Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Implementation of the Transmission Control Protocol(TCP).
   8 *
   9 * Authors:	Ross Biro
  10 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  11 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
  12 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
  13 *		Florian La Roche, <flla@stud.uni-sb.de>
  14 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  15 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
  16 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
  17 *		Matthew Dillon, <dillon@apollo.west.oic.com>
  18 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  19 *		Jorge Cwik, <jorge@laser.satlink.net>
  20 */
  21
  22/*
  23 * Changes:
  24 *		Pedro Roque	:	Fast Retransmit/Recovery.
  25 *					Two receive queues.
  26 *					Retransmit queue handled by TCP.
  27 *					Better retransmit timer handling.
  28 *					New congestion avoidance.
  29 *					Header prediction.
  30 *					Variable renaming.
  31 *
  32 *		Eric		:	Fast Retransmit.
  33 *		Randy Scott	:	MSS option defines.
  34 *		Eric Schenk	:	Fixes to slow start algorithm.
  35 *		Eric Schenk	:	Yet another double ACK bug.
  36 *		Eric Schenk	:	Delayed ACK bug fixes.
  37 *		Eric Schenk	:	Floyd style fast retrans war avoidance.
  38 *		David S. Miller	:	Don't allow zero congestion window.
  39 *		Eric Schenk	:	Fix retransmitter so that it sends
  40 *					next packet on ack of previous packet.
  41 *		Andi Kleen	:	Moved open_request checking here
  42 *					and process RSTs for open_requests.
  43 *		Andi Kleen	:	Better prune_queue, and other fixes.
  44 *		Andrey Savochkin:	Fix RTT measurements in the presence of
  45 *					timestamps.
  46 *		Andrey Savochkin:	Check sequence numbers correctly when
  47 *					removing SACKs due to in sequence incoming
  48 *					data segments.
  49 *		Andi Kleen:		Make sure we never ack data there is not
  50 *					enough room for. Also make this condition
  51 *					a fatal error if it might still happen.
  52 *		Andi Kleen:		Add tcp_measure_rcv_mss to make
  53 *					connections with MSS<min(MTU,ann. MSS)
  54 *					work without delayed acks.
  55 *		Andi Kleen:		Process packets with PSH set in the
  56 *					fast path.
  57 *		J Hadi Salim:		ECN support
  58 *	 	Andrei Gurtov,
  59 *		Pasi Sarolahti,
  60 *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
  61 *					engine. Lots of bugs are found.
  62 *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
  63 */
  64
  65#define pr_fmt(fmt) "TCP: " fmt
  66
  67#include <linux/mm.h>
  68#include <linux/slab.h>
  69#include <linux/module.h>
  70#include <linux/sysctl.h>
  71#include <linux/kernel.h>
  72#include <linux/prefetch.h>
  73#include <net/dst.h>
  74#include <net/tcp.h>
  75#include <net/inet_common.h>
  76#include <linux/ipsec.h>
  77#include <asm/unaligned.h>
  78#include <linux/errqueue.h>
  79#include <trace/events/tcp.h>
  80#include <linux/jump_label_ratelimit.h>
  81#include <net/busy_poll.h>
  82#include <net/mptcp.h>
  83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  84int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
 
 
 
 
 
 
 
 
  85
  86#define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
  87#define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
  88#define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
  89#define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
  90#define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
  91#define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
  92#define FLAG_ECE		0x40 /* ECE in this ACK				*/
  93#define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
  94#define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
  95#define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
  96#define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
  97#define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
  98#define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
  99#define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
 100#define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
 101#define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
 102#define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
 103#define FLAG_DSACK_TLP		0x20000 /* DSACK for tail loss probe */
 104
 105#define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
 106#define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
 107#define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
 108#define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
 109
 110#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
 111#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
 112
 113#define REXMIT_NONE	0 /* no loss recovery to do */
 114#define REXMIT_LOST	1 /* retransmit packets marked lost */
 115#define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
 116
 117#if IS_ENABLED(CONFIG_TLS_DEVICE)
 118static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
 119
 120void clean_acked_data_enable(struct inet_connection_sock *icsk,
 121			     void (*cad)(struct sock *sk, u32 ack_seq))
 122{
 123	icsk->icsk_clean_acked = cad;
 124	static_branch_deferred_inc(&clean_acked_data_enabled);
 125}
 126EXPORT_SYMBOL_GPL(clean_acked_data_enable);
 127
 128void clean_acked_data_disable(struct inet_connection_sock *icsk)
 129{
 130	static_branch_slow_dec_deferred(&clean_acked_data_enabled);
 131	icsk->icsk_clean_acked = NULL;
 132}
 133EXPORT_SYMBOL_GPL(clean_acked_data_disable);
 134
 135void clean_acked_data_flush(void)
 136{
 137	static_key_deferred_flush(&clean_acked_data_enabled);
 138}
 139EXPORT_SYMBOL_GPL(clean_acked_data_flush);
 140#endif
 141
 142#ifdef CONFIG_CGROUP_BPF
 143static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
 144{
 145	bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
 146		BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
 147				       BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
 148	bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
 149						    BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
 150	struct bpf_sock_ops_kern sock_ops;
 151
 152	if (likely(!unknown_opt && !parse_all_opt))
 153		return;
 154
 155	/* The skb will be handled in the
 156	 * bpf_skops_established() or
 157	 * bpf_skops_write_hdr_opt().
 158	 */
 159	switch (sk->sk_state) {
 160	case TCP_SYN_RECV:
 161	case TCP_SYN_SENT:
 162	case TCP_LISTEN:
 163		return;
 164	}
 165
 166	sock_owned_by_me(sk);
 167
 168	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
 169	sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
 170	sock_ops.is_fullsock = 1;
 171	sock_ops.sk = sk;
 172	bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
 173
 174	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
 175}
 176
 177static void bpf_skops_established(struct sock *sk, int bpf_op,
 178				  struct sk_buff *skb)
 179{
 180	struct bpf_sock_ops_kern sock_ops;
 181
 182	sock_owned_by_me(sk);
 183
 184	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
 185	sock_ops.op = bpf_op;
 186	sock_ops.is_fullsock = 1;
 187	sock_ops.sk = sk;
 188	/* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
 189	if (skb)
 190		bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
 191
 192	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
 193}
 194#else
 195static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
 196{
 197}
 198
 199static void bpf_skops_established(struct sock *sk, int bpf_op,
 200				  struct sk_buff *skb)
 201{
 202}
 203#endif
 204
 205static __cold void tcp_gro_dev_warn(const struct sock *sk, const struct sk_buff *skb,
 206				    unsigned int len)
 207{
 208	struct net_device *dev;
 209
 210	rcu_read_lock();
 211	dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
 212	if (!dev || len >= READ_ONCE(dev->mtu))
 213		pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
 214			dev ? dev->name : "Unknown driver");
 215	rcu_read_unlock();
 216}
 217
 218/* Adapt the MSS value used to make delayed ack decision to the
 219 * real world.
 220 */
 221static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
 222{
 223	struct inet_connection_sock *icsk = inet_csk(sk);
 224	const unsigned int lss = icsk->icsk_ack.last_seg_size;
 225	unsigned int len;
 226
 227	icsk->icsk_ack.last_seg_size = 0;
 228
 229	/* skb->len may jitter because of SACKs, even if peer
 230	 * sends good full-sized frames.
 231	 */
 232	len = skb_shinfo(skb)->gso_size ? : skb->len;
 233	if (len >= icsk->icsk_ack.rcv_mss) {
 234		/* Note: divides are still a bit expensive.
 235		 * For the moment, only adjust scaling_ratio
 236		 * when we update icsk_ack.rcv_mss.
 237		 */
 238		if (unlikely(len != icsk->icsk_ack.rcv_mss)) {
 239			u64 val = (u64)skb->len << TCP_RMEM_TO_WIN_SCALE;
 240
 241			do_div(val, skb->truesize);
 242			tcp_sk(sk)->scaling_ratio = val ? val : 1;
 243		}
 244		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
 245					       tcp_sk(sk)->advmss);
 246		/* Account for possibly-removed options */
 247		DO_ONCE_LITE_IF(len > icsk->icsk_ack.rcv_mss + MAX_TCP_OPTION_SPACE,
 248				tcp_gro_dev_warn, sk, skb, len);
 249		/* If the skb has a len of exactly 1*MSS and has the PSH bit
 250		 * set then it is likely the end of an application write. So
 251		 * more data may not be arriving soon, and yet the data sender
 252		 * may be waiting for an ACK if cwnd-bound or using TX zero
 253		 * copy. So we set ICSK_ACK_PUSHED here so that
 254		 * tcp_cleanup_rbuf() will send an ACK immediately if the app
 255		 * reads all of the data and is not ping-pong. If len > MSS
 256		 * then this logic does not matter (and does not hurt) because
 257		 * tcp_cleanup_rbuf() will always ACK immediately if the app
 258		 * reads data and there is more than an MSS of unACKed data.
 259		 */
 260		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_PSH)
 261			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
 262	} else {
 263		/* Otherwise, we make more careful check taking into account,
 264		 * that SACKs block is variable.
 265		 *
 266		 * "len" is invariant segment length, including TCP header.
 267		 */
 268		len += skb->data - skb_transport_header(skb);
 269		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
 270		    /* If PSH is not set, packet should be
 271		     * full sized, provided peer TCP is not badly broken.
 272		     * This observation (if it is correct 8)) allows
 273		     * to handle super-low mtu links fairly.
 274		     */
 275		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
 276		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
 277			/* Subtract also invariant (if peer is RFC compliant),
 278			 * tcp header plus fixed timestamp option length.
 279			 * Resulting "len" is MSS free of SACK jitter.
 280			 */
 281			len -= tcp_sk(sk)->tcp_header_len;
 282			icsk->icsk_ack.last_seg_size = len;
 283			if (len == lss) {
 284				icsk->icsk_ack.rcv_mss = len;
 285				return;
 286			}
 287		}
 288		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
 289			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
 290		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
 291	}
 292}
 293
 294static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
 295{
 296	struct inet_connection_sock *icsk = inet_csk(sk);
 297	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
 298
 299	if (quickacks == 0)
 300		quickacks = 2;
 301	quickacks = min(quickacks, max_quickacks);
 302	if (quickacks > icsk->icsk_ack.quick)
 303		icsk->icsk_ack.quick = quickacks;
 304}
 305
 306static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
 307{
 308	struct inet_connection_sock *icsk = inet_csk(sk);
 309
 310	tcp_incr_quickack(sk, max_quickacks);
 311	inet_csk_exit_pingpong_mode(sk);
 312	icsk->icsk_ack.ato = TCP_ATO_MIN;
 313}
 314
 315/* Send ACKs quickly, if "quick" count is not exhausted
 316 * and the session is not interactive.
 317 */
 318
 319static bool tcp_in_quickack_mode(struct sock *sk)
 320{
 321	const struct inet_connection_sock *icsk = inet_csk(sk);
 322	const struct dst_entry *dst = __sk_dst_get(sk);
 323
 324	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
 325		(icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
 326}
 327
 328static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
 329{
 330	if (tp->ecn_flags & TCP_ECN_OK)
 331		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
 332}
 333
 334static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
 335{
 336	if (tcp_hdr(skb)->cwr) {
 337		tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
 338
 339		/* If the sender is telling us it has entered CWR, then its
 340		 * cwnd may be very low (even just 1 packet), so we should ACK
 341		 * immediately.
 342		 */
 343		if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
 344			inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
 345	}
 346}
 347
 348static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
 349{
 350	tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
 351}
 352
 353static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
 354{
 355	struct tcp_sock *tp = tcp_sk(sk);
 356
 357	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
 358	case INET_ECN_NOT_ECT:
 359		/* Funny extension: if ECT is not set on a segment,
 360		 * and we already seen ECT on a previous segment,
 361		 * it is probably a retransmit.
 362		 */
 363		if (tp->ecn_flags & TCP_ECN_SEEN)
 364			tcp_enter_quickack_mode(sk, 2);
 365		break;
 366	case INET_ECN_CE:
 367		if (tcp_ca_needs_ecn(sk))
 368			tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
 369
 370		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
 371			/* Better not delay acks, sender can have a very low cwnd */
 372			tcp_enter_quickack_mode(sk, 2);
 373			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
 374		}
 375		tp->ecn_flags |= TCP_ECN_SEEN;
 376		break;
 377	default:
 378		if (tcp_ca_needs_ecn(sk))
 379			tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
 380		tp->ecn_flags |= TCP_ECN_SEEN;
 381		break;
 382	}
 383}
 384
 385static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
 386{
 387	if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
 388		__tcp_ecn_check_ce(sk, skb);
 389}
 390
 391static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
 392{
 393	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
 394		tp->ecn_flags &= ~TCP_ECN_OK;
 395}
 396
 397static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
 398{
 399	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
 400		tp->ecn_flags &= ~TCP_ECN_OK;
 401}
 402
 403static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
 404{
 405	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
 406		return true;
 407	return false;
 408}
 409
 410/* Buffer size and advertised window tuning.
 411 *
 412 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
 413 */
 414
 415static void tcp_sndbuf_expand(struct sock *sk)
 416{
 417	const struct tcp_sock *tp = tcp_sk(sk);
 418	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
 419	int sndmem, per_mss;
 420	u32 nr_segs;
 421
 422	/* Worst case is non GSO/TSO : each frame consumes one skb
 423	 * and skb->head is kmalloced using power of two area of memory
 424	 */
 425	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
 426		  MAX_TCP_HEADER +
 427		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 428
 429	per_mss = roundup_pow_of_two(per_mss) +
 430		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
 431
 432	nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp));
 433	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
 434
 435	/* Fast Recovery (RFC 5681 3.2) :
 436	 * Cubic needs 1.7 factor, rounded to 2 to include
 437	 * extra cushion (application might react slowly to EPOLLOUT)
 438	 */
 439	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
 440	sndmem *= nr_segs * per_mss;
 441
 442	if (sk->sk_sndbuf < sndmem)
 443		WRITE_ONCE(sk->sk_sndbuf,
 444			   min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2])));
 445}
 446
 447/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
 448 *
 449 * All tcp_full_space() is split to two parts: "network" buffer, allocated
 450 * forward and advertised in receiver window (tp->rcv_wnd) and
 451 * "application buffer", required to isolate scheduling/application
 452 * latencies from network.
 453 * window_clamp is maximal advertised window. It can be less than
 454 * tcp_full_space(), in this case tcp_full_space() - window_clamp
 455 * is reserved for "application" buffer. The less window_clamp is
 456 * the smoother our behaviour from viewpoint of network, but the lower
 457 * throughput and the higher sensitivity of the connection to losses. 8)
 458 *
 459 * rcv_ssthresh is more strict window_clamp used at "slow start"
 460 * phase to predict further behaviour of this connection.
 461 * It is used for two goals:
 462 * - to enforce header prediction at sender, even when application
 463 *   requires some significant "application buffer". It is check #1.
 464 * - to prevent pruning of receive queue because of misprediction
 465 *   of receiver window. Check #2.
 466 *
 467 * The scheme does not work when sender sends good segments opening
 468 * window and then starts to feed us spaghetti. But it should work
 469 * in common situations. Otherwise, we have to rely on queue collapsing.
 470 */
 471
 472/* Slow part of check#2. */
 473static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb,
 474			     unsigned int skbtruesize)
 475{
 476	const struct tcp_sock *tp = tcp_sk(sk);
 477	/* Optimize this! */
 478	int truesize = tcp_win_from_space(sk, skbtruesize) >> 1;
 479	int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1;
 480
 481	while (tp->rcv_ssthresh <= window) {
 482		if (truesize <= skb->len)
 483			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
 484
 485		truesize >>= 1;
 486		window >>= 1;
 487	}
 488	return 0;
 489}
 490
 491/* Even if skb appears to have a bad len/truesize ratio, TCP coalescing
 492 * can play nice with us, as sk_buff and skb->head might be either
 493 * freed or shared with up to MAX_SKB_FRAGS segments.
 494 * Only give a boost to drivers using page frag(s) to hold the frame(s),
 495 * and if no payload was pulled in skb->head before reaching us.
 496 */
 497static u32 truesize_adjust(bool adjust, const struct sk_buff *skb)
 498{
 499	u32 truesize = skb->truesize;
 500
 501	if (adjust && !skb_headlen(skb)) {
 502		truesize -= SKB_TRUESIZE(skb_end_offset(skb));
 503		/* paranoid check, some drivers might be buggy */
 504		if (unlikely((int)truesize < (int)skb->len))
 505			truesize = skb->truesize;
 506	}
 507	return truesize;
 508}
 509
 510static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb,
 511			    bool adjust)
 512{
 513	struct tcp_sock *tp = tcp_sk(sk);
 514	int room;
 515
 516	room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
 517
 518	if (room <= 0)
 519		return;
 520
 521	/* Check #1 */
 522	if (!tcp_under_memory_pressure(sk)) {
 523		unsigned int truesize = truesize_adjust(adjust, skb);
 
 524		int incr;
 525
 526		/* Check #2. Increase window, if skb with such overhead
 527		 * will fit to rcvbuf in future.
 528		 */
 529		if (tcp_win_from_space(sk, truesize) <= skb->len)
 530			incr = 2 * tp->advmss;
 531		else
 532			incr = __tcp_grow_window(sk, skb, truesize);
 533
 534		if (incr) {
 535			incr = max_t(int, incr, 2 * skb->len);
 536			tp->rcv_ssthresh += min(room, incr);
 
 537			inet_csk(sk)->icsk_ack.quick |= 1;
 538		}
 539	} else {
 540		/* Under pressure:
 541		 * Adjust rcv_ssthresh according to reserved mem
 542		 */
 543		tcp_adjust_rcv_ssthresh(sk);
 544	}
 545}
 546
 547/* 3. Try to fixup all. It is made immediately after connection enters
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 548 *    established state.
 549 */
 550static void tcp_init_buffer_space(struct sock *sk)
 551{
 552	int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win);
 553	struct tcp_sock *tp = tcp_sk(sk);
 554	int maxwin;
 555
 
 
 556	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
 557		tcp_sndbuf_expand(sk);
 558
 559	tcp_mstamp_refresh(tp);
 560	tp->rcvq_space.time = tp->tcp_mstamp;
 561	tp->rcvq_space.seq = tp->copied_seq;
 562
 563	maxwin = tcp_full_space(sk);
 564
 565	if (tp->window_clamp >= maxwin) {
 566		tp->window_clamp = maxwin;
 567
 568		if (tcp_app_win && maxwin > 4 * tp->advmss)
 569			tp->window_clamp = max(maxwin -
 570					       (maxwin >> tcp_app_win),
 571					       4 * tp->advmss);
 572	}
 573
 574	/* Force reservation of one segment. */
 575	if (tcp_app_win &&
 576	    tp->window_clamp > 2 * tp->advmss &&
 577	    tp->window_clamp + tp->advmss > maxwin)
 578		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
 579
 580	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
 581	tp->snd_cwnd_stamp = tcp_jiffies32;
 582	tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
 583				    (u32)TCP_INIT_CWND * tp->advmss);
 584}
 585
 586/* 4. Recalculate window clamp after socket hit its memory bounds. */
 587static void tcp_clamp_window(struct sock *sk)
 588{
 589	struct tcp_sock *tp = tcp_sk(sk);
 590	struct inet_connection_sock *icsk = inet_csk(sk);
 591	struct net *net = sock_net(sk);
 592	int rmem2;
 593
 594	icsk->icsk_ack.quick = 0;
 595	rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
 596
 597	if (sk->sk_rcvbuf < rmem2 &&
 598	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
 599	    !tcp_under_memory_pressure(sk) &&
 600	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
 601		WRITE_ONCE(sk->sk_rcvbuf,
 602			   min(atomic_read(&sk->sk_rmem_alloc), rmem2));
 603	}
 604	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
 605		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
 606}
 607
 608/* Initialize RCV_MSS value.
 609 * RCV_MSS is an our guess about MSS used by the peer.
 610 * We haven't any direct information about the MSS.
 611 * It's better to underestimate the RCV_MSS rather than overestimate.
 612 * Overestimations make us ACKing less frequently than needed.
 613 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
 614 */
 615void tcp_initialize_rcv_mss(struct sock *sk)
 616{
 617	const struct tcp_sock *tp = tcp_sk(sk);
 618	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
 619
 620	hint = min(hint, tp->rcv_wnd / 2);
 621	hint = min(hint, TCP_MSS_DEFAULT);
 622	hint = max(hint, TCP_MIN_MSS);
 623
 624	inet_csk(sk)->icsk_ack.rcv_mss = hint;
 625}
 626EXPORT_SYMBOL(tcp_initialize_rcv_mss);
 627
 628/* Receiver "autotuning" code.
 629 *
 630 * The algorithm for RTT estimation w/o timestamps is based on
 631 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
 632 * <https://public.lanl.gov/radiant/pubs.html#DRS>
 633 *
 634 * More detail on this code can be found at
 635 * <http://staff.psc.edu/jheffner/>,
 636 * though this reference is out of date.  A new paper
 637 * is pending.
 638 */
 639static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
 640{
 641	u32 new_sample = tp->rcv_rtt_est.rtt_us;
 642	long m = sample;
 643
 
 
 
 644	if (new_sample != 0) {
 645		/* If we sample in larger samples in the non-timestamp
 646		 * case, we could grossly overestimate the RTT especially
 647		 * with chatty applications or bulk transfer apps which
 648		 * are stalled on filesystem I/O.
 649		 *
 650		 * Also, since we are only going for a minimum in the
 651		 * non-timestamp case, we do not smooth things out
 652		 * else with timestamps disabled convergence takes too
 653		 * long.
 654		 */
 655		if (!win_dep) {
 656			m -= (new_sample >> 3);
 657			new_sample += m;
 658		} else {
 659			m <<= 3;
 660			if (m < new_sample)
 661				new_sample = m;
 662		}
 663	} else {
 664		/* No previous measure. */
 665		new_sample = m << 3;
 666	}
 667
 668	tp->rcv_rtt_est.rtt_us = new_sample;
 
 669}
 670
 671static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
 672{
 673	u32 delta_us;
 674
 675	if (tp->rcv_rtt_est.time == 0)
 676		goto new_measure;
 677	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
 678		return;
 679	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
 680	if (!delta_us)
 681		delta_us = 1;
 682	tcp_rcv_rtt_update(tp, delta_us, 1);
 683
 684new_measure:
 685	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
 686	tp->rcv_rtt_est.time = tp->tcp_mstamp;
 687}
 688
 689static s32 tcp_rtt_tsopt_us(const struct tcp_sock *tp)
 690{
 691	u32 delta, delta_us;
 692
 693	delta = tcp_time_stamp_ts(tp) - tp->rx_opt.rcv_tsecr;
 694	if (tp->tcp_usec_ts)
 695		return delta;
 696
 697	if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
 698		if (!delta)
 699			delta = 1;
 700		delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
 701		return delta_us;
 702	}
 703	return -1;
 704}
 705
 706static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
 707					  const struct sk_buff *skb)
 708{
 709	struct tcp_sock *tp = tcp_sk(sk);
 710
 711	if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
 712		return;
 713	tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
 714
 715	if (TCP_SKB_CB(skb)->end_seq -
 716	    TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
 717		s32 delta = tcp_rtt_tsopt_us(tp);
 718
 719		if (delta >= 0)
 720			tcp_rcv_rtt_update(tp, delta, 0);
 721	}
 722}
 723
 724/*
 725 * This function should be called every time data is copied to user space.
 726 * It calculates the appropriate TCP receive buffer space.
 727 */
 728void tcp_rcv_space_adjust(struct sock *sk)
 729{
 730	struct tcp_sock *tp = tcp_sk(sk);
 731	u32 copied;
 732	int time;
 
 733
 734	trace_tcp_rcv_space_adjust(sk);
 735
 736	tcp_mstamp_refresh(tp);
 737	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
 738	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
 739		return;
 740
 741	/* Number of bytes copied to user in last RTT */
 742	copied = tp->copied_seq - tp->rcvq_space.seq;
 743	if (copied <= tp->rcvq_space.space)
 744		goto new_measure;
 745
 746	/* A bit of theory :
 747	 * copied = bytes received in previous RTT, our base window
 748	 * To cope with packet losses, we need a 2x factor
 749	 * To cope with slow start, and sender growing its cwin by 100 %
 750	 * every RTT, we need a 4x factor, because the ACK we are sending
 751	 * now is for the next RTT, not the current one :
 752	 * <prev RTT . ><current RTT .. ><next RTT .... >
 753	 */
 754
 755	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
 756	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
 757		u64 rcvwin, grow;
 758		int rcvbuf;
 759
 760		/* minimal window to cope with packet losses, assuming
 761		 * steady state. Add some cushion because of small variations.
 762		 */
 763		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
 764
 765		/* Accommodate for sender rate increase (eg. slow start) */
 766		grow = rcvwin * (copied - tp->rcvq_space.space);
 767		do_div(grow, tp->rcvq_space.space);
 768		rcvwin += (grow << 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 769
 770		rcvbuf = min_t(u64, tcp_space_from_win(sk, rcvwin),
 771			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
 772		if (rcvbuf > sk->sk_rcvbuf) {
 773			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
 774
 775			/* Make the window clamp follow along.  */
 776			tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
 777		}
 778	}
 779	tp->rcvq_space.space = copied;
 780
 781new_measure:
 782	tp->rcvq_space.seq = tp->copied_seq;
 783	tp->rcvq_space.time = tp->tcp_mstamp;
 784}
 785
 786static void tcp_save_lrcv_flowlabel(struct sock *sk, const struct sk_buff *skb)
 787{
 788#if IS_ENABLED(CONFIG_IPV6)
 789	struct inet_connection_sock *icsk = inet_csk(sk);
 790
 791	if (skb->protocol == htons(ETH_P_IPV6))
 792		icsk->icsk_ack.lrcv_flowlabel = ntohl(ip6_flowlabel(ipv6_hdr(skb)));
 793#endif
 794}
 795
 796/* There is something which you must keep in mind when you analyze the
 797 * behavior of the tp->ato delayed ack timeout interval.  When a
 798 * connection starts up, we want to ack as quickly as possible.  The
 799 * problem is that "good" TCP's do slow start at the beginning of data
 800 * transmission.  The means that until we send the first few ACK's the
 801 * sender will sit on his end and only queue most of his data, because
 802 * he can only send snd_cwnd unacked packets at any given time.  For
 803 * each ACK we send, he increments snd_cwnd and transmits more of his
 804 * queue.  -DaveM
 805 */
 806static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
 807{
 808	struct tcp_sock *tp = tcp_sk(sk);
 809	struct inet_connection_sock *icsk = inet_csk(sk);
 810	u32 now;
 811
 812	inet_csk_schedule_ack(sk);
 813
 814	tcp_measure_rcv_mss(sk, skb);
 815
 816	tcp_rcv_rtt_measure(tp);
 817
 818	now = tcp_jiffies32;
 819
 820	if (!icsk->icsk_ack.ato) {
 821		/* The _first_ data packet received, initialize
 822		 * delayed ACK engine.
 823		 */
 824		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
 825		icsk->icsk_ack.ato = TCP_ATO_MIN;
 826	} else {
 827		int m = now - icsk->icsk_ack.lrcvtime;
 828
 829		if (m <= TCP_ATO_MIN / 2) {
 830			/* The fastest case is the first. */
 831			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
 832		} else if (m < icsk->icsk_ack.ato) {
 833			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
 834			if (icsk->icsk_ack.ato > icsk->icsk_rto)
 835				icsk->icsk_ack.ato = icsk->icsk_rto;
 836		} else if (m > icsk->icsk_rto) {
 837			/* Too long gap. Apparently sender failed to
 838			 * restart window, so that we send ACKs quickly.
 839			 */
 840			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
 
 841		}
 842	}
 843	icsk->icsk_ack.lrcvtime = now;
 844	tcp_save_lrcv_flowlabel(sk, skb);
 845
 846	tcp_ecn_check_ce(sk, skb);
 847
 848	if (skb->len >= 128)
 849		tcp_grow_window(sk, skb, true);
 850}
 851
 852/* Called to compute a smoothed rtt estimate. The data fed to this
 853 * routine either comes from timestamps, or from segments that were
 854 * known _not_ to have been retransmitted [see Karn/Partridge
 855 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
 856 * piece by Van Jacobson.
 857 * NOTE: the next three routines used to be one big routine.
 858 * To save cycles in the RFC 1323 implementation it was better to break
 859 * it up into three procedures. -- erics
 860 */
 861static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
 862{
 863	struct tcp_sock *tp = tcp_sk(sk);
 864	long m = mrtt_us; /* RTT */
 865	u32 srtt = tp->srtt_us;
 866
 867	/*	The following amusing code comes from Jacobson's
 868	 *	article in SIGCOMM '88.  Note that rtt and mdev
 869	 *	are scaled versions of rtt and mean deviation.
 870	 *	This is designed to be as fast as possible
 871	 *	m stands for "measurement".
 872	 *
 873	 *	On a 1990 paper the rto value is changed to:
 874	 *	RTO = rtt + 4 * mdev
 875	 *
 876	 * Funny. This algorithm seems to be very broken.
 877	 * These formulae increase RTO, when it should be decreased, increase
 878	 * too slowly, when it should be increased quickly, decrease too quickly
 879	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
 880	 * does not matter how to _calculate_ it. Seems, it was trap
 881	 * that VJ failed to avoid. 8)
 882	 */
 883	if (srtt != 0) {
 884		m -= (srtt >> 3);	/* m is now error in rtt est */
 885		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
 886		if (m < 0) {
 887			m = -m;		/* m is now abs(error) */
 888			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
 889			/* This is similar to one of Eifel findings.
 890			 * Eifel blocks mdev updates when rtt decreases.
 891			 * This solution is a bit different: we use finer gain
 892			 * for mdev in this case (alpha*beta).
 893			 * Like Eifel it also prevents growth of rto,
 894			 * but also it limits too fast rto decreases,
 895			 * happening in pure Eifel.
 896			 */
 897			if (m > 0)
 898				m >>= 3;
 899		} else {
 900			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
 901		}
 902		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
 903		if (tp->mdev_us > tp->mdev_max_us) {
 904			tp->mdev_max_us = tp->mdev_us;
 905			if (tp->mdev_max_us > tp->rttvar_us)
 906				tp->rttvar_us = tp->mdev_max_us;
 907		}
 908		if (after(tp->snd_una, tp->rtt_seq)) {
 909			if (tp->mdev_max_us < tp->rttvar_us)
 910				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
 911			tp->rtt_seq = tp->snd_nxt;
 912			tp->mdev_max_us = tcp_rto_min_us(sk);
 913
 914			tcp_bpf_rtt(sk);
 915		}
 916	} else {
 917		/* no previous measure. */
 918		srtt = m << 3;		/* take the measured time to be rtt */
 919		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
 920		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
 921		tp->mdev_max_us = tp->rttvar_us;
 922		tp->rtt_seq = tp->snd_nxt;
 923
 924		tcp_bpf_rtt(sk);
 925	}
 926	tp->srtt_us = max(1U, srtt);
 927}
 928
 
 
 
 
 
 
 
 
 
 929static void tcp_update_pacing_rate(struct sock *sk)
 930{
 931	const struct tcp_sock *tp = tcp_sk(sk);
 932	u64 rate;
 933
 934	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
 935	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
 936
 937	/* current rate is (cwnd * mss) / srtt
 938	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
 939	 * In Congestion Avoidance phase, set it to 120 % the current rate.
 940	 *
 941	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
 942	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
 943	 *	 end of slow start and should slow down.
 944	 */
 945	if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2)
 946		rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio);
 947	else
 948		rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio);
 949
 950	rate *= max(tcp_snd_cwnd(tp), tp->packets_out);
 951
 952	if (likely(tp->srtt_us))
 953		do_div(rate, tp->srtt_us);
 954
 955	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
 956	 * without any lock. We want to make sure compiler wont store
 957	 * intermediate values in this location.
 958	 */
 959	WRITE_ONCE(sk->sk_pacing_rate,
 960		   min_t(u64, rate, READ_ONCE(sk->sk_max_pacing_rate)));
 961}
 962
 963/* Calculate rto without backoff.  This is the second half of Van Jacobson's
 964 * routine referred to above.
 965 */
 966static void tcp_set_rto(struct sock *sk)
 967{
 968	const struct tcp_sock *tp = tcp_sk(sk);
 969	/* Old crap is replaced with new one. 8)
 970	 *
 971	 * More seriously:
 972	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
 973	 *    It cannot be less due to utterly erratic ACK generation made
 974	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
 975	 *    to do with delayed acks, because at cwnd>2 true delack timeout
 976	 *    is invisible. Actually, Linux-2.4 also generates erratic
 977	 *    ACKs in some circumstances.
 978	 */
 979	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
 980
 981	/* 2. Fixups made earlier cannot be right.
 982	 *    If we do not estimate RTO correctly without them,
 983	 *    all the algo is pure shit and should be replaced
 984	 *    with correct one. It is exactly, which we pretend to do.
 985	 */
 986
 987	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
 988	 * guarantees that rto is higher.
 989	 */
 990	tcp_bound_rto(sk);
 991}
 992
 993__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
 994{
 995	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
 996
 997	if (!cwnd)
 998		cwnd = TCP_INIT_CWND;
 999	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
1000}
1001
1002struct tcp_sacktag_state {
1003	/* Timestamps for earliest and latest never-retransmitted segment
1004	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1005	 * but congestion control should still get an accurate delay signal.
1006	 */
1007	u64	first_sackt;
1008	u64	last_sackt;
1009	u32	reord;
1010	u32	sack_delivered;
1011	int	flag;
1012	unsigned int mss_now;
1013	struct rate_sample *rate;
1014};
1015
1016/* Take a notice that peer is sending D-SACKs. Skip update of data delivery
1017 * and spurious retransmission information if this DSACK is unlikely caused by
1018 * sender's action:
1019 * - DSACKed sequence range is larger than maximum receiver's window.
1020 * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
1021 */
1022static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
1023			  u32 end_seq, struct tcp_sacktag_state *state)
1024{
1025	u32 seq_len, dup_segs = 1;
1026
1027	if (!before(start_seq, end_seq))
1028		return 0;
1029
1030	seq_len = end_seq - start_seq;
1031	/* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
1032	if (seq_len > tp->max_window)
1033		return 0;
1034	if (seq_len > tp->mss_cache)
1035		dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
1036	else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq)
1037		state->flag |= FLAG_DSACK_TLP;
1038
1039	tp->dsack_dups += dup_segs;
1040	/* Skip the DSACK if dup segs weren't retransmitted by sender */
1041	if (tp->dsack_dups > tp->total_retrans)
1042		return 0;
1043
 
 
 
1044	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
1045	/* We increase the RACK ordering window in rounds where we receive
1046	 * DSACKs that may have been due to reordering causing RACK to trigger
1047	 * a spurious fast recovery. Thus RACK ignores DSACKs that happen
1048	 * without having seen reordering, or that match TLP probes (TLP
1049	 * is timer-driven, not triggered by RACK).
1050	 */
1051	if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP))
1052		tp->rack.dsack_seen = 1;
1053
1054	state->flag |= FLAG_DSACKING_ACK;
1055	/* A spurious retransmission is delivered */
1056	state->sack_delivered += dup_segs;
1057
1058	return dup_segs;
1059}
1060
1061/* It's reordering when higher sequence was delivered (i.e. sacked) before
1062 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
1063 * distance is approximated in full-mss packet distance ("reordering").
1064 */
1065static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
1066				      const int ts)
1067{
1068	struct tcp_sock *tp = tcp_sk(sk);
1069	const u32 mss = tp->mss_cache;
1070	u32 fack, metric;
1071
1072	fack = tcp_highest_sack_seq(tp);
1073	if (!before(low_seq, fack))
1074		return;
 
 
 
 
 
 
 
 
1075
1076	metric = fack - low_seq;
1077	if ((metric > tp->reordering * mss) && mss) {
1078#if FASTRETRANS_DEBUG > 1
1079		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1080			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1081			 tp->reordering,
1082			 0,
1083			 tp->sacked_out,
1084			 tp->undo_marker ? tp->undo_retrans : 0);
1085#endif
1086		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
1087				       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
1088	}
1089
1090	/* This exciting event is worth to be remembered. 8) */
1091	tp->reord_seen++;
1092	NET_INC_STATS(sock_net(sk),
1093		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1094}
1095
1096 /* This must be called before lost_out or retrans_out are updated
1097  * on a new loss, because we want to know if all skbs previously
1098  * known to be lost have already been retransmitted, indicating
1099  * that this newly lost skb is our next skb to retransmit.
1100  */
1101static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1102{
1103	if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
1104	    (tp->retransmit_skb_hint &&
1105	     before(TCP_SKB_CB(skb)->seq,
1106		    TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
1107		tp->retransmit_skb_hint = skb;
1108}
1109
1110/* Sum the number of packets on the wire we have marked as lost, and
1111 * notify the congestion control module that the given skb was marked lost.
1112 */
1113static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
1114{
1115	tp->lost += tcp_skb_pcount(skb);
1116}
1117
1118void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
1119{
1120	__u8 sacked = TCP_SKB_CB(skb)->sacked;
1121	struct tcp_sock *tp = tcp_sk(sk);
1122
1123	if (sacked & TCPCB_SACKED_ACKED)
1124		return;
1125
1126	tcp_verify_retransmit_hint(tp, skb);
1127	if (sacked & TCPCB_LOST) {
1128		if (sacked & TCPCB_SACKED_RETRANS) {
1129			/* Account for retransmits that are lost again */
1130			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1131			tp->retrans_out -= tcp_skb_pcount(skb);
1132			NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
1133				      tcp_skb_pcount(skb));
1134			tcp_notify_skb_loss_event(tp, skb);
1135		}
1136	} else {
1137		tp->lost_out += tcp_skb_pcount(skb);
1138		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1139		tcp_notify_skb_loss_event(tp, skb);
1140	}
1141}
1142
1143/* Updates the delivered and delivered_ce counts */
1144static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
1145				bool ece_ack)
1146{
1147	tp->delivered += delivered;
1148	if (ece_ack)
1149		tp->delivered_ce += delivered;
 
 
 
1150}
1151
1152/* This procedure tags the retransmission queue when SACKs arrive.
1153 *
1154 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1155 * Packets in queue with these bits set are counted in variables
1156 * sacked_out, retrans_out and lost_out, correspondingly.
1157 *
1158 * Valid combinations are:
1159 * Tag  InFlight	Description
1160 * 0	1		- orig segment is in flight.
1161 * S	0		- nothing flies, orig reached receiver.
1162 * L	0		- nothing flies, orig lost by net.
1163 * R	2		- both orig and retransmit are in flight.
1164 * L|R	1		- orig is lost, retransmit is in flight.
1165 * S|R  1		- orig reached receiver, retrans is still in flight.
1166 * (L|S|R is logically valid, it could occur when L|R is sacked,
1167 *  but it is equivalent to plain S and code short-curcuits it to S.
1168 *  L|S is logically invalid, it would mean -1 packet in flight 8))
1169 *
1170 * These 6 states form finite state machine, controlled by the following events:
1171 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1172 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1173 * 3. Loss detection event of two flavors:
1174 *	A. Scoreboard estimator decided the packet is lost.
1175 *	   A'. Reno "three dupacks" marks head of queue lost.
 
1176 *	B. SACK arrives sacking SND.NXT at the moment, when the
1177 *	   segment was retransmitted.
1178 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1179 *
1180 * It is pleasant to note, that state diagram turns out to be commutative,
1181 * so that we are allowed not to be bothered by order of our actions,
1182 * when multiple events arrive simultaneously. (see the function below).
1183 *
1184 * Reordering detection.
1185 * --------------------
1186 * Reordering metric is maximal distance, which a packet can be displaced
1187 * in packet stream. With SACKs we can estimate it:
1188 *
1189 * 1. SACK fills old hole and the corresponding segment was not
1190 *    ever retransmitted -> reordering. Alas, we cannot use it
1191 *    when segment was retransmitted.
1192 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1193 *    for retransmitted and already SACKed segment -> reordering..
1194 * Both of these heuristics are not used in Loss state, when we cannot
1195 * account for retransmits accurately.
1196 *
1197 * SACK block validation.
1198 * ----------------------
1199 *
1200 * SACK block range validation checks that the received SACK block fits to
1201 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1202 * Note that SND.UNA is not included to the range though being valid because
1203 * it means that the receiver is rather inconsistent with itself reporting
1204 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1205 * perfectly valid, however, in light of RFC2018 which explicitly states
1206 * that "SACK block MUST reflect the newest segment.  Even if the newest
1207 * segment is going to be discarded ...", not that it looks very clever
1208 * in case of head skb. Due to potentional receiver driven attacks, we
1209 * choose to avoid immediate execution of a walk in write queue due to
1210 * reneging and defer head skb's loss recovery to standard loss recovery
1211 * procedure that will eventually trigger (nothing forbids us doing this).
1212 *
1213 * Implements also blockage to start_seq wrap-around. Problem lies in the
1214 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1215 * there's no guarantee that it will be before snd_nxt (n). The problem
1216 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1217 * wrap (s_w):
1218 *
1219 *         <- outs wnd ->                          <- wrapzone ->
1220 *         u     e      n                         u_w   e_w  s n_w
1221 *         |     |      |                          |     |   |  |
1222 * |<------------+------+----- TCP seqno space --------------+---------->|
1223 * ...-- <2^31 ->|                                           |<--------...
1224 * ...---- >2^31 ------>|                                    |<--------...
1225 *
1226 * Current code wouldn't be vulnerable but it's better still to discard such
1227 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1228 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1229 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1230 * equal to the ideal case (infinite seqno space without wrap caused issues).
1231 *
1232 * With D-SACK the lower bound is extended to cover sequence space below
1233 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1234 * again, D-SACK block must not to go across snd_una (for the same reason as
1235 * for the normal SACK blocks, explained above). But there all simplicity
1236 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1237 * fully below undo_marker they do not affect behavior in anyway and can
1238 * therefore be safely ignored. In rare cases (which are more or less
1239 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1240 * fragmentation and packet reordering past skb's retransmission. To consider
1241 * them correctly, the acceptable range must be extended even more though
1242 * the exact amount is rather hard to quantify. However, tp->max_window can
1243 * be used as an exaggerated estimate.
1244 */
1245static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1246				   u32 start_seq, u32 end_seq)
1247{
1248	/* Too far in future, or reversed (interpretation is ambiguous) */
1249	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1250		return false;
1251
1252	/* Nasty start_seq wrap-around check (see comments above) */
1253	if (!before(start_seq, tp->snd_nxt))
1254		return false;
1255
1256	/* In outstanding window? ...This is valid exit for D-SACKs too.
1257	 * start_seq == snd_una is non-sensical (see comments above)
1258	 */
1259	if (after(start_seq, tp->snd_una))
1260		return true;
1261
1262	if (!is_dsack || !tp->undo_marker)
1263		return false;
1264
1265	/* ...Then it's D-SACK, and must reside below snd_una completely */
1266	if (after(end_seq, tp->snd_una))
1267		return false;
1268
1269	if (!before(start_seq, tp->undo_marker))
1270		return true;
1271
1272	/* Too old */
1273	if (!after(end_seq, tp->undo_marker))
1274		return false;
1275
1276	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1277	 *   start_seq < undo_marker and end_seq >= undo_marker.
1278	 */
1279	return !before(start_seq, end_seq - tp->max_window);
1280}
1281
1282static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1283			    struct tcp_sack_block_wire *sp, int num_sacks,
1284			    u32 prior_snd_una, struct tcp_sacktag_state *state)
1285{
1286	struct tcp_sock *tp = tcp_sk(sk);
1287	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1288	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1289	u32 dup_segs;
1290
1291	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1292		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
 
 
1293	} else if (num_sacks > 1) {
1294		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1295		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1296
1297		if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1298			return false;
1299		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1300	} else {
1301		return false;
1302	}
1303
1304	dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1305	if (!dup_segs) {	/* Skip dubious DSACK */
1306		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1307		return false;
1308	}
1309
1310	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1311
1312	/* D-SACK for already forgotten data... Do dumb counting. */
1313	if (tp->undo_marker && tp->undo_retrans > 0 &&
1314	    !after(end_seq_0, prior_snd_una) &&
1315	    after(end_seq_0, tp->undo_marker))
1316		tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1317
1318	return true;
1319}
1320
 
 
 
 
 
 
 
 
 
 
 
 
1321/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1322 * the incoming SACK may not exactly match but we can find smaller MSS
1323 * aligned portion of it that matches. Therefore we might need to fragment
1324 * which may fail and creates some hassle (caller must handle error case
1325 * returns).
1326 *
1327 * FIXME: this could be merged to shift decision code
1328 */
1329static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1330				  u32 start_seq, u32 end_seq)
1331{
1332	int err;
1333	bool in_sack;
1334	unsigned int pkt_len;
1335	unsigned int mss;
1336
1337	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1338		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1339
1340	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1341	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1342		mss = tcp_skb_mss(skb);
1343		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1344
1345		if (!in_sack) {
1346			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1347			if (pkt_len < mss)
1348				pkt_len = mss;
1349		} else {
1350			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1351			if (pkt_len < mss)
1352				return -EINVAL;
1353		}
1354
1355		/* Round if necessary so that SACKs cover only full MSSes
1356		 * and/or the remaining small portion (if present)
1357		 */
1358		if (pkt_len > mss) {
1359			unsigned int new_len = (pkt_len / mss) * mss;
1360			if (!in_sack && new_len < pkt_len)
1361				new_len += mss;
 
 
 
1362			pkt_len = new_len;
1363		}
1364
1365		if (pkt_len >= skb->len && !in_sack)
1366			return 0;
1367
1368		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1369				   pkt_len, mss, GFP_ATOMIC);
1370		if (err < 0)
1371			return err;
1372	}
1373
1374	return in_sack;
1375}
1376
1377/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1378static u8 tcp_sacktag_one(struct sock *sk,
1379			  struct tcp_sacktag_state *state, u8 sacked,
1380			  u32 start_seq, u32 end_seq,
1381			  int dup_sack, int pcount,
1382			  u64 xmit_time)
1383{
1384	struct tcp_sock *tp = tcp_sk(sk);
 
1385
1386	/* Account D-SACK for retransmitted packet. */
1387	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1388		if (tp->undo_marker && tp->undo_retrans > 0 &&
1389		    after(end_seq, tp->undo_marker))
1390			tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
1391		if ((sacked & TCPCB_SACKED_ACKED) &&
1392		    before(start_seq, state->reord))
1393				state->reord = start_seq;
1394	}
1395
1396	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1397	if (!after(end_seq, tp->snd_una))
1398		return sacked;
1399
1400	if (!(sacked & TCPCB_SACKED_ACKED)) {
1401		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1402
1403		if (sacked & TCPCB_SACKED_RETRANS) {
1404			/* If the segment is not tagged as lost,
1405			 * we do not clear RETRANS, believing
1406			 * that retransmission is still in flight.
1407			 */
1408			if (sacked & TCPCB_LOST) {
1409				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1410				tp->lost_out -= pcount;
1411				tp->retrans_out -= pcount;
1412			}
1413		} else {
1414			if (!(sacked & TCPCB_RETRANS)) {
1415				/* New sack for not retransmitted frame,
1416				 * which was in hole. It is reordering.
1417				 */
1418				if (before(start_seq,
1419					   tcp_highest_sack_seq(tp)) &&
1420				    before(start_seq, state->reord))
1421					state->reord = start_seq;
1422
1423				if (!after(end_seq, tp->high_seq))
1424					state->flag |= FLAG_ORIG_SACK_ACKED;
1425				if (state->first_sackt == 0)
1426					state->first_sackt = xmit_time;
1427				state->last_sackt = xmit_time;
1428			}
1429
1430			if (sacked & TCPCB_LOST) {
1431				sacked &= ~TCPCB_LOST;
1432				tp->lost_out -= pcount;
1433			}
1434		}
1435
1436		sacked |= TCPCB_SACKED_ACKED;
1437		state->flag |= FLAG_DATA_SACKED;
1438		tp->sacked_out += pcount;
1439		/* Out-of-order packets delivered */
1440		state->sack_delivered += pcount;
 
1441
1442		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1443		if (tp->lost_skb_hint &&
1444		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1445			tp->lost_cnt_hint += pcount;
 
 
 
1446	}
1447
1448	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1449	 * frames and clear it. undo_retrans is decreased above, L|R frames
1450	 * are accounted above as well.
1451	 */
1452	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1453		sacked &= ~TCPCB_SACKED_RETRANS;
1454		tp->retrans_out -= pcount;
1455	}
1456
1457	return sacked;
1458}
1459
1460/* Shift newly-SACKed bytes from this skb to the immediately previous
1461 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1462 */
1463static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1464			    struct sk_buff *skb,
1465			    struct tcp_sacktag_state *state,
1466			    unsigned int pcount, int shifted, int mss,
1467			    bool dup_sack)
1468{
1469	struct tcp_sock *tp = tcp_sk(sk);
 
1470	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1471	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1472
1473	BUG_ON(!pcount);
1474
1475	/* Adjust counters and hints for the newly sacked sequence
1476	 * range but discard the return value since prev is already
1477	 * marked. We must tag the range first because the seq
1478	 * advancement below implicitly advances
1479	 * tcp_highest_sack_seq() when skb is highest_sack.
1480	 */
1481	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1482			start_seq, end_seq, dup_sack, pcount,
1483			tcp_skb_timestamp_us(skb));
1484	tcp_rate_skb_delivered(sk, skb, state->rate);
1485
1486	if (skb == tp->lost_skb_hint)
1487		tp->lost_cnt_hint += pcount;
1488
1489	TCP_SKB_CB(prev)->end_seq += shifted;
1490	TCP_SKB_CB(skb)->seq += shifted;
1491
1492	tcp_skb_pcount_add(prev, pcount);
1493	WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1494	tcp_skb_pcount_add(skb, -pcount);
1495
1496	/* When we're adding to gso_segs == 1, gso_size will be zero,
1497	 * in theory this shouldn't be necessary but as long as DSACK
1498	 * code can come after this skb later on it's better to keep
1499	 * setting gso_size to something.
1500	 */
1501	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1502		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1503
1504	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1505	if (tcp_skb_pcount(skb) <= 1)
1506		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1507
1508	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1509	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1510
1511	if (skb->len > 0) {
1512		BUG_ON(!tcp_skb_pcount(skb));
1513		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1514		return false;
1515	}
1516
1517	/* Whole SKB was eaten :-) */
1518
1519	if (skb == tp->retransmit_skb_hint)
1520		tp->retransmit_skb_hint = prev;
1521	if (skb == tp->lost_skb_hint) {
1522		tp->lost_skb_hint = prev;
1523		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1524	}
1525
1526	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1527	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1528	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1529		TCP_SKB_CB(prev)->end_seq++;
1530
1531	if (skb == tcp_highest_sack(sk))
1532		tcp_advance_highest_sack(sk, skb);
1533
1534	tcp_skb_collapse_tstamp(prev, skb);
1535	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1536		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1537
1538	tcp_rtx_queue_unlink_and_free(skb, sk);
1539
1540	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1541
1542	return true;
1543}
1544
1545/* I wish gso_size would have a bit more sane initialization than
1546 * something-or-zero which complicates things
1547 */
1548static int tcp_skb_seglen(const struct sk_buff *skb)
1549{
1550	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1551}
1552
1553/* Shifting pages past head area doesn't work */
1554static int skb_can_shift(const struct sk_buff *skb)
1555{
1556	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1557}
1558
1559int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1560		  int pcount, int shiftlen)
1561{
1562	/* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1563	 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1564	 * to make sure not storing more than 65535 * 8 bytes per skb,
1565	 * even if current MSS is bigger.
1566	 */
1567	if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1568		return 0;
1569	if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1570		return 0;
1571	return skb_shift(to, from, shiftlen);
1572}
1573
1574/* Try collapsing SACK blocks spanning across multiple skbs to a single
1575 * skb.
1576 */
1577static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1578					  struct tcp_sacktag_state *state,
1579					  u32 start_seq, u32 end_seq,
1580					  bool dup_sack)
1581{
1582	struct tcp_sock *tp = tcp_sk(sk);
1583	struct sk_buff *prev;
1584	int mss;
1585	int pcount = 0;
1586	int len;
1587	int in_sack;
1588
 
 
 
1589	/* Normally R but no L won't result in plain S */
1590	if (!dup_sack &&
1591	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1592		goto fallback;
1593	if (!skb_can_shift(skb))
1594		goto fallback;
1595	/* This frame is about to be dropped (was ACKed). */
1596	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1597		goto fallback;
1598
1599	/* Can only happen with delayed DSACK + discard craziness */
1600	prev = skb_rb_prev(skb);
1601	if (!prev)
1602		goto fallback;
 
