Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/arch/arm/mm/dma-mapping.c
   4 *
   5 *  Copyright (C) 2000-2004 Russell King
   6 *
 
 
 
 
   7 *  DMA uncached mapping support.
   8 */
 
   9#include <linux/module.h>
  10#include <linux/mm.h>
  11#include <linux/genalloc.h>
  12#include <linux/gfp.h>
  13#include <linux/errno.h>
  14#include <linux/list.h>
  15#include <linux/init.h>
  16#include <linux/device.h>
  17#include <linux/dma-direct.h>
  18#include <linux/dma-map-ops.h>
  19#include <linux/highmem.h>
  20#include <linux/memblock.h>
  21#include <linux/slab.h>
  22#include <linux/iommu.h>
  23#include <linux/io.h>
  24#include <linux/vmalloc.h>
  25#include <linux/sizes.h>
  26#include <linux/cma.h>
  27
  28#include <asm/page.h>
  29#include <asm/highmem.h>
  30#include <asm/cacheflush.h>
  31#include <asm/tlbflush.h>
  32#include <asm/mach/arch.h>
  33#include <asm/dma-iommu.h>
  34#include <asm/mach/map.h>
  35#include <asm/system_info.h>
  36#include <asm/xen/xen-ops.h>
  37
  38#include "dma.h"
  39#include "mm.h"
  40
  41struct arm_dma_alloc_args {
  42	struct device *dev;
  43	size_t size;
  44	gfp_t gfp;
  45	pgprot_t prot;
  46	const void *caller;
  47	bool want_vaddr;
  48	int coherent_flag;
  49};
  50
  51struct arm_dma_free_args {
  52	struct device *dev;
  53	size_t size;
  54	void *cpu_addr;
  55	struct page *page;
  56	bool want_vaddr;
  57};
  58
  59#define NORMAL	    0
  60#define COHERENT    1
  61
  62struct arm_dma_allocator {
  63	void *(*alloc)(struct arm_dma_alloc_args *args,
  64		       struct page **ret_page);
  65	void (*free)(struct arm_dma_free_args *args);
  66};
  67
  68struct arm_dma_buffer {
  69	struct list_head list;
  70	void *virt;
  71	struct arm_dma_allocator *allocator;
  72};
  73
  74static LIST_HEAD(arm_dma_bufs);
  75static DEFINE_SPINLOCK(arm_dma_bufs_lock);
  76
  77static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
  78{
  79	struct arm_dma_buffer *buf, *found = NULL;
  80	unsigned long flags;
  81
  82	spin_lock_irqsave(&arm_dma_bufs_lock, flags);
  83	list_for_each_entry(buf, &arm_dma_bufs, list) {
  84		if (buf->virt == virt) {
  85			list_del(&buf->list);
  86			found = buf;
  87			break;
  88		}
  89	}
  90	spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
  91	return found;
  92}
  93
  94/*
  95 * The DMA API is built upon the notion of "buffer ownership".  A buffer
  96 * is either exclusively owned by the CPU (and therefore may be accessed
  97 * by it) or exclusively owned by the DMA device.  These helper functions
  98 * represent the transitions between these two ownership states.
  99 *
 100 * Note, however, that on later ARMs, this notion does not work due to
 101 * speculative prefetches.  We model our approach on the assumption that
 102 * the CPU does do speculative prefetches, which means we clean caches
 103 * before transfers and delay cache invalidation until transfer completion.
 104 *
 105 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 106
 107static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 108{
 109	/*
 110	 * Ensure that the allocated pages are zeroed, and that any data
 111	 * lurking in the kernel direct-mapped region is invalidated.
 112	 */
 113	if (PageHighMem(page)) {
 114		phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
 115		phys_addr_t end = base + size;
 116		while (size > 0) {
 117			void *ptr = kmap_atomic(page);
 118			memset(ptr, 0, PAGE_SIZE);
 119			if (coherent_flag != COHERENT)
 120				dmac_flush_range(ptr, ptr + PAGE_SIZE);
 121			kunmap_atomic(ptr);
 122			page++;
 123			size -= PAGE_SIZE;
 124		}
 125		if (coherent_flag != COHERENT)
 126			outer_flush_range(base, end);
 127	} else {
 128		void *ptr = page_address(page);
 129		memset(ptr, 0, size);
 130		if (coherent_flag != COHERENT) {
 131			dmac_flush_range(ptr, ptr + size);
 132			outer_flush_range(__pa(ptr), __pa(ptr) + size);
 133		}
 134	}
 135}
 136
 137/*
 138 * Allocate a DMA buffer for 'dev' of size 'size' using the
 139 * specified gfp mask.  Note that 'size' must be page aligned.
 140 */
 141static struct page *__dma_alloc_buffer(struct device *dev, size_t size,
 142				       gfp_t gfp, int coherent_flag)
 143{
 144	unsigned long order = get_order(size);
 145	struct page *page, *p, *e;
 146
 147	page = alloc_pages(gfp, order);
 148	if (!page)
 149		return NULL;
 150
 151	/*
 152	 * Now split the huge page and free the excess pages
 153	 */
 154	split_page(page, order);
 155	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
 156		__free_page(p);
 157
 158	__dma_clear_buffer(page, size, coherent_flag);
 159
 160	return page;
 161}
 162
 163/*
 164 * Free a DMA buffer.  'size' must be page aligned.
 165 */
 166static void __dma_free_buffer(struct page *page, size_t size)
 167{
 168	struct page *e = page + (size >> PAGE_SHIFT);
 169
 170	while (page < e) {
 171		__free_page(page);
 172		page++;
 173	}
 174}
 175
 
 
 176static void *__alloc_from_contiguous(struct device *dev, size_t size,
 177				     pgprot_t prot, struct page **ret_page,
 178				     const void *caller, bool want_vaddr,
 179				     int coherent_flag, gfp_t gfp);
 180
 181static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
 182				 pgprot_t prot, struct page **ret_page,
 183				 const void *caller, bool want_vaddr);
 184
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 185#define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256K
 186static struct gen_pool *atomic_pool __ro_after_init;
 187
 188static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;
 189
 190static int __init early_coherent_pool(char *p)
 191{
 192	atomic_pool_size = memparse(p, &p);
 193	return 0;
 194}
 195early_param("coherent_pool", early_coherent_pool);
 196
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 197/*
 198 * Initialise the coherent pool for atomic allocations.
 199 */
 200static int __init atomic_pool_init(void)
 201{
 202	pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
 203	gfp_t gfp = GFP_KERNEL | GFP_DMA;
 204	struct page *page;
 205	void *ptr;
 206
 207	atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
 208	if (!atomic_pool)
 209		goto out;
 210	/*
 211	 * The atomic pool is only used for non-coherent allocations
 212	 * so we must pass NORMAL for coherent_flag.
 213	 */
 214	if (dev_get_cma_area(NULL))
 215		ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
 216				      &page, atomic_pool_init, true, NORMAL,
 217				      GFP_KERNEL);
 218	else
 219		ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
 220					   &page, atomic_pool_init, true);
 221	if (ptr) {
 222		int ret;
 223
 224		ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
 225					page_to_phys(page),
 226					atomic_pool_size, -1);
 227		if (ret)
 228			goto destroy_genpool;
 229
 230		gen_pool_set_algo(atomic_pool,
 231				gen_pool_first_fit_order_align,
 232				NULL);
 233		pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n",
 234		       atomic_pool_size / 1024);
 235		return 0;
 236	}
 237
 238destroy_genpool:
 239	gen_pool_destroy(atomic_pool);
 240	atomic_pool = NULL;
 241out:
 242	pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
 243	       atomic_pool_size / 1024);
 244	return -ENOMEM;
 245}
 246/*
 247 * CMA is activated by core_initcall, so we must be called after it.
 248 */
 249postcore_initcall(atomic_pool_init);
 250
 251#ifdef CONFIG_CMA_AREAS
 252struct dma_contig_early_reserve {
 253	phys_addr_t base;
 254	unsigned long size;
 255};
 256
 257static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
 258
 259static int dma_mmu_remap_num __initdata;
 260
 261#ifdef CONFIG_DMA_CMA
 262void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
 263{
 264	dma_mmu_remap[dma_mmu_remap_num].base = base;
 265	dma_mmu_remap[dma_mmu_remap_num].size = size;
 266	dma_mmu_remap_num++;
 267}
 268#endif
 269
 270void __init dma_contiguous_remap(void)
 271{
 272	int i;
 273	for (i = 0; i < dma_mmu_remap_num; i++) {
 274		phys_addr_t start = dma_mmu_remap[i].base;
 275		phys_addr_t end = start + dma_mmu_remap[i].size;
 276		struct map_desc map;
 277		unsigned long addr;
 278
 279		if (end > arm_lowmem_limit)
 280			end = arm_lowmem_limit;
 281		if (start >= end)
 282			continue;
 283
 284		map.pfn = __phys_to_pfn(start);
 285		map.virtual = __phys_to_virt(start);
 286		map.length = end - start;
 287		map.type = MT_MEMORY_DMA_READY;
 288
 289		/*
 290		 * Clear previous low-memory mapping to ensure that the
 291		 * TLB does not see any conflicting entries, then flush
 292		 * the TLB of the old entries before creating new mappings.
 293		 *
 294		 * This ensures that any speculatively loaded TLB entries
 295		 * (even though they may be rare) can not cause any problems,
 296		 * and ensures that this code is architecturally compliant.
 297		 */
 298		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
 299		     addr += PMD_SIZE)
 300			pmd_clear(pmd_off_k(addr));
 301
 302		flush_tlb_kernel_range(__phys_to_virt(start),
 303				       __phys_to_virt(end));
 304
 305		iotable_init(&map, 1);
 306	}
 307}
 308#endif
 309
 310static int __dma_update_pte(pte_t *pte, unsigned long addr, void *data)
 
 311{
 312	struct page *page = virt_to_page((void *)addr);
 313	pgprot_t prot = *(pgprot_t *)data;
 314
 315	set_pte_ext(pte, mk_pte(page, prot), 0);
 316	return 0;
 317}
 318
 319static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
 320{
 321	unsigned long start = (unsigned long) page_address(page);
 322	unsigned end = start + size;
 323
 324	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
 325	flush_tlb_kernel_range(start, end);
 326}
 327
 328static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
 329				 pgprot_t prot, struct page **ret_page,
 330				 const void *caller, bool want_vaddr)
 331{
 332	struct page *page;
 333	void *ptr = NULL;
 334	/*
 335	 * __alloc_remap_buffer is only called when the device is
 336	 * non-coherent
 337	 */
 338	page = __dma_alloc_buffer(dev, size, gfp, NORMAL);
 339	if (!page)
 340		return NULL;
 341	if (!want_vaddr)
 342		goto out;
 343
 344	ptr = dma_common_contiguous_remap(page, size, prot, caller);
 345	if (!ptr) {
 346		__dma_free_buffer(page, size);
 347		return NULL;
 348	}
 349
 350 out:
 351	*ret_page = page;
 352	return ptr;
 353}
 354
 355static void *__alloc_from_pool(size_t size, struct page **ret_page)
 356{
 357	unsigned long val;
 358	void *ptr = NULL;
 359
 360	if (!atomic_pool) {
 361		WARN(1, "coherent pool not initialised!\n");
 362		return NULL;
 363	}
 364
 365	val = gen_pool_alloc(atomic_pool, size);
 366	if (val) {
 367		phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
 368
 369		*ret_page = phys_to_page(phys);
 370		ptr = (void *)val;
 371	}
 372
 373	return ptr;
 374}
 375
 376static bool __in_atomic_pool(void *start, size_t size)
 377{
 378	return gen_pool_has_addr(atomic_pool, (unsigned long)start, size);
 379}
 380
 381static int __free_from_pool(void *start, size_t size)
 382{
 383	if (!__in_atomic_pool(start, size))
 384		return 0;
 385
 386	gen_pool_free(atomic_pool, (unsigned long)start, size);
 387
 388	return 1;
 389}
 390
 391static void *__alloc_from_contiguous(struct device *dev, size_t size,
 392				     pgprot_t prot, struct page **ret_page,
 393				     const void *caller, bool want_vaddr,
 394				     int coherent_flag, gfp_t gfp)
 395{
 396	unsigned long order = get_order(size);
 397	size_t count = size >> PAGE_SHIFT;
 398	struct page *page;
 399	void *ptr = NULL;
 400
 401	page = dma_alloc_from_contiguous(dev, count, order, gfp & __GFP_NOWARN);
 402	if (!page)
 403		return NULL;
 404
 405	__dma_clear_buffer(page, size, coherent_flag);
 406
 407	if (!want_vaddr)
 408		goto out;
 409
 410	if (PageHighMem(page)) {
 411		ptr = dma_common_contiguous_remap(page, size, prot, caller);
 412		if (!ptr) {
 413			dma_release_from_contiguous(dev, page, count);
 414			return NULL;
 415		}
 416	} else {
 417		__dma_remap(page, size, prot);
 418		ptr = page_address(page);
 419	}
 420
 421 out:
 422	*ret_page = page;
 423	return ptr;
 424}
 425
 426static void __free_from_contiguous(struct device *dev, struct page *page,
 427				   void *cpu_addr, size_t size, bool want_vaddr)
 428{
 429	if (want_vaddr) {
 430		if (PageHighMem(page))
 431			dma_common_free_remap(cpu_addr, size);
 432		else
 433			__dma_remap(page, size, PAGE_KERNEL);
 434	}
 435	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
 436}
 437
 438static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot)
 439{
 440	prot = (attrs & DMA_ATTR_WRITE_COMBINE) ?
 441			pgprot_writecombine(prot) :
 442			pgprot_dmacoherent(prot);
 443	return prot;
 444}
 445
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 446static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
 447				   struct page **ret_page)
 448{
 449	struct page *page;
 450	/* __alloc_simple_buffer is only called when the device is coherent */
 451	page = __dma_alloc_buffer(dev, size, gfp, COHERENT);
 452	if (!page)
 453		return NULL;
 454
 455	*ret_page = page;
 456	return page_address(page);
 457}
 458
 459static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
 460				    struct page **ret_page)
 461{
 462	return __alloc_simple_buffer(args->dev, args->size, args->gfp,
 463				     ret_page);
 464}
 465
 466static void simple_allocator_free(struct arm_dma_free_args *args)
 467{
 468	__dma_free_buffer(args->page, args->size);
 469}
 470
 471static struct arm_dma_allocator simple_allocator = {
 472	.alloc = simple_allocator_alloc,
 473	.free = simple_allocator_free,
 474};
 475
 476static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
 477				 struct page **ret_page)
 478{
 479	return __alloc_from_contiguous(args->dev, args->size, args->prot,
 480				       ret_page, args->caller,
 481				       args->want_vaddr, args->coherent_flag,
 482				       args->gfp);
 483}
 484
 485static void cma_allocator_free(struct arm_dma_free_args *args)
 486{
 487	__free_from_contiguous(args->dev, args->page, args->cpu_addr,
 488			       args->size, args->want_vaddr);
 489}
 490
 491static struct arm_dma_allocator cma_allocator = {
 492	.alloc = cma_allocator_alloc,
 493	.free = cma_allocator_free,
 494};
 495
 496static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
 497				  struct page **ret_page)
 498{
 499	return __alloc_from_pool(args->size, ret_page);
 500}
 501
 502static void pool_allocator_free(struct arm_dma_free_args *args)
 503{
 504	__free_from_pool(args->cpu_addr, args->size);
 505}
 506
 507static struct arm_dma_allocator pool_allocator = {
 508	.alloc = pool_allocator_alloc,
 509	.free = pool_allocator_free,
 510};
 511
 512static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
 513				   struct page **ret_page)
 514{
 515	return __alloc_remap_buffer(args->dev, args->size, args->gfp,
 516				    args->prot, ret_page, args->caller,
 517				    args->want_vaddr);
 518}
 519
 520static void remap_allocator_free(struct arm_dma_free_args *args)
 521{
 522	if (args->want_vaddr)
 523		dma_common_free_remap(args->cpu_addr, args->size);
 524
 525	__dma_free_buffer(args->page, args->size);
 526}
 527
 528static struct arm_dma_allocator remap_allocator = {
 529	.alloc = remap_allocator_alloc,
 530	.free = remap_allocator_free,
 531};
 532
 533static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
 534			 gfp_t gfp, pgprot_t prot, bool is_coherent,
 535			 unsigned long attrs, const void *caller)
 536{
 537	u64 mask = min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
 538	struct page *page = NULL;
 539	void *addr;
 540	bool allowblock, cma;
 541	struct arm_dma_buffer *buf;
 542	struct arm_dma_alloc_args args = {
 543		.dev = dev,
 544		.size = PAGE_ALIGN(size),
 545		.gfp = gfp,
 546		.prot = prot,
 547		.caller = caller,
 548		.want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
 549		.coherent_flag = is_coherent ? COHERENT : NORMAL,
 550	};
 551
 552#ifdef CONFIG_DMA_API_DEBUG
 553	u64 limit = (mask + 1) & ~mask;
 554	if (limit && size >= limit) {
 555		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
 556			size, mask);
 557		return NULL;
 558	}
 559#endif
 560
 
