Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *    Copyright IBM Corp. 2006
 
  4 */
  5
  6#include <linux/memory_hotplug.h>
  7#include <linux/memblock.h>
  8#include <linux/pfn.h>
  9#include <linux/mm.h>
 10#include <linux/init.h>
 11#include <linux/list.h>
 12#include <linux/hugetlb.h>
 13#include <linux/slab.h>
 14#include <linux/sort.h>
 15#include <asm/page-states.h>
 16#include <asm/cacheflush.h>
 17#include <asm/nospec-branch.h>
 18#include <asm/ctlreg.h>
 19#include <asm/pgalloc.h>
 
 20#include <asm/setup.h>
 21#include <asm/tlbflush.h>
 22#include <asm/sections.h>
 23#include <asm/set_memory.h>
 24
 25static DEFINE_MUTEX(vmem_mutex);
 26
 
 
 
 
 
 
 
 
 27static void __ref *vmem_alloc_pages(unsigned int order)
 28{
 29	unsigned long size = PAGE_SIZE << order;
 30
 31	if (slab_is_available())
 32		return (void *)__get_free_pages(GFP_KERNEL, order);
 33	return memblock_alloc(size, size);
 34}
 35
 36static void vmem_free_pages(unsigned long addr, int order)
 37{
 38	/* We don't expect boot memory to be removed ever. */
 39	if (!slab_is_available() ||
 40	    WARN_ON_ONCE(PageReserved(virt_to_page((void *)addr))))
 41		return;
 42	free_pages(addr, order);
 
 
 43}
 44
 45void *vmem_crst_alloc(unsigned long val)
 46{
 47	unsigned long *table;
 48
 49	table = vmem_alloc_pages(CRST_ALLOC_ORDER);
 50	if (!table)
 51		return NULL;
 52	crst_table_init(table, val);
 53	__arch_set_page_dat(table, 1UL << CRST_ALLOC_ORDER);
 54	return table;
 55}
 56
 57pte_t __ref *vmem_pte_alloc(void)
 58{
 59	unsigned long size = PTRS_PER_PTE * sizeof(pte_t);
 60	pte_t *pte;
 61
 62	if (slab_is_available())
 63		pte = (pte_t *) page_table_alloc(&init_mm);
 64	else
 65		pte = (pte_t *) memblock_alloc(size, size);
 
 66	if (!pte)
 67		return NULL;
 68	memset64((u64 *)pte, _PAGE_INVALID, PTRS_PER_PTE);
 69	__arch_set_page_dat(pte, 1);
 70	return pte;
 71}
 72
 73static void vmem_pte_free(unsigned long *table)
 74{
 75	/* We don't expect boot memory to be removed ever. */
 76	if (!slab_is_available() ||
 77	    WARN_ON_ONCE(PageReserved(virt_to_page(table))))
 78		return;
 79	page_table_free(&init_mm, table);
 80}
 81
 82#define PAGE_UNUSED 0xFD
 83
 84/*
 85 * The unused vmemmap range, which was not yet memset(PAGE_UNUSED) ranges
 86 * from unused_sub_pmd_start to next PMD_SIZE boundary.
 87 */
 88static unsigned long unused_sub_pmd_start;
 89
 90static void vmemmap_flush_unused_sub_pmd(void)
 91{
 92	if (!unused_sub_pmd_start)
 93		return;
 94	memset((void *)unused_sub_pmd_start, PAGE_UNUSED,
 95	       ALIGN(unused_sub_pmd_start, PMD_SIZE) - unused_sub_pmd_start);
 96	unused_sub_pmd_start = 0;
 97}
 98
 99static void vmemmap_mark_sub_pmd_used(unsigned long start, unsigned long end)
100{
101	/*
102	 * As we expect to add in the same granularity as we remove, it's
103	 * sufficient to mark only some piece used to block the memmap page from
104	 * getting removed (just in case the memmap never gets initialized,
105	 * e.g., because the memory block never gets onlined).
106	 */
107	memset((void *)start, 0, sizeof(struct page));
108}
109
110static void vmemmap_use_sub_pmd(unsigned long start, unsigned long end)
111{
112	/*
113	 * We only optimize if the new used range directly follows the
114	 * previously unused range (esp., when populating consecutive sections).
115	 */
116	if (unused_sub_pmd_start == start) {
117		unused_sub_pmd_start = end;
118		if (likely(IS_ALIGNED(unused_sub_pmd_start, PMD_SIZE)))
119			unused_sub_pmd_start = 0;
120		return;
121	}
122	vmemmap_flush_unused_sub_pmd();
123	vmemmap_mark_sub_pmd_used(start, end);
124}
125
126static void vmemmap_use_new_sub_pmd(unsigned long start, unsigned long end)
127{
128	unsigned long page = ALIGN_DOWN(start, PMD_SIZE);
129
130	vmemmap_flush_unused_sub_pmd();
131
132	/* Could be our memmap page is filled with PAGE_UNUSED already ... */
133	vmemmap_mark_sub_pmd_used(start, end);
134
135	/* Mark the unused parts of the new memmap page PAGE_UNUSED. */
136	if (!IS_ALIGNED(start, PMD_SIZE))
137		memset((void *)page, PAGE_UNUSED, start - page);
138	/*
139	 * We want to avoid memset(PAGE_UNUSED) when populating the vmemmap of
140	 * consecutive sections. Remember for the last added PMD the last
141	 * unused range in the populated PMD.
142	 */
143	if (!IS_ALIGNED(end, PMD_SIZE))
144		unused_sub_pmd_start = end;
145}
146
147/* Returns true if the PMD is completely unused and can be freed. */
148static bool vmemmap_unuse_sub_pmd(unsigned long start, unsigned long end)
149{
150	unsigned long page = ALIGN_DOWN(start, PMD_SIZE);
151
152	vmemmap_flush_unused_sub_pmd();
153	memset((void *)start, PAGE_UNUSED, end - start);
154	return !memchr_inv((void *)page, PAGE_UNUSED, PMD_SIZE);
155}
156
157/* __ref: we'll only call vmemmap_alloc_block() via vmemmap_populate() */
158static int __ref modify_pte_table(pmd_t *pmd, unsigned long addr,
159				  unsigned long end, bool add, bool direct)
160{
161	unsigned long prot, pages = 0;
 
