOP)
93 return;
94
95 if (lvl < 0x100) {
96 sprintf(buffer, "Bad hw trap %lx at tl0\n", lvl);
97 die_if_kernel(buffer, regs);
98 }
99
100 lvl -= 0x100;
101 if (regs->tstate & TSTATE_PRIV) {
102 sprintf(buffer, "Kernel bad sw trap %lx", lvl);
103 die_if_kernel(buffer, regs);
104 }
105 if (test_thread_flag(TIF_32BIT)) {
106 regs->tpc &= 0xffffffff;
107 regs->tnpc &= 0xffffffff;
108 }
109 info.si_signo = SIGILL;
110 info.si_errno = 0;
111 info.si_code = ILL_ILLTRP;
112 info.si_addr = (void __user *)regs->tpc;
113 info.si_trapno = lvl;
114 force_sig_info(SIGILL, &info, current);
115}
116
117void bad_trap_tl1(struct pt_regs *regs, long lvl)
118{
119 char buffer[32];
120
121 if (notify_die(DIE_TRAP_TL1, "bad trap tl1", regs,
122 0, lvl, SIGTRAP) == NOTIFY_STOP)
123 return;
124
125 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
126
127 sprintf (buffer, "Bad trap %lx at tl>0", lvl);
128 die_if_kernel (buffer, regs);
129}
130
131#ifdef CONFIG_DEBUG_BUGVERBOSE
132void do_BUG(const char *file, int line)
133{
134 bust_spinlocks(1);
135 printk("kernel BUG at %s:%d!\n", file, line);
136}
137EXPORT_SYMBOL(do_BUG);
138#endif
139
140static DEFINE_SPINLOCK(dimm_handler_lock);
141static dimm_printer_t dimm_handler;
142
143static int sprintf_dimm(int synd_code, unsigned long paddr, char *buf, int buflen)
144{
145 unsigned long flags;
146 int ret = -ENODEV;
147
148 spin_lock_irqsave(&dimm_handler_lock, flags);
149 if (dimm_handler) {
150 ret = dimm_handler(synd_code, paddr, buf, buflen);
151 } else if (tlb_type == spitfire) {
152 if (prom_getunumber(synd_code, paddr, buf, buflen) == -1)
153 ret = -EINVAL;
154 else
155 ret = 0;
156 } else
157 ret = -ENODEV;
158 spin_unlock_irqrestore(&dimm_handler_lock, flags);
159
160 return ret;
161}
162
163int register_dimm_printer(dimm_printer_t func)
164{
165 unsigned long flags;
166 int ret = 0;
167
168 spin_lock_irqsave(&dimm_handler_lock, flags);
169 if (!dimm_handler)
170 dimm_handler = func;
171 else
172 ret = -EEXIST;
173 spin_unlock_irqrestore(&dimm_handler_lock, flags);
174
175 return ret;
176}
177EXPORT_SYMBOL_GPL(register_dimm_printer);
178
179void unregister_dimm_printer(dimm_printer_t func)
180{
181 unsigned long flags;
182
183 spin_lock_irqsave(&dimm_handler_lock, flags);
184 if (dimm_handler == func)
185 dimm_handler = NULL;
186 spin_unlock_irqrestore(&dimm_handler_lock, flags);
187}
188EXPORT_SYMBOL_GPL(unregister_dimm_printer);
189
190void spitfire_insn_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
191{
192 enum ctx_state prev_state = exception_enter();
193 siginfo_t info;
194
195 if (notify_die(DIE_TRAP, "instruction access exception", regs,
196 0, 0x8, SIGTRAP) == NOTIFY_STOP)
197 goto out;
198
199 if (regs->tstate & TSTATE_PRIV) {
200 printk("spitfire_insn_access_exception: SFSR[%016lx] "
201 "SFAR[%016lx], going.\n", sfsr, sfar);
202 die_if_kernel("Iax", regs);
203 }
204 if (test_thread_flag(TIF_32BIT)) {
205 regs->tpc &= 0xffffffff;
206 regs->tnpc &= 0xffffffff;
207 }
208 info.si_signo = SIGSEGV;
209 info.si_errno = 0;
210 info.si_code = SEGV_MAPERR;
211 info.si_addr = (void __user *)regs->tpc;
212 info.si_trapno = 0;
213 force_sig_info(SIGSEGV, &info, current);
214out:
215 exception_exit(prev_state);
216}
217
218void spitfire_insn_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
219{
220 if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs,
221 0, 0x8, SIGTRAP) == NOTIFY_STOP)
222 return;
223
224 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
225 spitfire_insn_access_exception(regs, sfsr, sfar);
226}
227
228void sun4v_insn_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
229{
230 unsigned short type = (type_ctx >> 16);
231 unsigned short ctx = (type_ctx & 0xffff);
232 siginfo_t info;
233
234 if (notify_die(DIE_TRAP, "instruction access exception", regs,
235 0, 0x8, SIGTRAP) == NOTIFY_STOP)
236 return;
237
238 if (regs->tstate & TSTATE_PRIV) {
239 printk("sun4v_insn_access_exception: ADDR[%016lx] "
240 "CTX[%04x] TYPE[%04x], going.\n",
241 addr, ctx, type);
242 die_if_kernel("Iax", regs);
243 }
244
245 if (test_thread_flag(TIF_32BIT)) {
246 regs->tpc &= 0xffffffff;
247 regs->tnpc &= 0xffffffff;
248 }
249 info.si_signo = SIGSEGV;
250 info.si_errno = 0;
251 info.si_code = SEGV_MAPERR;
252 info.si_addr = (void __user *) addr;
253 info.si_trapno = 0;
254 force_sig_info(SIGSEGV, &info, current);
255}
256
257void sun4v_insn_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
258{
259 if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs,
260 0, 0x8, SIGTRAP) == NOTIFY_STOP)
261 return;
262
263 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
264 sun4v_insn_access_exception(regs, addr, type_ctx);
265}
266
267void spitfire_data_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
268{
269 enum ctx_state prev_state = exception_enter();
270 siginfo_t info;
271
272 if (notify_die(DIE_TRAP, "data access exception", regs,
273 0, 0x30, SIGTRAP) == NOTIFY_STOP)
274 goto out;
275
276 if (regs->tstate & TSTATE_PRIV) {
277 /* Test if this comes from uaccess places. */
278 const struct exception_table_entry *entry;
279
280 entry = search_exception_tables(regs->tpc);
281 if (entry) {
282 /* Ouch, somebody is trying VM hole tricks on us... */
283#ifdef DEBUG_EXCEPTIONS
284 printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc);
285 printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
286 regs->tpc, entry->fixup);
287#endif
288 regs->tpc = entry->fixup;
289 regs->tnpc = regs->tpc + 4;
290 goto out;
291 }
292 /* Shit... */
293 printk("spitfire_data_access_exception: SFSR[%016lx] "
294 "SFAR[%016lx], going.\n", sfsr, sfar);
295 die_if_kernel("Dax", regs);
296 }
297
298 info.si_signo = SIGSEGV;
299 info.si_errno = 0;
300 info.si_code = SEGV_MAPERR;
301 info.si_addr = (void __user *)sfar;
302 info.si_trapno = 0;
303 force_sig_info(SIGSEGV, &info, current);
304out:
305 exception_exit(prev_state);
306}
307
308void spitfire_data_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
309{
310 if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs,
311 0, 0x30, SIGTRAP) == NOTIFY_STOP)
312 return;
313
314 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
315 spitfire_data_access_exception(regs, sfsr, sfar);
316}
317
318void sun4v_data_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
319{
320 unsigned short type = (type_ctx >> 16);
321 unsigned short ctx = (type_ctx & 0xffff);
322 siginfo_t info;
323
324 if (notify_die(DIE_TRAP, "data access exception", regs,
325 0, 0x8, SIGTRAP) == NOTIFY_STOP)
326 return;
327
328 if (regs->tstate & TSTATE_PRIV) {
329 /* Test if this comes from uaccess places. */
330 const struct exception_table_entry *entry;
331
332 entry = search_exception_tables(regs->tpc);
333 if (entry) {
334 /* Ouch, somebody is trying VM hole tricks on us... */
335#ifdef DEBUG_EXCEPTIONS
336 printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc);
337 printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
338 regs->tpc, entry->fixup);
339#endif
340 regs->tpc = entry->fixup;
341 regs->tnpc = regs->tpc + 4;
342 return;
343 }
344 printk("sun4v_data_access_exception: ADDR[%016lx] "
345 "CTX[%04x] TYPE[%04x], going.\n",
346 addr, ctx, type);
347 die_if_kernel("Dax", regs);
348 }
349
350 if (test_thread_flag(TIF_32BIT)) {
351 regs->tpc &= 0xffffffff;
352 regs->tnpc &= 0xffffffff;
353 }
354 info.si_signo = SIGSEGV;
355 info.si_errno = 0;
356 info.si_code = SEGV_MAPERR;
357 info.si_addr = (void __user *) addr;
358 info.si_trapno = 0;
359 force_sig_info(SIGSEGV, &info, current);
360}
361
362void sun4v_data_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
363{
364 if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs,
365 0, 0x8, SIGTRAP) == NOTIFY_STOP)
366 return;
367
368 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
369 sun4v_data_access_exception(regs, addr, type_ctx);
370}
371
372#ifdef CONFIG_PCI
373#include "pci_impl.h"
374#endif
375
376/* When access exceptions happen, we must do this. */
377static void spitfire_clean_and_reenable_l1_caches(void)
378{
379 unsigned long va;
380
381 if (tlb_type != spitfire)
382 BUG();
383
384 /* Clean 'em. */
385 for (va = 0; va < (PAGE_SIZE << 1); va += 32) {
386 spitfire_put_icache_tag(va, 0x0);
387 spitfire_put_dcache_tag(va, 0x0);
388 }
389
390 /* Re-enable in LSU. */
391 __asm__ __volatile__("flush %%g6\n\t"
392 "membar #Sync\n\t"
393 "stxa %0, [%%g0] %1\n\t"
394 "membar #Sync"
395 : /* no outputs */
396 : "r" (LSU_CONTROL_IC | LSU_CONTROL_DC |
397 LSU_CONTROL_IM | LSU_CONTROL_DM),
398 "i" (ASI_LSU_CONTROL)
399 : "memory");
400}
401
402static void spitfire_enable_estate_errors(void)
403{
404 __asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
405 "membar #Sync"
406 : /* no outputs */
407 : "r" (ESTATE_ERR_ALL),
408 "i" (ASI_ESTATE_ERROR_EN));
409}
410
411static char ecc_syndrome_table[] = {
412 0x4c, 0x40, 0x41, 0x48, 0x42, 0x48, 0x48, 0x49,
413 0x43, 0x48, 0x48, 0x49, 0x48, 0x49, 0x49, 0x4a,
414 0x44, 0x48, 0x48, 0x20, 0x48, 0x39, 0x4b, 0x48,
415 0x48, 0x25, 0x31, 0x48, 0x28, 0x48, 0x48, 0x2c,
416 0x45, 0x48, 0x48, 0x21, 0x48, 0x3d, 0x04, 0x48,
417 0x48, 0x4b, 0x35, 0x48, 0x2d, 0x48, 0x48, 0x29,
418 0x48, 0x00, 0x01, 0x48, 0x0a, 0x48, 0x48, 0x4b,
419 0x0f, 0x48, 0x48, 0x4b, 0x48, 0x49, 0x49, 0x48,
420 0x46, 0x48, 0x48, 0x2a, 0x48, 0x3b, 0x27, 0x48,
421 0x48, 0x4b, 0x33, 0x48, 0x22, 0x48, 0x48, 0x2e,
422 0x48, 0x19, 0x1d, 0x48, 0x1b, 0x4a, 0x48, 0x4b,
423 0x1f, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48,
424 0x48, 0x4b, 0x24, 0x48, 0x07, 0x48, 0x48, 0x36,
425 0x4b, 0x48, 0x48, 0x3e, 0x48, 0x30, 0x38, 0x48,
426 0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x16, 0x48,
427 0x48, 0x12, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b,
428 0x47, 0x48, 0x48, 0x2f, 0x48, 0x3f, 0x4b, 0x48,
429 0x48, 0x06, 0x37, 0x48, 0x23, 0x48, 0x48, 0x2b,
430 0x48, 0x05, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x32,
431 0x26, 0x48, 0x48, 0x3a, 0x48, 0x34, 0x3c, 0x48,
432 0x48, 0x11, 0x15, 0x48, 0x13, 0x4a, 0x48, 0x4b,
433 0x17, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48,
434 0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x1e, 0x48,
435 0x48, 0x1a, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b,
436 0x48, 0x08, 0x0d, 0x48, 0x02, 0x48, 0x48, 0x49,
437 0x03, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x4b, 0x48,
438 0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x10, 0x48,
439 0x48, 0x14, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b,
440 0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x18, 0x48,
441 0x48, 0x1c, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b,
442 0x4a, 0x0c, 0x09, 0x48, 0x0e, 0x48, 0x48, 0x4b,
443 0x0b, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x4b, 0x4a
444};
445
446static char *syndrome_unknown = "<Unknown>";
447
448static void spitfire_log_udb_syndrome(unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long bit)
449{
450 unsigned short scode;
451 char memmod_str[64], *p;
452
453 if (udbl & bit) {
454 scode = ecc_syndrome_table[udbl & 0xff];
455 if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0)
456 p = syndrome_unknown;
457 else
458 p = memmod_str;
459 printk(KERN_WARNING "CPU[%d]: UDBL Syndrome[%x] "
460 "Memory Module \"%s\"\n",
461 smp_processor_id(), scode, p);
462 }
463
464 if (udbh & bit) {
465 scode = ecc_syndrome_table[udbh & 0xff];
466 if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0)
467 p = syndrome_unknown;
468 else
469 p = memmod_str;
470 printk(KERN_WARNING "CPU[%d]: UDBH Syndrome[%x] "
471 "Memory Module \"%s\"\n",
472 smp_processor_id(), scode, p);
473 }
474
475}
476
477static void spitfire_cee_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, int tl1, struct pt_regs *regs)
478{
479
480 printk(KERN_WARNING "CPU[%d]: Correctable ECC Error "
481 "AFSR[%lx] AFAR[%016lx] UDBL[%lx] UDBH[%lx] TL>1[%d]\n",
482 smp_processor_id(), afsr, afar, udbl, udbh, tl1);
483
484 spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_CE);
485
486 /* We always log it, even if someone is listening for this
487 * trap.