 
 
 561	buf = kzalloc(sizeof(*buf),
 562		      gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
 563	if (!buf)
 564		return NULL;
 565
 566	if (mask < 0xffffffffULL)
 567		gfp |= GFP_DMA;
 568
 
 
 
 
 
 
 
 
 569	args.gfp = gfp;
 570
 571	*handle = DMA_MAPPING_ERROR;
 572	allowblock = gfpflags_allow_blocking(gfp);
 573	cma = allowblock ? dev_get_cma_area(dev) : NULL;
 574
 575	if (cma)
 576		buf->allocator = &cma_allocator;
 577	else if (is_coherent)
 578		buf->allocator = &simple_allocator;
 579	else if (allowblock)
 580		buf->allocator = &remap_allocator;
 581	else
 582		buf->allocator = &pool_allocator;
 583
 584	addr = buf->allocator->alloc(&args, &page);
 585
 586	if (page) {
 587		unsigned long flags;
 588
 589		*handle = phys_to_dma(dev, page_to_phys(page));
 590		buf->virt = args.want_vaddr ? addr : page;
 591
 592		spin_lock_irqsave(&arm_dma_bufs_lock, flags);
 593		list_add(&buf->list, &arm_dma_bufs);
 594		spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
 595	} else {
 596		kfree(buf);
 597	}
 598
 599	return args.want_vaddr ? addr : page;
 600}
 601
 602/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 603 * Free a buffer as defined by the above mapping.
 604 */
 605static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
 606			   dma_addr_t handle, unsigned long attrs,
 607			   bool is_coherent)
 608{
 609	struct page *page = phys_to_page(dma_to_phys(dev, handle));
 610	struct arm_dma_buffer *buf;
 611	struct arm_dma_free_args args = {
 612		.dev = dev,
 613		.size = PAGE_ALIGN(size),
 614		.cpu_addr = cpu_addr,
 615		.page = page,
 616		.want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
 617	};
 618
 619	buf = arm_dma_buffer_find(cpu_addr);
 620	if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
 621		return;
 622
 623	buf->allocator->free(&args);
 624	kfree(buf);
 625}
 626
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 627static void dma_cache_maint_page(struct page *page, unsigned long offset,
 628	size_t size, enum dma_data_direction dir,
 629	void (*op)(const void *, size_t, int))
 630{
 631	unsigned long pfn;
 632	size_t left = size;
 633
 634	pfn = page_to_pfn(page) + offset / PAGE_SIZE;
 635	offset %= PAGE_SIZE;
 636
 637	/*
 638	 * A single sg entry may refer to multiple physically contiguous
 639	 * pages.  But we still need to process highmem pages individually.
 640	 * If highmem is not configured then the bulk of this loop gets
 641	 * optimized out.
 642	 */
 643	do {
 644		size_t len = left;
 645		void *vaddr;
 646
 647		page = pfn_to_page(pfn);
 648
 649		if (PageHighMem(page)) {
 650			if (len + offset > PAGE_SIZE)
 651				len = PAGE_SIZE - offset;
 652
 653			if (cache_is_vipt_nonaliasing()) {
 654				vaddr = kmap_atomic(page);
 655				op(vaddr + offset, len, dir);
 656				kunmap_atomic(vaddr);
 657			} else {
 658				vaddr = kmap_high_get(page);
 659				if (vaddr) {
 660					op(vaddr + offset, len, dir);
 661					kunmap_high(page);
 662				}
 663			}
 664		} else {
 665			vaddr = page_address(page) + offset;
 666			op(vaddr, len, dir);
 667		}
 668		offset = 0;
 669		pfn++;
 670		left -= len;
 671	} while (left);
 672}
 673
 674/*
 675 * Make an area consistent for devices.
 676 * Note: Drivers should NOT use this function directly.
 
 677 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
 678 */
 679static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
 680	size_t size, enum dma_data_direction dir)
 681{
 682	phys_addr_t paddr;
 683
 684	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
 685
 686	paddr = page_to_phys(page) + off;
 687	if (dir == DMA_FROM_DEVICE) {
 688		outer_inv_range(paddr, paddr + size);
 689	} else {
 690		outer_clean_range(paddr, paddr + size);
 691	}
 692	/* FIXME: non-speculating: flush on bidirectional mappings? */
 693}
 694
 695static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
 696	size_t size, enum dma_data_direction dir)
 697{
 698	phys_addr_t paddr = page_to_phys(page) + off;
 699
 700	/* FIXME: non-speculating: not required */
 701	/* in any case, don't bother invalidating if DMA to device */
 702	if (dir != DMA_TO_DEVICE) {
 703		outer_inv_range(paddr, paddr + size);
 704
 705		dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
 706	}
 707
 708	/*
 709	 * Mark the D-cache clean for these pages to avoid extra flushing.
 710	 */
 711	if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
 712		struct folio *folio = pfn_folio(paddr / PAGE_SIZE);
 713		size_t offset = offset_in_folio(folio, paddr);
 714
 715		for (;;) {
 716			size_t sz = folio_size(folio) - offset;
 717
 718			if (size < sz)
 719				break;
 720			if (!offset)
 721				set_bit(PG_dcache_clean, &folio->flags);
 722			offset = 0;
 723			size -= sz;
 724			if (!size)
 725				break;
 726			folio = folio_next(folio);
 
 727		}
 728	}
 729}
 730
 731#ifdef CONFIG_ARM_DMA_USE_IOMMU
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 732
 733static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs)
 
 
 
 
 
 
 
 
 
 
 
 734{
 735	int prot = 0;
 
 736
 737	if (attrs & DMA_ATTR_PRIVILEGED)
 738		prot |= IOMMU_PRIV;
 739
 740	switch (dir) {
 741	case DMA_BIDIRECTIONAL:
 742		return prot | IOMMU_READ | IOMMU_WRITE;
 743	case DMA_TO_DEVICE:
 744		return prot | IOMMU_READ;
 745	case DMA_FROM_DEVICE:
 746		return prot | IOMMU_WRITE;
 747	default:
 748		return prot;
 749	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 750}
 751
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 752/* IOMMU */
 753
 754static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
 755
 756static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
 757				      size_t size)
 758{
 759	unsigned int order = get_order(size);
 760	unsigned int align = 0;
 761	unsigned int count, start;
 762	size_t mapping_size = mapping->bits << PAGE_SHIFT;
 763	unsigned long flags;
 764	dma_addr_t iova;
 765	int i;
 766
 767	if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
 768		order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
 769
 770	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
 771	align = (1 << order) - 1;
 772
 773	spin_lock_irqsave(&mapping->lock, flags);
 774	for (i = 0; i < mapping->nr_bitmaps; i++) {
 775		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
 776				mapping->bits, 0, count, align);
 777
 778		if (start > mapping->bits)
 779			continue;
 780
 781		bitmap_set(mapping->bitmaps[i], start, count);
 782		break;
 783	}
 784
 785	/*
 786	 * No unused range found. Try to extend the existing mapping
 787	 * and perform a second attempt to reserve an IO virtual
 788	 * address range of size bytes.
 789	 */
 790	if (i == mapping->nr_bitmaps) {
 791		if (extend_iommu_mapping(mapping)) {
 792			spin_unlock_irqrestore(&mapping->lock, flags);
 793			return DMA_MAPPING_ERROR;
 794		}
 795
 796		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
 797				mapping->bits, 0, count, align);
 798
 799		if (start > mapping->bits) {
 800			spin_unlock_irqrestore(&mapping->lock, flags);
 801			return DMA_MAPPING_ERROR;
 802		}
 803
 804		bitmap_set(mapping->bitmaps[i], start, count);
 805	}
 806	spin_unlock_irqrestore(&mapping->lock, flags);
 807
 808	iova = mapping->base + (mapping_size * i);
 809	iova += start << PAGE_SHIFT;
 810
 811	return iova;
 812}
 813
 814static inline void __free_iova(struct dma_iommu_mapping *mapping,
 815			       dma_addr_t addr, size_t size)
 816{
 817	unsigned int start, count;
 818	size_t mapping_size = mapping->bits << PAGE_SHIFT;
 819	unsigned long flags;
 820	dma_addr_t bitmap_base;
 821	u32 bitmap_index;
 822
 823	if (!size)
 824		return;
 825
 826	bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
 827	BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
 828
 829	bitmap_base = mapping->base + mapping_size * bitmap_index;
 830
 831	start = (addr - bitmap_base) >>	PAGE_SHIFT;
 832
 833	if (addr + size > bitmap_base + mapping_size) {
 834		/*
 835		 * The address range to be freed reaches into the iova
 836		 * range of the next bitmap. This should not happen as
 837		 * we don't allow this in __alloc_iova (at the
 838		 * moment).
 839		 */
 840		BUG();
 841	} else
 842		count = size >> PAGE_SHIFT;
 843
 844	spin_lock_irqsave(&mapping->lock, flags);
 845	bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
 846	spin_unlock_irqrestore(&mapping->lock, flags);
 847}
 848
 849/* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
 850static const int iommu_order_array[] = { 9, 8, 4, 0 };
 851
 852static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
 853					  gfp_t gfp, unsigned long attrs,
 854					  int coherent_flag)
 855{
 856	struct page **pages;
 857	int count = size >> PAGE_SHIFT;
 858	int array_size = count * sizeof(struct page *);
 859	int i = 0;
 860	int order_idx = 0;
 861
 862	pages = kvzalloc(array_size, GFP_KERNEL);
 
 
 
 863	if (!pages)
 864		return NULL;
 865
 866	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS)
 867	{
 868		unsigned long order = get_order(size);
 869		struct page *page;
 870
 871		page = dma_alloc_from_contiguous(dev, count, order,
 872						 gfp & __GFP_NOWARN);
 873		if (!page)
 874			goto error;
 875
 876		__dma_clear_buffer(page, size, coherent_flag);
 877
 878		for (i = 0; i < count; i++)
 879			pages[i] = page + i;
 880
 881		return pages;
 882	}
 883
 884	/* Go straight to 4K chunks if caller says it's OK. */
 885	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
 886		order_idx = ARRAY_SIZE(iommu_order_array) - 1;
 887
 888	/*
 889	 * IOMMU can map any pages, so himem can also be used here
 890	 */
 891	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
 892
 893	while (count) {
 894		int j, order;
 895
 896		order = iommu_order_array[order_idx];
 897
 898		/* Drop down when we get small */
 899		if (__fls(count) < order) {
 900			order_idx++;
 901			continue;
 902		}
 903
 904		if (order) {
 905			/* See if it's easy to allocate a high-order chunk */
 906			pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
 907
 908			/* Go down a notch at first sign of pressure */
 909			if (!pages[i]) {
 910				order_idx++;
 911				continue;
 912			}
 913		} else {
 914			pages[i] = alloc_pages(gfp, 0);
 915			if (!pages[i])
 916				goto error;
 917		}
 918
 919		if (order) {
 920			split_page(pages[i], order);
 921			j = 1 << order;
 922			while (--j)
 923				pages[i + j] = pages[i] + j;
 924		}
 925
 926		__dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag);
 927		i += 1 << order;
 928		count -= 1 << order;
 929	}
 930
 931	return pages;
 932error:
 933	while (i--)
 934		if (pages[i])
 935			__free_pages(pages[i], 0);
 936	kvfree(pages);
 937	return NULL;
 938}
 939
 940static int __iommu_free_buffer(struct device *dev, struct page **pages,
 941			       size_t size, unsigned long attrs)
 942{
 943	int count = size >> PAGE_SHIFT;
 944	int i;
 945
 946	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
 947		dma_release_from_contiguous(dev, pages[0], count);
 948	} else {
 949		for (i = 0; i < count; i++)
 950			if (pages[i])
 951				__free_pages(pages[i], 0);
 952	}
 953
 954	kvfree(pages);
 955	return 0;
 956}
 957
 958/*
 
 
 
 
 
 
 
 
 
 
 
 959 * Create a mapping in device IO address space for specified pages
 960 */
 961static dma_addr_t
 962__iommu_create_mapping(struct device *dev, struct page **pages, size_t size,
 963		       unsigned long attrs)
 964{
 965	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
 966	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
 967	dma_addr_t dma_addr, iova;
 968	int i;
 969
 970	dma_addr = __alloc_iova(mapping, size);
 971	if (dma_addr == DMA_MAPPING_ERROR)
 972		return dma_addr;
 973
 974	iova = dma_addr;
 975	for (i = 0; i < count; ) {
 976		int ret;
 977
 978		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
 979		phys_addr_t phys = page_to_phys(pages[i]);
 980		unsigned int len, j;
 981
 982		for (j = i + 1; j < count; j++, next_pfn++)
 983			if (page_to_pfn(pages[j]) != next_pfn)
 984				break;
 985
 986		len = (j - i) << PAGE_SHIFT;
 987		ret = iommu_map(mapping->domain, iova, phys, len,
 988				__dma_info_to_prot(DMA_BIDIRECTIONAL, attrs),
 989				GFP_KERNEL);
 990		if (ret < 0)
 991			goto fail;
 992		iova += len;
 993		i = j;
 994	}
 995	return dma_addr;
 996fail:
 997	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
 998	__free_iova(mapping, dma_addr, size);
 999	return DMA_MAPPING_ERROR;
1000}
1001
1002static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1003{
1004	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1005
1006	/*
1007	 * add optional in-page offset from iova to size and align
1008	 * result to page size
1009	 */
1010	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1011	iova &= PAGE_MASK;
1012
1013	iommu_unmap(mapping->domain, iova, size);
1014	__free_iova(mapping, iova, size);
1015	return 0;
1016}
1017
1018static struct page **__atomic_get_pages(void *addr)
1019{
1020	struct page *page;
1021	phys_addr_t phys;
1022
1023	phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1024	page = phys_to_page(phys);
1025
1026	return (struct page **)page;
1027}
1028
1029static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs)
1030{
 