 
 
 
 
162	int ret = -ENOMEM;
163	pte_t *pte;
164
165	prot = pgprot_val(PAGE_KERNEL);
166	if (!MACHINE_HAS_NX)
167		prot &= ~_PAGE_NOEXEC;
168
169	pte = pte_offset_kernel(pmd, addr);
170	for (; addr < end; addr += PAGE_SIZE, pte++) {
171		if (!add) {
172			if (pte_none(*pte))
173				continue;
174			if (!direct)
175				vmem_free_pages((unsigned long) pfn_to_virt(pte_pfn(*pte)), 0);
176			pte_clear(&init_mm, addr, pte);
177		} else if (pte_none(*pte)) {
178			if (!direct) {
179				void *new_page = vmemmap_alloc_block(PAGE_SIZE, NUMA_NO_NODE);
180
181				if (!new_page)
182					goto out;
183				set_pte(pte, __pte(__pa(new_page) | prot));
184			} else {
185				set_pte(pte, __pte(__pa(addr) | prot));
186			}
187		} else {
 
 
 
 
 
 
 
 
 
188			continue;
189		}
190		pages++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
191	}
192	ret = 0;
193out:
194	if (direct)
195		update_page_count(PG_DIRECT_MAP_4K, add ? pages : -pages);
196	return ret;
197}
198
199static void try_free_pte_table(pmd_t *pmd, unsigned long start)
 
 
 
 
200{
201	pte_t *pte;
202	int i;
203
204	/* We can safely assume this is fully in 1:1 mapping & vmemmap area */
205	pte = pte_offset_kernel(pmd, start);
206	for (i = 0; i < PTRS_PER_PTE; i++, pte++) {
207		if (!pte_none(*pte))
208			return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
209	}
210	vmem_pte_free((unsigned long *) pmd_deref(*pmd));
211	pmd_clear(pmd);
212}
213
214/* __ref: we'll only call vmemmap_alloc_block() via vmemmap_populate() */
215static int __ref modify_pmd_table(pud_t *pud, unsigned long addr,
216				  unsigned long end, bool add, bool direct)
 
217{
218	unsigned long next, prot, pages = 0;
 
 
 
