Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
 
 
 
  3 *
  4 * Copyright 2012 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
  5 */
  6
  7#include <linux/types.h>
  8#include <linux/string.h>
  9#include <linux/kvm.h>
 10#include <linux/kvm_host.h>
 11#include <linux/kernel.h>
 12#include <asm/lppaca.h>
 13#include <asm/opal.h>
 14#include <asm/mce.h>
 15#include <asm/machdep.h>
 16#include <asm/cputhreads.h>
 17#include <asm/hmi.h>
 18#include <asm/kvm_ppc.h>
 19
 20/* SRR1 bits for machine check on POWER7 */
 21#define SRR1_MC_LDSTERR		(1ul << (63-42))
 22#define SRR1_MC_IFETCH_SH	(63-45)
 23#define SRR1_MC_IFETCH_MASK	0x7
 24#define SRR1_MC_IFETCH_SLBPAR		2	/* SLB parity error */
 25#define SRR1_MC_IFETCH_SLBMULTI		3	/* SLB multi-hit */
 26#define SRR1_MC_IFETCH_SLBPARMULTI	4	/* SLB parity + multi-hit */
 27#define SRR1_MC_IFETCH_TLBMULTI		5	/* I-TLB multi-hit */
 28
 29/* DSISR bits for machine check on POWER7 */
 30#define DSISR_MC_DERAT_MULTI	0x800		/* D-ERAT multi-hit */
 31#define DSISR_MC_TLB_MULTI	0x400		/* D-TLB multi-hit */
 32#define DSISR_MC_SLB_PARITY	0x100		/* SLB parity error */
 33#define DSISR_MC_SLB_MULTI	0x080		/* SLB multi-hit */
 34#define DSISR_MC_SLB_PARMULTI	0x040		/* SLB parity + multi-hit */
 35
 36/* POWER7 SLB flush and reload */
 37static void reload_slb(struct kvm_vcpu *vcpu)
 38{
 39	struct slb_shadow *slb;
 40	unsigned long i, n;
 41
 42	/* First clear out SLB */
 43	asm volatile("slbmte %0,%0; slbia" : : "r" (0));
 44
 45	/* Do they have an SLB shadow buffer registered? */
 46	slb = vcpu->arch.slb_shadow.pinned_addr;
 47	if (!slb)
 48		return;
 49
 50	/* Sanity check */
 51	n = min_t(u32, be32_to_cpu(slb->persistent), SLB_MIN_SIZE);
 52	if ((void *) &slb->save_area[n] > vcpu->arch.slb_shadow.pinned_end)
 53		return;
 54
 55	/* Load up the SLB from that */
 56	for (i = 0; i < n; ++i) {
 57		unsigned long rb = be64_to_cpu(slb->save_area[i].esid);
 58		unsigned long rs = be64_to_cpu(slb->save_area[i].vsid);
 59
 60		rb = (rb & ~0xFFFul) | i;	/* insert entry number */
 61		asm volatile("slbmte %0,%1" : : "r" (rs), "r" (rb));
 62	}
 63}
 64
 65/*
 66 * On POWER7, see if we can handle a machine check that occurred inside
 67 * the guest in real mode, without switching to the host partition.
 
 
 68 */
 69static long kvmppc_realmode_mc_power7(struct kvm_vcpu *vcpu)
 70{
 71	unsigned long srr1 = vcpu->arch.shregs.msr;
 
 72	long handled = 1;
 73
 74	if (srr1 & SRR1_MC_LDSTERR) {
 75		/* error on load/store */
 76		unsigned long dsisr = vcpu->arch.shregs.dsisr;
 77
 78		if (dsisr & (DSISR_MC_SLB_PARMULTI | DSISR_MC_SLB_MULTI |
 79			     DSISR_MC_SLB_PARITY | DSISR_MC_DERAT_MULTI)) {
 80			/* flush and reload SLB; flushes D-ERAT too */
 81			reload_slb(vcpu);
 82			dsisr &= ~(DSISR_MC_SLB_PARMULTI | DSISR_MC_SLB_MULTI |
 83				   DSISR_MC_SLB_PARITY | DSISR_MC_DERAT_MULTI);
 84		}
 85		if (dsisr & DSISR_MC_TLB_MULTI) {
 86			tlbiel_all_lpid(vcpu->kvm->arch.radix);
 