 
1031	if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1032		return __atomic_get_pages(cpu_addr);
1033
1034	if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1035		return cpu_addr;
1036
1037	return dma_common_find_pages(cpu_addr);
 
 
 
1038}
1039
1040static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp,
1041				  dma_addr_t *handle, int coherent_flag,
1042				  unsigned long attrs)
1043{
1044	struct page *page;
1045	void *addr;
1046
1047	if (coherent_flag  == COHERENT)
1048		addr = __alloc_simple_buffer(dev, size, gfp, &page);
1049	else
1050		addr = __alloc_from_pool(size, &page);
1051	if (!addr)
1052		return NULL;
1053
1054	*handle = __iommu_create_mapping(dev, &page, size, attrs);
1055	if (*handle == DMA_MAPPING_ERROR)
1056		goto err_mapping;
1057
1058	return addr;
1059
1060err_mapping:
1061	__free_from_pool(addr, size);
1062	return NULL;
1063}
1064
1065static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1066			dma_addr_t handle, size_t size, int coherent_flag)
1067{
1068	__iommu_remove_mapping(dev, handle, size);
1069	if (coherent_flag == COHERENT)
1070		__dma_free_buffer(virt_to_page(cpu_addr), size);
1071	else
1072		__free_from_pool(cpu_addr, size);
1073}
1074
1075static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1076	    dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1077{
1078	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1079	struct page **pages;
1080	void *addr = NULL;
1081	int coherent_flag = dev->dma_coherent ? COHERENT : NORMAL;
1082
1083	*handle = DMA_MAPPING_ERROR;
1084	size = PAGE_ALIGN(size);
1085
1086	if (coherent_flag  == COHERENT || !gfpflags_allow_blocking(gfp))
1087		return __iommu_alloc_simple(dev, size, gfp, handle,
1088					    coherent_flag, attrs);
1089
1090	pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag);
 
 
 
 
 
 
 
 
 
1091	if (!pages)
1092		return NULL;
1093
1094	*handle = __iommu_create_mapping(dev, pages, size, attrs);
1095	if (*handle == DMA_MAPPING_ERROR)
1096		goto err_buffer;
1097
1098	if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1099		return pages;
1100
1101	addr = dma_common_pages_remap(pages, size, prot,
1102				   __builtin_return_address(0));
1103	if (!addr)
1104		goto err_mapping;
1105
1106	return addr;
1107
1108err_mapping:
1109	__iommu_remove_mapping(dev, *handle, size);
1110err_buffer:
1111	__iommu_free_buffer(dev, pages, size, attrs);
1112	return NULL;
1113}
1114
1115static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1116		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
1117		    unsigned long attrs)
1118{
 
 
1119	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1120	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1121	int err;
 
 
1122
1123	if (!pages)
1124		return -ENXIO;
1125
1126	if (vma->vm_pgoff >= nr_pages)
1127		return -ENXIO;
1128
1129	if (!dev->dma_coherent)
1130		vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1131
1132	err = vm_map_pages(vma, pages, nr_pages);
1133	if (err)
1134		pr_err("Remapping memory failed: %d\n", err);
 
 
 
 
 
 
1135
1136	return err;
1137}
1138
1139/*
1140 * free a page as defined by the above mapping.
1141 * Must not be called with IRQs disabled.
1142 */
1143static void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1144	dma_addr_t handle, unsigned long attrs)
1145{
1146	int coherent_flag = dev->dma_coherent ? COHERENT : NORMAL;
1147	struct page **pages;
1148	size = PAGE_ALIGN(size);
1149
1150	if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) {
1151		__iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag);
1152		return;
1153	}
1154
1155	pages = __iommu_get_pages(cpu_addr, attrs);
1156	if (!pages) {
1157		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1158		return;
1159	}
1160
1161	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0)
1162		dma_common_free_remap(cpu_addr, size);
 
 
1163
1164	__iommu_remove_mapping(dev, handle, size);
1165	__iommu_free_buffer(dev, pages, size, attrs);
1166}
1167
1168static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1169				 void *cpu_addr, dma_addr_t dma_addr,
1170				 size_t size, unsigned long attrs)
1171{
1172	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1173	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1174
1175	if (!pages)
1176		return -ENXIO;
1177
1178	return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1179					 GFP_KERNEL);
1180}
1181
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1182/*
1183 * Map a part of the scatter-gather list into contiguous io address space
1184 */
1185static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1186			  size_t size, dma_addr_t *handle,
1187			  enum dma_data_direction dir, unsigned long attrs)
 
1188{
1189	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1190	dma_addr_t iova, iova_base;
1191	int ret = 0;
1192	unsigned int count;
1193	struct scatterlist *s;
1194	int prot;
1195
1196	size = PAGE_ALIGN(size);
1197	*handle = DMA_MAPPING_ERROR;
1198
1199	iova_base = iova = __alloc_iova(mapping, size);
1200	if (iova == DMA_MAPPING_ERROR)
1201		return -ENOMEM;
1202
1203	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1204		phys_addr_t phys = page_to_phys(sg_page(s));
1205		unsigned int len = PAGE_ALIGN(s->offset + s->length);
1206
1207		if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
 
1208			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1209
1210		prot = __dma_info_to_prot(dir, attrs);
1211
1212		ret = iommu_map(mapping->domain, iova, phys, len, prot,
1213				GFP_KERNEL);
1214		if (ret < 0)
1215			goto fail;
1216		count += len >> PAGE_SHIFT;
1217		iova += len;
1218	}
1219	*handle = iova_base;
1220
1221	return 0;
1222fail:
1223	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1224	__free_iova(mapping, iova_base, size);
1225	return ret;
1226}
1227
1228/**
1229 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1230 * @dev: valid struct device pointer
1231 * @sg: list of buffers
1232 * @nents: number of buffers to map
1233 * @dir: DMA transfer direction
1234 *
1235 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1236 * The scatter gather list elements are merged together (if possible) and
1237 * tagged with the appropriate dma address and length. They are obtained via
1238 * sg_dma_{address,length}.
1239 */
1240static int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1241		int nents, enum dma_data_direction dir, unsigned long attrs)
1242{
1243	struct scatterlist *s = sg, *dma = sg, *start = sg;
1244	int i, count = 0, ret;
1245	unsigned int offset = s->offset;
1246	unsigned int size = s->offset + s->length;
1247	unsigned int max = dma_get_max_seg_size(dev);
1248
1249	for (i = 1; i < nents; i++) {
1250		s = sg_next(s);
1251
 
1252		s->dma_length = 0;
1253
1254		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1255			ret = __map_sg_chunk(dev, start, size,
1256					     &dma->dma_address, dir, attrs);
1257			if (ret < 0)
1258				goto bad_mapping;
1259
1260			dma->dma_address += offset;
1261			dma->dma_length = size - offset;
1262
1263			size = offset = s->offset;
1264			start = s;
1265			dma = sg_next(dma);
1266			count += 1;
1267		}
1268		size += s->length;
1269	}
1270	ret = __map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs);
1271	if (ret < 0)
1272		goto bad_mapping;
1273
1274	dma->dma_address += offset;
1275	dma->dma_length = size - offset;
1276
1277	return count+1;
1278
1279bad_mapping:
1280	for_each_sg(sg, s, count, i)
1281		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1282	if (ret == -ENOMEM)
1283		return ret;
1284	return -EINVAL;
1285}
1286
1287/**
1288 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1289 * @dev: valid struct device pointer
1290 * @sg: list of buffers
1291 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1292 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1293 *
1294 * Unmap a set of streaming mode DMA translations.  Again, CPU access
1295 * rules concerning calls here are the same as for dma_unmap_single().
 
 
1296 */
1297static void arm_iommu_unmap_sg(struct device *dev,
1298			       struct scatterlist *sg, int nents,
1299			       enum dma_data_direction dir,
1300			       unsigned long attrs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1301{
1302	struct scatterlist *s;
1303	int i;
1304
1305	for_each_sg(sg, s, nents, i) {
1306		if (sg_dma_len(s))
1307			__iommu_remove_mapping(dev, sg_dma_address(s),
1308					       sg_dma_len(s));
1309		if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
 
1310			__dma_page_dev_to_cpu(sg_page(s), s->offset,
1311					      s->length, dir);
1312	}
1313}
1314
1315/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1316 * arm_iommu_sync_sg_for_cpu
1317 * @dev: valid struct device pointer
1318 * @sg: list of buffers
1319 * @nents: number of buffers to map (returned from dma_map_sg)
1320 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1321 */
1322static void arm_iommu_sync_sg_for_cpu(struct device *dev,
1323			struct scatterlist *sg,
1324			int nents, enum dma_data_direction dir)
1325{
1326	struct scatterlist *s;
1327	int i;
1328
1329	if (dev->dma_coherent)
1330		return;
1331
1332	for_each_sg(sg, s, nents, i)
1333		__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1334
1335}
1336
1337/**
1338 * arm_iommu_sync_sg_for_device
1339 * @dev: valid struct device pointer
1340 * @sg: list of buffers
1341 * @nents: number of buffers to map (returned from dma_map_sg)
1342 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1343 */
1344static void arm_iommu_sync_sg_for_device(struct device *dev,
1345			struct scatterlist *sg,
1346			int nents, enum dma_data_direction dir)
1347{
1348	struct scatterlist *s;
1349	int i;
1350
1351	if (dev->dma_coherent)
1352		return;
1353
1354	for_each_sg(sg, s, nents, i)
1355		__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1356}
1357
 
1358/**
1359 * arm_iommu_map_page
1360 * @dev: valid struct device pointer
1361 * @page: page that buffer resides in
1362 * @offset: offset into page for start of buffer
1363 * @size: size of buffer to map
1364 * @dir: DMA transfer direction
1365 *
1366 * IOMMU aware version of arm_dma_map_page()
1367 */
1368static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1369	     unsigned long offset, size_t size, enum dma_data_direction dir,
1370	     unsigned long attrs)
1371{
1372	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1373	dma_addr_t dma_addr;
1374	int ret, prot, len = PAGE_ALIGN(size + offset);
1375
1376	if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1377		__dma_page_cpu_to_dev(page, offset, size, dir);
1378
1379	dma_addr = __alloc_iova(mapping, len);
1380	if (dma_addr == DMA_MAPPING_ERROR)
1381		return dma_addr;
1382
1383	prot = __dma_info_to_prot(dir, attrs);
1384
1385	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len,
1386			prot, GFP_KERNEL);
1387	if (ret < 0)
1388		goto fail;
1389
1390	return dma_addr + offset;
1391fail:
1392	__free_iova(mapping, dma_addr, len);
1393	return DMA_MAPPING_ERROR;
1394}
1395
1396/**
1397 * arm_iommu_unmap_page
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1398 * @dev: valid struct device pointer
1399 * @handle: DMA address of buffer
1400 * @size: size of buffer (same as passed to dma_map_page)
1401 * @dir: DMA transfer direction (same as passed to dma_map_page)
1402 *
1403 * IOMMU aware version of arm_dma_unmap_page()
1404 */
1405static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1406		size_t size, enum dma_data_direction dir, unsigned long attrs)
 
1407{
1408	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1409	dma_addr_t iova = handle & PAGE_MASK;
1410	struct page *page;
1411	int offset = handle & ~PAGE_MASK;
1412	int len = PAGE_ALIGN(size + offset);
1413
1414	if (!iova)
1415		return;
1416
1417	if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) {
1418		page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1419		__dma_page_dev_to_cpu(page, offset, size, dir);
1420	}
1421
1422	iommu_unmap(mapping->domain, iova, len);
1423	__free_iova(mapping, iova, len);
1424}
1425
1426/**
1427 * arm_iommu_map_resource - map a device resource for DMA
1428 * @dev: valid struct device pointer
1429 * @phys_addr: physical address of resource
1430 * @size: size of resource to map
1431 * @dir: DMA transfer direction
1432 */
1433static dma_addr_t arm_iommu_map_resource(struct device *dev,
1434		phys_addr_t phys_addr, size_t size,
1435		enum dma_data_direction dir, unsigned long attrs)
1436{
1437	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1438	dma_addr_t dma_addr;
1439	int ret, prot;
1440	phys_addr_t addr = phys_addr & PAGE_MASK;
1441	unsigned int offset = phys_addr & ~PAGE_MASK;
1442	size_t len = PAGE_ALIGN(size + offset);
1443
1444	dma_addr = __alloc_iova(mapping, len);
1445	if (dma_addr == DMA_MAPPING_ERROR)
1446		return dma_addr;
1447
1448	prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO;
1449
1450	ret = iommu_map(mapping->domain, dma_addr, addr, len, prot, GFP_KERNEL);
1451	if (ret < 0)
1452		goto fail;
1453
1454	return dma_addr + offset;
1455fail:
1456	__free_iova(mapping, dma_addr, len);
1457	return DMA_MAPPING_ERROR;
1458}
1459
1460/**
1461 * arm_iommu_unmap_resource - unmap a device DMA resource
1462 * @dev: valid struct device pointer
1463 * @dma_handle: DMA address to resource
1464 * @size: size of resource to map
1465 * @dir: DMA transfer direction
 
 
1466 */
1467static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle,
1468		size_t size, enum dma_data_direction dir,
1469		unsigned long attrs)
1470{
1471	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1472	dma_addr_t iova = dma_handle & PAGE_MASK;
1473	unsigned int offset = dma_handle & ~PAGE_MASK;
1474	size_t len = PAGE_ALIGN(size + offset);
 
1475
1476	if (!iova)
1477		return;
1478
 
 
 