488 */
489 notify_die(DIE_TRAP, "Correctable ECC Error", regs,
490 0, TRAP_TYPE_CEE, SIGTRAP);
491
492 /* The Correctable ECC Error trap does not disable I/D caches. So
493 * we only have to restore the ESTATE Error Enable register.
494 */
495 spitfire_enable_estate_errors();
496}
497
498static void spitfire_ue_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long tt, int tl1, struct pt_regs *regs)
499{
500 siginfo_t info;
501
502 printk(KERN_WARNING "CPU[%d]: Uncorrectable Error AFSR[%lx] "
503 "AFAR[%lx] UDBL[%lx] UDBH[%ld] TT[%lx] TL>1[%d]\n",
504 smp_processor_id(), afsr, afar, udbl, udbh, tt, tl1);
505
506 /* XXX add more human friendly logging of the error status
507 * XXX as is implemented for cheetah
508 */
509
510 spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_UE);
511
512 /* We always log it, even if someone is listening for this
513 * trap.
514 */
515 notify_die(DIE_TRAP, "Uncorrectable Error", regs,
516 0, tt, SIGTRAP);
517
518 if (regs->tstate & TSTATE_PRIV) {
519 if (tl1)
520 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
521 die_if_kernel("UE", regs);
522 }
523
524 /* XXX need more intelligent processing here, such as is implemented
525 * XXX for cheetah errors, in fact if the E-cache still holds the
526 * XXX line with bad parity this will loop
527 */
528
529 spitfire_clean_and_reenable_l1_caches();
530 spitfire_enable_estate_errors();
531
532 if (test_thread_flag(TIF_32BIT)) {
533 regs->tpc &= 0xffffffff;
534 regs->tnpc &= 0xffffffff;
535 }
536 info.si_signo = SIGBUS;
537 info.si_errno = 0;
538 info.si_code = BUS_OBJERR;
539 info.si_addr = (void *)0;
540 info.si_trapno = 0;
541 force_sig_info(SIGBUS, &info, current);
542}
543
544void spitfire_access_error(struct pt_regs *regs, unsigned long status_encoded, unsigned long afar)
545{
546 unsigned long afsr, tt, udbh, udbl;
547 int tl1;
548
549 afsr = (status_encoded & SFSTAT_AFSR_MASK) >> SFSTAT_AFSR_SHIFT;
550 tt = (status_encoded & SFSTAT_TRAP_TYPE) >> SFSTAT_TRAP_TYPE_SHIFT;
551 tl1 = (status_encoded & SFSTAT_TL_GT_ONE) ? 1 : 0;
552 udbl = (status_encoded & SFSTAT_UDBL_MASK) >> SFSTAT_UDBL_SHIFT;
553 udbh = (status_encoded & SFSTAT_UDBH_MASK) >> SFSTAT_UDBH_SHIFT;
554
555#ifdef CONFIG_PCI
556 if (tt == TRAP_TYPE_DAE &&
557 pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) {
558 spitfire_clean_and_reenable_l1_caches();
559 spitfire_enable_estate_errors();
560
561 pci_poke_faulted = 1;
562 regs->tnpc = regs->tpc + 4;
563 return;
564 }
565#endif
566
567 if (afsr & SFAFSR_UE)
568 spitfire_ue_log(afsr, afar, udbh, udbl, tt, tl1, regs);
569
570 if (tt == TRAP_TYPE_CEE) {
571 /* Handle the case where we took a CEE trap, but ACK'd
572 * only the UE state in the UDB error registers.
573 */
574 if (afsr & SFAFSR_UE) {
575 if (udbh & UDBE_CE) {
576 __asm__ __volatile__(
577 "stxa %0, [%1] %2\n\t"
578 "membar #Sync"
579 : /* no outputs */
580 : "r" (udbh & UDBE_CE),
581 "r" (0x0), "i" (ASI_UDB_ERROR_W));
582 }
583 if (udbl & UDBE_CE) {
584 __asm__ __volatile__(
585 "stxa %0, [%1] %2\n\t"
586 "membar #Sync"
587 : /* no outputs */
588 : "r" (udbl & UDBE_CE),
589 "r" (0x18), "i" (ASI_UDB_ERROR_W));
590 }
591 }
592
593 spitfire_cee_log(afsr, afar, udbh, udbl, tl1, regs);
594 }
595}
596
597int cheetah_pcache_forced_on;
598
599void cheetah_enable_pcache(void)
600{
601 unsigned long dcr;
602
603 printk("CHEETAH: Enabling P-Cache on cpu %d.\n",
604 smp_processor_id());
605
606 __asm__ __volatile__("ldxa [%%g0] %1, %0"
607 : "=r" (dcr)
608 : "i" (ASI_DCU_CONTROL_REG));
609 dcr |= (DCU_PE | DCU_HPE | DCU_SPE | DCU_SL);
610 __asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
611 "membar #Sync"
612 : /* no outputs */
613 : "r" (dcr), "i" (ASI_DCU_CONTROL_REG));
614}
615
616/* Cheetah error trap handling. */
617static unsigned long ecache_flush_physbase;
618static unsigned long ecache_flush_linesize;
619static unsigned long ecache_flush_size;
620
621/* This table is ordered in priority of errors and matches the
622 * AFAR overwrite policy as well.
623 */
624
625struct afsr_error_table {
626 unsigned long mask;
627 const char *name;
628};
629
630static const char CHAFSR_PERR_msg[] =
631 "System interface protocol error";
632static const char CHAFSR_IERR_msg[] =
633 "Internal processor error";
634static const char CHAFSR_ISAP_msg[] =
635 "System request parity error on incoming address";
636static const char CHAFSR_UCU_msg[] =
637 "Uncorrectable E-cache ECC error for ifetch/data";
638static const char CHAFSR_UCC_msg[] =
639 "SW Correctable E-cache ECC error for ifetch/data";
640static const char CHAFSR_UE_msg[] =
641 "Uncorrectable system bus data ECC error for read";
642static const char CHAFSR_EDU_msg[] =
643 "Uncorrectable E-cache ECC error for stmerge/blkld";
644static const char CHAFSR_EMU_msg[] =
645 "Uncorrectable system bus MTAG error";
646static const char CHAFSR_WDU_msg[] =
647 "Uncorrectable E-cache ECC error for writeback";
648static const char CHAFSR_CPU_msg[] =
649 "Uncorrectable ECC error for copyout";
650static const char CHAFSR_CE_msg[] =
651 "HW corrected system bus data ECC error for read";
652static const char CHAFSR_EDC_msg[] =
653 "HW corrected E-cache ECC error for stmerge/blkld";
654static const char CHAFSR_EMC_msg[] =
655 "HW corrected system bus MTAG ECC error";
656static const char CHAFSR_WDC_msg[] =
657 "HW corrected E-cache ECC error for writeback";
658static const char CHAFSR_CPC_msg[] =
659 "HW corrected ECC error for copyout";
660static const char CHAFSR_TO_msg[] =
661 "Unmapped error from system bus";
662static const char CHAFSR_BERR_msg[] =
663 "Bus error response from system bus";
664static const char CHAFSR_IVC_msg[] =
665 "HW corrected system bus data ECC error for ivec read";
666static const char CHAFSR_IVU_msg[] =
667 "Uncorrectable system bus data ECC error for ivec read";
668static struct afsr_error_table __cheetah_error_table[] = {
669 { CHAFSR_PERR, CHAFSR_PERR_msg },
670 { CHAFSR_IERR, CHAFSR_IERR_msg },
671 { CHAFSR_ISAP, CHAFSR_ISAP_msg },
672 { CHAFSR_UCU, CHAFSR_UCU_msg },
673 { CHAFSR_UCC, CHAFSR_UCC_msg },
674 { CHAFSR_UE, CHAFSR_UE_msg },
675 { CHAFSR_EDU, CHAFSR_EDU_msg },
676 { CHAFSR_EMU, CHAFSR_EMU_msg },
677 { CHAFSR_WDU, CHAFSR_WDU_msg },
678 { CHAFSR_CPU, CHAFSR_CPU_msg },
679 { CHAFSR_CE, CHAFSR_CE_msg },
680 { CHAFSR_EDC, CHAFSR_EDC_msg },
681 { CHAFSR_EMC, CHAFSR_EMC_msg },
682 { CHAFSR_WDC, CHAFSR_WDC_msg },
683 { CHAFSR_CPC, CHAFSR_CPC_msg },
684 { CHAFSR_TO, CHAFSR_TO_msg },
685 { CHAFSR_BERR, CHAFSR_BERR_msg },
686 /* These two do not update the AFAR. */
687 { CHAFSR_IVC, CHAFSR_IVC_msg },
688 { CHAFSR_IVU, CHAFSR_IVU_msg },
689 { 0, NULL },
690};
691static const char CHPAFSR_DTO_msg[] =
692 "System bus unmapped error for prefetch/storequeue-read";
693static const char CHPAFSR_DBERR_msg[] =
694 "System bus error for prefetch/storequeue-read";
695static const char CHPAFSR_THCE_msg[] =
696 "Hardware corrected E-cache Tag ECC error";
697static const char CHPAFSR_TSCE_msg[] =
698 "SW handled correctable E-cache Tag ECC error";
699static const char CHPAFSR_TUE_msg[] =
700 "Uncorrectable E-cache Tag ECC error";
701static const char CHPAFSR_DUE_msg[] =
702 "System bus uncorrectable data ECC error due to prefetch/store-fill";
703static struct afsr_error_table __cheetah_plus_error_table[] = {
704 { CHAFSR_PERR, CHAFSR_PERR_msg },
705 { CHAFSR_IERR, CHAFSR_IERR_msg },
706 { CHAFSR_ISAP, CHAFSR_ISAP_msg },
707 { CHAFSR_UCU, CHAFSR_UCU_msg },
708 { CHAFSR_UCC, CHAFSR_UCC_msg },
709 { CHAFSR_UE, CHAFSR_UE_msg },
710 { CHAFSR_EDU, CHAFSR_EDU_msg },
711 { CHAFSR_EMU, CHAFSR_EMU_msg },
712 { CHAFSR_WDU, CHAFSR_WDU_msg },
713 { CHAFSR_CPU, CHAFSR_CPU_msg },
714 { CHAFSR_CE, CHAFSR_CE_msg },
715 { CHAFSR_EDC, CHAFSR_EDC_msg },
716 { CHAFSR_EMC, CHAFSR_EMC_msg },
717 { CHAFSR_WDC, CHAFSR_WDC_msg },
718 { CHAFSR_CPC, CHAFSR_CPC_msg },
719 { CHAFSR_TO, CHAFSR_TO_msg },
720 { CHAFSR_BERR, CHAFSR_BERR_msg },
721 { CHPAFSR_DTO, CHPAFSR_DTO_msg },
722 { CHPAFSR_DBERR, CHPAFSR_DBERR_msg },
723 { CHPAFSR_THCE, CHPAFSR_THCE_msg },
724 { CHPAFSR_TSCE, CHPAFSR_TSCE_msg },
725 { CHPAFSR_TUE, CHPAFSR_TUE_msg },
726 { CHPAFSR_DUE, CHPAFSR_DUE_msg },
727 /* These two do not update the AFAR. */
728 { CHAFSR_IVC, CHAFSR_IVC_msg },
729 { CHAFSR_IVU, CHAFSR_IVU_msg },
730 { 0, NULL },
731};
732static const char JPAFSR_JETO_msg[] =
733 "System interface protocol error, hw timeout caused";
734static const char JPAFSR_SCE_msg[] =
735 "Parity error on system snoop results";
736static const char JPAFSR_JEIC_msg[] =
737 "System interface protocol error, illegal command detected";
738static const char JPAFSR_JEIT_msg[] =
739 "System interface protocol error, illegal ADTYPE detected";
740static const char JPAFSR_OM_msg[] =
741 "Out of range memory error has occurred";
742static const char JPAFSR_ETP_msg[] =
743 "Parity error on L2 cache tag SRAM";
744static const char JPAFSR_UMS_msg[] =
745 "Error due to unsupported store";
746static const char JPAFSR_RUE_msg[] =
747 "Uncorrectable ECC error from remote cache/memory";
748static const char JPAFSR_RCE_msg[] =
749 "Correctable ECC error from remote cache/memory";
750static const char JPAFSR_BP_msg[] =
751 "JBUS parity error on returned read data";
752static const char JPAFSR_WBP_msg[] =
753 "JBUS parity error on data for writeback or block store";
754static const char JPAFSR_FRC_msg[] =
755 "Foreign read to DRAM incurring correctable ECC error";
756static const char JPAFSR_FRU_msg[] =
757 "Foreign read to DRAM incurring uncorrectable ECC error";
758static struct afsr_error_table __jalapeno_error_table[] = {