 
219	int ret = -ENOMEM;
220	pmd_t *pmd;
221	pte_t *pte;
222
223	prot = pgprot_val(SEGMENT_KERNEL);
224	if (!MACHINE_HAS_NX)
225		prot &= ~_SEGMENT_ENTRY_NOEXEC;
226
227	pmd = pmd_offset(pud, addr);
228	for (; addr < end; addr = next, pmd++) {
229		next = pmd_addr_end(addr, end);
230		if (!add) {
231			if (pmd_none(*pmd))
232				continue;
233			if (pmd_large(*pmd)) {
234				if (IS_ALIGNED(addr, PMD_SIZE) &&
235				    IS_ALIGNED(next, PMD_SIZE)) {
236					if (!direct)
237						vmem_free_pages(pmd_deref(*pmd), get_order(PMD_SIZE));
238					pmd_clear(pmd);
239					pages++;
240				} else if (!direct && vmemmap_unuse_sub_pmd(addr, next)) {
241					vmem_free_pages(pmd_deref(*pmd), get_order(PMD_SIZE));
242					pmd_clear(pmd);
243				}
244				continue;
245			}
246		} else if (pmd_none(*pmd)) {
247			if (IS_ALIGNED(addr, PMD_SIZE) &&
248			    IS_ALIGNED(next, PMD_SIZE) &&
249			    MACHINE_HAS_EDAT1 && direct &&
250			    !debug_pagealloc_enabled()) {
251				set_pmd(pmd, __pmd(__pa(addr) | prot));
252				pages++;
253				continue;
254			} else if (!direct && MACHINE_HAS_EDAT1) {
255				void *new_page;
256
257				/*
258				 * Use 1MB frames for vmemmap if available. We
259				 * always use large frames even if they are only
260				 * partially used. Otherwise we would have also
261				 * page tables since vmemmap_populate gets
262				 * called for each section separately.
263				 */
264				new_page = vmemmap_alloc_block(PMD_SIZE, NUMA_NO_NODE);
265				if (new_page) {
266					set_pmd(pmd, __pmd(__pa(new_page) | prot));
267					if (!IS_ALIGNED(addr, PMD_SIZE) ||
268					    !IS_ALIGNED(next, PMD_SIZE)) {
269						vmemmap_use_new_sub_pmd(addr, next);
270					}
271					continue;
272				}
273			}
274			pte = vmem_pte_alloc();
275			if (!pte)
276				goto out;
277			pmd_populate(&init_mm, pmd, pte);
278		} else if (pmd_large(*pmd)) {
279			if (!direct)
280				vmemmap_use_sub_pmd(addr, next);
281			continue;
282		}
283		ret = modify_pte_table(pmd, addr, next, add, direct);
284		if (ret)
285			goto out;
286		if (!add)
287			try_free_pte_table(pmd, addr & PMD_MASK);
288	}
289	ret = 0;
290out:
291	if (direct)
292		update_page_count(PG_DIRECT_MAP_1M, add ? pages : -pages);
293	return ret;
294}
295
296static void try_free_pmd_table(pud_t *pud, unsigned long start)
297{
298	pmd_t *pmd;
299	int i;
300
301	pmd = pmd_offset(pud, start);
302	for (i = 0; i < PTRS_PER_PMD; i++, pmd++)
303		if (!pmd_none(*pmd))
304			return;
305	vmem_free_pages(pud_deref(*pud), CRST_ALLOC_ORDER);
306	pud_clear(pud);
307}
308
309static int modify_pud_table(p4d_t *p4d, unsigned long addr, unsigned long end,
310			    bool add, bool direct)
311{
312	unsigned long next, prot, pages = 0;
313	int ret = -ENOMEM;
314	pud_t *pud;
315	pmd_t *pmd;
 
 
 
316
317	prot = pgprot_val(REGION3_KERNEL);
318	if (!MACHINE_HAS_NX)
319		prot &= ~_REGION_ENTRY_NOEXEC;
320	pud = pud_offset(p4d, addr);
321	for (; addr < end; addr = next, pud++) {
322		next = pud_addr_end(addr, end);
323		if (!add) {
324			if (pud_none(*pud))
325				continue;
326			if (pud_large(*pud)) {
327				if (IS_ALIGNED(addr, PUD_SIZE) &&
328				    IS_ALIGNED(next, PUD_SIZE)) {
329					pud_clear(pud);
330					pages++;
331				}
332				continue;
333			}
334		} else if (pud_none(*pud)) {
335			if (IS_ALIGNED(addr, PUD_SIZE) &&
336			    IS_ALIGNED(next, PUD_SIZE) &&
337			    MACHINE_HAS_EDAT2 && direct &&
338			    !debug_pagealloc_enabled()) {
339				set_pud(pud, __pud(__pa(addr) | prot));
340				pages++;
341				continue;
342			}
343			pmd = vmem_crst_alloc(_SEGMENT_ENTRY_EMPTY);
344			if (!pmd)
345				goto out;
346			pud_populate(&init_mm, pud, pmd);
347		} else if (pud_large(*pud)) {
 
348			continue;
349		}
350		ret = modify_pmd_table(pud, addr, next, add, direct);
351		if (ret)
352			goto out;
353		if (!add)
354			try_free_pmd_table(pud, addr & PUD_MASK);
355	}
356	ret = 0;
357out:
358	if (direct)
359		update_page_count(PG_DIRECT_MAP_2G, add ? pages : -pages);
360	return ret;
361}
362
363static void try_free_pud_table(p4d_t *p4d, unsigned long start)
364{
365	pud_t *pud;
366	int i;
367
368	pud = pud_offset(p4d, start);
369	for (i = 0; i < PTRS_PER_PUD; i++, pud++) {
370		if (!pud_none(*pud))
371			return;
372	}
373	vmem_free_pages(p4d_deref(*p4d), CRST_ALLOC_ORDER);
374	p4d_clear(p4d);
375}
376
377static int modify_p4d_table(pgd_t *pgd, unsigned long addr, unsigned long end,
378			    bool add, bool direct)
379{
380	unsigned long next;
381	int ret = -ENOMEM;
382	p4d_t *p4d;
383	pud_t *pud;
384
385	p4d = p4d_offset(pgd, addr);
386	for (; addr < end; addr = next, p4d++) {
387		next = p4d_addr_end(addr, end);
388		if (!add) {
389			if (p4d_none(*p4d))
390				continue;
391		} else if (p4d_none(*p4d)) {
392			pud = vmem_crst_alloc(_REGION3_ENTRY_EMPTY);
393			if (!pud)
394				goto out;
395			p4d_populate(&init_mm, p4d, pud);
 