1479	iommu_unmap(mapping->domain, iova, len);
1480	__free_iova(mapping, iova, len);
1481}
1482
1483static void arm_iommu_sync_single_for_cpu(struct device *dev,
1484		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1485{
1486	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1487	dma_addr_t iova = handle & PAGE_MASK;
1488	struct page *page;
1489	unsigned int offset = handle & ~PAGE_MASK;
1490
1491	if (dev->dma_coherent || !iova)
1492		return;
1493
1494	page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1495	__dma_page_dev_to_cpu(page, offset, size, dir);
1496}
1497
1498static void arm_iommu_sync_single_for_device(struct device *dev,
1499		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1500{
1501	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1502	dma_addr_t iova = handle & PAGE_MASK;
1503	struct page *page;
1504	unsigned int offset = handle & ~PAGE_MASK;
1505
1506	if (dev->dma_coherent || !iova)
1507		return;
1508
1509	page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1510	__dma_page_cpu_to_dev(page, offset, size, dir);
1511}
1512
1513static const struct dma_map_ops iommu_ops = {
1514	.alloc		= arm_iommu_alloc_attrs,
1515	.free		= arm_iommu_free_attrs,
1516	.mmap		= arm_iommu_mmap_attrs,
1517	.get_sgtable	= arm_iommu_get_sgtable,
1518
1519	.map_page		= arm_iommu_map_page,
1520	.unmap_page		= arm_iommu_unmap_page,
1521	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
1522	.sync_single_for_device	= arm_iommu_sync_single_for_device,
1523
1524	.map_sg			= arm_iommu_map_sg,
1525	.unmap_sg		= arm_iommu_unmap_sg,
1526	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
1527	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,
1528
1529	.map_resource		= arm_iommu_map_resource,
1530	.unmap_resource		= arm_iommu_unmap_resource,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1531};
1532
1533/**
1534 * arm_iommu_create_mapping
1535 * @bus: pointer to the bus holding the client device (for IOMMU calls)
1536 * @base: start address of the valid IO address space
1537 * @size: maximum size of the valid IO address space
1538 *
1539 * Creates a mapping structure which holds information about used/unused
1540 * IO address ranges, which is required to perform memory allocation and
1541 * mapping with IOMMU aware functions.
1542 *
1543 * The client device need to be attached to the mapping with
1544 * arm_iommu_attach_device function.
1545 */
1546struct dma_iommu_mapping *
1547arm_iommu_create_mapping(const struct bus_type *bus, dma_addr_t base, u64 size)
1548{
1549	unsigned int bits = size >> PAGE_SHIFT;
1550	unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
1551	struct dma_iommu_mapping *mapping;
1552	int extensions = 1;
1553	int err = -ENOMEM;
1554
1555	/* currently only 32-bit DMA address space is supported */
1556	if (size > DMA_BIT_MASK(32) + 1)
1557		return ERR_PTR(-ERANGE);
1558
1559	if (!bitmap_size)
1560		return ERR_PTR(-EINVAL);
1561
1562	if (bitmap_size > PAGE_SIZE) {
1563		extensions = bitmap_size / PAGE_SIZE;
1564		bitmap_size = PAGE_SIZE;
1565	}
1566
1567	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1568	if (!mapping)
1569		goto err;
1570
1571	mapping->bitmap_size = bitmap_size;
1572	mapping->bitmaps = kcalloc(extensions, sizeof(unsigned long *),
1573				   GFP_KERNEL);
1574	if (!mapping->bitmaps)
1575		goto err2;
1576
1577	mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
1578	if (!mapping->bitmaps[0])
1579		goto err3;
1580
1581	mapping->nr_bitmaps = 1;
1582	mapping->extensions = extensions;
1583	mapping->base = base;
1584	mapping->bits = BITS_PER_BYTE * bitmap_size;
1585
1586	spin_lock_init(&mapping->lock);
1587
1588	mapping->domain = iommu_domain_alloc(bus);
1589	if (!mapping->domain)
1590		goto err4;
1591
1592	kref_init(&mapping->kref);
1593	return mapping;
1594err4:
1595	kfree(mapping->bitmaps[0]);
1596err3:
1597	kfree(mapping->bitmaps);
1598err2:
1599	kfree(mapping);
1600err:
1601	return ERR_PTR(err);
1602}
1603EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
1604
1605static void release_iommu_mapping(struct kref *kref)
1606{
1607	int i;
1608	struct dma_iommu_mapping *mapping =
1609		container_of(kref, struct dma_iommu_mapping, kref);
1610
1611	iommu_domain_free(mapping->domain);
1612	for (i = 0; i < mapping->nr_bitmaps; i++)
1613		kfree(mapping->bitmaps[i]);
1614	kfree(mapping->bitmaps);
1615	kfree(mapping);
1616}
1617
1618static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
1619{
1620	int next_bitmap;
1621
1622	if (mapping->nr_bitmaps >= mapping->extensions)
1623		return -EINVAL;
1624
1625	next_bitmap = mapping->nr_bitmaps;
1626	mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
1627						GFP_ATOMIC);
1628	if (!mapping->bitmaps[next_bitmap])
1629		return -ENOMEM;
1630
1631	mapping->nr_bitmaps++;
1632
1633	return 0;
1634}
1635
1636void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
1637{
1638	if (mapping)
1639		kref_put(&mapping->kref, release_iommu_mapping);
1640}
1641EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
1642
1643static int __arm_iommu_attach_device(struct device *dev,
1644				     struct dma_iommu_mapping *mapping)
1645{
1646	int err;
1647
1648	err = iommu_attach_device(mapping->domain, dev);
1649	if (err)
1650		return err;
1651
1652	kref_get(&mapping->kref);
1653	to_dma_iommu_mapping(dev) = mapping;
1654
1655	pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
1656	return 0;
1657}
1658
1659/**
1660 * arm_iommu_attach_device
1661 * @dev: valid struct device pointer
1662 * @mapping: io address space mapping structure (returned from
1663 *	arm_iommu_create_mapping)
1664 *
1665 * Attaches specified io address space mapping to the provided device.
1666 * This replaces the dma operations (dma_map_ops pointer) with the
1667 * IOMMU aware version.
1668 *
1669 * More than one client might be attached to the same io address space
1670 * mapping.
1671 */
1672int arm_iommu_attach_device(struct device *dev,
1673			    struct dma_iommu_mapping *mapping)
1674{
1675	int err;
1676
1677	err = __arm_iommu_attach_device(dev, mapping);
1678	if (err)
1679		return err;
1680
1681	set_dma_ops(dev, &iommu_ops);
1682	return 0;
1683}
1684EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
1685
1686/**
1687 * arm_iommu_detach_device
1688 * @dev: valid struct device pointer
1689 *
1690 * Detaches the provided device from a previously attached map.
1691 * This overwrites the dma_ops pointer with appropriate non-IOMMU ops.
1692 */
1693void arm_iommu_detach_device(struct device *dev)
1694{
1695	struct dma_iommu_mapping *mapping;
1696
1697	mapping = to_dma_iommu_mapping(dev);
1698	if (!mapping) {
1699		dev_warn(dev, "Not attached\n");
1700		return;
1701	}
1702
1703	iommu_detach_device(mapping->domain, dev);
1704	kref_put(&mapping->kref, release_iommu_mapping);
1705	to_dma_iommu_mapping(dev) = NULL;
1706	set_dma_ops(dev, NULL);
1707
1708	pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
1709}
 
 
 
 
 
 
 
 
 
 
 
 
 
1710EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
1711
1712static void arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
1713				    bool coherent)
 
 
 
 
 
1714{
1715	struct dma_iommu_mapping *mapping;
1716
 
 
 
1717	mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
1718	if (IS_ERR(mapping)) {
1719		pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
1720				size, dev_name(dev));
1721		return;
1722	}
1723
1724	if (__arm_iommu_attach_device(dev, mapping)) {
1725		pr_warn("Failed to attached device %s to IOMMU_mapping\n",
1726				dev_name(dev));
1727		arm_iommu_release_mapping(mapping);
1728		return;
1729	}
1730
1731	set_dma_ops(dev, &iommu_ops);
1732}
1733
1734static void arm_teardown_iommu_dma_ops(struct device *dev)
1735{
1736	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1737
1738	if (!mapping)
1739		return;
1740
1741	arm_iommu_detach_device(dev);
1742	arm_iommu_release_mapping(mapping);
1743}
1744
1745#else
1746
1747static void arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
1748				    bool coherent)
1749{
 
1750}
1751
1752static void arm_teardown_iommu_dma_ops(struct device *dev) { }
1753
 
 
1754#endif	/* CONFIG_ARM_DMA_USE_IOMMU */
1755
1756void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
1757			bool coherent)
1758{
1759	/*
1760	 * Due to legacy code that sets the ->dma_coherent flag from a bus
1761	 * notifier we can't just assign coherent to the ->dma_coherent flag
1762	 * here, but instead have to make sure we only set but never clear it
1763	 * for now.
1764	 */
1765	if (coherent)
1766		dev->dma_coherent = true;
1767
1768	/*
1769	 * Don't override the dma_ops if they have already been set. Ideally
1770	 * this should be the only location where dma_ops are set, remove this
1771	 * check when all other callers of set_dma_ops will have disappeared.
1772	 */
1773	if (dev->dma_ops)
1774		return;
1775
1776	if (device_iommu_mapped(dev))
1777		arm_setup_iommu_dma_ops(dev, dma_base, size, coherent);
1778
1779	xen_setup_dma_ops(dev);
1780	dev->archdata.dma_ops_setup = true;
1781}
1782
1783void arch_teardown_dma_ops(struct device *dev)
1784{
1785	if (!dev->archdata.dma_ops_setup)
1786		return;
1787
1788	arm_teardown_iommu_dma_ops(dev);
1789	/* Let arch_setup_dma_ops() start again from scratch upon re-probe */
1790	set_dma_ops(dev, NULL);
1791}
1792
1793void arch_sync_dma_for_device(phys_addr_t paddr, size_t size,
1794		enum dma_data_direction dir)
1795{
1796	__dma_page_cpu_to_dev(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
1797			      size, dir);
1798}
1799
1800void arch_sync_dma_for_cpu(phys_addr_t paddr, size_t size,
1801		enum dma_data_direction dir)
1802{
1803	__dma_page_dev_to_cpu(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
1804			      size, dir);
1805}
1806
1807void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
1808		gfp_t gfp, unsigned long attrs)
1809{
1810	return __dma_alloc(dev, size, dma_handle, gfp,
1811			   __get_dma_pgprot(attrs, PAGE_KERNEL), false,
1812			   attrs, __builtin_return_address(0));
1813}
1814
1815void arch_dma_free(struct device *dev, size_t size, void *cpu_addr,
1816		dma_addr_t dma_handle, unsigned long attrs)
1817{
1818	__arm_dma_free(dev, size, cpu_addr, dma_handle, attrs, false);
1819}
v4.6
 
   1/*
   2 *  linux/arch/arm/mm/dma-mapping.c
   3 *
   4 *  Copyright (C) 2000-2004 Russell King
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 *
  10 *  DMA uncached mapping support.
  11 */
  12#include <linux/bootmem.h>
  13#include <linux/module.h>
  14#include <linux/mm.h>
  15#include <linux/genalloc.h>
  16#include <linux/gfp.h>
  17#include <linux/errno.h>
  18#include <linux/list.h>
  19#include <linux/init.h>
  20#include <linux/device.h>
  21#include <linux/dma-mapping.h>
  22#include <linux/dma-contiguous.h>
  23#include <linux/highmem.h>
  24#include <linux/memblock.h>
  25#include <linux/slab.h>
  26#include <linux/iommu.h>
  27#include <linux/io.h>
  28#include <linux/vmalloc.h>
  29#include <linux/sizes.h>
  30#include <linux/cma.h>
  31
  32#include <asm/memory.h>
  33#include <asm/highmem.h>
  34#include <asm/cacheflush.h>
  35#include <asm/tlbflush.h>
  36#include <asm/mach/arch.h>
  37#include <asm/dma-iommu.h>
  38#include <asm/mach/map.h>
  39#include <asm/system_info.h>
  40#include <asm/dma-contiguous.h>
  41
  42#include "dma.h"
  43#include "mm.h"
  44
  45struct arm_dma_alloc_args {
  46	struct device *dev;
  47	size_t size;
  48	gfp_t gfp;
  49	pgprot_t prot;
  50	const void *caller;
  51	bool want_vaddr;
 
  52};
  53
  54struct arm_dma_free_args {
  55	struct device *dev;
  56	size_t size;
  57	void *cpu_addr;
  58	struct page *page;
  59	bool want_vaddr;
  60};
  61
 
 
 
  62struct arm_dma_allocator {
  63	void *(*alloc)(struct arm_dma_alloc_args *args,
  64		       struct page **ret_page);
  65	void (*free)(struct arm_dma_free_args *args);
  66};
  67
  68struct arm_dma_buffer {
  69	struct list_head list;
  70	void *virt;
  71	struct arm_dma_allocator *allocator;
  72};
  73
  74static LIST_HEAD(arm_dma_bufs);
  75static DEFINE_SPINLOCK(arm_dma_bufs_lock);
  76
  77static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
  78{
  79	struct arm_dma_buffer *buf, *found = NULL;
  80	unsigned long flags;
  81
  82	spin_lock_irqsave(&arm_dma_bufs_lock, flags);
  83	list_for_each_entry(buf, &arm_dma_bufs, list) {
  84		if (buf->virt == virt) {
  85			list_del(&buf->list);
  86			found = buf;
  87			break;
  88		}
  89	}
  90	spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
  91	return found;
  92}
  93
  94/*
  95 * The DMA API is built upon the notion of "buffer ownership".  A buffer
  96 * is either exclusively owned by the CPU (and therefore may be accessed
  97 * by it) or exclusively owned by the DMA device.  These helper functions
  98 * represent the transitions between these two ownership states.
  99 *
 100 * Note, however, that on later ARMs, this notion does not work due to
 101 * speculative prefetches.  We model our approach on the assumption that
 102 * the CPU does do speculative prefetches, which means we clean caches
 103 * before transfers and delay cache invalidation until transfer completion.
 104 *
 105 */
 106static void __dma_page_cpu_to_dev(struct page *, unsigned long,
 107		size_t, enum dma_data_direction);
 108static void __dma_page_dev_to_cpu(struct page *, unsigned long,
 109		size_t, enum dma_data_direction);
 110
 111/**
 112 * arm_dma_map_page - map a portion of a page for streaming DMA
 113 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 114 * @page: page that buffer resides in
 115 * @offset: offset into page for start of buffer
 116 * @size: size of buffer to map
 117 * @dir: DMA transfer direction
 118 *
 119 * Ensure that any data held in the cache is appropriately discarded
 120 * or written back.
 121 *
 122 * The device owns this memory once this call has completed.  The CPU
 123 * can regain ownership by calling dma_unmap_page().
 124 */
 125static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
 126	     unsigned long offset, size_t size, enum dma_data_direction dir,
 127	     struct dma_attrs *attrs)
 128{
 129	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
 130		__dma_page_cpu_to_dev(page, offset, size, dir);
 131	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
 132}
 133
 134static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
 135	     unsigned long offset, size_t size, enum dma_data_direction dir,
 136	     struct dma_attrs *attrs)
 137{
 138	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
 139}
 140
 141/**
 142 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
 143 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 144 * @handle: DMA address of buffer
 145 * @size: size of buffer (same as passed to dma_map_page)
 146 * @dir: DMA transfer direction (same as passed to dma_map_page)
 147 *
 148 * Unmap a page streaming mode DMA translation.  The handle and size
 149 * must match what was provided in the previous dma_map_page() call.
 150 * All other usages are undefined.
 151 *
 152 * After this call, reads by the CPU to the buffer are guaranteed to see
 153 * whatever the device wrote there.
 154 */
 155static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
 156		size_t size, enum dma_data_direction dir,
 157		struct dma_attrs *attrs)
 158{
 159	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
 160		__dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
 161				      handle & ~PAGE_MASK, size, dir);
 162}
 163
 164static void arm_dma_sync_single_for_cpu(struct device *dev,
 165		dma_addr_t handle, size_t size, enum dma_data_direction dir)
 166{
 167	unsigned int offset = handle & (PAGE_SIZE - 1);
 168	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
 169	__dma_page_dev_to_cpu(page, offset, size, dir);
 170}
 171
 172static void arm_dma_sync_single_for_device(struct device *dev,
 173		dma_addr_t handle, size_t size, enum dma_data_direction dir)
 174{
 175	unsigned int offset = handle & (PAGE_SIZE - 1);
 176	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
 177	__dma_page_cpu_to_dev(page, offset, size, dir);
 178}
 179
 180struct dma_map_ops arm_dma_ops = {
 181	.alloc			= arm_dma_alloc,
 182	.free			= arm_dma_free,
 183	.mmap			= arm_dma_mmap,
 184	.get_sgtable		= arm_dma_get_sgtable,
 185	.map_page		= arm_dma_map_page,
 186	.unmap_page		= arm_dma_unmap_page,
 187	.map_sg			= arm_dma_map_sg,
 188	.unmap_sg		= arm_dma_unmap_sg,
 189	.sync_single_for_cpu	= arm_dma_sync_single_for_cpu,
 190	.sync_single_for_device	= arm_dma_sync_single_for_device,
 191	.sync_sg_for_cpu	= arm_dma_sync_sg_for_cpu,
 192	.sync_sg_for_device	= arm_dma_sync_sg_for_device,
 193	.set_dma_mask		= arm_dma_set_mask,
 194};
 195EXPORT_SYMBOL(arm_dma_ops);
 196
 197static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
 198	dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
 199static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
 200				  dma_addr_t handle, struct dma_attrs *attrs);
 201static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
 202		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
 203		 struct dma_attrs *attrs);
 204
 205struct dma_map_ops arm_coherent_dma_ops = {
 206	.alloc			= arm_coherent_dma_alloc,
 207	.free			= arm_coherent_dma_free,
 208	.mmap			= arm_coherent_dma_mmap,
 209	.get_sgtable		= arm_dma_get_sgtable,
 210	.map_page		= arm_coherent_dma_map_page,
 211	.map_sg			= arm_dma_map_sg,
 212	.set_dma_mask		= arm_dma_set_mask,
 213};
 214EXPORT_SYMBOL(arm_coherent_dma_ops);
 215
 216static int __dma_supported(struct device *dev, u64 mask, bool warn)
 217{
 218	unsigned long max_dma_pfn;
 219
 220	/*
 221	 * If the mask allows for more memory than we can address,
 222	 * and we actually have that much memory, then we must
 223	 * indicate that DMA to this device is not supported.
 224	 */
 225	if (sizeof(mask) != sizeof(dma_addr_t) &&
 226	    mask > (dma_addr_t)~0 &&
 227	    dma_to_pfn(dev, ~0) < max_pfn - 1) {
 228		if (warn) {
 229			dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
 230				 mask);
 231			dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
 232		}
 233		return 0;
 234	}
 235
 236	max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
 237
 238	/*
 239	 * Translate the device's DMA mask to a PFN limit.  This
 240	 * PFN number includes the page which we can DMA to.
 241	 */
 242	if (dma_to_pfn(dev, mask) < max_dma_pfn) {
 243		if (warn)
 244			dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
 245				 mask,
 246				 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
 247				 max_dma_pfn + 1);
 248		return 0;
 249	}
 250
 251	return 1;
 252}
 253
 254static u64 get_coherent_dma_mask(struct device *dev)
 255{
 256	u64 mask = (u64)DMA_BIT_MASK(32);
 257
 258	if (dev) {
 259		mask = dev->coherent_dma_mask;
 260
 261		/*
 262		 * Sanity check the DMA mask - it must be non-zero, and
 263		 * must be able to be satisfied by a DMA allocation.
 264		 */
 265		if (mask == 0) {
 266			dev_warn(dev, "coherent DMA mask is unset\n");
 267			return 0;
 268		}
 269
 270		if (!__dma_supported(dev, mask, true))
 271			return 0;
 272	}
 273
 274	return mask;
 275}
 276
 277static void __dma_clear_buffer(struct page *page, size_t size)
 278{
 279	/*
 280	 * Ensure that the allocated pages are zeroed, and that any data
 281	 * lurking in the kernel direct-mapped region is invalidated.
 282	 */
 283	if (PageHighMem(page)) {
 284		phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
 285		phys_addr_t end = base + size;
 286		while (size > 0) {
 287			void *ptr = kmap_atomic(page);
 288			memset(ptr, 0, PAGE_SIZE);
 289			dmac_flush_range(ptr, ptr + PAGE_SIZE);
 