759 { JPAFSR_JETO, JPAFSR_JETO_msg },
760 { JPAFSR_SCE, JPAFSR_SCE_msg },
761 { JPAFSR_JEIC, JPAFSR_JEIC_msg },
762 { JPAFSR_JEIT, JPAFSR_JEIT_msg },
763 { CHAFSR_PERR, CHAFSR_PERR_msg },
764 { CHAFSR_IERR, CHAFSR_IERR_msg },
765 { CHAFSR_ISAP, CHAFSR_ISAP_msg },
766 { CHAFSR_UCU, CHAFSR_UCU_msg },
767 { CHAFSR_UCC, CHAFSR_UCC_msg },
768 { CHAFSR_UE, CHAFSR_UE_msg },
769 { CHAFSR_EDU, CHAFSR_EDU_msg },
770 { JPAFSR_OM, JPAFSR_OM_msg },
771 { CHAFSR_WDU, CHAFSR_WDU_msg },
772 { CHAFSR_CPU, CHAFSR_CPU_msg },
773 { CHAFSR_CE, CHAFSR_CE_msg },
774 { CHAFSR_EDC, CHAFSR_EDC_msg },
775 { JPAFSR_ETP, JPAFSR_ETP_msg },
776 { CHAFSR_WDC, CHAFSR_WDC_msg },
777 { CHAFSR_CPC, CHAFSR_CPC_msg },
778 { CHAFSR_TO, CHAFSR_TO_msg },
779 { CHAFSR_BERR, CHAFSR_BERR_msg },
780 { JPAFSR_UMS, JPAFSR_UMS_msg },
781 { JPAFSR_RUE, JPAFSR_RUE_msg },
782 { JPAFSR_RCE, JPAFSR_RCE_msg },
783 { JPAFSR_BP, JPAFSR_BP_msg },
784 { JPAFSR_WBP, JPAFSR_WBP_msg },
785 { JPAFSR_FRC, JPAFSR_FRC_msg },
786 { JPAFSR_FRU, JPAFSR_FRU_msg },
787 /* These two do not update the AFAR. */
788 { CHAFSR_IVU, CHAFSR_IVU_msg },
789 { 0, NULL },
790};
791static struct afsr_error_table *cheetah_error_table;
792static unsigned long cheetah_afsr_errors;
793
794struct cheetah_err_info *cheetah_error_log;
795
796static inline struct cheetah_err_info *cheetah_get_error_log(unsigned long afsr)
797{
798 struct cheetah_err_info *p;
799 int cpu = smp_processor_id();
800
801 if (!cheetah_error_log)
802 return NULL;
803
804 p = cheetah_error_log + (cpu * 2);
805 if ((afsr & CHAFSR_TL1) != 0UL)
806 p++;
807
808 return p;
809}
810
811extern unsigned int tl0_icpe[], tl1_icpe[];
812extern unsigned int tl0_dcpe[], tl1_dcpe[];
813extern unsigned int tl0_fecc[], tl1_fecc[];
814extern unsigned int tl0_cee[], tl1_cee[];
815extern unsigned int tl0_iae[], tl1_iae[];
816extern unsigned int tl0_dae[], tl1_dae[];
817extern unsigned int cheetah_plus_icpe_trap_vector[], cheetah_plus_icpe_trap_vector_tl1[];
818extern unsigned int cheetah_plus_dcpe_trap_vector[], cheetah_plus_dcpe_trap_vector_tl1[];
819extern unsigned int cheetah_fecc_trap_vector[], cheetah_fecc_trap_vector_tl1[];
820extern unsigned int cheetah_cee_trap_vector[], cheetah_cee_trap_vector_tl1[];
821extern unsigned int cheetah_deferred_trap_vector[], cheetah_deferred_trap_vector_tl1[];
822
823void __init cheetah_ecache_flush_init(void)
824{
825 unsigned long largest_size, smallest_linesize, order, ver;
826 int i, sz;
827
828 /* Scan all cpu device tree nodes, note two values:
829 * 1) largest E-cache size
830 * 2) smallest E-cache line size
831 */
832 largest_size = 0UL;
833 smallest_linesize = ~0UL;
834
835 for (i = 0; i < NR_CPUS; i++) {
836 unsigned long val;
837
838 val = cpu_data(i).ecache_size;
839 if (!val)
840 continue;
841
842 if (val > largest_size)
843 largest_size = val;
844
845 val = cpu_data(i).ecache_line_size;
846 if (val < smallest_linesize)
847 smallest_linesize = val;
848
849 }
850
851 if (largest_size == 0UL || smallest_linesize == ~0UL) {
852 prom_printf("cheetah_ecache_flush_init: Cannot probe cpu E-cache "
853 "parameters.\n");
854 prom_halt();
855 }
856
857 ecache_flush_size = (2 * largest_size);
858 ecache_flush_linesize = smallest_linesize;
859
860 ecache_flush_physbase = find_ecache_flush_span(ecache_flush_size);
861
862 if (ecache_flush_physbase == ~0UL) {
863 prom_printf("cheetah_ecache_flush_init: Cannot find %ld byte "
864 "contiguous physical memory.\n",
865 ecache_flush_size);
866 prom_halt();
867 }
868
869 /* Now allocate error trap reporting scoreboard. */
870 sz = NR_CPUS * (2 * sizeof(struct cheetah_err_info));
871 for (order = 0; order < MAX_ORDER; order++) {
872 if ((PAGE_SIZE << order) >= sz)
873 break;
874 }
875 cheetah_error_log = (struct cheetah_err_info *)
876 __get_free_pages(GFP_KERNEL, order);
877 if (!cheetah_error_log) {
878 prom_printf("cheetah_ecache_flush_init: Failed to allocate "
879 "error logging scoreboard (%d bytes).\n", sz);
880 prom_halt();
881 }
882 memset(cheetah_error_log, 0, PAGE_SIZE << order);
883
884 /* Mark all AFSRs as invalid so that the trap handler will
885 * log new new information there.
886 */
887 for (i = 0; i < 2 * NR_CPUS; i++)
888 cheetah_error_log[i].afsr = CHAFSR_INVALID;
889
890 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
891 if ((ver >> 32) == __JALAPENO_ID ||
892 (ver >> 32) == __SERRANO_ID) {
893 cheetah_error_table = &__jalapeno_error_table[0];
894 cheetah_afsr_errors = JPAFSR_ERRORS;
895 } else if ((ver >> 32) == 0x003e0015) {
896 cheetah_error_table = &__cheetah_plus_error_table[0];
897 cheetah_afsr_errors = CHPAFSR_ERRORS;
898 } else {
899 cheetah_error_table = &__cheetah_error_table[0];
900 cheetah_afsr_errors = CHAFSR_ERRORS;
901 }
902
903 /* Now patch trap tables. */
904 memcpy(tl0_fecc, cheetah_fecc_trap_vector, (8 * 4));
905 memcpy(tl1_fecc, cheetah_fecc_trap_vector_tl1, (8 * 4));
906 memcpy(tl0_cee, cheetah_cee_trap_vector, (8 * 4));
907 memcpy(tl1_cee, cheetah_cee_trap_vector_tl1, (8 * 4));
908 memcpy(tl0_iae, cheetah_deferred_trap_vector, (8 * 4));
909 memcpy(tl1_iae, cheetah_deferred_trap_vector_tl1, (8 * 4));
910 memcpy(tl0_dae, cheetah_deferred_trap_vector, (8 * 4));
911 memcpy(tl1_dae, cheetah_deferred_trap_vector_tl1, (8 * 4));
912 if (tlb_type == cheetah_plus) {
913 memcpy(tl0_dcpe, cheetah_plus_dcpe_trap_vector, (8 * 4));
914 memcpy(tl1_dcpe, cheetah_plus_dcpe_trap_vector_tl1, (8 * 4));
915 memcpy(tl0_icpe, cheetah_plus_icpe_trap_vector, (8 * 4));
916 memcpy(tl1_icpe, cheetah_plus_icpe_trap_vector_tl1, (8 * 4));
917 }
918 flushi(PAGE_OFFSET);
919}
920
921static void cheetah_flush_ecache(void)
922{
923 unsigned long flush_base = ecache_flush_physbase;
924 unsigned long flush_linesize = ecache_flush_linesize;
925 unsigned long flush_size = ecache_flush_size;
926
927 __asm__ __volatile__("1: subcc %0, %4, %0\n\t"
928 " bne,pt %%xcc, 1b\n\t"
929 " ldxa [%2 + %0] %3, %%g0\n\t"
930 : "=&r" (flush_size)
931 : "0" (flush_size), "r" (flush_base),
932 "i" (ASI_PHYS_USE_EC), "r" (flush_linesize));
933}
934
935static void cheetah_flush_ecache_line(unsigned long physaddr)
936{
937 unsigned long alias;
938
939 physaddr &= ~(8UL - 1UL);
940 physaddr = (ecache_flush_physbase +
941 (physaddr & ((ecache_flush_size>>1UL) - 1UL)));
942 alias = physaddr + (ecache_flush_size >> 1UL);
943 __asm__ __volatile__("ldxa [%0] %2, %%g0\n\t"
944 "ldxa [%1] %2, %%g0\n\t"
945 "membar #Sync"
946 : /* no outputs */
947 : "r" (physaddr), "r" (alias),
948 "i" (ASI_PHYS_USE_EC));
949}
950
951/* Unfortunately, the diagnostic access to the I-cache tags we need to
952 * use to clear the thing interferes with I-cache coherency transactions.
953 *
954 * So we must only flush the I-cache when it is disabled.
955 */
956static void __cheetah_flush_icache(void)
957{
958 unsigned int icache_size, icache_line_size;
959 unsigned long addr;
960
961 icache_size = local_cpu_data().icache_size;
962 icache_line_size = local_cpu_data().icache_line_size;
963
964 /* Clear the valid bits in all the tags. */
965 for (addr = 0; addr < icache_size; addr += icache_line_size) {
966 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
967 "membar #Sync"
968 : /* no outputs */
969 : "r" (addr | (2 << 3)),
970 "i" (ASI_IC_TAG));
971 }
972}
973
974static void cheetah_flush_icache(void)
975{
976 unsigned long dcu_save;
977
978 /* Save current DCU, disable I-cache. */
979 __asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
980 "or %0, %2, %%g1\n\t"
981 "stxa %%g1, [%%g0] %1\n\t"
982 "membar #Sync"
983 : "=r" (dcu_save)
984 : "i" (ASI_DCU_CONTROL_REG), "i" (DCU_IC)
985 : "g1");
986
987 __cheetah_flush_icache();
988
989 /* Restore DCU register */
990 __asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
991 "membar #Sync"
992 : /* no outputs */
993 : "r" (dcu_save), "i" (ASI_DCU_CONTROL_REG));
994}
995
996static void cheetah_flush_dcache(void)
997{
998 unsigned int dcache_size, dcache_line_size;
999 unsigned long addr;
1000
1001 dcache_size = local_cpu_data().dcache_size;
1002 dcache_line_size = local_cpu_data().dcache_line_size;
1003
1004 for (addr = 0; addr < dcache_size; addr += dcache_line_size) {
1005 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
1006 "membar #Sync"
1007 : /* no outputs */
1008 : "r" (addr), "i" (ASI_DCACHE_TAG));
1009 }
1010}
1011
1012/* In order to make the even parity correct we must do two things.
1013 * First, we clear DC_data_parity and set DC_utag to an appropriate value.
1014 * Next, we clear out all 32-bytes of data for that line. Data of
1015 * all-zero + tag parity value of zero == correct parity.
1016 */
1017static void cheetah_plus_zap_dcache_parity(void)
1018{
1019 unsigned int dcache_size, dcache_line_size;
1020 unsigned long addr;
1021
1022 dcache_size = local_cpu_data().dcache_size;
1023 dcache_line_size = local_cpu_data().dcache_line_size;
1024
1025 for (addr = 0; addr < dcache_size; addr += dcache_line_size) {
1026 unsigned long tag = (addr >> 14);
1027 unsigned long line;
1028
1029 __asm__ __volatile__("membar #Sync\n\t"
1030 "stxa %0, [%1] %2\n\t"
1031 "membar #Sync"
1032 : /* no outputs */
1033 : "r" (tag), "r" (addr),
1034 "i" (ASI_DCACHE_UTAG));
1035 for (line = addr; line < addr + dcache_line_size; line += 8)
1036 __asm__ __volatile__("membar #Sync\n\t"
1037 "stxa %%g0, [%0] %1\n\t"
1038 "membar #Sync"
1039 : /* no outputs */
1040 : "r" (line),
1041 "i" (ASI_DCACHE_DATA));
1042 }
1043}
1044
1045/* Conversion tables used to frob Cheetah AFSR syndrome values into
1046 * something palatable to the memory controller driver get_unumber
1047 * routine.