 87			dsisr &= ~DSISR_MC_TLB_MULTI;
 88		}
 89		/* Any other errors we don't understand? */
 90		if (dsisr & 0xffffffffUL)
 91			handled = 0;
 92	}
 93
 94	switch ((srr1 >> SRR1_MC_IFETCH_SH) & SRR1_MC_IFETCH_MASK) {
 95	case 0:
 96		break;
 97	case SRR1_MC_IFETCH_SLBPAR:
 98	case SRR1_MC_IFETCH_SLBMULTI:
 99	case SRR1_MC_IFETCH_SLBPARMULTI:
100		reload_slb(vcpu);
101		break;
102	case SRR1_MC_IFETCH_TLBMULTI:
103		tlbiel_all_lpid(vcpu->kvm->arch.radix);
 
104		break;
105	default:
106		handled = 0;
107	}
108
109	return handled;
110}
111
112void kvmppc_realmode_machine_check(struct kvm_vcpu *vcpu)
113{
114	struct machine_check_event mce_evt;
115	long handled;
116
117	if (vcpu->kvm->arch.fwnmi_enabled) {
118		/* FWNMI guests handle their own recovery */
119		handled = 0;
120	} else {
121		handled = kvmppc_realmode_mc_power7(vcpu);
122	}
123
124	/*
125	 * Now get the event and stash it in the vcpu struct so it can
126	 * be handled by the primary thread in virtual mode.  We can't
127	 * call machine_check_queue_event() here if we are running on
128	 * an offline secondary thread.
 
 
129	 */
130	if (get_mce_event(&mce_evt, MCE_EVENT_RELEASE)) {
131		if (handled && mce_evt.version == MCE_V1)
132			mce_evt.disposition = MCE_DISPOSITION_RECOVERED;
133	} else {
134		memset(&mce_evt, 0, sizeof(mce_evt));
135	}
136
137	vcpu->arch.mce_evt = mce_evt;
138}
139
140
141long kvmppc_p9_realmode_hmi_handler(struct kvm_vcpu *vcpu)
142{
143	struct kvmppc_vcore *vc = vcpu->arch.vcore;
144	long ret = 0;
145
146	/*
147	 * Unapply and clear the offset first. That way, if the TB was not
148	 * resynced then it will remain in host-offset, and if it was resynced
149	 * then it is brought into host-offset. Then the tb offset is
150	 * re-applied before continuing with the KVM exit.
151	 *
152	 * This way, we don't need to actually know whether not OPAL resynced
153	 * the timebase or do any of the complicated dance that the P7/8
154	 * path requires.
155	 */
156	if (vc->tb_offset_applied) {
157		u64 new_tb = mftb() - vc->tb_offset_applied;
158		mtspr(SPRN_TBU40, new_tb);
159		if ((mftb() & 0xffffff) < (new_tb & 0xffffff)) {
160			new_tb += 0x1000000;
161			mtspr(SPRN_TBU40, new_tb);
162		}
163		vc->tb_offset_applied = 0;
164	}
165
166	local_paca->hmi_irqs++;
167
168	if (hmi_handle_debugtrig(NULL) >= 0) {
169		ret = 1;
170		goto out;
171	}
172
173	if (ppc_md.hmi_exception_early)
174		ppc_md.hmi_exception_early(NULL);
 