1603
1604	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1605		goto fallback;
1606
1607	if (!tcp_skb_can_collapse(prev, skb))
1608		goto fallback;
1609
1610	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1611		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1612
1613	if (in_sack) {
1614		len = skb->len;
1615		pcount = tcp_skb_pcount(skb);
1616		mss = tcp_skb_seglen(skb);
1617
1618		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1619		 * drop this restriction as unnecessary
1620		 */
1621		if (mss != tcp_skb_seglen(prev))
1622			goto fallback;
1623	} else {
1624		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1625			goto noop;
1626		/* CHECKME: This is non-MSS split case only?, this will
1627		 * cause skipped skbs due to advancing loop btw, original
1628		 * has that feature too
1629		 */
1630		if (tcp_skb_pcount(skb) <= 1)
1631			goto noop;
1632
1633		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1634		if (!in_sack) {
1635			/* TODO: head merge to next could be attempted here
1636			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1637			 * though it might not be worth of the additional hassle
1638			 *
1639			 * ...we can probably just fallback to what was done
1640			 * previously. We could try merging non-SACKed ones
1641			 * as well but it probably isn't going to buy off
1642			 * because later SACKs might again split them, and
1643			 * it would make skb timestamp tracking considerably
1644			 * harder problem.
1645			 */
1646			goto fallback;
1647		}
1648
1649		len = end_seq - TCP_SKB_CB(skb)->seq;
1650		BUG_ON(len < 0);
1651		BUG_ON(len > skb->len);
1652
1653		/* MSS boundaries should be honoured or else pcount will
1654		 * severely break even though it makes things bit trickier.
1655		 * Optimize common case to avoid most of the divides
1656		 */
1657		mss = tcp_skb_mss(skb);
1658
1659		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1660		 * drop this restriction as unnecessary
1661		 */
1662		if (mss != tcp_skb_seglen(prev))
1663			goto fallback;
1664
1665		if (len == mss) {
1666			pcount = 1;
1667		} else if (len < mss) {
1668			goto noop;
1669		} else {
1670			pcount = len / mss;
1671			len = pcount * mss;
1672		}
1673	}
1674
1675	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1676	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1677		goto fallback;
1678
1679	if (!tcp_skb_shift(prev, skb, pcount, len))
1680		goto fallback;
1681	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1682		goto out;
1683
1684	/* Hole filled allows collapsing with the next as well, this is very
1685	 * useful when hole on every nth skb pattern happens
1686	 */
1687	skb = skb_rb_next(prev);
1688	if (!skb)
1689		goto out;
 
1690
1691	if (!skb_can_shift(skb) ||
 
1692	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1693	    (mss != tcp_skb_seglen(skb)))
1694		goto out;
1695
1696	if (!tcp_skb_can_collapse(prev, skb))
1697		goto out;
1698	len = skb->len;
1699	pcount = tcp_skb_pcount(skb);
1700	if (tcp_skb_shift(prev, skb, pcount, len))
1701		tcp_shifted_skb(sk, prev, skb, state, pcount,
1702				len, mss, 0);
1703
1704out:
 
1705	return prev;
1706
1707noop:
1708	return skb;
1709
1710fallback:
1711	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1712	return NULL;
1713}
1714
1715static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1716					struct tcp_sack_block *next_dup,
1717					struct tcp_sacktag_state *state,
1718					u32 start_seq, u32 end_seq,
1719					bool dup_sack_in)
1720{
1721	struct tcp_sock *tp = tcp_sk(sk);
1722	struct sk_buff *tmp;
1723
1724	skb_rbtree_walk_from(skb) {
1725		int in_sack = 0;
1726		bool dup_sack = dup_sack_in;
1727
 
 
 
1728		/* queue is in-order => we can short-circuit the walk early */
1729		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1730			break;
1731
1732		if (next_dup  &&
1733		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1734			in_sack = tcp_match_skb_to_sack(sk, skb,
1735							next_dup->start_seq,
1736							next_dup->end_seq);
1737			if (in_sack > 0)
1738				dup_sack = true;
1739		}
1740
1741		/* skb reference here is a bit tricky to get right, since
1742		 * shifting can eat and free both this skb and the next,
1743		 * so not even _safe variant of the loop is enough.
1744		 */
1745		if (in_sack <= 0) {
1746			tmp = tcp_shift_skb_data(sk, skb, state,
1747						 start_seq, end_seq, dup_sack);
1748			if (tmp) {
1749				if (tmp != skb) {
1750					skb = tmp;
1751					continue;
1752				}
1753
1754				in_sack = 0;
1755			} else {
1756				in_sack = tcp_match_skb_to_sack(sk, skb,
1757								start_seq,
1758								end_seq);
1759			}
1760		}
1761
1762		if (unlikely(in_sack < 0))
1763			break;
1764
1765		if (in_sack) {
1766			TCP_SKB_CB(skb)->sacked =
1767				tcp_sacktag_one(sk,
1768						state,
1769						TCP_SKB_CB(skb)->sacked,
1770						TCP_SKB_CB(skb)->seq,
1771						TCP_SKB_CB(skb)->end_seq,
1772						dup_sack,
1773						tcp_skb_pcount(skb),
1774						tcp_skb_timestamp_us(skb));
1775			tcp_rate_skb_delivered(sk, skb, state->rate);
1776			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1777				list_del_init(&skb->tcp_tsorted_anchor);
1778
1779			if (!before(TCP_SKB_CB(skb)->seq,
1780				    tcp_highest_sack_seq(tp)))
1781				tcp_advance_highest_sack(sk, skb);
1782		}
1783	}
1784	return skb;
1785}
1786
1787static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1788{
1789	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1790	struct sk_buff *skb;
1791
1792	while (*p) {
1793		parent = *p;
1794		skb = rb_to_skb(parent);
1795		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1796			p = &parent->rb_left;
1797			continue;
1798		}
1799		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1800			p = &parent->rb_right;
1801			continue;
1802		}
1803		return skb;
1804	}
1805	return NULL;
1806}
1807
 
 
 
1808static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
 
1809					u32 skip_to_seq)
1810{
1811	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1812		return skb;
 
1813
1814	return tcp_sacktag_bsearch(sk, skip_to_seq);
 
 
 
 
 
1815}
1816
1817static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1818						struct sock *sk,
1819						struct tcp_sack_block *next_dup,
1820						struct tcp_sacktag_state *state,
1821						u32 skip_to_seq)
1822{
1823	if (!next_dup)
1824		return skb;
1825
1826	if (before(next_dup->start_seq, skip_to_seq)) {
1827		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1828		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1829				       next_dup->start_seq, next_dup->end_seq,
1830				       1);
1831	}
1832
1833	return skb;
1834}
1835
1836static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1837{
1838	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1839}
1840
1841static int
1842tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1843			u32 prior_snd_una, struct tcp_sacktag_state *state)
1844{
1845	struct tcp_sock *tp = tcp_sk(sk);
1846	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1847				    TCP_SKB_CB(ack_skb)->sacked);
1848	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1849	struct tcp_sack_block sp[TCP_NUM_SACKS];
1850	struct tcp_sack_block *cache;
1851	struct sk_buff *skb;
1852	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1853	int used_sacks;
1854	bool found_dup_sack = false;
1855	int i, j;
1856	int first_sack_index;
1857
1858	state->flag = 0;
1859	state->reord = tp->snd_nxt;
1860
1861	if (!tp->sacked_out)
 
 
1862		tcp_highest_sack_reset(sk);
 
1863
1864	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1865					 num_sacks, prior_snd_una, state);
 
 
1866
1867	/* Eliminate too old ACKs, but take into
1868	 * account more or less fresh ones, they can
1869	 * contain valid SACK info.
1870	 */
1871	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1872		return 0;
1873
1874	if (!tp->packets_out)
1875		goto out;
1876
1877	used_sacks = 0;
1878	first_sack_index = 0;
1879	for (i = 0; i < num_sacks; i++) {
1880		bool dup_sack = !i && found_dup_sack;
1881
1882		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1883		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1884
1885		if (!tcp_is_sackblock_valid(tp, dup_sack,
1886					    sp[used_sacks].start_seq,
1887					    sp[used_sacks].end_seq)) {
1888			int mib_idx;
1889
1890			if (dup_sack) {
1891				if (!tp->undo_marker)
1892					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1893				else
1894					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1895			} else {
1896				/* Don't count olds caused by ACK reordering */
1897				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1898				    !after(sp[used_sacks].end_seq, tp->snd_una))
1899					continue;
1900				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1901			}
1902
1903			NET_INC_STATS(sock_net(sk), mib_idx);
1904			if (i == 0)
1905				first_sack_index = -1;
1906			continue;
1907		}
1908
1909		/* Ignore very old stuff early */
1910		if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1911			if (i == 0)
1912				first_sack_index = -1;
1913			continue;
1914		}
1915
1916		used_sacks++;
1917	}
1918
1919	/* order SACK blocks to allow in order walk of the retrans queue */
1920	for (i = used_sacks - 1; i > 0; i--) {
1921		for (j = 0; j < i; j++) {
1922			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1923				swap(sp[j], sp[j + 1]);
1924
1925				/* Track where the first SACK block goes to */
1926				if (j == first_sack_index)
1927					first_sack_index = j + 1;
1928			}
1929		}
1930	}
1931
1932	state->mss_now = tcp_current_mss(sk);
1933	skb = NULL;
1934	i = 0;
1935
1936	if (!tp->sacked_out) {
1937		/* It's already past, so skip checking against it */
1938		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1939	} else {
1940		cache = tp->recv_sack_cache;
1941		/* Skip empty blocks in at head of the cache */
1942		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1943		       !cache->end_seq)
1944			cache++;
1945	}
1946
1947	while (i < used_sacks) {
1948		u32 start_seq = sp[i].start_seq;
1949		u32 end_seq = sp[i].end_seq;
1950		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1951		struct tcp_sack_block *next_dup = NULL;
1952
1953		if (found_dup_sack && ((i + 1) == first_sack_index))
1954			next_dup = &sp[i + 1];
1955
1956		/* Skip too early cached blocks */
1957		while (tcp_sack_cache_ok(tp, cache) &&
1958		       !before(start_seq, cache->end_seq))
1959			cache++;
1960
1961		/* Can skip some work by looking recv_sack_cache? */
1962		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1963		    after(end_seq, cache->start_seq)) {
1964
1965			/* Head todo? */
1966			if (before(start_seq, cache->start_seq)) {
1967				skb = tcp_sacktag_skip(skb, sk, start_seq);
 
1968				skb = tcp_sacktag_walk(skb, sk, next_dup,
1969						       state,
1970						       start_seq,
1971						       cache->start_seq,
1972						       dup_sack);
1973			}
1974
1975			/* Rest of the block already fully processed? */
1976			if (!after(end_seq, cache->end_seq))
1977				goto advance_sp;
1978
1979			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1980						       state,
1981						       cache->end_seq);
1982
1983			/* ...tail remains todo... */
1984			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1985				/* ...but better entrypoint exists! */
1986				skb = tcp_highest_sack(sk);
1987				if (!skb)
1988					break;
 
1989				cache++;
1990				goto walk;
1991			}
1992
1993			skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1994			/* Check overlap against next cached too (past this one already) */
1995			cache++;
1996			continue;
1997		}
1998
1999		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
2000			skb = tcp_highest_sack(sk);
2001			if (!skb)
2002				break;
 
2003		}
2004		skb = tcp_sacktag_skip(skb, sk, start_seq);
2005
2006walk:
2007		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
2008				       start_seq, end_seq, dup_sack);
2009
2010advance_sp:
2011		i++;
2012	}
2013
2014	/* Clear the head of the cache sack blocks so we can skip it next time */
2015	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
2016		tp->recv_sack_cache[i].start_seq = 0;
2017		tp->recv_sack_cache[i].end_seq = 0;
2018	}
2019	for (j = 0; j < used_sacks; j++)
2020		tp->recv_sack_cache[i++] = sp[j];
2021
2022	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
2023		tcp_check_sack_reordering(sk, state->reord, 0);
 
2024
2025	tcp_verify_left_out(tp);
2026out:
2027
2028#if FASTRETRANS_DEBUG > 0
2029	WARN_ON((int)tp->sacked_out < 0);
2030	WARN_ON((int)tp->lost_out < 0);
2031	WARN_ON((int)tp->retrans_out < 0);
2032	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
2033#endif
2034	return state->flag;
2035}
2036
2037/* Limits sacked_out so that sum with lost_out isn't ever larger than
2038 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
2039 */
2040static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
2041{
2042	u32 holes;
2043
2044	holes = max(tp->lost_out, 1U);
2045	holes = min(holes, tp->packets_out);
2046
2047	if ((tp->sacked_out + holes) > tp->packets_out) {
2048		tp->sacked_out = tp->packets_out - holes;
2049		return true;
2050	}
2051	return false;
2052}
2053
2054/* If we receive more dupacks than we expected counting segments
2055 * in assumption of absent reordering, interpret this as reordering.
2056 * The only another reason could be bug in receiver TCP.
2057 */
2058static void tcp_check_reno_reordering(struct sock *sk, const int addend)
2059{
2060	struct tcp_sock *tp = tcp_sk(sk);
2061
2062	if (!tcp_limit_reno_sacked(tp))
2063		return;
2064
2065	tp->reordering = min_t(u32, tp->packets_out + addend,
2066			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
2067	tp->reord_seen++;
2068	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
2069}
2070
2071/* Emulate SACKs for SACKless connection: account for a new dupack. */
2072
2073static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
2074{
2075	if (num_dupack) {
2076		struct tcp_sock *tp = tcp_sk(sk);
2077		u32 prior_sacked = tp->sacked_out;
2078		s32 delivered;
2079
2080		tp->sacked_out += num_dupack;
2081		tcp_check_reno_reordering(sk, 0);
2082		delivered = tp->sacked_out - prior_sacked;
2083		if (delivered > 0)
2084			tcp_count_delivered(tp, delivered, ece_ack);
2085		tcp_verify_left_out(tp);
2086	}
2087}
2088
2089/* Account for ACK, ACKing some data in Reno Recovery phase. */
2090
2091static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
2092{
2093	struct tcp_sock *tp = tcp_sk(sk);
2094
2095	if (acked > 0) {
2096		/* One ACK acked hole. The rest eat duplicate ACKs. */
2097		tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
2098				    ece_ack);
2099		if (acked - 1 >= tp->sacked_out)
2100			tp->sacked_out = 0;
2101		else
2102			tp->sacked_out -= acked - 1;
2103	}
2104	tcp_check_reno_reordering(sk, acked);
2105	tcp_verify_left_out(tp);
2106}
2107
2108static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2109{
2110	tp->sacked_out = 0;
2111}
2112
2113void tcp_clear_retrans(struct tcp_sock *tp)
2114{
2115	tp->retrans_out = 0;
2116	tp->lost_out = 0;
2117	tp->undo_marker = 0;
2118	tp->undo_retrans = -1;
 
2119	tp->sacked_out = 0;
2120	tp->rto_stamp = 0;
2121	tp->total_rto = 0;
2122	tp->total_rto_recoveries = 0;
2123	tp->total_rto_time = 0;
2124}
2125
2126static inline void tcp_init_undo(struct tcp_sock *tp)
2127{
2128	tp->undo_marker = tp->snd_una;
2129	/* Retransmission still in flight may cause DSACKs later. */
2130	tp->undo_retrans = tp->retrans_out ? : -1;
2131}
2132
2133static bool tcp_is_rack(const struct sock *sk)
2134{
2135	return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) &
2136		TCP_RACK_LOSS_DETECTION;
2137}
2138
2139/* If we detect SACK reneging, forget all SACK information
2140 * and reset tags completely, otherwise preserve SACKs. If receiver
2141 * dropped its ofo queue, we will know this due to reneging detection.
2142 */
2143static void tcp_timeout_mark_lost(struct sock *sk)
2144{
2145	struct tcp_sock *tp = tcp_sk(sk);
2146	struct sk_buff *skb, *head;
2147	bool is_reneg;			/* is receiver reneging on SACKs? */
2148
2149	head = tcp_rtx_queue_head(sk);
2150	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2151	if (is_reneg) {
2152		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2153		tp->sacked_out = 0;
2154		/* Mark SACK reneging until we recover from this loss event. */
2155		tp->is_sack_reneg = 1;
2156	} else if (tcp_is_reno(tp)) {
2157		tcp_reset_reno_sack(tp);
2158	}
2159
2160	skb = head;
2161	skb_rbtree_walk_from(skb) {
2162		if (is_reneg)
2163			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2164		else if (tcp_is_rack(sk) && skb != head &&
2165			 tcp_rack_skb_timeout(tp, skb, 0) > 0)
2166			continue; /* Don't mark recently sent ones lost yet */
2167		tcp_mark_skb_lost(sk, skb);
2168	}
2169	tcp_verify_left_out(tp);
2170	tcp_clear_all_retrans_hints(tp);
2171}
2172
2173/* Enter Loss state. */
2174void tcp_enter_loss(struct sock *sk)
2175{
2176	const struct inet_connection_sock *icsk = inet_csk(sk);
2177	struct tcp_sock *tp = tcp_sk(sk);
2178	struct net *net = sock_net(sk);
 
2179	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2180	u8 reordering;
2181
2182	tcp_timeout_mark_lost(sk);
2183
2184	/* Reduce ssthresh if it has not yet been made inside this window. */
2185	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2186	    !after(tp->high_seq, tp->snd_una) ||
2187	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2188		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2189		tp->prior_cwnd = tcp_snd_cwnd(tp);
2190		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2191		tcp_ca_event(sk, CA_EVENT_LOSS);
2192		tcp_init_undo(tp);
2193	}
2194	tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1);
2195	tp->snd_cwnd_cnt   = 0;
2196	tp->snd_cwnd_stamp = tcp_jiffies32;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2197
2198	/* Timeout in disordered state after receiving substantial DUPACKs
2199	 * suggests that the degree of reordering is over-estimated.
2200	 */
2201	reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering);
2202	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2203	    tp->sacked_out >= reordering)
2204		tp->reordering = min_t(unsigned int, tp->reordering,
2205				       reordering);
2206
2207	tcp_set_ca_state(sk, TCP_CA_Loss);
2208	tp->high_seq = tp->snd_nxt;
2209	tcp_ecn_queue_cwr(tp);
2210
2211	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2212	 * loss recovery is underway except recurring timeout(s) on
2213	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2214	 */
2215	tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) &&
2216		   (new_recovery || icsk->icsk_retransmits) &&
2217		   !inet_csk(sk)->icsk_mtup.probe_size;
2218}
2219
2220/* If ACK arrived pointing to a remembered SACK, it means that our
2221 * remembered SACKs do not reflect real state of receiver i.e.
2222 * receiver _host_ is heavily congested (or buggy).
2223 *
2224 * To avoid big spurious retransmission bursts due to transient SACK
2225 * scoreboard oddities that look like reneging, we give the receiver a
2226 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2227 * restore sanity to the SACK scoreboard. If the apparent reneging
2228 * persists until this RTO then we'll clear the SACK scoreboard.
2229 */
2230static bool tcp_check_sack_reneging(struct sock *sk, int *ack_flag)
2231{
2232	if (*ack_flag & FLAG_SACK_RENEGING &&
2233	    *ack_flag & FLAG_SND_UNA_ADVANCED) {
2234		struct tcp_sock *tp = tcp_sk(sk);
2235		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2236					  msecs_to_jiffies(10));
2237
2238		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2239					  delay, TCP_RTO_MAX);
2240		*ack_flag &= ~FLAG_SET_XMIT_TIMER;
2241		return true;
2242	}
2243	return false;
2244}
2245
 
 
 
 
 
2246/* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2247 * counter when SACK is enabled (without SACK, sacked_out is used for
2248 * that purpose).
2249 *
 
 
 
 
2250 * With reordering, holes may still be in flight, so RFC3517 recovery
2251 * uses pure sacked_out (total number of SACKed segments) even though
2252 * it violates the RFC that uses duplicate ACKs, often these are equal
2253 * but when e.g. out-of-window ACKs or packet duplication occurs,
2254 * they differ. Since neither occurs due to loss, TCP should really
2255 * ignore them.
2256 */
2257static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2258{
2259	return tp->sacked_out + 1;
2260}
2261
2262/* Linux NewReno/SACK/ECN state machine.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2263 * --------------------------------------
2264 *
2265 * "Open"	Normal state, no dubious events, fast path.
2266 * "Disorder"   In all the respects it is "Open",
2267 *		but requires a bit more attention. It is entered when
2268 *		we see some SACKs or dupacks. It is split of "Open"
2269 *		mainly to move some processing from fast path to slow one.
2270 * "CWR"	CWND was reduced due to some Congestion Notification event.
2271 *		It can be ECN, ICMP source quench, local device congestion.
2272 * "Recovery"	CWND was reduced, we are fast-retransmitting.
2273 * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2274 *
2275 * tcp_fastretrans_alert() is entered:
2276 * - each incoming ACK, if state is not "Open"
2277 * - when arrived ACK is unusual, namely:
2278 *	* SACK
2279 *	* Duplicate ACK.
2280 *	* ECN ECE.
2281 *
2282 * Counting packets in flight is pretty simple.
2283 *
2284 *	in_flight = packets_out - left_out + retrans_out
2285 *
2286 *	packets_out is SND.NXT-SND.UNA counted in packets.
2287 *
2288 *	retrans_out is number of retransmitted segments.
2289 *
2290 *	left_out is number of segments left network, but not ACKed yet.
2291 *
2292 *		left_out = sacked_out + lost_out
2293 *
2294 *     sacked_out: Packets, which arrived to receiver out of order
2295 *		   and hence not ACKed. With SACKs this number is simply
2296 *		   amount of SACKed data. Even without SACKs
2297 *		   it is easy to give pretty reliable estimate of this number,
2298 *		   counting duplicate ACKs.
2299 *
2300 *       lost_out: Packets lost by network. TCP has no explicit
2301 *		   "loss notification" feedback from network (for now).
2302 *		   It means that this number can be only _guessed_.
2303 *		   Actually, it is the heuristics to predict lossage that
2304 *		   distinguishes different algorithms.
2305 *
2306 *	F.e. after RTO, when all the queue is considered as lost,
2307 *	lost_out = packets_out and in_flight = retrans_out.
2308 *
2309 *		Essentially, we have now a few algorithms detecting
2310 *		lost packets.
2311 *
2312 *		If the receiver supports SACK:
2313 *
2314 *		RFC6675/3517: It is the conventional algorithm. A packet is
2315 *		considered lost if the number of higher sequence packets
2316 *		SACKed is greater than or equal the DUPACK thoreshold
2317 *		(reordering). This is implemented in tcp_mark_head_lost and
2318 *		tcp_update_scoreboard.
2319 *
2320 *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2321 *		(2017-) that checks timing instead of counting DUPACKs.
2322 *		Essentially a packet is considered lost if it's not S/ACKed
2323 *		after RTT + reordering_window, where both metrics are
2324 *		dynamically measured and adjusted. This is implemented in
2325 *		tcp_rack_mark_lost.
2326 *
2327 *		If the receiver does not support SACK:
2328 *
2329 *		NewReno (RFC6582): in Recovery we assume that one segment
2330 *		is lost (classic Reno). While we are in Recovery and
2331 *		a partial ACK arrives, we assume that one more packet
2332 *		is lost (NewReno). This heuristics are the same in NewReno
2333 *		and SACK.
2334 *
 
 
 
 
2335 * Really tricky (and requiring careful tuning) part of algorithm
2336 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2337 * The first determines the moment _when_ we should reduce CWND and,
2338 * hence, slow down forward transmission. In fact, it determines the moment
2339 * when we decide that hole is caused by loss, rather than by a reorder.
2340 *
2341 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2342 * holes, caused by lost packets.
2343 *
2344 * And the most logically complicated part of algorithm is undo
2345 * heuristics. We detect false retransmits due to both too early
2346 * fast retransmit (reordering) and underestimated RTO, analyzing
2347 * timestamps and D-SACKs. When we detect that some segments were
2348 * retransmitted by mistake and CWND reduction was wrong, we undo
2349 * window reduction and abort recovery phase. This logic is hidden
2350 * inside several functions named tcp_try_undo_<something>.
2351 */
2352
2353/* This function decides, when we should leave Disordered state
2354 * and enter Recovery phase, reducing congestion window.
2355 *
2356 * Main question: may we further continue forward transmission
2357 * with the same cwnd?
2358 */
2359static bool tcp_time_to_recover(struct sock *sk, int flag)
2360{
2361	struct tcp_sock *tp = tcp_sk(sk);
 
 
2362
2363	/* Trick#1: The loss is proven. */
2364	if (tp->lost_out)
2365		return true;
2366
2367	/* Not-A-Trick#2 : Classic rule... */
2368	if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2369		return true;
2370
 
 
 
 
 
 
 
 
 
 
2371	return false;
2372}
2373
2374/* Detect loss in event "A" above by marking head of queue up as lost.
2375 * For RFC3517 SACK, a segment is considered lost if it
 
2376 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2377 * the maximum SACKed segments to pass before reaching this limit.
2378 */
2379static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2380{
2381	struct tcp_sock *tp = tcp_sk(sk);
2382	struct sk_buff *skb;
2383	int cnt;
 
2384	/* Use SACK to deduce losses of new sequences sent during recovery */
2385	const u32 loss_high = tp->snd_nxt;
2386
2387	WARN_ON(packets > tp->packets_out);
2388	skb = tp->lost_skb_hint;
2389	if (skb) {
 
2390		/* Head already handled? */
2391		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2392			return;
2393		cnt = tp->lost_cnt_hint;
2394	} else {
2395		skb = tcp_rtx_queue_head(sk);
2396		cnt = 0;
2397	}
2398
2399	skb_rbtree_walk_from(skb) {
 
 
2400		/* TODO: do this better */
2401		/* this is not the most efficient way to do this... */
2402		tp->lost_skb_hint = skb;
2403		tp->lost_cnt_hint = cnt;
2404
2405		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2406			break;
2407
2408		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
 
 
2409			cnt += tcp_skb_pcount(skb);
2410
2411		if (cnt > packets)
2412			break;
 
 
 
2413
2414		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST))
2415			tcp_mark_skb_lost(sk, skb);
 
 
 
 
 
 
 
 
2416
2417		if (mark_head)
2418			break;
2419	}
2420	tcp_verify_left_out(tp);
2421}
2422
2423/* Account newly detected lost packet(s) */
2424
2425static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2426{
2427	struct tcp_sock *tp = tcp_sk(sk);
2428
2429	if (tcp_is_sack(tp)) {
 
 
 
 
 
 
 
2430		int sacked_upto = tp->sacked_out - tp->reordering;
2431		if (sacked_upto >= 0)
2432			tcp_mark_head_lost(sk, sacked_upto, 0);
2433		else if (fast_rexmit)
2434			tcp_mark_head_lost(sk, 1, 1);
2435	}
2436}
2437
 
 
 
 
 
 
 
 
 
 
2438static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2439{
2440	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2441	       before(tp->rx_opt.rcv_tsecr, when);
2442}
2443
2444/* skb is spurious retransmitted if the returned timestamp echo
2445 * reply is prior to the skb transmission time
2446 */
2447static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2448				     const struct sk_buff *skb)
2449{
2450	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2451	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb));
2452}
2453
2454/* Nothing was retransmitted or returned timestamp is less
2455 * than timestamp of the first retransmission.
2456 */
2457static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2458{
2459	return tp->retrans_stamp &&
2460	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2461}
2462
2463/* Undo procedures. */
2464
2465/* We can clear retrans_stamp when there are no retransmissions in the
2466 * window. It would seem that it is trivially available for us in
2467 * tp->retrans_out, however, that kind of assumptions doesn't consider
2468 * what will happen if errors occur when sending retransmission for the
2469 * second time. ...It could the that such segment has only
2470 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2471 * the head skb is enough except for some reneging corner cases that
2472 * are not worth the effort.
2473 *
2474 * Main reason for all this complexity is the fact that connection dying
2475 * time now depends on the validity of the retrans_stamp, in particular,
2476 * that successive retransmissions of a segment must not advance
2477 * retrans_stamp under any conditions.
2478 */
2479static bool tcp_any_retrans_done(const struct sock *sk)
2480{
2481	const struct tcp_sock *tp = tcp_sk(sk);
2482	struct sk_buff *skb;
2483
2484	if (tp->retrans_out)
2485		return true;
2486
2487	skb = tcp_rtx_queue_head(sk);
2488	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2489		return true;
2490
2491	return false;
2492}
2493
 
2494static void DBGUNDO(struct sock *sk, const char *msg)
2495{
2496#if FASTRETRANS_DEBUG > 1
2497	struct tcp_sock *tp = tcp_sk(sk);
2498	struct inet_sock *inet = inet_sk(sk);
2499
2500	if (sk->sk_family == AF_INET) {
2501		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2502			 msg,
2503			 &inet->inet_daddr, ntohs(inet->inet_dport),
2504			 tcp_snd_cwnd(tp), tcp_left_out(tp),
2505			 tp->snd_ssthresh, tp->prior_ssthresh,
2506			 tp->packets_out);
2507	}
2508#if IS_ENABLED(CONFIG_IPV6)
2509	else if (sk->sk_family == AF_INET6) {
 
2510		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2511			 msg,
2512			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2513			 tcp_snd_cwnd(tp), tcp_left_out(tp),
2514			 tp->snd_ssthresh, tp->prior_ssthresh,
2515			 tp->packets_out);
2516	}
2517#endif
2518#endif
2519}
 
 
 
2520
2521static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2522{
2523	struct tcp_sock *tp = tcp_sk(sk);
2524
2525	if (unmark_loss) {
2526		struct sk_buff *skb;
2527
2528		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
 
 
2529			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2530		}
2531		tp->lost_out = 0;
2532		tcp_clear_all_retrans_hints(tp);
2533	}
2534
2535	if (tp->prior_ssthresh) {
2536		const struct inet_connection_sock *icsk = inet_csk(sk);
2537
2538		tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk));
 
 
 
2539
2540		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2541			tp->snd_ssthresh = tp->prior_ssthresh;
2542			tcp_ecn_withdraw_cwr(tp);
2543		}
2544	}
2545	tp->snd_cwnd_stamp = tcp_jiffies32;
2546	tp->undo_marker = 0;
2547	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2548}
2549
2550static inline bool tcp_may_undo(const struct tcp_sock *tp)
2551{
2552	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2553}
2554
2555static bool tcp_is_non_sack_preventing_reopen(struct sock *sk)
2556{
2557	struct tcp_sock *tp = tcp_sk(sk);
2558
2559	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2560		/* Hold old state until something *above* high_seq
2561		 * is ACKed. For Reno it is MUST to prevent false
2562		 * fast retransmits (RFC2582). SACK TCP is safe. */
2563		if (!tcp_any_retrans_done(sk))
2564			tp->retrans_stamp = 0;
2565		return true;
2566	}
2567	return false;
2568}
2569
2570/* People celebrate: "We love our President!" */
2571static bool tcp_try_undo_recovery(struct sock *sk)
2572{
2573	struct tcp_sock *tp = tcp_sk(sk);
2574
2575	if (tcp_may_undo(tp)) {
2576		int mib_idx;
2577
2578		/* Happy end! We did not retransmit anything
2579		 * or our original transmission succeeded.
2580		 */
2581		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2582		tcp_undo_cwnd_reduction(sk, false);
2583		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2584			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2585		else
2586			mib_idx = LINUX_MIB_TCPFULLUNDO;
2587
2588		NET_INC_STATS(sock_net(sk), mib_idx);
2589	} else if (tp->rack.reo_wnd_persist) {
2590		tp->rack.reo_wnd_persist--;
2591	}
2592	if (tcp_is_non_sack_preventing_reopen(sk))
 
 
 
 
 
 
2593		return true;
 
2594	tcp_set_ca_state(sk, TCP_CA_Open);
2595	tp->is_sack_reneg = 0;
2596	return false;
2597}
2598
2599/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2600static bool tcp_try_undo_dsack(struct sock *sk)
2601{
2602	struct tcp_sock *tp = tcp_sk(sk);
2603
2604	if (tp->undo_marker && !tp->undo_retrans) {
2605		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2606					       tp->rack.reo_wnd_persist + 1);
2607		DBGUNDO(sk, "D-SACK");
2608		tcp_undo_cwnd_reduction(sk, false);
2609		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2610		return true;
2611	}
2612	return false;
2613}
2614
2615/* Undo during loss recovery after partial ACK or using F-RTO. */
2616static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2617{
2618	struct tcp_sock *tp = tcp_sk(sk);
2619
2620	if (frto_undo || tcp_may_undo(tp)) {
2621		tcp_undo_cwnd_reduction(sk, true);
2622
2623		DBGUNDO(sk, "partial loss");
2624		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2625		if (frto_undo)
2626			NET_INC_STATS(sock_net(sk),
2627					LINUX_MIB_TCPSPURIOUSRTOS);
2628		inet_csk(sk)->icsk_retransmits = 0;
2629		if (tcp_is_non_sack_preventing_reopen(sk))
2630			return true;
2631		if (frto_undo || tcp_is_sack(tp)) {
2632			tcp_set_ca_state(sk, TCP_CA_Open);
2633			tp->is_sack_reneg = 0;
2634		}
2635		return true;
2636	}
2637	return false;
2638}
2639
2640/* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2641 * It computes the number of packets to send (sndcnt) based on packets newly
2642 * delivered:
2643 *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2644 *	cwnd reductions across a full RTT.
2645 *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2646 *      But when SND_UNA is acked without further losses,
2647 *      slow starts cwnd up to ssthresh to speed up the recovery.
2648 */
2649static void tcp_init_cwnd_reduction(struct sock *sk)
2650{
2651	struct tcp_sock *tp = tcp_sk(sk);
2652
2653	tp->high_seq = tp->snd_nxt;
2654	tp->tlp_high_seq = 0;
2655	tp->snd_cwnd_cnt = 0;
2656	tp->prior_cwnd = tcp_snd_cwnd(tp);
2657	tp->prr_delivered = 0;
2658	tp->prr_out = 0;
2659	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2660	tcp_ecn_queue_cwr(tp);
2661}
2662
2663void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag)
 
2664{
2665	struct tcp_sock *tp = tcp_sk(sk);
2666	int sndcnt = 0;
2667	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2668
2669	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2670		return;
2671
2672	tp->prr_delivered += newly_acked_sacked;
2673	if (delta < 0) {
2674		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2675			       tp->prior_cwnd - 1;
2676		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
 
 
 
 
 
2677	} else {
2678		sndcnt = max_t(int, tp->prr_delivered - tp->prr_out,
2679			       newly_acked_sacked);
2680		if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost)
2681			sndcnt++;
2682		sndcnt = min(delta, sndcnt);
2683	}
2684	/* Force a fast retransmit upon entering fast recovery */
2685	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2686	tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt);
2687}
2688
2689static inline void tcp_end_cwnd_reduction(struct sock *sk)
2690{
2691	struct tcp_sock *tp = tcp_sk(sk);
2692
2693	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2694		return;
2695
2696	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2697	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2698	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2699		tcp_snd_cwnd_set(tp, tp->snd_ssthresh);
2700		tp->snd_cwnd_stamp = tcp_jiffies32;
2701	}
2702	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2703}
2704
2705/* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2706void tcp_enter_cwr(struct sock *sk)
2707{
2708	struct tcp_sock *tp = tcp_sk(sk);
2709
2710	tp->prior_ssthresh = 0;
2711	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2712		tp->undo_marker = 0;
2713		tcp_init_cwnd_reduction(sk);
2714		tcp_set_ca_state(sk, TCP_CA_CWR);
2715	}
2716}
2717EXPORT_SYMBOL(tcp_enter_cwr);
2718
2719static void tcp_try_keep_open(struct sock *sk)
2720{
2721	struct tcp_sock *tp = tcp_sk(sk);
2722	int state = TCP_CA_Open;
2723
2724	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2725		state = TCP_CA_Disorder;
2726
2727	if (inet_csk(sk)->icsk_ca_state != state) {
2728		tcp_set_ca_state(sk, state);
2729		tp->high_seq = tp->snd_nxt;
2730	}
2731}
2732
2733static void tcp_try_to_open(struct sock *sk, int flag)
2734{
2735	struct tcp_sock *tp = tcp_sk(sk);
2736
2737	tcp_verify_left_out(tp);
2738
2739	if (!tcp_any_retrans_done(sk))
2740		tp->retrans_stamp = 0;
2741
2742	if (flag & FLAG_ECE)
2743		tcp_enter_cwr(sk);
2744
2745	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2746		tcp_try_keep_open(sk);
2747	}
2748}
2749
2750static void tcp_mtup_probe_failed(struct sock *sk)
2751{
2752	struct inet_connection_sock *icsk = inet_csk(sk);
2753
2754	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2755	icsk->icsk_mtup.probe_size = 0;
2756	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2757}
2758
2759static void tcp_mtup_probe_success(struct sock *sk)
2760{
2761	struct tcp_sock *tp = tcp_sk(sk);
2762	struct inet_connection_sock *icsk = inet_csk(sk);
2763	u64 val;
2764
 
2765	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2766
2767	val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache);
2768	do_div(val, icsk->icsk_mtup.probe_size);
2769	DEBUG_NET_WARN_ON_ONCE((u32)val != val);
2770	tcp_snd_cwnd_set(tp, max_t(u32, 1U, val));
2771
2772	tp->snd_cwnd_cnt = 0;
2773	tp->snd_cwnd_stamp = tcp_jiffies32;
2774	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2775
2776	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2777	icsk->icsk_mtup.probe_size = 0;
2778	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2779	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2780}
2781
2782/* Do a simple retransmit without using the backoff mechanisms in
2783 * tcp_timer. This is used for path mtu discovery.
2784 * The socket is already locked here.
2785 */
2786void tcp_simple_retransmit(struct sock *sk)
2787{
2788	const struct inet_connection_sock *icsk = inet_csk(sk);
2789	struct tcp_sock *tp = tcp_sk(sk);
2790	struct sk_buff *skb;
2791	int mss;
 
2792
2793	/* A fastopen SYN request is stored as two separate packets within
2794	 * the retransmit queue, this is done by tcp_send_syn_data().
2795	 * As a result simply checking the MSS of the frames in the queue
2796	 * will not work for the SYN packet.
2797	 *
2798	 * Us being here is an indication of a path MTU issue so we can
2799	 * assume that the fastopen SYN was lost and just mark all the
2800	 * frames in the retransmit queue as lost. We will use an MSS of
2801	 * -1 to mark all frames as lost, otherwise compute the current MSS.
2802	 */
2803	if (tp->syn_data && sk->sk_state == TCP_SYN_SENT)
2804		mss = -1;
2805	else
2806		mss = tcp_current_mss(sk);
2807
2808	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2809		if (tcp_skb_seglen(skb) > mss)
2810			tcp_mark_skb_lost(sk, skb);
2811	}
2812
2813	tcp_clear_retrans_hints_partial(tp);
2814
2815	if (!tp->lost_out)
2816		return;
2817
2818	if (tcp_is_reno(tp))
2819		tcp_limit_reno_sacked(tp);
2820
2821	tcp_verify_left_out(tp);
2822
2823	/* Don't muck with the congestion window here.
2824	 * Reason is that we do not increase amount of _data_
2825	 * in network, but units changed and effective
2826	 * cwnd/ssthresh really reduced now.
2827	 */
2828	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2829		tp->high_seq = tp->snd_nxt;
2830		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2831		tp->prior_ssthresh = 0;
2832		tp->undo_marker = 0;
2833		tcp_set_ca_state(sk, TCP_CA_Loss);
2834	}
2835	tcp_xmit_retransmit_queue(sk);
2836}
2837EXPORT_SYMBOL(tcp_simple_retransmit);
2838
2839void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2840{
2841	struct tcp_sock *tp = tcp_sk(sk);
2842	int mib_idx;
2843
2844	if (tcp_is_reno(tp))
2845		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2846	else
2847		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2848
2849	NET_INC_STATS(sock_net(sk), mib_idx);
2850
2851	tp->prior_ssthresh = 0;
2852	tcp_init_undo(tp);
2853
2854	if (!tcp_in_cwnd_reduction(sk)) {
2855		if (!ece_ack)
2856			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2857		tcp_init_cwnd_reduction(sk);
2858	}
2859	tcp_set_ca_state(sk, TCP_CA_Recovery);
2860}
2861
2862static void tcp_update_rto_time(struct tcp_sock *tp)
2863{
2864	if (tp->rto_stamp) {
2865		tp->total_rto_time += tcp_time_stamp_ms(tp) - tp->rto_stamp;
2866		tp->rto_stamp = 0;
2867	}
2868}
2869
2870/* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2871 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2872 */
2873static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2874			     int *rexmit)
2875{
2876	struct tcp_sock *tp = tcp_sk(sk);
2877	bool recovered = !before(tp->snd_una, tp->high_seq);
2878
2879	if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2880	    tcp_try_undo_loss(sk, false))
2881		return;
2882
2883	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2884		/* Step 3.b. A timeout is spurious if not all data are
2885		 * lost, i.e., never-retransmitted data are (s)acked.
2886		 */
2887		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2888		    tcp_try_undo_loss(sk, true))
2889			return;
2890
2891		if (after(tp->snd_nxt, tp->high_seq)) {
2892			if (flag & FLAG_DATA_SACKED || num_dupack)
2893				tp->frto = 0; /* Step 3.a. loss was real */
2894		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2895			tp->high_seq = tp->snd_nxt;
2896			/* Step 2.b. Try send new data (but deferred until cwnd
2897			 * is updated in tcp_ack()). Otherwise fall back to
2898			 * the conventional recovery.
2899			 */
2900			if (!tcp_write_queue_empty(sk) &&
2901			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2902				*rexmit = REXMIT_NEW;
2903				return;
2904			}
2905			tp->frto = 0;
2906		}
2907	}
2908
2909	if (recovered) {
2910		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2911		tcp_try_undo_recovery(sk);
2912		return;
2913	}
2914	if (tcp_is_reno(tp)) {
2915		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2916		 * delivered. Lower inflight to clock out (re)transmissions.
2917		 */
2918		if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2919			tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
2920		else if (flag & FLAG_SND_UNA_ADVANCED)
2921			tcp_reset_reno_sack(tp);
2922	}
2923	*rexmit = REXMIT_LOST;
2924}
2925
2926static bool tcp_force_fast_retransmit(struct sock *sk)
2927{
2928	struct tcp_sock *tp = tcp_sk(sk);
2929
2930	return after(tcp_highest_sack_seq(tp),
2931		     tp->snd_una + tp->reordering * tp->mss_cache);
2932}
2933
2934/* Undo during fast recovery after partial ACK. */
2935static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una,
2936				 bool *do_lost)
2937{
2938	struct tcp_sock *tp = tcp_sk(sk);
2939
2940	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2941		/* Plain luck! Hole if filled with delayed
2942		 * packet, rather than with a retransmit. Check reordering.
2943		 */
2944		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2945
2946		/* We are getting evidence that the reordering degree is higher
2947		 * than we realized. If there are no retransmits out then we
2948		 * can undo. Otherwise we clock out new packets but do not
2949		 * mark more packets lost or retransmit more.
2950		 */
2951		if (tp->retrans_out)
2952			return true;
2953
2954		if (!tcp_any_retrans_done(sk))
2955			tp->retrans_stamp = 0;
2956
2957		DBGUNDO(sk, "partial recovery");
2958		tcp_undo_cwnd_reduction(sk, true);
2959		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2960		tcp_try_keep_open(sk);
2961	} else {
2962		/* Partial ACK arrived. Force fast retransmit. */
2963		*do_lost = tcp_force_fast_retransmit(sk);
2964	}
2965	return false;
2966}
2967
2968static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2969{
2970	struct tcp_sock *tp = tcp_sk(sk);
2971
2972	if (tcp_rtx_queue_empty(sk))
2973		return;
2974
2975	if (unlikely(tcp_is_reno(tp))) {
2976		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2977	} else if (tcp_is_rack(sk)) {
2978		u32 prior_retrans = tp->retrans_out;
2979
2980		if (tcp_rack_mark_lost(sk))
2981			*ack_flag &= ~FLAG_SET_XMIT_TIMER;
2982		if (prior_retrans > tp->retrans_out)
2983			*ack_flag |= FLAG_LOST_RETRANS;
2984	}
2985}
2986
2987/* Process an event, which can update packets-in-flight not trivially.
2988 * Main goal of this function is to calculate new estimate for left_out,
2989 * taking into account both packets sitting in receiver's buffer and
2990 * packets lost by network.
2991 *
2992 * Besides that it updates the congestion state when packet loss or ECN
2993 * is detected. But it does not reduce the cwnd, it is done by the
2994 * congestion control later.
2995 *
2996 * It does _not_ decide what to send, it is made in function
2997 * tcp_xmit_retransmit_queue().
2998 */
2999static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
3000				  int num_dupack, int *ack_flag, int *rexmit)
3001{
3002	struct inet_connection_sock *icsk = inet_csk(sk);
3003	struct tcp_sock *tp = tcp_sk(sk);
3004	int fast_rexmit = 0, flag = *ack_flag;
3005	bool ece_ack = flag & FLAG_ECE;
3006	bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
3007				      tcp_force_fast_retransmit(sk));
3008
3009	if (!tp->packets_out && tp->sacked_out)
3010		tp->sacked_out = 0;
 
 
3011
3012	/* Now state machine starts.
3013	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3014	if (ece_ack)
3015		tp->prior_ssthresh = 0;
3016
3017	/* B. In all the states check for reneging SACKs. */
3018	if (tcp_check_sack_reneging(sk, ack_flag))
3019		return;
3020
3021	/* C. Check consistency of the current state. */
3022	tcp_verify_left_out(tp);
3023
3024	/* D. Check state exit conditions. State can be terminated
3025	 *    when high_seq is ACKed. */
3026	if (icsk->icsk_ca_state == TCP_CA_Open) {
3027		WARN_ON(tp->retrans_out != 0 && !tp->syn_data);
3028		tp->retrans_stamp = 0;
3029	} else if (!before(tp->snd_una, tp->high_seq)) {
3030		switch (icsk->icsk_ca_state) {
3031		case TCP_CA_CWR:
3032			/* CWR is to be held something *above* high_seq
3033			 * is ACKed for CWR bit to reach receiver. */
3034			if (tp->snd_una != tp->high_seq) {
3035				tcp_end_cwnd_reduction(sk);
3036				tcp_set_ca_state(sk, TCP_CA_Open);
3037			}
3038			break;
3039
3040		case TCP_CA_Recovery:
3041			if (tcp_is_reno(tp))
3042				tcp_reset_reno_sack(tp);
3043			if (tcp_try_undo_recovery(sk))
3044				return;
3045			tcp_end_cwnd_reduction(sk);
3046			break;
3047		}
3048	}
3049
 
 
 
 
 
 
 
3050	/* E. Process state. */
3051	switch (icsk->icsk_ca_state) {
3052	case TCP_CA_Recovery:
3053		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3054			if (tcp_is_reno(tp))
3055				tcp_add_reno_sack(sk, num_dupack, ece_ack);
3056		} else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost))
3057			return;
3058
3059		if (tcp_try_undo_dsack(sk))
3060			tcp_try_keep_open(sk);
3061
3062		tcp_identify_packet_loss(sk, ack_flag);
3063		if (icsk->icsk_ca_state != TCP_CA_Recovery) {
3064			if (!tcp_time_to_recover(sk, flag))
3065				return;
3066			/* Undo reverts the recovery state. If loss is evident,
3067			 * starts a new recovery (e.g. reordering then loss);
3068			 */
3069			tcp_enter_recovery(sk, ece_ack);
 
 
 
3070		}
3071		break;
3072	case TCP_CA_Loss:
3073		tcp_process_loss(sk, flag, num_dupack, rexmit);
3074		if (icsk->icsk_ca_state != TCP_CA_Loss)
3075			tcp_update_rto_time(tp);
3076		tcp_identify_packet_loss(sk, ack_flag);
3077		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
3078		      (*ack_flag & FLAG_LOST_RETRANS)))
3079			return;
3080		/* Change state if cwnd is undone or retransmits are lost */
3081		fallthrough;
3082	default:
3083		if (tcp_is_reno(tp)) {
3084			if (flag & FLAG_SND_UNA_ADVANCED)
3085				tcp_reset_reno_sack(tp);
3086			tcp_add_reno_sack(sk, num_dupack, ece_ack);
 
3087		}
3088
3089		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3090			tcp_try_undo_dsack(sk);
3091
3092		tcp_identify_packet_loss(sk, ack_flag);
3093		if (!tcp_time_to_recover(sk, flag)) {
3094			tcp_try_to_open(sk, flag);
3095			return;
3096		}
3097
3098		/* MTU probe failure: don't reduce cwnd */
3099		if (icsk->icsk_ca_state < TCP_CA_CWR &&
3100		    icsk->icsk_mtup.probe_size &&
3101		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3102			tcp_mtup_probe_failed(sk);
3103			/* Restores the reduction we did in tcp_mtup_probe() */
3104			tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1);
3105			tcp_simple_retransmit(sk);
3106			return;
3107		}
3108
3109		/* Otherwise enter Recovery state */
3110		tcp_enter_recovery(sk, ece_ack);
3111		fast_rexmit = 1;
3112	}
3113
3114	if (!tcp_is_rack(sk) && do_lost)
3115		tcp_update_scoreboard(sk, fast_rexmit);
3116	*rexmit = REXMIT_LOST;
3117}
3118
3119static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
3120{
3121	u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ;
3122	struct tcp_sock *tp = tcp_sk(sk);
3123
3124	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
3125		/* If the remote keeps returning delayed ACKs, eventually
3126		 * the min filter would pick it up and overestimate the
3127		 * prop. delay when it expires. Skip suspected delayed ACKs.
3128		 */
3129		return;
3130	}
3131	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
3132			   rtt_us ? : jiffies_to_usecs(1));
3133}
3134
3135static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
3136			       long seq_rtt_us, long sack_rtt_us,
3137			       long ca_rtt_us, struct rate_sample *rs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3138{
3139	const struct tcp_sock *tp = tcp_sk(sk);
3140
3141	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
3142	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
3143	 * Karn's algorithm forbids taking RTT if some retransmitted data
3144	 * is acked (RFC6298).
3145	 */
3146	if (seq_rtt_us < 0)
3147		seq_rtt_us = sack_rtt_us;
3148
3149	/* RTTM Rule: A TSecr value received in a segment is used to
3150	 * update the averaged RTT measurement only if the segment
3151	 * acknowledges some new data, i.e., only if it advances the
3152	 * left edge of the send window.
3153	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3154	 */
3155	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp &&
3156	    tp->rx_opt.rcv_tsecr && flag & FLAG_ACKED)
3157		seq_rtt_us = ca_rtt_us = tcp_rtt_tsopt_us(tp);
3158
3159	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
3160	if (seq_rtt_us < 0)
3161		return false;
3162
3163	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3164	 * always taken together with ACK, SACK, or TS-opts. Any negative
3165	 * values will be skipped with the seq_rtt_us < 0 check above.
3166	 */
3167	tcp_update_rtt_min(sk, ca_rtt_us, flag);
3168	tcp_rtt_estimator(sk, seq_rtt_us);
3169	tcp_set_rto(sk);
3170
3171	/* RFC6298: only reset backoff on valid RTT measurement. */
3172	inet_csk(sk)->icsk_backoff = 0;
3173	return true;
3174}
3175
3176/* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
3177void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3178{
3179	struct rate_sample rs;
3180	long rtt_us = -1L;
3181
3182	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3183		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3184
3185	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
 
 
 
 
3186}
3187
3188
3189static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3190{
3191	const struct inet_connection_sock *icsk = inet_csk(sk);
3192
3193	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3194	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3195}
3196
3197/* Restart timer after forward progress on connection.
3198 * RFC2988 recommends to restart timer to now+rto.
3199 */
3200void tcp_rearm_rto(struct sock *sk)
3201{
3202	const struct inet_connection_sock *icsk = inet_csk(sk);
3203	struct tcp_sock *tp = tcp_sk(sk);
3204
3205	/* If the retrans timer is currently being used by Fast Open
3206	 * for SYN-ACK retrans purpose, stay put.
3207	 */
3208	if (rcu_access_pointer(tp->fastopen_rsk))
3209		return;
3210
3211	if (!tp->packets_out) {
3212		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3213	} else {
3214		u32 rto = inet_csk(sk)->icsk_rto;
3215		/* Offset the time elapsed after installing regular RTO */
3216		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3217		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3218			s64 delta_us = tcp_rto_delta_us(sk);
3219			/* delta_us may not be positive if the socket is locked
 
 
 
3220			 * when the retrans timer fires and is rescheduled.
3221			 */
3222			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
 
3223		}
3224		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3225				     TCP_RTO_MAX);
3226	}
3227}
3228
3229/* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3230static void tcp_set_xmit_timer(struct sock *sk)
 
 
3231{
3232	if (!tcp_schedule_loss_probe(sk, true))
3233		tcp_rearm_rto(sk);
 
 
 
 
 
 
 
 
 
3234}
3235
3236/* If we get here, the whole TSO packet has not been acked. */
3237static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3238{
3239	struct tcp_sock *tp = tcp_sk(sk);
3240	u32 packets_acked;
3241
3242	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3243
3244	packets_acked = tcp_skb_pcount(skb);
3245	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3246		return 0;
3247	packets_acked -= tcp_skb_pcount(skb);
3248
3249	if (packets_acked) {
3250		BUG_ON(tcp_skb_pcount(skb) == 0);
3251		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3252	}
3253
3254	return packets_acked;
3255}
3256
3257static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3258			   const struct sk_buff *ack_skb, u32 prior_snd_una)
3259{
3260	const struct skb_shared_info *shinfo;
3261
3262	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3263	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3264		return;
3265
3266	shinfo = skb_shinfo(skb);
3267	if (!before(shinfo->tskey, prior_snd_una) &&
3268	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3269		tcp_skb_tsorted_save(skb) {
3270			__skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK);
3271		} tcp_skb_tsorted_restore(skb);
3272	}
3273}
3274
3275/* Remove acknowledged frames from the retransmission queue. If our packet
3276 * is before the ack sequence we can discard it as it's confirmed to have
3277 * arrived at the other end.
3278 */
3279static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb,
3280			       u32 prior_fack, u32 prior_snd_una,
3281			       struct tcp_sacktag_state *sack, bool ece_ack)
3282{
3283	const struct inet_connection_sock *icsk = inet_csk(sk);
3284	u64 first_ackt, last_ackt;
3285	struct tcp_sock *tp = tcp_sk(sk);
3286	u32 prior_sacked = tp->sacked_out;
3287	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3288	struct sk_buff *skb, *next;
3289	bool fully_acked = true;
3290	long sack_rtt_us = -1L;
3291	long seq_rtt_us = -1L;
3292	long ca_rtt_us = -1L;
 