 290			kunmap_atomic(ptr);
 291			page++;
 292			size -= PAGE_SIZE;
 293		}
 294		outer_flush_range(base, end);
 
 295	} else {
 296		void *ptr = page_address(page);
 297		memset(ptr, 0, size);
 298		dmac_flush_range(ptr, ptr + size);
 299		outer_flush_range(__pa(ptr), __pa(ptr) + size);
 
 
 300	}
 301}
 302
 303/*
 304 * Allocate a DMA buffer for 'dev' of size 'size' using the
 305 * specified gfp mask.  Note that 'size' must be page aligned.
 306 */
 307static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
 
 308{
 309	unsigned long order = get_order(size);
 310	struct page *page, *p, *e;
 311
 312	page = alloc_pages(gfp, order);
 313	if (!page)
 314		return NULL;
 315
 316	/*
 317	 * Now split the huge page and free the excess pages
 318	 */
 319	split_page(page, order);
 320	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
 321		__free_page(p);
 322
 323	__dma_clear_buffer(page, size);
 324
 325	return page;
 326}
 327
 328/*
 329 * Free a DMA buffer.  'size' must be page aligned.
 330 */
 331static void __dma_free_buffer(struct page *page, size_t size)
 332{
 333	struct page *e = page + (size >> PAGE_SHIFT);
 334
 335	while (page < e) {
 336		__free_page(page);
 337		page++;
 338	}
 339}
 340
 341#ifdef CONFIG_MMU
 342
 343static void *__alloc_from_contiguous(struct device *dev, size_t size,
 344				     pgprot_t prot, struct page **ret_page,
 345				     const void *caller, bool want_vaddr);
 
 346
 347static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
 348				 pgprot_t prot, struct page **ret_page,
 349				 const void *caller, bool want_vaddr);
 350
 351static void *
 352__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
 353	const void *caller)
 354{
 355	/*
 356	 * DMA allocation can be mapped to user space, so lets
 357	 * set VM_USERMAP flags too.
 358	 */
 359	return dma_common_contiguous_remap(page, size,
 360			VM_ARM_DMA_CONSISTENT | VM_USERMAP,
 361			prot, caller);
 362}
 363
 364static void __dma_free_remap(void *cpu_addr, size_t size)
 365{
 366	dma_common_free_remap(cpu_addr, size,
 367			VM_ARM_DMA_CONSISTENT | VM_USERMAP);
 368}
 369
 370#define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256K
 371static struct gen_pool *atomic_pool;
 372
 373static size_t atomic_pool_size = DEFAULT_DMA_COHERENT_POOL_SIZE;
 374
 375static int __init early_coherent_pool(char *p)
 376{
 377	atomic_pool_size = memparse(p, &p);
 378	return 0;
 379}
 380early_param("coherent_pool", early_coherent_pool);
 381
 382void __init init_dma_coherent_pool_size(unsigned long size)
 383{
 384	/*
 385	 * Catch any attempt to set the pool size too late.
 386	 */
 387	BUG_ON(atomic_pool);
 388
 389	/*
 390	 * Set architecture specific coherent pool size only if
 391	 * it has not been changed by kernel command line parameter.
 392	 */
 393	if (atomic_pool_size == DEFAULT_DMA_COHERENT_POOL_SIZE)
 394		atomic_pool_size = size;
 395}
 396
 397/*
 398 * Initialise the coherent pool for atomic allocations.
 399 */
 400static int __init atomic_pool_init(void)
 401{
 402	pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
 403	gfp_t gfp = GFP_KERNEL | GFP_DMA;
 404	struct page *page;
 405	void *ptr;
 406
 407	atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
 408	if (!atomic_pool)
 409		goto out;
 410
 
 
 
 411	if (dev_get_cma_area(NULL))
 412		ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
 413					      &page, atomic_pool_init, true);
 
 414	else
 415		ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
 416					   &page, atomic_pool_init, true);
 417	if (ptr) {
 418		int ret;
 419
 420		ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
 421					page_to_phys(page),
 422					atomic_pool_size, -1);
 423		if (ret)
 424			goto destroy_genpool;
 425
 426		gen_pool_set_algo(atomic_pool,
 427				gen_pool_first_fit_order_align,
 428				(void *)PAGE_SHIFT);
 429		pr_info("DMA: preallocated %zd KiB pool for atomic coherent allocations\n",
 430		       atomic_pool_size / 1024);
 431		return 0;
 432	}
 433
 434destroy_genpool:
 435	gen_pool_destroy(atomic_pool);
 436	atomic_pool = NULL;
 437out:
 438	pr_err("DMA: failed to allocate %zx KiB pool for atomic coherent allocation\n",
 439	       atomic_pool_size / 1024);
 440	return -ENOMEM;
 441}
 442/*
 443 * CMA is activated by core_initcall, so we must be called after it.
 444 */
 445postcore_initcall(atomic_pool_init);
 446
 
 447struct dma_contig_early_reserve {
 448	phys_addr_t base;
 449	unsigned long size;
 450};
 451
 452static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
 453
 454static int dma_mmu_remap_num __initdata;
 455
 
 456void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
 457{
 458	dma_mmu_remap[dma_mmu_remap_num].base = base;
 459	dma_mmu_remap[dma_mmu_remap_num].size = size;
 460	dma_mmu_remap_num++;
 461}
 
 462
 463void __init dma_contiguous_remap(void)
 464{
 465	int i;
 466	for (i = 0; i < dma_mmu_remap_num; i++) {
 467		phys_addr_t start = dma_mmu_remap[i].base;
 468		phys_addr_t end = start + dma_mmu_remap[i].size;
 469		struct map_desc map;
 470		unsigned long addr;
 471
 472		if (end > arm_lowmem_limit)
 473			end = arm_lowmem_limit;
 474		if (start >= end)
 475			continue;
 476
 477		map.pfn = __phys_to_pfn(start);
 478		map.virtual = __phys_to_virt(start);
 479		map.length = end - start;
 480		map.type = MT_MEMORY_DMA_READY;
 481
 482		/*
 483		 * Clear previous low-memory mapping to ensure that the
 484		 * TLB does not see any conflicting entries, then flush
 485		 * the TLB of the old entries before creating new mappings.
 486		 *
 487		 * This ensures that any speculatively loaded TLB entries
 488		 * (even though they may be rare) can not cause any problems,
 489		 * and ensures that this code is architecturally compliant.
 490		 */
 491		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
 492		     addr += PMD_SIZE)
 493			pmd_clear(pmd_off_k(addr));
 494
 495		flush_tlb_kernel_range(__phys_to_virt(start),
 496				       __phys_to_virt(end));
 497
 498		iotable_init(&map, 1);
 499	}
 500}
 
 501
 502static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
 503			    void *data)
 504{
 505	struct page *page = virt_to_page(addr);
 506	pgprot_t prot = *(pgprot_t *)data;
 507
 508	set_pte_ext(pte, mk_pte(page, prot), 0);
 509	return 0;
 510}
 511
 512static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
 513{
 514	unsigned long start = (unsigned long) page_address(page);
 515	unsigned end = start + size;
 516
 517	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
 518	flush_tlb_kernel_range(start, end);
 519}
 520
 521static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
 522				 pgprot_t prot, struct page **ret_page,
 523				 const void *caller, bool want_vaddr)
 524{
 525	struct page *page;
 526	void *ptr = NULL;
 527	page = __dma_alloc_buffer(dev, size, gfp);
 
 
 
 
 528	if (!page)
 529		return NULL;
 530	if (!want_vaddr)
 531		goto out;
 532
 533	ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
 534	if (!ptr) {
 535		__dma_free_buffer(page, size);
 536		return NULL;
 537	}
 538
 539 out:
 540	*ret_page = page;
 541	return ptr;
 542}
 543
 544static void *__alloc_from_pool(size_t size, struct page **ret_page)
 545{
 546	unsigned long val;
 547	void *ptr = NULL;
 548
 549	if (!atomic_pool) {
 550		WARN(1, "coherent pool not initialised!\n");
 551		return NULL;
 552	}
 553
 554	val = gen_pool_alloc(atomic_pool, size);
 555	if (val) {
 556		phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
 557
 558		*ret_page = phys_to_page(phys);
 559		ptr = (void *)val;
 560	}
 561
 562	return ptr;
 563}
 564
 565static bool __in_atomic_pool(void *start, size_t size)
 566{
 567	return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
 568}
 569
 570static int __free_from_pool(void *start, size_t size)
 571{
 572	if (!__in_atomic_pool(start, size))
 573		return 0;
 574
 575	gen_pool_free(atomic_pool, (unsigned long)start, size);
 576
 577	return 1;
 578}
 579
 580static void *__alloc_from_contiguous(struct device *dev, size_t size,
 581				     pgprot_t prot, struct page **ret_page,
 582				     const void *caller, bool want_vaddr)
 
 583{
 584	unsigned long order = get_order(size);
 585	size_t count = size >> PAGE_SHIFT;
 586	struct page *page;
 587	void *ptr = NULL;
 588
 589	page = dma_alloc_from_contiguous(dev, count, order);
 590	if (!page)
 591		return NULL;
 592
 593	__dma_clear_buffer(page, size);
 594
 595	if (!want_vaddr)
 596		goto out;
 597
 598	if (PageHighMem(page)) {
 599		ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
 600		if (!ptr) {
 601			dma_release_from_contiguous(dev, page, count);
 602			return NULL;
 603		}
 604	} else {
 605		__dma_remap(page, size, prot);
 606		ptr = page_address(page);
 607	}
 608
 609 out:
 610	*ret_page = page;
 611	return ptr;
 612}
 613
 614static void __free_from_contiguous(struct device *dev, struct page *page,
 615				   void *cpu_addr, size_t size, bool want_vaddr)
 616{
 617	if (want_vaddr) {
 618		if (PageHighMem(page))
 619			__dma_free_remap(cpu_addr, size);
 620		else
 621			__dma_remap(page, size, PAGE_KERNEL);
 622	}
 623	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
 624}
 625
 626static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
 627{
 628	prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
 629			    pgprot_writecombine(prot) :
 630			    pgprot_dmacoherent(prot);
 631	return prot;
 632}
 633
 634#define nommu() 0
 635
 636#else	/* !CONFIG_MMU */
 637
 638#define nommu() 1
 639
 640#define __get_dma_pgprot(attrs, prot)				__pgprot(0)
 641#define __alloc_remap_buffer(dev, size, gfp, prot, ret, c, wv)	NULL
 642#define __alloc_from_pool(size, ret_page)			NULL
 643#define __alloc_from_contiguous(dev, size, prot, ret, c, wv)	NULL
 644#define __free_from_pool(cpu_addr, size)			do { } while (0)
 645#define __free_from_contiguous(dev, page, cpu_addr, size, wv)	do { } while (0)
 646#define __dma_free_remap(cpu_addr, size)			do { } while (0)
 647
 648#endif	/* CONFIG_MMU */
 649
 650static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
 651				   struct page **ret_page)
 652{
 653	struct page *page;
 654	page = __dma_alloc_buffer(dev, size, gfp);
 
 655	if (!page)
 656		return NULL;
 657
 658	*ret_page = page;
 659	return page_address(page);
 660}
 661
 662static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
 663				    struct page **ret_page)
 664{
 665	return __alloc_simple_buffer(args->dev, args->size, args->gfp,
 666				     ret_page);
 667}
 668
 669static void simple_allocator_free(struct arm_dma_free_args *args)
 670{
 671	__dma_free_buffer(args->page, args->size);
 672}
 673
 674static struct arm_dma_allocator simple_allocator = {
 675	.alloc = simple_allocator_alloc,
 676	.free = simple_allocator_free,
 677};
 678
 679static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
 680				 struct page **ret_page)
 681{
 682	return __alloc_from_contiguous(args->dev, args->size, args->prot,
 683				       ret_page, args->caller,
 684				       args->want_vaddr);
 