1048 */
1049#define MT0 137
1050#define MT1 138
1051#define MT2 139
1052#define NONE 254
1053#define MTC0 140
1054#define MTC1 141
1055#define MTC2 142
1056#define MTC3 143
1057#define C0 128
1058#define C1 129
1059#define C2 130
1060#define C3 131
1061#define C4 132
1062#define C5 133
1063#define C6 134
1064#define C7 135
1065#define C8 136
1066#define M2 144
1067#define M3 145
1068#define M4 146
1069#define M 147
1070static unsigned char cheetah_ecc_syntab[] = {
1071/*00*/NONE, C0, C1, M2, C2, M2, M3, 47, C3, M2, M2, 53, M2, 41, 29, M,
1072/*01*/C4, M, M, 50, M2, 38, 25, M2, M2, 33, 24, M2, 11, M, M2, 16,
1073/*02*/C5, M, M, 46, M2, 37, 19, M2, M, 31, 32, M, 7, M2, M2, 10,
1074/*03*/M2, 40, 13, M2, 59, M, M2, 66, M, M2, M2, 0, M2, 67, 71, M,
1075/*04*/C6, M, M, 43, M, 36, 18, M, M2, 49, 15, M, 63, M2, M2, 6,
1076/*05*/M2, 44, 28, M2, M, M2, M2, 52, 68, M2, M2, 62, M2, M3, M3, M4,
1077/*06*/M2, 26, 106, M2, 64, M, M2, 2, 120, M, M2, M3, M, M3, M3, M4,
1078/*07*/116, M2, M2, M3, M2, M3, M, M4, M2, 58, 54, M2, M, M4, M4, M3,
1079/*08*/C7, M2, M, 42, M, 35, 17, M2, M, 45, 14, M2, 21, M2, M2, 5,
1080/*09*/M, 27, M, M, 99, M, M, 3, 114, M2, M2, 20, M2, M3, M3, M,
1081/*0a*/M2, 23, 113, M2, 112, M2, M, 51, 95, M, M2, M3, M2, M3, M3, M2,
1082/*0b*/103, M, M2, M3, M2, M3, M3, M4, M2, 48, M, M, 73, M2, M, M3,
1083/*0c*/M2, 22, 110, M2, 109, M2, M, 9, 108, M2, M, M3, M2, M3, M3, M,
1084/*0d*/102, M2, M, M, M2, M3, M3, M, M2, M3, M3, M2, M, M4, M, M3,
1085/*0e*/98, M, M2, M3, M2, M, M3, M4, M2, M3, M3, M4, M3, M, M, M,
1086/*0f*/M2, M3, M3, M, M3, M, M, M, 56, M4, M, M3, M4, M, M, M,
1087/*10*/C8, M, M2, 39, M, 34, 105, M2, M, 30, 104, M, 101, M, M, 4,
1088/*11*/M, M, 100, M, 83, M, M2, 12, 87, M, M, 57, M2, M, M3, M,
1089/*12*/M2, 97, 82, M2, 78, M2, M2, 1, 96, M, M, M, M, M, M3, M2,
1090/*13*/94, M, M2, M3, M2, M, M3, M, M2, M, 79, M, 69, M, M4, M,
1091/*14*/M2, 93, 92, M, 91, M, M2, 8, 90, M2, M2, M, M, M, M, M4,
1092/*15*/89, M, M, M3, M2, M3, M3, M, M, M, M3, M2, M3, M2, M, M3,
1093/*16*/86, M, M2, M3, M2, M, M3, M, M2, M, M3, M, M3, M, M, M3,
1094/*17*/M, M, M3, M2, M3, M2, M4, M, 60, M, M2, M3, M4, M, M, M2,
1095/*18*/M2, 88, 85, M2, 84, M, M2, 55, 81, M2, M2, M3, M2, M3, M3, M4,
1096/*19*/77, M, M, M, M2, M3, M, M, M2, M3, M3, M4, M3, M2, M, M,
1097/*1a*/74, M, M2, M3, M, M, M3, M, M, M, M3, M, M3, M, M4, M3,
1098/*1b*/M2, 70, 107, M4, 65, M2, M2, M, 127, M, M, M, M2, M3, M3, M,
1099/*1c*/80, M2, M2, 72, M, 119, 118, M, M2, 126, 76, M, 125, M, M4, M3,
1100/*1d*/M2, 115, 124, M, 75, M, M, M3, 61, M, M4, M, M4, M, M, M,
1101/*1e*/M, 123, 122, M4, 121, M4, M, M3, 117, M2, M2, M3, M4, M3, M, M,
1102/*1f*/111, M, M, M, M4, M3, M3, M, M, M, M3, M, M3, M2, M, M
1103};
1104static unsigned char cheetah_mtag_syntab[] = {
1105 NONE, MTC0,
1106 MTC1, NONE,
1107 MTC2, NONE,
1108 NONE, MT0,
1109 MTC3, NONE,
1110 NONE, MT1,
1111 NONE, MT2,
1112 NONE, NONE
1113};
1114
1115/* Return the highest priority error conditon mentioned. */
1116static inline unsigned long cheetah_get_hipri(unsigned long afsr)
1117{
1118 unsigned long tmp = 0;
1119 int i;
1120
1121 for (i = 0; cheetah_error_table[i].mask; i++) {
1122 if ((tmp = (afsr & cheetah_error_table[i].mask)) != 0UL)
1123 return tmp;
1124 }
1125 return tmp;
1126}
1127
1128static const char *cheetah_get_string(unsigned long bit)
1129{
1130 int i;
1131
1132 for (i = 0; cheetah_error_table[i].mask; i++) {
1133 if ((bit & cheetah_error_table[i].mask) != 0UL)
1134 return cheetah_error_table[i].name;
1135 }
1136 return "???";
1137}
1138
1139static void cheetah_log_errors(struct pt_regs *regs, struct cheetah_err_info *info,
1140 unsigned long afsr, unsigned long afar, int recoverable)
1141{
1142 unsigned long hipri;
1143 char unum[256];
1144
1145 printk("%s" "ERROR(%d): Cheetah error trap taken afsr[%016lx] afar[%016lx] TL1(%d)\n",
1146 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1147 afsr, afar,
1148 (afsr & CHAFSR_TL1) ? 1 : 0);
1149 printk("%s" "ERROR(%d): TPC[%lx] TNPC[%lx] O7[%lx] TSTATE[%lx]\n",
1150 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1151 regs->tpc, regs->tnpc, regs->u_regs[UREG_I7], regs->tstate);
1152 printk("%s" "ERROR(%d): ",
1153 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id());
1154 printk("TPC<%pS>\n", (void *) regs->tpc);
1155 printk("%s" "ERROR(%d): M_SYND(%lx), E_SYND(%lx)%s%s\n",
1156 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1157 (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT,
1158 (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT,
1159 (afsr & CHAFSR_ME) ? ", Multiple Errors" : "",
1160 (afsr & CHAFSR_PRIV) ? ", Privileged" : "");
1161 hipri = cheetah_get_hipri(afsr);
1162 printk("%s" "ERROR(%d): Highest priority error (%016lx) \"%s\"\n",
1163 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1164 hipri, cheetah_get_string(hipri));
1165
1166 /* Try to get unumber if relevant. */
1167#define ESYND_ERRORS (CHAFSR_IVC | CHAFSR_IVU | \
1168 CHAFSR_CPC | CHAFSR_CPU | \
1169 CHAFSR_UE | CHAFSR_CE | \
1170 CHAFSR_EDC | CHAFSR_EDU | \
1171 CHAFSR_UCC | CHAFSR_UCU | \
1172 CHAFSR_WDU | CHAFSR_WDC)
1173#define MSYND_ERRORS (CHAFSR_EMC | CHAFSR_EMU)
1174 if (afsr & ESYND_ERRORS) {
1175 int syndrome;
1176 int ret;
1177
1178 syndrome = (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT;
1179 syndrome = cheetah_ecc_syntab[syndrome];
1180 ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum));
1181 if (ret != -1)
1182 printk("%s" "ERROR(%d): AFAR E-syndrome [%s]\n",
1183 (recoverable ? KERN_WARNING : KERN_CRIT),
1184 smp_processor_id(), unum);
1185 } else if (afsr & MSYND_ERRORS) {
1186 int syndrome;
1187 int ret;
1188
1189 syndrome = (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT;
1190 syndrome = cheetah_mtag_syntab[syndrome];
1191 ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum));
1192 if (ret != -1)
1193 printk("%s" "ERROR(%d): AFAR M-syndrome [%s]\n",
1194 (recoverable ? KERN_WARNING : KERN_CRIT),
1195 smp_processor_id(), unum);
1196 }
1197
1198 /* Now dump the cache snapshots. */
1199 printk("%s" "ERROR(%d): D-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx]\n",
1200 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1201 (int) info->dcache_index,
1202 info->dcache_tag,
1203 info->dcache_utag,
1204 info->dcache_stag);
1205 printk("%s" "ERROR(%d): D-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n",
1206 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1207 info->dcache_data[0],
1208 info->dcache_data[1],
1209 info->dcache_data[2],
1210 info->dcache_data[3]);
1211 printk("%s" "ERROR(%d): I-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx] "
1212 "u[%016llx] l[%016llx]\n",
1213 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1214 (int) info->icache_index,
1215 info->icache_tag,
1216 info->icache_utag,
1217 info->icache_stag,
1218 info->icache_upper,
1219 info->icache_lower);
1220 printk("%s" "ERROR(%d): I-cache INSN0[%016llx] INSN1[%016llx] INSN2[%016llx] INSN3[%016llx]\n",
1221 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1222 info->icache_data[0],
1223 info->icache_data[1],
1224 info->icache_data[2],
1225 info->icache_data[3]);
1226 printk("%s" "ERROR(%d): I-cache INSN4[%016llx] INSN5[%016llx] INSN6[%016llx] INSN7[%016llx]\n",
1227 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1228 info->icache_data[4],
1229 info->icache_data[5],
1230 info->icache_data[6],
1231 info->icache_data[7]);
1232 printk("%s" "ERROR(%d): E-cache idx[%x] tag[%016llx]\n",
1233 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1234 (int) info->ecache_index, info->ecache_tag);
1235 printk("%s" "ERROR(%d): E-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n",
1236 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1237 info->ecache_data[0],
1238 info->ecache_data[1],
1239 info->ecache_data[2],
1240 info->ecache_data[3]);
1241
1242 afsr = (afsr & ~hipri) & cheetah_afsr_errors;
1243 while (afsr != 0UL) {
1244 unsigned long bit = cheetah_get_hipri(afsr);
1245
1246 printk("%s" "ERROR: Multiple-error (%016lx) \"%s\"\n",
1247 (recoverable ? KERN_WARNING : KERN_CRIT),
1248 bit, cheetah_get_string(bit));
1249
1250 afsr &= ~bit;
1251 }
1252
1253 if (!recoverable)
1254 printk(KERN_CRIT "ERROR: This condition is not recoverable.\n");
1255}
1256
1257static int cheetah_recheck_errors(struct cheetah_err_info *logp)
1258{
1259 unsigned long afsr, afar;
1260 int ret = 0;
1261
1262 __asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1263 : "=r" (afsr)
1264 : "i" (ASI_AFSR));
1265 if ((afsr & cheetah_afsr_errors) != 0) {
1266 if (logp != NULL) {
1267 __asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1268 : "=r" (afar)
1269 : "i" (ASI_AFAR));
1270 logp->afsr = afsr;
1271 logp->afar = afar;
1272 }
1273 ret = 1;
1274 }
1275 __asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
1276 "membar #Sync\n\t"
1277 : : "r" (afsr), "i" (ASI_AFSR));
1278
1279 return ret;
1280}
1281
1282void cheetah_fecc_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1283{
1284 struct cheetah_err_info local_snapshot, *p;
1285 int recoverable;
1286
1287 /* Flush E-cache */
1288 cheetah_flush_ecache();
1289
1290 p = cheetah_get_error_log(afsr);
1291 if (!p) {
1292 prom_printf("ERROR: Early Fast-ECC error afsr[%016lx] afar[%016lx]\n",
1293 afsr, afar);
1294 prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1295 smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1296 prom_halt();
1297 }
1298
1299 /* Grab snapshot of logged error. */
1300 memcpy(&local_snapshot, p, sizeof(local_snapshot));
1301
1302 /* If the current trap snapshot does not match what the
1303 * trap handler passed along into our args, big trouble.
1304 * In such a case, mark the local copy as invalid.
1305 *
1306 * Else, it matches and we mark the afsr in the non-local
1307 * copy as invalid so we may log new error traps there.
1308 */
1309 if (p->afsr != afsr || p->afar != afar)
1310 local_snapshot.afsr = CHAFSR_INVALID;
1311 else
1312 p->afsr = CHAFSR_INVALID;
1313
1314 cheetah_flush_icache();
1315 cheetah_flush_dcache();
1316
1317 /* Re-enable I-cache/D-cache */
1318 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1319 "or %%g1, %1, %%g1\n\t"
1320 "stxa %%g1, [%%g0] %0\n\t"
1321 "membar #Sync"
1322 : /* no outputs */
1323 : "i" (ASI_DCU_CONTROL_REG),
1324 "i" (DCU_DC | DCU_IC)
1325 : "g1");
1326
1327 /* Re-enable error reporting */
1328 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1329 "or %%g1, %1, %%g1\n\t"
1330 "stxa %%g1, [%%g0] %0\n\t"
1331 "membar #Sync"
1332 : /* no outputs */
1333 : "i" (ASI_ESTATE_ERROR_EN),
1334 "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1335 : "g1");
1336
1337 /* Decide if we can continue after handling this trap and
1338 * logging the error.
1339 */
1340 recoverable = 1;
1341 if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1342 recoverable = 0;
1343
1344 /* Re-check AFSR/AFAR. What we are looking for here is whether a new
1345 * error was logged while we had error reporting traps disabled.
1346 */
1347 if (cheetah_recheck_errors(&local_snapshot)) {
1348 unsigned long new_afsr = local_snapshot.afsr;
1349
1350 /* If we got a new asynchronous error, die... */
1351 if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU |
1352 CHAFSR_WDU | CHAFSR_CPU |
1353 CHAFSR_IVU | CHAFSR_UE |
1354 CHAFSR_BERR | CHAFSR_TO))
1355 recoverable = 0;
1356 }
1357
1358 /* Log errors. */
1359 cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1360
1361 if (!recoverable)
1362 panic("Irrecoverable Fast-ECC error trap.\n");
1363
1364 /* Flush E-cache to kick the error trap handlers out. */
1365 cheetah_flush_ecache();
1366}
1367
1368/* Try to fix a correctable error by pushing the line out from
1369 * the E-cache. Recheck error reporting registers to see if the
1370 * problem is intermittent.