3293	u32 pkts_acked = 0;
3294	bool rtt_update;
3295	int flag = 0;
3296
3297	first_ackt = 0;
3298
3299	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3300		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3301		const u32 start_seq = scb->seq;
3302		u8 sacked = scb->sacked;
3303		u32 acked_pcount;
3304
 
 
3305		/* Determine how many packets and what bytes were acked, tso and else */
3306		if (after(scb->end_seq, tp->snd_una)) {
3307			if (tcp_skb_pcount(skb) == 1 ||
3308			    !after(tp->snd_una, scb->seq))
3309				break;
3310
3311			acked_pcount = tcp_tso_acked(sk, skb);
3312			if (!acked_pcount)
3313				break;
 
3314			fully_acked = false;
3315		} else {
 
 
3316			acked_pcount = tcp_skb_pcount(skb);
3317		}
3318
3319		if (unlikely(sacked & TCPCB_RETRANS)) {
3320			if (sacked & TCPCB_SACKED_RETRANS)
3321				tp->retrans_out -= acked_pcount;
3322			flag |= FLAG_RETRANS_DATA_ACKED;
3323		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3324			last_ackt = tcp_skb_timestamp_us(skb);
3325			WARN_ON_ONCE(last_ackt == 0);
3326			if (!first_ackt)
3327				first_ackt = last_ackt;
3328
3329			if (before(start_seq, reord))
3330				reord = start_seq;
3331			if (!after(scb->end_seq, tp->high_seq))
3332				flag |= FLAG_ORIG_SACK_ACKED;
3333		}
3334
3335		if (sacked & TCPCB_SACKED_ACKED) {
3336			tp->sacked_out -= acked_pcount;
3337		} else if (tcp_is_sack(tp)) {
3338			tcp_count_delivered(tp, acked_pcount, ece_ack);
3339			if (!tcp_skb_spurious_retrans(tp, skb))
3340				tcp_rack_advance(tp, sacked, scb->end_seq,
3341						 tcp_skb_timestamp_us(skb));
3342		}
3343		if (sacked & TCPCB_LOST)
3344			tp->lost_out -= acked_pcount;
3345
3346		tp->packets_out -= acked_pcount;
3347		pkts_acked += acked_pcount;
3348		tcp_rate_skb_delivered(sk, skb, sack->rate);
3349
3350		/* Initial outgoing SYN's get put onto the write_queue
3351		 * just like anything else we transmit.  It is not
3352		 * true data, and if we misinform our callers that
3353		 * this ACK acks real data, we will erroneously exit
3354		 * connection startup slow start one packet too
3355		 * quickly.  This is severely frowned upon behavior.
3356		 */
3357		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3358			flag |= FLAG_DATA_ACKED;
3359		} else {
3360			flag |= FLAG_SYN_ACKED;
3361			tp->retrans_stamp = 0;
3362		}
3363
3364		if (!fully_acked)
3365			break;
3366
3367		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3368
3369		next = skb_rb_next(skb);
3370		if (unlikely(skb == tp->retransmit_skb_hint))
3371			tp->retransmit_skb_hint = NULL;
3372		if (unlikely(skb == tp->lost_skb_hint))
3373			tp->lost_skb_hint = NULL;
3374		tcp_highest_sack_replace(sk, skb, next);
3375		tcp_rtx_queue_unlink_and_free(skb, sk);
3376	}
3377
3378	if (!skb)
3379		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3380
3381	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3382		tp->snd_up = tp->snd_una;
3383
3384	if (skb) {
3385		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3386		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3387			flag |= FLAG_SACK_RENEGING;
3388	}
3389
3390	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3391		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3392		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3393
3394		if (pkts_acked == 1 && fully_acked && !prior_sacked &&
3395		    (tp->snd_una - prior_snd_una) < tp->mss_cache &&
3396		    sack->rate->prior_delivered + 1 == tp->delivered &&
3397		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3398			/* Conservatively mark a delayed ACK. It's typically
3399			 * from a lone runt packet over the round trip to
3400			 * a receiver w/o out-of-order or CE events.
3401			 */
3402			flag |= FLAG_ACK_MAYBE_DELAYED;
3403		}
3404	}
3405	if (sack->first_sackt) {
3406		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3407		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3408	}
 
3409	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3410					ca_rtt_us, sack->rate);
3411
3412	if (flag & FLAG_ACKED) {
3413		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3414		if (unlikely(icsk->icsk_mtup.probe_size &&
3415			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3416			tcp_mtup_probe_success(sk);
3417		}
3418
3419		if (tcp_is_reno(tp)) {
3420			tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3421
3422			/* If any of the cumulatively ACKed segments was
3423			 * retransmitted, non-SACK case cannot confirm that
3424			 * progress was due to original transmission due to
3425			 * lack of TCPCB_SACKED_ACKED bits even if some of
3426			 * the packets may have been never retransmitted.
3427			 */
3428			if (flag & FLAG_RETRANS_DATA_ACKED)
3429				flag &= ~FLAG_ORIG_SACK_ACKED;
3430		} else {
3431			int delta;
3432
3433			/* Non-retransmitted hole got filled? That's reordering */
3434			if (before(reord, prior_fack))
3435				tcp_check_sack_reordering(sk, reord, 0);
3436
3437			delta = prior_sacked - tp->sacked_out;
 
3438			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3439		}
 
 
 
3440	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3441		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3442						    tcp_skb_timestamp_us(skb))) {
3443		/* Do not re-arm RTO if the sack RTT is measured from data sent
3444		 * after when the head was last (re)transmitted. Otherwise the
3445		 * timeout may continue to extend in loss recovery.
3446		 */
3447		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3448	}
3449
3450	if (icsk->icsk_ca_ops->pkts_acked) {
3451		struct ack_sample sample = { .pkts_acked = pkts_acked,
3452					     .rtt_us = sack->rate->rtt_us };
3453
3454		sample.in_flight = tp->mss_cache *
3455			(tp->delivered - sack->rate->prior_delivered);
3456		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3457	}
3458
3459#if FASTRETRANS_DEBUG > 0
3460	WARN_ON((int)tp->sacked_out < 0);
3461	WARN_ON((int)tp->lost_out < 0);
3462	WARN_ON((int)tp->retrans_out < 0);
3463	if (!tp->packets_out && tcp_is_sack(tp)) {
3464		icsk = inet_csk(sk);
3465		if (tp->lost_out) {
3466			pr_debug("Leak l=%u %d\n",
3467				 tp->lost_out, icsk->icsk_ca_state);
3468			tp->lost_out = 0;
3469		}
3470		if (tp->sacked_out) {
3471			pr_debug("Leak s=%u %d\n",
3472				 tp->sacked_out, icsk->icsk_ca_state);
3473			tp->sacked_out = 0;
3474		}
3475		if (tp->retrans_out) {
3476			pr_debug("Leak r=%u %d\n",
3477				 tp->retrans_out, icsk->icsk_ca_state);
3478			tp->retrans_out = 0;
3479		}
3480	}
3481#endif
 
3482	return flag;
3483}
3484
3485static void tcp_ack_probe(struct sock *sk)
3486{
3487	struct inet_connection_sock *icsk = inet_csk(sk);
3488	struct sk_buff *head = tcp_send_head(sk);
3489	const struct tcp_sock *tp = tcp_sk(sk);
 
3490
3491	/* Was it a usable window open? */
3492	if (!head)
3493		return;
3494	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3495		icsk->icsk_backoff = 0;
3496		icsk->icsk_probes_tstamp = 0;
3497		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3498		/* Socket must be waked up by subsequent tcp_data_snd_check().
3499		 * This function is not for random using!
3500		 */
3501	} else {
3502		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3503
3504		when = tcp_clamp_probe0_to_user_timeout(sk, when);
3505		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX);
3506	}
3507}
3508
3509static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3510{
3511	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3512		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3513}
3514
3515/* Decide wheather to run the increase function of congestion control. */
3516static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3517{
3518	/* If reordering is high then always grow cwnd whenever data is
3519	 * delivered regardless of its ordering. Otherwise stay conservative
3520	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3521	 * new SACK or ECE mark may first advance cwnd here and later reduce
3522	 * cwnd in tcp_fastretrans_alert() based on more states.
3523	 */
3524	if (tcp_sk(sk)->reordering >
3525	    READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering))
3526		return flag & FLAG_FORWARD_PROGRESS;
3527
3528	return flag & FLAG_DATA_ACKED;
3529}
3530
3531/* The "ultimate" congestion control function that aims to replace the rigid
3532 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3533 * It's called toward the end of processing an ACK with precise rate
3534 * information. All transmission or retransmission are delayed afterwards.
3535 */
3536static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3537			     int flag, const struct rate_sample *rs)
3538{
3539	const struct inet_connection_sock *icsk = inet_csk(sk);
3540
3541	if (icsk->icsk_ca_ops->cong_control) {
3542		icsk->icsk_ca_ops->cong_control(sk, rs);
3543		return;
3544	}
3545
3546	if (tcp_in_cwnd_reduction(sk)) {
3547		/* Reduce cwnd if state mandates */
3548		tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag);
3549	} else if (tcp_may_raise_cwnd(sk, flag)) {
3550		/* Advance cwnd if state allows */
3551		tcp_cong_avoid(sk, ack, acked_sacked);
3552	}
3553	tcp_update_pacing_rate(sk);
3554}
3555
3556/* Check that window update is acceptable.
3557 * The function assumes that snd_una<=ack<=snd_next.
3558 */
3559static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3560					const u32 ack, const u32 ack_seq,
3561					const u32 nwin)
3562{
3563	return	after(ack, tp->snd_una) ||
3564		after(ack_seq, tp->snd_wl1) ||
3565		(ack_seq == tp->snd_wl1 && (nwin > tp->snd_wnd || !nwin));
3566}
3567
3568static void tcp_snd_sne_update(struct tcp_sock *tp, u32 ack)
3569{
3570#ifdef CONFIG_TCP_AO
3571	struct tcp_ao_info *ao;
3572
3573	if (!static_branch_unlikely(&tcp_ao_needed.key))
3574		return;
3575
3576	ao = rcu_dereference_protected(tp->ao_info,
3577				       lockdep_sock_is_held((struct sock *)tp));
3578	if (ao && ack < tp->snd_una)
3579		ao->snd_sne++;
3580#endif
3581}
3582
3583/* If we update tp->snd_una, also update tp->bytes_acked */
3584static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3585{
3586	u32 delta = ack - tp->snd_una;
3587
3588	sock_owned_by_me((struct sock *)tp);
3589	tp->bytes_acked += delta;
3590	tcp_snd_sne_update(tp, ack);
3591	tp->snd_una = ack;
3592}
3593
3594static void tcp_rcv_sne_update(struct tcp_sock *tp, u32 seq)
3595{
3596#ifdef CONFIG_TCP_AO
3597	struct tcp_ao_info *ao;
3598
3599	if (!static_branch_unlikely(&tcp_ao_needed.key))
3600		return;
3601
3602	ao = rcu_dereference_protected(tp->ao_info,
3603				       lockdep_sock_is_held((struct sock *)tp));
3604	if (ao && seq < tp->rcv_nxt)
3605		ao->rcv_sne++;
3606#endif
3607}
3608
3609/* If we update tp->rcv_nxt, also update tp->bytes_received */
3610static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3611{
3612	u32 delta = seq - tp->rcv_nxt;
3613
3614	sock_owned_by_me((struct sock *)tp);
3615	tp->bytes_received += delta;
3616	tcp_rcv_sne_update(tp, seq);
3617	WRITE_ONCE(tp->rcv_nxt, seq);
3618}
3619
3620/* Update our send window.
3621 *
3622 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3623 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3624 */
3625static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3626				 u32 ack_seq)
3627{
3628	struct tcp_sock *tp = tcp_sk(sk);
3629	int flag = 0;
3630	u32 nwin = ntohs(tcp_hdr(skb)->window);
3631
3632	if (likely(!tcp_hdr(skb)->syn))
3633		nwin <<= tp->rx_opt.snd_wscale;
3634
3635	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3636		flag |= FLAG_WIN_UPDATE;
3637		tcp_update_wl(tp, ack_seq);
3638
3639		if (tp->snd_wnd != nwin) {
3640			tp->snd_wnd = nwin;
3641
3642			/* Note, it is the only place, where
3643			 * fast path is recovered for sending TCP.
3644			 */
3645			tp->pred_flags = 0;
3646			tcp_fast_path_check(sk);
3647
3648			if (!tcp_write_queue_empty(sk))
3649				tcp_slow_start_after_idle_check(sk);
3650
3651			if (nwin > tp->max_window) {
3652				tp->max_window = nwin;
3653				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3654			}
3655		}
3656	}
3657
3658	tcp_snd_una_update(tp, ack);
3659
3660	return flag;
3661}
3662
3663static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3664				   u32 *last_oow_ack_time)
3665{
3666	/* Paired with the WRITE_ONCE() in this function. */
3667	u32 val = READ_ONCE(*last_oow_ack_time);
3668
3669	if (val) {
3670		s32 elapsed = (s32)(tcp_jiffies32 - val);
3671
3672		if (0 <= elapsed &&
3673		    elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) {
3674			NET_INC_STATS(net, mib_idx);
3675			return true;	/* rate-limited: don't send yet! */
3676		}
3677	}
3678
3679	/* Paired with the prior READ_ONCE() and with itself,
3680	 * as we might be lockless.
3681	 */
3682	WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32);
3683
3684	return false;	/* not rate-limited: go ahead, send dupack now! */
3685}
3686
3687/* Return true if we're currently rate-limiting out-of-window ACKs and
3688 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3689 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3690 * attacks that send repeated SYNs or ACKs for the same connection. To
3691 * do this, we do not send a duplicate SYNACK or ACK if the remote
3692 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3693 */
3694bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3695			  int mib_idx, u32 *last_oow_ack_time)
3696{
3697	/* Data packets without SYNs are not likely part of an ACK loop. */
3698	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3699	    !tcp_hdr(skb)->syn)
3700		return false;
 
 
 
 
 
 
 
 
 
 
 
3701
3702	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
 
3703}
3704
3705/* RFC 5961 7 [ACK Throttling] */
3706static void tcp_send_challenge_ack(struct sock *sk)
3707{
 
 
 
3708	struct tcp_sock *tp = tcp_sk(sk);
3709	struct net *net = sock_net(sk);
3710	u32 count, now, ack_limit;
3711
3712	/* First check our per-socket dupack rate limit. */
3713	if (__tcp_oow_rate_limited(net,
3714				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3715				   &tp->last_oow_ack_time))
3716		return;
3717
3718	ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit);
3719	if (ack_limit == INT_MAX)
3720		goto send_ack;
3721
3722	/* Then check host-wide RFC 5961 rate limit. */
3723	now = jiffies / HZ;
3724	if (now != READ_ONCE(net->ipv4.tcp_challenge_timestamp)) {
3725		u32 half = (ack_limit + 1) >> 1;
3726
3727		WRITE_ONCE(net->ipv4.tcp_challenge_timestamp, now);
3728		WRITE_ONCE(net->ipv4.tcp_challenge_count,
3729			   get_random_u32_inclusive(half, ack_limit + half - 1));
3730	}
3731	count = READ_ONCE(net->ipv4.tcp_challenge_count);
3732	if (count > 0) {
3733		WRITE_ONCE(net->ipv4.tcp_challenge_count, count - 1);
3734send_ack:
3735		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3736		tcp_send_ack(sk);
3737	}
3738}
3739
3740static void tcp_store_ts_recent(struct tcp_sock *tp)
3741{
3742	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3743	tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3744}
3745
3746static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3747{
3748	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3749		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3750		 * extra check below makes sure this can only happen
3751		 * for pure ACK frames.  -DaveM
3752		 *
3753		 * Not only, also it occurs for expired timestamps.
3754		 */
3755
3756		if (tcp_paws_check(&tp->rx_opt, 0))
3757			tcp_store_ts_recent(tp);
3758	}
3759}
3760
3761/* This routine deals with acks during a TLP episode and ends an episode by
3762 * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
 
 
3763 */
3764static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3765{
3766	struct tcp_sock *tp = tcp_sk(sk);
3767
3768	if (before(ack, tp->tlp_high_seq))
3769		return;
3770
3771	if (!tp->tlp_retrans) {
3772		/* TLP of new data has been acknowledged */
3773		tp->tlp_high_seq = 0;
3774	} else if (flag & FLAG_DSACK_TLP) {
3775		/* This DSACK means original and TLP probe arrived; no loss */
3776		tp->tlp_high_seq = 0;
3777	} else if (after(ack, tp->tlp_high_seq)) {
3778		/* ACK advances: there was a loss, so reduce cwnd. Reset
3779		 * tlp_high_seq in tcp_init_cwnd_reduction()
3780		 */
3781		tcp_init_cwnd_reduction(sk);
3782		tcp_set_ca_state(sk, TCP_CA_CWR);
3783		tcp_end_cwnd_reduction(sk);
3784		tcp_try_keep_open(sk);
3785		NET_INC_STATS(sock_net(sk),
3786				LINUX_MIB_TCPLOSSPROBERECOVERY);
3787	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3788			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3789		/* Pure dupack: original and TLP probe arrived; no loss */
3790		tp->tlp_high_seq = 0;
3791	}
3792}
3793
3794static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3795{
3796	const struct inet_connection_sock *icsk = inet_csk(sk);
3797
3798	if (icsk->icsk_ca_ops->in_ack_event)
3799		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3800}
3801
3802/* Congestion control has updated the cwnd already. So if we're in
3803 * loss recovery then now we do any new sends (for FRTO) or
3804 * retransmits (for CA_Loss or CA_recovery) that make sense.
3805 */
3806static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3807{
3808	struct tcp_sock *tp = tcp_sk(sk);
3809
3810	if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3811		return;
3812
3813	if (unlikely(rexmit == REXMIT_NEW)) {
3814		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3815					  TCP_NAGLE_OFF);
3816		if (after(tp->snd_nxt, tp->high_seq))
3817			return;
3818		tp->frto = 0;
3819	}
3820	tcp_xmit_retransmit_queue(sk);
3821}
3822
3823/* Returns the number of packets newly acked or sacked by the current ACK */
3824static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3825{
3826	const struct net *net = sock_net(sk);
3827	struct tcp_sock *tp = tcp_sk(sk);
3828	u32 delivered;
3829
3830	delivered = tp->delivered - prior_delivered;
3831	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3832	if (flag & FLAG_ECE)
3833		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3834
3835	return delivered;
3836}
3837
3838/* This routine deals with incoming acks, but not outgoing ones. */
3839static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3840{
3841	struct inet_connection_sock *icsk = inet_csk(sk);
3842	struct tcp_sock *tp = tcp_sk(sk);
3843	struct tcp_sacktag_state sack_state;
3844	struct rate_sample rs = { .prior_delivered = 0 };
3845	u32 prior_snd_una = tp->snd_una;
3846	bool is_sack_reneg = tp->is_sack_reneg;
3847	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3848	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3849	int num_dupack = 0;
 
3850	int prior_packets = tp->packets_out;
3851	u32 delivered = tp->delivered;
3852	u32 lost = tp->lost;
3853	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3854	u32 prior_fack;
3855
3856	sack_state.first_sackt = 0;
3857	sack_state.rate = &rs;
3858	sack_state.sack_delivered = 0;
3859
3860	/* We very likely will need to access rtx queue. */
3861	prefetch(sk->tcp_rtx_queue.rb_node);
3862
3863	/* If the ack is older than previous acks
3864	 * then we can probably ignore it.
3865	 */
3866	if (before(ack, prior_snd_una)) {
3867		u32 max_window;
3868
3869		/* do not accept ACK for bytes we never sent. */
3870		max_window = min_t(u64, tp->max_window, tp->bytes_acked);
3871		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3872		if (before(ack, prior_snd_una - max_window)) {
3873			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3874				tcp_send_challenge_ack(sk);
3875			return -SKB_DROP_REASON_TCP_TOO_OLD_ACK;
3876		}
3877		goto old_ack;
3878	}
3879
3880	/* If the ack includes data we haven't sent yet, discard
3881	 * this segment (RFC793 Section 3.9).
3882	 */
3883	if (after(ack, tp->snd_nxt))
3884		return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA;
 
 
 
 
3885
3886	if (after(ack, prior_snd_una)) {
3887		flag |= FLAG_SND_UNA_ADVANCED;
3888		icsk->icsk_retransmits = 0;
3889
3890#if IS_ENABLED(CONFIG_TLS_DEVICE)
3891		if (static_branch_unlikely(&clean_acked_data_enabled.key))
3892			if (icsk->icsk_clean_acked)
3893				icsk->icsk_clean_acked(sk, ack);
3894#endif
3895	}
3896
3897	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3898	rs.prior_in_flight = tcp_packets_in_flight(tp);
3899
3900	/* ts_recent update must be made after we are sure that the packet
3901	 * is in window.
3902	 */
3903	if (flag & FLAG_UPDATE_TS_RECENT)
3904		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3905
3906	if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3907	    FLAG_SND_UNA_ADVANCED) {
3908		/* Window is constant, pure forward advance.
3909		 * No more checks are required.
3910		 * Note, we use the fact that SND.UNA>=SND.WL2.
3911		 */
3912		tcp_update_wl(tp, ack_seq);
3913		tcp_snd_una_update(tp, ack);
3914		flag |= FLAG_WIN_UPDATE;
3915
3916		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3917
3918		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3919	} else {
3920		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3921
3922		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3923			flag |= FLAG_DATA;
3924		else
3925			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3926
3927		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3928
3929		if (TCP_SKB_CB(skb)->sacked)
3930			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3931							&sack_state);
3932
3933		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3934			flag |= FLAG_ECE;
3935			ack_ev_flags |= CA_ACK_ECE;
3936		}
3937
3938		if (sack_state.sack_delivered)
3939			tcp_count_delivered(tp, sack_state.sack_delivered,
3940					    flag & FLAG_ECE);
3941
3942		if (flag & FLAG_WIN_UPDATE)
3943			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3944
3945		tcp_in_ack_event(sk, ack_ev_flags);
3946	}
3947
3948	/* This is a deviation from RFC3168 since it states that:
3949	 * "When the TCP data sender is ready to set the CWR bit after reducing
3950	 * the congestion window, it SHOULD set the CWR bit only on the first
3951	 * new data packet that it transmits."
3952	 * We accept CWR on pure ACKs to be more robust
3953	 * with widely-deployed TCP implementations that do this.
3954	 */
3955	tcp_ecn_accept_cwr(sk, skb);
3956
3957	/* We passed data and got it acked, remove any soft error
3958	 * log. Something worked...
3959	 */
3960	WRITE_ONCE(sk->sk_err_soft, 0);
3961	icsk->icsk_probes_out = 0;
3962	tp->rcv_tstamp = tcp_jiffies32;
3963	if (!prior_packets)
3964		goto no_queue;
3965
3966	/* See if we can take anything off of the retransmit queue. */
3967	flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una,
3968				    &sack_state, flag & FLAG_ECE);
3969
3970	tcp_rack_update_reo_wnd(sk, &rs);
3971
 
 
 
 
3972	if (tp->tlp_high_seq)
3973		tcp_process_tlp_ack(sk, ack, flag);
3974
3975	if (tcp_ack_is_dubious(sk, flag)) {
3976		if (!(flag & (FLAG_SND_UNA_ADVANCED |
3977			      FLAG_NOT_DUP | FLAG_DSACKING_ACK))) {
3978			num_dupack = 1;
3979			/* Consider if pure acks were aggregated in tcp_add_backlog() */
3980			if (!(flag & FLAG_DATA))
3981				num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3982		}
3983		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3984				      &rexmit);
3985	}
3986
3987	/* If needed, reset TLP/RTO timer when RACK doesn't set. */
3988	if (flag & FLAG_SET_XMIT_TIMER)
3989		tcp_set_xmit_timer(sk);
3990
3991	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3992		sk_dst_confirm(sk);
3993
3994	delivered = tcp_newly_delivered(sk, delivered, flag);
3995	lost = tp->lost - lost;			/* freshly marked lost */
3996	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3997	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3998	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3999	tcp_xmit_recovery(sk, rexmit);
4000	return 1;
4001
4002no_queue:
4003	/* If data was DSACKed, see if we can undo a cwnd reduction. */
4004	if (flag & FLAG_DSACKING_ACK) {
4005		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4006				      &rexmit);
4007		tcp_newly_delivered(sk, delivered, flag);
4008	}
4009	/* If this ack opens up a zero window, clear backoff.  It was
4010	 * being used to time the probes, and is probably far higher than
4011	 * it needs to be for normal retransmission.
4012	 */
4013	tcp_ack_probe(sk);
 
4014
4015	if (tp->tlp_high_seq)
4016		tcp_process_tlp_ack(sk, ack, flag);
4017	return 1;
4018
 
 
 
 
4019old_ack:
4020	/* If data was SACKed, tag it and see if we should send more data.
4021	 * If data was DSACKed, see if we can undo a cwnd reduction.
4022	 */
4023	if (TCP_SKB_CB(skb)->sacked) {
4024		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
4025						&sack_state);
4026		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4027				      &rexmit);
4028		tcp_newly_delivered(sk, delivered, flag);
4029		tcp_xmit_recovery(sk, rexmit);
4030	}
4031
 
4032	return 0;
4033}
4034
4035static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
4036				      bool syn, struct tcp_fastopen_cookie *foc,
4037				      bool exp_opt)
4038{
4039	/* Valid only in SYN or SYN-ACK with an even length.  */
4040	if (!foc || !syn || len < 0 || (len & 1))
4041		return;
4042
4043	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
4044	    len <= TCP_FASTOPEN_COOKIE_MAX)
4045		memcpy(foc->val, cookie, len);
4046	else if (len != 0)
4047		len = -1;
4048	foc->len = len;
4049	foc->exp = exp_opt;
4050}
4051
4052static bool smc_parse_options(const struct tcphdr *th,
4053			      struct tcp_options_received *opt_rx,
4054			      const unsigned char *ptr,
4055			      int opsize)
4056{
4057#if IS_ENABLED(CONFIG_SMC)
4058	if (static_branch_unlikely(&tcp_have_smc)) {
4059		if (th->syn && !(opsize & 1) &&
4060		    opsize >= TCPOLEN_EXP_SMC_BASE &&
4061		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
4062			opt_rx->smc_ok = 1;
4063			return true;
4064		}
4065	}
4066#endif
4067	return false;
4068}
4069
4070/* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
4071 * value on success.
4072 */
4073u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
4074{
4075	const unsigned char *ptr = (const unsigned char *)(th + 1);
4076	int length = (th->doff * 4) - sizeof(struct tcphdr);
4077	u16 mss = 0;
4078
4079	while (length > 0) {
4080		int opcode = *ptr++;
4081		int opsize;
4082
4083		switch (opcode) {
4084		case TCPOPT_EOL:
4085			return mss;
4086		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
4087			length--;
4088			continue;
4089		default:
4090			if (length < 2)
4091				return mss;
4092			opsize = *ptr++;
4093			if (opsize < 2) /* "silly options" */
4094				return mss;
4095			if (opsize > length)
4096				return mss;	/* fail on partial options */
4097			if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
4098				u16 in_mss = get_unaligned_be16(ptr);
4099
4100				if (in_mss) {
4101					if (user_mss && user_mss < in_mss)
4102						in_mss = user_mss;
4103					mss = in_mss;
4104				}
4105			}
4106			ptr += opsize - 2;
4107			length -= opsize;
4108		}
4109	}
4110	return mss;
4111}
4112EXPORT_SYMBOL_GPL(tcp_parse_mss_option);
4113
4114/* Look for tcp options. Normally only called on SYN and SYNACK packets.
4115 * But, this can also be called on packets in the established flow when
4116 * the fast version below fails.
4117 */
4118void tcp_parse_options(const struct net *net,
4119		       const struct sk_buff *skb,
4120		       struct tcp_options_received *opt_rx, int estab,
4121		       struct tcp_fastopen_cookie *foc)
4122{
4123	const unsigned char *ptr;
4124	const struct tcphdr *th = tcp_hdr(skb);
4125	int length = (th->doff * 4) - sizeof(struct tcphdr);
4126
4127	ptr = (const unsigned char *)(th + 1);
4128	opt_rx->saw_tstamp = 0;
4129	opt_rx->saw_unknown = 0;
4130
4131	while (length > 0) {
4132		int opcode = *ptr++;
4133		int opsize;
4134
4135		switch (opcode) {
4136		case TCPOPT_EOL:
4137			return;
4138		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
4139			length--;
4140			continue;
4141		default:
4142			if (length < 2)
4143				return;
4144			opsize = *ptr++;
4145			if (opsize < 2) /* "silly options" */
4146				return;
4147			if (opsize > length)
4148				return;	/* don't parse partial options */
4149			switch (opcode) {
4150			case TCPOPT_MSS:
4151				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
4152					u16 in_mss = get_unaligned_be16(ptr);
4153					if (in_mss) {
4154						if (opt_rx->user_mss &&
4155						    opt_rx->user_mss < in_mss)
4156							in_mss = opt_rx->user_mss;
4157						opt_rx->mss_clamp = in_mss;
4158					}
4159				}
4160				break;
4161			case TCPOPT_WINDOW:
4162				if (opsize == TCPOLEN_WINDOW && th->syn &&
4163				    !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) {
4164					__u8 snd_wscale = *(__u8 *)ptr;
4165					opt_rx->wscale_ok = 1;
4166					if (snd_wscale > TCP_MAX_WSCALE) {
4167						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
4168								     __func__,
4169								     snd_wscale,
4170								     TCP_MAX_WSCALE);
4171						snd_wscale = TCP_MAX_WSCALE;
4172					}
4173					opt_rx->snd_wscale = snd_wscale;
4174				}
4175				break;
4176			case TCPOPT_TIMESTAMP:
4177				if ((opsize == TCPOLEN_TIMESTAMP) &&
4178				    ((estab && opt_rx->tstamp_ok) ||
4179				     (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) {
4180					opt_rx->saw_tstamp = 1;
4181					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
4182					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
4183				}
4184				break;
4185			case TCPOPT_SACK_PERM:
4186				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
4187				    !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) {
4188					opt_rx->sack_ok = TCP_SACK_SEEN;
4189					tcp_sack_reset(opt_rx);
4190				}
4191				break;
4192
4193			case TCPOPT_SACK:
4194				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
4195				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
4196				   opt_rx->sack_ok) {
4197					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
4198				}
4199				break;
4200#ifdef CONFIG_TCP_MD5SIG
4201			case TCPOPT_MD5SIG:
4202				/* The MD5 Hash has already been
4203				 * checked (see tcp_v{4,6}_rcv()).
 
4204				 */
4205				break;
4206#endif
4207			case TCPOPT_FASTOPEN:
4208				tcp_parse_fastopen_option(
4209					opsize - TCPOLEN_FASTOPEN_BASE,
4210					ptr, th->syn, foc, false);
4211				break;
4212
4213			case TCPOPT_EXP:
4214				/* Fast Open option shares code 254 using a
4215				 * 16 bits magic number.
4216				 */
4217				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4218				    get_unaligned_be16(ptr) ==
4219				    TCPOPT_FASTOPEN_MAGIC) {
4220					tcp_parse_fastopen_option(opsize -
4221						TCPOLEN_EXP_FASTOPEN_BASE,
4222						ptr + 2, th->syn, foc, true);
4223					break;
4224				}
4225
4226				if (smc_parse_options(th, opt_rx, ptr, opsize))
4227					break;
4228
4229				opt_rx->saw_unknown = 1;
4230				break;
4231
4232			default:
4233				opt_rx->saw_unknown = 1;
4234			}
4235			ptr += opsize-2;
4236			length -= opsize;
4237		}
4238	}
4239}
4240EXPORT_SYMBOL(tcp_parse_options);
4241
4242static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4243{
4244	const __be32 *ptr = (const __be32 *)(th + 1);
4245
4246	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4247			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4248		tp->rx_opt.saw_tstamp = 1;
4249		++ptr;
4250		tp->rx_opt.rcv_tsval = ntohl(*ptr);
4251		++ptr;
4252		if (*ptr)
4253			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4254		else
4255			tp->rx_opt.rcv_tsecr = 0;
4256		return true;
4257	}
4258	return false;
4259}
4260
4261/* Fast parse options. This hopes to only see timestamps.
4262 * If it is wrong it falls back on tcp_parse_options().
4263 */
4264static bool tcp_fast_parse_options(const struct net *net,
4265				   const struct sk_buff *skb,
4266				   const struct tcphdr *th, struct tcp_sock *tp)
4267{
4268	/* In the spirit of fast parsing, compare doff directly to constant
4269	 * values.  Because equality is used, short doff can be ignored here.
4270	 */
4271	if (th->doff == (sizeof(*th) / 4)) {
4272		tp->rx_opt.saw_tstamp = 0;
4273		return false;
4274	} else if (tp->rx_opt.tstamp_ok &&
4275		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4276		if (tcp_parse_aligned_timestamp(tp, th))
4277			return true;
4278	}
4279
4280	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4281	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4282		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4283
4284	return true;
4285}
4286
4287#if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
4288/*
4289 * Parse Signature options
4290 */
4291int tcp_do_parse_auth_options(const struct tcphdr *th,
4292			      const u8 **md5_hash, const u8 **ao_hash)
4293{
4294	int length = (th->doff << 2) - sizeof(*th);
4295	const u8 *ptr = (const u8 *)(th + 1);
4296	unsigned int minlen = TCPOLEN_MD5SIG;
4297
4298	if (IS_ENABLED(CONFIG_TCP_AO))
4299		minlen = sizeof(struct tcp_ao_hdr) + 1;
4300
4301	*md5_hash = NULL;
4302	*ao_hash = NULL;
 
4303
4304	/* If not enough data remaining, we can short cut */
4305	while (length >= minlen) {
4306		int opcode = *ptr++;
4307		int opsize;
4308
4309		switch (opcode) {
4310		case TCPOPT_EOL:
4311			return 0;
4312		case TCPOPT_NOP:
4313			length--;
4314			continue;
4315		default:
4316			opsize = *ptr++;
4317			if (opsize < 2 || opsize > length)
4318				return -EINVAL;
4319			if (opcode == TCPOPT_MD5SIG) {
4320				if (opsize != TCPOLEN_MD5SIG)
4321					return -EINVAL;
4322				if (unlikely(*md5_hash || *ao_hash))
4323					return -EEXIST;
4324				*md5_hash = ptr;
4325			} else if (opcode == TCPOPT_AO) {
4326				if (opsize <= sizeof(struct tcp_ao_hdr))
4327					return -EINVAL;
4328				if (unlikely(*md5_hash || *ao_hash))
4329					return -EEXIST;
4330				*ao_hash = ptr;
4331			}
4332		}
4333		ptr += opsize - 2;
4334		length -= opsize;
4335	}
4336	return 0;
4337}
4338EXPORT_SYMBOL(tcp_do_parse_auth_options);
4339#endif
4340
4341/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4342 *
4343 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4344 * it can pass through stack. So, the following predicate verifies that
4345 * this segment is not used for anything but congestion avoidance or
4346 * fast retransmit. Moreover, we even are able to eliminate most of such
4347 * second order effects, if we apply some small "replay" window (~RTO)
4348 * to timestamp space.
4349 *
4350 * All these measures still do not guarantee that we reject wrapped ACKs
4351 * on networks with high bandwidth, when sequence space is recycled fastly,
4352 * but it guarantees that such events will be very rare and do not affect
4353 * connection seriously. This doesn't look nice, but alas, PAWS is really
4354 * buggy extension.
4355 *
4356 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4357 * states that events when retransmit arrives after original data are rare.
4358 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4359 * the biggest problem on large power networks even with minor reordering.
4360 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4361 * up to bandwidth of 18Gigabit/sec. 8) ]
4362 */
4363
4364/* Estimates max number of increments of remote peer TSval in
4365 * a replay window (based on our current RTO estimation).
4366 */
4367static u32 tcp_tsval_replay(const struct sock *sk)
4368{
4369	/* If we use usec TS resolution,
4370	 * then expect the remote peer to use the same resolution.
4371	 */
4372	if (tcp_sk(sk)->tcp_usec_ts)
4373		return inet_csk(sk)->icsk_rto * (USEC_PER_SEC / HZ);
4374
4375	/* RFC 7323 recommends a TSval clock between 1ms and 1sec.
4376	 * We know that some OS (including old linux) can use 1200 Hz.
4377	 */
4378	return inet_csk(sk)->icsk_rto * 1200 / HZ;
4379}
4380
4381static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4382{
4383	const struct tcp_sock *tp = tcp_sk(sk);
4384	const struct tcphdr *th = tcp_hdr(skb);
4385	u32 seq = TCP_SKB_CB(skb)->seq;
4386	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4387
4388	return	/* 1. Pure ACK with correct sequence number. */
4389		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4390
4391		/* 2. ... and duplicate ACK. */
4392		ack == tp->snd_una &&
4393
4394		/* 3. ... and does not update window. */
4395		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4396
4397		/* 4. ... and sits in replay window. */
4398		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <=
4399		tcp_tsval_replay(sk);
4400}
4401
4402static inline bool tcp_paws_discard(const struct sock *sk,
4403				   const struct sk_buff *skb)
4404{
4405	const struct tcp_sock *tp = tcp_sk(sk);
4406
4407	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4408	       !tcp_disordered_ack(sk, skb);
4409}
4410
4411/* Check segment sequence number for validity.
4412 *
4413 * Segment controls are considered valid, if the segment
4414 * fits to the window after truncation to the window. Acceptability
4415 * of data (and SYN, FIN, of course) is checked separately.
4416 * See tcp_data_queue(), for example.
4417 *
4418 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4419 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4420 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4421 * (borrowed from freebsd)
4422 */
4423
4424static enum skb_drop_reason tcp_sequence(const struct tcp_sock *tp,
4425					 u32 seq, u32 end_seq)
4426{
4427	if (before(end_seq, tp->rcv_wup))
4428		return SKB_DROP_REASON_TCP_OLD_SEQUENCE;
4429
4430	if (after(seq, tp->rcv_nxt + tcp_receive_window(tp)))
4431		return SKB_DROP_REASON_TCP_INVALID_SEQUENCE;
4432
4433	return SKB_NOT_DROPPED_YET;
4434}
4435
4436/* When we get a reset we do this. */
4437void tcp_reset(struct sock *sk, struct sk_buff *skb)
4438{
4439	trace_tcp_receive_reset(sk);
4440
4441	/* mptcp can't tell us to ignore reset pkts,
4442	 * so just ignore the return value of mptcp_incoming_options().
4443	 */
4444	if (sk_is_mptcp(sk))
4445		mptcp_incoming_options(sk, skb);
4446
4447	/* We want the right error as BSD sees it (and indeed as we do). */
4448	switch (sk->sk_state) {
4449	case TCP_SYN_SENT:
4450		WRITE_ONCE(sk->sk_err, ECONNREFUSED);
4451		break;
4452	case TCP_CLOSE_WAIT:
4453		WRITE_ONCE(sk->sk_err, EPIPE);
4454		break;
4455	case TCP_CLOSE:
4456		return;
4457	default:
4458		WRITE_ONCE(sk->sk_err, ECONNRESET);
4459	}
4460	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4461	smp_wmb();
4462
4463	tcp_write_queue_purge(sk);
4464	tcp_done(sk);
4465
4466	if (!sock_flag(sk, SOCK_DEAD))
4467		sk_error_report(sk);
 
 
4468}
4469
4470/*
4471 * 	Process the FIN bit. This now behaves as it is supposed to work
4472 *	and the FIN takes effect when it is validly part of sequence
4473 *	space. Not before when we get holes.
4474 *
4475 *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4476 *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4477 *	TIME-WAIT)
4478 *
4479 *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4480 *	close and we go into CLOSING (and later onto TIME-WAIT)
4481 *
4482 *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4483 */
4484void tcp_fin(struct sock *sk)
4485{
4486	struct tcp_sock *tp = tcp_sk(sk);
4487
4488	inet_csk_schedule_ack(sk);
4489
4490	WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
4491	sock_set_flag(sk, SOCK_DONE);
4492
4493	switch (sk->sk_state) {
4494	case TCP_SYN_RECV:
4495	case TCP_ESTABLISHED:
4496		/* Move to CLOSE_WAIT */
4497		tcp_set_state(sk, TCP_CLOSE_WAIT);
4498		inet_csk_enter_pingpong_mode(sk);
4499		break;
4500
4501	case TCP_CLOSE_WAIT:
4502	case TCP_CLOSING:
4503		/* Received a retransmission of the FIN, do
4504		 * nothing.
4505		 */
4506		break;
4507	case TCP_LAST_ACK:
4508		/* RFC793: Remain in the LAST-ACK state. */
4509		break;
4510
4511	case TCP_FIN_WAIT1:
4512		/* This case occurs when a simultaneous close
4513		 * happens, we must ack the received FIN and
4514		 * enter the CLOSING state.
4515		 */
4516		tcp_send_ack(sk);
4517		tcp_set_state(sk, TCP_CLOSING);
4518		break;
4519	case TCP_FIN_WAIT2:
4520		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4521		tcp_send_ack(sk);
4522		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4523		break;
4524	default:
4525		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4526		 * cases we should never reach this piece of code.
4527		 */
4528		pr_err("%s: Impossible, sk->sk_state=%d\n",
4529		       __func__, sk->sk_state);
4530		break;
4531	}
4532
4533	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4534	 * Probably, we should reset in this case. For now drop them.
4535	 */
4536	skb_rbtree_purge(&tp->out_of_order_queue);
4537	if (tcp_is_sack(tp))
4538		tcp_sack_reset(&tp->rx_opt);
 
4539
4540	if (!sock_flag(sk, SOCK_DEAD)) {
4541		sk->sk_state_change(sk);
4542
4543		/* Do not send POLL_HUP for half duplex close. */
4544		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4545		    sk->sk_state == TCP_CLOSE)
4546			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4547		else
4548			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4549	}
4550}
4551
4552static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4553				  u32 end_seq)
4554{
4555	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4556		if (before(seq, sp->start_seq))
4557			sp->start_seq = seq;
4558		if (after(end_seq, sp->end_seq))
4559			sp->end_seq = end_seq;
4560		return true;
4561	}
4562	return false;
4563}
4564
4565static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4566{
4567	struct tcp_sock *tp = tcp_sk(sk);
4568
4569	if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4570		int mib_idx;
4571
4572		if (before(seq, tp->rcv_nxt))
4573			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4574		else
4575			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4576
4577		NET_INC_STATS(sock_net(sk), mib_idx);
4578
4579		tp->rx_opt.dsack = 1;
4580		tp->duplicate_sack[0].start_seq = seq;
4581		tp->duplicate_sack[0].end_seq = end_seq;
4582	}
4583}
4584
4585static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4586{
4587	struct tcp_sock *tp = tcp_sk(sk);
4588
4589	if (!tp->rx_opt.dsack)
4590		tcp_dsack_set(sk, seq, end_seq);
4591	else
4592		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4593}
4594
4595static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4596{
4597	/* When the ACK path fails or drops most ACKs, the sender would
4598	 * timeout and spuriously retransmit the same segment repeatedly.
4599	 * If it seems our ACKs are not reaching the other side,
4600	 * based on receiving a duplicate data segment with new flowlabel
4601	 * (suggesting the sender suffered an RTO), and we are not already
4602	 * repathing due to our own RTO, then rehash the socket to repath our
4603	 * packets.
4604	 */
4605#if IS_ENABLED(CONFIG_IPV6)
4606	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss &&
4607	    skb->protocol == htons(ETH_P_IPV6) &&
4608	    (tcp_sk(sk)->inet_conn.icsk_ack.lrcv_flowlabel !=
4609	     ntohl(ip6_flowlabel(ipv6_hdr(skb)))) &&
4610	    sk_rethink_txhash(sk))
4611		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4612
4613	/* Save last flowlabel after a spurious retrans. */
4614	tcp_save_lrcv_flowlabel(sk, skb);
4615#endif
4616}
4617
4618static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4619{
4620	struct tcp_sock *tp = tcp_sk(sk);
4621
4622	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4623	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4624		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4625		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4626
4627		if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4628			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4629
4630			tcp_rcv_spurious_retrans(sk, skb);
4631			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4632				end_seq = tp->rcv_nxt;
4633			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4634		}
4635	}
4636
4637	tcp_send_ack(sk);
4638}
4639
4640/* These routines update the SACK block as out-of-order packets arrive or
4641 * in-order packets close up the sequence space.
4642 */
4643static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4644{
4645	int this_sack;
4646	struct tcp_sack_block *sp = &tp->selective_acks[0];
4647	struct tcp_sack_block *swalk = sp + 1;
4648
4649	/* See if the recent change to the first SACK eats into
4650	 * or hits the sequence space of other SACK blocks, if so coalesce.
4651	 */
4652	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4653		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4654			int i;
4655
4656			/* Zap SWALK, by moving every further SACK up by one slot.
4657			 * Decrease num_sacks.
4658			 */
4659			tp->rx_opt.num_sacks--;
4660			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4661				sp[i] = sp[i + 1];
4662			continue;
4663		}
4664		this_sack++;
4665		swalk++;
4666	}
4667}
4668
4669void tcp_sack_compress_send_ack(struct sock *sk)
4670{
4671	struct tcp_sock *tp = tcp_sk(sk);
4672
4673	if (!tp->compressed_ack)
4674		return;
4675
4676	if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4677		__sock_put(sk);
4678
4679	/* Since we have to send one ack finally,
4680	 * substract one from tp->compressed_ack to keep
4681	 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4682	 */
4683	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4684		      tp->compressed_ack - 1);
4685
4686	tp->compressed_ack = 0;
4687	tcp_send_ack(sk);
4688}
4689
4690/* Reasonable amount of sack blocks included in TCP SACK option
4691 * The max is 4, but this becomes 3 if TCP timestamps are there.
4692 * Given that SACK packets might be lost, be conservative and use 2.
4693 */
4694#define TCP_SACK_BLOCKS_EXPECTED 2
4695
4696static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4697{
4698	struct tcp_sock *tp = tcp_sk(sk);
4699	struct tcp_sack_block *sp = &tp->selective_acks[0];
4700	int cur_sacks = tp->rx_opt.num_sacks;
4701	int this_sack;
4702
4703	if (!cur_sacks)
4704		goto new_sack;
4705
4706	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4707		if (tcp_sack_extend(sp, seq, end_seq)) {
4708			if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4709				tcp_sack_compress_send_ack(sk);
4710			/* Rotate this_sack to the first one. */
4711			for (; this_sack > 0; this_sack--, sp--)
4712				swap(*sp, *(sp - 1));
4713			if (cur_sacks > 1)
4714				tcp_sack_maybe_coalesce(tp);
4715			return;
4716		}
4717	}
4718
4719	if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4720		tcp_sack_compress_send_ack(sk);
4721
4722	/* Could not find an adjacent existing SACK, build a new one,
4723	 * put it at the front, and shift everyone else down.  We
4724	 * always know there is at least one SACK present already here.
4725	 *
4726	 * If the sack array is full, forget about the last one.
4727	 */
4728	if (this_sack >= TCP_NUM_SACKS) {
4729		this_sack--;
4730		tp->rx_opt.num_sacks--;
4731		sp--;
4732	}
4733	for (; this_sack > 0; this_sack--, sp--)
4734		*sp = *(sp - 1);
4735
4736new_sack:
4737	/* Build the new head SACK, and we're done. */
4738	sp->start_seq = seq;
4739	sp->end_seq = end_seq;
4740	tp->rx_opt.num_sacks++;
4741}
4742
4743/* RCV.NXT advances, some SACKs should be eaten. */
4744
4745static void tcp_sack_remove(struct tcp_sock *tp)
4746{
4747	struct tcp_sack_block *sp = &tp->selective_acks[0];
4748	int num_sacks = tp->rx_opt.num_sacks;
4749	int this_sack;
4750
4751	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4752	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4753		tp->rx_opt.num_sacks = 0;
4754		return;
4755	}
4756
4757	for (this_sack = 0; this_sack < num_sacks;) {
4758		/* Check if the start of the sack is covered by RCV.NXT. */
4759		if (!before(tp->rcv_nxt, sp->start_seq)) {
4760			int i;
4761
4762			/* RCV.NXT must cover all the block! */
4763			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4764
4765			/* Zap this SACK, by moving forward any other SACKS. */
4766			for (i = this_sack+1; i < num_sacks; i++)
4767				tp->selective_acks[i-1] = tp->selective_acks[i];
4768			num_sacks--;
4769			continue;
4770		}
4771		this_sack++;
4772		sp++;
4773	}
4774	tp->rx_opt.num_sacks = num_sacks;
4775}
4776
4777/**
4778 * tcp_try_coalesce - try to merge skb to prior one
4779 * @sk: socket
4780 * @to: prior buffer
4781 * @from: buffer to add in queue
4782 * @fragstolen: pointer to boolean
4783 *
4784 * Before queueing skb @from after @to, try to merge them
4785 * to reduce overall memory use and queue lengths, if cost is small.
4786 * Packets in ofo or receive queues can stay a long time.
4787 * Better try to coalesce them right now to avoid future collapses.
4788 * Returns true if caller should free @from instead of queueing it
4789 */
4790static bool tcp_try_coalesce(struct sock *sk,
4791			     struct sk_buff *to,
4792			     struct sk_buff *from,
4793			     bool *fragstolen)
4794{
4795	int delta;
4796
4797	*fragstolen = false;
4798
4799	/* Its possible this segment overlaps with prior segment in queue */
4800	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4801		return false;
4802
4803	if (!mptcp_skb_can_collapse(to, from))
4804		return false;
4805
4806#ifdef CONFIG_TLS_DEVICE
4807	if (from->decrypted != to->decrypted)
4808		return false;
4809#endif
4810
4811	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4812		return false;
4813
4814	atomic_add(delta, &sk->sk_rmem_alloc);
4815	sk_mem_charge(sk, delta);
4816	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4817	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4818	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4819	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4820
4821	if (TCP_SKB_CB(from)->has_rxtstamp) {
4822		TCP_SKB_CB(to)->has_rxtstamp = true;
4823		to->tstamp = from->tstamp;
4824		skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4825	}
4826
4827	return true;
4828}
4829
4830static bool tcp_ooo_try_coalesce(struct sock *sk,
4831			     struct sk_buff *to,
4832			     struct sk_buff *from,
4833			     bool *fragstolen)
4834{
4835	bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4836
4837	/* In case tcp_drop_reason() is called later, update to->gso_segs */
4838	if (res) {
4839		u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4840			       max_t(u16, 1, skb_shinfo(from)->gso_segs);
4841
4842		skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4843	}
4844	return res;
4845}
4846
4847static void tcp_drop_reason(struct sock *sk, struct sk_buff *skb,
4848			    enum skb_drop_reason reason)
4849{
4850	sk_drops_add(sk, skb);
4851	kfree_skb_reason(skb, reason);
4852}
4853
4854/* This one checks to see if we can put data from the
4855 * out_of_order queue into the receive_queue.
4856 */
4857static void tcp_ofo_queue(struct sock *sk)
4858{
4859	struct tcp_sock *tp = tcp_sk(sk);
4860	__u32 dsack_high = tp->rcv_nxt;
4861	bool fin, fragstolen, eaten;
4862	struct sk_buff *skb, *tail;
4863	struct rb_node *p;
4864
4865	p = rb_first(&tp->out_of_order_queue);
4866	while (p) {
4867		skb = rb_to_skb(p);
4868		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4869			break;
4870
4871		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4872			__u32 dsack = dsack_high;
4873			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4874				dsack_high = TCP_SKB_CB(skb)->end_seq;
4875			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4876		}
4877		p = rb_next(p);
4878		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4879
4880		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4881			tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP);
 
 
4882			continue;
4883		}
 
 
 
4884
4885		tail = skb_peek_tail(&sk->sk_receive_queue);
4886		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4887		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4888		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4889		if (!eaten)
4890			__skb_queue_tail(&sk->sk_receive_queue, skb);
4891		else
4892			kfree_skb_partial(skb, fragstolen);
4893
4894		if (unlikely(fin)) {
4895			tcp_fin(sk);
4896			/* tcp_fin() purges tp->out_of_order_queue,
4897			 * so we must end this loop right now.
4898			 */
4899			break;
4900		}
4901	}
4902}
4903
4904static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb);
4905static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb);
4906
4907static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4908				 unsigned int size)
4909{
4910	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4911	    !sk_rmem_schedule(sk, skb, size)) {
4912
4913		if (tcp_prune_queue(sk, skb) < 0)
4914			return -1;
4915
4916		while (!sk_rmem_schedule(sk, skb, size)) {
4917			if (!tcp_prune_ofo_queue(sk, skb))
 
 
 
4918				return -1;
4919		}
4920	}
4921	return 0;
4922}
4923
4924static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4925{
4926	struct tcp_sock *tp = tcp_sk(sk);
4927	struct rb_node **p, *parent;
4928	struct sk_buff *skb1;
4929	u32 seq, end_seq;
4930	bool fragstolen;
4931
4932	tcp_save_lrcv_flowlabel(sk, skb);
4933	tcp_ecn_check_ce(sk, skb);
4934
4935	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4936		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4937		sk->sk_data_ready(sk);
4938		tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM);
4939		return;
4940	}
4941
4942	/* Disable header prediction. */
4943	tp->pred_flags = 0;
4944	inet_csk_schedule_ack(sk);
4945
4946	tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4947	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4948	seq = TCP_SKB_CB(skb)->seq;
4949	end_seq = TCP_SKB_CB(skb)->end_seq;
4950
4951	p = &tp->out_of_order_queue.rb_node;
4952	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4953		/* Initial out of order segment, build 1 SACK. */
4954		if (tcp_is_sack(tp)) {
4955			tp->rx_opt.num_sacks = 1;
4956			tp->selective_acks[0].start_seq = seq;
4957			tp->selective_acks[0].end_seq = end_seq;
 