396		}
397		ret = modify_pud_table(p4d, addr, next, add, direct);
398		if (ret)
399			goto out;
400		if (!add)
401			try_free_pud_table(p4d, addr & P4D_MASK);
402	}
403	ret = 0;
404out:
405	return ret;
406}
407
408static void try_free_p4d_table(pgd_t *pgd, unsigned long start)
409{
410	p4d_t *p4d;
411	int i;
412
413	p4d = p4d_offset(pgd, start);
414	for (i = 0; i < PTRS_PER_P4D; i++, p4d++) {
415		if (!p4d_none(*p4d))
416			return;
417	}
418	vmem_free_pages(pgd_deref(*pgd), CRST_ALLOC_ORDER);
419	pgd_clear(pgd);
420}
421
422static int modify_pagetable(unsigned long start, unsigned long end, bool add,
423			    bool direct)
 
 
 
424{
425	unsigned long addr, next;
426	int ret = -ENOMEM;
427	pgd_t *pgd;
428	p4d_t *p4d;
429
430	if (WARN_ON_ONCE(!PAGE_ALIGNED(start | end)))
431		return -EINVAL;
432	/* Don't mess with any tables not fully in 1:1 mapping & vmemmap area */
433	if (WARN_ON_ONCE(end > VMALLOC_START))
434		return -EINVAL;
435	for (addr = start; addr < end; addr = next) {
436		next = pgd_addr_end(addr, end);
437		pgd = pgd_offset_k(addr);
438
439		if (!add) {
440			if (pgd_none(*pgd))
441				continue;
442		} else if (pgd_none(*pgd)) {
443			p4d = vmem_crst_alloc(_REGION2_ENTRY_EMPTY);
444			if (!p4d)
445				goto out;
446			pgd_populate(&init_mm, pgd, p4d);
447		}
448		ret = modify_p4d_table(pgd, addr, next, add, direct);
449		if (ret)
450			goto out;
451		if (!add)
452			try_free_p4d_table(pgd, addr & PGDIR_MASK);
453	}
454	ret = 0;
455out:
456	if (!add)
457		flush_tlb_kernel_range(start, end);
458	return ret;
459}
460
461static int add_pagetable(unsigned long start, unsigned long end, bool direct)
462{
463	return modify_pagetable(start, end, true, direct);
464}
465
466static int remove_pagetable(unsigned long start, unsigned long end, bool direct)
467{
468	return modify_pagetable(start, end, false, direct);
469}
470
471/*
472 * Add a physical memory range to the 1:1 mapping.
473 */
474static int vmem_add_range(unsigned long start, unsigned long size)
475{
476	start = (unsigned long)__va(start);
477	return add_pagetable(start, start + size, true);
478}
479
480/*
481 * Remove a physical memory range from the 1:1 mapping.
482 */
483static void vmem_remove_range(unsigned long start, unsigned long size)
484{
485	start = (unsigned long)__va(start);
486	remove_pagetable(start, start + size, true);
487}
488
489/*
490 * Add a backed mem_map array to the virtual mem_map array.
491 */
492int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
493			       struct vmem_altmap *altmap)
494{
 
495	int ret;
496
497	mutex_lock(&vmem_mutex);
498	/* We don't care about the node, just use NUMA_NO_NODE on allocations */
499	ret = add_pagetable(start, end, false);
500	if (ret)
501		remove_pagetable(start, end, false);
502	mutex_unlock(&vmem_mutex);
503	return ret;
504}
505
506#ifdef CONFIG_MEMORY_HOTPLUG
507
508void vmemmap_free(unsigned long start, unsigned long end,
509		  struct vmem_altmap *altmap)
510{
511	mutex_lock(&vmem_mutex);
512	remove_pagetable(start, end, false);
513	mutex_unlock(&vmem_mutex);
514}
515
516#endif
 
517
518void vmem_remove_mapping(unsigned long start, unsigned long size)
519{
520	mutex_lock(&vmem_mutex);
521	vmem_remove_range(start, size);
522	mutex_unlock(&vmem_mutex);
523}
524
525struct range arch_get_mappable_range(void)
526{
527	struct range mhp_range;
528
529	mhp_range.start = 0;
530	mhp_range.end = max_mappable - 1;
531	return mhp_range;
532}
533
534int vmem_add_mapping(unsigned long start, unsigned long size)
535{
536	struct range range = arch_get_mappable_range();
537	int ret;
538
539	if (start < range.start ||
540	    start + size > range.end + 1 ||
541	    start + size < start)
542		return -ERANGE;
543
544	mutex_lock(&vmem_mutex);
545	ret = vmem_add_range(start, size);
 