1371 */
1372static int cheetah_fix_ce(unsigned long physaddr)
1373{
1374 unsigned long orig_estate;
1375 unsigned long alias1, alias2;
1376 int ret;
1377
1378 /* Make sure correctable error traps are disabled. */
1379 __asm__ __volatile__("ldxa [%%g0] %2, %0\n\t"
1380 "andn %0, %1, %%g1\n\t"
1381 "stxa %%g1, [%%g0] %2\n\t"
1382 "membar #Sync"
1383 : "=&r" (orig_estate)
1384 : "i" (ESTATE_ERROR_CEEN),
1385 "i" (ASI_ESTATE_ERROR_EN)
1386 : "g1");
1387
1388 /* We calculate alias addresses that will force the
1389 * cache line in question out of the E-cache. Then
1390 * we bring it back in with an atomic instruction so
1391 * that we get it in some modified/exclusive state,
1392 * then we displace it again to try and get proper ECC
1393 * pushed back into the system.
1394 */
1395 physaddr &= ~(8UL - 1UL);
1396 alias1 = (ecache_flush_physbase +
1397 (physaddr & ((ecache_flush_size >> 1) - 1)));
1398 alias2 = alias1 + (ecache_flush_size >> 1);
1399 __asm__ __volatile__("ldxa [%0] %3, %%g0\n\t"
1400 "ldxa [%1] %3, %%g0\n\t"
1401 "casxa [%2] %3, %%g0, %%g0\n\t"
1402 "ldxa [%0] %3, %%g0\n\t"
1403 "ldxa [%1] %3, %%g0\n\t"
1404 "membar #Sync"
1405 : /* no outputs */
1406 : "r" (alias1), "r" (alias2),
1407 "r" (physaddr), "i" (ASI_PHYS_USE_EC));
1408
1409 /* Did that trigger another error? */
1410 if (cheetah_recheck_errors(NULL)) {
1411 /* Try one more time. */
1412 __asm__ __volatile__("ldxa [%0] %1, %%g0\n\t"
1413 "membar #Sync"
1414 : : "r" (physaddr), "i" (ASI_PHYS_USE_EC));
1415 if (cheetah_recheck_errors(NULL))
1416 ret = 2;
1417 else
1418 ret = 1;
1419 } else {
1420 /* No new error, intermittent problem. */
1421 ret = 0;
1422 }
1423
1424 /* Restore error enables. */
1425 __asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
1426 "membar #Sync"
1427 : : "r" (orig_estate), "i" (ASI_ESTATE_ERROR_EN));
1428
1429 return ret;
1430}
1431
1432/* Return non-zero if PADDR is a valid physical memory address. */
1433static int cheetah_check_main_memory(unsigned long paddr)
1434{
1435 unsigned long vaddr = PAGE_OFFSET + paddr;
1436
1437 if (vaddr > (unsigned long) high_memory)
1438 return 0;
1439
1440 return kern_addr_valid(vaddr);
1441}
1442
1443void cheetah_cee_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1444{
1445 struct cheetah_err_info local_snapshot, *p;
1446 int recoverable, is_memory;
1447
1448 p = cheetah_get_error_log(afsr);
1449 if (!p) {
1450 prom_printf("ERROR: Early CEE error afsr[%016lx] afar[%016lx]\n",
1451 afsr, afar);
1452 prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1453 smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1454 prom_halt();
1455 }
1456
1457 /* Grab snapshot of logged error. */
1458 memcpy(&local_snapshot, p, sizeof(local_snapshot));
1459
1460 /* If the current trap snapshot does not match what the
1461 * trap handler passed along into our args, big trouble.
1462 * In such a case, mark the local copy as invalid.
1463 *
1464 * Else, it matches and we mark the afsr in the non-local
1465 * copy as invalid so we may log new error traps there.
1466 */
1467 if (p->afsr != afsr || p->afar != afar)
1468 local_snapshot.afsr = CHAFSR_INVALID;
1469 else
1470 p->afsr = CHAFSR_INVALID;
1471
1472 is_memory = cheetah_check_main_memory(afar);
1473
1474 if (is_memory && (afsr & CHAFSR_CE) != 0UL) {
1475 /* XXX Might want to log the results of this operation
1476 * XXX somewhere... -DaveM
1477 */
1478 cheetah_fix_ce(afar);
1479 }
1480
1481 {
1482 int flush_all, flush_line;
1483
1484 flush_all = flush_line = 0;
1485 if ((afsr & CHAFSR_EDC) != 0UL) {
1486 if ((afsr & cheetah_afsr_errors) == CHAFSR_EDC)
1487 flush_line = 1;
1488 else
1489 flush_all = 1;
1490 } else if ((afsr & CHAFSR_CPC) != 0UL) {
1491 if ((afsr & cheetah_afsr_errors) == CHAFSR_CPC)
1492 flush_line = 1;
1493 else
1494 flush_all = 1;
1495 }
1496
1497 /* Trap handler only disabled I-cache, flush it. */
1498 cheetah_flush_icache();
1499
1500 /* Re-enable I-cache */
1501 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1502 "or %%g1, %1, %%g1\n\t"
1503 "stxa %%g1, [%%g0] %0\n\t"
1504 "membar #Sync"
1505 : /* no outputs */
1506 : "i" (ASI_DCU_CONTROL_REG),
1507 "i" (DCU_IC)
1508 : "g1");
1509
1510 if (flush_all)
1511 cheetah_flush_ecache();
1512 else if (flush_line)
1513 cheetah_flush_ecache_line(afar);
1514 }
1515
1516 /* Re-enable error reporting */
1517 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1518 "or %%g1, %1, %%g1\n\t"
1519 "stxa %%g1, [%%g0] %0\n\t"
1520 "membar #Sync"
1521 : /* no outputs */
1522 : "i" (ASI_ESTATE_ERROR_EN),
1523 "i" (ESTATE_ERROR_CEEN)
1524 : "g1");
1525
1526 /* Decide if we can continue after handling this trap and
1527 * logging the error.
1528 */
1529 recoverable = 1;
1530 if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1531 recoverable = 0;
1532
1533 /* Re-check AFSR/AFAR */
1534 (void) cheetah_recheck_errors(&local_snapshot);
1535
1536 /* Log errors. */
1537 cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1538
1539 if (!recoverable)
1540 panic("Irrecoverable Correctable-ECC error trap.\n");
1541}
1542
1543void cheetah_deferred_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1544{
1545 struct cheetah_err_info local_snapshot, *p;
1546 int recoverable, is_memory;
1547
1548#ifdef CONFIG_PCI
1549 /* Check for the special PCI poke sequence. */
1550 if (pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) {
1551 cheetah_flush_icache();
1552 cheetah_flush_dcache();
1553
1554 /* Re-enable I-cache/D-cache */
1555 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1556 "or %%g1, %1, %%g1\n\t"
1557 "stxa %%g1, [%%g0] %0\n\t"
1558 "membar #Sync"
1559 : /* no outputs */
1560 : "i" (ASI_DCU_CONTROL_REG),
1561 "i" (DCU_DC | DCU_IC)
1562 : "g1");
1563
1564 /* Re-enable error reporting */
1565 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1566 "or %%g1, %1, %%g1\n\t"
1567 "stxa %%g1, [%%g0] %0\n\t"
1568 "membar #Sync"
1569 : /* no outputs */
1570 : "i" (ASI_ESTATE_ERROR_EN),
1571 "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1572 : "g1");
1573
1574 (void) cheetah_recheck_errors(NULL);
1575
1576 pci_poke_faulted = 1;
1577 regs->tpc += 4;
1578 regs->tnpc = regs->tpc + 4;
1579 return;
1580 }
1581#endif
1582
1583 p = cheetah_get_error_log(afsr);
1584 if (!p) {
1585 prom_printf("ERROR: Early deferred error afsr[%016lx] afar[%016lx]\n",
1586 afsr, afar);
1587 prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1588 smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1589 prom_halt();
1590 }
1591
1592 /* Grab snapshot of logged error. */
1593 memcpy(&local_snapshot, p, sizeof(local_snapshot));
1594
1595 /* If the current trap snapshot does not match what the
1596 * trap handler passed along into our args, big trouble.
1597 * In such a case, mark the local copy as invalid.
1598 *
1599 * Else, it matches and we mark the afsr in the non-local
1600 * copy as invalid so we may log new error traps there.
1601 */
1602 if (p->afsr != afsr || p->afar != afar)
1603 local_snapshot.afsr = CHAFSR_INVALID;
1604 else
1605 p->afsr = CHAFSR_INVALID;
1606
1607 is_memory = cheetah_check_main_memory(afar);
1608
1609 {
1610 int flush_all, flush_line;
1611
1612 flush_all = flush_line = 0;
1613 if ((afsr & CHAFSR_EDU) != 0UL) {
1614 if ((afsr & cheetah_afsr_errors) == CHAFSR_EDU)
1615 flush_line = 1;
1616 else
1617 flush_all = 1;
1618 } else if ((afsr & CHAFSR_BERR) != 0UL) {
1619 if ((afsr & cheetah_afsr_errors) == CHAFSR_BERR)
1620 flush_line = 1;
1621 else
1622 flush_all = 1;
1623 }
1624
1625 cheetah_flush_icache();
1626 cheetah_flush_dcache();
1627
1628 /* Re-enable I/D caches */
1629 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1630 "or %%g1, %1, %%g1\n\t"
1631 "stxa %%g1, [%%g0] %0\n\t"
1632 "membar #Sync"
1633 : /* no outputs */
1634 : "i" (ASI_DCU_CONTROL_REG),
1635 "i" (DCU_IC | DCU_DC)
1636 : "g1");
1637
1638 if (flush_all)
1639 cheetah_flush_ecache();
1640 else if (flush_line)
1641 cheetah_flush_ecache_line(afar);
1642 }
1643
1644 /* Re-enable error reporting */
1645 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1646 "or %%g1, %1, %%g1\n\t"
1647 "stxa %%g1, [%%g0] %0\n\t"
1648 "membar #Sync"
1649 : /* no outputs */
1650 : "i" (ASI_ESTATE_ERROR_EN),
1651 "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1652 : "g1");
1653
1654 /* Decide if we can continue after handling this trap and
1655 * logging the error.
1656 */
1657 recoverable = 1;
1658 if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1659 recoverable = 0;
1660
1661 /* Re-check AFSR/AFAR. What we are looking for here is whether a new
1662 * error was logged while we had error reporting traps disabled.
1663 */
1664 if (cheetah_recheck_errors(&local_snapshot)) {
1665 unsigned long new_afsr = local_snapshot.afsr;
1666
1667 /* If we got a new asynchronous error, die... */
1668 if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU |
1669 CHAFSR_WDU | CHAFSR_CPU |
1670 CHAFSR_IVU | CHAFSR_UE |
1671 CHAFSR_BERR | CHAFSR_TO))
1672 recoverable = 0;
1673 }
1674
1675 /* Log errors. */
1676 cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1677
1678 /* "Recoverable" here means we try to yank the page from ever
1679 * being newly used again. This depends upon a few things:
1680 * 1) Must be main memory, and AFAR must be valid.
1681 * 2) If we trapped from user, OK.
1682 * 3) Else, if we trapped from kernel we must find exception
1683 * table entry (ie. we have to have been accessing user
1684 * space).
1685 *
1686 * If AFAR is not in main memory, or we trapped from kernel
1687 * and cannot find an exception table entry, it is unacceptable
1688 * to try and continue.
1689 */
1690 if (recoverable && is_memory) {
1691 if ((regs->tstate & TSTATE_PRIV) == 0UL) {
1692 /* OK, usermode access. */
1693 recoverable = 1;
1694 } else {
1695 const struct exception_table_entry *entry;
1696
1697 entry = search_exception_tables(regs->tpc);
1698 if (entry) {
1699 /* OK, kernel access to userspace. */
1700 recoverable = 1;
1701
1702 } else {
1703 /* BAD, privileged state is corrupted. */
1704 recoverable = 0;
1705 }
1706
1707 if (recoverable) {
1708 if (pfn_valid(afar >> PAGE_SHIFT))
1709 get_page(pfn_to_page(afar >> PAGE_SHIFT));
1710 else
1711 recoverable = 0;
1712
1713 /* Only perform fixup if we still have a
1714 * recoverable condition.
1715 */
1716 if (recoverable) {
1717 regs->tpc = entry->fixup;
1718 regs->tnpc = regs->tpc + 4;
1719 }
1720 }
1721 }
1722 } else {
1723 recoverable = 0;
1724 }
1725
1726 if (!recoverable)
1727 panic("Irrecoverable deferred error trap.\n");
1728}
1729
1730/* Handle a D/I cache parity error trap. TYPE is encoded as:
1731 *
1732 * Bit0: 0=dcache,1=icache
1733 * Bit1: 0=recoverable,1=unrecoverable
1734 *
1735 * The hardware has disabled both the I-cache and D-cache in
1736 * the %dcr register.