 685}
 686
 687static void cma_allocator_free(struct arm_dma_free_args *args)
 688{
 689	__free_from_contiguous(args->dev, args->page, args->cpu_addr,
 690			       args->size, args->want_vaddr);
 691}
 692
 693static struct arm_dma_allocator cma_allocator = {
 694	.alloc = cma_allocator_alloc,
 695	.free = cma_allocator_free,
 696};
 697
 698static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
 699				  struct page **ret_page)
 700{
 701	return __alloc_from_pool(args->size, ret_page);
 702}
 703
 704static void pool_allocator_free(struct arm_dma_free_args *args)
 705{
 706	__free_from_pool(args->cpu_addr, args->size);
 707}
 708
 709static struct arm_dma_allocator pool_allocator = {
 710	.alloc = pool_allocator_alloc,
 711	.free = pool_allocator_free,
 712};
 713
 714static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
 715				   struct page **ret_page)
 716{
 717	return __alloc_remap_buffer(args->dev, args->size, args->gfp,
 718				    args->prot, ret_page, args->caller,
 719				    args->want_vaddr);
 720}
 721
 722static void remap_allocator_free(struct arm_dma_free_args *args)
 723{
 724	if (args->want_vaddr)
 725		__dma_free_remap(args->cpu_addr, args->size);
 726
 727	__dma_free_buffer(args->page, args->size);
 728}
 729
 730static struct arm_dma_allocator remap_allocator = {
 731	.alloc = remap_allocator_alloc,
 732	.free = remap_allocator_free,
 733};
 734
 735static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
 736			 gfp_t gfp, pgprot_t prot, bool is_coherent,
 737			 struct dma_attrs *attrs, const void *caller)
 738{
 739	u64 mask = get_coherent_dma_mask(dev);
 740	struct page *page = NULL;
 741	void *addr;
 742	bool allowblock, cma;
 743	struct arm_dma_buffer *buf;
 744	struct arm_dma_alloc_args args = {
 745		.dev = dev,
 746		.size = PAGE_ALIGN(size),
 747		.gfp = gfp,
 748		.prot = prot,
 749		.caller = caller,
 750		.want_vaddr = !dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs),
 
 751	};
 752
 753#ifdef CONFIG_DMA_API_DEBUG
 754	u64 limit = (mask + 1) & ~mask;
 755	if (limit && size >= limit) {
 756		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
 757			size, mask);
 758		return NULL;
 759	}
 760#endif
 761
 762	if (!mask)
 763		return NULL;
 764
 765	buf = kzalloc(sizeof(*buf),
 766		      gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
 767	if (!buf)
 768		return NULL;
 769
 770	if (mask < 0xffffffffULL)
 771		gfp |= GFP_DMA;
 772
 773	/*
 774	 * Following is a work-around (a.k.a. hack) to prevent pages
 775	 * with __GFP_COMP being passed to split_page() which cannot
 776	 * handle them.  The real problem is that this flag probably
 777	 * should be 0 on ARM as it is not supported on this
 778	 * platform; see CONFIG_HUGETLBFS.
 779	 */
 780	gfp &= ~(__GFP_COMP);
 781	args.gfp = gfp;
 782
 783	*handle = DMA_ERROR_CODE;
 784	allowblock = gfpflags_allow_blocking(gfp);
 785	cma = allowblock ? dev_get_cma_area(dev) : false;
 786
 787	if (cma)
 788		buf->allocator = &cma_allocator;
 789	else if (nommu() || is_coherent)
 790		buf->allocator = &simple_allocator;
 791	else if (allowblock)
 792		buf->allocator = &remap_allocator;
 793	else
 794		buf->allocator = &pool_allocator;
 795
 796	addr = buf->allocator->alloc(&args, &page);
 797
 798	if (page) {
 799		unsigned long flags;
 800
 801		*handle = pfn_to_dma(dev, page_to_pfn(page));
 802		buf->virt = args.want_vaddr ? addr : page;
 803
 804		spin_lock_irqsave(&arm_dma_bufs_lock, flags);
 805		list_add(&buf->list, &arm_dma_bufs);
 806		spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
 807	} else {
 808		kfree(buf);
 809	}
 810
 811	return args.want_vaddr ? addr : page;
 812}
 813
 814/*
 815 * Allocate DMA-coherent memory space and return both the kernel remapped
 816 * virtual and bus address for that space.
 817 */
 818void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
 819		    gfp_t gfp, struct dma_attrs *attrs)
 820{
 821	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
 822
 823	return __dma_alloc(dev, size, handle, gfp, prot, false,
 824			   attrs, __builtin_return_address(0));
 825}
 826
 827static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
 828	dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
 829{
 830	return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true,
 831			   attrs, __builtin_return_address(0));
 832}
 833
 834static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
 835		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
 836		 struct dma_attrs *attrs)
 837{
 838	int ret = -ENXIO;
 839#ifdef CONFIG_MMU
 840	unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
 841	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
 842	unsigned long pfn = dma_to_pfn(dev, dma_addr);
 843	unsigned long off = vma->vm_pgoff;
 844
 845	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
 846		return ret;
 847
 848	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
 849		ret = remap_pfn_range(vma, vma->vm_start,
 850				      pfn + off,
 851				      vma->vm_end - vma->vm_start,
 852				      vma->vm_page_prot);
 853	}
 854#endif	/* CONFIG_MMU */
 855
 856	return ret;
 857}
 858
 859/*
 860 * Create userspace mapping for the DMA-coherent memory.
 861 */
 862static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
 863		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
 864		 struct dma_attrs *attrs)
 865{
 866	return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
 867}
 868
 869int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
 870		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
 871		 struct dma_attrs *attrs)
 872{
 873#ifdef CONFIG_MMU
 874	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
 875#endif	/* CONFIG_MMU */
 876	return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
 877}
 878
 879/*
 880 * Free a buffer as defined by the above mapping.
 881 */
 882static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
 883			   dma_addr_t handle, struct dma_attrs *attrs,
 884			   bool is_coherent)
 885{
 886	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
 887	struct arm_dma_buffer *buf;
 888	struct arm_dma_free_args args = {
 889		.dev = dev,
 890		.size = PAGE_ALIGN(size),
 891		.cpu_addr = cpu_addr,
 892		.page = page,
 893		.want_vaddr = !dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs),
 894	};
 895
 896	buf = arm_dma_buffer_find(cpu_addr);
 897	if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
 898		return;
 899
 900	buf->allocator->free(&args);
 901	kfree(buf);
 902}
 903
 904void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
 905		  dma_addr_t handle, struct dma_attrs *attrs)
 906{
 907	__arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
 908}
 909
 910static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
 911				  dma_addr_t handle, struct dma_attrs *attrs)
 912{
 913	__arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
 914}
 915
 916int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
 917		 void *cpu_addr, dma_addr_t handle, size_t size,
 918		 struct dma_attrs *attrs)
 919{
 920	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
 921	int ret;
 922
 923	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
 924	if (unlikely(ret))
 925		return ret;
 926
 927	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
 928	return 0;
 929}
 930
 931static void dma_cache_maint_page(struct page *page, unsigned long offset,
 932	size_t size, enum dma_data_direction dir,
 933	void (*op)(const void *, size_t, int))
 934{
 935	unsigned long pfn;
 936	size_t left = size;
 937
 938	pfn = page_to_pfn(page) + offset / PAGE_SIZE;
 939	offset %= PAGE_SIZE;
 940
 941	/*
 942	 * A single sg entry may refer to multiple physically contiguous
 943	 * pages.  But we still need to process highmem pages individually.
 944	 * If highmem is not configured then the bulk of this loop gets
 945	 * optimized out.
 946	 */
 947	do {
 948		size_t len = left;
 949		void *vaddr;
 950
 951		page = pfn_to_page(pfn);
 952
 953		if (PageHighMem(page)) {
 954			if (len + offset > PAGE_SIZE)
 955				len = PAGE_SIZE - offset;
 956
 957			if (cache_is_vipt_nonaliasing()) {
 958				vaddr = kmap_atomic(page);
 959				op(vaddr + offset, len, dir);
 960				kunmap_atomic(vaddr);
 961			} else {
 962				vaddr = kmap_high_get(page);
 963				if (vaddr) {
 964					op(vaddr + offset, len, dir);
 965					kunmap_high(page);
 966				}
 967			}
 968		} else {
 969			vaddr = page_address(page) + offset;
 970			op(vaddr, len, dir);
 971		}
 972		offset = 0;
 973		pfn++;
 974		left -= len;
 975	} while (left);
 976}
 977
 978/*
 979 * Make an area consistent for devices.
 980 * Note: Drivers should NOT use this function directly, as it will break
 981 * platforms with CONFIG_DMABOUNCE.
 982 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
 983 */
 984static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
 985	size_t size, enum dma_data_direction dir)
 986{
 987	phys_addr_t paddr;
 988
 989	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
 990
 991	paddr = page_to_phys(page) + off;
 992	if (dir == DMA_FROM_DEVICE) {
 993		outer_inv_range(paddr, paddr + size);
 994	} else {
 995		outer_clean_range(paddr, paddr + size);
 996	}
 997	/* FIXME: non-speculating: flush on bidirectional mappings? */
 998}
 999
1000static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
1001	size_t size, enum dma_data_direction dir)
1002{
1003	phys_addr_t paddr = page_to_phys(page) + off;
1004
1005	/* FIXME: non-speculating: not required */
1006	/* in any case, don't bother invalidating if DMA to device */
1007	if (dir != DMA_TO_DEVICE) {
1008		outer_inv_range(paddr, paddr + size);
1009
1010		dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
1011	}
1012
1013	/*
1014	 * Mark the D-cache clean for these pages to avoid extra flushing.
1015	 */
1016	if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
1017		unsigned long pfn;
1018		size_t left = size;
 
 
 
1019
1020		pfn = page_to_pfn(page) + off / PAGE_SIZE;
1021		off %= PAGE_SIZE;
1022		if (off) {
1023			pfn++;
1024			left -= PAGE_SIZE - off;
1025		}
1026		while (left >= PAGE_SIZE) {
1027			page = pfn_to_page(pfn++);
1028			set_bit(PG_dcache_clean, &page->flags);
1029			left -= PAGE_SIZE;
1030		}
1031	}
1032}
1033
1034/**
1035 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
1036 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1037 * @sg: list of buffers
1038 * @nents: number of buffers to map
1039 * @dir: DMA transfer direction
1040 *
1041 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1042 * This is the scatter-gather version of the dma_map_single interface.
1043 * Here the scatter gather list elements are each tagged with the
1044 * appropriate dma address and length.  They are obtained via
1045 * sg_dma_{address,length}.
1046 *
1047 * Device ownership issues as mentioned for dma_map_single are the same
1048 * here.
1049 */
1050int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1051		enum dma_data_direction dir, struct dma_attrs *attrs)
1052{
1053	struct dma_map_ops *ops = get_dma_ops(dev);
1054	struct scatterlist *s;
1055	int i, j;
1056
1057	for_each_sg(sg, s, nents, i) {
1058#ifdef CONFIG_NEED_SG_DMA_LENGTH
1059		s->dma_length = s->length;
1060#endif
1061		s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
1062						s->length, dir, attrs);
1063		if (dma_mapping_error(dev, s->dma_address))
1064			goto bad_mapping;
1065	}
1066	return nents;
1067
1068 bad_mapping:
1069	for_each_sg(sg, s, i, j)
1070		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1071	return 0;
1072}
1073
1074/**
1075 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1076 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1077 * @sg: list of buffers
1078 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1079 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1080 *
1081 * Unmap a set of streaming mode DMA translations.  Again, CPU access
1082 * rules concerning calls here are the same as for dma_unmap_single().
1083 */
1084void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1085		enum dma_data_direction dir, struct dma_attrs *attrs)
1086{
1087	struct dma_map_ops *ops = get_dma_ops(dev);
1088	struct scatterlist *s;
1089
1090	int i;
 
1091
1092	for_each_sg(sg, s, nents, i)
1093		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1094}
1095
1096/**
1097 * arm_dma_sync_sg_for_cpu
1098 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1099 * @sg: list of buffers
1100 * @nents: number of buffers to map (returned from dma_map_sg)
1101 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1102 */
1103void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1104			int nents, enum dma_data_direction dir)
1105{
1106	struct dma_map_ops *ops = get_dma_ops(dev);
1107	struct scatterlist *s;
1108	int i;
1109
1110	for_each_sg(sg, s, nents, i)
1111		ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
1112					 dir);
1113}
1114
1115/**
1116 * arm_dma_sync_sg_for_device
1117 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1118 * @sg: list of buffers
1119 * @nents: number of buffers to map (returned from dma_map_sg)
1120 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1121 */
1122void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1123			int nents, enum dma_data_direction dir)
1124{
1125	struct dma_map_ops *ops = get_dma_ops(dev);
1126	struct scatterlist *s;
1127	int i;
1128
1129	for_each_sg(sg, s, nents, i)
1130		ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1131					    dir);
1132}
1133
1134/*
1135 * Return whether the given device DMA address mask can be supported
1136 * properly.  For example, if your device can only drive the low 24-bits
1137 * during bus mastering, then you would pass 0x00ffffff as the mask
1138 * to this function.
1139 */
1140int dma_supported(struct device *dev, u64 mask)
1141{
1142	return __dma_supported(dev, mask, false);
1143}
1144EXPORT_SYMBOL(dma_supported);
1145
1146int arm_dma_set_mask(struct device *dev, u64 dma_mask)
1147{
1148	if (!dev->dma_mask || !dma_supported(dev, dma_mask))
1149		return -EIO;
1150
1151	*dev->dma_mask = dma_mask;
1152
1153	return 0;
1154}
1155
1156#define PREALLOC_DMA_DEBUG_ENTRIES	4096
1157
1158static int __init dma_debug_do_init(void)
1159{
1160	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
1161	return 0;
1162}
1163fs_initcall(dma_debug_do_init);
1164
1165#ifdef CONFIG_ARM_DMA_USE_IOMMU
1166
1167/* IOMMU */
1168
1169static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1170
1171static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1172				      size_t size)
1173{
1174	unsigned int order = get_order(size);
1175	unsigned int align = 0;
1176	unsigned int count, start;
1177	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1178	unsigned long flags;
1179	dma_addr_t iova;
1180	int i;
1181
1182	if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1183		order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1184
1185	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1186	align = (1 << order) - 1;
1187
1188	spin_lock_irqsave(&mapping->lock, flags);
1189	for (i = 0; i < mapping->nr_bitmaps; i++) {
1190		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1191				mapping->bits, 0, count, align);
1192
1193		if (start > mapping->bits)
1194			continue;
1195
1196		bitmap_set(mapping->bitmaps[i], start, count);
1197		break;
1198	}
1199
1200	/*
1201	 * No unused range found. Try to extend the existing mapping
1202	 * and perform a second attempt to reserve an IO virtual
1203	 * address range of size bytes.
1204	 */
1205	if (i == mapping->nr_bitmaps) {
1206		if (extend_iommu_mapping(mapping)) {
1207			spin_unlock_irqrestore(&mapping->lock, flags);
1208			return DMA_ERROR_CODE;
1209		}
1210
1211		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1212				mapping->bits, 0, count, align);
1213
1214		if (start > mapping->bits) {
1215			spin_unlock_irqrestore(&mapping->lock, flags);
1216			return DMA_ERROR_CODE;
1217		}
1218
1219		bitmap_set(mapping->bitmaps[i], start, count);
1220	}
1221	spin_unlock_irqrestore(&mapping->lock, flags);
1222
1223	iova = mapping->base + (mapping_size * i);
1224	iova += start << PAGE_SHIFT;
1225
1226	return iova;
1227}
1228
1229static inline void __free_iova(struct dma_iommu_mapping *mapping,
1230			       dma_addr_t addr, size_t size)
1231{
1232	unsigned int start, count;
1233	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1234	unsigned long flags;
1235	dma_addr_t bitmap_base;
1236	u32 bitmap_index;
1237
1238	if (!size)
1239		return;
1240
1241	bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
1242	BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1243
1244	bitmap_base = mapping->base + mapping_size * bitmap_index;
1245
1246	start = (addr - bitmap_base) >>	PAGE_SHIFT;
1247
1248	if (addr + size > bitmap_base + mapping_size) {
1249		/*
1250		 * The address range to be freed reaches into the iova
1251		 * range of the next bitmap. This should not happen as
1252		 * we don't allow this in __alloc_iova (at the
1253		 * moment).
1254		 */
1255		BUG();
1256	} else
1257		count = size >> PAGE_SHIFT;
1258
1259	spin_lock_irqsave(&mapping->lock, flags);
1260	bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1261	spin_unlock_irqrestore(&mapping->lock, flags);
1262}
1263
1264/* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
1265static const int iommu_order_array[] = { 9, 8, 4, 0 };
1266
1267static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1268					  gfp_t gfp, struct dma_attrs *attrs)
 