 
 
 
 
 
 
 
 
 
 
546	if (ret)
547		vmem_remove_range(start, size);
 
 
 
 
 
 
 
548	mutex_unlock(&vmem_mutex);
549	return ret;
550}
551
552/*
553 * Allocate new or return existing page-table entry, but do not map it
554 * to any physical address. If missing, allocate segment- and region-
555 * table entries along. Meeting a large segment- or region-table entry
556 * while traversing is an error, since the function is expected to be
557 * called against virtual regions reserved for 4KB mappings only.
558 */
559pte_t *vmem_get_alloc_pte(unsigned long addr, bool alloc)
560{
561	pte_t *ptep = NULL;
562	pgd_t *pgd;
563	p4d_t *p4d;
564	pud_t *pud;
565	pmd_t *pmd;
566	pte_t *pte;
567
568	pgd = pgd_offset_k(addr);
569	if (pgd_none(*pgd)) {
570		if (!alloc)
571			goto out;
572		p4d = vmem_crst_alloc(_REGION2_ENTRY_EMPTY);
573		if (!p4d)
574			goto out;
575		pgd_populate(&init_mm, pgd, p4d);
576	}
577	p4d = p4d_offset(pgd, addr);
578	if (p4d_none(*p4d)) {
579		if (!alloc)
580			goto out;
581		pud = vmem_crst_alloc(_REGION3_ENTRY_EMPTY);
582		if (!pud)
583			goto out;
584		p4d_populate(&init_mm, p4d, pud);
585	}
586	pud = pud_offset(p4d, addr);
587	if (pud_none(*pud)) {
588		if (!alloc)
589			goto out;
590		pmd = vmem_crst_alloc(_SEGMENT_ENTRY_EMPTY);
591		if (!pmd)
592			goto out;
593		pud_populate(&init_mm, pud, pmd);
594	} else if (WARN_ON_ONCE(pud_large(*pud))) {
595		goto out;
596	}
597	pmd = pmd_offset(pud, addr);
598	if (pmd_none(*pmd)) {
599		if (!alloc)
600			goto out;
601		pte = vmem_pte_alloc();
602		if (!pte)
603			goto out;
604		pmd_populate(&init_mm, pmd, pte);
605	} else if (WARN_ON_ONCE(pmd_large(*pmd))) {
606		goto out;
607	}
608	ptep = pte_offset_kernel(pmd, addr);
609out:
610	return ptep;
611}
612
613int __vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot, bool alloc)
614{
615	pte_t *ptep, pte;
616
617	if (!IS_ALIGNED(addr, PAGE_SIZE))
618		return -EINVAL;
619	ptep = vmem_get_alloc_pte(addr, alloc);
620	if (!ptep)
621		return -ENOMEM;
622	__ptep_ipte(addr, ptep, 0, 0, IPTE_GLOBAL);
623	pte = mk_pte_phys(phys, prot);
624	set_pte(ptep, pte);
625	return 0;
626}
627
628int vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot)
629{
630	int rc;
631
632	mutex_lock(&vmem_mutex);
633	rc = __vmem_map_4k_page(addr, phys, prot, true);
634	mutex_unlock(&vmem_mutex);
635	return rc;
636}
637
638void vmem_unmap_4k_page(unsigned long addr)
639{
640	pte_t *ptep;
 
641
642	mutex_lock(&vmem_mutex);
643	ptep = virt_to_kpte(addr);
644	__ptep_ipte(addr, ptep, 0, 0, IPTE_GLOBAL);
645	pte_clear(&init_mm, addr, ptep);
 
 
 
 
 
646	mutex_unlock(&vmem_mutex);
 
647}
648
649void __init vmem_map_init(void)
650{
651	__set_memory_rox(_stext, _etext);
652	__set_memory_ro(_etext, __end_rodata);
653	__set_memory_rox(_sinittext, _einittext);
654	__set_memory_rox(__stext_amode31, __etext_amode31);
655	/*
656	 * If the BEAR-enhancement facility is not installed the first
657	 * prefix page is used to return to the previous context with
658	 * an LPSWE instruction and therefore must be executable.
659	 */
660	if (!static_key_enabled(&cpu_has_bear))
661		set_memory_x(0, 1);
662	if (debug_pagealloc_enabled()) {
663		/*
664		 * Use RELOC_HIDE() as long as __va(0) translates to NULL,
665		 * since performing pointer arithmetic on a NULL pointer
666		 * has undefined behavior and generates compiler warnings.
667		 */
668		__set_memory_4k(__va(0), RELOC_HIDE(__va(0), ident_map_size));
669	}
670	if (MACHINE_HAS_NX)
671		system_ctl_set_bit(0, CR0_INSTRUCTION_EXEC_PROTECTION_BIT);
672	pr_info("Write protected kernel read-only data: %luk\n",
673		(unsigned long)(__end_rodata - _stext) >> 10);
674}
v4.6
 