1737 */
1738void cheetah_plus_parity_error(int type, struct pt_regs *regs)
1739{
1740 if (type & 0x1)
1741 __cheetah_flush_icache();
1742 else
1743 cheetah_plus_zap_dcache_parity();
1744 cheetah_flush_dcache();
1745
1746 /* Re-enable I-cache/D-cache */
1747 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1748 "or %%g1, %1, %%g1\n\t"
1749 "stxa %%g1, [%%g0] %0\n\t"
1750 "membar #Sync"
1751 : /* no outputs */
1752 : "i" (ASI_DCU_CONTROL_REG),
1753 "i" (DCU_DC | DCU_IC)
1754 : "g1");
1755
1756 if (type & 0x2) {
1757 printk(KERN_EMERG "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n",
1758 smp_processor_id(),
1759 (type & 0x1) ? 'I' : 'D',
1760 regs->tpc);
1761 printk(KERN_EMERG "TPC<%pS>\n", (void *) regs->tpc);
1762 panic("Irrecoverable Cheetah+ parity error.");
1763 }
1764
1765 printk(KERN_WARNING "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n",
1766 smp_processor_id(),
1767 (type & 0x1) ? 'I' : 'D',
1768 regs->tpc);
1769 printk(KERN_WARNING "TPC<%pS>\n", (void *) regs->tpc);
1770}
1771
1772struct sun4v_error_entry {
1773 /* Unique error handle */
1774/*0x00*/u64 err_handle;
1775
1776 /* %stick value at the time of the error */
1777/*0x08*/u64 err_stick;
1778
1779/*0x10*/u8 reserved_1[3];
1780
1781 /* Error type */
1782/*0x13*/u8 err_type;
1783#define SUN4V_ERR_TYPE_UNDEFINED 0
1784#define SUN4V_ERR_TYPE_UNCORRECTED_RES 1
1785#define SUN4V_ERR_TYPE_PRECISE_NONRES 2
1786#define SUN4V_ERR_TYPE_DEFERRED_NONRES 3
1787#define SUN4V_ERR_TYPE_SHUTDOWN_RQST 4
1788#define SUN4V_ERR_TYPE_DUMP_CORE 5
1789#define SUN4V_ERR_TYPE_SP_STATE_CHANGE 6
1790#define SUN4V_ERR_TYPE_NUM 7
1791
1792 /* Error attributes */
1793/*0x14*/u32 err_attrs;
1794#define SUN4V_ERR_ATTRS_PROCESSOR 0x00000001
1795#define SUN4V_ERR_ATTRS_MEMORY 0x00000002
1796#define SUN4V_ERR_ATTRS_PIO 0x00000004
1797#define SUN4V_ERR_ATTRS_INT_REGISTERS 0x00000008
1798#define SUN4V_ERR_ATTRS_FPU_REGISTERS 0x00000010
1799#define SUN4V_ERR_ATTRS_SHUTDOWN_RQST 0x00000020
1800#define SUN4V_ERR_ATTRS_ASR 0x00000040
1801#define SUN4V_ERR_ATTRS_ASI 0x00000080
1802#define SUN4V_ERR_ATTRS_PRIV_REG 0x00000100
1803#define SUN4V_ERR_ATTRS_SPSTATE_MSK 0x00000600
1804#define SUN4V_ERR_ATTRS_SPSTATE_SHFT 9
1805#define SUN4V_ERR_ATTRS_MODE_MSK 0x03000000
1806#define SUN4V_ERR_ATTRS_MODE_SHFT 24
1807#define SUN4V_ERR_ATTRS_RES_QUEUE_FULL 0x80000000
1808
1809#define SUN4V_ERR_SPSTATE_FAULTED 0
1810#define SUN4V_ERR_SPSTATE_AVAILABLE 1
1811#define SUN4V_ERR_SPSTATE_NOT_PRESENT 2
1812
1813#define SUN4V_ERR_MODE_USER 1
1814#define SUN4V_ERR_MODE_PRIV 2
1815
1816 /* Real address of the memory region or PIO transaction */
1817/*0x18*/u64 err_raddr;
1818
1819 /* Size of the operation triggering the error, in bytes */
1820/*0x20*/u32 err_size;
1821
1822 /* ID of the CPU */
1823/*0x24*/u16 err_cpu;
1824
1825 /* Grace periof for shutdown, in seconds */
1826/*0x26*/u16 err_secs;
1827
1828 /* Value of the %asi register */
1829/*0x28*/u8 err_asi;
1830
1831/*0x29*/u8 reserved_2;
1832
1833 /* Value of the ASR register number */
1834/*0x2a*/u16 err_asr;
1835#define SUN4V_ERR_ASR_VALID 0x8000
1836
1837/*0x2c*/u32 reserved_3;
1838/*0x30*/u64 reserved_4;
1839/*0x38*/u64 reserved_5;
1840};
1841
1842static atomic_t sun4v_resum_oflow_cnt = ATOMIC_INIT(0);
1843static atomic_t sun4v_nonresum_oflow_cnt = ATOMIC_INIT(0);
1844
1845static const char *sun4v_err_type_to_str(u8 type)
1846{
1847 static const char *types[SUN4V_ERR_TYPE_NUM] = {
1848 "undefined",
1849 "uncorrected resumable",
1850 "precise nonresumable",
1851 "deferred nonresumable",
1852 "shutdown request",
1853 "dump core",
1854 "SP state change",
1855 };
1856
1857 if (type < SUN4V_ERR_TYPE_NUM)
1858 return types[type];
1859
1860 return "unknown";
1861}
1862
1863static void sun4v_emit_err_attr_strings(u32 attrs)
1864{
1865 static const char *attr_names[] = {
1866 "processor",
1867 "memory",
1868 "PIO",
1869 "int-registers",
1870 "fpu-registers",
1871 "shutdown-request",
1872 "ASR",
1873 "ASI",
1874 "priv-reg",
1875 };
1876 static const char *sp_states[] = {
1877 "sp-faulted",
1878 "sp-available",
1879 "sp-not-present",
1880 "sp-state-reserved",
1881 };
1882 static const char *modes[] = {
1883 "mode-reserved0",
1884 "user",
1885 "priv",
1886 "mode-reserved1",
1887 };
1888 u32 sp_state, mode;
1889 int i;
1890
1891 for (i = 0; i < ARRAY_SIZE(attr_names); i++) {
1892 if (attrs & (1U << i)) {
1893 const char *s = attr_names[i];
1894
1895 pr_cont("%s ", s);
1896 }
1897 }
1898
1899 sp_state = ((attrs & SUN4V_ERR_ATTRS_SPSTATE_MSK) >>
1900 SUN4V_ERR_ATTRS_SPSTATE_SHFT);
1901 pr_cont("%s ", sp_states[sp_state]);
1902
1903 mode = ((attrs & SUN4V_ERR_ATTRS_MODE_MSK) >>
1904 SUN4V_ERR_ATTRS_MODE_SHFT);
1905 pr_cont("%s ", modes[mode]);
1906
1907 if (attrs & SUN4V_ERR_ATTRS_RES_QUEUE_FULL)
1908 pr_cont("res-queue-full ");
1909}
1910
1911/* When the report contains a real-address of "-1" it means that the
1912 * hardware did not provide the address. So we compute the effective
1913 * address of the load or store instruction at regs->tpc and report
1914 * that. Usually when this happens it's a PIO and in such a case we
1915 * are using physical addresses with bypass ASIs anyways, so what we
1916 * report here is exactly what we want.
1917 */
1918static void sun4v_report_real_raddr(const char *pfx, struct pt_regs *regs)
1919{
1920 unsigned int insn;
1921 u64 addr;
1922
1923 if (!(regs->tstate & TSTATE_PRIV))
1924 return;
1925
1926 insn = *(unsigned int *) regs->tpc;
1927
1928 addr = compute_effective_address(regs, insn, 0);
1929
1930 printk("%s: insn effective address [0x%016llx]\n",
1931 pfx, addr);
1932}
1933
1934static void sun4v_log_error(struct pt_regs *regs, struct sun4v_error_entry *ent,
1935 int cpu, const char *pfx, atomic_t *ocnt)
1936{
1937 u64 *raw_ptr = (u64 *) ent;
1938 u32 attrs;
1939 int cnt;
1940
1941 printk("%s: Reporting on cpu %d\n", pfx, cpu);
1942 printk("%s: TPC [0x%016lx] <%pS>\n",
1943 pfx, regs->tpc, (void *) regs->tpc);
1944
1945 printk("%s: RAW [%016llx:%016llx:%016llx:%016llx\n",
1946 pfx, raw_ptr[0], raw_ptr[1], raw_ptr[2], raw_ptr[3]);
1947 printk("%s: %016llx:%016llx:%016llx:%016llx]\n",
1948 pfx, raw_ptr[4], raw_ptr[5], raw_ptr[6], raw_ptr[7]);
1949
1950 printk("%s: handle [0x%016llx] stick [0x%016llx]\n",
1951 pfx, ent->err_handle, ent->err_stick);
1952
1953 printk("%s: type [%s]\n", pfx, sun4v_err_type_to_str(ent->err_type));
1954
1955 attrs = ent->err_attrs;
1956 printk("%s: attrs [0x%08x] < ", pfx, attrs);
1957 sun4v_emit_err_attr_strings(attrs);
1958 pr_cont(">\n");
1959
1960 /* Various fields in the error report are only valid if
1961 * certain attribute bits are set.
1962 */
1963 if (attrs & (SUN4V_ERR_ATTRS_MEMORY |
1964 SUN4V_ERR_ATTRS_PIO |
1965 SUN4V_ERR_ATTRS_ASI)) {
1966 printk("%s: raddr [0x%016llx]\n", pfx, ent->err_raddr);
1967
1968 if (ent->err_raddr == ~(u64)0)
1969 sun4v_report_real_raddr(pfx, regs);
1970 }
1971
1972 if (attrs & (SUN4V_ERR_ATTRS_MEMORY | SUN4V_ERR_ATTRS_ASI))
1973 printk("%s: size [0x%x]\n", pfx, ent->err_size);
1974
1975 if (attrs & (SUN4V_ERR_ATTRS_PROCESSOR |
1976 SUN4V_ERR_ATTRS_INT_REGISTERS |
1977 SUN4V_ERR_ATTRS_FPU_REGISTERS |
1978 SUN4V_ERR_ATTRS_PRIV_REG))
1979 printk("%s: cpu[%u]\n", pfx, ent->err_cpu);
1980
1981 if (attrs & SUN4V_ERR_ATTRS_ASI)
1982 printk("%s: asi [0x%02x]\n", pfx, ent->err_asi);
1983
1984 if ((attrs & (SUN4V_ERR_ATTRS_INT_REGISTERS |
1985 SUN4V_ERR_ATTRS_FPU_REGISTERS |
1986 SUN4V_ERR_ATTRS_PRIV_REG)) &&
1987 (ent->err_asr & SUN4V_ERR_ASR_VALID) != 0)
1988 printk("%s: reg [0x%04x]\n",
1989 pfx, ent->err_asr & ~SUN4V_ERR_ASR_VALID);
1990
1991 show_regs(regs);
1992
1993 if ((cnt = atomic_read(ocnt)) != 0) {
1994 atomic_set(ocnt, 0);
1995 wmb();
1996 printk("%s: Queue overflowed %d times.\n",
1997 pfx, cnt);
1998 }
1999}
2000
2001/* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate.
2002 * Log the event and clear the first word of the entry.
2003 */
2004void sun4v_resum_error(struct pt_regs *regs, unsigned long offset)
2005{
2006 enum ctx_state prev_state = exception_enter();
2007 struct sun4v_error_entry *ent, local_copy;
2008 struct trap_per_cpu *tb;
2009 unsigned long paddr;
2010 int cpu;
2011
2012 cpu = get_cpu();
2013
2014 tb = &trap_block[cpu];
2015 paddr = tb->resum_kernel_buf_pa + offset;
2016 ent = __va(paddr);
2017
2018 memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry));
2019
2020 /* We have a local copy now, so release the entry. */
2021 ent->err_handle = 0;
2022 wmb();
2023
2024 put_cpu();
2025
2026 if (local_copy.err_type == SUN4V_ERR_TYPE_SHUTDOWN_RQST) {
2027 /* We should really take the seconds field of
2028 * the error report and use it for the shutdown
2029 * invocation, but for now do the same thing we
2030 * do for a DS shutdown request.
2031 */
2032 pr_info("Shutdown request, %u seconds...\n",
2033 local_copy.err_secs);
2034 orderly_poweroff(true);
2035 goto out;
2036 }
2037
2038 sun4v_log_error(regs, &local_copy, cpu,
2039 KERN_ERR "RESUMABLE ERROR",
2040 &sun4v_resum_oflow_cnt);
2041out:
2042 exception_exit(prev_state);
2043}
2044
2045/* If we try to printk() we'll probably make matters worse, by trying
2046 * to retake locks this cpu already holds or causing more errors. So
2047 * just bump a counter, and we'll report these counter bumps above.
2048 */
2049void sun4v_resum_overflow(struct pt_regs *regs)
2050{
2051 atomic_inc(&sun4v_resum_oflow_cnt);
2052}
2053
2054/* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate.
2055 * Log the event, clear the first word of the entry, and die.
2056 */
2057void sun4v_nonresum_error(struct pt_regs *regs, unsigned long offset)
2058{
2059 struct sun4v_error_entry *ent, local_copy;
2060 struct trap_per_cpu *tb;
2061 unsigned long paddr;
2062 int cpu;
2063
2064 cpu = get_cpu();
2065
2066 tb = &trap_block[cpu];
2067 paddr = tb->nonresum_kernel_buf_pa + offset;
2068 ent = __va(paddr);
2069
2070 memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry));
2071
2072 /* We have a local copy now, so release the entry. */
2073 ent->err_handle = 0;
2074 wmb();
2075
2076 put_cpu();
2077
2078#ifdef CONFIG_PCI
2079 /* Check for the special PCI poke sequence. */
2080 if (pci_poke_in_progress && pci_poke_cpu == cpu) {
2081 pci_poke_faulted = 1;
2082 regs->tpc += 4;
2083 regs->tnpc = regs->tpc + 4;
2084 return;
2085 }
2086#endif
2087
2088 sun4v_log_error(regs, &local_copy, cpu,
2089 KERN_EMERG "NON-RESUMABLE ERROR",
2090 &sun4v_nonresum_oflow_cnt);
2091
2092 panic("Non-resumable error.");
2093}
2094
2095/* If we try to printk() we'll probably make matters worse, by trying
2096 * to retake locks this cpu already holds or causing more errors. So
2097 * just bump a counter, and we'll report these counter bumps above.