1269{
1270	struct page **pages;
1271	int count = size >> PAGE_SHIFT;
1272	int array_size = count * sizeof(struct page *);
1273	int i = 0;
1274	int order_idx = 0;
1275
1276	if (array_size <= PAGE_SIZE)
1277		pages = kzalloc(array_size, GFP_KERNEL);
1278	else
1279		pages = vzalloc(array_size);
1280	if (!pages)
1281		return NULL;
1282
1283	if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
1284	{
1285		unsigned long order = get_order(size);
1286		struct page *page;
1287
1288		page = dma_alloc_from_contiguous(dev, count, order);
 
1289		if (!page)
1290			goto error;
1291
1292		__dma_clear_buffer(page, size);
1293
1294		for (i = 0; i < count; i++)
1295			pages[i] = page + i;
1296
1297		return pages;
1298	}
1299
1300	/* Go straight to 4K chunks if caller says it's OK. */
1301	if (dma_get_attr(DMA_ATTR_ALLOC_SINGLE_PAGES, attrs))
1302		order_idx = ARRAY_SIZE(iommu_order_array) - 1;
1303
1304	/*
1305	 * IOMMU can map any pages, so himem can also be used here
1306	 */
1307	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1308
1309	while (count) {
1310		int j, order;
1311
1312		order = iommu_order_array[order_idx];
1313
1314		/* Drop down when we get small */
1315		if (__fls(count) < order) {
1316			order_idx++;
1317			continue;
1318		}
1319
1320		if (order) {
1321			/* See if it's easy to allocate a high-order chunk */
1322			pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
1323
1324			/* Go down a notch at first sign of pressure */
1325			if (!pages[i]) {
1326				order_idx++;
1327				continue;
1328			}
1329		} else {
1330			pages[i] = alloc_pages(gfp, 0);
1331			if (!pages[i])
1332				goto error;
1333		}
1334
1335		if (order) {
1336			split_page(pages[i], order);
1337			j = 1 << order;
1338			while (--j)
1339				pages[i + j] = pages[i] + j;
1340		}
1341
1342		__dma_clear_buffer(pages[i], PAGE_SIZE << order);
1343		i += 1 << order;
1344		count -= 1 << order;
1345	}
1346
1347	return pages;
1348error:
1349	while (i--)
1350		if (pages[i])
1351			__free_pages(pages[i], 0);
1352	kvfree(pages);
1353	return NULL;
1354}
1355
1356static int __iommu_free_buffer(struct device *dev, struct page **pages,
1357			       size_t size, struct dma_attrs *attrs)
1358{
1359	int count = size >> PAGE_SHIFT;
1360	int i;
1361
1362	if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
1363		dma_release_from_contiguous(dev, pages[0], count);
1364	} else {
1365		for (i = 0; i < count; i++)
1366			if (pages[i])
1367				__free_pages(pages[i], 0);
1368	}
1369
1370	kvfree(pages);
1371	return 0;
1372}
1373
1374/*
1375 * Create a CPU mapping for a specified pages
1376 */
1377static void *
1378__iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1379		    const void *caller)
1380{
1381	return dma_common_pages_remap(pages, size,
1382			VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller);
1383}
1384
1385/*
1386 * Create a mapping in device IO address space for specified pages
1387 */
1388static dma_addr_t
1389__iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
 
1390{
1391	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1392	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1393	dma_addr_t dma_addr, iova;
1394	int i;
1395
1396	dma_addr = __alloc_iova(mapping, size);
1397	if (dma_addr == DMA_ERROR_CODE)
1398		return dma_addr;
1399
1400	iova = dma_addr;
1401	for (i = 0; i < count; ) {
1402		int ret;
1403
1404		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1405		phys_addr_t phys = page_to_phys(pages[i]);
1406		unsigned int len, j;
1407
1408		for (j = i + 1; j < count; j++, next_pfn++)
1409			if (page_to_pfn(pages[j]) != next_pfn)
1410				break;
1411
1412		len = (j - i) << PAGE_SHIFT;
1413		ret = iommu_map(mapping->domain, iova, phys, len,
1414				IOMMU_READ|IOMMU_WRITE);
 
1415		if (ret < 0)
1416			goto fail;
1417		iova += len;
1418		i = j;
1419	}
1420	return dma_addr;
1421fail:
1422	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1423	__free_iova(mapping, dma_addr, size);
1424	return DMA_ERROR_CODE;
1425}
1426
1427static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1428{
1429	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1430
1431	/*
1432	 * add optional in-page offset from iova to size and align
1433	 * result to page size
1434	 */
1435	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1436	iova &= PAGE_MASK;
1437
1438	iommu_unmap(mapping->domain, iova, size);
1439	__free_iova(mapping, iova, size);
1440	return 0;
1441}
1442
1443static struct page **__atomic_get_pages(void *addr)
1444{
1445	struct page *page;
1446	phys_addr_t phys;
1447
1448	phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1449	page = phys_to_page(phys);
1450
1451	return (struct page **)page;
1452}
1453
1454static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
1455{
1456	struct vm_struct *area;
1457
1458	if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1459		return __atomic_get_pages(cpu_addr);
1460
1461	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1462		return cpu_addr;
1463
1464	area = find_vm_area(cpu_addr);
1465	if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1466		return area->pages;
1467	return NULL;
1468}
1469
1470static void *__iommu_alloc_atomic(struct device *dev, size_t size,
1471				  dma_addr_t *handle)
 
1472{
1473	struct page *page;
1474	void *addr;
1475
1476	addr = __alloc_from_pool(size, &page);
 
 
 
1477	if (!addr)
1478		return NULL;
1479
1480	*handle = __iommu_create_mapping(dev, &page, size);
1481	if (*handle == DMA_ERROR_CODE)
1482		goto err_mapping;
1483
1484	return addr;
1485
1486err_mapping:
1487	__free_from_pool(addr, size);
1488	return NULL;
1489}
1490
1491static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1492				dma_addr_t handle, size_t size)
1493{
1494	__iommu_remove_mapping(dev, handle, size);
1495	__free_from_pool(cpu_addr, size);
 
 
 
1496}
1497
1498static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1499	    dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1500{
1501	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1502	struct page **pages;
1503	void *addr = NULL;
 
1504
1505	*handle = DMA_ERROR_CODE;
1506	size = PAGE_ALIGN(size);
1507
1508	if (!gfpflags_allow_blocking(gfp))
1509		return __iommu_alloc_atomic(dev, size, handle);
 
1510
1511	/*
1512	 * Following is a work-around (a.k.a. hack) to prevent pages
1513	 * with __GFP_COMP being passed to split_page() which cannot
1514	 * handle them.  The real problem is that this flag probably
1515	 * should be 0 on ARM as it is not supported on this
1516	 * platform; see CONFIG_HUGETLBFS.
1517	 */
1518	gfp &= ~(__GFP_COMP);
1519
1520	pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
1521	if (!pages)
1522		return NULL;
1523
1524	*handle = __iommu_create_mapping(dev, pages, size);
1525	if (*handle == DMA_ERROR_CODE)
1526		goto err_buffer;
1527
1528	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1529		return pages;
1530
1531	addr = __iommu_alloc_remap(pages, size, gfp, prot,
1532				   __builtin_return_address(0));
1533	if (!addr)
1534		goto err_mapping;
1535
1536	return addr;
1537
1538err_mapping:
1539	__iommu_remove_mapping(dev, *handle, size);
1540err_buffer:
1541	__iommu_free_buffer(dev, pages, size, attrs);
1542	return NULL;
1543}
1544
1545static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1546		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
1547		    struct dma_attrs *attrs)
1548{
1549	unsigned long uaddr = vma->vm_start;
1550	unsigned long usize = vma->vm_end - vma->vm_start;
1551	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1552	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1553	unsigned long off = vma->vm_pgoff;
1554
1555	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1556
1557	if (!pages)
1558		return -ENXIO;
1559
1560	if (off >= nr_pages || (usize >> PAGE_SHIFT) > nr_pages - off)
1561		return -ENXIO;
1562
1563	pages += off;
 
1564
1565	do {
1566		int ret = vm_insert_page(vma, uaddr, *pages++);
1567		if (ret) {
1568			pr_err("Remapping memory failed: %d\n", ret);
1569			return ret;
1570		}
1571		uaddr += PAGE_SIZE;
1572		usize -= PAGE_SIZE;
1573	} while (usize > 0);
1574
1575	return 0;
1576}
1577
1578/*
1579 * free a page as defined by the above mapping.
1580 * Must not be called with IRQs disabled.
1581 */
1582void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1583			  dma_addr_t handle, struct dma_attrs *attrs)
1584{
 
1585	struct page **pages;
1586	size = PAGE_ALIGN(size);
1587
1588	if (__in_atomic_pool(cpu_addr, size)) {
1589		__iommu_free_atomic(dev, cpu_addr, handle, size);
1590		return;
1591	}
1592
1593	pages = __iommu_get_pages(cpu_addr, attrs);
1594	if (!pages) {
1595		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1596		return;
1597	}
1598
1599	if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
1600		dma_common_free_remap(cpu_addr, size,
1601			VM_ARM_DMA_CONSISTENT | VM_USERMAP);
1602	}
1603
1604	__iommu_remove_mapping(dev, handle, size);
1605	__iommu_free_buffer(dev, pages, size, attrs);
1606}
1607
1608static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1609				 void *cpu_addr, dma_addr_t dma_addr,
1610				 size_t size, struct dma_attrs *attrs)
1611{
1612	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1613	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1614
1615	if (!pages)
1616		return -ENXIO;
1617
1618	return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1619					 GFP_KERNEL);
1620}
1621
1622static int __dma_direction_to_prot(enum dma_data_direction dir)
1623{
1624	int prot;
1625
1626	switch (dir) {
1627	case DMA_BIDIRECTIONAL:
1628		prot = IOMMU_READ | IOMMU_WRITE;
1629		break;
1630	case DMA_TO_DEVICE:
1631		prot = IOMMU_READ;
1632		break;
1633	case DMA_FROM_DEVICE:
1634		prot = IOMMU_WRITE;
1635		break;
1636	default:
1637		prot = 0;
1638	}
1639
1640	return prot;
1641}
1642
1643/*
1644 * Map a part of the scatter-gather list into contiguous io address space
1645 */
1646static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1647			  size_t size, dma_addr_t *handle,
1648			  enum dma_data_direction dir, struct dma_attrs *attrs,
1649			  bool is_coherent)
1650{
1651	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1652	dma_addr_t iova, iova_base;
1653	int ret = 0;
1654	unsigned int count;
1655	struct scatterlist *s;
1656	int prot;
1657
1658	size = PAGE_ALIGN(size);
1659	*handle = DMA_ERROR_CODE;
1660
1661	iova_base = iova = __alloc_iova(mapping, size);
1662	if (iova == DMA_ERROR_CODE)
1663		return -ENOMEM;
1664
1665	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1666		phys_addr_t phys = page_to_phys(sg_page(s));
1667		unsigned int len = PAGE_ALIGN(s->offset + s->length);
1668
1669		if (!is_coherent &&
1670			!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1671			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1672
1673		prot = __dma_direction_to_prot(dir);
1674
1675		ret = iommu_map(mapping->domain, iova, phys, len, prot);
 
1676		if (ret < 0)
1677			goto fail;
1678		count += len >> PAGE_SHIFT;
1679		iova += len;
1680	}
1681	*handle = iova_base;
1682
1683	return 0;
1684fail:
1685	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1686	__free_iova(mapping, iova_base, size);
1687	return ret;
1688}
1689
1690static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1691		     enum dma_data_direction dir, struct dma_attrs *attrs,
1692		     bool is_coherent)
 
 
 
 
 
 
 
 
 
 
 
1693{
1694	struct scatterlist *s = sg, *dma = sg, *start = sg;
1695	int i, count = 0;
1696	unsigned int offset = s->offset;
1697	unsigned int size = s->offset + s->length;
1698	unsigned int max = dma_get_max_seg_size(dev);
1699
1700	for (i = 1; i < nents; i++) {
1701		s = sg_next(s);
1702
1703		s->dma_address = DMA_ERROR_CODE;
1704		s->dma_length = 0;
1705
1706		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1707			if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1708			    dir, attrs, is_coherent) < 0)
 
1709				goto bad_mapping;
1710
1711			dma->dma_address += offset;
1712			dma->dma_length = size - offset;
1713
1714			size = offset = s->offset;
1715			start = s;
1716			dma = sg_next(dma);
1717			count += 1;
1718		}
1719		size += s->length;
1720	}
1721	if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1722		is_coherent) < 0)
1723		goto bad_mapping;
1724
1725	dma->dma_address += offset;
1726	dma->dma_length = size - offset;
1727
1728	return count+1;
1729
1730bad_mapping:
1731	for_each_sg(sg, s, count, i)
1732		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1733	return 0;
 