4958		}
4959		rb_link_node(&skb->rbnode, NULL, p);
4960		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4961		tp->ooo_last_skb = skb;
4962		goto end;
4963	}
4964
4965	/* In the typical case, we are adding an skb to the end of the list.
4966	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4967	 */
4968	if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4969				 skb, &fragstolen)) {
4970coalesce_done:
4971		/* For non sack flows, do not grow window to force DUPACK
4972		 * and trigger fast retransmit.
4973		 */
4974		if (tcp_is_sack(tp))
4975			tcp_grow_window(sk, skb, true);
4976		kfree_skb_partial(skb, fragstolen);
4977		skb = NULL;
4978		goto add_sack;
4979	}
4980	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4981	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4982		parent = &tp->ooo_last_skb->rbnode;
4983		p = &parent->rb_right;
4984		goto insert;
4985	}
4986
4987	/* Find place to insert this segment. Handle overlaps on the way. */
4988	parent = NULL;
4989	while (*p) {
4990		parent = *p;
4991		skb1 = rb_to_skb(parent);
4992		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4993			p = &parent->rb_left;
4994			continue;
4995		}
4996		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4997			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4998				/* All the bits are present. Drop. */
4999				NET_INC_STATS(sock_net(sk),
5000					      LINUX_MIB_TCPOFOMERGE);
5001				tcp_drop_reason(sk, skb,
5002						SKB_DROP_REASON_TCP_OFOMERGE);
5003				skb = NULL;
5004				tcp_dsack_set(sk, seq, end_seq);
5005				goto add_sack;
5006			}
5007			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
5008				/* Partial overlap. */
5009				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
5010			} else {
5011				/* skb's seq == skb1's seq and skb covers skb1.
5012				 * Replace skb1 with skb.
5013				 */
5014				rb_replace_node(&skb1->rbnode, &skb->rbnode,
5015						&tp->out_of_order_queue);
5016				tcp_dsack_extend(sk,
5017						 TCP_SKB_CB(skb1)->seq,
5018						 TCP_SKB_CB(skb1)->end_seq);
5019				NET_INC_STATS(sock_net(sk),
5020					      LINUX_MIB_TCPOFOMERGE);
5021				tcp_drop_reason(sk, skb1,
5022						SKB_DROP_REASON_TCP_OFOMERGE);
5023				goto merge_right;
5024			}
5025		} else if (tcp_ooo_try_coalesce(sk, skb1,
5026						skb, &fragstolen)) {
5027			goto coalesce_done;
5028		}
5029		p = &parent->rb_right;
5030	}
5031insert:
5032	/* Insert segment into RB tree. */
5033	rb_link_node(&skb->rbnode, parent, p);
5034	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
5035
5036merge_right:
5037	/* Remove other segments covered by skb. */
5038	while ((skb1 = skb_rb_next(skb)) != NULL) {
 
 
 
 
 
 
 
 
 
 
 
5039		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
5040			break;
5041		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
5042			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
5043					 end_seq);
5044			break;
5045		}
5046		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
5047		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
5048				 TCP_SKB_CB(skb1)->end_seq);
5049		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
5050		tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE);
5051	}
5052	/* If there is no skb after us, we are the last_skb ! */
5053	if (!skb1)
5054		tp->ooo_last_skb = skb;
5055
5056add_sack:
5057	if (tcp_is_sack(tp))
5058		tcp_sack_new_ofo_skb(sk, seq, end_seq);
5059end:
5060	if (skb) {
5061		/* For non sack flows, do not grow window to force DUPACK
5062		 * and trigger fast retransmit.
5063		 */
5064		if (tcp_is_sack(tp))
5065			tcp_grow_window(sk, skb, false);
5066		skb_condense(skb);
5067		skb_set_owner_r(skb, sk);
5068	}
5069}
5070
5071static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
5072				      bool *fragstolen)
5073{
5074	int eaten;
5075	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
5076
 
5077	eaten = (tail &&
5078		 tcp_try_coalesce(sk, tail,
5079				  skb, fragstolen)) ? 1 : 0;
5080	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
5081	if (!eaten) {
5082		__skb_queue_tail(&sk->sk_receive_queue, skb);
5083		skb_set_owner_r(skb, sk);
5084	}
5085	return eaten;
5086}
5087
5088int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
5089{
5090	struct sk_buff *skb;
5091	int err = -ENOMEM;
5092	int data_len = 0;
5093	bool fragstolen;
5094
5095	if (size == 0)
5096		return 0;
5097
5098	if (size > PAGE_SIZE) {
5099		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
5100
5101		data_len = npages << PAGE_SHIFT;
5102		size = data_len + (size & ~PAGE_MASK);
5103	}
5104	skb = alloc_skb_with_frags(size - data_len, data_len,
5105				   PAGE_ALLOC_COSTLY_ORDER,
5106				   &err, sk->sk_allocation);
5107	if (!skb)
5108		goto err;
5109
5110	skb_put(skb, size - data_len);
5111	skb->data_len = data_len;
5112	skb->len = size;
5113
5114	if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5115		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5116		goto err_free;
5117	}
5118
5119	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
5120	if (err)
5121		goto err_free;
5122
5123	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
5124	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
5125	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
5126
5127	if (tcp_queue_rcv(sk, skb, &fragstolen)) {
5128		WARN_ON_ONCE(fragstolen); /* should not happen */
5129		__kfree_skb(skb);
5130	}
5131	return size;
5132
5133err_free:
5134	kfree_skb(skb);
5135err:
5136	return err;
5137
5138}
5139
5140void tcp_data_ready(struct sock *sk)
5141{
5142	if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE))
5143		sk->sk_data_ready(sk);
5144}
5145
5146static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
5147{
5148	struct tcp_sock *tp = tcp_sk(sk);
5149	enum skb_drop_reason reason;
5150	bool fragstolen;
5151	int eaten;
5152
5153	/* If a subflow has been reset, the packet should not continue
5154	 * to be processed, drop the packet.
5155	 */
5156	if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) {
5157		__kfree_skb(skb);
5158		return;
5159	}
5160
5161	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
5162		__kfree_skb(skb);
5163		return;
5164	}
5165	skb_dst_drop(skb);
5166	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
5167
5168	reason = SKB_DROP_REASON_NOT_SPECIFIED;
 
5169	tp->rx_opt.dsack = 0;
5170
5171	/*  Queue data for delivery to the user.
5172	 *  Packets in sequence go to the receive queue.
5173	 *  Out of sequence packets to the out_of_order_queue.
5174	 */
5175	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5176		if (tcp_receive_window(tp) == 0) {
5177			reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5178			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5179			goto out_of_window;
5180		}
5181
5182		/* Ok. In sequence. In window. */
5183queue_and_out:
5184		if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5185			/* TODO: maybe ratelimit these WIN 0 ACK ? */
5186			inet_csk(sk)->icsk_ack.pending |=
5187					(ICSK_ACK_NOMEM | ICSK_ACK_NOW);
5188			inet_csk_schedule_ack(sk);
5189			sk->sk_data_ready(sk);
5190
5191			if (skb_queue_len(&sk->sk_receive_queue)) {
5192				reason = SKB_DROP_REASON_PROTO_MEM;
5193				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5194				goto drop;
 
 
 
 
5195			}
5196			sk_forced_mem_schedule(sk, skb->truesize);
5197		}
5198
5199		eaten = tcp_queue_rcv(sk, skb, &fragstolen);
 
 
 
 
 
 
 
 
 
 
5200		if (skb->len)
5201			tcp_event_data_recv(sk, skb);
5202		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
5203			tcp_fin(sk);
5204
5205		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5206			tcp_ofo_queue(sk);
5207
5208			/* RFC5681. 4.2. SHOULD send immediate ACK, when
5209			 * gap in queue is filled.
5210			 */
5211			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5212				inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
5213		}
5214
5215		if (tp->rx_opt.num_sacks)
5216			tcp_sack_remove(tp);
5217
5218		tcp_fast_path_check(sk);
5219
5220		if (eaten > 0)
5221			kfree_skb_partial(skb, fragstolen);
5222		if (!sock_flag(sk, SOCK_DEAD))
5223			tcp_data_ready(sk);
5224		return;
5225	}
5226
5227	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
5228		tcp_rcv_spurious_retrans(sk, skb);
5229		/* A retransmit, 2nd most common case.  Force an immediate ack. */
5230		reason = SKB_DROP_REASON_TCP_OLD_DATA;
5231		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
5232		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5233
5234out_of_window:
5235		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5236		inet_csk_schedule_ack(sk);
5237drop:
5238		tcp_drop_reason(sk, skb, reason);
5239		return;
5240	}
5241
5242	/* Out of window. F.e. zero window probe. */
5243	if (!before(TCP_SKB_CB(skb)->seq,
5244		    tp->rcv_nxt + tcp_receive_window(tp))) {
5245		reason = SKB_DROP_REASON_TCP_OVERWINDOW;
5246		goto out_of_window;
5247	}
 
5248
5249	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5250		/* Partial packet, seq < rcv_next < end_seq */
 
 
 
 
5251		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
5252
5253		/* If window is closed, drop tail of packet. But after
5254		 * remembering D-SACK for its head made in previous line.
5255		 */
5256		if (!tcp_receive_window(tp)) {
5257			reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5258			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5259			goto out_of_window;
5260		}
5261		goto queue_and_out;
5262	}
5263
5264	tcp_data_queue_ofo(sk, skb);
5265}
5266
5267static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
5268{
5269	if (list)
5270		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
5271
5272	return skb_rb_next(skb);
5273}
5274
5275static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
5276					struct sk_buff_head *list,
5277					struct rb_root *root)
5278{
5279	struct sk_buff *next = tcp_skb_next(skb, list);
5280
5281	if (list)
5282		__skb_unlink(skb, list);
5283	else
5284		rb_erase(&skb->rbnode, root);
5285
 
5286	__kfree_skb(skb);
5287	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
5288
5289	return next;
5290}
5291
5292/* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
5293void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
5294{
5295	struct rb_node **p = &root->rb_node;
5296	struct rb_node *parent = NULL;
5297	struct sk_buff *skb1;
5298
5299	while (*p) {
5300		parent = *p;
5301		skb1 = rb_to_skb(parent);
5302		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
5303			p = &parent->rb_left;
5304		else
5305			p = &parent->rb_right;
5306	}
5307	rb_link_node(&skb->rbnode, parent, p);
5308	rb_insert_color(&skb->rbnode, root);
5309}
5310
5311/* Collapse contiguous sequence of skbs head..tail with
5312 * sequence numbers start..end.
5313 *
5314 * If tail is NULL, this means until the end of the queue.
5315 *
5316 * Segments with FIN/SYN are not collapsed (only because this
5317 * simplifies code)
5318 */
5319static void
5320tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5321	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
 
5322{
5323	struct sk_buff *skb = head, *n;
5324	struct sk_buff_head tmp;
5325	bool end_of_skbs;
5326
5327	/* First, check that queue is collapsible and find
5328	 * the point where collapsing can be useful.
5329	 */
5330restart:
5331	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5332		n = tcp_skb_next(skb, list);
5333
 
5334		/* No new bits? It is possible on ofo queue. */
5335		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5336			skb = tcp_collapse_one(sk, skb, list, root);
5337			if (!skb)
5338				break;
5339			goto restart;
5340		}
5341
5342		/* The first skb to collapse is:
5343		 * - not SYN/FIN and
5344		 * - bloated or contains data before "start" or
5345		 *   overlaps to the next one and mptcp allow collapsing.
5346		 */
5347		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5348		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5349		     before(TCP_SKB_CB(skb)->seq, start))) {
5350			end_of_skbs = false;
5351			break;
5352		}
5353
5354		if (n && n != tail && mptcp_skb_can_collapse(skb, n) &&
5355		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5356			end_of_skbs = false;
5357			break;
 
 
 
5358		}
5359
5360		/* Decided to skip this, advance start seq. */
5361		start = TCP_SKB_CB(skb)->end_seq;
5362	}
5363	if (end_of_skbs ||
5364	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5365		return;
5366
5367	__skb_queue_head_init(&tmp);
5368
5369	while (before(start, end)) {
5370		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5371		struct sk_buff *nskb;
5372
5373		nskb = alloc_skb(copy, GFP_ATOMIC);
5374		if (!nskb)
5375			break;
5376
5377		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5378#ifdef CONFIG_TLS_DEVICE
5379		nskb->decrypted = skb->decrypted;
5380#endif
5381		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5382		if (list)
5383			__skb_queue_before(list, skb, nskb);
5384		else
5385			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5386		skb_set_owner_r(nskb, sk);
5387		mptcp_skb_ext_move(nskb, skb);
5388
5389		/* Copy data, releasing collapsed skbs. */
5390		while (copy > 0) {
5391			int offset = start - TCP_SKB_CB(skb)->seq;
5392			int size = TCP_SKB_CB(skb)->end_seq - start;
5393
5394			BUG_ON(offset < 0);
5395			if (size > 0) {
5396				size = min(copy, size);
5397				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5398					BUG();
5399				TCP_SKB_CB(nskb)->end_seq += size;
5400				copy -= size;
5401				start += size;
5402			}
5403			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5404				skb = tcp_collapse_one(sk, skb, list, root);
5405				if (!skb ||
5406				    skb == tail ||
5407				    !mptcp_skb_can_collapse(nskb, skb) ||
5408				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5409					goto end;
5410#ifdef CONFIG_TLS_DEVICE
5411				if (skb->decrypted != nskb->decrypted)
5412					goto end;
5413#endif
5414			}
5415		}
5416	}
5417end:
5418	skb_queue_walk_safe(&tmp, skb, n)
5419		tcp_rbtree_insert(root, skb);
5420}
5421
5422/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5423 * and tcp_collapse() them until all the queue is collapsed.
5424 */
5425static void tcp_collapse_ofo_queue(struct sock *sk)
5426{
5427	struct tcp_sock *tp = tcp_sk(sk);
5428	u32 range_truesize, sum_tiny = 0;
5429	struct sk_buff *skb, *head;
5430	u32 start, end;
5431
5432	skb = skb_rb_first(&tp->out_of_order_queue);
5433new_range:
5434	if (!skb) {
5435		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5436		return;
5437	}
5438	start = TCP_SKB_CB(skb)->seq;
5439	end = TCP_SKB_CB(skb)->end_seq;
5440	range_truesize = skb->truesize;
5441
5442	for (head = skb;;) {
5443		skb = skb_rb_next(skb);
5444
5445		/* Range is terminated when we see a gap or when
5446		 * we are at the queue end.
5447		 */
 
 
 
5448		if (!skb ||
5449		    after(TCP_SKB_CB(skb)->seq, end) ||
5450		    before(TCP_SKB_CB(skb)->end_seq, start)) {
5451			/* Do not attempt collapsing tiny skbs */
5452			if (range_truesize != head->truesize ||
5453			    end - start >= SKB_WITH_OVERHEAD(PAGE_SIZE)) {
5454				tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5455					     head, skb, start, end);
5456			} else {
5457				sum_tiny += range_truesize;
5458				if (sum_tiny > sk->sk_rcvbuf >> 3)
5459					return;
5460			}
5461			goto new_range;
5462		}
5463
5464		range_truesize += skb->truesize;
5465		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5466			start = TCP_SKB_CB(skb)->seq;
5467		if (after(TCP_SKB_CB(skb)->end_seq, end))
5468			end = TCP_SKB_CB(skb)->end_seq;
 
 
 
 
 
 
5469	}
5470}
5471
5472/*
5473 * Clean the out-of-order queue to make room.
5474 * We drop high sequences packets to :
5475 * 1) Let a chance for holes to be filled.
5476 *    This means we do not drop packets from ooo queue if their sequence
5477 *    is before incoming packet sequence.
5478 * 2) not add too big latencies if thousands of packets sit there.
5479 *    (But if application shrinks SO_RCVBUF, we could still end up
5480 *     freeing whole queue here)
5481 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5482 *
5483 * Return true if queue has shrunk.
5484 */
5485static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb)
5486{
5487	struct tcp_sock *tp = tcp_sk(sk);
5488	struct rb_node *node, *prev;
5489	bool pruned = false;
5490	int goal;
5491
5492	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5493		return false;
5494
5495	goal = sk->sk_rcvbuf >> 3;
5496	node = &tp->ooo_last_skb->rbnode;
5497
5498	do {
5499		struct sk_buff *skb = rb_to_skb(node);
5500
5501		/* If incoming skb would land last in ofo queue, stop pruning. */
5502		if (after(TCP_SKB_CB(in_skb)->seq, TCP_SKB_CB(skb)->seq))
5503			break;
5504		pruned = true;
5505		prev = rb_prev(node);
5506		rb_erase(node, &tp->out_of_order_queue);
5507		goal -= skb->truesize;
5508		tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE);
5509		tp->ooo_last_skb = rb_to_skb(prev);
5510		if (!prev || goal <= 0) {
5511			if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5512			    !tcp_under_memory_pressure(sk))
5513				break;
5514			goal = sk->sk_rcvbuf >> 3;
5515		}
5516		node = prev;
5517	} while (node);
5518
5519	if (pruned) {
5520		NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5521		/* Reset SACK state.  A conforming SACK implementation will
5522		 * do the same at a timeout based retransmit.  When a connection
5523		 * is in a sad state like this, we care only about integrity
5524		 * of the connection not performance.
5525		 */
5526		if (tp->rx_opt.sack_ok)
5527			tcp_sack_reset(&tp->rx_opt);
 
 
5528	}
5529	return pruned;
5530}
5531
5532/* Reduce allocated memory if we can, trying to get
5533 * the socket within its memory limits again.
5534 *
5535 * Return less than zero if we should start dropping frames
5536 * until the socket owning process reads some of the data
5537 * to stabilize the situation.
5538 */
5539static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb)
5540{
5541	struct tcp_sock *tp = tcp_sk(sk);
5542
5543	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
 
 
5544
5545	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5546		tcp_clamp_window(sk);
5547	else if (tcp_under_memory_pressure(sk))
5548		tcp_adjust_rcv_ssthresh(sk);
5549
5550	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5551		return 0;
5552
5553	tcp_collapse_ofo_queue(sk);
5554	if (!skb_queue_empty(&sk->sk_receive_queue))
5555		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5556			     skb_peek(&sk->sk_receive_queue),
5557			     NULL,
5558			     tp->copied_seq, tp->rcv_nxt);
 
5559
5560	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5561		return 0;
5562
5563	/* Collapsing did not help, destructive actions follow.
5564	 * This must not ever occur. */
5565
5566	tcp_prune_ofo_queue(sk, in_skb);
5567
5568	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5569		return 0;
5570
5571	/* If we are really being abused, tell the caller to silently
5572	 * drop receive data on the floor.  It will get retransmitted
5573	 * and hopefully then we'll have sufficient space.
5574	 */
5575	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5576
5577	/* Massive buffer overcommit. */
5578	tp->pred_flags = 0;
5579	return -1;
5580}
5581
5582static bool tcp_should_expand_sndbuf(struct sock *sk)
5583{
5584	const struct tcp_sock *tp = tcp_sk(sk);
5585
5586	/* If the user specified a specific send buffer setting, do
5587	 * not modify it.
5588	 */
5589	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5590		return false;
5591
5592	/* If we are under global TCP memory pressure, do not expand.  */
5593	if (tcp_under_memory_pressure(sk)) {
5594		int unused_mem = sk_unused_reserved_mem(sk);
5595
5596		/* Adjust sndbuf according to reserved mem. But make sure
5597		 * it never goes below SOCK_MIN_SNDBUF.
5598		 * See sk_stream_moderate_sndbuf() for more details.
5599		 */
5600		if (unused_mem > SOCK_MIN_SNDBUF)
5601			WRITE_ONCE(sk->sk_sndbuf, unused_mem);
5602
5603		return false;
5604	}
5605
5606	/* If we are under soft global TCP memory pressure, do not expand.  */
5607	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5608		return false;
5609
5610	/* If we filled the congestion window, do not expand.  */
5611	if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp))
5612		return false;
5613
5614	return true;
5615}
5616
 
 
 
 
 
 
5617static void tcp_new_space(struct sock *sk)
5618{
5619	struct tcp_sock *tp = tcp_sk(sk);
5620
5621	if (tcp_should_expand_sndbuf(sk)) {
5622		tcp_sndbuf_expand(sk);
5623		tp->snd_cwnd_stamp = tcp_jiffies32;
5624	}
5625
5626	INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk);
5627}
5628
5629/* Caller made space either from:
5630 * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced)
5631 * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt)
5632 *
5633 * We might be able to generate EPOLLOUT to the application if:
5634 * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2
5635 * 2) notsent amount (tp->write_seq - tp->snd_nxt) became
5636 *    small enough that tcp_stream_memory_free() decides it
5637 *    is time to generate EPOLLOUT.
5638 */
5639void tcp_check_space(struct sock *sk)
5640{
5641	/* pairs with tcp_poll() */
5642	smp_mb();
5643	if (sk->sk_socket &&
5644	    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5645		tcp_new_space(sk);
5646		if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5647			tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5648	}
5649}
5650
5651static inline void tcp_data_snd_check(struct sock *sk)
5652{
5653	tcp_push_pending_frames(sk);
5654	tcp_check_space(sk);
5655}
5656
5657/*
5658 * Check if sending an ack is needed.
5659 */
5660static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5661{
5662	struct tcp_sock *tp = tcp_sk(sk);
5663	unsigned long rtt, delay;
5664
5665	    /* More than one full frame received... */
5666	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5667	     /* ... and right edge of window advances far enough.
5668	      * (tcp_recvmsg() will send ACK otherwise).
5669	      * If application uses SO_RCVLOWAT, we want send ack now if
5670	      * we have not received enough bytes to satisfy the condition.
5671	      */
5672	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5673	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5674	    /* We ACK each frame or... */
5675	    tcp_in_quickack_mode(sk) ||
5676	    /* Protocol state mandates a one-time immediate ACK */
5677	    inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5678		/* If we are running from __release_sock() in user context,
5679		 * Defer the ack until tcp_release_cb().
5680		 */
5681		if (sock_owned_by_user_nocheck(sk) &&
5682		    READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_backlog_ack_defer)) {
5683			set_bit(TCP_ACK_DEFERRED, &sk->sk_tsq_flags);
5684			return;
5685		}
5686send_now:
5687		tcp_send_ack(sk);
5688		return;
5689	}
5690
5691	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5692		tcp_send_delayed_ack(sk);
5693		return;
5694	}
5695
5696	if (!tcp_is_sack(tp) ||
5697	    tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr))
5698		goto send_now;
5699
5700	if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5701		tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5702		tp->dup_ack_counter = 0;
5703	}
5704	if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5705		tp->dup_ack_counter++;
5706		goto send_now;
5707	}
5708	tp->compressed_ack++;
5709	if (hrtimer_is_queued(&tp->compressed_ack_timer))
5710		return;
5711
5712	/* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5713
5714	rtt = tp->rcv_rtt_est.rtt_us;
5715	if (tp->srtt_us && tp->srtt_us < rtt)
5716		rtt = tp->srtt_us;
5717
5718	delay = min_t(unsigned long,
5719		      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns),
5720		      rtt * (NSEC_PER_USEC >> 3)/20);
5721	sock_hold(sk);
5722	hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5723			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns),
5724			       HRTIMER_MODE_REL_PINNED_SOFT);
5725}
5726
5727static inline void tcp_ack_snd_check(struct sock *sk)
5728{
5729	if (!inet_csk_ack_scheduled(sk)) {
5730		/* We sent a data segment already. */
5731		return;
5732	}
5733	__tcp_ack_snd_check(sk, 1);
5734}
5735
5736/*
5737 *	This routine is only called when we have urgent data
5738 *	signaled. Its the 'slow' part of tcp_urg. It could be
5739 *	moved inline now as tcp_urg is only called from one
5740 *	place. We handle URGent data wrong. We have to - as
5741 *	BSD still doesn't use the correction from RFC961.
5742 *	For 1003.1g we should support a new option TCP_STDURG to permit
5743 *	either form (or just set the sysctl tcp_stdurg).
5744 */
5745
5746static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5747{
5748	struct tcp_sock *tp = tcp_sk(sk);
5749	u32 ptr = ntohs(th->urg_ptr);
5750
5751	if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg))
5752		ptr--;
5753	ptr += ntohl(th->seq);
5754
5755	/* Ignore urgent data that we've already seen and read. */
5756	if (after(tp->copied_seq, ptr))
5757		return;
5758
5759	/* Do not replay urg ptr.
5760	 *
5761	 * NOTE: interesting situation not covered by specs.
5762	 * Misbehaving sender may send urg ptr, pointing to segment,
5763	 * which we already have in ofo queue. We are not able to fetch
5764	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5765	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5766	 * situations. But it is worth to think about possibility of some
5767	 * DoSes using some hypothetical application level deadlock.
5768	 */
5769	if (before(ptr, tp->rcv_nxt))
5770		return;
5771
5772	/* Do we already have a newer (or duplicate) urgent pointer? */
5773	if (tp->urg_data && !after(ptr, tp->urg_seq))
5774		return;
5775
5776	/* Tell the world about our new urgent pointer. */
5777	sk_send_sigurg(sk);
5778
5779	/* We may be adding urgent data when the last byte read was
5780	 * urgent. To do this requires some care. We cannot just ignore
5781	 * tp->copied_seq since we would read the last urgent byte again
5782	 * as data, nor can we alter copied_seq until this data arrives
5783	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5784	 *
5785	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5786	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5787	 * and expect that both A and B disappear from stream. This is _wrong_.
5788	 * Though this happens in BSD with high probability, this is occasional.
5789	 * Any application relying on this is buggy. Note also, that fix "works"
5790	 * only in this artificial test. Insert some normal data between A and B and we will
5791	 * decline of BSD again. Verdict: it is better to remove to trap
5792	 * buggy users.
5793	 */
5794	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5795	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5796		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5797		tp->copied_seq++;
5798		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5799			__skb_unlink(skb, &sk->sk_receive_queue);
5800			__kfree_skb(skb);
5801		}
5802	}
5803
5804	WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET);
5805	WRITE_ONCE(tp->urg_seq, ptr);
5806
5807	/* Disable header prediction. */
5808	tp->pred_flags = 0;
5809}
5810
5811/* This is the 'fast' part of urgent handling. */
5812static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5813{
5814	struct tcp_sock *tp = tcp_sk(sk);
5815
5816	/* Check if we get a new urgent pointer - normally not. */
5817	if (unlikely(th->urg))
5818		tcp_check_urg(sk, th);
5819
5820	/* Do we wait for any urgent data? - normally not... */
5821	if (unlikely(tp->urg_data == TCP_URG_NOTYET)) {
5822		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5823			  th->syn;
5824
5825		/* Is the urgent pointer pointing into this packet? */
5826		if (ptr < skb->len) {
5827			u8 tmp;
5828			if (skb_copy_bits(skb, ptr, &tmp, 1))
5829				BUG();
5830			WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp);
5831			if (!sock_flag(sk, SOCK_DEAD))
5832				sk->sk_data_ready(sk);
5833		}
5834	}
5835}
5836
5837/* Accept RST for rcv_nxt - 1 after a FIN.
5838 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5839 * FIN is sent followed by a RST packet. The RST is sent with the same
5840 * sequence number as the FIN, and thus according to RFC 5961 a challenge
5841 * ACK should be sent. However, Mac OSX rate limits replies to challenge
5842 * ACKs on the closed socket. In addition middleboxes can drop either the
5843 * challenge ACK or a subsequent RST.
5844 */
5845static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5846{
5847	const struct tcp_sock *tp = tcp_sk(sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5848
5849	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5850			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5851					       TCPF_CLOSING));
 
 
5852}
5853
5854/* Does PAWS and seqno based validation of an incoming segment, flags will
5855 * play significant role here.
5856 */
5857static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5858				  const struct tcphdr *th, int syn_inerr)
5859{
5860	struct tcp_sock *tp = tcp_sk(sk);
5861	SKB_DR(reason);
5862
5863	/* RFC1323: H1. Apply PAWS check first. */
5864	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5865	    tp->rx_opt.saw_tstamp &&
5866	    tcp_paws_discard(sk, skb)) {
5867		if (!th->rst) {
5868			if (unlikely(th->syn))
5869				goto syn_challenge;
5870			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5871			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5872						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5873						  &tp->last_oow_ack_time))
5874				tcp_send_dupack(sk, skb);
5875			SKB_DR_SET(reason, TCP_RFC7323_PAWS);
5876			goto discard;
5877		}
5878		/* Reset is accepted even if it did not pass PAWS. */
5879	}
5880
5881	/* Step 1: check sequence number */
5882	reason = tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5883	if (reason) {
5884		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5885		 * (RST) segments are validated by checking their SEQ-fields."
5886		 * And page 69: "If an incoming segment is not acceptable,
5887		 * an acknowledgment should be sent in reply (unless the RST
5888		 * bit is set, if so drop the segment and return)".
5889		 */
5890		if (!th->rst) {
5891			if (th->syn)
5892				goto syn_challenge;
5893			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5894						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5895						  &tp->last_oow_ack_time))
5896				tcp_send_dupack(sk, skb);
5897		} else if (tcp_reset_check(sk, skb)) {
5898			goto reset;
5899		}
5900		goto discard;
5901	}
5902
5903	/* Step 2: check RST bit */
5904	if (th->rst) {
5905		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5906		 * FIN and SACK too if available):
5907		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5908		 * the right-most SACK block,
5909		 * then
5910		 *     RESET the connection
5911		 * else
5912		 *     Send a challenge ACK
5913		 */
5914		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5915		    tcp_reset_check(sk, skb))
5916			goto reset;
5917
5918		if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5919			struct tcp_sack_block *sp = &tp->selective_acks[0];
5920			int max_sack = sp[0].end_seq;
5921			int this_sack;
5922
5923			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5924			     ++this_sack) {
5925				max_sack = after(sp[this_sack].end_seq,
5926						 max_sack) ?
5927					sp[this_sack].end_seq : max_sack;
5928			}
5929
5930			if (TCP_SKB_CB(skb)->seq == max_sack)
5931				goto reset;
5932		}
5933
5934		/* Disable TFO if RST is out-of-order
5935		 * and no data has been received
5936		 * for current active TFO socket
5937		 */
5938		if (tp->syn_fastopen && !tp->data_segs_in &&
5939		    sk->sk_state == TCP_ESTABLISHED)
5940			tcp_fastopen_active_disable(sk);
5941		tcp_send_challenge_ack(sk);
5942		SKB_DR_SET(reason, TCP_RESET);
5943		goto discard;
5944	}
5945
5946	/* step 3: check security and precedence [ignored] */
5947
5948	/* step 4: Check for a SYN
5949	 * RFC 5961 4.2 : Send a challenge ack
5950	 */
5951	if (th->syn) {
5952syn_challenge:
5953		if (syn_inerr)
5954			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5955		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5956		tcp_send_challenge_ack(sk);
5957		SKB_DR_SET(reason, TCP_INVALID_SYN);
5958		goto discard;
5959	}
5960
5961	bpf_skops_parse_hdr(sk, skb);
5962
5963	return true;
5964
5965discard:
5966	tcp_drop_reason(sk, skb, reason);
5967	return false;
5968
5969reset:
5970	tcp_reset(sk, skb);
5971	__kfree_skb(skb);
5972	return false;
5973}
5974
5975/*
5976 *	TCP receive function for the ESTABLISHED state.
5977 *
5978 *	It is split into a fast path and a slow path. The fast path is
5979 * 	disabled when:
5980 *	- A zero window was announced from us - zero window probing
5981 *        is only handled properly in the slow path.
5982 *	- Out of order segments arrived.
5983 *	- Urgent data is expected.
5984 *	- There is no buffer space left
5985 *	- Unexpected TCP flags/window values/header lengths are received
5986 *	  (detected by checking the TCP header against pred_flags)
5987 *	- Data is sent in both directions. Fast path only supports pure senders
5988 *	  or pure receivers (this means either the sequence number or the ack
5989 *	  value must stay constant)
5990 *	- Unexpected TCP option.
5991 *
5992 *	When these conditions are not satisfied it drops into a standard
5993 *	receive procedure patterned after RFC793 to handle all cases.
5994 *	The first three cases are guaranteed by proper pred_flags setting,
5995 *	the rest is checked inline. Fast processing is turned on in
5996 *	tcp_data_queue when everything is OK.
5997 */
5998void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
 
5999{
6000	enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED;
6001	const struct tcphdr *th = (const struct tcphdr *)skb->data;
6002	struct tcp_sock *tp = tcp_sk(sk);
6003	unsigned int len = skb->len;
6004
6005	/* TCP congestion window tracking */
6006	trace_tcp_probe(sk, skb);
6007
6008	tcp_mstamp_refresh(tp);
6009	if (unlikely(!rcu_access_pointer(sk->sk_rx_dst)))
6010		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
6011	/*
6012	 *	Header prediction.
6013	 *	The code loosely follows the one in the famous
6014	 *	"30 instruction TCP receive" Van Jacobson mail.
6015	 *
6016	 *	Van's trick is to deposit buffers into socket queue
6017	 *	on a device interrupt, to call tcp_recv function
6018	 *	on the receive process context and checksum and copy
6019	 *	the buffer to user space. smart...
6020	 *
6021	 *	Our current scheme is not silly either but we take the
6022	 *	extra cost of the net_bh soft interrupt processing...
6023	 *	We do checksum and copy also but from device to kernel.
6024	 */
6025
6026	tp->rx_opt.saw_tstamp = 0;
6027
6028	/*	pred_flags is 0xS?10 << 16 + snd_wnd
6029	 *	if header_prediction is to be made
6030	 *	'S' will always be tp->tcp_header_len >> 2
6031	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
6032	 *  turn it off	(when there are holes in the receive
6033	 *	 space for instance)
6034	 *	PSH flag is ignored.
6035	 */
6036
6037	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
6038	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
6039	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6040		int tcp_header_len = tp->tcp_header_len;
6041
6042		/* Timestamp header prediction: tcp_header_len
6043		 * is automatically equal to th->doff*4 due to pred_flags
6044		 * match.
6045		 */
6046
6047		/* Check timestamp */
6048		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
6049			/* No? Slow path! */
6050			if (!tcp_parse_aligned_timestamp(tp, th))
6051				goto slow_path;
6052
6053			/* If PAWS failed, check it more carefully in slow path */
6054			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
6055				goto slow_path;
6056
6057			/* DO NOT update ts_recent here, if checksum fails
6058			 * and timestamp was corrupted part, it will result
6059			 * in a hung connection since we will drop all
6060			 * future packets due to the PAWS test.
6061			 */
6062		}
6063
6064		if (len <= tcp_header_len) {
6065			/* Bulk data transfer: sender */
6066			if (len == tcp_header_len) {
6067				/* Predicted packet is in window by definition.
6068				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
6069				 * Hence, check seq<=rcv_wup reduces to:
6070				 */
6071				if (tcp_header_len ==
6072				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
6073				    tp->rcv_nxt == tp->rcv_wup)
6074					tcp_store_ts_recent(tp);
6075
6076				/* We know that such packets are checksummed
6077				 * on entry.
6078				 */
6079				tcp_ack(sk, skb, 0);
6080				__kfree_skb(skb);
6081				tcp_data_snd_check(sk);
6082				/* When receiving pure ack in fast path, update
6083				 * last ts ecr directly instead of calling
6084				 * tcp_rcv_rtt_measure_ts()
6085				 */
6086				tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
6087				return;
6088			} else { /* Header too small */
6089				reason = SKB_DROP_REASON_PKT_TOO_SMALL;
6090				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6091				goto discard;
6092			}
6093		} else {
6094			int eaten = 0;
6095			bool fragstolen = false;
6096
6097			if (tcp_checksum_complete(skb))
6098				goto csum_error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6099
6100			if ((int)skb->truesize > sk->sk_forward_alloc)
6101				goto step5;
6102
6103			/* Predicted packet is in window by definition.
6104			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
6105			 * Hence, check seq<=rcv_wup reduces to:
6106			 */
6107			if (tcp_header_len ==
6108			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
6109			    tp->rcv_nxt == tp->rcv_wup)
6110				tcp_store_ts_recent(tp);
6111
6112			tcp_rcv_rtt_measure_ts(sk, skb);
6113
6114			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
6115
6116			/* Bulk data transfer: receiver */
6117			skb_dst_drop(skb);
6118			__skb_pull(skb, tcp_header_len);
6119			eaten = tcp_queue_rcv(sk, skb, &fragstolen);
6120
6121			tcp_event_data_recv(sk, skb);
6122
6123			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
6124				/* Well, only one small jumplet in fast path... */
6125				tcp_ack(sk, skb, FLAG_DATA);
6126				tcp_data_snd_check(sk);
6127				if (!inet_csk_ack_scheduled(sk))
6128					goto no_ack;
6129			} else {
6130				tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
6131			}
6132
6133			__tcp_ack_snd_check(sk, 0);
6134no_ack:
6135			if (eaten)
6136				kfree_skb_partial(skb, fragstolen);
6137			tcp_data_ready(sk);
6138			return;
6139		}
6140	}
6141
6142slow_path:
6143	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
6144		goto csum_error;
6145
6146	if (!th->ack && !th->rst && !th->syn) {
6147		reason = SKB_DROP_REASON_TCP_FLAGS;
6148		goto discard;
6149	}
6150
6151	/*
6152	 *	Standard slow path.
6153	 */
6154
6155	if (!tcp_validate_incoming(sk, skb, th, 1))
6156		return;
6157
6158step5:
6159	reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT);
6160	if ((int)reason < 0) {
6161		reason = -reason;
6162		goto discard;
6163	}
6164	tcp_rcv_rtt_measure_ts(sk, skb);
6165
6166	/* Process urgent data. */
6167	tcp_urg(sk, skb, th);
6168
6169	/* step 7: process the segment text */
6170	tcp_data_queue(sk, skb);
6171
6172	tcp_data_snd_check(sk);
6173	tcp_ack_snd_check(sk);
6174	return;
6175
6176csum_error:
6177	reason = SKB_DROP_REASON_TCP_CSUM;
6178	trace_tcp_bad_csum(skb);
6179	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
6180	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6181
6182discard:
6183	tcp_drop_reason(sk, skb, reason);
6184}
6185EXPORT_SYMBOL(tcp_rcv_established);
6186
6187void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
6188{
6189	struct inet_connection_sock *icsk = inet_csk(sk);
6190	struct tcp_sock *tp = tcp_sk(sk);
6191
6192	tcp_mtup_init(sk);
6193	icsk->icsk_af_ops->rebuild_header(sk);
6194	tcp_init_metrics(sk);
6195
6196	/* Initialize the congestion window to start the transfer.
6197	 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
6198	 * retransmitted. In light of RFC6298 more aggressive 1sec
6199	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
6200	 * retransmission has occurred.
6201	 */
6202	if (tp->total_retrans > 1 && tp->undo_marker)
6203		tcp_snd_cwnd_set(tp, 1);
6204	else
6205		tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk)));
6206	tp->snd_cwnd_stamp = tcp_jiffies32;
6207
6208	bpf_skops_established(sk, bpf_op, skb);
6209	/* Initialize congestion control unless BPF initialized it already: */
6210	if (!icsk->icsk_ca_initialized)
6211		tcp_init_congestion_control(sk);
6212	tcp_init_buffer_space(sk);
6213}
6214
6215void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
6216{
6217	struct tcp_sock *tp = tcp_sk(sk);
6218	struct inet_connection_sock *icsk = inet_csk(sk);
6219
6220	tcp_ao_finish_connect(sk, skb);
6221	tcp_set_state(sk, TCP_ESTABLISHED);
6222	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
6223
6224	if (skb) {
6225		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
6226		security_inet_conn_established(sk, skb);
6227		sk_mark_napi_id(sk, skb);
6228	}
6229
6230	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
 
 
 
 
 
6231
6232	/* Prevent spurious tcp_cwnd_restart() on first data
6233	 * packet.
6234	 */
6235	tp->lsndtime = tcp_jiffies32;
 
 
6236
6237	if (sock_flag(sk, SOCK_KEEPOPEN))
6238		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
6239
6240	if (!tp->rx_opt.snd_wscale)
6241		__tcp_fast_path_on(tp, tp->snd_wnd);
6242	else
6243		tp->pred_flags = 0;
 
 
 
 
 
6244}
6245
6246static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
6247				    struct tcp_fastopen_cookie *cookie)
6248{
6249	struct tcp_sock *tp = tcp_sk(sk);
6250	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
6251	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
6252	bool syn_drop = false;
6253
6254	if (mss == tp->rx_opt.user_mss) {
6255		struct tcp_options_received opt;
6256
6257		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
6258		tcp_clear_options(&opt);
6259		opt.user_mss = opt.mss_clamp = 0;
6260		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
6261		mss = opt.mss_clamp;
6262	}
6263
6264	if (!tp->syn_fastopen) {
6265		/* Ignore an unsolicited cookie */
6266		cookie->len = -1;
6267	} else if (tp->total_retrans) {
6268		/* SYN timed out and the SYN-ACK neither has a cookie nor
6269		 * acknowledges data. Presumably the remote received only
6270		 * the retransmitted (regular) SYNs: either the original
6271		 * SYN-data or the corresponding SYN-ACK was dropped.
6272		 */
6273		syn_drop = (cookie->len < 0 && data);
6274	} else if (cookie->len < 0 && !tp->syn_data) {
6275		/* We requested a cookie but didn't get it. If we did not use
6276		 * the (old) exp opt format then try so next time (try_exp=1).
6277		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
6278		 */
6279		try_exp = tp->syn_fastopen_exp ? 2 : 1;
6280	}
6281
6282	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
6283
6284	if (data) { /* Retransmit unacked data in SYN */
6285		if (tp->total_retrans)
6286			tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
6287		else
6288			tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
6289		skb_rbtree_walk_from(data)
6290			 tcp_mark_skb_lost(sk, data);
6291		tcp_xmit_retransmit_queue(sk);
6292		NET_INC_STATS(sock_net(sk),
6293				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
6294		return true;
6295	}
6296	tp->syn_data_acked = tp->syn_data;
6297	if (tp->syn_data_acked) {
6298		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
6299		/* SYN-data is counted as two separate packets in tcp_ack() */
6300		if (tp->delivered > 1)
6301			--tp->delivered;
6302	}
6303
6304	tcp_fastopen_add_skb(sk, synack);
6305
6306	return false;
6307}
6308
6309static void smc_check_reset_syn(struct tcp_sock *tp)
6310{
6311#if IS_ENABLED(CONFIG_SMC)
6312	if (static_branch_unlikely(&tcp_have_smc)) {
6313		if (tp->syn_smc && !tp->rx_opt.smc_ok)
6314			tp->syn_smc = 0;
6315	}
6316#endif
6317}
6318
6319static void tcp_try_undo_spurious_syn(struct sock *sk)
6320{
6321	struct tcp_sock *tp = tcp_sk(sk);
6322	u32 syn_stamp;
6323
6324	/* undo_marker is set when SYN or SYNACK times out. The timeout is
6325	 * spurious if the ACK's timestamp option echo value matches the
6326	 * original SYN timestamp.
6327	 */
6328	syn_stamp = tp->retrans_stamp;
6329	if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
6330	    syn_stamp == tp->rx_opt.rcv_tsecr)
6331		tp->undo_marker = 0;
6332}
6333
6334static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
6335					 const struct tcphdr *th)
6336{
6337	struct inet_connection_sock *icsk = inet_csk(sk);
6338	struct tcp_sock *tp = tcp_sk(sk);
6339	struct tcp_fastopen_cookie foc = { .len = -1 };
6340	int saved_clamp = tp->rx_opt.mss_clamp;
6341	bool fastopen_fail;
6342	SKB_DR(reason);
6343
6344	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
6345	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
6346		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
6347
6348	if (th->ack) {
6349		/* rfc793:
6350		 * "If the state is SYN-SENT then
6351		 *    first check the ACK bit
6352		 *      If the ACK bit is set
6353		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6354		 *        a reset (unless the RST bit is set, if so drop
6355		 *        the segment and return)"
6356		 */
6357		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
6358		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6359			/* Previous FIN/ACK or RST/ACK might be ignored. */
6360			if (icsk->icsk_retransmits == 0)
6361				inet_csk_reset_xmit_timer(sk,
6362						ICSK_TIME_RETRANS,
6363						TCP_TIMEOUT_MIN, TCP_RTO_MAX);
6364			goto reset_and_undo;
6365		}
6366
6367		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
6368		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
6369			     tcp_time_stamp_ts(tp))) {
6370			NET_INC_STATS(sock_net(sk),
6371					LINUX_MIB_PAWSACTIVEREJECTED);
6372			goto reset_and_undo;
6373		}
6374
6375		/* Now ACK is acceptable.
6376		 *
6377		 * "If the RST bit is set
6378		 *    If the ACK was acceptable then signal the user "error:
6379		 *    connection reset", drop the segment, enter CLOSED state,
6380		 *    delete TCB, and return."
6381		 */
6382
6383		if (th->rst) {
6384			tcp_reset(sk, skb);
6385consume:
6386			__kfree_skb(skb);
6387			return 0;
6388		}
6389
6390		/* rfc793:
6391		 *   "fifth, if neither of the SYN or RST bits is set then
6392		 *    drop the segment and return."
6393		 *
6394		 *    See note below!
6395		 *                                        --ANK(990513)
6396		 */
6397		if (!th->syn) {
6398			SKB_DR_SET(reason, TCP_FLAGS);
6399			goto discard_and_undo;
6400		}
6401		/* rfc793:
6402		 *   "If the SYN bit is on ...
6403		 *    are acceptable then ...
6404		 *    (our SYN has been ACKed), change the connection
6405		 *    state to ESTABLISHED..."
6406		 */
6407
6408		tcp_ecn_rcv_synack(tp, th);
6409
6410		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6411		tcp_try_undo_spurious_syn(sk);
6412		tcp_ack(sk, skb, FLAG_SLOWPATH);
6413
6414		/* Ok.. it's good. Set up sequence numbers and
6415		 * move to established.
6416		 */
6417		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6418		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6419
6420		/* RFC1323: The window in SYN & SYN/ACK segments is
6421		 * never scaled.
6422		 */
6423		tp->snd_wnd = ntohs(th->window);
6424
6425		if (!tp->rx_opt.wscale_ok) {
6426			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6427			tp->window_clamp = min(tp->window_clamp, 65535U);
6428		}
6429
6430		if (tp->rx_opt.saw_tstamp) {
6431			tp->rx_opt.tstamp_ok	   = 1;
6432			tp->tcp_header_len =
6433				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6434			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
6435			tcp_store_ts_recent(tp);
6436		} else {
6437			tp->tcp_header_len = sizeof(struct tcphdr);
6438		}
6439
 
 
 
 
6440		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6441		tcp_initialize_rcv_mss(sk);
6442
6443		/* Remember, tcp_poll() does not lock socket!
6444		 * Change state from SYN-SENT only after copied_seq
6445		 * is initialized. */
6446		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6447
6448		smc_check_reset_syn(tp);
6449
6450		smp_mb();
6451
6452		tcp_finish_connect(sk, skb);
6453
6454		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6455				tcp_rcv_fastopen_synack(sk, skb, &foc);
6456
6457		if (!sock_flag(sk, SOCK_DEAD)) {
6458			sk->sk_state_change(sk);
6459			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6460		}
6461		if (fastopen_fail)
6462			return -1;
 
6463		if (sk->sk_write_pending ||
6464		    READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept) ||
6465		    inet_csk_in_pingpong_mode(sk)) {
6466			/* Save one ACK. Data will be ready after
6467			 * several ticks, if write_pending is set.
6468			 *
6469			 * It may be deleted, but with this feature tcpdumps
6470			 * look so _wonderfully_ clever, that I was not able
6471			 * to stand against the temptation 8)     --ANK
6472			 */
6473			inet_csk_schedule_ack(sk);
6474			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
 
6475			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6476						  TCP_DELACK_MAX, TCP_RTO_MAX);
6477			goto consume;
 
 
 
 
 
6478		}
6479		tcp_send_ack(sk);
6480		return -1;
6481	}
6482
6483	/* No ACK in the segment */
6484
6485	if (th->rst) {
6486		/* rfc793:
6487		 * "If the RST bit is set
6488		 *
6489		 *      Otherwise (no ACK) drop the segment and return."
6490		 */
6491		SKB_DR_SET(reason, TCP_RESET);
6492		goto discard_and_undo;
6493	}
6494
6495	/* PAWS check. */
6496	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6497	    tcp_paws_reject(&tp->rx_opt, 0)) {
6498		SKB_DR_SET(reason, TCP_RFC7323_PAWS);
6499		goto discard_and_undo;
6500	}
6501	if (th->syn) {
6502		/* We see SYN without ACK. It is attempt of
6503		 * simultaneous connect with crossed SYNs.
6504		 * Particularly, it can be connect to self.
6505		 */
6506#ifdef CONFIG_TCP_AO
6507		struct tcp_ao_info *ao;
6508
6509		ao = rcu_dereference_protected(tp->ao_info,
6510					       lockdep_sock_is_held(sk));
6511		if (ao) {
6512			WRITE_ONCE(ao->risn, th->seq);
6513			ao->rcv_sne = 0;
6514		}
6515#endif
6516		tcp_set_state(sk, TCP_SYN_RECV);
6517
6518		if (tp->rx_opt.saw_tstamp) {
6519			tp->rx_opt.tstamp_ok = 1;
6520			tcp_store_ts_recent(tp);
6521			tp->tcp_header_len =
6522				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6523		} else {
6524			tp->tcp_header_len = sizeof(struct tcphdr);
6525		}
6526
6527		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6528		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6529		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6530
6531		/* RFC1323: The window in SYN & SYN/ACK segments is
6532		 * never scaled.
6533		 */
6534		tp->snd_wnd    = ntohs(th->window);
6535		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
6536		tp->max_window = tp->snd_wnd;
6537
6538		tcp_ecn_rcv_syn(tp, th);
6539
6540		tcp_mtup_init(sk);
6541		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6542		tcp_initialize_rcv_mss(sk);
6543
6544		tcp_send_synack(sk);
6545#if 0
6546		/* Note, we could accept data and URG from this segment.
6547		 * There are no obstacles to make this (except that we must
6548		 * either change tcp_recvmsg() to prevent it from returning data
6549		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6550		 *
6551		 * However, if we ignore data in ACKless segments sometimes,
6552		 * we have no reasons to accept it sometimes.
6553		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6554		 * is not flawless. So, discard packet for sanity.
6555		 * Uncomment this return to process the data.
6556		 */
6557		return -1;
6558#else
6559		goto consume;
6560#endif
6561	}
6562	/* "fifth, if neither of the SYN or RST bits is set then
6563	 * drop the segment and return."
6564	 */
6565
6566discard_and_undo:
6567	tcp_clear_options(&tp->rx_opt);
6568	tp->rx_opt.mss_clamp = saved_clamp;
6569	tcp_drop_reason(sk, skb, reason);
6570	return 0;
6571
6572reset_and_undo:
6573	tcp_clear_options(&tp->rx_opt);
6574	tp->rx_opt.mss_clamp = saved_clamp;
6575	return 1;
6576}
6577
6578static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6579{
6580	struct tcp_sock *tp = tcp_sk(sk);
6581	struct request_sock *req;
6582
6583	/* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6584	 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6585	 */
6586	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss && !tp->packets_out)
6587		tcp_try_undo_recovery(sk);
6588
6589	/* Reset rtx states to prevent spurious retransmits_timed_out() */
6590	tcp_update_rto_time(tp);
6591	tp->retrans_stamp = 0;
6592	inet_csk(sk)->icsk_retransmits = 0;
6593
6594	/* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6595	 * we no longer need req so release it.
6596	 */
6597	req = rcu_dereference_protected(tp->fastopen_rsk,
6598					lockdep_sock_is_held(sk));
6599	reqsk_fastopen_remove(sk, req, false);
6600
6601	/* Re-arm the timer because data may have been sent out.
6602	 * This is similar to the regular data transmission case
6603	 * when new data has just been ack'ed.
6604	 *
6605	 * (TFO) - we could try to be more aggressive and
6606	 * retransmitting any data sooner based on when they
6607	 * are sent out.
6608	 */
6609	tcp_rearm_rto(sk);
6610}
6611
6612/*
6613 *	This function implements the receiving procedure of RFC 793 for
6614 *	all states except ESTABLISHED and TIME_WAIT.
6615 *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6616 *	address independent.
6617 */
6618
6619int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6620{
6621	struct tcp_sock *tp = tcp_sk(sk);
6622	struct inet_connection_sock *icsk = inet_csk(sk);
6623	const struct tcphdr *th = tcp_hdr(skb);
6624	struct request_sock *req;
6625	int queued = 0;
6626	bool acceptable;
6627	SKB_DR(reason);
 