 
175
176out:
177	if (kvmppc_get_tb_offset(vcpu)) {
178		u64 new_tb = mftb() + vc->tb_offset;
179		mtspr(SPRN_TBU40, new_tb);
180		if ((mftb() & 0xffffff) < (new_tb & 0xffffff)) {
181			new_tb += 0x1000000;
182			mtspr(SPRN_TBU40, new_tb);
183		}
184		vc->tb_offset_applied = kvmppc_get_tb_offset(vcpu);
185	}
186
187	return ret;
188}
189
190/*
191 * The following subcore HMI handling is all only for pre-POWER9 CPUs.
192 */
193
194/* Check if dynamic split is in force and return subcore size accordingly. */
195static inline int kvmppc_cur_subcore_size(void)
196{
197	if (local_paca->kvm_hstate.kvm_split_mode)
198		return local_paca->kvm_hstate.kvm_split_mode->subcore_size;
199
200	return threads_per_subcore;
201}
202
203void kvmppc_subcore_enter_guest(void)
204{
205	int thread_id, subcore_id;
206
207	thread_id = cpu_thread_in_core(local_paca->paca_index);
208	subcore_id = thread_id / kvmppc_cur_subcore_size();
209
210	local_paca->sibling_subcore_state->in_guest[subcore_id] = 1;
211}
212EXPORT_SYMBOL_GPL(kvmppc_subcore_enter_guest);
213
214void kvmppc_subcore_exit_guest(void)
215{
216	int thread_id, subcore_id;
217
218	thread_id = cpu_thread_in_core(local_paca->paca_index);
219	subcore_id = thread_id / kvmppc_cur_subcore_size();
220
221	local_paca->sibling_subcore_state->in_guest[subcore_id] = 0;
222}
223EXPORT_SYMBOL_GPL(kvmppc_subcore_exit_guest);
224
225static bool kvmppc_tb_resync_required(void)
226{
227	if (test_and_set_bit(CORE_TB_RESYNC_REQ_BIT,
228				&local_paca->sibling_subcore_state->flags))
229		return false;
230
231	return true;
232}
233
234static void kvmppc_tb_resync_done(void)
235{
236	clear_bit(CORE_TB_RESYNC_REQ_BIT,
237			&local_paca->sibling_subcore_state->flags);
238}
239
240/*
241 * kvmppc_realmode_hmi_handler() is called only by primary thread during
242 * guest exit path.
243 *
244 * There are multiple reasons why HMI could occur, one of them is
245 * Timebase (TB) error. If this HMI is due to TB error, then TB would
246 * have been in stopped state. The opal hmi handler Will fix it and
247 * restore the TB value with host timebase value. For HMI caused due
248 * to non-TB errors, opal hmi handler will not touch/restore TB register
249 * and hence there won't be any change in TB value.
250 *
251 * Since we are not sure about the cause of this HMI, we can't be sure
252 * about the content of TB register whether it holds guest or host timebase
253 * value. Hence the idea is to resync the TB on every HMI, so that we
254 * know about the exact state of the TB value. Resync TB call will
255 * restore TB to host timebase.
256 *
257 * Things to consider:
258 * - On TB error, HMI interrupt is reported on all the threads of the core
259 *   that has encountered TB error irrespective of split-core mode.
260 * - The very first thread on the core that get chance to fix TB error
261 *   would rsync the TB with local chipTOD value.
262 * - The resync TB is a core level action i.e. it will sync all the TBs
263 *   in that core independent of split-core mode. This means if we trigger
264 *   TB sync from a thread from one subcore, it would affect TB values of
265 *   sibling subcores of the same core.
266 *
267 * All threads need to co-ordinate before making opal hmi handler.
268 * All threads will use sibling_subcore_state->in_guest[] (shared by all
269 * threads in the core) in paca which holds information about whether
270 * sibling subcores are in Guest mode or host mode. The in_guest[] array
271 * is of size MAX_SUBCORE_PER_CORE=4, indexed using subcore id to set/unset
272 * subcore status. Only primary threads from each subcore is responsible
273 * to set/unset its designated array element while entering/exiting the
274 * guset.
275 *
276 * After invoking opal hmi handler call, one of the thread (of entire core)
277 * will need to resync the TB. Bit 63 from subcore state bitmap flags