 
1734}
1735
1736/**
1737 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1738 * @dev: valid struct device pointer
1739 * @sg: list of buffers
1740 * @nents: number of buffers to map
1741 * @dir: DMA transfer direction
1742 *
1743 * Map a set of i/o coherent buffers described by scatterlist in streaming
1744 * mode for DMA. The scatter gather list elements are merged together (if
1745 * possible) and tagged with the appropriate dma address and length. They are
1746 * obtained via sg_dma_{address,length}.
1747 */
1748int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1749		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1750{
1751	return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1752}
1753
1754/**
1755 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1756 * @dev: valid struct device pointer
1757 * @sg: list of buffers
1758 * @nents: number of buffers to map
1759 * @dir: DMA transfer direction
1760 *
1761 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1762 * The scatter gather list elements are merged together (if possible) and
1763 * tagged with the appropriate dma address and length. They are obtained via
1764 * sg_dma_{address,length}.
1765 */
1766int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1767		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1768{
1769	return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1770}
1771
1772static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1773		int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
1774		bool is_coherent)
1775{
1776	struct scatterlist *s;
1777	int i;
1778
1779	for_each_sg(sg, s, nents, i) {
1780		if (sg_dma_len(s))
1781			__iommu_remove_mapping(dev, sg_dma_address(s),
1782					       sg_dma_len(s));
1783		if (!is_coherent &&
1784		    !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1785			__dma_page_dev_to_cpu(sg_page(s), s->offset,
1786					      s->length, dir);
1787	}
1788}
1789
1790/**
1791 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1792 * @dev: valid struct device pointer
1793 * @sg: list of buffers
1794 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1795 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1796 *
1797 * Unmap a set of streaming mode DMA translations.  Again, CPU access
1798 * rules concerning calls here are the same as for dma_unmap_single().
1799 */
1800void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1801		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1802{
1803	__iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1804}
1805
1806/**
1807 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1808 * @dev: valid struct device pointer
1809 * @sg: list of buffers
1810 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1811 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1812 *
1813 * Unmap a set of streaming mode DMA translations.  Again, CPU access
1814 * rules concerning calls here are the same as for dma_unmap_single().
1815 */
1816void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1817			enum dma_data_direction dir, struct dma_attrs *attrs)
1818{
1819	__iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1820}
1821
1822/**
1823 * arm_iommu_sync_sg_for_cpu
1824 * @dev: valid struct device pointer
1825 * @sg: list of buffers
1826 * @nents: number of buffers to map (returned from dma_map_sg)
1827 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1828 */
1829void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
 
1830			int nents, enum dma_data_direction dir)
1831{
1832	struct scatterlist *s;
1833	int i;
1834
 
 
 
1835	for_each_sg(sg, s, nents, i)
1836		__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1837
1838}
1839
1840/**
1841 * arm_iommu_sync_sg_for_device
1842 * @dev: valid struct device pointer
1843 * @sg: list of buffers
1844 * @nents: number of buffers to map (returned from dma_map_sg)
1845 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1846 */
1847void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
 
1848			int nents, enum dma_data_direction dir)
1849{
1850	struct scatterlist *s;
1851	int i;
1852
 
 
 
1853	for_each_sg(sg, s, nents, i)
1854		__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1855}
1856
1857
1858/**
1859 * arm_coherent_iommu_map_page
1860 * @dev: valid struct device pointer
1861 * @page: page that buffer resides in
1862 * @offset: offset into page for start of buffer
1863 * @size: size of buffer to map
1864 * @dir: DMA transfer direction
1865 *
1866 * Coherent IOMMU aware version of arm_dma_map_page()
1867 */
1868static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1869	     unsigned long offset, size_t size, enum dma_data_direction dir,
1870	     struct dma_attrs *attrs)
1871{
1872	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1873	dma_addr_t dma_addr;
1874	int ret, prot, len = PAGE_ALIGN(size + offset);
1875
 
 
 
1876	dma_addr = __alloc_iova(mapping, len);
1877	if (dma_addr == DMA_ERROR_CODE)
1878		return dma_addr;
1879
1880	prot = __dma_direction_to_prot(dir);
1881
1882	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
 
1883	if (ret < 0)
1884		goto fail;
1885
1886	return dma_addr + offset;
1887fail:
1888	__free_iova(mapping, dma_addr, len);
1889	return DMA_ERROR_CODE;
1890}
1891
1892/**
1893 * arm_iommu_map_page
1894 * @dev: valid struct device pointer
1895 * @page: page that buffer resides in
1896 * @offset: offset into page for start of buffer
1897 * @size: size of buffer to map
1898 * @dir: DMA transfer direction
1899 *
1900 * IOMMU aware version of arm_dma_map_page()
1901 */
1902static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1903	     unsigned long offset, size_t size, enum dma_data_direction dir,
1904	     struct dma_attrs *attrs)
1905{
1906	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1907		__dma_page_cpu_to_dev(page, offset, size, dir);
1908
1909	return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1910}
1911
1912/**
1913 * arm_coherent_iommu_unmap_page
1914 * @dev: valid struct device pointer
1915 * @handle: DMA address of buffer
1916 * @size: size of buffer (same as passed to dma_map_page)
1917 * @dir: DMA transfer direction (same as passed to dma_map_page)
1918 *
1919 * Coherent IOMMU aware version of arm_dma_unmap_page()
1920 */
1921static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1922		size_t size, enum dma_data_direction dir,
1923		struct dma_attrs *attrs)
1924{
1925	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1926	dma_addr_t iova = handle & PAGE_MASK;
 
1927	int offset = handle & ~PAGE_MASK;
1928	int len = PAGE_ALIGN(size + offset);
1929
1930	if (!iova)
1931		return;
1932
 
 
 
 
 
1933	iommu_unmap(mapping->domain, iova, len);
1934	__free_iova(mapping, iova, len);
1935}
1936
1937/**
1938 * arm_iommu_unmap_page
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1939 * @dev: valid struct device pointer
1940 * @handle: DMA address of buffer
1941 * @size: size of buffer (same as passed to dma_map_page)
1942 * @dir: DMA transfer direction (same as passed to dma_map_page)
1943 *
1944 * IOMMU aware version of arm_dma_unmap_page()
1945 */
1946static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1947		size_t size, enum dma_data_direction dir,
1948		struct dma_attrs *attrs)
1949{
1950	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1951	dma_addr_t iova = handle & PAGE_MASK;
1952	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1953	int offset = handle & ~PAGE_MASK;
1954	int len = PAGE_ALIGN(size + offset);
1955
1956	if (!iova)
1957		return;
1958
1959	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1960		__dma_page_dev_to_cpu(page, offset, size, dir);
1961
1962	iommu_unmap(mapping->domain, iova, len);
1963	__free_iova(mapping, iova, len);
1964}
1965
1966static void arm_iommu_sync_single_for_cpu(struct device *dev,
1967		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1968{
1969	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1970	dma_addr_t iova = handle & PAGE_MASK;
1971	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1972	unsigned int offset = handle & ~PAGE_MASK;
1973
1974	if (!iova)
1975		return;
1976
 
1977	__dma_page_dev_to_cpu(page, offset, size, dir);
1978}
1979
1980static void arm_iommu_sync_single_for_device(struct device *dev,
1981		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1982{
1983	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1984	dma_addr_t iova = handle & PAGE_MASK;
1985	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1986	unsigned int offset = handle & ~PAGE_MASK;
1987
1988	if (!iova)
1989		return;
1990
 
1991	__dma_page_cpu_to_dev(page, offset, size, dir);
1992}
1993
1994struct dma_map_ops iommu_ops = {
1995	.alloc		= arm_iommu_alloc_attrs,
1996	.free		= arm_iommu_free_attrs,
1997	.mmap		= arm_iommu_mmap_attrs,
1998	.get_sgtable	= arm_iommu_get_sgtable,
1999
2000	.map_page		= arm_iommu_map_page,
2001	.unmap_page		= arm_iommu_unmap_page,
2002	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
2003	.sync_single_for_device	= arm_iommu_sync_single_for_device,
2004
2005	.map_sg			= arm_iommu_map_sg,
2006	.unmap_sg		= arm_iommu_unmap_sg,
2007	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
2008	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,
2009
2010	.set_dma_mask		= arm_dma_set_mask,
2011};
2012
2013struct dma_map_ops iommu_coherent_ops = {
2014	.alloc		= arm_iommu_alloc_attrs,
2015	.free		= arm_iommu_free_attrs,
2016	.mmap		= arm_iommu_mmap_attrs,
2017	.get_sgtable	= arm_iommu_get_sgtable,
2018
2019	.map_page	= arm_coherent_iommu_map_page,
2020	.unmap_page	= arm_coherent_iommu_unmap_page,
2021
2022	.map_sg		= arm_coherent_iommu_map_sg,
2023	.unmap_sg	= arm_coherent_iommu_unmap_sg,
2024
2025	.set_dma_mask	= arm_dma_set_mask,
2026};
2027
2028/**
2029 * arm_iommu_create_mapping
2030 * @bus: pointer to the bus holding the client device (for IOMMU calls)
2031 * @base: start address of the valid IO address space
2032 * @size: maximum size of the valid IO address space
2033 *
2034 * Creates a mapping structure which holds information about used/unused
2035 * IO address ranges, which is required to perform memory allocation and
2036 * mapping with IOMMU aware functions.
2037 *
2038 * The client device need to be attached to the mapping with
2039 * arm_iommu_attach_device function.
2040 */
2041struct dma_iommu_mapping *
2042arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
2043{
2044	unsigned int bits = size >> PAGE_SHIFT;
2045	unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
2046	struct dma_iommu_mapping *mapping;
2047	int extensions = 1;
2048	int err = -ENOMEM;
2049
2050	/* currently only 32-bit DMA address space is supported */
2051	if (size > DMA_BIT_MASK(32) + 1)
2052		return ERR_PTR(-ERANGE);
2053
2054	if (!bitmap_size)
2055		return ERR_PTR(-EINVAL);
2056
2057	if (bitmap_size > PAGE_SIZE) {
2058		extensions = bitmap_size / PAGE_SIZE;
2059		bitmap_size = PAGE_SIZE;
2060	}
2061
2062	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
2063	if (!mapping)
2064		goto err;
2065
2066	mapping->bitmap_size = bitmap_size;
2067	mapping->bitmaps = kzalloc(extensions * sizeof(unsigned long *),
2068				GFP_KERNEL);
2069	if (!mapping->bitmaps)
2070		goto err2;
2071
2072	mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
2073	if (!mapping->bitmaps[0])
2074		goto err3;
2075
2076	mapping->nr_bitmaps = 1;
2077	mapping->extensions = extensions;
2078	mapping->base = base;
2079	mapping->bits = BITS_PER_BYTE * bitmap_size;
2080
2081	spin_lock_init(&mapping->lock);
2082
2083	mapping->domain = iommu_domain_alloc(bus);
2084	if (!mapping->domain)
2085		goto err4;
2086
2087	kref_init(&mapping->kref);
2088	return mapping;
2089err4:
2090	kfree(mapping->bitmaps[0]);
2091err3:
2092	kfree(mapping->bitmaps);
2093err2:
2094	kfree(mapping);
2095err:
2096	return ERR_PTR(err);
2097}
2098EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
2099
2100static void release_iommu_mapping(struct kref *kref)
2101{
2102	int i;
2103	struct dma_iommu_mapping *mapping =
2104		container_of(kref, struct dma_iommu_mapping, kref);
2105
2106	iommu_domain_free(mapping->domain);
2107	for (i = 0; i < mapping->nr_bitmaps; i++)
2108		kfree(mapping->bitmaps[i]);
2109	kfree(mapping->bitmaps);
2110	kfree(mapping);
2111}
2112
2113static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
2114{
2115	int next_bitmap;
2116
2117	if (mapping->nr_bitmaps >= mapping->extensions)
2118		return -EINVAL;
2119
2120	next_bitmap = mapping->nr_bitmaps;
2121	mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
2122						GFP_ATOMIC);
2123	if (!mapping->bitmaps[next_bitmap])
2124		return -ENOMEM;
2125
2126	mapping->nr_bitmaps++;
2127
2128	return 0;
2129}
2130
2131void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
2132{
2133	if (mapping)
2134		kref_put(&mapping->kref, release_iommu_mapping);
2135}
2136EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
2137
2138static int __arm_iommu_attach_device(struct device *dev,
2139				     struct dma_iommu_mapping *mapping)
2140{
2141	int err;
2142
2143	err = iommu_attach_device(mapping->domain, dev);
2144	if (err)
2145		return err;
2146
2147	kref_get(&mapping->kref);
2148	to_dma_iommu_mapping(dev) = mapping;
2149
2150	pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2151	return 0;
2152}
2153
2154/**
2155 * arm_iommu_attach_device
2156 * @dev: valid struct device pointer
2157 * @mapping: io address space mapping structure (returned from
2158 *	arm_iommu_create_mapping)
2159 *
2160 * Attaches specified io address space mapping to the provided device.
2161 * This replaces the dma operations (dma_map_ops pointer) with the
2162 * IOMMU aware version.
2163 *
2164 * More than one client might be attached to the same io address space
2165 * mapping.
2166 */
2167int arm_iommu_attach_device(struct device *dev,
2168			    struct dma_iommu_mapping *mapping)
2169{
2170	int err;
2171
2172	err = __arm_iommu_attach_device(dev, mapping);
2173	if (err)
2174		return err;
2175
2176	set_dma_ops(dev, &iommu_ops);
2177	return 0;
2178}
2179EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2180
2181static void __arm_iommu_detach_device(struct device *dev)
 
 
 
 
 
 
 
2182{
2183	struct dma_iommu_mapping *mapping;
2184
2185	mapping = to_dma_iommu_mapping(dev);
2186	if (!mapping) {
2187		dev_warn(dev, "Not attached\n");
2188		return;
2189	}
2190
2191	iommu_detach_device(mapping->domain, dev);
2192	kref_put(&mapping->kref, release_iommu_mapping);
2193	to_dma_iommu_mapping(dev) = NULL;
 
2194
2195	pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2196}
2197
2198/**
2199 * arm_iommu_detach_device
2200 * @dev: valid struct device pointer
2201 *
2202 * Detaches the provided device from a previously attached map.
2203 * This voids the dma operations (dma_map_ops pointer)
2204 */
2205void arm_iommu_detach_device(struct device *dev)
2206{
2207	__arm_iommu_detach_device(dev);
2208	set_dma_ops(dev, NULL);
2209}
2210EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2211
2212static struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
2213{
2214	return coherent ? &iommu_coherent_ops : &iommu_ops;
2215}
2216
2217static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2218				    struct iommu_ops *iommu)
2219{
2220	struct dma_iommu_mapping *mapping;
2221
2222	if (!iommu)
2223		return false;
2224
2225	mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
2226	if (IS_ERR(mapping)) {
2227		pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2228				size, dev_name(dev));
2229		return false;
2230	}
2231
2232	if (__arm_iommu_attach_device(dev, mapping)) {
2233		pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2234				dev_name(dev));
2235		arm_iommu_release_mapping(mapping);
2236		return false;
2237	}
2238
2239	return true;
2240}
2241
2242static void arm_teardown_iommu_dma_ops(struct device *dev)
2243{
2244	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2245
2246	if (!mapping)
2247		return;
2248
2249	__arm_iommu_detach_device(dev);
2250	arm_iommu_release_mapping(mapping);
2251}
2252
2253#else
2254
2255static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2256				    struct iommu_ops *iommu)
2257{
2258	return false;
2259}
2260
2261static void arm_teardown_iommu_dma_ops(struct device *dev) { }
2262
2263#define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2264
2265#endif	/* CONFIG_ARM_DMA_USE_IOMMU */
2266
2267static struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
 
2268{
2269	return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2270}
2271
2272void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
2273			struct iommu_ops *iommu, bool coherent)
 
 
 
 
 
 
 
 
 
 
2274{
2275	struct dma_map_ops *dma_ops;
 
 
2276
2277	dev->archdata.dma_coherent = coherent;
2278	if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
2279		dma_ops = arm_get_iommu_dma_map_ops(coherent);
2280	else
2281		dma_ops = arm_get_dma_map_ops(coherent);
 
2282
2283	set_dma_ops(dev, dma_ops);
 
 
 
 
 
2284}
2285
2286void arch_teardown_dma_ops(struct device *dev)
 
2287{
2288	arm_teardown_iommu_dma_ops(dev);
2289}