6628
6629	switch (sk->sk_state) {
6630	case TCP_CLOSE:
6631		SKB_DR_SET(reason, TCP_CLOSE);
6632		goto discard;
6633
6634	case TCP_LISTEN:
6635		if (th->ack)
6636			return 1;
6637
6638		if (th->rst) {
6639			SKB_DR_SET(reason, TCP_RESET);
6640			goto discard;
6641		}
6642		if (th->syn) {
6643			if (th->fin) {
6644				SKB_DR_SET(reason, TCP_FLAGS);
6645				goto discard;
6646			}
6647			/* It is possible that we process SYN packets from backlog,
6648			 * so we need to make sure to disable BH and RCU right there.
6649			 */
6650			rcu_read_lock();
6651			local_bh_disable();
6652			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6653			local_bh_enable();
6654			rcu_read_unlock();
6655
6656			if (!acceptable)
6657				return 1;
6658			consume_skb(skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6659			return 0;
6660		}
6661		SKB_DR_SET(reason, TCP_FLAGS);
6662		goto discard;
6663
6664	case TCP_SYN_SENT:
6665		tp->rx_opt.saw_tstamp = 0;
6666		tcp_mstamp_refresh(tp);
6667		queued = tcp_rcv_synsent_state_process(sk, skb, th);
6668		if (queued >= 0)
6669			return queued;
6670
6671		/* Do step6 onward by hand. */
6672		tcp_urg(sk, skb, th);
6673		__kfree_skb(skb);
6674		tcp_data_snd_check(sk);
6675		return 0;
6676	}
6677
6678	tcp_mstamp_refresh(tp);
6679	tp->rx_opt.saw_tstamp = 0;
6680	req = rcu_dereference_protected(tp->fastopen_rsk,
6681					lockdep_sock_is_held(sk));
6682	if (req) {
6683		bool req_stolen;
6684
6685		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6686		    sk->sk_state != TCP_FIN_WAIT1);
6687
6688		if (!tcp_check_req(sk, skb, req, true, &req_stolen)) {
6689			SKB_DR_SET(reason, TCP_FASTOPEN);
6690			goto discard;
6691		}
6692	}
6693
6694	if (!th->ack && !th->rst && !th->syn) {
6695		SKB_DR_SET(reason, TCP_FLAGS);
6696		goto discard;
6697	}
6698	if (!tcp_validate_incoming(sk, skb, th, 0))
6699		return 0;
6700
6701	/* step 5: check the ACK field */
6702	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6703				      FLAG_UPDATE_TS_RECENT |
6704				      FLAG_NO_CHALLENGE_ACK) > 0;
6705
6706	if (!acceptable) {
6707		if (sk->sk_state == TCP_SYN_RECV)
6708			return 1;	/* send one RST */
6709		tcp_send_challenge_ack(sk);
6710		SKB_DR_SET(reason, TCP_OLD_ACK);
6711		goto discard;
6712	}
6713	switch (sk->sk_state) {
6714	case TCP_SYN_RECV:
6715		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
 
 
6716		if (!tp->srtt_us)
6717			tcp_synack_rtt_meas(sk, req);
6718
 
 
 
6719		if (req) {
6720			tcp_rcv_synrecv_state_fastopen(sk);
 
6721		} else {
6722			tcp_try_undo_spurious_syn(sk);
6723			tp->retrans_stamp = 0;
6724			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
6725					  skb);
6726			WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
 
 
6727		}
6728		tcp_ao_established(sk);
6729		smp_mb();
6730		tcp_set_state(sk, TCP_ESTABLISHED);
6731		sk->sk_state_change(sk);
6732
6733		/* Note, that this wakeup is only for marginal crossed SYN case.
6734		 * Passively open sockets are not waked up, because
6735		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6736		 */
6737		if (sk->sk_socket)
6738			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6739
6740		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6741		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6742		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6743
6744		if (tp->rx_opt.tstamp_ok)
6745			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6746
6747		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6748			tcp_update_pacing_rate(sk);
 
 
 
 
 
 
 
 
 
 
 
 
6749
6750		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6751		tp->lsndtime = tcp_jiffies32;
6752
6753		tcp_initialize_rcv_mss(sk);
6754		tcp_fast_path_on(tp);
6755		break;
6756
6757	case TCP_FIN_WAIT1: {
 
6758		int tmo;
6759
6760		if (req)
6761			tcp_rcv_synrecv_state_fastopen(sk);
6762
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6763		if (tp->snd_una != tp->write_seq)
6764			break;
6765
6766		tcp_set_state(sk, TCP_FIN_WAIT2);
6767		WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN);
6768
6769		sk_dst_confirm(sk);
 
 
6770
6771		if (!sock_flag(sk, SOCK_DEAD)) {
6772			/* Wake up lingering close() */
6773			sk->sk_state_change(sk);
6774			break;
6775		}
6776
6777		if (READ_ONCE(tp->linger2) < 0) {
6778			tcp_done(sk);
6779			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6780			return 1;
6781		}
6782		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6783		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6784			/* Receive out of order FIN after close() */
6785			if (tp->syn_fastopen && th->fin)
6786				tcp_fastopen_active_disable(sk);
6787			tcp_done(sk);
6788			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6789			return 1;
6790		}
6791
6792		tmo = tcp_fin_time(sk);
6793		if (tmo > TCP_TIMEWAIT_LEN) {
6794			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6795		} else if (th->fin || sock_owned_by_user(sk)) {
6796			/* Bad case. We could lose such FIN otherwise.
6797			 * It is not a big problem, but it looks confusing
6798			 * and not so rare event. We still can lose it now,
6799			 * if it spins in bh_lock_sock(), but it is really
6800			 * marginal case.
6801			 */
6802			inet_csk_reset_keepalive_timer(sk, tmo);
6803		} else {
6804			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6805			goto consume;
6806		}
6807		break;
6808	}
6809
6810	case TCP_CLOSING:
6811		if (tp->snd_una == tp->write_seq) {
6812			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6813			goto consume;
6814		}
6815		break;
6816
6817	case TCP_LAST_ACK:
6818		if (tp->snd_una == tp->write_seq) {
6819			tcp_update_metrics(sk);
6820			tcp_done(sk);
6821			goto consume;
6822		}
6823		break;
6824	}
6825
6826	/* step 6: check the URG bit */
6827	tcp_urg(sk, skb, th);
6828
6829	/* step 7: process the segment text */
6830	switch (sk->sk_state) {
6831	case TCP_CLOSE_WAIT:
6832	case TCP_CLOSING:
6833	case TCP_LAST_ACK:
6834		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6835			/* If a subflow has been reset, the packet should not
6836			 * continue to be processed, drop the packet.
6837			 */
6838			if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb))
6839				goto discard;
6840			break;
6841		}
6842		fallthrough;
6843	case TCP_FIN_WAIT1:
6844	case TCP_FIN_WAIT2:
6845		/* RFC 793 says to queue data in these states,
6846		 * RFC 1122 says we MUST send a reset.
6847		 * BSD 4.4 also does reset.
6848		 */
6849		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6850			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6851			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6852				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6853				tcp_reset(sk, skb);
6854				return 1;
6855			}
6856		}
6857		fallthrough;
6858	case TCP_ESTABLISHED:
6859		tcp_data_queue(sk, skb);
6860		queued = 1;
6861		break;
6862	}
6863
6864	/* tcp_data could move socket to TIME-WAIT */
6865	if (sk->sk_state != TCP_CLOSE) {
6866		tcp_data_snd_check(sk);
6867		tcp_ack_snd_check(sk);
6868	}
6869
6870	if (!queued) {
6871discard:
6872		tcp_drop_reason(sk, skb, reason);
6873	}
6874	return 0;
6875
6876consume:
6877	__kfree_skb(skb);
6878	return 0;
6879}
6880EXPORT_SYMBOL(tcp_rcv_state_process);
6881
6882static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6883{
6884	struct inet_request_sock *ireq = inet_rsk(req);
6885
6886	if (family == AF_INET)
6887		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6888				    &ireq->ir_rmt_addr, port);
6889#if IS_ENABLED(CONFIG_IPV6)
6890	else if (family == AF_INET6)
6891		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6892				    &ireq->ir_v6_rmt_addr, port);
6893#endif
6894}
6895
6896/* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6897 *
6898 * If we receive a SYN packet with these bits set, it means a
6899 * network is playing bad games with TOS bits. In order to
6900 * avoid possible false congestion notifications, we disable
6901 * TCP ECN negotiation.
6902 *
6903 * Exception: tcp_ca wants ECN. This is required for DCTCP
6904 * congestion control: Linux DCTCP asserts ECT on all packets,
6905 * including SYN, which is most optimal solution; however,
6906 * others, such as FreeBSD do not.
6907 *
6908 * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6909 * set, indicating the use of a future TCP extension (such as AccECN). See
6910 * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6911 * extensions.
6912 */
6913static void tcp_ecn_create_request(struct request_sock *req,
6914				   const struct sk_buff *skb,
6915				   const struct sock *listen_sk,
6916				   const struct dst_entry *dst)
6917{
6918	const struct tcphdr *th = tcp_hdr(skb);
6919	const struct net *net = sock_net(listen_sk);
6920	bool th_ecn = th->ece && th->cwr;
6921	bool ect, ecn_ok;
6922	u32 ecn_ok_dst;
6923
6924	if (!th_ecn)
6925		return;
6926
6927	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6928	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6929	ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst;
6930
6931	if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6932	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6933	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6934		inet_rsk(req)->ecn_ok = 1;
6935}
6936
6937static void tcp_openreq_init(struct request_sock *req,
6938			     const struct tcp_options_received *rx_opt,
6939			     struct sk_buff *skb, const struct sock *sk)
6940{
6941	struct inet_request_sock *ireq = inet_rsk(req);
6942
6943	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
 
6944	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6945	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6946	tcp_rsk(req)->snt_synack = 0;
6947	tcp_rsk(req)->last_oow_ack_time = 0;
6948	req->mss = rx_opt->mss_clamp;
6949	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6950	ireq->tstamp_ok = rx_opt->tstamp_ok;
6951	ireq->sack_ok = rx_opt->sack_ok;
6952	ireq->snd_wscale = rx_opt->snd_wscale;
6953	ireq->wscale_ok = rx_opt->wscale_ok;
6954	ireq->acked = 0;
6955	ireq->ecn_ok = 0;
6956	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6957	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6958	ireq->ir_mark = inet_request_mark(sk, skb);
6959#if IS_ENABLED(CONFIG_SMC)
6960	ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested &&
6961			tcp_sk(sk)->smc_hs_congested(sk));
6962#endif
6963}
6964
6965struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6966				      struct sock *sk_listener,
6967				      bool attach_listener)
6968{
6969	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6970					       attach_listener);
6971
6972	if (req) {
6973		struct inet_request_sock *ireq = inet_rsk(req);
6974
6975		ireq->ireq_opt = NULL;
6976#if IS_ENABLED(CONFIG_IPV6)
6977		ireq->pktopts = NULL;
6978#endif
6979		atomic64_set(&ireq->ir_cookie, 0);
6980		ireq->ireq_state = TCP_NEW_SYN_RECV;
6981		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6982		ireq->ireq_family = sk_listener->sk_family;
6983		req->timeout = TCP_TIMEOUT_INIT;
6984	}
6985
6986	return req;
6987}
6988EXPORT_SYMBOL(inet_reqsk_alloc);
6989
6990/*
6991 * Return true if a syncookie should be sent
6992 */
6993static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
 
 
6994{
6995	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6996	const char *msg = "Dropping request";
6997	struct net *net = sock_net(sk);
6998	bool want_cookie = false;
6999	u8 syncookies;
7000
7001	syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
7002
7003#ifdef CONFIG_SYN_COOKIES
7004	if (syncookies) {
7005		msg = "Sending cookies";
7006		want_cookie = true;
7007		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
7008	} else
7009#endif
7010		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
7011
7012	if (!READ_ONCE(queue->synflood_warned) && syncookies != 2 &&
7013	    xchg(&queue->synflood_warned, 1) == 0) {
7014		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_family == AF_INET6) {
7015			net_info_ratelimited("%s: Possible SYN flooding on port [%pI6c]:%u. %s.\n",
7016					proto, inet6_rcv_saddr(sk),
7017					sk->sk_num, msg);
7018		} else {
7019			net_info_ratelimited("%s: Possible SYN flooding on port %pI4:%u. %s.\n",
7020					proto, &sk->sk_rcv_saddr,
7021					sk->sk_num, msg);
7022		}
7023	}
7024
7025	return want_cookie;
7026}
7027
7028static void tcp_reqsk_record_syn(const struct sock *sk,
7029				 struct request_sock *req,
7030				 const struct sk_buff *skb)
7031{
7032	if (tcp_sk(sk)->save_syn) {
7033		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
7034		struct saved_syn *saved_syn;
7035		u32 mac_hdrlen;
7036		void *base;
7037
7038		if (tcp_sk(sk)->save_syn == 2) {  /* Save full header. */
7039			base = skb_mac_header(skb);
7040			mac_hdrlen = skb_mac_header_len(skb);
7041			len += mac_hdrlen;
7042		} else {
7043			base = skb_network_header(skb);
7044			mac_hdrlen = 0;
7045		}
7046
7047		saved_syn = kmalloc(struct_size(saved_syn, data, len),
7048				    GFP_ATOMIC);
7049		if (saved_syn) {
7050			saved_syn->mac_hdrlen = mac_hdrlen;
7051			saved_syn->network_hdrlen = skb_network_header_len(skb);
7052			saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
7053			memcpy(saved_syn->data, base, len);
7054			req->saved_syn = saved_syn;
7055		}
7056	}
7057}
7058
7059/* If a SYN cookie is required and supported, returns a clamped MSS value to be
7060 * used for SYN cookie generation.
7061 */
7062u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
7063			  const struct tcp_request_sock_ops *af_ops,
7064			  struct sock *sk, struct tcphdr *th)
7065{
7066	struct tcp_sock *tp = tcp_sk(sk);
7067	u16 mss;
7068
7069	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 &&
7070	    !inet_csk_reqsk_queue_is_full(sk))
7071		return 0;
7072
7073	if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
7074		return 0;
7075
7076	if (sk_acceptq_is_full(sk)) {
7077		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
7078		return 0;
7079	}
7080
7081	mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
7082	if (!mss)
7083		mss = af_ops->mss_clamp;
7084
7085	return mss;
7086}
7087EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
7088
7089int tcp_conn_request(struct request_sock_ops *rsk_ops,
7090		     const struct tcp_request_sock_ops *af_ops,
7091		     struct sock *sk, struct sk_buff *skb)
7092{
7093	struct tcp_fastopen_cookie foc = { .len = -1 };
7094	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
7095	struct tcp_options_received tmp_opt;
7096	struct tcp_sock *tp = tcp_sk(sk);
7097	struct net *net = sock_net(sk);
7098	struct sock *fastopen_sk = NULL;
 
7099	struct request_sock *req;
7100	bool want_cookie = false;
7101	struct dst_entry *dst;
7102	struct flowi fl;
7103	u8 syncookies;
7104
7105#ifdef CONFIG_TCP_AO
7106	const struct tcp_ao_hdr *aoh;
7107#endif
7108
7109	syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
7110
7111	/* TW buckets are converted to open requests without
7112	 * limitations, they conserve resources and peer is
7113	 * evidently real one.
7114	 */
7115	if ((syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) && !isn) {
7116		want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
 
7117		if (!want_cookie)
7118			goto drop;
7119	}
7120
7121	if (sk_acceptq_is_full(sk)) {
7122		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
 
 
 
 
 
 
7123		goto drop;
7124	}
7125
7126	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
7127	if (!req)
7128		goto drop;
7129
7130	req->syncookie = want_cookie;
7131	tcp_rsk(req)->af_specific = af_ops;
7132	tcp_rsk(req)->ts_off = 0;
7133	tcp_rsk(req)->req_usec_ts = false;
7134#if IS_ENABLED(CONFIG_MPTCP)
7135	tcp_rsk(req)->is_mptcp = 0;
7136#endif
7137
7138	tcp_clear_options(&tmp_opt);
7139	tmp_opt.mss_clamp = af_ops->mss_clamp;
7140	tmp_opt.user_mss  = tp->rx_opt.user_mss;
7141	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
7142			  want_cookie ? NULL : &foc);
7143
7144	if (want_cookie && !tmp_opt.saw_tstamp)
7145		tcp_clear_options(&tmp_opt);
7146
7147	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
7148		tmp_opt.smc_ok = 0;
7149
7150	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
7151	tcp_openreq_init(req, &tmp_opt, skb, sk);
7152	inet_rsk(req)->no_srccheck = inet_test_bit(TRANSPARENT, sk);
7153
7154	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
7155	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
7156
7157	dst = af_ops->route_req(sk, skb, &fl, req);
7158	if (!dst)
 
7159		goto drop_and_free;
7160
7161	if (tmp_opt.tstamp_ok) {
7162		tcp_rsk(req)->req_usec_ts = dst_tcp_usec_ts(dst);
7163		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
7164	}
7165	if (!want_cookie && !isn) {
7166		int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog);
7167
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7168		/* Kill the following clause, if you dislike this way. */
7169		if (!syncookies &&
7170		    (max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
7171		     (max_syn_backlog >> 2)) &&
7172		    !tcp_peer_is_proven(req, dst)) {
 
7173			/* Without syncookies last quarter of
7174			 * backlog is filled with destinations,
7175			 * proven to be alive.
7176			 * It means that we continue to communicate
7177			 * to destinations, already remembered
7178			 * to the moment of synflood.
7179			 */
7180			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
7181				    rsk_ops->family);
7182			goto drop_and_release;
7183		}
7184
7185		isn = af_ops->init_seq(skb);
7186	}
 
 
 
 
 
7187
7188	tcp_ecn_create_request(req, skb, sk, dst);
7189
7190	if (want_cookie) {
7191		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
 
7192		if (!tmp_opt.tstamp_ok)
7193			inet_rsk(req)->ecn_ok = 0;
7194	}
7195
7196#ifdef CONFIG_TCP_AO
7197	if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh))
7198		goto drop_and_release; /* Invalid TCP options */
7199	if (aoh) {
7200		tcp_rsk(req)->used_tcp_ao = true;
7201		tcp_rsk(req)->ao_rcv_next = aoh->keyid;
7202		tcp_rsk(req)->ao_keyid = aoh->rnext_keyid;
7203
7204	} else {
7205		tcp_rsk(req)->used_tcp_ao = false;
7206	}
7207#endif
7208	tcp_rsk(req)->snt_isn = isn;
7209	tcp_rsk(req)->txhash = net_tx_rndhash();
7210	tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
7211	tcp_openreq_init_rwin(req, sk, dst);
7212	sk_rx_queue_set(req_to_sk(req), skb);
7213	if (!want_cookie) {
7214		tcp_reqsk_record_syn(sk, req, skb);
7215		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
7216	}
7217	if (fastopen_sk) {
7218		af_ops->send_synack(fastopen_sk, dst, &fl, req,
7219				    &foc, TCP_SYNACK_FASTOPEN, skb);
7220		/* Add the child socket directly into the accept queue */
7221		if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
7222			reqsk_fastopen_remove(fastopen_sk, req, false);
7223			bh_unlock_sock(fastopen_sk);
7224			sock_put(fastopen_sk);
7225			goto drop_and_free;
7226		}
7227		sk->sk_data_ready(sk);
7228		bh_unlock_sock(fastopen_sk);
7229		sock_put(fastopen_sk);
7230	} else {
7231		tcp_rsk(req)->tfo_listener = false;
7232		if (!want_cookie) {
7233			req->timeout = tcp_timeout_init((struct sock *)req);
7234			inet_csk_reqsk_queue_hash_add(sk, req, req->timeout);
7235		}
7236		af_ops->send_synack(sk, dst, &fl, req, &foc,
7237				    !want_cookie ? TCP_SYNACK_NORMAL :
7238						   TCP_SYNACK_COOKIE,
7239				    skb);
7240		if (want_cookie) {
7241			reqsk_free(req);
7242			return 0;
7243		}
7244	}
7245	reqsk_put(req);
7246	return 0;
7247
7248drop_and_release:
7249	dst_release(dst);
7250drop_and_free:
7251	__reqsk_free(req);
7252drop:
7253	tcp_listendrop(sk);
7254	return 0;
7255}
7256EXPORT_SYMBOL(tcp_conn_request);
v4.6
 
   1/*
   2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   3 *		operating system.  INET is implemented using the  BSD Socket
   4 *		interface as the means of communication with the user level.
   5 *
   6 *		Implementation of the Transmission Control Protocol(TCP).
   7 *
   8 * Authors:	Ross Biro
   9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
  11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
  12 *		Florian La Roche, <flla@stud.uni-sb.de>
  13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
  15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
  16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
  17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18 *		Jorge Cwik, <jorge@laser.satlink.net>
  19 */
  20
  21/*
  22 * Changes:
  23 *		Pedro Roque	:	Fast Retransmit/Recovery.
  24 *					Two receive queues.
  25 *					Retransmit queue handled by TCP.
  26 *					Better retransmit timer handling.
  27 *					New congestion avoidance.
  28 *					Header prediction.
  29 *					Variable renaming.
  30 *
  31 *		Eric		:	Fast Retransmit.
  32 *		Randy Scott	:	MSS option defines.
  33 *		Eric Schenk	:	Fixes to slow start algorithm.
  34 *		Eric Schenk	:	Yet another double ACK bug.
  35 *		Eric Schenk	:	Delayed ACK bug fixes.
  36 *		Eric Schenk	:	Floyd style fast retrans war avoidance.
  37 *		David S. Miller	:	Don't allow zero congestion window.
  38 *		Eric Schenk	:	Fix retransmitter so that it sends
  39 *					next packet on ack of previous packet.
  40 *		Andi Kleen	:	Moved open_request checking here
  41 *					and process RSTs for open_requests.
  42 *		Andi Kleen	:	Better prune_queue, and other fixes.
  43 *		Andrey Savochkin:	Fix RTT measurements in the presence of
  44 *					timestamps.
  45 *		Andrey Savochkin:	Check sequence numbers correctly when
  46 *					removing SACKs due to in sequence incoming
  47 *					data segments.
  48 *		Andi Kleen:		Make sure we never ack data there is not
  49 *					enough room for. Also make this condition
  50 *					a fatal error if it might still happen.
  51 *		Andi Kleen:		Add tcp_measure_rcv_mss to make
  52 *					connections with MSS<min(MTU,ann. MSS)
  53 *					work without delayed acks.
  54 *		Andi Kleen:		Process packets with PSH set in the
  55 *					fast path.
  56 *		J Hadi Salim:		ECN support
  57 *	 	Andrei Gurtov,
  58 *		Pasi Sarolahti,
  59 *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
  60 *					engine. Lots of bugs are found.
  61 *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
  62 */
  63
  64#define pr_fmt(fmt) "TCP: " fmt
  65
  66#include <linux/mm.h>
  67#include <linux/slab.h>
  68#include <linux/module.h>
  69#include <linux/sysctl.h>
  70#include <linux/kernel.h>
  71#include <linux/prefetch.h>
  72#include <net/dst.h>
  73#include <net/tcp.h>
  74#include <net/inet_common.h>
  75#include <linux/ipsec.h>
  76#include <asm/unaligned.h>
  77#include <linux/errqueue.h>
 
 
 
 
  78
  79int sysctl_tcp_timestamps __read_mostly = 1;
  80int sysctl_tcp_window_scaling __read_mostly = 1;
  81int sysctl_tcp_sack __read_mostly = 1;
  82int sysctl_tcp_fack __read_mostly = 1;
  83int sysctl_tcp_max_reordering __read_mostly = 300;
  84int sysctl_tcp_dsack __read_mostly = 1;
  85int sysctl_tcp_app_win __read_mostly = 31;
  86int sysctl_tcp_adv_win_scale __read_mostly = 1;
  87EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
  88
  89/* rfc5961 challenge ack rate limiting */
  90int sysctl_tcp_challenge_ack_limit = 100;
  91
  92int sysctl_tcp_stdurg __read_mostly;
  93int sysctl_tcp_rfc1337 __read_mostly;
  94int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  95int sysctl_tcp_frto __read_mostly = 2;
  96int sysctl_tcp_min_rtt_wlen __read_mostly = 300;
  97
  98int sysctl_tcp_thin_dupack __read_mostly;
  99
 100int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
 101int sysctl_tcp_early_retrans __read_mostly = 3;
 102int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
 103
 104#define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
 105#define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
 106#define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
 107#define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
 108#define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
 109#define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
 110#define FLAG_ECE		0x40 /* ECE in this ACK				*/
 111#define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
 112#define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
 113#define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
 114#define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
 115#define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
 
 116#define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
 117#define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
 
 
 
 118
 119#define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
 120#define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
 121#define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
 122#define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
 123
 124#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
 125#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
 126
 127#define REXMIT_NONE	0 /* no loss recovery to do */
 128#define REXMIT_LOST	1 /* retransmit packets marked lost */
 129#define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
 130
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 131/* Adapt the MSS value used to make delayed ack decision to the
 132 * real world.
 133 */
 134static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
 135{
 136	struct inet_connection_sock *icsk = inet_csk(sk);
 137	const unsigned int lss = icsk->icsk_ack.last_seg_size;
 138	unsigned int len;
 139
 140	icsk->icsk_ack.last_seg_size = 0;
 141
 142	/* skb->len may jitter because of SACKs, even if peer
 143	 * sends good full-sized frames.
 144	 */
 145	len = skb_shinfo(skb)->gso_size ? : skb->len;
 146	if (len >= icsk->icsk_ack.rcv_mss) {
 147		icsk->icsk_ack.rcv_mss = len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 148	} else {
 149		/* Otherwise, we make more careful check taking into account,
 150		 * that SACKs block is variable.
 151		 *
 152		 * "len" is invariant segment length, including TCP header.
 153		 */
 154		len += skb->data - skb_transport_header(skb);
 155		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
 156		    /* If PSH is not set, packet should be
 157		     * full sized, provided peer TCP is not badly broken.
 158		     * This observation (if it is correct 8)) allows
 159		     * to handle super-low mtu links fairly.
 160		     */
 161		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
 162		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
 163			/* Subtract also invariant (if peer is RFC compliant),
 164			 * tcp header plus fixed timestamp option length.
 165			 * Resulting "len" is MSS free of SACK jitter.
 166			 */
 167			len -= tcp_sk(sk)->tcp_header_len;
 168			icsk->icsk_ack.last_seg_size = len;
 169			if (len == lss) {
 170				icsk->icsk_ack.rcv_mss = len;
 171				return;
 172			}
 173		}
 174		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
 175			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
 176		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
 177	}
 178}
 179
 180static void tcp_incr_quickack(struct sock *sk)
 181{
 182	struct inet_connection_sock *icsk = inet_csk(sk);
 183	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
 184
 185	if (quickacks == 0)
 186		quickacks = 2;
 
 187	if (quickacks > icsk->icsk_ack.quick)
 188		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
 189}
 190
 191static void tcp_enter_quickack_mode(struct sock *sk)
 192{
 193	struct inet_connection_sock *icsk = inet_csk(sk);
 194	tcp_incr_quickack(sk);
 195	icsk->icsk_ack.pingpong = 0;
 
 196	icsk->icsk_ack.ato = TCP_ATO_MIN;
 197}
 198
 199/* Send ACKs quickly, if "quick" count is not exhausted
 200 * and the session is not interactive.
 201 */
 202
 203static bool tcp_in_quickack_mode(struct sock *sk)
 204{
 205	const struct inet_connection_sock *icsk = inet_csk(sk);
 206	const struct dst_entry *dst = __sk_dst_get(sk);
 207
 208	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
 209		(icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
 210}
 211
 212static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
 213{
 214	if (tp->ecn_flags & TCP_ECN_OK)
 215		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
 216}
 217
 218static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
 219{
 220	if (tcp_hdr(skb)->cwr)
 221		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
 
 
 
 
 
 
 
 
 222}
 223
 224static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
 225{
 226	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
 227}
 228
 229static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
 230{
 
 
 231	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
 232	case INET_ECN_NOT_ECT:
 233		/* Funny extension: if ECT is not set on a segment,
 234		 * and we already seen ECT on a previous segment,
 235		 * it is probably a retransmit.
 236		 */
 237		if (tp->ecn_flags & TCP_ECN_SEEN)
 238			tcp_enter_quickack_mode((struct sock *)tp);
 239		break;
 240	case INET_ECN_CE:
 241		if (tcp_ca_needs_ecn((struct sock *)tp))
 242			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
 243
 244		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
 245			/* Better not delay acks, sender can have a very low cwnd */
 246			tcp_enter_quickack_mode((struct sock *)tp);
 247			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
 248		}
 249		tp->ecn_flags |= TCP_ECN_SEEN;
 250		break;
 251	default:
 252		if (tcp_ca_needs_ecn((struct sock *)tp))
 253			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
 254		tp->ecn_flags |= TCP_ECN_SEEN;
 255		break;
 256	}
 257}
 258
 259static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
 260{
 261	if (tp->ecn_flags & TCP_ECN_OK)
 262		__tcp_ecn_check_ce(tp, skb);
 263}
 264
 265static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
 266{
 267	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
 268		tp->ecn_flags &= ~TCP_ECN_OK;
 269}
 270
 271static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
 272{
 273	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
 274		tp->ecn_flags &= ~TCP_ECN_OK;
 275}
 276
 277static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
 278{
 279	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
 280		return true;
 281	return false;
 282}
 283
 284/* Buffer size and advertised window tuning.
 285 *
 286 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
 287 */
 288
 289static void tcp_sndbuf_expand(struct sock *sk)
 290{
 291	const struct tcp_sock *tp = tcp_sk(sk);
 
 292	int sndmem, per_mss;
 293	u32 nr_segs;
 294
 295	/* Worst case is non GSO/TSO : each frame consumes one skb
 296	 * and skb->head is kmalloced using power of two area of memory
 297	 */
 298	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
 299		  MAX_TCP_HEADER +
 300		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 301
 302	per_mss = roundup_pow_of_two(per_mss) +
 303		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
 304
 305	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
 306	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
 307
 308	/* Fast Recovery (RFC 5681 3.2) :
 309	 * Cubic needs 1.7 factor, rounded to 2 to include
 310	 * extra cushion (application might react slowly to POLLOUT)
 311	 */
 312	sndmem = 2 * nr_segs * per_mss;
 
 313
 314	if (sk->sk_sndbuf < sndmem)
 315		sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
 
 316}
 317
 318/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
 319 *
 320 * All tcp_full_space() is split to two parts: "network" buffer, allocated
 321 * forward and advertised in receiver window (tp->rcv_wnd) and
 322 * "application buffer", required to isolate scheduling/application
 323 * latencies from network.
 324 * window_clamp is maximal advertised window. It can be less than
 325 * tcp_full_space(), in this case tcp_full_space() - window_clamp
 326 * is reserved for "application" buffer. The less window_clamp is
 327 * the smoother our behaviour from viewpoint of network, but the lower
 328 * throughput and the higher sensitivity of the connection to losses. 8)
 329 *
 330 * rcv_ssthresh is more strict window_clamp used at "slow start"
 331 * phase to predict further behaviour of this connection.
 332 * It is used for two goals:
 333 * - to enforce header prediction at sender, even when application
 334 *   requires some significant "application buffer". It is check #1.
 335 * - to prevent pruning of receive queue because of misprediction
 336 *   of receiver window. Check #2.
 337 *
 338 * The scheme does not work when sender sends good segments opening
 339 * window and then starts to feed us spaghetti. But it should work
 340 * in common situations. Otherwise, we have to rely on queue collapsing.
 341 */
 342
 343/* Slow part of check#2. */
 344static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
 
 345{
 346	struct tcp_sock *tp = tcp_sk(sk);
 347	/* Optimize this! */
 348	int truesize = tcp_win_from_space(skb->truesize) >> 1;
 349	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
 350
 351	while (tp->rcv_ssthresh <= window) {
 352		if (truesize <= skb->len)
 353			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
 354
 355		truesize >>= 1;
 356		window >>= 1;
 357	}
 358	return 0;
 359}
 360
 361static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 362{
 363	struct tcp_sock *tp = tcp_sk(sk);
 
 
 
 
 
 
 364
 365	/* Check #1 */
 366	if (tp->rcv_ssthresh < tp->window_clamp &&
 367	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
 368	    !tcp_under_memory_pressure(sk)) {
 369		int incr;
 370
 371		/* Check #2. Increase window, if skb with such overhead
 372		 * will fit to rcvbuf in future.
 373		 */
 374		if (tcp_win_from_space(skb->truesize) <= skb->len)
 375			incr = 2 * tp->advmss;
 376		else
 377			incr = __tcp_grow_window(sk, skb);
 378
 379		if (incr) {
 380			incr = max_t(int, incr, 2 * skb->len);
 381			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
 382					       tp->window_clamp);
 383			inet_csk(sk)->icsk_ack.quick |= 1;
 384		}
 
 
 
 
 
 385	}
 386}
 387
 388/* 3. Tuning rcvbuf, when connection enters established state. */
 389static void tcp_fixup_rcvbuf(struct sock *sk)
 390{
 391	u32 mss = tcp_sk(sk)->advmss;
 392	int rcvmem;
 393
 394	rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
 395		 tcp_default_init_rwnd(mss);
 396
 397	/* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
 398	 * Allow enough cushion so that sender is not limited by our window
 399	 */
 400	if (sysctl_tcp_moderate_rcvbuf)
 401		rcvmem <<= 2;
 402
 403	if (sk->sk_rcvbuf < rcvmem)
 404		sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
 405}
 406
 407/* 4. Try to fixup all. It is made immediately after connection enters
 408 *    established state.
 409 */
 410void tcp_init_buffer_space(struct sock *sk)
 411{
 
 412	struct tcp_sock *tp = tcp_sk(sk);
 413	int maxwin;
 414
 415	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
 416		tcp_fixup_rcvbuf(sk);
 417	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
 418		tcp_sndbuf_expand(sk);
 419
 420	tp->rcvq_space.space = tp->rcv_wnd;
 421	tp->rcvq_space.time = tcp_time_stamp;
 422	tp->rcvq_space.seq = tp->copied_seq;
 423
 424	maxwin = tcp_full_space(sk);
 425
 426	if (tp->window_clamp >= maxwin) {
 427		tp->window_clamp = maxwin;
 428
 429		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
 430			tp->window_clamp = max(maxwin -
 431					       (maxwin >> sysctl_tcp_app_win),
 432					       4 * tp->advmss);
 433	}
 434
 435	/* Force reservation of one segment. */
 436	if (sysctl_tcp_app_win &&
 437	    tp->window_clamp > 2 * tp->advmss &&
 438	    tp->window_clamp + tp->advmss > maxwin)
 439		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
 440
 441	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
 442	tp->snd_cwnd_stamp = tcp_time_stamp;
 
 
 443}
 444
 445/* 5. Recalculate window clamp after socket hit its memory bounds. */
 446static void tcp_clamp_window(struct sock *sk)
 447{
 448	struct tcp_sock *tp = tcp_sk(sk);
 449	struct inet_connection_sock *icsk = inet_csk(sk);
 
 
 450
 451	icsk->icsk_ack.quick = 0;
 
 452
 453	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
 454	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
 455	    !tcp_under_memory_pressure(sk) &&
 456	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
 457		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
 458				    sysctl_tcp_rmem[2]);
 459	}
 460	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
 461		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
 462}
 463
 464/* Initialize RCV_MSS value.
 465 * RCV_MSS is an our guess about MSS used by the peer.
 466 * We haven't any direct information about the MSS.
 467 * It's better to underestimate the RCV_MSS rather than overestimate.
 468 * Overestimations make us ACKing less frequently than needed.
 469 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
 470 */
 471void tcp_initialize_rcv_mss(struct sock *sk)
 472{
 473	const struct tcp_sock *tp = tcp_sk(sk);
 474	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
 475
 476	hint = min(hint, tp->rcv_wnd / 2);
 477	hint = min(hint, TCP_MSS_DEFAULT);
 478	hint = max(hint, TCP_MIN_MSS);
 479
 480	inet_csk(sk)->icsk_ack.rcv_mss = hint;
 481}
 482EXPORT_SYMBOL(tcp_initialize_rcv_mss);
 483
 484/* Receiver "autotuning" code.
 485 *
 486 * The algorithm for RTT estimation w/o timestamps is based on
 487 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
 488 * <http://public.lanl.gov/radiant/pubs.html#DRS>
 489 *
 490 * More detail on this code can be found at
 491 * <http://staff.psc.edu/jheffner/>,
 492 * though this reference is out of date.  A new paper
 493 * is pending.
 494 */
 495static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
 496{
 497	u32 new_sample = tp->rcv_rtt_est.rtt;
 498	long m = sample;
 499
 500	if (m == 0)
 501		m = 1;
 502
 503	if (new_sample != 0) {
 504		/* If we sample in larger samples in the non-timestamp
 505		 * case, we could grossly overestimate the RTT especially
 506		 * with chatty applications or bulk transfer apps which
 507		 * are stalled on filesystem I/O.
 508		 *
 509		 * Also, since we are only going for a minimum in the
 510		 * non-timestamp case, we do not smooth things out
 511		 * else with timestamps disabled convergence takes too
 512		 * long.
 513		 */
 514		if (!win_dep) {
 515			m -= (new_sample >> 3);
 516			new_sample += m;
 517		} else {
 518			m <<= 3;
 519			if (m < new_sample)
 520				new_sample = m;
 521		}
 522	} else {
 523		/* No previous measure. */
 524		new_sample = m << 3;
 525	}
 526
 527	if (tp->rcv_rtt_est.rtt != new_sample)
 528		tp->rcv_rtt_est.rtt = new_sample;
 529}
 530
 531static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
 532{
 
 
 533	if (tp->rcv_rtt_est.time == 0)
 534		goto new_measure;
 535	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
 536		return;
 537	tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
 
 
 
 538
 539new_measure:
 540	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
 541	tp->rcv_rtt_est.time = tcp_time_stamp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 542}
 543
 544static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
 545					  const struct sk_buff *skb)
 546{
 547	struct tcp_sock *tp = tcp_sk(sk);
 548	if (tp->rx_opt.rcv_tsecr &&
 549	    (TCP_SKB_CB(skb)->end_seq -
 550	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
 551		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
 
 
 
 
 
 
 
 
 552}
 553
 554/*
 555 * This function should be called every time data is copied to user space.
 556 * It calculates the appropriate TCP receive buffer space.
 557 */
 558void tcp_rcv_space_adjust(struct sock *sk)
 559{
 560	struct tcp_sock *tp = tcp_sk(sk);
 
 561	int time;
 562	int copied;
 563
 564	time = tcp_time_stamp - tp->rcvq_space.time;
 565	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
 
 
 
 566		return;
 567
 568	/* Number of bytes copied to user in last RTT */
 569	copied = tp->copied_seq - tp->rcvq_space.seq;
 570	if (copied <= tp->rcvq_space.space)
 571		goto new_measure;
 572
 573	/* A bit of theory :
 574	 * copied = bytes received in previous RTT, our base window
 575	 * To cope with packet losses, we need a 2x factor
 576	 * To cope with slow start, and sender growing its cwin by 100 %
 577	 * every RTT, we need a 4x factor, because the ACK we are sending
 578	 * now is for the next RTT, not the current one :
 579	 * <prev RTT . ><current RTT .. ><next RTT .... >
 580	 */
 581
 582	if (sysctl_tcp_moderate_rcvbuf &&
 583	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
 584		int rcvwin, rcvmem, rcvbuf;
 
 585
 586		/* minimal window to cope with packet losses, assuming
 587		 * steady state. Add some cushion because of small variations.
 588		 */
 589		rcvwin = (copied << 1) + 16 * tp->advmss;
 590
 591		/* If rate increased by 25%,
 592		 *	assume slow start, rcvwin = 3 * copied
 593		 * If rate increased by 50%,
 594		 *	assume sender can use 2x growth, rcvwin = 4 * copied
 595		 */
 596		if (copied >=
 597		    tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
 598			if (copied >=
 599			    tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
 600				rcvwin <<= 1;
 601			else
 602				rcvwin += (rcvwin >> 1);
 603		}
 604
 605		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
 606		while (tcp_win_from_space(rcvmem) < tp->advmss)
 607			rcvmem += 128;
 608
 609		rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
 
 610		if (rcvbuf > sk->sk_rcvbuf) {
 611			sk->sk_rcvbuf = rcvbuf;
 612
 613			/* Make the window clamp follow along.  */
 614			tp->window_clamp = rcvwin;
 615		}
 616	}
 617	tp->rcvq_space.space = copied;
 618
 619new_measure:
 620	tp->rcvq_space.seq = tp->copied_seq;
 621	tp->rcvq_space.time = tcp_time_stamp;
 
 
 
 
 
 
 
 
 
 
 622}
 623
 624/* There is something which you must keep in mind when you analyze the
 625 * behavior of the tp->ato delayed ack timeout interval.  When a
 626 * connection starts up, we want to ack as quickly as possible.  The
 627 * problem is that "good" TCP's do slow start at the beginning of data
 628 * transmission.  The means that until we send the first few ACK's the
 629 * sender will sit on his end and only queue most of his data, because
 630 * he can only send snd_cwnd unacked packets at any given time.  For
 631 * each ACK we send, he increments snd_cwnd and transmits more of his
 632 * queue.  -DaveM
 633 */
 634static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
 635{
 636	struct tcp_sock *tp = tcp_sk(sk);
 637	struct inet_connection_sock *icsk = inet_csk(sk);
 638	u32 now;
 639
 640	inet_csk_schedule_ack(sk);
 641
 642	tcp_measure_rcv_mss(sk, skb);
 643
 644	tcp_rcv_rtt_measure(tp);
 645
 646	now = tcp_time_stamp;
 647
 648	if (!icsk->icsk_ack.ato) {
 649		/* The _first_ data packet received, initialize
 650		 * delayed ACK engine.
 651		 */
 652		tcp_incr_quickack(sk);
 653		icsk->icsk_ack.ato = TCP_ATO_MIN;
 654	} else {
 655		int m = now - icsk->icsk_ack.lrcvtime;
 656
 657		if (m <= TCP_ATO_MIN / 2) {
 658			/* The fastest case is the first. */
 659			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
 660		} else if (m < icsk->icsk_ack.ato) {
 661			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
 662			if (icsk->icsk_ack.ato > icsk->icsk_rto)
 663				icsk->icsk_ack.ato = icsk->icsk_rto;
 664		} else if (m > icsk->icsk_rto) {
 665			/* Too long gap. Apparently sender failed to
 666			 * restart window, so that we send ACKs quickly.
 667			 */
 668			tcp_incr_quickack(sk);
 669			sk_mem_reclaim(sk);
 670		}
 671	}
 672	icsk->icsk_ack.lrcvtime = now;
 
 673
 674	tcp_ecn_check_ce(tp, skb);
 675
 676	if (skb->len >= 128)
 677		tcp_grow_window(sk, skb);
 678}
 679
 680/* Called to compute a smoothed rtt estimate. The data fed to this
 681 * routine either comes from timestamps, or from segments that were
 682 * known _not_ to have been retransmitted [see Karn/Partridge
 683 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
 684 * piece by Van Jacobson.
 685 * NOTE: the next three routines used to be one big routine.
 686 * To save cycles in the RFC 1323 implementation it was better to break
 687 * it up into three procedures. -- erics
 688 */
 689static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
 690{
 691	struct tcp_sock *tp = tcp_sk(sk);
 692	long m = mrtt_us; /* RTT */
 693	u32 srtt = tp->srtt_us;
 694
 695	/*	The following amusing code comes from Jacobson's
 696	 *	article in SIGCOMM '88.  Note that rtt and mdev
 697	 *	are scaled versions of rtt and mean deviation.
 698	 *	This is designed to be as fast as possible
 699	 *	m stands for "measurement".
 700	 *
 701	 *	On a 1990 paper the rto value is changed to:
 702	 *	RTO = rtt + 4 * mdev
 703	 *
 704	 * Funny. This algorithm seems to be very broken.
 705	 * These formulae increase RTO, when it should be decreased, increase
 706	 * too slowly, when it should be increased quickly, decrease too quickly
 707	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
 708	 * does not matter how to _calculate_ it. Seems, it was trap
 709	 * that VJ failed to avoid. 8)
 710	 */
 711	if (srtt != 0) {
 712		m -= (srtt >> 3);	/* m is now error in rtt est */
 713		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
 714		if (m < 0) {
 715			m = -m;		/* m is now abs(error) */
 716			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
 717			/* This is similar to one of Eifel findings.
 718			 * Eifel blocks mdev updates when rtt decreases.
 719			 * This solution is a bit different: we use finer gain
 720			 * for mdev in this case (alpha*beta).
 721			 * Like Eifel it also prevents growth of rto,
 722			 * but also it limits too fast rto decreases,
 723			 * happening in pure Eifel.
 724			 */
 725			if (m > 0)
 726				m >>= 3;
 727		} else {
 728			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
 729		}
 730		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
 731		if (tp->mdev_us > tp->mdev_max_us) {
 732			tp->mdev_max_us = tp->mdev_us;
 733			if (tp->mdev_max_us > tp->rttvar_us)
 734				tp->rttvar_us = tp->mdev_max_us;
 735		}
 736		if (after(tp->snd_una, tp->rtt_seq)) {
 737			if (tp->mdev_max_us < tp->rttvar_us)
 738				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
 739			tp->rtt_seq = tp->snd_nxt;
 740			tp->mdev_max_us = tcp_rto_min_us(sk);
 
 
 741		}
 742	} else {
 743		/* no previous measure. */
 744		srtt = m << 3;		/* take the measured time to be rtt */
 745		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
 746		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
 747		tp->mdev_max_us = tp->rttvar_us;
 748		tp->rtt_seq = tp->snd_nxt;
 
 
 749	}
 750	tp->srtt_us = max(1U, srtt);
 751}
 752
 753/* Set the sk_pacing_rate to allow proper sizing of TSO packets.
 754 * Note: TCP stack does not yet implement pacing.
 755 * FQ packet scheduler can be used to implement cheap but effective
 756 * TCP pacing, to smooth the burst on large writes when packets
 757 * in flight is significantly lower than cwnd (or rwin)
 758 */
 759int sysctl_tcp_pacing_ss_ratio __read_mostly = 200;
 760int sysctl_tcp_pacing_ca_ratio __read_mostly = 120;
 761
 762static void tcp_update_pacing_rate(struct sock *sk)
 763{
 764	const struct tcp_sock *tp = tcp_sk(sk);
 765	u64 rate;
 766
 767	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
 768	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
 769
 770	/* current rate is (cwnd * mss) / srtt
 771	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
 772	 * In Congestion Avoidance phase, set it to 120 % the current rate.
 773	 *
 774	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
 775	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
 776	 *	 end of slow start and should slow down.
 777	 */
 778	if (tp->snd_cwnd < tp->snd_ssthresh / 2)
 779		rate *= sysctl_tcp_pacing_ss_ratio;
 780	else
 781		rate *= sysctl_tcp_pacing_ca_ratio;
 782
 783	rate *= max(tp->snd_cwnd, tp->packets_out);
 784
 785	if (likely(tp->srtt_us))
 786		do_div(rate, tp->srtt_us);
 787
 788	/* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
 789	 * without any lock. We want to make sure compiler wont store
 790	 * intermediate values in this location.
 791	 */
 792	ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
 793						sk->sk_max_pacing_rate);
 794}
 795
 796/* Calculate rto without backoff.  This is the second half of Van Jacobson's
 797 * routine referred to above.
 798 */
 799static void tcp_set_rto(struct sock *sk)
 800{
 801	const struct tcp_sock *tp = tcp_sk(sk);
 802	/* Old crap is replaced with new one. 8)
 803	 *
 804	 * More seriously:
 805	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
 806	 *    It cannot be less due to utterly erratic ACK generation made
 807	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
 808	 *    to do with delayed acks, because at cwnd>2 true delack timeout
 809	 *    is invisible. Actually, Linux-2.4 also generates erratic
 810	 *    ACKs in some circumstances.
 811	 */
 812	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
 813
 814	/* 2. Fixups made earlier cannot be right.
 815	 *    If we do not estimate RTO correctly without them,
 816	 *    all the algo is pure shit and should be replaced
 817	 *    with correct one. It is exactly, which we pretend to do.
 818	 */
 819
 820	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
 821	 * guarantees that rto is higher.
 822	 */
 823	tcp_bound_rto(sk);
 824}
 825
 826__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
 827{
 828	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
 829
 830	if (!cwnd)
 831		cwnd = TCP_INIT_CWND;
 832	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
 833}
 834
 835/*
 836 * Packet counting of FACK is based on in-order assumptions, therefore TCP
 837 * disables it when reordering is detected
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 838 */
 839void tcp_disable_fack(struct tcp_sock *tp)
 
 840{
 841	/* RFC3517 uses different metric in lost marker => reset on change */
 842	if (tcp_is_fack(tp))
 843		tp->lost_skb_hint = NULL;
 844	tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
 845}
 
 
 
 
 
 
 
 
 
 
 
 
 
 846
 847/* Take a notice that peer is sending D-SACKs */
 848static void tcp_dsack_seen(struct tcp_sock *tp)
 849{
 850	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 851}
 852
 853static void tcp_update_reordering(struct sock *sk, const int metric,
 854				  const int ts)
 
 
 
 
 855{
 856	struct tcp_sock *tp = tcp_sk(sk);
 857	if (metric > tp->reordering) {
 858		int mib_idx;
 859
 860		tp->reordering = min(sysctl_tcp_max_reordering, metric);
 861
 862		/* This exciting event is worth to be remembered. 8) */
 863		if (ts)
 864			mib_idx = LINUX_MIB_TCPTSREORDER;
 865		else if (tcp_is_reno(tp))
 866			mib_idx = LINUX_MIB_TCPRENOREORDER;
 867		else if (tcp_is_fack(tp))
 868			mib_idx = LINUX_MIB_TCPFACKREORDER;
 869		else
 870			mib_idx = LINUX_MIB_TCPSACKREORDER;
 871
 872		NET_INC_STATS_BH(sock_net(sk), mib_idx);
 
 873#if FASTRETRANS_DEBUG > 1
 874		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
 875			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
 876			 tp->reordering,
 877			 tp->fackets_out,
 878			 tp->sacked_out,
 879			 tp->undo_marker ? tp->undo_retrans : 0);
 880#endif
 881		tcp_disable_fack(tp);
 
 882	}
 883
 884	if (metric > 0)
 885		tcp_disable_early_retrans(tp);
 886	tp->rack.reord = 1;
 
 887}
 888
 889/* This must be called before lost_out is incremented */
 
 
 
 
 890static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
 891{
 892	if (!tp->retransmit_skb_hint ||
 893	    before(TCP_SKB_CB(skb)->seq,
 894		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
 
 895		tp->retransmit_skb_hint = skb;
 
 896
 897	if (!tp->lost_out ||
 898	    after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
 899		tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
 
 
 
 900}
 901
 902static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
 903{
 904	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
 905		tcp_verify_retransmit_hint(tp, skb);
 
 
 
 906
 
 
 
 
 
 
 
 
 
 
 
 907		tp->lost_out += tcp_skb_pcount(skb);
 908		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
 
 909	}
 910}
 911
 912void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
 
 
 913{
 914	tcp_verify_retransmit_hint(tp, skb);
 915
 916	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
 917		tp->lost_out += tcp_skb_pcount(skb);
 918		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
 919	}
 920}
 921
 922/* This procedure tags the retransmission queue when SACKs arrive.
 923 *
 924 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
 925 * Packets in queue with these bits set are counted in variables
 926 * sacked_out, retrans_out and lost_out, correspondingly.
 927 *
 928 * Valid combinations are:
 929 * Tag  InFlight	Description
 930 * 0	1		- orig segment is in flight.
 931 * S	0		- nothing flies, orig reached receiver.
 932 * L	0		- nothing flies, orig lost by net.
 933 * R	2		- both orig and retransmit are in flight.
 934 * L|R	1		- orig is lost, retransmit is in flight.
 935 * S|R  1		- orig reached receiver, retrans is still in flight.
 936 * (L|S|R is logically valid, it could occur when L|R is sacked,
 937 *  but it is equivalent to plain S and code short-curcuits it to S.
 938 *  L|S is logically invalid, it would mean -1 packet in flight 8))
 939 *
 940 * These 6 states form finite state machine, controlled by the following events:
 941 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
 942 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
 943 * 3. Loss detection event of two flavors:
 944 *	A. Scoreboard estimator decided the packet is lost.
 945 *	   A'. Reno "three dupacks" marks head of queue lost.
 946 *	   A''. Its FACK modification, head until snd.fack is lost.
 947 *	B. SACK arrives sacking SND.NXT at the moment, when the
 948 *	   segment was retransmitted.
 949 * 4. D-SACK added new rule: D-SACK changes any tag to S.
 950 *
 951 * It is pleasant to note, that state diagram turns out to be commutative,
 952 * so that we are allowed not to be bothered by order of our actions,
 953 * when multiple events arrive simultaneously. (see the function below).
 954 *
 955 * Reordering detection.
 956 * --------------------
 957 * Reordering metric is maximal distance, which a packet can be displaced
 958 * in packet stream. With SACKs we can estimate it:
 959 *
 960 * 1. SACK fills old hole and the corresponding segment was not
 961 *    ever retransmitted -> reordering. Alas, we cannot use it
 962 *    when segment was retransmitted.
 963 * 2. The last flaw is solved with D-SACK. D-SACK arrives
 964 *    for retransmitted and already SACKed segment -> reordering..
 965 * Both of these heuristics are not used in Loss state, when we cannot
 966 * account for retransmits accurately.
 967 *
 968 * SACK block validation.
 969 * ----------------------
 970 *
 971 * SACK block range validation checks that the received SACK block fits to
 972 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
 973 * Note that SND.UNA is not included to the range though being valid because
 974 * it means that the receiver is rather inconsistent with itself reporting
 975 * SACK reneging when it should advance SND.UNA. Such SACK block this is
 976 * perfectly valid, however, in light of RFC2018 which explicitly states
 977 * that "SACK block MUST reflect the newest segment.  Even if the newest
 978 * segment is going to be discarded ...", not that it looks very clever
 979 * in case of head skb. Due to potentional receiver driven attacks, we
 980 * choose to avoid immediate execution of a walk in write queue due to
 981 * reneging and defer head skb's loss recovery to standard loss recovery
 982 * procedure that will eventually trigger (nothing forbids us doing this).
 983 *
 984 * Implements also blockage to start_seq wrap-around. Problem lies in the
 985 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
 986 * there's no guarantee that it will be before snd_nxt (n). The problem
 987 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
 988 * wrap (s_w):
 989 *
 990 *         <- outs wnd ->                          <- wrapzone ->
 991 *         u     e      n                         u_w   e_w  s n_w
 992 *         |     |      |                          |     |   |  |
 993 * |<------------+------+----- TCP seqno space --------------+---------->|
 994 * ...-- <2^31 ->|                                           |<--------...
 995 * ...---- >2^31 ------>|                                    |<--------...
 996 *
 997 * Current code wouldn't be vulnerable but it's better still to discard such
 998 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
 999 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1000 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1001 * equal to the ideal case (infinite seqno space without wrap caused issues).
1002 *
1003 * With D-SACK the lower bound is extended to cover sequence space below
1004 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1005 * again, D-SACK block must not to go across snd_una (for the same reason as
1006 * for the normal SACK blocks, explained above). But there all simplicity
1007 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1008 * fully below undo_marker they do not affect behavior in anyway and can
1009 * therefore be safely ignored. In rare cases (which are more or less
1010 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1011 * fragmentation and packet reordering past skb's retransmission. To consider
1012 * them correctly, the acceptable range must be extended even more though
1013 * the exact amount is rather hard to quantify. However, tp->max_window can
1014 * be used as an exaggerated estimate.
1015 */
1016static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1017				   u32 start_seq, u32 end_seq)
1018{
1019	/* Too far in future, or reversed (interpretation is ambiguous) */
1020	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1021		return false;
1022
1023	/* Nasty start_seq wrap-around check (see comments above) */
1024	if (!before(start_seq, tp->snd_nxt))
1025		return false;
1026
1027	/* In outstanding window? ...This is valid exit for D-SACKs too.
1028	 * start_seq == snd_una is non-sensical (see comments above)
1029	 */
1030	if (after(start_seq, tp->snd_una))
1031		return true;
1032
1033	if (!is_dsack || !tp->undo_marker)
1034		return false;
1035
1036	/* ...Then it's D-SACK, and must reside below snd_una completely */
1037	if (after(end_seq, tp->snd_una))
1038		return false;
1039
1040	if (!before(start_seq, tp->undo_marker))
1041		return true;
1042
1043	/* Too old */
1044	if (!after(end_seq, tp->undo_marker))
1045		return false;
1046
1047	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1048	 *   start_seq < undo_marker and end_seq >= undo_marker.
1049	 */
1050	return !before(start_seq, end_seq - tp->max_window);
1051}
1052
1053static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1054			    struct tcp_sack_block_wire *sp, int num_sacks,
1055			    u32 prior_snd_una)
1056{
1057	struct tcp_sock *tp = tcp_sk(sk);
1058	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1059	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1060	bool dup_sack = false;
1061
1062	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1063		dup_sack = true;
1064		tcp_dsack_seen(tp);
1065		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1066	} else if (num_sacks > 1) {
1067		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1068		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1069
1070		if (!after(end_seq_0, end_seq_1) &&
1071		    !before(start_seq_0, start_seq_1)) {
1072			dup_sack = true;
1073			tcp_dsack_seen(tp);
1074			NET_INC_STATS_BH(sock_net(sk),
1075					LINUX_MIB_TCPDSACKOFORECV);
1076		}
 