2098 */
2099void sun4v_nonresum_overflow(struct pt_regs *regs)
2100{
2101 /* XXX Actually even this can make not that much sense. Perhaps
2102 * XXX we should just pull the plug and panic directly from here?
2103 */
2104 atomic_inc(&sun4v_nonresum_oflow_cnt);
2105}
2106
2107static void sun4v_tlb_error(struct pt_regs *regs)
2108{
2109 die_if_kernel("TLB/TSB error", regs);
2110}
2111
2112unsigned long sun4v_err_itlb_vaddr;
2113unsigned long sun4v_err_itlb_ctx;
2114unsigned long sun4v_err_itlb_pte;
2115unsigned long sun4v_err_itlb_error;
2116
2117void sun4v_itlb_error_report(struct pt_regs *regs, int tl)
2118{
2119 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2120
2121 printk(KERN_EMERG "SUN4V-ITLB: Error at TPC[%lx], tl %d\n",
2122 regs->tpc, tl);
2123 printk(KERN_EMERG "SUN4V-ITLB: TPC<%pS>\n", (void *) regs->tpc);
2124 printk(KERN_EMERG "SUN4V-ITLB: O7[%lx]\n", regs->u_regs[UREG_I7]);
2125 printk(KERN_EMERG "SUN4V-ITLB: O7<%pS>\n",
2126 (void *) regs->u_regs[UREG_I7]);
2127 printk(KERN_EMERG "SUN4V-ITLB: vaddr[%lx] ctx[%lx] "
2128 "pte[%lx] error[%lx]\n",
2129 sun4v_err_itlb_vaddr, sun4v_err_itlb_ctx,
2130 sun4v_err_itlb_pte, sun4v_err_itlb_error);
2131
2132 sun4v_tlb_error(regs);
2133}
2134
2135unsigned long sun4v_err_dtlb_vaddr;
2136unsigned long sun4v_err_dtlb_ctx;
2137unsigned long sun4v_err_dtlb_pte;
2138unsigned long sun4v_err_dtlb_error;
2139
2140void sun4v_dtlb_error_report(struct pt_regs *regs, int tl)
2141{
2142 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2143
2144 printk(KERN_EMERG "SUN4V-DTLB: Error at TPC[%lx], tl %d\n",
2145 regs->tpc, tl);
2146 printk(KERN_EMERG "SUN4V-DTLB: TPC<%pS>\n", (void *) regs->tpc);
2147 printk(KERN_EMERG "SUN4V-DTLB: O7[%lx]\n", regs->u_regs[UREG_I7]);
2148 printk(KERN_EMERG "SUN4V-DTLB: O7<%pS>\n",
2149 (void *) regs->u_regs[UREG_I7]);
2150 printk(KERN_EMERG "SUN4V-DTLB: vaddr[%lx] ctx[%lx] "
2151 "pte[%lx] error[%lx]\n",
2152 sun4v_err_dtlb_vaddr, sun4v_err_dtlb_ctx,
2153 sun4v_err_dtlb_pte, sun4v_err_dtlb_error);
2154
2155 sun4v_tlb_error(regs);
2156}
2157
2158void hypervisor_tlbop_error(unsigned long err, unsigned long op)
2159{
2160 printk(KERN_CRIT "SUN4V: TLB hv call error %lu for op %lu\n",
2161 err, op);
2162}
2163
2164void hypervisor_tlbop_error_xcall(unsigned long err, unsigned long op)
2165{
2166 printk(KERN_CRIT "SUN4V: XCALL TLB hv call error %lu for op %lu\n",
2167 err, op);
2168}
2169
2170static void do_fpe_common(struct pt_regs *regs)
2171{
2172 if (regs->tstate & TSTATE_PRIV) {
2173 regs->tpc = regs->tnpc;
2174 regs->tnpc += 4;
2175 } else {
2176 unsigned long fsr = current_thread_info()->xfsr[0];
2177 siginfo_t info;
2178
2179 if (test_thread_flag(TIF_32BIT)) {
2180 regs->tpc &= 0xffffffff;
2181 regs->tnpc &= 0xffffffff;
2182 }
2183 info.si_signo = SIGFPE;
2184 info.si_errno = 0;
2185 info.si_addr = (void __user *)regs->tpc;
2186 info.si_trapno = 0;
2187 info.si_code = __SI_FAULT;
2188 if ((fsr & 0x1c000) == (1 << 14)) {
2189 if (fsr & 0x10)
2190 info.si_code = FPE_FLTINV;
2191 else if (fsr & 0x08)
2192 info.si_code = FPE_FLTOVF;
2193 else if (fsr & 0x04)
2194 info.si_code = FPE_FLTUND;
2195 else if (fsr & 0x02)
2196 info.si_code = FPE_FLTDIV;
2197 else if (fsr & 0x01)
2198 info.si_code = FPE_FLTRES;
2199 }
2200 force_sig_info(SIGFPE, &info, current);
2201 }
2202}
2203
2204void do_fpieee(struct pt_regs *regs)
2205{
2206 enum ctx_state prev_state = exception_enter();
2207
2208 if (notify_die(DIE_TRAP, "fpu exception ieee", regs,
2209 0, 0x24, SIGFPE) == NOTIFY_STOP)
2210 goto out;
2211
2212 do_fpe_common(regs);
2213out:
2214 exception_exit(prev_state);
2215}
2216
2217void do_fpother(struct pt_regs *regs)
2218{
2219 enum ctx_state prev_state = exception_enter();
2220 struct fpustate *f = FPUSTATE;
2221 int ret = 0;
2222
2223 if (notify_die(DIE_TRAP, "fpu exception other", regs,
2224 0, 0x25, SIGFPE) == NOTIFY_STOP)
2225 goto out;
2226
2227 switch ((current_thread_info()->xfsr[0] & 0x1c000)) {
2228 case (2 << 14): /* unfinished_FPop */
2229 case (3 << 14): /* unimplemented_FPop */
2230 ret = do_mathemu(regs, f, false);
2231 break;
2232 }
2233 if (ret)
2234 goto out;
2235 do_fpe_common(regs);
2236out:
2237 exception_exit(prev_state);
2238}
2239
2240void do_tof(struct pt_regs *regs)
2241{
2242 enum ctx_state prev_state = exception_enter();
2243 siginfo_t info;
2244
2245 if (notify_die(DIE_TRAP, "tagged arithmetic overflow", regs,
2246 0, 0x26, SIGEMT) == NOTIFY_STOP)
2247 goto out;
2248
2249 if (regs->tstate & TSTATE_PRIV)
2250 die_if_kernel("Penguin overflow trap from kernel mode", regs);
2251 if (test_thread_flag(TIF_32BIT)) {
2252 regs->tpc &= 0xffffffff;
2253 regs->tnpc &= 0xffffffff;
2254 }
2255 info.si_signo = SIGEMT;
2256 info.si_errno = 0;
2257 info.si_code = EMT_TAGOVF;
2258 info.si_addr = (void __user *)regs->tpc;
2259 info.si_trapno = 0;
2260 force_sig_info(SIGEMT, &info, current);
2261out:
2262 exception_exit(prev_state);
2263}
2264
2265void do_div0(struct pt_regs *regs)
2266{
2267 enum ctx_state prev_state = exception_enter();
2268 siginfo_t info;
2269
2270 if (notify_die(DIE_TRAP, "integer division by zero", regs,
2271 0, 0x28, SIGFPE) == NOTIFY_STOP)
2272 goto out;
2273
2274 if (regs->tstate & TSTATE_PRIV)
2275 die_if_kernel("TL0: Kernel divide by zero.", regs);
2276 if (test_thread_flag(TIF_32BIT)) {
2277 regs->tpc &= 0xffffffff;
2278 regs->tnpc &= 0xffffffff;
2279 }
2280 info.si_signo = SIGFPE;
2281 info.si_errno = 0;
2282 info.si_code = FPE_INTDIV;
2283 info.si_addr = (void __user *)regs->tpc;
2284 info.si_trapno = 0;
2285 force_sig_info(SIGFPE, &info, current);
2286out:
2287 exception_exit(prev_state);
2288}
2289
2290static void instruction_dump(unsigned int *pc)
2291{
2292 int i;
2293
2294 if ((((unsigned long) pc) & 3))
2295 return;
2296
2297 printk("Instruction DUMP:");
2298 for (i = -3; i < 6; i++)
2299 printk("%c%08x%c",i?' ':'<',pc[i],i?' ':'>');
2300 printk("\n");
2301}
2302
2303static void user_instruction_dump(unsigned int __user *pc)
2304{
2305 int i;
2306 unsigned int buf[9];
2307
2308 if ((((unsigned long) pc) & 3))
2309 return;
2310
2311 if (copy_from_user(buf, pc - 3, sizeof(buf)))
2312 return;
2313
2314 printk("Instruction DUMP:");
2315 for (i = 0; i < 9; i++)
2316 printk("%c%08x%c",i==3?' ':'<',buf[i],i==3?' ':'>');
2317 printk("\n");
2318}
2319
2320void show_stack(struct task_struct *tsk, unsigned long *_ksp)
2321{
2322 unsigned long fp, ksp;
2323 struct thread_info *tp;
2324 int count = 0;
2325#ifdef CONFIG_FUNCTION_GRAPH_TRACER
2326 int graph = 0;
2327#endif
2328
2329 ksp = (unsigned long) _ksp;
2330 if (!tsk)
2331 tsk = current;
2332 tp = task_thread_info(tsk);
2333 if (ksp == 0UL) {
2334 if (tsk == current)
2335 asm("mov %%fp, %0" : "=r" (ksp));
2336 else
2337 ksp = tp->ksp;
2338 }
2339 if (tp == current_thread_info())
2340 flushw_all();
2341
2342 fp = ksp + STACK_BIAS;
2343
2344 printk("Call Trace:\n");
2345 do {
2346 struct sparc_stackf *sf;
2347 struct pt_regs *regs;
2348 unsigned long pc;
2349
2350 if (!kstack_valid(tp, fp))
2351 break;
2352 sf = (struct sparc_stackf *) fp;
2353 regs = (struct pt_regs *) (sf + 1);
2354
2355 if (kstack_is_trap_frame(tp, regs)) {
2356 if (!(regs->tstate & TSTATE_PRIV))
2357 break;
2358 pc = regs->tpc;
2359 fp = regs->u_regs[UREG_I6] + STACK_BIAS;
2360 } else {
2361 pc = sf->callers_pc;
2362 fp = (unsigned long)sf->fp + STACK_BIAS;
2363 }
2364
2365 printk(" [%016lx] %pS\n", pc, (void *) pc);
2366#ifdef CONFIG_FUNCTION_GRAPH_TRACER
2367 if ((pc + 8UL) == (unsigned long) &return_to_handler) {
2368 int index = tsk->curr_ret_stack;
2369 if (tsk->ret_stack && index >= graph) {
2370 pc = tsk->ret_stack[index - graph].ret;
2371 printk(" [%016lx] %pS\n", pc, (void *) pc);
2372 graph++;
2373 }
2374 }
2375#endif
2376 } while (++count < 16);
2377}
2378
2379static inline struct reg_window *kernel_stack_up(struct reg_window *rw)
2380{
2381 unsigned long fp = rw->ins[6];
2382
2383 if (!fp)
2384 return NULL;
2385
2386 return (struct reg_window *) (fp + STACK_BIAS);
2387}
2388
2389void __noreturn die_if_kernel(char *str, struct pt_regs *regs)
2390{
2391 static int die_counter;
2392 int count = 0;
2393
2394 /* Amuse the user. */
2395 printk(
2396" \\|/ ____ \\|/\n"
2397" \"@'/ .. \\`@\"\n"
2398" /_| \\__/ |_\\\n"
2399" \\__U_/\n");
2400
2401 printk("%s(%d): %s [#%d]\n", current->comm, task_pid_nr(current), str, ++die_counter);
2402 notify_die(DIE_OOPS, str, regs, 0, 255, SIGSEGV);
2403 __asm__ __volatile__("flushw");
2404 show_regs(regs);
2405 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
2406 if (regs->tstate & TSTATE_PRIV) {
2407 struct thread_info *tp = current_thread_info();
2408 struct reg_window *rw = (struct reg_window *)
2409 (regs->u_regs[UREG_FP] + STACK_BIAS);
2410
2411 /* Stop the back trace when we hit userland or we
2412 * find some badly aligned kernel stack.