278 * (sibling_subcore_state->flags) will be used to co-ordinate between
279 * primary threads to decide who takes up the responsibility.
280 *
281 * This is what we do:
282 * - Primary thread from each subcore tries to set resync required bit[63]
283 *   of paca->sibling_subcore_state->flags.
284 * - The first primary thread that is able to set the flag takes the
285 *   responsibility of TB resync. (Let us call it as thread leader)
286 * - All other threads which are in host will call
287 *   wait_for_subcore_guest_exit() and wait for in_guest[0-3] from
288 *   paca->sibling_subcore_state to get cleared.
289 * - All the primary thread will clear its subcore status from subcore
290 *   state in_guest[] array respectively.
291 * - Once all primary threads clear in_guest[0-3], all of them will invoke
292 *   opal hmi handler.
293 * - Now all threads will wait for TB resync to complete by invoking
294 *   wait_for_tb_resync() except the thread leader.
295 * - Thread leader will do a TB resync by invoking opal_resync_timebase()
296 *   call and the it will clear the resync required bit.
297 * - All other threads will now come out of resync wait loop and proceed
298 *   with individual execution.
299 * - On return of this function, primary thread will signal all
300 *   secondary threads to proceed.
301 * - All secondary threads will eventually call opal hmi handler on
302 *   their exit path.
303 *
304 * Returns 1 if the timebase offset should be applied, 0 if not.
305 */
306
307long kvmppc_realmode_hmi_handler(void)
308{
309	bool resync_req;
310
311	local_paca->hmi_irqs++;
312
313	if (hmi_handle_debugtrig(NULL) >= 0)
314		return 1;
315
316	/*
317	 * By now primary thread has already completed guest->host
318	 * partition switch but haven't signaled secondaries yet.
319	 * All the secondary threads on this subcore is waiting
320	 * for primary thread to signal them to go ahead.
321	 *
322	 * For threads from subcore which isn't in guest, they all will
323	 * wait until all other subcores on this core exit the guest.
324	 *
325	 * Now set the resync required bit. If you are the first to
326	 * set this bit then kvmppc_tb_resync_required() function will
327	 * return true. For rest all other subcores
328	 * kvmppc_tb_resync_required() will return false.
329	 *
330	 * If resync_req == true, then this thread is responsible to
331	 * initiate TB resync after hmi handler has completed.
332	 * All other threads on this core will wait until this thread
333	 * clears the resync required bit flag.
334	 */
335	resync_req = kvmppc_tb_resync_required();
336
337	/* Reset the subcore status to indicate it has exited guest */
338	kvmppc_subcore_exit_guest();
339
340	/*
341	 * Wait for other subcores on this core to exit the guest.
342	 * All the primary threads and threads from subcore that are
343	 * not in guest will wait here until all subcores are out
344	 * of guest context.
345	 */
346	wait_for_subcore_guest_exit();
347
348	/*
349	 * At this point we are sure that primary threads from each
350	 * subcore on this core have completed guest->host partition
351	 * switch. Now it is safe to call HMI handler.
352	 */
353	if (ppc_md.hmi_exception_early)
354		ppc_md.hmi_exception_early(NULL);
355
356	/*
357	 * Check if this thread is responsible to resync TB.
358	 * All other threads will wait until this thread completes the
359	 * TB resync.
360	 */
361	if (resync_req) {
362		opal_resync_timebase();
363		/* Reset TB resync req bit */
364		kvmppc_tb_resync_done();
365	} else {
366		wait_for_tb_resync();
367	}
368
369	/*
370	 * Reset tb_offset_applied so the guest exit code won't try
371	 * to subtract the previous timebase offset from the timebase.
372	 */
373	if (local_paca->kvm_hstate.kvm_vcore)
374		local_paca->kvm_hstate.kvm_vcore->tb_offset_applied = 0;
375
376	return 0;
 