 
 
 
1077	}
1078
 
 
1079	/* D-SACK for already forgotten data... Do dumb counting. */
1080	if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1081	    !after(end_seq_0, prior_snd_una) &&
1082	    after(end_seq_0, tp->undo_marker))
1083		tp->undo_retrans--;
1084
1085	return dup_sack;
1086}
1087
1088struct tcp_sacktag_state {
1089	int	reord;
1090	int	fack_count;
1091	/* Timestamps for earliest and latest never-retransmitted segment
1092	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1093	 * but congestion control should still get an accurate delay signal.
1094	 */
1095	struct skb_mstamp first_sackt;
1096	struct skb_mstamp last_sackt;
1097	int	flag;
1098};
1099
1100/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1101 * the incoming SACK may not exactly match but we can find smaller MSS
1102 * aligned portion of it that matches. Therefore we might need to fragment
1103 * which may fail and creates some hassle (caller must handle error case
1104 * returns).
1105 *
1106 * FIXME: this could be merged to shift decision code
1107 */
1108static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1109				  u32 start_seq, u32 end_seq)
1110{
1111	int err;
1112	bool in_sack;
1113	unsigned int pkt_len;
1114	unsigned int mss;
1115
1116	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1117		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1118
1119	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1120	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1121		mss = tcp_skb_mss(skb);
1122		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1123
1124		if (!in_sack) {
1125			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1126			if (pkt_len < mss)
1127				pkt_len = mss;
1128		} else {
1129			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1130			if (pkt_len < mss)
1131				return -EINVAL;
1132		}
1133
1134		/* Round if necessary so that SACKs cover only full MSSes
1135		 * and/or the remaining small portion (if present)
1136		 */
1137		if (pkt_len > mss) {
1138			unsigned int new_len = (pkt_len / mss) * mss;
1139			if (!in_sack && new_len < pkt_len) {
1140				new_len += mss;
1141				if (new_len >= skb->len)
1142					return 0;
1143			}
1144			pkt_len = new_len;
1145		}
1146		err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
 
 
 
 
 
1147		if (err < 0)
1148			return err;
1149	}
1150
1151	return in_sack;
1152}
1153
1154/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1155static u8 tcp_sacktag_one(struct sock *sk,
1156			  struct tcp_sacktag_state *state, u8 sacked,
1157			  u32 start_seq, u32 end_seq,
1158			  int dup_sack, int pcount,
1159			  const struct skb_mstamp *xmit_time)
1160{
1161	struct tcp_sock *tp = tcp_sk(sk);
1162	int fack_count = state->fack_count;
1163
1164	/* Account D-SACK for retransmitted packet. */
1165	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1166		if (tp->undo_marker && tp->undo_retrans > 0 &&
1167		    after(end_seq, tp->undo_marker))
1168			tp->undo_retrans--;
1169		if (sacked & TCPCB_SACKED_ACKED)
1170			state->reord = min(fack_count, state->reord);
 
1171	}
1172
1173	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1174	if (!after(end_seq, tp->snd_una))
1175		return sacked;
1176
1177	if (!(sacked & TCPCB_SACKED_ACKED)) {
1178		tcp_rack_advance(tp, xmit_time, sacked);
1179
1180		if (sacked & TCPCB_SACKED_RETRANS) {
1181			/* If the segment is not tagged as lost,
1182			 * we do not clear RETRANS, believing
1183			 * that retransmission is still in flight.
1184			 */
1185			if (sacked & TCPCB_LOST) {
1186				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1187				tp->lost_out -= pcount;
1188				tp->retrans_out -= pcount;
1189			}
1190		} else {
1191			if (!(sacked & TCPCB_RETRANS)) {
1192				/* New sack for not retransmitted frame,
1193				 * which was in hole. It is reordering.
1194				 */
1195				if (before(start_seq,
1196					   tcp_highest_sack_seq(tp)))
1197					state->reord = min(fack_count,
1198							   state->reord);
 
1199				if (!after(end_seq, tp->high_seq))
1200					state->flag |= FLAG_ORIG_SACK_ACKED;
1201				if (state->first_sackt.v64 == 0)
1202					state->first_sackt = *xmit_time;
1203				state->last_sackt = *xmit_time;
1204			}
1205
1206			if (sacked & TCPCB_LOST) {
1207				sacked &= ~TCPCB_LOST;
1208				tp->lost_out -= pcount;
1209			}
1210		}
1211
1212		sacked |= TCPCB_SACKED_ACKED;
1213		state->flag |= FLAG_DATA_SACKED;
1214		tp->sacked_out += pcount;
1215		tp->delivered += pcount;  /* Out-of-order packets delivered */
1216
1217		fack_count += pcount;
1218
1219		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1220		if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
1221		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1222			tp->lost_cnt_hint += pcount;
1223
1224		if (fack_count > tp->fackets_out)
1225			tp->fackets_out = fack_count;
1226	}
1227
1228	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1229	 * frames and clear it. undo_retrans is decreased above, L|R frames
1230	 * are accounted above as well.
1231	 */
1232	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1233		sacked &= ~TCPCB_SACKED_RETRANS;
1234		tp->retrans_out -= pcount;
1235	}
1236
1237	return sacked;
1238}
1239
1240/* Shift newly-SACKed bytes from this skb to the immediately previous
1241 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1242 */
1243static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
 
1244			    struct tcp_sacktag_state *state,
1245			    unsigned int pcount, int shifted, int mss,
1246			    bool dup_sack)
1247{
1248	struct tcp_sock *tp = tcp_sk(sk);
1249	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1250	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1251	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1252
1253	BUG_ON(!pcount);
1254
1255	/* Adjust counters and hints for the newly sacked sequence
1256	 * range but discard the return value since prev is already
1257	 * marked. We must tag the range first because the seq
1258	 * advancement below implicitly advances
1259	 * tcp_highest_sack_seq() when skb is highest_sack.
1260	 */
1261	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1262			start_seq, end_seq, dup_sack, pcount,
1263			&skb->skb_mstamp);
 
1264
1265	if (skb == tp->lost_skb_hint)
1266		tp->lost_cnt_hint += pcount;
1267
1268	TCP_SKB_CB(prev)->end_seq += shifted;
1269	TCP_SKB_CB(skb)->seq += shifted;
1270
1271	tcp_skb_pcount_add(prev, pcount);
1272	BUG_ON(tcp_skb_pcount(skb) < pcount);
1273	tcp_skb_pcount_add(skb, -pcount);
1274
1275	/* When we're adding to gso_segs == 1, gso_size will be zero,
1276	 * in theory this shouldn't be necessary but as long as DSACK
1277	 * code can come after this skb later on it's better to keep
1278	 * setting gso_size to something.
1279	 */
1280	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1281		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1282
1283	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1284	if (tcp_skb_pcount(skb) <= 1)
1285		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1286
1287	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1288	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1289
1290	if (skb->len > 0) {
1291		BUG_ON(!tcp_skb_pcount(skb));
1292		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1293		return false;
1294	}
1295
1296	/* Whole SKB was eaten :-) */
1297
1298	if (skb == tp->retransmit_skb_hint)
1299		tp->retransmit_skb_hint = prev;
1300	if (skb == tp->lost_skb_hint) {
1301		tp->lost_skb_hint = prev;
1302		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1303	}
1304
1305	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
 
1306	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1307		TCP_SKB_CB(prev)->end_seq++;
1308
1309	if (skb == tcp_highest_sack(sk))
1310		tcp_advance_highest_sack(sk, skb);
1311
1312	tcp_skb_collapse_tstamp(prev, skb);
1313	tcp_unlink_write_queue(skb, sk);
1314	sk_wmem_free_skb(sk, skb);
1315
1316	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
 
 
1317
1318	return true;
1319}
1320
1321/* I wish gso_size would have a bit more sane initialization than
1322 * something-or-zero which complicates things
1323 */
1324static int tcp_skb_seglen(const struct sk_buff *skb)
1325{
1326	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1327}
1328
1329/* Shifting pages past head area doesn't work */
1330static int skb_can_shift(const struct sk_buff *skb)
1331{
1332	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1333}
1334
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1335/* Try collapsing SACK blocks spanning across multiple skbs to a single
1336 * skb.
1337 */
1338static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1339					  struct tcp_sacktag_state *state,
1340					  u32 start_seq, u32 end_seq,
1341					  bool dup_sack)
1342{
1343	struct tcp_sock *tp = tcp_sk(sk);
1344	struct sk_buff *prev;
1345	int mss;
1346	int pcount = 0;
1347	int len;
1348	int in_sack;
1349
1350	if (!sk_can_gso(sk))
1351		goto fallback;
1352
1353	/* Normally R but no L won't result in plain S */
1354	if (!dup_sack &&
1355	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1356		goto fallback;
1357	if (!skb_can_shift(skb))
1358		goto fallback;
1359	/* This frame is about to be dropped (was ACKed). */
1360	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1361		goto fallback;
1362
1363	/* Can only happen with delayed DSACK + discard craziness */
1364	if (unlikely(skb == tcp_write_queue_head(sk)))
 
1365		goto fallback;
1366	prev = tcp_write_queue_prev(sk, skb);
1367
1368	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1369		goto fallback;
1370
 
 
 
1371	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1372		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1373
1374	if (in_sack) {
1375		len = skb->len;
1376		pcount = tcp_skb_pcount(skb);
1377		mss = tcp_skb_seglen(skb);
1378
1379		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1380		 * drop this restriction as unnecessary
1381		 */
1382		if (mss != tcp_skb_seglen(prev))
1383			goto fallback;
1384	} else {
1385		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1386			goto noop;
1387		/* CHECKME: This is non-MSS split case only?, this will
1388		 * cause skipped skbs due to advancing loop btw, original
1389		 * has that feature too
1390		 */
1391		if (tcp_skb_pcount(skb) <= 1)
1392			goto noop;
1393
1394		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1395		if (!in_sack) {
1396			/* TODO: head merge to next could be attempted here
1397			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1398			 * though it might not be worth of the additional hassle
1399			 *
1400			 * ...we can probably just fallback to what was done
1401			 * previously. We could try merging non-SACKed ones
1402			 * as well but it probably isn't going to buy off
1403			 * because later SACKs might again split them, and
1404			 * it would make skb timestamp tracking considerably
1405			 * harder problem.
1406			 */
1407			goto fallback;
1408		}
1409
1410		len = end_seq - TCP_SKB_CB(skb)->seq;
1411		BUG_ON(len < 0);
1412		BUG_ON(len > skb->len);
1413
1414		/* MSS boundaries should be honoured or else pcount will
1415		 * severely break even though it makes things bit trickier.
1416		 * Optimize common case to avoid most of the divides
1417		 */
1418		mss = tcp_skb_mss(skb);
1419
1420		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1421		 * drop this restriction as unnecessary
1422		 */
1423		if (mss != tcp_skb_seglen(prev))
1424			goto fallback;
1425
1426		if (len == mss) {
1427			pcount = 1;
1428		} else if (len < mss) {
1429			goto noop;
1430		} else {
1431			pcount = len / mss;
1432			len = pcount * mss;
1433		}
1434	}
1435
1436	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1437	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1438		goto fallback;
1439
1440	if (!skb_shift(prev, skb, len))
1441		goto fallback;
1442	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1443		goto out;
1444
1445	/* Hole filled allows collapsing with the next as well, this is very
1446	 * useful when hole on every nth skb pattern happens
1447	 */
1448	if (prev == tcp_write_queue_tail(sk))
 
1449		goto out;
1450	skb = tcp_write_queue_next(sk, prev);
1451
1452	if (!skb_can_shift(skb) ||
1453	    (skb == tcp_send_head(sk)) ||
1454	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1455	    (mss != tcp_skb_seglen(skb)))
1456		goto out;
1457
 
 
1458	len = skb->len;
1459	if (skb_shift(prev, skb, len)) {
1460		pcount += tcp_skb_pcount(skb);
1461		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1462	}
1463
1464out:
1465	state->fack_count += pcount;
1466	return prev;
1467
1468noop:
1469	return skb;
1470
1471fallback:
1472	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1473	return NULL;
1474}
1475
1476static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1477					struct tcp_sack_block *next_dup,
1478					struct tcp_sacktag_state *state,
1479					u32 start_seq, u32 end_seq,
1480					bool dup_sack_in)
1481{
1482	struct tcp_sock *tp = tcp_sk(sk);
1483	struct sk_buff *tmp;
1484
1485	tcp_for_write_queue_from(skb, sk) {
1486		int in_sack = 0;
1487		bool dup_sack = dup_sack_in;
1488
1489		if (skb == tcp_send_head(sk))
1490			break;
1491
1492		/* queue is in-order => we can short-circuit the walk early */
1493		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1494			break;
1495
1496		if (next_dup  &&
1497		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1498			in_sack = tcp_match_skb_to_sack(sk, skb,
1499							next_dup->start_seq,
1500							next_dup->end_seq);
1501			if (in_sack > 0)
1502				dup_sack = true;
1503		}
1504
1505		/* skb reference here is a bit tricky to get right, since
1506		 * shifting can eat and free both this skb and the next,
1507		 * so not even _safe variant of the loop is enough.
1508		 */
1509		if (in_sack <= 0) {
1510			tmp = tcp_shift_skb_data(sk, skb, state,
1511						 start_seq, end_seq, dup_sack);
1512			if (tmp) {
1513				if (tmp != skb) {
1514					skb = tmp;
1515					continue;
1516				}
1517
1518				in_sack = 0;
1519			} else {
1520				in_sack = tcp_match_skb_to_sack(sk, skb,
1521								start_seq,
1522								end_seq);
1523			}
1524		}
1525
1526		if (unlikely(in_sack < 0))
1527			break;
1528
1529		if (in_sack) {
1530			TCP_SKB_CB(skb)->sacked =
1531				tcp_sacktag_one(sk,
1532						state,
1533						TCP_SKB_CB(skb)->sacked,
1534						TCP_SKB_CB(skb)->seq,
1535						TCP_SKB_CB(skb)->end_seq,
1536						dup_sack,
1537						tcp_skb_pcount(skb),
1538						&skb->skb_mstamp);
 
 
 
1539
1540			if (!before(TCP_SKB_CB(skb)->seq,
1541				    tcp_highest_sack_seq(tp)))
1542				tcp_advance_highest_sack(sk, skb);
1543		}
 
 
 
1544
1545		state->fack_count += tcp_skb_pcount(skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1546	}
1547	return skb;
1548}
1549
1550/* Avoid all extra work that is being done by sacktag while walking in
1551 * a normal way
1552 */
1553static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1554					struct tcp_sacktag_state *state,
1555					u32 skip_to_seq)
1556{
1557	tcp_for_write_queue_from(skb, sk) {
1558		if (skb == tcp_send_head(sk))
1559			break;
1560
1561		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1562			break;
1563
1564		state->fack_count += tcp_skb_pcount(skb);
1565	}
1566	return skb;
1567}
1568
1569static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1570						struct sock *sk,
1571						struct tcp_sack_block *next_dup,
1572						struct tcp_sacktag_state *state,
1573						u32 skip_to_seq)
1574{
1575	if (!next_dup)
1576		return skb;
1577
1578	if (before(next_dup->start_seq, skip_to_seq)) {
1579		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1580		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1581				       next_dup->start_seq, next_dup->end_seq,
1582				       1);
1583	}
1584
1585	return skb;
1586}
1587
1588static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1589{
1590	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1591}
1592
1593static int
1594tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1595			u32 prior_snd_una, struct tcp_sacktag_state *state)
1596{
1597	struct tcp_sock *tp = tcp_sk(sk);
1598	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1599				    TCP_SKB_CB(ack_skb)->sacked);
1600	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1601	struct tcp_sack_block sp[TCP_NUM_SACKS];
1602	struct tcp_sack_block *cache;
1603	struct sk_buff *skb;
1604	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1605	int used_sacks;
1606	bool found_dup_sack = false;
1607	int i, j;
1608	int first_sack_index;
1609
1610	state->flag = 0;
1611	state->reord = tp->packets_out;
1612
1613	if (!tp->sacked_out) {
1614		if (WARN_ON(tp->fackets_out))
1615			tp->fackets_out = 0;
1616		tcp_highest_sack_reset(sk);
1617	}
1618
1619	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1620					 num_sacks, prior_snd_una);
1621	if (found_dup_sack)
1622		state->flag |= FLAG_DSACKING_ACK;
1623
1624	/* Eliminate too old ACKs, but take into
1625	 * account more or less fresh ones, they can
1626	 * contain valid SACK info.
1627	 */
1628	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1629		return 0;
1630
1631	if (!tp->packets_out)
1632		goto out;
1633
1634	used_sacks = 0;
1635	first_sack_index = 0;
1636	for (i = 0; i < num_sacks; i++) {
1637		bool dup_sack = !i && found_dup_sack;
1638
1639		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1640		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1641
1642		if (!tcp_is_sackblock_valid(tp, dup_sack,
1643					    sp[used_sacks].start_seq,
1644					    sp[used_sacks].end_seq)) {
1645			int mib_idx;
1646
1647			if (dup_sack) {
1648				if (!tp->undo_marker)
1649					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1650				else
1651					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1652			} else {
1653				/* Don't count olds caused by ACK reordering */
1654				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1655				    !after(sp[used_sacks].end_seq, tp->snd_una))
1656					continue;
1657				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1658			}
1659
1660			NET_INC_STATS_BH(sock_net(sk), mib_idx);
1661			if (i == 0)
1662				first_sack_index = -1;
1663			continue;
1664		}
1665
1666		/* Ignore very old stuff early */
1667		if (!after(sp[used_sacks].end_seq, prior_snd_una))
 
 
1668			continue;
 
1669
1670		used_sacks++;
1671	}
1672
1673	/* order SACK blocks to allow in order walk of the retrans queue */
1674	for (i = used_sacks - 1; i > 0; i--) {
1675		for (j = 0; j < i; j++) {
1676			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1677				swap(sp[j], sp[j + 1]);
1678
1679				/* Track where the first SACK block goes to */
1680				if (j == first_sack_index)
1681					first_sack_index = j + 1;
1682			}
1683		}
1684	}
1685
1686	skb = tcp_write_queue_head(sk);
1687	state->fack_count = 0;
1688	i = 0;
1689
1690	if (!tp->sacked_out) {
1691		/* It's already past, so skip checking against it */
1692		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1693	} else {
1694		cache = tp->recv_sack_cache;
1695		/* Skip empty blocks in at head of the cache */
1696		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1697		       !cache->end_seq)
1698			cache++;
1699	}
1700
1701	while (i < used_sacks) {
1702		u32 start_seq = sp[i].start_seq;
1703		u32 end_seq = sp[i].end_seq;
1704		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1705		struct tcp_sack_block *next_dup = NULL;
1706
1707		if (found_dup_sack && ((i + 1) == first_sack_index))
1708			next_dup = &sp[i + 1];
1709
1710		/* Skip too early cached blocks */
1711		while (tcp_sack_cache_ok(tp, cache) &&
1712		       !before(start_seq, cache->end_seq))
1713			cache++;
1714
1715		/* Can skip some work by looking recv_sack_cache? */
1716		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1717		    after(end_seq, cache->start_seq)) {
1718
1719			/* Head todo? */
1720			if (before(start_seq, cache->start_seq)) {
1721				skb = tcp_sacktag_skip(skb, sk, state,
1722						       start_seq);
1723				skb = tcp_sacktag_walk(skb, sk, next_dup,
1724						       state,
1725						       start_seq,
1726						       cache->start_seq,
1727						       dup_sack);
1728			}
1729
1730			/* Rest of the block already fully processed? */
1731			if (!after(end_seq, cache->end_seq))
1732				goto advance_sp;
1733
1734			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1735						       state,
1736						       cache->end_seq);
1737
1738			/* ...tail remains todo... */
1739			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1740				/* ...but better entrypoint exists! */
1741				skb = tcp_highest_sack(sk);
1742				if (!skb)
1743					break;
1744				state->fack_count = tp->fackets_out;
1745				cache++;
1746				goto walk;
1747			}
1748
1749			skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1750			/* Check overlap against next cached too (past this one already) */
1751			cache++;
1752			continue;
1753		}
1754
1755		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1756			skb = tcp_highest_sack(sk);
1757			if (!skb)
1758				break;
1759			state->fack_count = tp->fackets_out;
1760		}
1761		skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1762
1763walk:
1764		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1765				       start_seq, end_seq, dup_sack);
1766
1767advance_sp:
1768		i++;
1769	}
1770
1771	/* Clear the head of the cache sack blocks so we can skip it next time */
1772	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1773		tp->recv_sack_cache[i].start_seq = 0;
1774		tp->recv_sack_cache[i].end_seq = 0;
1775	}
1776	for (j = 0; j < used_sacks; j++)
1777		tp->recv_sack_cache[i++] = sp[j];
1778
1779	if ((state->reord < tp->fackets_out) &&
1780	    ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1781		tcp_update_reordering(sk, tp->fackets_out - state->reord, 0);
1782
1783	tcp_verify_left_out(tp);
1784out:
1785
1786#if FASTRETRANS_DEBUG > 0
1787	WARN_ON((int)tp->sacked_out < 0);
1788	WARN_ON((int)tp->lost_out < 0);
1789	WARN_ON((int)tp->retrans_out < 0);
1790	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1791#endif
1792	return state->flag;
1793}
1794
1795/* Limits sacked_out so that sum with lost_out isn't ever larger than
1796 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1797 */
1798static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1799{
1800	u32 holes;
1801
1802	holes = max(tp->lost_out, 1U);
1803	holes = min(holes, tp->packets_out);
1804
1805	if ((tp->sacked_out + holes) > tp->packets_out) {
1806		tp->sacked_out = tp->packets_out - holes;
1807		return true;
1808	}
1809	return false;
1810}
1811
1812/* If we receive more dupacks than we expected counting segments
1813 * in assumption of absent reordering, interpret this as reordering.
1814 * The only another reason could be bug in receiver TCP.
1815 */
1816static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1817{
1818	struct tcp_sock *tp = tcp_sk(sk);
1819	if (tcp_limit_reno_sacked(tp))
1820		tcp_update_reordering(sk, tp->packets_out + addend, 0);
 
 
 
 
 
 
1821}
1822
1823/* Emulate SACKs for SACKless connection: account for a new dupack. */
1824
1825static void tcp_add_reno_sack(struct sock *sk)
1826{
1827	struct tcp_sock *tp = tcp_sk(sk);
1828	u32 prior_sacked = tp->sacked_out;
 
 
1829
1830	tp->sacked_out++;
1831	tcp_check_reno_reordering(sk, 0);
1832	if (tp->sacked_out > prior_sacked)
1833		tp->delivered++; /* Some out-of-order packet is delivered */
1834	tcp_verify_left_out(tp);
 
 
1835}
1836
1837/* Account for ACK, ACKing some data in Reno Recovery phase. */
1838
1839static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1840{
1841	struct tcp_sock *tp = tcp_sk(sk);
1842
1843	if (acked > 0) {
1844		/* One ACK acked hole. The rest eat duplicate ACKs. */
1845		tp->delivered += max_t(int, acked - tp->sacked_out, 1);
 
1846		if (acked - 1 >= tp->sacked_out)
1847			tp->sacked_out = 0;
1848		else
1849			tp->sacked_out -= acked - 1;
1850	}
1851	tcp_check_reno_reordering(sk, acked);
1852	tcp_verify_left_out(tp);
1853}
1854
1855static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1856{
1857	tp->sacked_out = 0;
1858}
1859
1860void tcp_clear_retrans(struct tcp_sock *tp)
1861{
1862	tp->retrans_out = 0;
1863	tp->lost_out = 0;
1864	tp->undo_marker = 0;
1865	tp->undo_retrans = -1;
1866	tp->fackets_out = 0;
1867	tp->sacked_out = 0;
 
 
 
 
1868}
1869
1870static inline void tcp_init_undo(struct tcp_sock *tp)
1871{
1872	tp->undo_marker = tp->snd_una;
1873	/* Retransmission still in flight may cause DSACKs later. */
1874	tp->undo_retrans = tp->retrans_out ? : -1;
1875}
1876
1877/* Enter Loss state. If we detect SACK reneging, forget all SACK information
 
 
 
 
 
 
1878 * and reset tags completely, otherwise preserve SACKs. If receiver
1879 * dropped its ofo queue, we will know this due to reneging detection.
1880 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1881void tcp_enter_loss(struct sock *sk)
1882{
1883	const struct inet_connection_sock *icsk = inet_csk(sk);
1884	struct tcp_sock *tp = tcp_sk(sk);
1885	struct net *net = sock_net(sk);
1886	struct sk_buff *skb;
1887	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1888	bool is_reneg;			/* is receiver reneging on SACKs? */
 
 
1889
1890	/* Reduce ssthresh if it has not yet been made inside this window. */
1891	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1892	    !after(tp->high_seq, tp->snd_una) ||
1893	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1894		tp->prior_ssthresh = tcp_current_ssthresh(sk);
 
1895		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1896		tcp_ca_event(sk, CA_EVENT_LOSS);
1897		tcp_init_undo(tp);
1898	}
1899	tp->snd_cwnd	   = 1;
1900	tp->snd_cwnd_cnt   = 0;
1901	tp->snd_cwnd_stamp = tcp_time_stamp;
1902
1903	tp->retrans_out = 0;
1904	tp->lost_out = 0;
1905
1906	if (tcp_is_reno(tp))
1907		tcp_reset_reno_sack(tp);
1908
1909	skb = tcp_write_queue_head(sk);
1910	is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1911	if (is_reneg) {
1912		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1913		tp->sacked_out = 0;
1914		tp->fackets_out = 0;
1915	}
1916	tcp_clear_all_retrans_hints(tp);
1917
1918	tcp_for_write_queue(skb, sk) {
1919		if (skb == tcp_send_head(sk))
1920			break;
1921
1922		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1923		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || is_reneg) {
1924			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1925			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1926			tp->lost_out += tcp_skb_pcount(skb);
1927			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1928		}
1929	}
1930	tcp_verify_left_out(tp);
1931
1932	/* Timeout in disordered state after receiving substantial DUPACKs
1933	 * suggests that the degree of reordering is over-estimated.
1934	 */
 
1935	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1936	    tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
1937		tp->reordering = min_t(unsigned int, tp->reordering,
1938				       net->ipv4.sysctl_tcp_reordering);
 
1939	tcp_set_ca_state(sk, TCP_CA_Loss);
1940	tp->high_seq = tp->snd_nxt;
1941	tcp_ecn_queue_cwr(tp);
1942
1943	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1944	 * loss recovery is underway except recurring timeout(s) on
1945	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1946	 */
1947	tp->frto = sysctl_tcp_frto &&
1948		   (new_recovery || icsk->icsk_retransmits) &&
1949		   !inet_csk(sk)->icsk_mtup.probe_size;
1950}
1951
1952/* If ACK arrived pointing to a remembered SACK, it means that our
1953 * remembered SACKs do not reflect real state of receiver i.e.
1954 * receiver _host_ is heavily congested (or buggy).
1955 *
1956 * To avoid big spurious retransmission bursts due to transient SACK
1957 * scoreboard oddities that look like reneging, we give the receiver a
1958 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
1959 * restore sanity to the SACK scoreboard. If the apparent reneging
1960 * persists until this RTO then we'll clear the SACK scoreboard.
1961 */
1962static bool tcp_check_sack_reneging(struct sock *sk, int flag)
1963{
1964	if (flag & FLAG_SACK_RENEGING) {
 
1965		struct tcp_sock *tp = tcp_sk(sk);
1966		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
1967					  msecs_to_jiffies(10));
1968
1969		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1970					  delay, TCP_RTO_MAX);
 
1971		return true;
1972	}
1973	return false;
1974}
1975
1976static inline int tcp_fackets_out(const struct tcp_sock *tp)
1977{
1978	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
1979}
1980
1981/* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1982 * counter when SACK is enabled (without SACK, sacked_out is used for
1983 * that purpose).
1984 *
1985 * Instead, with FACK TCP uses fackets_out that includes both SACKed
1986 * segments up to the highest received SACK block so far and holes in
1987 * between them.
1988 *
1989 * With reordering, holes may still be in flight, so RFC3517 recovery
1990 * uses pure sacked_out (total number of SACKed segments) even though
1991 * it violates the RFC that uses duplicate ACKs, often these are equal
1992 * but when e.g. out-of-window ACKs or packet duplication occurs,
1993 * they differ. Since neither occurs due to loss, TCP should really
1994 * ignore them.
1995 */
1996static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
1997{
1998	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
1999}
2000
2001static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2002{
2003	struct tcp_sock *tp = tcp_sk(sk);
2004	unsigned long delay;
2005
2006	/* Delay early retransmit and entering fast recovery for
2007	 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2008	 * available, or RTO is scheduled to fire first.
2009	 */
2010	if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
2011	    (flag & FLAG_ECE) || !tp->srtt_us)
2012		return false;
2013
2014	delay = max(usecs_to_jiffies(tp->srtt_us >> 5),
2015		    msecs_to_jiffies(2));
2016
2017	if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2018		return false;
2019
2020	inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
2021				  TCP_RTO_MAX);
2022	return true;
2023}
2024
2025/* Linux NewReno/SACK/FACK/ECN state machine.
2026 * --------------------------------------
2027 *
2028 * "Open"	Normal state, no dubious events, fast path.
2029 * "Disorder"   In all the respects it is "Open",
2030 *		but requires a bit more attention. It is entered when
2031 *		we see some SACKs or dupacks. It is split of "Open"
2032 *		mainly to move some processing from fast path to slow one.
2033 * "CWR"	CWND was reduced due to some Congestion Notification event.
2034 *		It can be ECN, ICMP source quench, local device congestion.
2035 * "Recovery"	CWND was reduced, we are fast-retransmitting.
2036 * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2037 *
2038 * tcp_fastretrans_alert() is entered:
2039 * - each incoming ACK, if state is not "Open"
2040 * - when arrived ACK is unusual, namely:
2041 *	* SACK
2042 *	* Duplicate ACK.
2043 *	* ECN ECE.
2044 *
2045 * Counting packets in flight is pretty simple.
2046 *
2047 *	in_flight = packets_out - left_out + retrans_out
2048 *
2049 *	packets_out is SND.NXT-SND.UNA counted in packets.
2050 *
2051 *	retrans_out is number of retransmitted segments.
2052 *
2053 *	left_out is number of segments left network, but not ACKed yet.
2054 *
2055 *		left_out = sacked_out + lost_out
2056 *
2057 *     sacked_out: Packets, which arrived to receiver out of order
2058 *		   and hence not ACKed. With SACKs this number is simply
2059 *		   amount of SACKed data. Even without SACKs
2060 *		   it is easy to give pretty reliable estimate of this number,
2061 *		   counting duplicate ACKs.
2062 *
2063 *       lost_out: Packets lost by network. TCP has no explicit
2064 *		   "loss notification" feedback from network (for now).
2065 *		   It means that this number can be only _guessed_.
2066 *		   Actually, it is the heuristics to predict lossage that
2067 *		   distinguishes different algorithms.
2068 *
2069 *	F.e. after RTO, when all the queue is considered as lost,
2070 *	lost_out = packets_out and in_flight = retrans_out.
2071 *
2072 *		Essentially, we have now two algorithms counting
2073 *		lost packets.
2074 *
2075 *		FACK: It is the simplest heuristics. As soon as we decided
2076 *		that something is lost, we decide that _all_ not SACKed
2077 *		packets until the most forward SACK are lost. I.e.
2078 *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2079 *		It is absolutely correct estimate, if network does not reorder
2080 *		packets. And it loses any connection to reality when reordering
2081 *		takes place. We use FACK by default until reordering
2082 *		is suspected on the path to this destination.
 
 
 
 
 
 
2083 *
2084 *		NewReno: when Recovery is entered, we assume that one segment
 
 
2085 *		is lost (classic Reno). While we are in Recovery and
2086 *		a partial ACK arrives, we assume that one more packet
2087 *		is lost (NewReno). This heuristics are the same in NewReno
2088 *		and SACK.
2089 *
2090 *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2091 *  deflation etc. CWND is real congestion window, never inflated, changes
2092 *  only according to classic VJ rules.
2093 *
2094 * Really tricky (and requiring careful tuning) part of algorithm
2095 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2096 * The first determines the moment _when_ we should reduce CWND and,
2097 * hence, slow down forward transmission. In fact, it determines the moment
2098 * when we decide that hole is caused by loss, rather than by a reorder.
2099 *
2100 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2101 * holes, caused by lost packets.
2102 *
2103 * And the most logically complicated part of algorithm is undo
2104 * heuristics. We detect false retransmits due to both too early
2105 * fast retransmit (reordering) and underestimated RTO, analyzing
2106 * timestamps and D-SACKs. When we detect that some segments were
2107 * retransmitted by mistake and CWND reduction was wrong, we undo
2108 * window reduction and abort recovery phase. This logic is hidden
2109 * inside several functions named tcp_try_undo_<something>.
2110 */
2111
2112/* This function decides, when we should leave Disordered state
2113 * and enter Recovery phase, reducing congestion window.
2114 *
2115 * Main question: may we further continue forward transmission
2116 * with the same cwnd?
2117 */
2118static bool tcp_time_to_recover(struct sock *sk, int flag)
2119{
2120	struct tcp_sock *tp = tcp_sk(sk);
2121	__u32 packets_out;
2122	int tcp_reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
2123
2124	/* Trick#1: The loss is proven. */
2125	if (tp->lost_out)
2126		return true;
2127
2128	/* Not-A-Trick#2 : Classic rule... */
2129	if (tcp_dupack_heuristics(tp) > tp->reordering)
2130		return true;
2131
2132	/* Trick#4: It is still not OK... But will it be useful to delay
2133	 * recovery more?
2134	 */
2135	packets_out = tp->packets_out;
2136	if (packets_out <= tp->reordering &&
2137	    tp->sacked_out >= max_t(__u32, packets_out/2, tcp_reordering) &&
2138	    !tcp_may_send_now(sk)) {
2139		/* We have nothing to send. This connection is limited
2140		 * either by receiver window or by application.
2141		 */
2142		return true;
2143	}
2144
2145	/* If a thin stream is detected, retransmit after first
2146	 * received dupack. Employ only if SACK is supported in order
2147	 * to avoid possible corner-case series of spurious retransmissions
2148	 * Use only if there are no unsent data.
2149	 */
2150	if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2151	    tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2152	    tcp_is_sack(tp) && !tcp_send_head(sk))
2153		return true;
2154
2155	/* Trick#6: TCP early retransmit, per RFC5827.  To avoid spurious
2156	 * retransmissions due to small network reorderings, we implement
2157	 * Mitigation A.3 in the RFC and delay the retransmission for a short
2158	 * interval if appropriate.
2159	 */
2160	if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2161	    (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2162	    !tcp_may_send_now(sk))
2163		return !tcp_pause_early_retransmit(sk, flag);
2164
2165	return false;
2166}
2167
2168/* Detect loss in event "A" above by marking head of queue up as lost.
2169 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2170 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2171 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2172 * the maximum SACKed segments to pass before reaching this limit.
2173 */
2174static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2175{
2176	struct tcp_sock *tp = tcp_sk(sk);
2177	struct sk_buff *skb;
2178	int cnt, oldcnt, lost;
2179	unsigned int mss;
2180	/* Use SACK to deduce losses of new sequences sent during recovery */
2181	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2182
2183	WARN_ON(packets > tp->packets_out);
2184	if (tp->lost_skb_hint) {
2185		skb = tp->lost_skb_hint;
2186		cnt = tp->lost_cnt_hint;
2187		/* Head already handled? */
2188		if (mark_head && skb != tcp_write_queue_head(sk))
2189			return;
 
2190	} else {
2191		skb = tcp_write_queue_head(sk);
2192		cnt = 0;
2193	}
2194
2195	tcp_for_write_queue_from(skb, sk) {
2196		if (skb == tcp_send_head(sk))
2197			break;
2198		/* TODO: do this better */
2199		/* this is not the most efficient way to do this... */
2200		tp->lost_skb_hint = skb;
2201		tp->lost_cnt_hint = cnt;
2202
2203		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2204			break;
2205
2206		oldcnt = cnt;
2207		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2208		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2209			cnt += tcp_skb_pcount(skb);
2210
2211		if (cnt > packets) {
2212			if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2213			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2214			    (oldcnt >= packets))
2215				break;
2216
2217			mss = tcp_skb_mss(skb);
2218			/* If needed, chop off the prefix to mark as lost. */
2219			lost = (packets - oldcnt) * mss;
2220			if (lost < skb->len &&
2221			    tcp_fragment(sk, skb, lost, mss, GFP_ATOMIC) < 0)
2222				break;
2223			cnt = packets;
2224		}
2225
2226		tcp_skb_mark_lost(tp, skb);
2227
2228		if (mark_head)
2229			break;
2230	}
2231	tcp_verify_left_out(tp);
2232}
2233
2234/* Account newly detected lost packet(s) */
2235
2236static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2237{
2238	struct tcp_sock *tp = tcp_sk(sk);
2239
2240	if (tcp_is_reno(tp)) {
2241		tcp_mark_head_lost(sk, 1, 1);
2242	} else if (tcp_is_fack(tp)) {
2243		int lost = tp->fackets_out - tp->reordering;
2244		if (lost <= 0)
2245			lost = 1;
2246		tcp_mark_head_lost(sk, lost, 0);
2247	} else {
2248		int sacked_upto = tp->sacked_out - tp->reordering;
2249		if (sacked_upto >= 0)
2250			tcp_mark_head_lost(sk, sacked_upto, 0);
2251		else if (fast_rexmit)
2252			tcp_mark_head_lost(sk, 1, 1);
2253	}
2254}
2255
2256/* CWND moderation, preventing bursts due to too big ACKs
2257 * in dubious situations.
2258 */
2259static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2260{
2261	tp->snd_cwnd = min(tp->snd_cwnd,
2262			   tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2263	tp->snd_cwnd_stamp = tcp_time_stamp;
2264}
2265
2266static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2267{
2268	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2269	       before(tp->rx_opt.rcv_tsecr, when);
2270}
2271
2272/* skb is spurious retransmitted if the returned timestamp echo
2273 * reply is prior to the skb transmission time
2274 */
2275static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2276				     const struct sk_buff *skb)
2277{
2278	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2279	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2280}
2281
2282/* Nothing was retransmitted or returned timestamp is less
2283 * than timestamp of the first retransmission.
2284 */
2285static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2286{
2287	return !tp->retrans_stamp ||
2288	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2289}
2290
2291/* Undo procedures. */
2292
2293/* We can clear retrans_stamp when there are no retransmissions in the
2294 * window. It would seem that it is trivially available for us in
2295 * tp->retrans_out, however, that kind of assumptions doesn't consider
2296 * what will happen if errors occur when sending retransmission for the
2297 * second time. ...It could the that such segment has only
2298 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2299 * the head skb is enough except for some reneging corner cases that
2300 * are not worth the effort.
2301 *
2302 * Main reason for all this complexity is the fact that connection dying
2303 * time now depends on the validity of the retrans_stamp, in particular,
2304 * that successive retransmissions of a segment must not advance
2305 * retrans_stamp under any conditions.
2306 */
2307static bool tcp_any_retrans_done(const struct sock *sk)
2308{
2309	const struct tcp_sock *tp = tcp_sk(sk);
2310	struct sk_buff *skb;
2311
2312	if (tp->retrans_out)
2313		return true;
2314
2315	skb = tcp_write_queue_head(sk);
2316	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2317		return true;
2318
2319	return false;
2320}
2321
2322#if FASTRETRANS_DEBUG > 1
2323static void DBGUNDO(struct sock *sk, const char *msg)
2324{
 
2325	struct tcp_sock *tp = tcp_sk(sk);
2326	struct inet_sock *inet = inet_sk(sk);
2327
2328	if (sk->sk_family == AF_INET) {
2329		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2330			 msg,
2331			 &inet->inet_daddr, ntohs(inet->inet_dport),
2332			 tp->snd_cwnd, tcp_left_out(tp),
2333			 tp->snd_ssthresh, tp->prior_ssthresh,
2334			 tp->packets_out);
2335	}
2336#if IS_ENABLED(CONFIG_IPV6)
2337	else if (sk->sk_family == AF_INET6) {
2338		struct ipv6_pinfo *np = inet6_sk(sk);
2339		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2340			 msg,
2341			 &np->daddr, ntohs(inet->inet_dport),
2342			 tp->snd_cwnd, tcp_left_out(tp),
2343			 tp->snd_ssthresh, tp->prior_ssthresh,
2344			 tp->packets_out);
2345	}
2346#endif
 
2347}
2348#else
2349#define DBGUNDO(x...) do { } while (0)
2350#endif
2351
2352static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2353{
2354	struct tcp_sock *tp = tcp_sk(sk);
2355
2356	if (unmark_loss) {
2357		struct sk_buff *skb;
2358
2359		tcp_for_write_queue(skb, sk) {
2360			if (skb == tcp_send_head(sk))
2361				break;
2362			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2363		}
2364		tp->lost_out = 0;
2365		tcp_clear_all_retrans_hints(tp);
2366	}
2367
2368	if (tp->prior_ssthresh) {
2369		const struct inet_connection_sock *icsk = inet_csk(sk);
2370
2371		if (icsk->icsk_ca_ops->undo_cwnd)
2372			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2373		else
2374			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2375
2376		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2377			tp->snd_ssthresh = tp->prior_ssthresh;
2378			tcp_ecn_withdraw_cwr(tp);
2379		}
2380	}
2381	tp->snd_cwnd_stamp = tcp_time_stamp;
2382	tp->undo_marker = 0;
 
2383}
2384
2385static inline bool tcp_may_undo(const struct tcp_sock *tp)
2386{
2387	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2388}
2389
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2390/* People celebrate: "We love our President!" */
2391static bool tcp_try_undo_recovery(struct sock *sk)
2392{
2393	struct tcp_sock *tp = tcp_sk(sk);
2394
2395	if (tcp_may_undo(tp)) {
2396		int mib_idx;
2397
2398		/* Happy end! We did not retransmit anything
2399		 * or our original transmission succeeded.
2400		 */
2401		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2402		tcp_undo_cwnd_reduction(sk, false);
2403		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2404			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2405		else
2406			mib_idx = LINUX_MIB_TCPFULLUNDO;
2407
2408		NET_INC_STATS_BH(sock_net(sk), mib_idx);
 
 
2409	}
2410	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2411		/* Hold old state until something *above* high_seq
2412		 * is ACKed. For Reno it is MUST to prevent false
2413		 * fast retransmits (RFC2582). SACK TCP is safe. */
2414		tcp_moderate_cwnd(tp);
2415		if (!tcp_any_retrans_done(sk))
2416			tp->retrans_stamp = 0;
2417		return true;
2418	}
2419	tcp_set_ca_state(sk, TCP_CA_Open);
 
2420	return false;
2421}
2422
2423/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2424static bool tcp_try_undo_dsack(struct sock *sk)
2425{
2426	struct tcp_sock *tp = tcp_sk(sk);
2427
2428	if (tp->undo_marker && !tp->undo_retrans) {
 
 
2429		DBGUNDO(sk, "D-SACK");
2430		tcp_undo_cwnd_reduction(sk, false);
2431		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2432		return true;
2433	}
2434	return false;
2435}
2436
2437/* Undo during loss recovery after partial ACK or using F-RTO. */
2438static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2439{
2440	struct tcp_sock *tp = tcp_sk(sk);
2441
2442	if (frto_undo || tcp_may_undo(tp)) {
2443		tcp_undo_cwnd_reduction(sk, true);
2444
2445		DBGUNDO(sk, "partial loss");
2446		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2447		if (frto_undo)
2448			NET_INC_STATS_BH(sock_net(sk),
2449					 LINUX_MIB_TCPSPURIOUSRTOS);
2450		inet_csk(sk)->icsk_retransmits = 0;
2451		if (frto_undo || tcp_is_sack(tp))
 
 
2452			tcp_set_ca_state(sk, TCP_CA_Open);
 
 
2453		return true;
2454	}
2455	return false;
2456}
2457
2458/* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2459 * It computes the number of packets to send (sndcnt) based on packets newly
2460 * delivered:
2461 *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2462 *	cwnd reductions across a full RTT.
2463 *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2464 *      But when the retransmits are acked without further losses, PRR
2465 *      slow starts cwnd up to ssthresh to speed up the recovery.
2466 */
2467static void tcp_init_cwnd_reduction(struct sock *sk)
2468{
2469	struct tcp_sock *tp = tcp_sk(sk);
2470
2471	tp->high_seq = tp->snd_nxt;
2472	tp->tlp_high_seq = 0;
2473	tp->snd_cwnd_cnt = 0;
2474	tp->prior_cwnd = tp->snd_cwnd;
2475	tp->prr_delivered = 0;
2476	tp->prr_out = 0;
2477	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2478	tcp_ecn_queue_cwr(tp);
2479}
2480
2481static void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked,
2482			       int flag)
2483{
2484	struct tcp_sock *tp = tcp_sk(sk);
2485	int sndcnt = 0;
2486	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2487
2488	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2489		return;
2490
2491	tp->prr_delivered += newly_acked_sacked;
2492	if (delta < 0) {
2493		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2494			       tp->prior_cwnd - 1;
2495		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2496	} else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
2497		   !(flag & FLAG_LOST_RETRANS)) {
2498		sndcnt = min_t(int, delta,
2499			       max_t(int, tp->prr_delivered - tp->prr_out,
2500				     newly_acked_sacked) + 1);
2501	} else {
2502		sndcnt = min(delta, newly_acked_sacked);
 
 
 
 
2503	}
2504	/* Force a fast retransmit upon entering fast recovery */
2505	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2506	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2507}
2508
2509static inline void tcp_end_cwnd_reduction(struct sock *sk)
2510{
2511	struct tcp_sock *tp = tcp_sk(sk);
2512
 
 
 
2513	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2514	if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2515	    (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2516		tp->snd_cwnd = tp->snd_ssthresh;
2517		tp->snd_cwnd_stamp = tcp_time_stamp;
2518	}
2519	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2520}
2521
2522/* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2523void tcp_enter_cwr(struct sock *sk)
2524{
2525	struct tcp_sock *tp = tcp_sk(sk);
2526
2527	tp->prior_ssthresh = 0;
2528	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2529		tp->undo_marker = 0;
2530		tcp_init_cwnd_reduction(sk);
2531		tcp_set_ca_state(sk, TCP_CA_CWR);
2532	}
2533}
2534EXPORT_SYMBOL(tcp_enter_cwr);
2535
2536static void tcp_try_keep_open(struct sock *sk)
2537{
2538	struct tcp_sock *tp = tcp_sk(sk);
2539	int state = TCP_CA_Open;
2540
2541	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2542		state = TCP_CA_Disorder;
2543
2544	if (inet_csk(sk)->icsk_ca_state != state) {
2545		tcp_set_ca_state(sk, state);
2546		tp->high_seq = tp->snd_nxt;
2547	}
2548}
2549
2550static void tcp_try_to_open(struct sock *sk, int flag)
2551{
2552	struct tcp_sock *tp = tcp_sk(sk);
2553
2554	tcp_verify_left_out(tp);
2555
2556	if (!tcp_any_retrans_done(sk))
2557		tp->retrans_stamp = 0;
2558
2559	if (flag & FLAG_ECE)
2560		tcp_enter_cwr(sk);
2561
2562	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2563		tcp_try_keep_open(sk);
2564	}
2565}
2566
2567static void tcp_mtup_probe_failed(struct sock *sk)
2568{
2569	struct inet_connection_sock *icsk = inet_csk(sk);
2570
2571	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2572	icsk->icsk_mtup.probe_size = 0;
2573	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2574}
2575
2576static void tcp_mtup_probe_success(struct sock *sk)
2577{
2578	struct tcp_sock *tp = tcp_sk(sk);
2579	struct inet_connection_sock *icsk = inet_csk(sk);
 
2580
2581	/* FIXME: breaks with very large cwnd */
2582	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2583	tp->snd_cwnd = tp->snd_cwnd *
2584		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2585		       icsk->icsk_mtup.probe_size;
 
 
 
2586	tp->snd_cwnd_cnt = 0;
2587	tp->snd_cwnd_stamp = tcp_time_stamp;
2588	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2589
2590	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2591	icsk->icsk_mtup.probe_size = 0;
2592	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2593	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2594}
2595
2596/* Do a simple retransmit without using the backoff mechanisms in
2597 * tcp_timer. This is used for path mtu discovery.
2598 * The socket is already locked here.
2599 */
2600void tcp_simple_retransmit(struct sock *sk)
2601{
2602	const struct inet_connection_sock *icsk = inet_csk(sk);
2603	struct tcp_sock *tp = tcp_sk(sk);
2604	struct sk_buff *skb;
2605	unsigned int mss = tcp_current_mss(sk);
2606	u32 prior_lost = tp->lost_out;
2607
2608	tcp_for_write_queue(skb, sk) {
2609		if (skb == tcp_send_head(sk))
2610			break;
2611		if (tcp_skb_seglen(skb) > mss &&
2612		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2613			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2614				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2615				tp->retrans_out -= tcp_skb_pcount(skb);
2616			}
2617			tcp_skb_mark_lost_uncond_verify(tp, skb);
2618		}
 
 
 
 
 
 
 
2619	}
2620
2621	tcp_clear_retrans_hints_partial(tp);
2622
2623	if (prior_lost == tp->lost_out)
2624		return;
2625
2626	if (tcp_is_reno(tp))
2627		tcp_limit_reno_sacked(tp);
2628
2629	tcp_verify_left_out(tp);
2630
2631	/* Don't muck with the congestion window here.
2632	 * Reason is that we do not increase amount of _data_
2633	 * in network, but units changed and effective
2634	 * cwnd/ssthresh really reduced now.
2635	 */
2636	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2637		tp->high_seq = tp->snd_nxt;
2638		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2639		tp->prior_ssthresh = 0;
2640		tp->undo_marker = 0;
2641		tcp_set_ca_state(sk, TCP_CA_Loss);
2642	}
2643	tcp_xmit_retransmit_queue(sk);
2644}
2645EXPORT_SYMBOL(tcp_simple_retransmit);
2646
2647static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2648{
2649	struct tcp_sock *tp = tcp_sk(sk);
2650	int mib_idx;
2651
2652	if (tcp_is_reno(tp))
2653		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2654	else
2655		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2656
2657	NET_INC_STATS_BH(sock_net(sk), mib_idx);
2658
2659	tp->prior_ssthresh = 0;
2660	tcp_init_undo(tp);
2661
2662	if (!tcp_in_cwnd_reduction(sk)) {
2663		if (!ece_ack)
2664			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2665		tcp_init_cwnd_reduction(sk);
2666	}
2667	tcp_set_ca_state(sk, TCP_CA_Recovery);
2668}
2669
 
 
 
 
 
 
 