  1/*
  2 *    Copyright IBM Corp. 2006
  3 *    Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>
  4 */
  5
  6#include <linux/bootmem.h>
 
  7#include <linux/pfn.h>
  8#include <linux/mm.h>
  9#include <linux/module.h>
 10#include <linux/list.h>
 11#include <linux/hugetlb.h>
 12#include <linux/slab.h>
 13#include <linux/memblock.h>
 
 
 
 
 14#include <asm/pgalloc.h>
 15#include <asm/pgtable.h>
 16#include <asm/setup.h>
 17#include <asm/tlbflush.h>
 18#include <asm/sections.h>
 
 19
 20static DEFINE_MUTEX(vmem_mutex);
 21
 22struct memory_segment {
 23	struct list_head list;
 24	unsigned long start;
 25	unsigned long size;
 26};
 27
 28static LIST_HEAD(mem_segs);
 29
 30static void __ref *vmem_alloc_pages(unsigned int order)
 31{
 
 
 32	if (slab_is_available())
 33		return (void *)__get_free_pages(GFP_KERNEL, order);
 34	return alloc_bootmem_pages((1 << order) * PAGE_SIZE);
 35}
 36
 37static inline pud_t *vmem_pud_alloc(void)
 38{
 39	pud_t *pud = NULL;
 40
 41	pud = vmem_alloc_pages(2);
 42	if (!pud)
 43		return NULL;
 44	clear_table((unsigned long *) pud, _REGION3_ENTRY_EMPTY, PAGE_SIZE * 4);
 45	return pud;
 46}
 47
 48static inline pmd_t *vmem_pmd_alloc(void)
 49{
 50	pmd_t *pmd = NULL;
 51
 52	pmd = vmem_alloc_pages(2);
 53	if (!pmd)
 54		return NULL;
 55	clear_table((unsigned long *) pmd, _SEGMENT_ENTRY_EMPTY, PAGE_SIZE * 4);
 56	return pmd;
 
 57}
 58
 59static pte_t __ref *vmem_pte_alloc(unsigned long address)
 60{
 
 61	pte_t *pte;
 62
 63	if (slab_is_available())
 64		pte = (pte_t *) page_table_alloc(&init_mm);
 65	else
 66		pte = alloc_bootmem_align(PTRS_PER_PTE * sizeof(pte_t),
 67					  PTRS_PER_PTE * sizeof(pte_t));
 68	if (!pte)
 69		return NULL;
 70	clear_table((unsigned long *) pte, _PAGE_INVALID,
 71		    PTRS_PER_PTE * sizeof(pte_t));
 72	return pte;
 73}
 74
 
 
 
 
 
 
 
 
 
 
 
 75/*
 76 * Add a physical memory range to the 1:1 mapping.
 
 77 */
 78static int vmem_add_mem(unsigned long start, unsigned long size, int ro)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 79{
 80	unsigned long end = start + size;
 81	unsigned long address = start;
 82	pgd_t *pg_dir;
 83	pud_t *pu_dir;
 84	pmd_t *pm_dir;
 85	pte_t *pt_dir;
 86	int ret = -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 87
 88	while (address < end) {
 89		pg_dir = pgd_offset_k(address);
 90		if (pgd_none(*pg_dir)) {
 91			pu_dir = vmem_pud_alloc();
 92			if (!pu_dir)
 93				goto out;
 94			pgd_populate(&init_mm, pg_dir, pu_dir);
 95		}
 96		pu_dir = pud_offset(pg_dir, address);
 97		if (MACHINE_HAS_EDAT2 && pud_none(*pu_dir) && address &&
 98		    !(address & ~PUD_MASK) && (address + PUD_SIZE <= end) &&
 99		     !debug_pagealloc_enabled()) {
100			pud_val(*pu_dir) = __pa(address) |
101				_REGION_ENTRY_TYPE_R3 | _REGION3_ENTRY_LARGE |
102				(ro ? _REGION_ENTRY_PROTECT : 0);
103			address += PUD_SIZE;
104			continue;
105		}
106		if (pud_none(*pu_dir)) {
107			pm_dir = vmem_pmd_alloc();
108			if (!pm_dir)
109				goto out;
110			pud_populate(&init_mm, pu_dir, pm_dir);
111		}
112		pm_dir = pmd_offset(pu_dir, address);
113		if (MACHINE_HAS_EDAT1 && pmd_none(*pm_dir) && address &&
114		    !(address & ~PMD_MASK) && (address + PMD_SIZE <= end) &&
115		    !debug_pagealloc_enabled()) {
116			pmd_val(*pm_dir) = __pa(address) |
117				_SEGMENT_ENTRY | _SEGMENT_ENTRY_LARGE |
118				_SEGMENT_ENTRY_YOUNG |
119				(ro ? _SEGMENT_ENTRY_PROTECT : 0);
120			address += PMD_SIZE;
121			continue;
122		}
123		if (pmd_none(*pm_dir)) {
124			pt_dir = vmem_pte_alloc(address);
125			if (!pt_dir)
126				goto out;
127			pmd_populate(&init_mm, pm_dir, pt_dir);
128		}
129
130		pt_dir = pte_offset_kernel(pm_dir, address);
131		pte_val(*pt_dir) = __pa(address) |
132			pgprot_val(ro ? PAGE_KERNEL_RO : PAGE_KERNEL);
133		address += PAGE_SIZE;
134	}
135	ret = 0;
136out:
 