 
377}
v4.6
 
  1/*
  2 * This program is free software; you can redistribute it and/or modify
  3 * it under the terms of the GNU General Public License, version 2, as
  4 * published by the Free Software Foundation.
  5 *
  6 * Copyright 2012 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
  7 */
  8
  9#include <linux/types.h>
 10#include <linux/string.h>
 11#include <linux/kvm.h>
 12#include <linux/kvm_host.h>
 13#include <linux/kernel.h>
 
 14#include <asm/opal.h>
 15#include <asm/mce.h>
 
 
 
 
 16
 17/* SRR1 bits for machine check on POWER7 */
 18#define SRR1_MC_LDSTERR		(1ul << (63-42))
 19#define SRR1_MC_IFETCH_SH	(63-45)
 20#define SRR1_MC_IFETCH_MASK	0x7
 21#define SRR1_MC_IFETCH_SLBPAR		2	/* SLB parity error */
 22#define SRR1_MC_IFETCH_SLBMULTI		3	/* SLB multi-hit */
 23#define SRR1_MC_IFETCH_SLBPARMULTI	4	/* SLB parity + multi-hit */
 24#define SRR1_MC_IFETCH_TLBMULTI		5	/* I-TLB multi-hit */
 25
 26/* DSISR bits for machine check on POWER7 */
 27#define DSISR_MC_DERAT_MULTI	0x800		/* D-ERAT multi-hit */
 28#define DSISR_MC_TLB_MULTI	0x400		/* D-TLB multi-hit */
 29#define DSISR_MC_SLB_PARITY	0x100		/* SLB parity error */
 30#define DSISR_MC_SLB_MULTI	0x080		/* SLB multi-hit */
 31#define DSISR_MC_SLB_PARMULTI	0x040		/* SLB parity + multi-hit */
 32
 33/* POWER7 SLB flush and reload */
 34static void reload_slb(struct kvm_vcpu *vcpu)
 35{
 36	struct slb_shadow *slb;
 37	unsigned long i, n;
 38
 39	/* First clear out SLB */
 40	asm volatile("slbmte %0,%0; slbia" : : "r" (0));
 41
 42	/* Do they have an SLB shadow buffer registered? */
 43	slb = vcpu->arch.slb_shadow.pinned_addr;
 44	if (!slb)
 45		return;
 46
 47	/* Sanity check */
 48	n = min_t(u32, be32_to_cpu(slb->persistent), SLB_MIN_SIZE);
 49	if ((void *) &slb->save_area[n] > vcpu->arch.slb_shadow.pinned_end)
 50		return;
 51
 52	/* Load up the SLB from that */
 53	for (i = 0; i < n; ++i) {
 54		unsigned long rb = be64_to_cpu(slb->save_area[i].esid);
 55		unsigned long rs = be64_to_cpu(slb->save_area[i].vsid);
 56
 57		rb = (rb & ~0xFFFul) | i;	/* insert entry number */
 58		asm volatile("slbmte %0,%1" : : "r" (rs), "r" (rb));
 59	}
 60}
 61
 62/*
 63 * On POWER7, see if we can handle a machine check that occurred inside
 64 * the guest in real mode, without switching to the host partition.
 65 *
 66 * Returns: 0 => exit guest, 1 => deliver machine check to guest
 67 */
 68static long kvmppc_realmode_mc_power7(struct kvm_vcpu *vcpu)
 69{
 70	unsigned long srr1 = vcpu->arch.shregs.msr;
 71	struct machine_check_event mce_evt;
 72	long handled = 1;
 73
 74	if (srr1 & SRR1_MC_LDSTERR) {
 75		/* error on load/store */
 76		unsigned long dsisr = vcpu->arch.shregs.dsisr;
 77
 78		if (dsisr & (DSISR_MC_SLB_PARMULTI | DSISR_MC_SLB_MULTI |
 79			     DSISR_MC_SLB_PARITY | DSISR_MC_DERAT_MULTI)) {
 80			/* flush and reload SLB; flushes D-ERAT too */
 81			reload_slb(vcpu);
 82			dsisr &= ~(DSISR_MC_SLB_PARMULTI | DSISR_MC_SLB_MULTI |
 83				   DSISR_MC_SLB_PARITY | DSISR_MC_DERAT_MULTI);
 84		}
 85		if (dsisr & DSISR_MC_TLB_MULTI) {
 86			if (cur_cpu_spec && cur_cpu_spec->flush_tlb)
 87				cur_cpu_spec->flush_tlb(TLB_INVAL_SCOPE_LPID);
 88			dsisr &= ~DSISR_MC_TLB_MULTI;
 89		}
 90		/* Any other errors we don't understand? */
 91		if (dsisr & 0xffffffffUL)
 92			handled = 0;
 93	}
 94
 95	switch ((srr1 >> SRR1_MC_IFETCH_SH) & SRR1_MC_IFETCH_MASK) {
 96	case 0:
 97		break;
 98	case SRR1_MC_IFETCH_SLBPAR:
 99	case SRR1_MC_IFETCH_SLBMULTI:
100	case SRR1_MC_IFETCH_SLBPARMULTI:
101		reload_slb(vcpu);
102		break;
103	case SRR1_MC_IFETCH_TLBMULTI:
104		if (cur_cpu_spec && cur_cpu_spec->flush_tlb)
105			cur_cpu_spec->flush_tlb(TLB_INVAL_SCOPE_LPID);
106		break;
107	default:
108		handled = 0;
109	}
110
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
111	/*
112	 * See if we have already handled the condition in the linux host.
113	 * We assume that if the condition is recovered then linux host
114	 * will have generated an error log event that we will pick
115	 * up and log later.
116	 * Don't release mce event now. We will queue up the event so that
117	 * we can log the MCE event info on host console.
118	 */
119	if (!get_mce_event(&mce_evt, MCE_EVENT_DONTRELEASE))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
120		goto out;
 
121
122	if (mce_evt.version == MCE_V1 &&
123	    (mce_evt.severity == MCE_SEV_NO_ERROR ||
124	     mce_evt.disposition == MCE_DISPOSITION_RECOVERED))
125		handled = 1;
126
127out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
128	/*
129	 * We are now going enter guest either through machine check
130	 * interrupt (for unhandled errors) or will continue from
131	 * current HSRR0 (for handled errors) in guest. Hence
132	 * queue up the event so that we can log it from host console later.
 
 
 
 
 
 
 
 
 
 
 
 
 
133	 */
134	machine_check_queue_event();
 
 
 
135
136	return handled;
137}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
138
139long kvmppc_realmode_machine_check(struct kvm_vcpu *vcpu)
140{
141	return kvmppc_realmode_mc_power7(vcpu);
142}