 
2670/* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2671 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2672 */
2673static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
2674			     int *rexmit)
2675{
2676	struct tcp_sock *tp = tcp_sk(sk);
2677	bool recovered = !before(tp->snd_una, tp->high_seq);
2678
2679	if ((flag & FLAG_SND_UNA_ADVANCED) &&
2680	    tcp_try_undo_loss(sk, false))
2681		return;
2682
2683	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2684		/* Step 3.b. A timeout is spurious if not all data are
2685		 * lost, i.e., never-retransmitted data are (s)acked.
2686		 */
2687		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2688		    tcp_try_undo_loss(sk, true))
2689			return;
2690
2691		if (after(tp->snd_nxt, tp->high_seq)) {
2692			if (flag & FLAG_DATA_SACKED || is_dupack)
2693				tp->frto = 0; /* Step 3.a. loss was real */
2694		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2695			tp->high_seq = tp->snd_nxt;
2696			/* Step 2.b. Try send new data (but deferred until cwnd
2697			 * is updated in tcp_ack()). Otherwise fall back to
2698			 * the conventional recovery.
2699			 */
2700			if (tcp_send_head(sk) &&
2701			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2702				*rexmit = REXMIT_NEW;
2703				return;
2704			}
2705			tp->frto = 0;
2706		}
2707	}
2708
2709	if (recovered) {
2710		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2711		tcp_try_undo_recovery(sk);
2712		return;
2713	}
2714	if (tcp_is_reno(tp)) {
2715		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2716		 * delivered. Lower inflight to clock out (re)tranmissions.
2717		 */
2718		if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2719			tcp_add_reno_sack(sk);
2720		else if (flag & FLAG_SND_UNA_ADVANCED)
2721			tcp_reset_reno_sack(tp);
2722	}
2723	*rexmit = REXMIT_LOST;
2724}
2725
 
 
 
 
 
 
 
 
2726/* Undo during fast recovery after partial ACK. */
2727static bool tcp_try_undo_partial(struct sock *sk, const int acked)
 
2728{
2729	struct tcp_sock *tp = tcp_sk(sk);
2730
2731	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2732		/* Plain luck! Hole if filled with delayed
2733		 * packet, rather than with a retransmit.
2734		 */
2735		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2736
2737		/* We are getting evidence that the reordering degree is higher
2738		 * than we realized. If there are no retransmits out then we
2739		 * can undo. Otherwise we clock out new packets but do not
2740		 * mark more packets lost or retransmit more.
2741		 */
2742		if (tp->retrans_out)
2743			return true;
2744
2745		if (!tcp_any_retrans_done(sk))
2746			tp->retrans_stamp = 0;
2747
2748		DBGUNDO(sk, "partial recovery");
2749		tcp_undo_cwnd_reduction(sk, true);
2750		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2751		tcp_try_keep_open(sk);
2752		return true;
 
 
2753	}
2754	return false;
2755}
2756
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2757/* Process an event, which can update packets-in-flight not trivially.
2758 * Main goal of this function is to calculate new estimate for left_out,
2759 * taking into account both packets sitting in receiver's buffer and
2760 * packets lost by network.
2761 *
2762 * Besides that it updates the congestion state when packet loss or ECN
2763 * is detected. But it does not reduce the cwnd, it is done by the
2764 * congestion control later.
2765 *
2766 * It does _not_ decide what to send, it is made in function
2767 * tcp_xmit_retransmit_queue().
2768 */
2769static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2770				  bool is_dupack, int *ack_flag, int *rexmit)
2771{
2772	struct inet_connection_sock *icsk = inet_csk(sk);
2773	struct tcp_sock *tp = tcp_sk(sk);
2774	int fast_rexmit = 0, flag = *ack_flag;
2775	bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2776				    (tcp_fackets_out(tp) > tp->reordering));
 
2777
2778	if (WARN_ON(!tp->packets_out && tp->sacked_out))
2779		tp->sacked_out = 0;
2780	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2781		tp->fackets_out = 0;
2782
2783	/* Now state machine starts.
2784	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2785	if (flag & FLAG_ECE)
2786		tp->prior_ssthresh = 0;
2787
2788	/* B. In all the states check for reneging SACKs. */
2789	if (tcp_check_sack_reneging(sk, flag))
2790		return;
2791
2792	/* C. Check consistency of the current state. */
2793	tcp_verify_left_out(tp);
2794
2795	/* D. Check state exit conditions. State can be terminated
2796	 *    when high_seq is ACKed. */
2797	if (icsk->icsk_ca_state == TCP_CA_Open) {
2798		WARN_ON(tp->retrans_out != 0);
2799		tp->retrans_stamp = 0;
2800	} else if (!before(tp->snd_una, tp->high_seq)) {
2801		switch (icsk->icsk_ca_state) {
2802		case TCP_CA_CWR:
2803			/* CWR is to be held something *above* high_seq
2804			 * is ACKed for CWR bit to reach receiver. */
2805			if (tp->snd_una != tp->high_seq) {
2806				tcp_end_cwnd_reduction(sk);
2807				tcp_set_ca_state(sk, TCP_CA_Open);
2808			}
2809			break;
2810
2811		case TCP_CA_Recovery:
2812			if (tcp_is_reno(tp))
2813				tcp_reset_reno_sack(tp);
2814			if (tcp_try_undo_recovery(sk))
2815				return;
2816			tcp_end_cwnd_reduction(sk);
2817			break;
2818		}
2819	}
2820
2821	/* Use RACK to detect loss */
2822	if (sysctl_tcp_recovery & TCP_RACK_LOST_RETRANS &&
2823	    tcp_rack_mark_lost(sk)) {
2824		flag |= FLAG_LOST_RETRANS;
2825		*ack_flag |= FLAG_LOST_RETRANS;
2826	}
2827
2828	/* E. Process state. */
2829	switch (icsk->icsk_ca_state) {
2830	case TCP_CA_Recovery:
2831		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2832			if (tcp_is_reno(tp) && is_dupack)
2833				tcp_add_reno_sack(sk);
2834		} else {
2835			if (tcp_try_undo_partial(sk, acked))
 
 
 
 
 
 
 
2836				return;
2837			/* Partial ACK arrived. Force fast retransmit. */
2838			do_lost = tcp_is_reno(tp) ||
2839				  tcp_fackets_out(tp) > tp->reordering;
2840		}
2841		if (tcp_try_undo_dsack(sk)) {
2842			tcp_try_keep_open(sk);
2843			return;
2844		}
2845		break;
2846	case TCP_CA_Loss:
2847		tcp_process_loss(sk, flag, is_dupack, rexmit);
2848		if (icsk->icsk_ca_state != TCP_CA_Open &&
2849		    !(flag & FLAG_LOST_RETRANS))
 
 
 
2850			return;
2851		/* Change state if cwnd is undone or retransmits are lost */
 
2852	default:
2853		if (tcp_is_reno(tp)) {
2854			if (flag & FLAG_SND_UNA_ADVANCED)
2855				tcp_reset_reno_sack(tp);
2856			if (is_dupack)
2857				tcp_add_reno_sack(sk);
2858		}
2859
2860		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2861			tcp_try_undo_dsack(sk);
2862
 
2863		if (!tcp_time_to_recover(sk, flag)) {
2864			tcp_try_to_open(sk, flag);
2865			return;
2866		}
2867
2868		/* MTU probe failure: don't reduce cwnd */
2869		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2870		    icsk->icsk_mtup.probe_size &&
2871		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2872			tcp_mtup_probe_failed(sk);
2873			/* Restores the reduction we did in tcp_mtup_probe() */
2874			tp->snd_cwnd++;
2875			tcp_simple_retransmit(sk);
2876			return;
2877		}
2878
2879		/* Otherwise enter Recovery state */
2880		tcp_enter_recovery(sk, (flag & FLAG_ECE));
2881		fast_rexmit = 1;
2882	}
2883
2884	if (do_lost)
2885		tcp_update_scoreboard(sk, fast_rexmit);
2886	*rexmit = REXMIT_LOST;
2887}
2888
2889/* Kathleen Nichols' algorithm for tracking the minimum value of
2890 * a data stream over some fixed time interval. (E.g., the minimum
2891 * RTT over the past five minutes.) It uses constant space and constant
2892 * time per update yet almost always delivers the same minimum as an
2893 * implementation that has to keep all the data in the window.
2894 *
2895 * The algorithm keeps track of the best, 2nd best & 3rd best min
2896 * values, maintaining an invariant that the measurement time of the
2897 * n'th best >= n-1'th best. It also makes sure that the three values
2898 * are widely separated in the time window since that bounds the worse
2899 * case error when that data is monotonically increasing over the window.
2900 *
2901 * Upon getting a new min, we can forget everything earlier because it
2902 * has no value - the new min is <= everything else in the window by
2903 * definition and it's the most recent. So we restart fresh on every new min
2904 * and overwrites 2nd & 3rd choices. The same property holds for 2nd & 3rd
2905 * best.
2906 */
2907static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us)
2908{
2909	const u32 now = tcp_time_stamp, wlen = sysctl_tcp_min_rtt_wlen * HZ;
2910	struct rtt_meas *m = tcp_sk(sk)->rtt_min;
2911	struct rtt_meas rttm = {
2912		.rtt = likely(rtt_us) ? rtt_us : jiffies_to_usecs(1),
2913		.ts = now,
2914	};
2915	u32 elapsed;
2916
2917	/* Check if the new measurement updates the 1st, 2nd, or 3rd choices */
2918	if (unlikely(rttm.rtt <= m[0].rtt))
2919		m[0] = m[1] = m[2] = rttm;
2920	else if (rttm.rtt <= m[1].rtt)
2921		m[1] = m[2] = rttm;
2922	else if (rttm.rtt <= m[2].rtt)
2923		m[2] = rttm;
2924
2925	elapsed = now - m[0].ts;
2926	if (unlikely(elapsed > wlen)) {
2927		/* Passed entire window without a new min so make 2nd choice
2928		 * the new min & 3rd choice the new 2nd. So forth and so on.
2929		 */
2930		m[0] = m[1];
2931		m[1] = m[2];
2932		m[2] = rttm;
2933		if (now - m[0].ts > wlen) {
2934			m[0] = m[1];
2935			m[1] = rttm;
2936			if (now - m[0].ts > wlen)
2937				m[0] = rttm;
2938		}
2939	} else if (m[1].ts == m[0].ts && elapsed > wlen / 4) {
2940		/* Passed a quarter of the window without a new min so
2941		 * take 2nd choice from the 2nd quarter of the window.
2942		 */
2943		m[2] = m[1] = rttm;
2944	} else if (m[2].ts == m[1].ts && elapsed > wlen / 2) {
2945		/* Passed half the window without a new min so take the 3rd
2946		 * choice from the last half of the window.
2947		 */
2948		m[2] = rttm;
2949	}
2950}
2951
2952static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2953				      long seq_rtt_us, long sack_rtt_us,
2954				      long ca_rtt_us)
2955{
2956	const struct tcp_sock *tp = tcp_sk(sk);
2957
2958	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2959	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2960	 * Karn's algorithm forbids taking RTT if some retransmitted data
2961	 * is acked (RFC6298).
2962	 */
2963	if (seq_rtt_us < 0)
2964		seq_rtt_us = sack_rtt_us;
2965
2966	/* RTTM Rule: A TSecr value received in a segment is used to
2967	 * update the averaged RTT measurement only if the segment
2968	 * acknowledges some new data, i.e., only if it advances the
2969	 * left edge of the send window.
2970	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2971	 */
2972	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2973	    flag & FLAG_ACKED)
2974		seq_rtt_us = ca_rtt_us = jiffies_to_usecs(tcp_time_stamp -
2975							  tp->rx_opt.rcv_tsecr);
 
2976	if (seq_rtt_us < 0)
2977		return false;
2978
2979	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2980	 * always taken together with ACK, SACK, or TS-opts. Any negative
2981	 * values will be skipped with the seq_rtt_us < 0 check above.
2982	 */
2983	tcp_update_rtt_min(sk, ca_rtt_us);
2984	tcp_rtt_estimator(sk, seq_rtt_us);
2985	tcp_set_rto(sk);
2986
2987	/* RFC6298: only reset backoff on valid RTT measurement. */
2988	inet_csk(sk)->icsk_backoff = 0;
2989	return true;
2990}
2991
2992/* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2993void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2994{
 
2995	long rtt_us = -1L;
2996
2997	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack.v64) {
2998		struct skb_mstamp now;
2999
3000		skb_mstamp_get(&now);
3001		rtt_us = skb_mstamp_us_delta(&now, &tcp_rsk(req)->snt_synack);
3002	}
3003
3004	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us);
3005}
3006
3007
3008static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3009{
3010	const struct inet_connection_sock *icsk = inet_csk(sk);
3011
3012	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3013	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3014}
3015
3016/* Restart timer after forward progress on connection.
3017 * RFC2988 recommends to restart timer to now+rto.
3018 */
3019void tcp_rearm_rto(struct sock *sk)
3020{
3021	const struct inet_connection_sock *icsk = inet_csk(sk);
3022	struct tcp_sock *tp = tcp_sk(sk);
3023
3024	/* If the retrans timer is currently being used by Fast Open
3025	 * for SYN-ACK retrans purpose, stay put.
3026	 */
3027	if (tp->fastopen_rsk)
3028		return;
3029
3030	if (!tp->packets_out) {
3031		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3032	} else {
3033		u32 rto = inet_csk(sk)->icsk_rto;
3034		/* Offset the time elapsed after installing regular RTO */
3035		if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3036		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3037			struct sk_buff *skb = tcp_write_queue_head(sk);
3038			const u32 rto_time_stamp =
3039				tcp_skb_timestamp(skb) + rto;
3040			s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
3041			/* delta may not be positive if the socket is locked
3042			 * when the retrans timer fires and is rescheduled.
3043			 */
3044			if (delta > 0)
3045				rto = delta;
3046		}
3047		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3048					  TCP_RTO_MAX);
3049	}
3050}
3051
3052/* This function is called when the delayed ER timer fires. TCP enters
3053 * fast recovery and performs fast-retransmit.
3054 */
3055void tcp_resume_early_retransmit(struct sock *sk)
3056{
3057	struct tcp_sock *tp = tcp_sk(sk);
3058
3059	tcp_rearm_rto(sk);
3060
3061	/* Stop if ER is disabled after the delayed ER timer is scheduled */
3062	if (!tp->do_early_retrans)
3063		return;
3064
3065	tcp_enter_recovery(sk, false);
3066	tcp_update_scoreboard(sk, 1);
3067	tcp_xmit_retransmit_queue(sk);
3068}
3069
3070/* If we get here, the whole TSO packet has not been acked. */
3071static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3072{
3073	struct tcp_sock *tp = tcp_sk(sk);
3074	u32 packets_acked;
3075
3076	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3077
3078	packets_acked = tcp_skb_pcount(skb);
3079	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3080		return 0;
3081	packets_acked -= tcp_skb_pcount(skb);
3082
3083	if (packets_acked) {
3084		BUG_ON(tcp_skb_pcount(skb) == 0);
3085		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3086	}
3087
3088	return packets_acked;
3089}
3090
3091static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3092			   u32 prior_snd_una)
3093{
3094	const struct skb_shared_info *shinfo;
3095
3096	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3097	if (likely(!(sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)))
3098		return;
3099
3100	shinfo = skb_shinfo(skb);
3101	if ((shinfo->tx_flags & SKBTX_ACK_TSTAMP) &&
3102	    !before(shinfo->tskey, prior_snd_una) &&
3103	    before(shinfo->tskey, tcp_sk(sk)->snd_una))
3104		__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
 
 
3105}
3106
3107/* Remove acknowledged frames from the retransmission queue. If our packet
3108 * is before the ack sequence we can discard it as it's confirmed to have
3109 * arrived at the other end.
3110 */
3111static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3112			       u32 prior_snd_una, int *acked,
3113			       struct tcp_sacktag_state *sack)
3114{
3115	const struct inet_connection_sock *icsk = inet_csk(sk);
3116	struct skb_mstamp first_ackt, last_ackt, now;
3117	struct tcp_sock *tp = tcp_sk(sk);
3118	u32 prior_sacked = tp->sacked_out;
3119	u32 reord = tp->packets_out;
 
3120	bool fully_acked = true;
3121	long sack_rtt_us = -1L;
3122	long seq_rtt_us = -1L;
3123	long ca_rtt_us = -1L;
3124	struct sk_buff *skb;
3125	u32 pkts_acked = 0;
3126	bool rtt_update;
3127	int flag = 0;
3128
3129	first_ackt.v64 = 0;
3130
3131	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3132		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
 
3133		u8 sacked = scb->sacked;
3134		u32 acked_pcount;
3135
3136		tcp_ack_tstamp(sk, skb, prior_snd_una);
3137
3138		/* Determine how many packets and what bytes were acked, tso and else */
3139		if (after(scb->end_seq, tp->snd_una)) {
3140			if (tcp_skb_pcount(skb) == 1 ||
3141			    !after(tp->snd_una, scb->seq))
3142				break;
3143
3144			acked_pcount = tcp_tso_acked(sk, skb);
3145			if (!acked_pcount)
3146				break;
3147
3148			fully_acked = false;
3149		} else {
3150			/* Speedup tcp_unlink_write_queue() and next loop */
3151			prefetchw(skb->next);
3152			acked_pcount = tcp_skb_pcount(skb);
3153		}
3154
3155		if (unlikely(sacked & TCPCB_RETRANS)) {
3156			if (sacked & TCPCB_SACKED_RETRANS)
3157				tp->retrans_out -= acked_pcount;
3158			flag |= FLAG_RETRANS_DATA_ACKED;
3159		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3160			last_ackt = skb->skb_mstamp;
3161			WARN_ON_ONCE(last_ackt.v64 == 0);
3162			if (!first_ackt.v64)
3163				first_ackt = last_ackt;
3164
3165			reord = min(pkts_acked, reord);
 
3166			if (!after(scb->end_seq, tp->high_seq))
3167				flag |= FLAG_ORIG_SACK_ACKED;
3168		}
3169
3170		if (sacked & TCPCB_SACKED_ACKED) {
3171			tp->sacked_out -= acked_pcount;
3172		} else if (tcp_is_sack(tp)) {
3173			tp->delivered += acked_pcount;
3174			if (!tcp_skb_spurious_retrans(tp, skb))
3175				tcp_rack_advance(tp, &skb->skb_mstamp, sacked);
 
3176		}
3177		if (sacked & TCPCB_LOST)
3178			tp->lost_out -= acked_pcount;
3179
3180		tp->packets_out -= acked_pcount;
3181		pkts_acked += acked_pcount;
 
3182
3183		/* Initial outgoing SYN's get put onto the write_queue
3184		 * just like anything else we transmit.  It is not
3185		 * true data, and if we misinform our callers that
3186		 * this ACK acks real data, we will erroneously exit
3187		 * connection startup slow start one packet too
3188		 * quickly.  This is severely frowned upon behavior.
3189		 */
3190		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3191			flag |= FLAG_DATA_ACKED;
3192		} else {
3193			flag |= FLAG_SYN_ACKED;
3194			tp->retrans_stamp = 0;
3195		}
3196
3197		if (!fully_acked)
3198			break;
3199
3200		tcp_unlink_write_queue(skb, sk);
3201		sk_wmem_free_skb(sk, skb);
 
3202		if (unlikely(skb == tp->retransmit_skb_hint))
3203			tp->retransmit_skb_hint = NULL;
3204		if (unlikely(skb == tp->lost_skb_hint))
3205			tp->lost_skb_hint = NULL;
 
 
3206	}
3207
 
 
 
3208	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3209		tp->snd_up = tp->snd_una;
3210
3211	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3212		flag |= FLAG_SACK_RENEGING;
3213
3214	skb_mstamp_get(&now);
3215	if (likely(first_ackt.v64) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3216		seq_rtt_us = skb_mstamp_us_delta(&now, &first_ackt);
3217		ca_rtt_us = skb_mstamp_us_delta(&now, &last_ackt);
3218	}
3219	if (sack->first_sackt.v64) {
3220		sack_rtt_us = skb_mstamp_us_delta(&now, &sack->first_sackt);
3221		ca_rtt_us = skb_mstamp_us_delta(&now, &sack->last_sackt);
 
 
 
 
 
 
 
 
 
 
 
 
 
3222	}
3223
3224	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3225					ca_rtt_us);
3226
3227	if (flag & FLAG_ACKED) {
3228		tcp_rearm_rto(sk);
3229		if (unlikely(icsk->icsk_mtup.probe_size &&
3230			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3231			tcp_mtup_probe_success(sk);
3232		}
3233
3234		if (tcp_is_reno(tp)) {
3235			tcp_remove_reno_sacks(sk, pkts_acked);
 
 
 
 
 
 
 
 
 
3236		} else {
3237			int delta;
3238
3239			/* Non-retransmitted hole got filled? That's reordering */
3240			if (reord < prior_fackets)
3241				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3242
3243			delta = tcp_is_fack(tp) ? pkts_acked :
3244						  prior_sacked - tp->sacked_out;
3245			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3246		}
3247
3248		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3249
3250	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3251		   sack_rtt_us > skb_mstamp_us_delta(&now, &skb->skb_mstamp)) {
 
3252		/* Do not re-arm RTO if the sack RTT is measured from data sent
3253		 * after when the head was last (re)transmitted. Otherwise the
3254		 * timeout may continue to extend in loss recovery.
3255		 */
3256		tcp_rearm_rto(sk);
3257	}
3258
3259	if (icsk->icsk_ca_ops->pkts_acked)
3260		icsk->icsk_ca_ops->pkts_acked(sk, pkts_acked, ca_rtt_us);
 
 
 
 
 
 
3261
3262#if FASTRETRANS_DEBUG > 0
3263	WARN_ON((int)tp->sacked_out < 0);
3264	WARN_ON((int)tp->lost_out < 0);
3265	WARN_ON((int)tp->retrans_out < 0);
3266	if (!tp->packets_out && tcp_is_sack(tp)) {
3267		icsk = inet_csk(sk);
3268		if (tp->lost_out) {
3269			pr_debug("Leak l=%u %d\n",
3270				 tp->lost_out, icsk->icsk_ca_state);
3271			tp->lost_out = 0;
3272		}
3273		if (tp->sacked_out) {
3274			pr_debug("Leak s=%u %d\n",
3275				 tp->sacked_out, icsk->icsk_ca_state);
3276			tp->sacked_out = 0;
3277		}
3278		if (tp->retrans_out) {
3279			pr_debug("Leak r=%u %d\n",
3280				 tp->retrans_out, icsk->icsk_ca_state);
3281			tp->retrans_out = 0;
3282		}
3283	}
3284#endif
3285	*acked = pkts_acked;
3286	return flag;
3287}
3288
3289static void tcp_ack_probe(struct sock *sk)
3290{
 
 
3291	const struct tcp_sock *tp = tcp_sk(sk);
3292	struct inet_connection_sock *icsk = inet_csk(sk);
3293
3294	/* Was it a usable window open? */
3295
3296	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
 
3297		icsk->icsk_backoff = 0;
 
3298		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3299		/* Socket must be waked up by subsequent tcp_data_snd_check().
3300		 * This function is not for random using!
3301		 */
3302	} else {
3303		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3304
3305		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3306					  when, TCP_RTO_MAX);
3307	}
3308}
3309
3310static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3311{
3312	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3313		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3314}
3315
3316/* Decide wheather to run the increase function of congestion control. */
3317static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3318{
3319	/* If reordering is high then always grow cwnd whenever data is
3320	 * delivered regardless of its ordering. Otherwise stay conservative
3321	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3322	 * new SACK or ECE mark may first advance cwnd here and later reduce
3323	 * cwnd in tcp_fastretrans_alert() based on more states.
3324	 */
3325	if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
 
3326		return flag & FLAG_FORWARD_PROGRESS;
3327
3328	return flag & FLAG_DATA_ACKED;
3329}
3330
3331/* The "ultimate" congestion control function that aims to replace the rigid
3332 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3333 * It's called toward the end of processing an ACK with precise rate
3334 * information. All transmission or retransmission are delayed afterwards.
3335 */
3336static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3337			     int flag)
3338{
 
 
 
 
 
 
 
3339	if (tcp_in_cwnd_reduction(sk)) {
3340		/* Reduce cwnd if state mandates */
3341		tcp_cwnd_reduction(sk, acked_sacked, flag);
3342	} else if (tcp_may_raise_cwnd(sk, flag)) {
3343		/* Advance cwnd if state allows */
3344		tcp_cong_avoid(sk, ack, acked_sacked);
3345	}
3346	tcp_update_pacing_rate(sk);
3347}
3348
3349/* Check that window update is acceptable.
3350 * The function assumes that snd_una<=ack<=snd_next.
3351 */
3352static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3353					const u32 ack, const u32 ack_seq,
3354					const u32 nwin)
3355{
3356	return	after(ack, tp->snd_una) ||
3357		after(ack_seq, tp->snd_wl1) ||
3358		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3359}
3360
3361/* If we update tp->snd_una, also update tp->bytes_acked */
3362static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3363{
3364	u32 delta = ack - tp->snd_una;
3365
3366	u64_stats_update_begin(&tp->syncp);
3367	tp->bytes_acked += delta;
3368	u64_stats_update_end(&tp->syncp);
3369	tp->snd_una = ack;
3370}
3371
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3372/* If we update tp->rcv_nxt, also update tp->bytes_received */
3373static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3374{
3375	u32 delta = seq - tp->rcv_nxt;
3376
3377	u64_stats_update_begin(&tp->syncp);
3378	tp->bytes_received += delta;
3379	u64_stats_update_end(&tp->syncp);
3380	tp->rcv_nxt = seq;
3381}
3382
3383/* Update our send window.
3384 *
3385 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3386 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3387 */
3388static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3389				 u32 ack_seq)
3390{
3391	struct tcp_sock *tp = tcp_sk(sk);
3392	int flag = 0;
3393	u32 nwin = ntohs(tcp_hdr(skb)->window);
3394
3395	if (likely(!tcp_hdr(skb)->syn))
3396		nwin <<= tp->rx_opt.snd_wscale;
3397
3398	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3399		flag |= FLAG_WIN_UPDATE;
3400		tcp_update_wl(tp, ack_seq);
3401
3402		if (tp->snd_wnd != nwin) {
3403			tp->snd_wnd = nwin;
3404
3405			/* Note, it is the only place, where
3406			 * fast path is recovered for sending TCP.
3407			 */
3408			tp->pred_flags = 0;
3409			tcp_fast_path_check(sk);
3410
3411			if (tcp_send_head(sk))
3412				tcp_slow_start_after_idle_check(sk);
3413
3414			if (nwin > tp->max_window) {
3415				tp->max_window = nwin;
3416				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3417			}
3418		}
3419	}
3420
3421	tcp_snd_una_update(tp, ack);
3422
3423	return flag;
3424}
3425
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3426/* Return true if we're currently rate-limiting out-of-window ACKs and
3427 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3428 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3429 * attacks that send repeated SYNs or ACKs for the same connection. To
3430 * do this, we do not send a duplicate SYNACK or ACK if the remote
3431 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3432 */
3433bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3434			  int mib_idx, u32 *last_oow_ack_time)
3435{
3436	/* Data packets without SYNs are not likely part of an ACK loop. */
3437	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3438	    !tcp_hdr(skb)->syn)
3439		goto not_rate_limited;
3440
3441	if (*last_oow_ack_time) {
3442		s32 elapsed = (s32)(tcp_time_stamp - *last_oow_ack_time);
3443
3444		if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) {
3445			NET_INC_STATS_BH(net, mib_idx);
3446			return true;	/* rate-limited: don't send yet! */
3447		}
3448	}
3449
3450	*last_oow_ack_time = tcp_time_stamp;
3451
3452not_rate_limited:
3453	return false;	/* not rate-limited: go ahead, send dupack now! */
3454}
3455
3456/* RFC 5961 7 [ACK Throttling] */
3457static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3458{
3459	/* unprotected vars, we dont care of overwrites */
3460	static u32 challenge_timestamp;
3461	static unsigned int challenge_count;
3462	struct tcp_sock *tp = tcp_sk(sk);
3463	u32 now;
 
3464
3465	/* First check our per-socket dupack rate limit. */
3466	if (tcp_oow_rate_limited(sock_net(sk), skb,
3467				 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3468				 &tp->last_oow_ack_time))
3469		return;
3470
3471	/* Then check the check host-wide RFC 5961 rate limit. */
 
 
 
 
3472	now = jiffies / HZ;
3473	if (now != challenge_timestamp) {
3474		challenge_timestamp = now;
3475		challenge_count = 0;
3476	}
3477	if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
3478		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
 
 
 
 
 
 
3479		tcp_send_ack(sk);
3480	}
3481}
3482
3483static void tcp_store_ts_recent(struct tcp_sock *tp)
3484{
3485	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3486	tp->rx_opt.ts_recent_stamp = get_seconds();
3487}
3488
3489static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3490{
3491	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3492		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3493		 * extra check below makes sure this can only happen
3494		 * for pure ACK frames.  -DaveM
3495		 *
3496		 * Not only, also it occurs for expired timestamps.
3497		 */
3498
3499		if (tcp_paws_check(&tp->rx_opt, 0))
3500			tcp_store_ts_recent(tp);
3501	}
3502}
3503
3504/* This routine deals with acks during a TLP episode.
3505 * We mark the end of a TLP episode on receiving TLP dupack or when
3506 * ack is after tlp_high_seq.
3507 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3508 */
3509static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3510{
3511	struct tcp_sock *tp = tcp_sk(sk);
3512
3513	if (before(ack, tp->tlp_high_seq))
3514		return;
3515
3516	if (flag & FLAG_DSACKING_ACK) {
 
 
 
3517		/* This DSACK means original and TLP probe arrived; no loss */
3518		tp->tlp_high_seq = 0;
3519	} else if (after(ack, tp->tlp_high_seq)) {
3520		/* ACK advances: there was a loss, so reduce cwnd. Reset
3521		 * tlp_high_seq in tcp_init_cwnd_reduction()
3522		 */
3523		tcp_init_cwnd_reduction(sk);
3524		tcp_set_ca_state(sk, TCP_CA_CWR);
3525		tcp_end_cwnd_reduction(sk);
3526		tcp_try_keep_open(sk);
3527		NET_INC_STATS_BH(sock_net(sk),
3528				 LINUX_MIB_TCPLOSSPROBERECOVERY);
3529	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3530			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3531		/* Pure dupack: original and TLP probe arrived; no loss */
3532		tp->tlp_high_seq = 0;
3533	}
3534}
3535
3536static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3537{
3538	const struct inet_connection_sock *icsk = inet_csk(sk);
3539
3540	if (icsk->icsk_ca_ops->in_ack_event)
3541		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3542}
3543
3544/* Congestion control has updated the cwnd already. So if we're in
3545 * loss recovery then now we do any new sends (for FRTO) or
3546 * retransmits (for CA_Loss or CA_recovery) that make sense.
3547 */
3548static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3549{
3550	struct tcp_sock *tp = tcp_sk(sk);
3551
3552	if (rexmit == REXMIT_NONE)
3553		return;
3554
3555	if (unlikely(rexmit == 2)) {
3556		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3557					  TCP_NAGLE_OFF);
3558		if (after(tp->snd_nxt, tp->high_seq))
3559			return;
3560		tp->frto = 0;
3561	}
3562	tcp_xmit_retransmit_queue(sk);
3563}
3564
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3565/* This routine deals with incoming acks, but not outgoing ones. */
3566static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3567{
3568	struct inet_connection_sock *icsk = inet_csk(sk);
3569	struct tcp_sock *tp = tcp_sk(sk);
3570	struct tcp_sacktag_state sack_state;
 
3571	u32 prior_snd_una = tp->snd_una;
 
3572	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3573	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3574	bool is_dupack = false;
3575	u32 prior_fackets;
3576	int prior_packets = tp->packets_out;
3577	u32 prior_delivered = tp->delivered;
3578	int acked = 0; /* Number of packets newly acked */
3579	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
 
3580
3581	sack_state.first_sackt.v64 = 0;
 
 
3582
3583	/* We very likely will need to access write queue head. */
3584	prefetchw(sk->sk_write_queue.next);
3585
3586	/* If the ack is older than previous acks
3587	 * then we can probably ignore it.
3588	 */
3589	if (before(ack, prior_snd_una)) {
 
 
 
 
3590		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3591		if (before(ack, prior_snd_una - tp->max_window)) {
3592			tcp_send_challenge_ack(sk, skb);
3593			return -1;
 
3594		}
3595		goto old_ack;
3596	}
3597
3598	/* If the ack includes data we haven't sent yet, discard
3599	 * this segment (RFC793 Section 3.9).
3600	 */
3601	if (after(ack, tp->snd_nxt))
3602		goto invalid_ack;
3603
3604	if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3605	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3606		tcp_rearm_rto(sk);
3607
3608	if (after(ack, prior_snd_una)) {
3609		flag |= FLAG_SND_UNA_ADVANCED;
3610		icsk->icsk_retransmits = 0;
 
 
 
 
 
 
3611	}
3612
3613	prior_fackets = tp->fackets_out;
 
3614
3615	/* ts_recent update must be made after we are sure that the packet
3616	 * is in window.
3617	 */
3618	if (flag & FLAG_UPDATE_TS_RECENT)
3619		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3620
3621	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
 
3622		/* Window is constant, pure forward advance.
3623		 * No more checks are required.
3624		 * Note, we use the fact that SND.UNA>=SND.WL2.
3625		 */
3626		tcp_update_wl(tp, ack_seq);
3627		tcp_snd_una_update(tp, ack);
3628		flag |= FLAG_WIN_UPDATE;
3629
3630		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3631
3632		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3633	} else {
3634		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3635
3636		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3637			flag |= FLAG_DATA;
3638		else
3639			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3640
3641		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3642
3643		if (TCP_SKB_CB(skb)->sacked)
3644			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3645							&sack_state);
3646
3647		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3648			flag |= FLAG_ECE;
3649			ack_ev_flags |= CA_ACK_ECE;
3650		}
3651
 
 
 
 
3652		if (flag & FLAG_WIN_UPDATE)
3653			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3654
3655		tcp_in_ack_event(sk, ack_ev_flags);
3656	}
3657
 
 
 
 
 
 
 
 
 
3658	/* We passed data and got it acked, remove any soft error
3659	 * log. Something worked...
3660	 */
3661	sk->sk_err_soft = 0;
3662	icsk->icsk_probes_out = 0;
3663	tp->rcv_tstamp = tcp_time_stamp;
3664	if (!prior_packets)
3665		goto no_queue;
3666
3667	/* See if we can take anything off of the retransmit queue. */
3668	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, &acked,
3669				    &sack_state);
 
 
3670
3671	if (tcp_ack_is_dubious(sk, flag)) {
3672		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3673		tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3674	}
3675	if (tp->tlp_high_seq)
3676		tcp_process_tlp_ack(sk, ack, flag);
3677
3678	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3679		struct dst_entry *dst = __sk_dst_get(sk);
3680		if (dst)
3681			dst_confirm(dst);
3682	}
3683
3684	if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3685		tcp_schedule_loss_probe(sk);
3686	tcp_cong_control(sk, ack, tp->delivered - prior_delivered, flag);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3687	tcp_xmit_recovery(sk, rexmit);
3688	return 1;
3689
3690no_queue:
3691	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3692	if (flag & FLAG_DSACKING_ACK)
3693		tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
 
 
 
3694	/* If this ack opens up a zero window, clear backoff.  It was
3695	 * being used to time the probes, and is probably far higher than
3696	 * it needs to be for normal retransmission.
3697	 */
3698	if (tcp_send_head(sk))
3699		tcp_ack_probe(sk);
3700
3701	if (tp->tlp_high_seq)
3702		tcp_process_tlp_ack(sk, ack, flag);
3703	return 1;
3704
3705invalid_ack:
3706	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3707	return -1;
3708
3709old_ack:
3710	/* If data was SACKed, tag it and see if we should send more data.
3711	 * If data was DSACKed, see if we can undo a cwnd reduction.
3712	 */
3713	if (TCP_SKB_CB(skb)->sacked) {
3714		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3715						&sack_state);
3716		tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
 
 
3717		tcp_xmit_recovery(sk, rexmit);
3718	}
3719
3720	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3721	return 0;
3722}
3723
3724static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3725				      bool syn, struct tcp_fastopen_cookie *foc,
3726				      bool exp_opt)
3727{
3728	/* Valid only in SYN or SYN-ACK with an even length.  */
3729	if (!foc || !syn || len < 0 || (len & 1))
3730		return;
3731
3732	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3733	    len <= TCP_FASTOPEN_COOKIE_MAX)
3734		memcpy(foc->val, cookie, len);
3735	else if (len != 0)
3736		len = -1;
3737	foc->len = len;
3738	foc->exp = exp_opt;
3739}
3740
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3741/* Look for tcp options. Normally only called on SYN and SYNACK packets.
3742 * But, this can also be called on packets in the established flow when
3743 * the fast version below fails.
3744 */
3745void tcp_parse_options(const struct sk_buff *skb,
 
3746		       struct tcp_options_received *opt_rx, int estab,
3747		       struct tcp_fastopen_cookie *foc)
3748{
3749	const unsigned char *ptr;
3750	const struct tcphdr *th = tcp_hdr(skb);
3751	int length = (th->doff * 4) - sizeof(struct tcphdr);
3752
3753	ptr = (const unsigned char *)(th + 1);
3754	opt_rx->saw_tstamp = 0;
 
3755
3756	while (length > 0) {
3757		int opcode = *ptr++;
3758		int opsize;
3759
3760		switch (opcode) {
3761		case TCPOPT_EOL:
3762			return;
3763		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3764			length--;
3765			continue;
3766		default:
 
 
3767			opsize = *ptr++;
3768			if (opsize < 2) /* "silly options" */
3769				return;
3770			if (opsize > length)
3771				return;	/* don't parse partial options */
3772			switch (opcode) {
3773			case TCPOPT_MSS:
3774				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3775					u16 in_mss = get_unaligned_be16(ptr);
3776					if (in_mss) {
3777						if (opt_rx->user_mss &&
3778						    opt_rx->user_mss < in_mss)
3779							in_mss = opt_rx->user_mss;
3780						opt_rx->mss_clamp = in_mss;
3781					}
3782				}
3783				break;
3784			case TCPOPT_WINDOW:
3785				if (opsize == TCPOLEN_WINDOW && th->syn &&
3786				    !estab && sysctl_tcp_window_scaling) {
3787					__u8 snd_wscale = *(__u8 *)ptr;
3788					opt_rx->wscale_ok = 1;
3789					if (snd_wscale > 14) {
3790						net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3791								     __func__,
3792								     snd_wscale);
3793						snd_wscale = 14;
 
3794					}
3795					opt_rx->snd_wscale = snd_wscale;
3796				}
3797				break;
3798			case TCPOPT_TIMESTAMP:
3799				if ((opsize == TCPOLEN_TIMESTAMP) &&
3800				    ((estab && opt_rx->tstamp_ok) ||
3801				     (!estab && sysctl_tcp_timestamps))) {
3802					opt_rx->saw_tstamp = 1;
3803					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3804					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3805				}
3806				break;
3807			case TCPOPT_SACK_PERM:
3808				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3809				    !estab && sysctl_tcp_sack) {
3810					opt_rx->sack_ok = TCP_SACK_SEEN;
3811					tcp_sack_reset(opt_rx);
3812				}
3813				break;
3814
3815			case TCPOPT_SACK:
3816				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3817				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3818				   opt_rx->sack_ok) {
3819					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3820				}
3821				break;
3822#ifdef CONFIG_TCP_MD5SIG
3823			case TCPOPT_MD5SIG:
3824				/*
3825				 * The MD5 Hash has already been
3826				 * checked (see tcp_v{4,6}_do_rcv()).
3827				 */
3828				break;
3829#endif
3830			case TCPOPT_FASTOPEN:
3831				tcp_parse_fastopen_option(
3832					opsize - TCPOLEN_FASTOPEN_BASE,
3833					ptr, th->syn, foc, false);
3834				break;
3835
3836			case TCPOPT_EXP:
3837				/* Fast Open option shares code 254 using a
3838				 * 16 bits magic number.
3839				 */
3840				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3841				    get_unaligned_be16(ptr) ==
3842				    TCPOPT_FASTOPEN_MAGIC)
3843					tcp_parse_fastopen_option(opsize -
3844						TCPOLEN_EXP_FASTOPEN_BASE,
3845						ptr + 2, th->syn, foc, true);
 
 
 
 
 
 
 
3846				break;
3847
 
 
3848			}
3849			ptr += opsize-2;
3850			length -= opsize;
3851		}
3852	}
3853}
3854EXPORT_SYMBOL(tcp_parse_options);
3855
3856static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3857{
3858	const __be32 *ptr = (const __be32 *)(th + 1);
3859
3860	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3861			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3862		tp->rx_opt.saw_tstamp = 1;
3863		++ptr;
3864		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3865		++ptr;
3866		if (*ptr)
3867			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3868		else
3869			tp->rx_opt.rcv_tsecr = 0;
3870		return true;
3871	}
3872	return false;
3873}
3874
3875/* Fast parse options. This hopes to only see timestamps.
3876 * If it is wrong it falls back on tcp_parse_options().
3877 */
3878static bool tcp_fast_parse_options(const struct sk_buff *skb,
 
3879				   const struct tcphdr *th, struct tcp_sock *tp)
3880{
3881	/* In the spirit of fast parsing, compare doff directly to constant
3882	 * values.  Because equality is used, short doff can be ignored here.
3883	 */
3884	if (th->doff == (sizeof(*th) / 4)) {
3885		tp->rx_opt.saw_tstamp = 0;
3886		return false;
3887	} else if (tp->rx_opt.tstamp_ok &&
3888		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3889		if (tcp_parse_aligned_timestamp(tp, th))
3890			return true;
3891	}
3892
3893	tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3894	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3895		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3896
3897	return true;
3898}
3899
3900#ifdef CONFIG_TCP_MD5SIG
3901/*
3902 * Parse MD5 Signature option
3903 */
3904const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
 
3905{
3906	int length = (th->doff << 2) - sizeof(*th);
3907	const u8 *ptr = (const u8 *)(th + 1);
 
 
 
 
3908
3909	/* If the TCP option is too short, we can short cut */
3910	if (length < TCPOLEN_MD5SIG)
3911		return NULL;
3912
3913	while (length > 0) {
 
3914		int opcode = *ptr++;
3915		int opsize;
3916
3917		switch (opcode) {
3918		case TCPOPT_EOL:
3919			return NULL;
3920		case TCPOPT_NOP:
3921			length--;
3922			continue;
3923		default:
3924			opsize = *ptr++;
3925			if (opsize < 2 || opsize > length)
3926				return NULL;
3927			if (opcode == TCPOPT_MD5SIG)
3928				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
 
 
 
 
 
 
 
 
 
 
 
3929		}
3930		ptr += opsize - 2;
3931		length -= opsize;
3932	}
3933	return NULL;
3934}
3935EXPORT_SYMBOL(tcp_parse_md5sig_option);
3936#endif
3937
3938/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3939 *
3940 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3941 * it can pass through stack. So, the following predicate verifies that
3942 * this segment is not used for anything but congestion avoidance or
3943 * fast retransmit. Moreover, we even are able to eliminate most of such
3944 * second order effects, if we apply some small "replay" window (~RTO)
3945 * to timestamp space.
3946 *
3947 * All these measures still do not guarantee that we reject wrapped ACKs
3948 * on networks with high bandwidth, when sequence space is recycled fastly,
3949 * but it guarantees that such events will be very rare and do not affect
3950 * connection seriously. This doesn't look nice, but alas, PAWS is really
3951 * buggy extension.
3952 *
3953 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3954 * states that events when retransmit arrives after original data are rare.
3955 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3956 * the biggest problem on large power networks even with minor reordering.
3957 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3958 * up to bandwidth of 18Gigabit/sec. 8) ]
3959 */
3960
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3961static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3962{
3963	const struct tcp_sock *tp = tcp_sk(sk);
3964	const struct tcphdr *th = tcp_hdr(skb);
3965	u32 seq = TCP_SKB_CB(skb)->seq;
3966	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3967
3968	return (/* 1. Pure ACK with correct sequence number. */
3969		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3970
3971		/* 2. ... and duplicate ACK. */
3972		ack == tp->snd_una &&
3973
3974		/* 3. ... and does not update window. */
3975		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3976
3977		/* 4. ... and sits in replay window. */
3978		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
 
3979}
3980
3981static inline bool tcp_paws_discard(const struct sock *sk,
3982				   const struct sk_buff *skb)
3983{
3984	const struct tcp_sock *tp = tcp_sk(sk);
3985
3986	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3987	       !tcp_disordered_ack(sk, skb);
3988}
3989
3990/* Check segment sequence number for validity.
3991 *
3992 * Segment controls are considered valid, if the segment
3993 * fits to the window after truncation to the window. Acceptability
3994 * of data (and SYN, FIN, of course) is checked separately.
3995 * See tcp_data_queue(), for example.
3996 *
3997 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3998 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3999 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4000 * (borrowed from freebsd)
4001 */
4002
4003static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
 
4004{
4005	return	!before(end_seq, tp->rcv_wup) &&
4006		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
 
 
 
 
 
4007}
4008
4009/* When we get a reset we do this. */
4010void tcp_reset(struct sock *sk)
4011{
 
 
 
 
 
 
 
 
4012	/* We want the right error as BSD sees it (and indeed as we do). */
4013	switch (sk->sk_state) {
4014	case TCP_SYN_SENT:
4015		sk->sk_err = ECONNREFUSED;
4016		break;
4017	case TCP_CLOSE_WAIT:
4018		sk->sk_err = EPIPE;
4019		break;
4020	case TCP_CLOSE:
4021		return;
4022	default:
4023		sk->sk_err = ECONNRESET;
4024	}
4025	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4026	smp_wmb();
4027
 
 
 
4028	if (!sock_flag(sk, SOCK_DEAD))
4029		sk->sk_error_report(sk);
4030
4031	tcp_done(sk);
4032}
4033
4034/*
4035 * 	Process the FIN bit. This now behaves as it is supposed to work
4036 *	and the FIN takes effect when it is validly part of sequence
4037 *	space. Not before when we get holes.
4038 *
4039 *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4040 *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4041 *	TIME-WAIT)
4042 *
4043 *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4044 *	close and we go into CLOSING (and later onto TIME-WAIT)
4045 *
4046 *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4047 */
4048void tcp_fin(struct sock *sk)
4049{
4050	struct tcp_sock *tp = tcp_sk(sk);
4051
4052	inet_csk_schedule_ack(sk);
4053
4054	sk->sk_shutdown |= RCV_SHUTDOWN;
4055	sock_set_flag(sk, SOCK_DONE);
4056
4057	switch (sk->sk_state) {
4058	case TCP_SYN_RECV:
4059	case TCP_ESTABLISHED:
4060		/* Move to CLOSE_WAIT */
4061		tcp_set_state(sk, TCP_CLOSE_WAIT);
4062		inet_csk(sk)->icsk_ack.pingpong = 1;
4063		break;
4064
4065	case TCP_CLOSE_WAIT:
4066	case TCP_CLOSING:
4067		/* Received a retransmission of the FIN, do
4068		 * nothing.
4069		 */
4070		break;
4071	case TCP_LAST_ACK:
4072		/* RFC793: Remain in the LAST-ACK state. */
4073		break;
4074
4075	case TCP_FIN_WAIT1:
4076		/* This case occurs when a simultaneous close
4077		 * happens, we must ack the received FIN and
4078		 * enter the CLOSING state.
4079		 */
4080		tcp_send_ack(sk);
4081		tcp_set_state(sk, TCP_CLOSING);
4082		break;
4083	case TCP_FIN_WAIT2:
4084		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4085		tcp_send_ack(sk);
4086		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4087		break;
4088	default:
4089		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4090		 * cases we should never reach this piece of code.
4091		 */
4092		pr_err("%s: Impossible, sk->sk_state=%d\n",
4093		       __func__, sk->sk_state);
4094		break;
4095	}
4096
4097	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4098	 * Probably, we should reset in this case. For now drop them.
4099	 */
4100	__skb_queue_purge(&tp->out_of_order_queue);
4101	if (tcp_is_sack(tp))
4102		tcp_sack_reset(&tp->rx_opt);
4103	sk_mem_reclaim(sk);
4104
4105	if (!sock_flag(sk, SOCK_DEAD)) {
4106		sk->sk_state_change(sk);
4107
4108		/* Do not send POLL_HUP for half duplex close. */
4109		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4110		    sk->sk_state == TCP_CLOSE)
4111			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4112		else
4113			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4114	}
4115}
4116
4117static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4118				  u32 end_seq)
4119{
4120	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4121		if (before(seq, sp->start_seq))
4122			sp->start_seq = seq;
4123		if (after(end_seq, sp->end_seq))
4124			sp->end_seq = end_seq;
4125		return true;
4126	}
4127	return false;
4128}
4129
4130static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4131{
4132	struct tcp_sock *tp = tcp_sk(sk);
4133
4134	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4135		int mib_idx;
4136
4137		if (before(seq, tp->rcv_nxt))
4138			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4139		else
4140			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4141
4142		NET_INC_STATS_BH(sock_net(sk), mib_idx);
4143
4144		tp->rx_opt.dsack = 1;
4145		tp->duplicate_sack[0].start_seq = seq;
4146		tp->duplicate_sack[0].end_seq = end_seq;
4147	}
4148}
4149
4150static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4151{
4152	struct tcp_sock *tp = tcp_sk(sk);
4153
4154	if (!tp->rx_opt.dsack)
4155		tcp_dsack_set(sk, seq, end_seq);
4156	else
4157		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4158}
4159
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4160static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4161{
4162	struct tcp_sock *tp = tcp_sk(sk);
4163
4164	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4165	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4166		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4167		tcp_enter_quickack_mode(sk);
4168
4169		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4170			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4171
 
4172			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4173				end_seq = tp->rcv_nxt;
4174			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4175		}
4176	}
4177
4178	tcp_send_ack(sk);
4179}
4180
4181/* These routines update the SACK block as out-of-order packets arrive or
4182 * in-order packets close up the sequence space.
4183 */
4184static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4185{
4186	int this_sack;
4187	struct tcp_sack_block *sp = &tp->selective_acks[0];
4188	struct tcp_sack_block *swalk = sp + 1;
4189
4190	/* See if the recent change to the first SACK eats into
4191	 * or hits the sequence space of other SACK blocks, if so coalesce.
4192	 */
4193	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4194		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4195			int i;
4196
4197			/* Zap SWALK, by moving every further SACK up by one slot.
4198			 * Decrease num_sacks.
4199			 */
4200			tp->rx_opt.num_sacks--;
4201			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4202				sp[i] = sp[i + 1];
4203			continue;
4204		}
4205		this_sack++, swalk++;
 
4206	}
4207}
4208
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4209static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4210{
4211	struct tcp_sock *tp = tcp_sk(sk);
4212	struct tcp_sack_block *sp = &tp->selective_acks[0];
4213	int cur_sacks = tp->rx_opt.num_sacks;
4214	int this_sack;
4215
4216	if (!cur_sacks)
4217		goto new_sack;
4218
4219	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4220		if (tcp_sack_extend(sp, seq, end_seq)) {
 
 
4221			/* Rotate this_sack to the first one. */
4222			for (; this_sack > 0; this_sack--, sp--)
4223				swap(*sp, *(sp - 1));
4224			if (cur_sacks > 1)
4225				tcp_sack_maybe_coalesce(tp);
4226			return;
4227		}
4228	}
4229
 
 
 
4230	/* Could not find an adjacent existing SACK, build a new one,
4231	 * put it at the front, and shift everyone else down.  We
4232	 * always know there is at least one SACK present already here.
4233	 *
4234	 * If the sack array is full, forget about the last one.
4235	 */
4236	if (this_sack >= TCP_NUM_SACKS) {
4237		this_sack--;
4238		tp->rx_opt.num_sacks--;
4239		sp--;
4240	}
4241	for (; this_sack > 0; this_sack--, sp--)
4242		*sp = *(sp - 1);
4243
4244new_sack:
4245	/* Build the new head SACK, and we're done. */
4246	sp->start_seq = seq;
4247	sp->end_seq = end_seq;
4248	tp->rx_opt.num_sacks++;
4249}
4250
4251/* RCV.NXT advances, some SACKs should be eaten. */
4252
4253static void tcp_sack_remove(struct tcp_sock *tp)
4254{
4255	struct tcp_sack_block *sp = &tp->selective_acks[0];
4256	int num_sacks = tp->rx_opt.num_sacks;
4257	int this_sack;
4258
4259	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4260	if (skb_queue_empty(&tp->out_of_order_queue)) {
4261		tp->rx_opt.num_sacks = 0;
4262		return;
4263	}
4264
4265	for (this_sack = 0; this_sack < num_sacks;) {
4266		/* Check if the start of the sack is covered by RCV.NXT. */
4267		if (!before(tp->rcv_nxt, sp->start_seq)) {
4268			int i;
4269
4270			/* RCV.NXT must cover all the block! */
4271			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4272
4273			/* Zap this SACK, by moving forward any other SACKS. */
4274			for (i = this_sack+1; i < num_sacks; i++)
4275				tp->selective_acks[i-1] = tp->selective_acks[i];
4276			num_sacks--;
4277			continue;
4278		}
4279		this_sack++;
4280		sp++;
4281	}
4282	tp->rx_opt.num_sacks = num_sacks;
4283}
4284
4285/**
4286 * tcp_try_coalesce - try to merge skb to prior one
4287 * @sk: socket
4288 * @to: prior buffer
4289 * @from: buffer to add in queue
4290 * @fragstolen: pointer to boolean
4291 *
4292 * Before queueing skb @from after @to, try to merge them
4293 * to reduce overall memory use and queue lengths, if cost is small.
4294 * Packets in ofo or receive queues can stay a long time.
4295 * Better try to coalesce them right now to avoid future collapses.
4296 * Returns true if caller should free @from instead of queueing it
4297 */
4298static bool tcp_try_coalesce(struct sock *sk,
4299			     struct sk_buff *to,
4300			     struct sk_buff *from,
4301			     bool *fragstolen)
4302{
4303	int delta;
4304
4305	*fragstolen = false;
4306
4307	/* Its possible this segment overlaps with prior segment in queue */
4308	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4309		return false;
4310
 