2413 */
2414 while (rw &&
2415 count++ < 30 &&
2416 kstack_valid(tp, (unsigned long) rw)) {
2417 printk("Caller[%016lx]: %pS\n", rw->ins[7],
2418 (void *) rw->ins[7]);
2419
2420 rw = kernel_stack_up(rw);
2421 }
2422 instruction_dump ((unsigned int *) regs->tpc);
2423 } else {
2424 if (test_thread_flag(TIF_32BIT)) {
2425 regs->tpc &= 0xffffffff;
2426 regs->tnpc &= 0xffffffff;
2427 }
2428 user_instruction_dump ((unsigned int __user *) regs->tpc);
2429 }
2430 if (panic_on_oops)
2431 panic("Fatal exception");
2432 if (regs->tstate & TSTATE_PRIV)
2433 do_exit(SIGKILL);
2434 do_exit(SIGSEGV);
2435}
2436EXPORT_SYMBOL(die_if_kernel);
2437
2438#define VIS_OPCODE_MASK ((0x3 << 30) | (0x3f << 19))
2439#define VIS_OPCODE_VAL ((0x2 << 30) | (0x36 << 19))
2440
2441void do_illegal_instruction(struct pt_regs *regs)
2442{
2443 enum ctx_state prev_state = exception_enter();
2444 unsigned long pc = regs->tpc;
2445 unsigned long tstate = regs->tstate;
2446 u32 insn;
2447 siginfo_t info;
2448
2449 if (notify_die(DIE_TRAP, "illegal instruction", regs,
2450 0, 0x10, SIGILL) == NOTIFY_STOP)
2451 goto out;
2452
2453 if (tstate & TSTATE_PRIV)
2454 die_if_kernel("Kernel illegal instruction", regs);
2455 if (test_thread_flag(TIF_32BIT))
2456 pc = (u32)pc;
2457 if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
2458 if ((insn & 0xc1ffc000) == 0x81700000) /* POPC */ {
2459 if (handle_popc(insn, regs))
2460 goto out;
2461 } else if ((insn & 0xc1580000) == 0xc1100000) /* LDQ/STQ */ {
2462 if (handle_ldf_stq(insn, regs))
2463 goto out;
2464 } else if (tlb_type == hypervisor) {
2465 if ((insn & VIS_OPCODE_MASK) == VIS_OPCODE_VAL) {
2466 if (!vis_emul(regs, insn))
2467 goto out;
2468 } else {
2469 struct fpustate *f = FPUSTATE;
2470
2471 /* On UltraSPARC T2 and later, FPU insns which
2472 * are not implemented in HW signal an illegal
2473 * instruction trap and do not set the FP Trap
2474 * Trap in the %fsr to unimplemented_FPop.
2475 */
2476 if (do_mathemu(regs, f, true))
2477 goto out;
2478 }
2479 }
2480 }
2481 info.si_signo = SIGILL;
2482 info.si_errno = 0;
2483 info.si_code = ILL_ILLOPC;
2484 info.si_addr = (void __user *)pc;
2485 info.si_trapno = 0;
2486 force_sig_info(SIGILL, &info, current);
2487out:
2488 exception_exit(prev_state);
2489}
2490
2491void mem_address_unaligned(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
2492{
2493 enum ctx_state prev_state = exception_enter();
2494 siginfo_t info;
2495
2496 if (notify_die(DIE_TRAP, "memory address unaligned", regs,
2497 0, 0x34, SIGSEGV) == NOTIFY_STOP)
2498 goto out;
2499
2500 if (regs->tstate & TSTATE_PRIV) {
2501 kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc));
2502 goto out;
2503 }
2504 info.si_signo = SIGBUS;
2505 info.si_errno = 0;
2506 info.si_code = BUS_ADRALN;
2507 info.si_addr = (void __user *)sfar;
2508 info.si_trapno = 0;
2509 force_sig_info(SIGBUS, &info, current);
2510out:
2511 exception_exit(prev_state);
2512}
2513
2514void sun4v_do_mna(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
2515{
2516 siginfo_t info;
2517
2518 if (notify_die(DIE_TRAP, "memory address unaligned", regs,
2519 0, 0x34, SIGSEGV) == NOTIFY_STOP)
2520 return;
2521
2522 if (regs->tstate & TSTATE_PRIV) {
2523 kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc));
2524 return;
2525 }
2526 info.si_signo = SIGBUS;
2527 info.si_errno = 0;
2528 info.si_code = BUS_ADRALN;
2529 info.si_addr = (void __user *) addr;
2530 info.si_trapno = 0;
2531 force_sig_info(SIGBUS, &info, current);
2532}
2533
2534void do_privop(struct pt_regs *regs)
2535{
2536 enum ctx_state prev_state = exception_enter();
2537 siginfo_t info;
2538
2539 if (notify_die(DIE_TRAP, "privileged operation", regs,
2540 0, 0x11, SIGILL) == NOTIFY_STOP)
2541 goto out;
2542
2543 if (test_thread_flag(TIF_32BIT)) {
2544 regs->tpc &= 0xffffffff;
2545 regs->tnpc &= 0xffffffff;
2546 }
2547 info.si_signo = SIGILL;
2548 info.si_errno = 0;
2549 info.si_code = ILL_PRVOPC;
2550 info.si_addr = (void __user *)regs->tpc;
2551 info.si_trapno = 0;
2552 force_sig_info(SIGILL, &info, current);
2553out:
2554 exception_exit(prev_state);
2555}
2556
2557void do_privact(struct pt_regs *regs)
2558{
2559 do_privop(regs);
2560}
2561
2562/* Trap level 1 stuff or other traps we should never see... */
2563void do_cee(struct pt_regs *regs)
2564{
2565 exception_enter();
2566 die_if_kernel("TL0: Cache Error Exception", regs);
2567}
2568
2569void do_div0_tl1(struct pt_regs *regs)
2570{
2571 exception_enter();
2572 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2573 die_if_kernel("TL1: DIV0 Exception", regs);
2574}
2575
2576void do_fpieee_tl1(struct pt_regs *regs)
2577{
2578 exception_enter();
2579 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2580 die_if_kernel("TL1: FPU IEEE Exception", regs);
2581}
2582
2583void do_fpother_tl1(struct pt_regs *regs)
2584{
2585 exception_enter();
2586 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2587 die_if_kernel("TL1: FPU Other Exception", regs);
2588}
2589
2590void do_ill_tl1(struct pt_regs *regs)
2591{
2592 exception_enter();
2593 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2594 die_if_kernel("TL1: Illegal Instruction Exception", regs);
2595}
2596
2597void do_irq_tl1(struct pt_regs *regs)
2598{
2599 exception_enter();
2600 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2601 die_if_kernel("TL1: IRQ Exception", regs);
2602}
2603
2604void do_lddfmna_tl1(struct pt_regs *regs)
2605{
2606 exception_enter();
2607 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2608 die_if_kernel("TL1: LDDF Exception", regs);
2609}
2610
2611void do_stdfmna_tl1(struct pt_regs *regs)
2612{
2613 exception_enter();
2614 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2615 die_if_kernel("TL1: STDF Exception", regs);
2616}
2617
2618void do_paw(struct pt_regs *regs)
2619{
2620 exception_enter();
2621 die_if_kernel("TL0: Phys Watchpoint Exception", regs);
2622}
2623
2624void do_paw_tl1(struct pt_regs *regs)
2625{
2626 exception_enter();
2627 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2628 die_if_kernel("TL1: Phys Watchpoint Exception", regs);
2629}
2630
2631void do_vaw(struct pt_regs *regs)
2632{
2633 exception_enter();
2634 die_if_kernel("TL0: Virt Watchpoint Exception", regs);
2635}
2636
2637void do_vaw_tl1(struct pt_regs *regs)
2638{
2639 exception_enter();
2640 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2641 die_if_kernel("TL1: Virt Watchpoint Exception", regs);
2642}
2643
2644void do_tof_tl1(struct pt_regs *regs)
2645{
2646 exception_enter();
2647 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2648 die_if_kernel("TL1: Tag Overflow Exception", regs);
2649}
2650
2651void do_getpsr(struct pt_regs *regs)
2652{
2653 regs->u_regs[UREG_I0] = tstate_to_psr(regs->tstate);
2654 regs->tpc = regs->tnpc;
2655 regs->tnpc += 4;
2656 if (test_thread_flag(TIF_32BIT)) {
2657 regs->tpc &= 0xffffffff;
2658 regs->tnpc &= 0xffffffff;
2659 }
2660}
2661
2662struct trap_per_cpu trap_block[NR_CPUS];
2663EXPORT_SYMBOL(trap_block);
2664
2665/* This can get invoked before sched_init() so play it super safe
2666 * and use hard_smp_processor_id().
2667 */
2668void notrace init_cur_cpu_trap(struct thread_info *t)
2669{
2670 int cpu = hard_smp_processor_id();
2671 struct trap_per_cpu *p = &trap_block[cpu];
2672
2673 p->thread = t;
2674 p->pgd_paddr = 0;
2675}
2676
2677extern void thread_info_offsets_are_bolixed_dave(void);
2678extern void trap_per_cpu_offsets_are_bolixed_dave(void);
2679extern void tsb_config_offsets_are_bolixed_dave(void);
2680
2681/* Only invoked on boot processor. */
2682void __init trap_init(void)
2683{
2684 /* Compile time sanity check. */
2685 BUILD_BUG_ON(TI_TASK != offsetof(struct thread_info, task) ||
2686 TI_FLAGS != offsetof(struct thread_info, flags) ||
2687 TI_CPU != offsetof(struct thread_info, cpu) ||
2688 TI_FPSAVED != offsetof(struct thread_info, fpsaved) ||
2689 TI_KSP != offsetof(struct thread_info, ksp) ||
2690 TI_FAULT_ADDR != offsetof(struct thread_info,
2691 fault_address) ||
2692 TI_KREGS != offsetof(struct thread_info, kregs) ||
2693 TI_UTRAPS != offsetof(struct thread_info, utraps) ||
2694 TI_REG_WINDOW != offsetof(struct thread_info,
2695 reg_window) ||
2696 TI_RWIN_SPTRS != offsetof(struct thread_info,
2697 rwbuf_stkptrs) ||
2698 TI_GSR != offsetof(struct thread_info, gsr) ||
2699 TI_XFSR != offsetof(struct thread_info, xfsr) ||
2700 TI_PRE_COUNT != offsetof(struct thread_info,
2701 preempt_count) ||
2702 TI_NEW_CHILD != offsetof(struct thread_info, new_child) ||
2703 TI_CURRENT_DS != offsetof(struct thread_info,
2704 current_ds) ||
2705 TI_KUNA_REGS != offsetof(struct thread_info,
2706 kern_una_regs) ||
2707 TI_KUNA_INSN != offsetof(struct thread_info,
2708 kern_una_insn) ||
2709 TI_FPREGS != offsetof(struct thread_info, fpregs) ||
2710 (TI_FPREGS & (64 - 1)));
2711
2712 BUILD_BUG_ON(TRAP_PER_CPU_THREAD != offsetof(struct trap_per_cpu,
2713 thread) ||
2714 (TRAP_PER_CPU_PGD_PADDR !=
2715 offsetof(struct trap_per_cpu, pgd_paddr)) ||
2716 (TRAP_PER_CPU_CPU_MONDO_PA !=
2717 offsetof(struct trap_per_cpu, cpu_mondo_pa)) ||
2718 (TRAP_PER_CPU_DEV_MONDO_PA !=
2719 offsetof(struct trap_per_cpu, dev_mondo_pa)) ||
2720 (TRAP_PER_CPU_RESUM_MONDO_PA !=
2721 offsetof(struct trap_per_cpu, resum_mondo_pa)) ||
2722 (TRAP_PER_CPU_RESUM_KBUF_PA !=
2723 offsetof(struct trap_per_cpu, resum_kernel_buf_pa)) ||
2724 (TRAP_PER_CPU_NONRESUM_MONDO_PA !=
2725 offsetof(struct trap_per_cpu, nonresum_mondo_pa)) ||
2726 (TRAP_PER_CPU_NONRESUM_KBUF_PA !=
2727 offsetof(struct trap_per_cpu, nonresum_kernel_buf_pa)) ||
2728 (TRAP_PER_CPU_FAULT_INFO !=
2729 offsetof(struct trap_per_cpu, fault_info)) ||
2730 (TRAP_PER_CPU_CPU_MONDO_BLOCK_PA !=
2731 offsetof(struct trap_per_cpu, cpu_mondo_block_pa)) ||
2732 (TRAP_PER_CPU_CPU_LIST_PA !=
2733 offsetof(struct trap_per_cpu, cpu_list_pa)) ||
2734 (TRAP_PER_CPU_TSB_HUGE !=
2735 offsetof(struct trap_per_cpu, tsb_huge)) ||
2736 (TRAP_PER_CPU_TSB_HUGE_TEMP !=
2737 offsetof(struct trap_per_cpu, tsb_huge_temp)) ||
2738 (TRAP_PER_CPU_IRQ_WORKLIST_PA !=
2739 offsetof(struct trap_per_cpu, irq_worklist_pa)) ||
2740 (TRAP_PER_CPU_CPU_MONDO_QMASK !=
2741 offsetof(struct trap_per_cpu, cpu_mondo_qmask)) ||
2742 (TRAP_PER_CPU_DEV_MONDO_QMASK !=
2743 offsetof(struct trap_per_cpu, dev_mondo_qmask)) ||
2744 (TRAP_PER_CPU_RESUM_QMASK !=
2745 offsetof(struct trap_per_cpu, resum_qmask)) ||
2746 (TRAP_PER_CPU_NONRESUM_QMASK !=
2747 offsetof(struct trap_per_cpu, nonresum_qmask)) ||
2748 (TRAP_PER_CPU_PER_CPU_BASE !=
2749 offsetof(struct trap_per_cpu, __per_cpu_base)));
2750
2751 BUILD_BUG_ON((TSB_CONFIG_TSB !=
2752 offsetof(struct tsb_config, tsb)) ||
2753 (TSB_CONFIG_RSS_LIMIT !=
2754 offsetof(struct tsb_config, tsb_rss_limit)) ||
2755 (TSB_CONFIG_NENTRIES !=
2756 offsetof(struct tsb_config, tsb_nentries)) ||
2757 (TSB_CONFIG_REG_VAL !=
2758 offsetof(struct tsb_config, tsb_reg_val)) ||
2759 (TSB_CONFIG_MAP_VADDR !=
2760 offsetof(struct tsb_config, tsb_map_vaddr)) ||
2761 (TSB_CONFIG_MAP_PTE !=
2762 offsetof(struct tsb_config, tsb_map_pte)));
2763
2764 /* Attach to the address space of init_task. On SMP we
2765 * do this in smp.c:smp_callin for other cpus.
2766 */
2767 atomic_inc(&init_mm.mm_count);
2768 current->active_mm = &init_mm;
2769}