 
137	return ret;
138}
139
140/*
141 * Remove a physical memory range from the 1:1 mapping.
142 * Currently only invalidates page table entries.
143 */
144static void vmem_remove_range(unsigned long start, unsigned long size)
145{
146	unsigned long end = start + size;
147	unsigned long address = start;
148	pgd_t *pg_dir;
149	pud_t *pu_dir;
150	pmd_t *pm_dir;
151	pte_t *pt_dir;
152	pte_t  pte;
153
154	pte_val(pte) = _PAGE_INVALID;
155	while (address < end) {
156		pg_dir = pgd_offset_k(address);
157		if (pgd_none(*pg_dir)) {
158			address += PGDIR_SIZE;
159			continue;
160		}
161		pu_dir = pud_offset(pg_dir, address);
162		if (pud_none(*pu_dir)) {
163			address += PUD_SIZE;
164			continue;
165		}
166		if (pud_large(*pu_dir)) {
167			pud_clear(pu_dir);
168			address += PUD_SIZE;
169			continue;
170		}
171		pm_dir = pmd_offset(pu_dir, address);
172		if (pmd_none(*pm_dir)) {
173			address += PMD_SIZE;
174			continue;
175		}
176		if (pmd_large(*pm_dir)) {
177			pmd_clear(pm_dir);
178			address += PMD_SIZE;
179			continue;
180		}
181		pt_dir = pte_offset_kernel(pm_dir, address);
182		*pt_dir = pte;
183		address += PAGE_SIZE;
184	}
185	flush_tlb_kernel_range(start, end);
 
186}
187
188/*
189 * Add a backed mem_map array to the virtual mem_map array.
190 */
191int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
192{
193	unsigned long address = start;
194	pgd_t *pg_dir;
195	pud_t *pu_dir;
196	pmd_t *pm_dir;
197	pte_t *pt_dir;
198	int ret = -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
199
200	for (address = start; address < end;) {
201		pg_dir = pgd_offset_k(address);
202		if (pgd_none(*pg_dir)) {
203			pu_dir = vmem_pud_alloc();
204			if (!pu_dir)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
205				goto out;
206			pgd_populate(&init_mm, pg_dir, pu_dir);
 
 
 
 
207		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
208
209		pu_dir = pud_offset(pg_dir, address);
210		if (pud_none(*pu_dir)) {
211			pm_dir = vmem_pmd_alloc();
212			if (!pm_dir)
213				goto out;
214			pud_populate(&init_mm, pu_dir, pm_dir);
215		}
216
217		pm_dir = pmd_offset(pu_dir, address);
218		if (pmd_none(*pm_dir)) {
219			/* Use 1MB frames for vmemmap if available. We always
220			 * use large frames even if they are only partially
221			 * used.
222			 * Otherwise we would have also page tables since
223			 * vmemmap_populate gets called for each section
224			 * separately. */
225			if (MACHINE_HAS_EDAT1) {
226				void *new_page;
227
228				new_page = vmemmap_alloc_block(PMD_SIZE, node);
229				if (!new_page)
230					goto out;
231				pmd_val(*pm_dir) = __pa(new_page) |
232					_SEGMENT_ENTRY | _SEGMENT_ENTRY_LARGE;
233				address = (address + PMD_SIZE) & PMD_MASK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
234				continue;
235			}
236			pt_dir = vmem_pte_alloc(address);
237			if (!pt_dir)
238				goto out;
239			pmd_populate(&init_mm, pm_dir, pt_dir);
240		} else if (pmd_large(*pm_dir)) {
241			address = (address + PMD_SIZE) & PMD_MASK;
242			continue;
243		}
 
 
 
 
 
 
 
 
 
 
 
 
244
245		pt_dir = pte_offset_kernel(pm_dir, address);
246		if (pte_none(*pt_dir)) {
247			void *new_page;
 
248
249			new_page = vmemmap_alloc_block(PAGE_SIZE, node);
250			if (!new_page)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
251				goto out;
252			pte_val(*pt_dir) =
253				__pa(new_page) | pgprot_val(PAGE_KERNEL);
254		}
255		address += PAGE_SIZE;
 
 
 
 
256	}
257	ret = 0;
258out:
259	return ret;
260}
261
262void vmemmap_free(unsigned long start, unsigned long end)
263{
 
 
 
 
 
 
 
 
 
 
264}
265
266/*
267 * Add memory segment to the segment list if it doesn't overlap with
268 * an already present segment.
269 */
270static int insert_memory_segment(struct memory_segment *seg)
271{
272	struct memory_segment *tmp;
 
 
 
273
274	if (seg->start + seg->size > VMEM_MAX_PHYS ||
275	    seg->start + seg->size < seg->start)
276		return -ERANGE;
 
 
 
 
 
277
278	list_for_each_entry(tmp, &mem_segs, list) {
279		if (seg->start >= tmp->start + tmp->size)
280			continue;
281		if (seg->start + seg->size <= tmp->start)
282			continue;
283		return -ENOSPC;
 
 
 
 
 
 
 
 
284	}
285	list_add(&seg->list, &mem_segs);
286	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
287}
288
289/*
290 * Remove memory segment from the segment list.
291 */
292static void remove_memory_segment(struct memory_segment *seg)
293{
294	list_del(&seg->list);
 
295}
296
297static void __remove_shared_memory(struct memory_segment *seg)
 
 
 
298{
299	remove_memory_segment(seg);
300	vmem_remove_range(seg->start, seg->size);
301}
302
303int vmem_remove_mapping(unsigned long start, unsigned long size)
 
 
 
 
304{
305	struct memory_segment *seg;
306	int ret;
307
308	mutex_lock(&vmem_mutex);
 
 
 
 
 
 
 
 
 
309
310	ret = -ENOENT;
311	list_for_each_entry(seg, &mem_segs, list) {
312		if (seg->start == start && seg->size == size)
313			break;
314	}
 
 
315
316	if (seg->start != start || seg->size != size)
317		goto out;
318
319	ret = 0;
320	__remove_shared_memory(seg);
321	kfree(seg);
322out:
323	mutex_unlock(&vmem_mutex);
324	return ret;
 
 
 
 
 
 
 
 
325}
326
327int vmem_add_mapping(unsigned long start, unsigned long size)
328{
329	struct memory_segment *seg;
330	int ret;
331
 
 
 
 
 
332	mutex_lock(&vmem_mutex);
333	ret = -ENOMEM;
334	seg = kzalloc(sizeof(*seg), GFP_KERNEL);
335	if (!seg)
336		goto out;
337	seg->start = start;
338	seg->size = size;
339
340	ret = insert_memory_segment(seg);
341	if (ret)
342		goto out_free;
343
344	ret = vmem_add_mem(start, size, 0);
345	if (ret)
346		goto out_remove;
347	goto out;
348
349out_remove:
350	__remove_shared_memory(seg);
351out_free:
352	kfree(seg);
353out:
354	mutex_unlock(&vmem_mutex);
355	return ret;
356}
357
358/*
359 * map whole physical memory to virtual memory (identity mapping)
360 * we reserve enough space in the vmalloc area for vmemmap to hotplug
361 * additional memory segments.
 
 
362 */
363void __init vmem_map_init(void)
364{
365	unsigned long ro_start, ro_end;
366	struct memblock_region *reg;
367	phys_addr_t start, end;
368
369	ro_start = PFN_ALIGN((unsigned long)&_stext);
370	ro_end = (unsigned long)&_eshared & PAGE_MASK;
371	for_each_memblock(memory, reg) {
372		start = reg->base;
373		end = reg->base + reg->size - 1;
374		if (start >= ro_end || end <= ro_start)
375			vmem_add_mem(start, end - start, 0);
376		else if (start >= ro_start && end <= ro_end)
377			vmem_add_mem(start, end - start, 1);
378		else if (start >= ro_start) {
379			vmem_add_mem(start, ro_end - start, 1);
380			vmem_add_mem(ro_end, end - ro_end, 0);
381		} else if (end < ro_end) {
382			vmem_add_mem(start, ro_start - start, 0);
383			vmem_add_mem(ro_start, end - ro_start, 1);
384		} else {
385			vmem_add_mem(start, ro_start - start, 0);
386			vmem_add_mem(ro_start, ro_end - ro_start, 1);
387			vmem_add_mem(ro_end, end - ro_end, 0);
388		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
389	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
390}
391
392/*
393 * Convert memblock.memory  to a memory segment list so there is a single
394 * list that contains all memory segments.
395 */
396static int __init vmem_convert_memory_chunk(void)
 
 
 
 
 
 
397{
398	struct memblock_region *reg;
399	struct memory_segment *seg;
400
401	mutex_lock(&vmem_mutex);
402	for_each_memblock(memory, reg) {
403		seg = kzalloc(sizeof(*seg), GFP_KERNEL);
404		if (!seg)
405			panic("Out of memory...\n");
406		seg->start = reg->base;
407		seg->size = reg->size;
408		insert_memory_segment(seg);
409	}
410	mutex_unlock(&vmem_mutex);
411	return 0;
412}
413
414core_initcall(vmem_convert_memory_chunk);