 
 
 
 
 
 
 
4311	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4312		return false;
4313
4314	atomic_add(delta, &sk->sk_rmem_alloc);
4315	sk_mem_charge(sk, delta);
4316	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4317	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4318	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4319	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
 
 
 
 
 
 
 
4320	return true;
4321}
4322
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4323/* This one checks to see if we can put data from the
4324 * out_of_order queue into the receive_queue.
4325 */
4326static void tcp_ofo_queue(struct sock *sk)
4327{
4328	struct tcp_sock *tp = tcp_sk(sk);
4329	__u32 dsack_high = tp->rcv_nxt;
 
4330	struct sk_buff *skb, *tail;
4331	bool fragstolen, eaten;
4332
4333	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
 
 
4334		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4335			break;
4336
4337		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4338			__u32 dsack = dsack_high;
4339			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4340				dsack_high = TCP_SKB_CB(skb)->end_seq;
4341			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4342		}
 
 
4343
4344		__skb_unlink(skb, &tp->out_of_order_queue);
4345		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4346			SOCK_DEBUG(sk, "ofo packet was already received\n");
4347			__kfree_skb(skb);
4348			continue;
4349		}
4350		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4351			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4352			   TCP_SKB_CB(skb)->end_seq);
4353
4354		tail = skb_peek_tail(&sk->sk_receive_queue);
4355		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4356		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
 
4357		if (!eaten)
4358			__skb_queue_tail(&sk->sk_receive_queue, skb);
4359		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
 
 
 
4360			tcp_fin(sk);
4361		if (eaten)
4362			kfree_skb_partial(skb, fragstolen);
 
 
 
4363	}
4364}
4365
4366static bool tcp_prune_ofo_queue(struct sock *sk);
4367static int tcp_prune_queue(struct sock *sk);
4368
4369static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4370				 unsigned int size)
4371{
4372	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4373	    !sk_rmem_schedule(sk, skb, size)) {
4374
4375		if (tcp_prune_queue(sk) < 0)
4376			return -1;
4377
4378		if (!sk_rmem_schedule(sk, skb, size)) {
4379			if (!tcp_prune_ofo_queue(sk))
4380				return -1;
4381
4382			if (!sk_rmem_schedule(sk, skb, size))
4383				return -1;
4384		}
4385	}
4386	return 0;
4387}
4388
4389static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4390{
4391	struct tcp_sock *tp = tcp_sk(sk);
 
4392	struct sk_buff *skb1;
4393	u32 seq, end_seq;
 
4394
4395	tcp_ecn_check_ce(tp, skb);
 
4396
4397	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4398		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
4399		__kfree_skb(skb);
 
4400		return;
4401	}
4402
4403	/* Disable header prediction. */
4404	tp->pred_flags = 0;
4405	inet_csk_schedule_ack(sk);
4406
4407	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4408	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4409		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
 
4410
4411	skb1 = skb_peek_tail(&tp->out_of_order_queue);
4412	if (!skb1) {
4413		/* Initial out of order segment, build 1 SACK. */
4414		if (tcp_is_sack(tp)) {
4415			tp->rx_opt.num_sacks = 1;
4416			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4417			tp->selective_acks[0].end_seq =
4418						TCP_SKB_CB(skb)->end_seq;
4419		}
4420		__skb_queue_head(&tp->out_of_order_queue, skb);
 
 
4421		goto end;
4422	}
4423
4424	seq = TCP_SKB_CB(skb)->seq;
4425	end_seq = TCP_SKB_CB(skb)->end_seq;
4426
4427	if (seq == TCP_SKB_CB(skb1)->end_seq) {
4428		bool fragstolen;
4429
4430		if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4431			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4432		} else {
4433			tcp_grow_window(sk, skb);
4434			kfree_skb_partial(skb, fragstolen);
4435			skb = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4436		}
4437
4438		if (!tp->rx_opt.num_sacks ||
4439		    tp->selective_acks[0].end_seq != seq)
4440			goto add_sack;
4441
4442		/* Common case: data arrive in order after hole. */
4443		tp->selective_acks[0].end_seq = end_seq;
4444		goto end;
4445	}
4446
4447	/* Find place to insert this segment. */
4448	while (1) {
4449		if (!after(TCP_SKB_CB(skb1)->seq, seq))
4450			break;
4451		if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4452			skb1 = NULL;
4453			break;
4454		}
4455		skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4456	}
4457
4458	/* Do skb overlap to previous one? */
4459	if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4460		if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4461			/* All the bits are present. Drop. */
4462			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4463			__kfree_skb(skb);
4464			skb = NULL;
4465			tcp_dsack_set(sk, seq, end_seq);
4466			goto add_sack;
4467		}
4468		if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4469			/* Partial overlap. */
4470			tcp_dsack_set(sk, seq,
4471				      TCP_SKB_CB(skb1)->end_seq);
4472		} else {
4473			if (skb_queue_is_first(&tp->out_of_order_queue,
4474					       skb1))
4475				skb1 = NULL;
4476			else
4477				skb1 = skb_queue_prev(
4478					&tp->out_of_order_queue,
4479					skb1);
4480		}
4481	}
4482	if (!skb1)
4483		__skb_queue_head(&tp->out_of_order_queue, skb);
4484	else
4485		__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4486
4487	/* And clean segments covered by new one as whole. */
4488	while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4489		skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4490
4491		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4492			break;
4493		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4494			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4495					 end_seq);
4496			break;
4497		}
4498		__skb_unlink(skb1, &tp->out_of_order_queue);
4499		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4500				 TCP_SKB_CB(skb1)->end_seq);
4501		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4502		__kfree_skb(skb1);
4503	}
 
 
 
4504
4505add_sack:
4506	if (tcp_is_sack(tp))
4507		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4508end:
4509	if (skb) {
4510		tcp_grow_window(sk, skb);
 
 
 
 
 
4511		skb_set_owner_r(skb, sk);
4512	}
4513}
4514
4515static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4516		  bool *fragstolen)
4517{
4518	int eaten;
4519	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4520
4521	__skb_pull(skb, hdrlen);
4522	eaten = (tail &&
4523		 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
 
4524	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4525	if (!eaten) {
4526		__skb_queue_tail(&sk->sk_receive_queue, skb);
4527		skb_set_owner_r(skb, sk);
4528	}
4529	return eaten;
4530}
4531
4532int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4533{
4534	struct sk_buff *skb;
4535	int err = -ENOMEM;
4536	int data_len = 0;
4537	bool fragstolen;
4538
4539	if (size == 0)
4540		return 0;
4541
4542	if (size > PAGE_SIZE) {
4543		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4544
4545		data_len = npages << PAGE_SHIFT;
4546		size = data_len + (size & ~PAGE_MASK);
4547	}
4548	skb = alloc_skb_with_frags(size - data_len, data_len,
4549				   PAGE_ALLOC_COSTLY_ORDER,
4550				   &err, sk->sk_allocation);
4551	if (!skb)
4552		goto err;
4553
4554	skb_put(skb, size - data_len);
4555	skb->data_len = data_len;
4556	skb->len = size;
4557
4558	if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
 
4559		goto err_free;
 
4560
4561	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4562	if (err)
4563		goto err_free;
4564
4565	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4566	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4567	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4568
4569	if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4570		WARN_ON_ONCE(fragstolen); /* should not happen */
4571		__kfree_skb(skb);
4572	}
4573	return size;
4574
4575err_free:
4576	kfree_skb(skb);
4577err:
4578	return err;
4579
4580}
4581
 
 
 
 
 
 
4582static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4583{
4584	struct tcp_sock *tp = tcp_sk(sk);
4585	int eaten = -1;
4586	bool fragstolen = false;
 
4587
4588	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4589		goto drop;
 
 
 
 
 
4590
 
 
 
 
4591	skb_dst_drop(skb);
4592	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4593
4594	tcp_ecn_accept_cwr(tp, skb);
4595
4596	tp->rx_opt.dsack = 0;
4597
4598	/*  Queue data for delivery to the user.
4599	 *  Packets in sequence go to the receive queue.
4600	 *  Out of sequence packets to the out_of_order_queue.
4601	 */
4602	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4603		if (tcp_receive_window(tp) == 0)
 
 
4604			goto out_of_window;
 
4605
4606		/* Ok. In sequence. In window. */
4607		if (tp->ucopy.task == current &&
4608		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4609		    sock_owned_by_user(sk) && !tp->urg_data) {
4610			int chunk = min_t(unsigned int, skb->len,
4611					  tp->ucopy.len);
 
 
4612
4613			__set_current_state(TASK_RUNNING);
4614
4615			local_bh_enable();
4616			if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) {
4617				tp->ucopy.len -= chunk;
4618				tp->copied_seq += chunk;
4619				eaten = (chunk == skb->len);
4620				tcp_rcv_space_adjust(sk);
4621			}
4622			local_bh_disable();
4623		}
4624
4625		if (eaten <= 0) {
4626queue_and_out:
4627			if (eaten < 0) {
4628				if (skb_queue_len(&sk->sk_receive_queue) == 0)
4629					sk_forced_mem_schedule(sk, skb->truesize);
4630				else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4631					goto drop;
4632			}
4633			eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4634		}
4635		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4636		if (skb->len)
4637			tcp_event_data_recv(sk, skb);
4638		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4639			tcp_fin(sk);
4640
4641		if (!skb_queue_empty(&tp->out_of_order_queue)) {
4642			tcp_ofo_queue(sk);
4643
4644			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4645			 * gap in queue is filled.
4646			 */
4647			if (skb_queue_empty(&tp->out_of_order_queue))
4648				inet_csk(sk)->icsk_ack.pingpong = 0;
4649		}
4650
4651		if (tp->rx_opt.num_sacks)
4652			tcp_sack_remove(tp);
4653
4654		tcp_fast_path_check(sk);
4655
4656		if (eaten > 0)
4657			kfree_skb_partial(skb, fragstolen);
4658		if (!sock_flag(sk, SOCK_DEAD))
4659			sk->sk_data_ready(sk);
4660		return;
4661	}
4662
4663	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
 
4664		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4665		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
 
4666		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4667
4668out_of_window:
4669		tcp_enter_quickack_mode(sk);
4670		inet_csk_schedule_ack(sk);
4671drop:
4672		__kfree_skb(skb);
4673		return;
4674	}
4675
4676	/* Out of window. F.e. zero window probe. */
4677	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
 
 
4678		goto out_of_window;
4679
4680	tcp_enter_quickack_mode(sk);
4681
4682	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4683		/* Partial packet, seq < rcv_next < end_seq */
4684		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4685			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4686			   TCP_SKB_CB(skb)->end_seq);
4687
4688		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4689
4690		/* If window is closed, drop tail of packet. But after
4691		 * remembering D-SACK for its head made in previous line.
4692		 */
4693		if (!tcp_receive_window(tp))
 
 
4694			goto out_of_window;
 
4695		goto queue_and_out;
4696	}
4697
4698	tcp_data_queue_ofo(sk, skb);
4699}
4700
 
 
 
 
 
 
 
 
4701static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4702					struct sk_buff_head *list)
 
4703{
4704	struct sk_buff *next = NULL;
4705
4706	if (!skb_queue_is_last(list, skb))
4707		next = skb_queue_next(list, skb);
 
 
4708
4709	__skb_unlink(skb, list);
4710	__kfree_skb(skb);
4711	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4712
4713	return next;
4714}
4715
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4716/* Collapse contiguous sequence of skbs head..tail with
4717 * sequence numbers start..end.
4718 *
4719 * If tail is NULL, this means until the end of the list.
4720 *
4721 * Segments with FIN/SYN are not collapsed (only because this
4722 * simplifies code)
4723 */
4724static void
4725tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4726	     struct sk_buff *head, struct sk_buff *tail,
4727	     u32 start, u32 end)
4728{
4729	struct sk_buff *skb, *n;
 
4730	bool end_of_skbs;
4731
4732	/* First, check that queue is collapsible and find
4733	 * the point where collapsing can be useful. */
4734	skb = head;
4735restart:
4736	end_of_skbs = true;
4737	skb_queue_walk_from_safe(list, skb, n) {
4738		if (skb == tail)
4739			break;
4740		/* No new bits? It is possible on ofo queue. */
4741		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4742			skb = tcp_collapse_one(sk, skb, list);
4743			if (!skb)
4744				break;
4745			goto restart;
4746		}
4747
4748		/* The first skb to collapse is:
4749		 * - not SYN/FIN and
4750		 * - bloated or contains data before "start" or
4751		 *   overlaps to the next one.
4752		 */
4753		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4754		    (tcp_win_from_space(skb->truesize) > skb->len ||
4755		     before(TCP_SKB_CB(skb)->seq, start))) {
4756			end_of_skbs = false;
4757			break;
4758		}
4759
4760		if (!skb_queue_is_last(list, skb)) {
4761			struct sk_buff *next = skb_queue_next(list, skb);
4762			if (next != tail &&
4763			    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4764				end_of_skbs = false;
4765				break;
4766			}
4767		}
4768
4769		/* Decided to skip this, advance start seq. */
4770		start = TCP_SKB_CB(skb)->end_seq;
4771	}
4772	if (end_of_skbs ||
4773	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4774		return;
4775
 
 
4776	while (before(start, end)) {
4777		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4778		struct sk_buff *nskb;
4779
4780		nskb = alloc_skb(copy, GFP_ATOMIC);
4781		if (!nskb)
4782			return;
4783
4784		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
 
 
 
4785		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4786		__skb_queue_before(list, skb, nskb);
 
 
 
4787		skb_set_owner_r(nskb, sk);
 
4788
4789		/* Copy data, releasing collapsed skbs. */
4790		while (copy > 0) {
4791			int offset = start - TCP_SKB_CB(skb)->seq;
4792			int size = TCP_SKB_CB(skb)->end_seq - start;
4793
4794			BUG_ON(offset < 0);
4795			if (size > 0) {
4796				size = min(copy, size);
4797				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4798					BUG();
4799				TCP_SKB_CB(nskb)->end_seq += size;
4800				copy -= size;
4801				start += size;
4802			}
4803			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4804				skb = tcp_collapse_one(sk, skb, list);
4805				if (!skb ||
4806				    skb == tail ||
 
4807				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4808					return;
 
 
 
 
4809			}
4810		}
4811	}
 
 
 
4812}
4813
4814/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4815 * and tcp_collapse() them until all the queue is collapsed.
4816 */
4817static void tcp_collapse_ofo_queue(struct sock *sk)
4818{
4819	struct tcp_sock *tp = tcp_sk(sk);
4820	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4821	struct sk_buff *head;
4822	u32 start, end;
4823
4824	if (!skb)
 
 
 
4825		return;
4826
4827	start = TCP_SKB_CB(skb)->seq;
4828	end = TCP_SKB_CB(skb)->end_seq;
4829	head = skb;
4830
4831	for (;;) {
4832		struct sk_buff *next = NULL;
4833
4834		if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4835			next = skb_queue_next(&tp->out_of_order_queue, skb);
4836		skb = next;
4837
4838		/* Segment is terminated when we see gap or when
4839		 * we are at the end of all the queue. */
4840		if (!skb ||
4841		    after(TCP_SKB_CB(skb)->seq, end) ||
4842		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4843			tcp_collapse(sk, &tp->out_of_order_queue,
4844				     head, skb, start, end);
4845			head = skb;
4846			if (!skb)
4847				break;
4848			/* Start new segment */
 
 
 
 
 
 
 
 
 
4849			start = TCP_SKB_CB(skb)->seq;
 
4850			end = TCP_SKB_CB(skb)->end_seq;
4851		} else {
4852			if (before(TCP_SKB_CB(skb)->seq, start))
4853				start = TCP_SKB_CB(skb)->seq;
4854			if (after(TCP_SKB_CB(skb)->end_seq, end))
4855				end = TCP_SKB_CB(skb)->end_seq;
4856		}
4857	}
4858}
4859
4860/*
4861 * Purge the out-of-order queue.
4862 * Return true if queue was pruned.
4863 */
4864static bool tcp_prune_ofo_queue(struct sock *sk)
4865{
4866	struct tcp_sock *tp = tcp_sk(sk);
4867	bool res = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4868
4869	if (!skb_queue_empty(&tp->out_of_order_queue)) {
4870		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4871		__skb_queue_purge(&tp->out_of_order_queue);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4872
 
 
4873		/* Reset SACK state.  A conforming SACK implementation will
4874		 * do the same at a timeout based retransmit.  When a connection
4875		 * is in a sad state like this, we care only about integrity
4876		 * of the connection not performance.
4877		 */
4878		if (tp->rx_opt.sack_ok)
4879			tcp_sack_reset(&tp->rx_opt);
4880		sk_mem_reclaim(sk);
4881		res = true;
4882	}
4883	return res;
4884}
4885
4886/* Reduce allocated memory if we can, trying to get
4887 * the socket within its memory limits again.
4888 *
4889 * Return less than zero if we should start dropping frames
4890 * until the socket owning process reads some of the data
4891 * to stabilize the situation.
4892 */
4893static int tcp_prune_queue(struct sock *sk)
4894{
4895	struct tcp_sock *tp = tcp_sk(sk);
4896
4897	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4898
4899	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4900
4901	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4902		tcp_clamp_window(sk);
4903	else if (tcp_under_memory_pressure(sk))
4904		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
 
 
 
4905
4906	tcp_collapse_ofo_queue(sk);
4907	if (!skb_queue_empty(&sk->sk_receive_queue))
4908		tcp_collapse(sk, &sk->sk_receive_queue,
4909			     skb_peek(&sk->sk_receive_queue),
4910			     NULL,
4911			     tp->copied_seq, tp->rcv_nxt);
4912	sk_mem_reclaim(sk);
4913
4914	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4915		return 0;
4916
4917	/* Collapsing did not help, destructive actions follow.
4918	 * This must not ever occur. */
4919
4920	tcp_prune_ofo_queue(sk);
4921
4922	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4923		return 0;
4924
4925	/* If we are really being abused, tell the caller to silently
4926	 * drop receive data on the floor.  It will get retransmitted
4927	 * and hopefully then we'll have sufficient space.
4928	 */
4929	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4930
4931	/* Massive buffer overcommit. */
4932	tp->pred_flags = 0;
4933	return -1;
4934}
4935
4936static bool tcp_should_expand_sndbuf(const struct sock *sk)
4937{
4938	const struct tcp_sock *tp = tcp_sk(sk);
4939
4940	/* If the user specified a specific send buffer setting, do
4941	 * not modify it.
4942	 */
4943	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4944		return false;
4945
4946	/* If we are under global TCP memory pressure, do not expand.  */
4947	if (tcp_under_memory_pressure(sk))
 
 
 
 
 
 
 
 
 
4948		return false;
 
4949
4950	/* If we are under soft global TCP memory pressure, do not expand.  */
4951	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4952		return false;
4953
4954	/* If we filled the congestion window, do not expand.  */
4955	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
4956		return false;
4957
4958	return true;
4959}
4960
4961/* When incoming ACK allowed to free some skb from write_queue,
4962 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4963 * on the exit from tcp input handler.
4964 *
4965 * PROBLEM: sndbuf expansion does not work well with largesend.
4966 */
4967static void tcp_new_space(struct sock *sk)
4968{
4969	struct tcp_sock *tp = tcp_sk(sk);
4970
4971	if (tcp_should_expand_sndbuf(sk)) {
4972		tcp_sndbuf_expand(sk);
4973		tp->snd_cwnd_stamp = tcp_time_stamp;
4974	}
4975
4976	sk->sk_write_space(sk);
4977}
4978
4979static void tcp_check_space(struct sock *sk)
 
 
 
 
 
 
 
 
 
 
4980{
4981	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4982		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4983		/* pairs with tcp_poll() */
4984		smp_mb__after_atomic();
4985		if (sk->sk_socket &&
4986		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4987			tcp_new_space(sk);
4988	}
4989}
4990
4991static inline void tcp_data_snd_check(struct sock *sk)
4992{
4993	tcp_push_pending_frames(sk);
4994	tcp_check_space(sk);
4995}
4996
4997/*
4998 * Check if sending an ack is needed.
4999 */
5000static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5001{
5002	struct tcp_sock *tp = tcp_sk(sk);
 
5003
5004	    /* More than one full frame received... */
5005	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5006	     /* ... and right edge of window advances far enough.
5007	      * (tcp_recvmsg() will send ACK otherwise). Or...
 
 
5008	      */
5009	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
 
5010	    /* We ACK each frame or... */
5011	    tcp_in_quickack_mode(sk) ||
5012	    /* We have out of order data. */
5013	    (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
5014		/* Then ack it now */
 
 
 
 
 
 
 
 
5015		tcp_send_ack(sk);
5016	} else {
5017		/* Else, send delayed ack. */
 
 
5018		tcp_send_delayed_ack(sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5019	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5020}
5021
5022static inline void tcp_ack_snd_check(struct sock *sk)
5023{
5024	if (!inet_csk_ack_scheduled(sk)) {
5025		/* We sent a data segment already. */
5026		return;
5027	}
5028	__tcp_ack_snd_check(sk, 1);
5029}
5030
5031/*
5032 *	This routine is only called when we have urgent data
5033 *	signaled. Its the 'slow' part of tcp_urg. It could be
5034 *	moved inline now as tcp_urg is only called from one
5035 *	place. We handle URGent data wrong. We have to - as
5036 *	BSD still doesn't use the correction from RFC961.
5037 *	For 1003.1g we should support a new option TCP_STDURG to permit
5038 *	either form (or just set the sysctl tcp_stdurg).
5039 */
5040
5041static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5042{
5043	struct tcp_sock *tp = tcp_sk(sk);
5044	u32 ptr = ntohs(th->urg_ptr);
5045
5046	if (ptr && !sysctl_tcp_stdurg)
5047		ptr--;
5048	ptr += ntohl(th->seq);
5049
5050	/* Ignore urgent data that we've already seen and read. */
5051	if (after(tp->copied_seq, ptr))
5052		return;
5053
5054	/* Do not replay urg ptr.
5055	 *
5056	 * NOTE: interesting situation not covered by specs.
5057	 * Misbehaving sender may send urg ptr, pointing to segment,
5058	 * which we already have in ofo queue. We are not able to fetch
5059	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5060	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5061	 * situations. But it is worth to think about possibility of some
5062	 * DoSes using some hypothetical application level deadlock.
5063	 */
5064	if (before(ptr, tp->rcv_nxt))
5065		return;
5066
5067	/* Do we already have a newer (or duplicate) urgent pointer? */
5068	if (tp->urg_data && !after(ptr, tp->urg_seq))
5069		return;
5070
5071	/* Tell the world about our new urgent pointer. */
5072	sk_send_sigurg(sk);
5073
5074	/* We may be adding urgent data when the last byte read was
5075	 * urgent. To do this requires some care. We cannot just ignore
5076	 * tp->copied_seq since we would read the last urgent byte again
5077	 * as data, nor can we alter copied_seq until this data arrives
5078	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5079	 *
5080	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5081	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5082	 * and expect that both A and B disappear from stream. This is _wrong_.
5083	 * Though this happens in BSD with high probability, this is occasional.
5084	 * Any application relying on this is buggy. Note also, that fix "works"
5085	 * only in this artificial test. Insert some normal data between A and B and we will
5086	 * decline of BSD again. Verdict: it is better to remove to trap
5087	 * buggy users.
5088	 */
5089	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5090	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5091		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5092		tp->copied_seq++;
5093		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5094			__skb_unlink(skb, &sk->sk_receive_queue);
5095			__kfree_skb(skb);
5096		}
5097	}
5098
5099	tp->urg_data = TCP_URG_NOTYET;
5100	tp->urg_seq = ptr;
5101
5102	/* Disable header prediction. */
5103	tp->pred_flags = 0;
5104}
5105
5106/* This is the 'fast' part of urgent handling. */
5107static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5108{
5109	struct tcp_sock *tp = tcp_sk(sk);
5110
5111	/* Check if we get a new urgent pointer - normally not. */
5112	if (th->urg)
5113		tcp_check_urg(sk, th);
5114
5115	/* Do we wait for any urgent data? - normally not... */
5116	if (tp->urg_data == TCP_URG_NOTYET) {
5117		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5118			  th->syn;
5119
5120		/* Is the urgent pointer pointing into this packet? */
5121		if (ptr < skb->len) {
5122			u8 tmp;
5123			if (skb_copy_bits(skb, ptr, &tmp, 1))
5124				BUG();
5125			tp->urg_data = TCP_URG_VALID | tmp;
5126			if (!sock_flag(sk, SOCK_DEAD))
5127				sk->sk_data_ready(sk);
5128		}
5129	}
5130}
5131
5132static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
 
 
 
 
 
 
 
 
5133{
5134	struct tcp_sock *tp = tcp_sk(sk);
5135	int chunk = skb->len - hlen;
5136	int err;
5137
5138	local_bh_enable();
5139	if (skb_csum_unnecessary(skb))
5140		err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk);
5141	else
5142		err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg);
5143
5144	if (!err) {
5145		tp->ucopy.len -= chunk;
5146		tp->copied_seq += chunk;
5147		tcp_rcv_space_adjust(sk);
5148	}
5149
5150	local_bh_disable();
5151	return err;
5152}
5153
5154static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5155					    struct sk_buff *skb)
5156{
5157	__sum16 result;
5158
5159	if (sock_owned_by_user(sk)) {
5160		local_bh_enable();
5161		result = __tcp_checksum_complete(skb);
5162		local_bh_disable();
5163	} else {
5164		result = __tcp_checksum_complete(skb);
5165	}
5166	return result;
5167}
5168
5169static inline bool tcp_checksum_complete_user(struct sock *sk,
5170					     struct sk_buff *skb)
5171{
5172	return !skb_csum_unnecessary(skb) &&
5173	       __tcp_checksum_complete_user(sk, skb);
5174}
5175
5176/* Does PAWS and seqno based validation of an incoming segment, flags will
5177 * play significant role here.
5178 */
5179static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5180				  const struct tcphdr *th, int syn_inerr)
5181{
5182	struct tcp_sock *tp = tcp_sk(sk);
 
5183
5184	/* RFC1323: H1. Apply PAWS check first. */
5185	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
 
5186	    tcp_paws_discard(sk, skb)) {
5187		if (!th->rst) {
5188			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
 
 
5189			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5190						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5191						  &tp->last_oow_ack_time))
5192				tcp_send_dupack(sk, skb);
 
5193			goto discard;
5194		}
5195		/* Reset is accepted even if it did not pass PAWS. */
5196	}
5197
5198	/* Step 1: check sequence number */
5199	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
 
5200		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5201		 * (RST) segments are validated by checking their SEQ-fields."
5202		 * And page 69: "If an incoming segment is not acceptable,
5203		 * an acknowledgment should be sent in reply (unless the RST
5204		 * bit is set, if so drop the segment and return)".
5205		 */
5206		if (!th->rst) {
5207			if (th->syn)
5208				goto syn_challenge;
5209			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5210						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5211						  &tp->last_oow_ack_time))
5212				tcp_send_dupack(sk, skb);
 
 
5213		}
5214		goto discard;
5215	}
5216
5217	/* Step 2: check RST bit */
5218	if (th->rst) {
5219		/* RFC 5961 3.2 :
5220		 * If sequence number exactly matches RCV.NXT, then
 
 
 
5221		 *     RESET the connection
5222		 * else
5223		 *     Send a challenge ACK
5224		 */
5225		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
5226			tcp_reset(sk);
5227		else
5228			tcp_send_challenge_ack(sk, skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5229		goto discard;
5230	}
5231
5232	/* step 3: check security and precedence [ignored] */
5233
5234	/* step 4: Check for a SYN
5235	 * RFC 5961 4.2 : Send a challenge ack
5236	 */
5237	if (th->syn) {
5238syn_challenge:
5239		if (syn_inerr)
5240			TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5241		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5242		tcp_send_challenge_ack(sk, skb);
 
5243		goto discard;
5244	}
5245
 
 
5246	return true;
5247
5248discard:
 
 
 
 
 
5249	__kfree_skb(skb);
5250	return false;
5251}
5252
5253/*
5254 *	TCP receive function for the ESTABLISHED state.
5255 *
5256 *	It is split into a fast path and a slow path. The fast path is
5257 * 	disabled when:
5258 *	- A zero window was announced from us - zero window probing
5259 *        is only handled properly in the slow path.
5260 *	- Out of order segments arrived.
5261 *	- Urgent data is expected.
5262 *	- There is no buffer space left
5263 *	- Unexpected TCP flags/window values/header lengths are received
5264 *	  (detected by checking the TCP header against pred_flags)
5265 *	- Data is sent in both directions. Fast path only supports pure senders
5266 *	  or pure receivers (this means either the sequence number or the ack
5267 *	  value must stay constant)
5268 *	- Unexpected TCP option.
5269 *
5270 *	When these conditions are not satisfied it drops into a standard
5271 *	receive procedure patterned after RFC793 to handle all cases.
5272 *	The first three cases are guaranteed by proper pred_flags setting,
5273 *	the rest is checked inline. Fast processing is turned on in
5274 *	tcp_data_queue when everything is OK.
5275 */
5276void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5277			 const struct tcphdr *th, unsigned int len)
5278{
 
 
5279	struct tcp_sock *tp = tcp_sk(sk);
 
5280
5281	if (unlikely(!sk->sk_rx_dst))
 
 
 
 
5282		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5283	/*
5284	 *	Header prediction.
5285	 *	The code loosely follows the one in the famous
5286	 *	"30 instruction TCP receive" Van Jacobson mail.
5287	 *
5288	 *	Van's trick is to deposit buffers into socket queue
5289	 *	on a device interrupt, to call tcp_recv function
5290	 *	on the receive process context and checksum and copy
5291	 *	the buffer to user space. smart...
5292	 *
5293	 *	Our current scheme is not silly either but we take the
5294	 *	extra cost of the net_bh soft interrupt processing...
5295	 *	We do checksum and copy also but from device to kernel.
5296	 */
5297
5298	tp->rx_opt.saw_tstamp = 0;
5299
5300	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5301	 *	if header_prediction is to be made
5302	 *	'S' will always be tp->tcp_header_len >> 2
5303	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5304	 *  turn it off	(when there are holes in the receive
5305	 *	 space for instance)
5306	 *	PSH flag is ignored.
5307	 */
5308
5309	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5310	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5311	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5312		int tcp_header_len = tp->tcp_header_len;
5313
5314		/* Timestamp header prediction: tcp_header_len
5315		 * is automatically equal to th->doff*4 due to pred_flags
5316		 * match.
5317		 */
5318
5319		/* Check timestamp */
5320		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5321			/* No? Slow path! */
5322			if (!tcp_parse_aligned_timestamp(tp, th))
5323				goto slow_path;
5324
5325			/* If PAWS failed, check it more carefully in slow path */
5326			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5327				goto slow_path;
5328
5329			/* DO NOT update ts_recent here, if checksum fails
5330			 * and timestamp was corrupted part, it will result
5331			 * in a hung connection since we will drop all
5332			 * future packets due to the PAWS test.
5333			 */
5334		}
5335
5336		if (len <= tcp_header_len) {
5337			/* Bulk data transfer: sender */
5338			if (len == tcp_header_len) {
5339				/* Predicted packet is in window by definition.
5340				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5341				 * Hence, check seq<=rcv_wup reduces to:
5342				 */
5343				if (tcp_header_len ==
5344				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5345				    tp->rcv_nxt == tp->rcv_wup)
5346					tcp_store_ts_recent(tp);
5347
5348				/* We know that such packets are checksummed
5349				 * on entry.
5350				 */
5351				tcp_ack(sk, skb, 0);
5352				__kfree_skb(skb);
5353				tcp_data_snd_check(sk);
 
 
 
 
 
5354				return;
5355			} else { /* Header too small */
5356				TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
 
5357				goto discard;
5358			}
5359		} else {
5360			int eaten = 0;
5361			bool fragstolen = false;
5362
5363			if (tp->ucopy.task == current &&
5364			    tp->copied_seq == tp->rcv_nxt &&
5365			    len - tcp_header_len <= tp->ucopy.len &&
5366			    sock_owned_by_user(sk)) {
5367				__set_current_state(TASK_RUNNING);
5368
5369				if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
5370					/* Predicted packet is in window by definition.
5371					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5372					 * Hence, check seq<=rcv_wup reduces to:
5373					 */
5374					if (tcp_header_len ==
5375					    (sizeof(struct tcphdr) +
5376					     TCPOLEN_TSTAMP_ALIGNED) &&
5377					    tp->rcv_nxt == tp->rcv_wup)
5378						tcp_store_ts_recent(tp);
5379
5380					tcp_rcv_rtt_measure_ts(sk, skb);
5381
5382					__skb_pull(skb, tcp_header_len);
5383					tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
5384					NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5385					eaten = 1;
5386				}
5387			}
5388			if (!eaten) {
5389				if (tcp_checksum_complete_user(sk, skb))
5390					goto csum_error;
5391
5392				if ((int)skb->truesize > sk->sk_forward_alloc)
5393					goto step5;
5394
5395				/* Predicted packet is in window by definition.
5396				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5397				 * Hence, check seq<=rcv_wup reduces to:
5398				 */
5399				if (tcp_header_len ==
5400				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5401				    tp->rcv_nxt == tp->rcv_wup)
5402					tcp_store_ts_recent(tp);
5403
5404				tcp_rcv_rtt_measure_ts(sk, skb);
5405
5406				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5407
5408				/* Bulk data transfer: receiver */
5409				eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5410						      &fragstolen);
5411			}
5412
5413			tcp_event_data_recv(sk, skb);
5414
5415			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5416				/* Well, only one small jumplet in fast path... */
5417				tcp_ack(sk, skb, FLAG_DATA);
5418				tcp_data_snd_check(sk);
5419				if (!inet_csk_ack_scheduled(sk))
5420					goto no_ack;
 
 
5421			}
5422
5423			__tcp_ack_snd_check(sk, 0);
5424no_ack:
5425			if (eaten)
5426				kfree_skb_partial(skb, fragstolen);
5427			sk->sk_data_ready(sk);
5428			return;
5429		}
5430	}
5431
5432slow_path:
5433	if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5434		goto csum_error;
5435
5436	if (!th->ack && !th->rst && !th->syn)
 
5437		goto discard;
 
5438
5439	/*
5440	 *	Standard slow path.
5441	 */
5442
5443	if (!tcp_validate_incoming(sk, skb, th, 1))
5444		return;
5445
5446step5:
5447	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
 
 
5448		goto discard;
5449
5450	tcp_rcv_rtt_measure_ts(sk, skb);
5451
5452	/* Process urgent data. */
5453	tcp_urg(sk, skb, th);
5454
5455	/* step 7: process the segment text */
5456	tcp_data_queue(sk, skb);
5457
5458	tcp_data_snd_check(sk);
5459	tcp_ack_snd_check(sk);
5460	return;
5461
5462csum_error:
5463	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
5464	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
 
 
5465
5466discard:
5467	__kfree_skb(skb);
5468}
5469EXPORT_SYMBOL(tcp_rcv_established);
5470
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5471void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5472{
5473	struct tcp_sock *tp = tcp_sk(sk);
5474	struct inet_connection_sock *icsk = inet_csk(sk);
5475
 
5476	tcp_set_state(sk, TCP_ESTABLISHED);
 
5477
5478	if (skb) {
5479		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5480		security_inet_conn_established(sk, skb);
 
5481	}
5482
5483	/* Make sure socket is routed, for correct metrics.  */
5484	icsk->icsk_af_ops->rebuild_header(sk);
5485
5486	tcp_init_metrics(sk);
5487
5488	tcp_init_congestion_control(sk);
5489
5490	/* Prevent spurious tcp_cwnd_restart() on first data
5491	 * packet.
5492	 */
5493	tp->lsndtime = tcp_time_stamp;
5494
5495	tcp_init_buffer_space(sk);
5496
5497	if (sock_flag(sk, SOCK_KEEPOPEN))
5498		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5499
5500	if (!tp->rx_opt.snd_wscale)
5501		__tcp_fast_path_on(tp, tp->snd_wnd);
5502	else
5503		tp->pred_flags = 0;
5504
5505	if (!sock_flag(sk, SOCK_DEAD)) {
5506		sk->sk_state_change(sk);
5507		sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5508	}
5509}
5510
5511static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5512				    struct tcp_fastopen_cookie *cookie)
5513{
5514	struct tcp_sock *tp = tcp_sk(sk);
5515	struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5516	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5517	bool syn_drop = false;
5518
5519	if (mss == tp->rx_opt.user_mss) {
5520		struct tcp_options_received opt;
5521
5522		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5523		tcp_clear_options(&opt);
5524		opt.user_mss = opt.mss_clamp = 0;
5525		tcp_parse_options(synack, &opt, 0, NULL);
5526		mss = opt.mss_clamp;
5527	}
5528
5529	if (!tp->syn_fastopen) {
5530		/* Ignore an unsolicited cookie */
5531		cookie->len = -1;
5532	} else if (tp->total_retrans) {
5533		/* SYN timed out and the SYN-ACK neither has a cookie nor
5534		 * acknowledges data. Presumably the remote received only
5535		 * the retransmitted (regular) SYNs: either the original
5536		 * SYN-data or the corresponding SYN-ACK was dropped.
5537		 */
5538		syn_drop = (cookie->len < 0 && data);
5539	} else if (cookie->len < 0 && !tp->syn_data) {
5540		/* We requested a cookie but didn't get it. If we did not use
5541		 * the (old) exp opt format then try so next time (try_exp=1).
5542		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5543		 */
5544		try_exp = tp->syn_fastopen_exp ? 2 : 1;
5545	}
5546
5547	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5548
5549	if (data) { /* Retransmit unacked data in SYN */
5550		tcp_for_write_queue_from(data, sk) {
5551			if (data == tcp_send_head(sk) ||
5552			    __tcp_retransmit_skb(sk, data))
5553				break;
5554		}
5555		tcp_rearm_rto(sk);
5556		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL);
 
 
5557		return true;
5558	}
5559	tp->syn_data_acked = tp->syn_data;
5560	if (tp->syn_data_acked)
5561		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
 
 
 
 
5562
5563	tcp_fastopen_add_skb(sk, synack);
5564
5565	return false;
5566}
5567
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5568static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5569					 const struct tcphdr *th)
5570{
5571	struct inet_connection_sock *icsk = inet_csk(sk);
5572	struct tcp_sock *tp = tcp_sk(sk);
5573	struct tcp_fastopen_cookie foc = { .len = -1 };
5574	int saved_clamp = tp->rx_opt.mss_clamp;
 
 
5575
5576	tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5577	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5578		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5579
5580	if (th->ack) {
5581		/* rfc793:
5582		 * "If the state is SYN-SENT then
5583		 *    first check the ACK bit
5584		 *      If the ACK bit is set
5585		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5586		 *        a reset (unless the RST bit is set, if so drop
5587		 *        the segment and return)"
5588		 */
5589		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5590		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
 
 
 
 
 
5591			goto reset_and_undo;
 
5592
5593		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5594		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5595			     tcp_time_stamp)) {
5596			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
 
5597			goto reset_and_undo;
5598		}
5599
5600		/* Now ACK is acceptable.
5601		 *
5602		 * "If the RST bit is set
5603		 *    If the ACK was acceptable then signal the user "error:
5604		 *    connection reset", drop the segment, enter CLOSED state,
5605		 *    delete TCB, and return."
5606		 */
5607
5608		if (th->rst) {
5609			tcp_reset(sk);
5610			goto discard;
 
 
5611		}
5612
5613		/* rfc793:
5614		 *   "fifth, if neither of the SYN or RST bits is set then
5615		 *    drop the segment and return."
5616		 *
5617		 *    See note below!
5618		 *                                        --ANK(990513)
5619		 */
5620		if (!th->syn)
 
5621			goto discard_and_undo;
5622
5623		/* rfc793:
5624		 *   "If the SYN bit is on ...
5625		 *    are acceptable then ...
5626		 *    (our SYN has been ACKed), change the connection
5627		 *    state to ESTABLISHED..."
5628		 */
5629
5630		tcp_ecn_rcv_synack(tp, th);
5631
5632		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
 
5633		tcp_ack(sk, skb, FLAG_SLOWPATH);
5634
5635		/* Ok.. it's good. Set up sequence numbers and
5636		 * move to established.
5637		 */
5638		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5639		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5640
5641		/* RFC1323: The window in SYN & SYN/ACK segments is
5642		 * never scaled.
5643		 */
5644		tp->snd_wnd = ntohs(th->window);
5645
5646		if (!tp->rx_opt.wscale_ok) {
5647			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5648			tp->window_clamp = min(tp->window_clamp, 65535U);
5649		}
5650
5651		if (tp->rx_opt.saw_tstamp) {
5652			tp->rx_opt.tstamp_ok	   = 1;
5653			tp->tcp_header_len =
5654				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5655			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5656			tcp_store_ts_recent(tp);
5657		} else {
5658			tp->tcp_header_len = sizeof(struct tcphdr);
5659		}
5660
5661		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5662			tcp_enable_fack(tp);
5663
5664		tcp_mtup_init(sk);
5665		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5666		tcp_initialize_rcv_mss(sk);
5667
5668		/* Remember, tcp_poll() does not lock socket!
5669		 * Change state from SYN-SENT only after copied_seq
5670		 * is initialized. */
5671		tp->copied_seq = tp->rcv_nxt;
 
 
5672
5673		smp_mb();
5674
5675		tcp_finish_connect(sk, skb);
5676
5677		if ((tp->syn_fastopen || tp->syn_data) &&
5678		    tcp_rcv_fastopen_synack(sk, skb, &foc))
 
 
 
 
 
 
5679			return -1;
5680
5681		if (sk->sk_write_pending ||
5682		    icsk->icsk_accept_queue.rskq_defer_accept ||
5683		    icsk->icsk_ack.pingpong) {
5684			/* Save one ACK. Data will be ready after
5685			 * several ticks, if write_pending is set.
5686			 *
5687			 * It may be deleted, but with this feature tcpdumps
5688			 * look so _wonderfully_ clever, that I was not able
5689			 * to stand against the temptation 8)     --ANK
5690			 */
5691			inet_csk_schedule_ack(sk);
5692			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5693			tcp_enter_quickack_mode(sk);
5694			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5695						  TCP_DELACK_MAX, TCP_RTO_MAX);
5696
5697discard:
5698			__kfree_skb(skb);
5699			return 0;
5700		} else {
5701			tcp_send_ack(sk);
5702		}
 
5703		return -1;
5704	}
5705
5706	/* No ACK in the segment */
5707
5708	if (th->rst) {
5709		/* rfc793:
5710		 * "If the RST bit is set
5711		 *
5712		 *      Otherwise (no ACK) drop the segment and return."
5713		 */
5714
5715		goto discard_and_undo;
5716	}
5717
5718	/* PAWS check. */
5719	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5720	    tcp_paws_reject(&tp->rx_opt, 0))
 
5721		goto discard_and_undo;
5722
5723	if (th->syn) {
5724		/* We see SYN without ACK. It is attempt of
5725		 * simultaneous connect with crossed SYNs.
5726		 * Particularly, it can be connect to self.
5727		 */
 
 
 
 
 
 
 
 
 
 
5728		tcp_set_state(sk, TCP_SYN_RECV);
5729
5730		if (tp->rx_opt.saw_tstamp) {
5731			tp->rx_opt.tstamp_ok = 1;
5732			tcp_store_ts_recent(tp);
5733			tp->tcp_header_len =
5734				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5735		} else {
5736			tp->tcp_header_len = sizeof(struct tcphdr);
5737		}
5738
5739		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5740		tp->copied_seq = tp->rcv_nxt;
5741		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5742
5743		/* RFC1323: The window in SYN & SYN/ACK segments is
5744		 * never scaled.
5745		 */
5746		tp->snd_wnd    = ntohs(th->window);
5747		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5748		tp->max_window = tp->snd_wnd;
5749
5750		tcp_ecn_rcv_syn(tp, th);
5751
5752		tcp_mtup_init(sk);
5753		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5754		tcp_initialize_rcv_mss(sk);
5755
5756		tcp_send_synack(sk);
5757#if 0
5758		/* Note, we could accept data and URG from this segment.
5759		 * There are no obstacles to make this (except that we must
5760		 * either change tcp_recvmsg() to prevent it from returning data
5761		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5762		 *
5763		 * However, if we ignore data in ACKless segments sometimes,
5764		 * we have no reasons to accept it sometimes.
5765		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5766		 * is not flawless. So, discard packet for sanity.
5767		 * Uncomment this return to process the data.
5768		 */
5769		return -1;
5770#else
5771		goto discard;
5772#endif
5773	}
5774	/* "fifth, if neither of the SYN or RST bits is set then
5775	 * drop the segment and return."
5776	 */
5777
5778discard_and_undo:
5779	tcp_clear_options(&tp->rx_opt);
5780	tp->rx_opt.mss_clamp = saved_clamp;
5781	goto discard;
 
5782
5783reset_and_undo:
5784	tcp_clear_options(&tp->rx_opt);
5785	tp->rx_opt.mss_clamp = saved_clamp;
5786	return 1;
5787}
5788
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5789/*
5790 *	This function implements the receiving procedure of RFC 793 for
5791 *	all states except ESTABLISHED and TIME_WAIT.
5792 *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5793 *	address independent.
5794 */
5795
5796int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
5797{
5798	struct tcp_sock *tp = tcp_sk(sk);
5799	struct inet_connection_sock *icsk = inet_csk(sk);
5800	const struct tcphdr *th = tcp_hdr(skb);
5801	struct request_sock *req;
5802	int queued = 0;
5803	bool acceptable;
5804
5805	tp->rx_opt.saw_tstamp = 0;
5806
5807	switch (sk->sk_state) {
5808	case TCP_CLOSE:
 
5809		goto discard;
5810
5811	case TCP_LISTEN:
5812		if (th->ack)
5813			return 1;
5814
5815		if (th->rst)
 
5816			goto discard;
5817
5818		if (th->syn) {
5819			if (th->fin)
 
5820				goto discard;
5821			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
 
 
 
 
 
 
 
 
 
 
5822				return 1;
5823
5824			/* Now we have several options: In theory there is
5825			 * nothing else in the frame. KA9Q has an option to
5826			 * send data with the syn, BSD accepts data with the
5827			 * syn up to the [to be] advertised window and
5828			 * Solaris 2.1 gives you a protocol error. For now
5829			 * we just ignore it, that fits the spec precisely
5830			 * and avoids incompatibilities. It would be nice in
5831			 * future to drop through and process the data.
5832			 *
5833			 * Now that TTCP is starting to be used we ought to
5834			 * queue this data.
5835			 * But, this leaves one open to an easy denial of
5836			 * service attack, and SYN cookies can't defend
5837			 * against this problem. So, we drop the data
5838			 * in the interest of security over speed unless
5839			 * it's still in use.
5840			 */
5841			kfree_skb(skb);
5842			return 0;
5843		}
 
5844		goto discard;
5845
5846	case TCP_SYN_SENT:
 
 
5847		queued = tcp_rcv_synsent_state_process(sk, skb, th);
5848		if (queued >= 0)
5849			return queued;
5850
5851		/* Do step6 onward by hand. */
5852		tcp_urg(sk, skb, th);
5853		__kfree_skb(skb);
5854		tcp_data_snd_check(sk);
5855		return 0;
5856	}
5857
5858	req = tp->fastopen_rsk;
 
 
 
5859	if (req) {
 
 
5860		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5861		    sk->sk_state != TCP_FIN_WAIT1);
5862
5863		if (!tcp_check_req(sk, skb, req, true))
 
5864			goto discard;
 
5865	}
5866
5867	if (!th->ack && !th->rst && !th->syn)
 
5868		goto discard;
5869
5870	if (!tcp_validate_incoming(sk, skb, th, 0))
5871		return 0;
5872
5873	/* step 5: check the ACK field */
5874	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5875				      FLAG_UPDATE_TS_RECENT) > 0;
 
5876
 
 
 
 
 
 
 
5877	switch (sk->sk_state) {
5878	case TCP_SYN_RECV:
5879		if (!acceptable)
5880			return 1;
5881
5882		if (!tp->srtt_us)
5883			tcp_synack_rtt_meas(sk, req);
5884
5885		/* Once we leave TCP_SYN_RECV, we no longer need req
5886		 * so release it.
5887		 */
5888		if (req) {
5889			tp->total_retrans = req->num_retrans;
5890			reqsk_fastopen_remove(sk, req, false);
5891		} else {
5892			/* Make sure socket is routed, for correct metrics. */
5893			icsk->icsk_af_ops->rebuild_header(sk);
5894			tcp_init_congestion_control(sk);
5895
5896			tcp_mtup_init(sk);
5897			tp->copied_seq = tp->rcv_nxt;
5898			tcp_init_buffer_space(sk);
5899		}
 
5900		smp_mb();
5901		tcp_set_state(sk, TCP_ESTABLISHED);
5902		sk->sk_state_change(sk);
5903
5904		/* Note, that this wakeup is only for marginal crossed SYN case.
5905		 * Passively open sockets are not waked up, because
5906		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5907		 */
5908		if (sk->sk_socket)
5909			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5910
5911		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5912		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5913		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5914
5915		if (tp->rx_opt.tstamp_ok)
5916			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5917
5918		if (req) {
5919			/* Re-arm the timer because data may have been sent out.
5920			 * This is similar to the regular data transmission case
5921			 * when new data has just been ack'ed.
5922			 *
5923			 * (TFO) - we could try to be more aggressive and
5924			 * retransmitting any data sooner based on when they
5925			 * are sent out.
5926			 */
5927			tcp_rearm_rto(sk);
5928		} else
5929			tcp_init_metrics(sk);
5930
5931		tcp_update_pacing_rate(sk);
5932
5933		/* Prevent spurious tcp_cwnd_restart() on first data packet */
5934		tp->lsndtime = tcp_time_stamp;
5935
5936		tcp_initialize_rcv_mss(sk);
5937		tcp_fast_path_on(tp);
5938		break;
5939
5940	case TCP_FIN_WAIT1: {
5941		struct dst_entry *dst;
5942		int tmo;
5943
5944		/* If we enter the TCP_FIN_WAIT1 state and we are a
5945		 * Fast Open socket and this is the first acceptable
5946		 * ACK we have received, this would have acknowledged
5947		 * our SYNACK so stop the SYNACK timer.
5948		 */
5949		if (req) {
5950			/* Return RST if ack_seq is invalid.
5951			 * Note that RFC793 only says to generate a
5952			 * DUPACK for it but for TCP Fast Open it seems
5953			 * better to treat this case like TCP_SYN_RECV
5954			 * above.
5955			 */
5956			if (!acceptable)
5957				return 1;
5958			/* We no longer need the request sock. */
5959			reqsk_fastopen_remove(sk, req, false);
5960			tcp_rearm_rto(sk);
5961		}
5962		if (tp->snd_una != tp->write_seq)
5963			break;
5964
5965		tcp_set_state(sk, TCP_FIN_WAIT2);
5966		sk->sk_shutdown |= SEND_SHUTDOWN;
5967
5968		dst = __sk_dst_get(sk);
5969		if (dst)
5970			dst_confirm(dst);
5971
5972		if (!sock_flag(sk, SOCK_DEAD)) {
5973			/* Wake up lingering close() */
5974			sk->sk_state_change(sk);
5975			break;
5976		}
5977
5978		if (tp->linger2 < 0 ||
5979		    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5980		     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
 
 
 
 
 
 
 
5981			tcp_done(sk);
5982			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5983			return 1;
5984		}
5985
5986		tmo = tcp_fin_time(sk);
5987		if (tmo > TCP_TIMEWAIT_LEN) {
5988			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5989		} else if (th->fin || sock_owned_by_user(sk)) {
5990			/* Bad case. We could lose such FIN otherwise.
5991			 * It is not a big problem, but it looks confusing
5992			 * and not so rare event. We still can lose it now,
5993			 * if it spins in bh_lock_sock(), but it is really
5994			 * marginal case.
5995			 */
5996			inet_csk_reset_keepalive_timer(sk, tmo);
5997		} else {
5998			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5999			goto discard;
6000		}
6001		break;
6002	}
6003
6004	case TCP_CLOSING:
6005		if (tp->snd_una == tp->write_seq) {
6006			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6007			goto discard;
6008		}
6009		break;
6010
6011	case TCP_LAST_ACK:
6012		if (tp->snd_una == tp->write_seq) {
6013			tcp_update_metrics(sk);
6014			tcp_done(sk);
6015			goto discard;
6016		}
6017		break;
6018	}
6019
6020	/* step 6: check the URG bit */
6021	tcp_urg(sk, skb, th);
6022
6023	/* step 7: process the segment text */
6024	switch (sk->sk_state) {
6025	case TCP_CLOSE_WAIT:
6026	case TCP_CLOSING:
6027	case TCP_LAST_ACK:
6028		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
 
 
 
 
 
6029			break;
 
 
6030	case TCP_FIN_WAIT1:
6031	case TCP_FIN_WAIT2:
6032		/* RFC 793 says to queue data in these states,
6033		 * RFC 1122 says we MUST send a reset.
6034		 * BSD 4.4 also does reset.
6035		 */
6036		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6037			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6038			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6039				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6040				tcp_reset(sk);
6041				return 1;
6042			}
6043		}
6044		/* Fall through */
6045	case TCP_ESTABLISHED:
6046		tcp_data_queue(sk, skb);
6047		queued = 1;
6048		break;
6049	}
6050
6051	/* tcp_data could move socket to TIME-WAIT */
6052	if (sk->sk_state != TCP_CLOSE) {
6053		tcp_data_snd_check(sk);
6054		tcp_ack_snd_check(sk);
6055	}
6056
6057	if (!queued) {
6058discard:
6059		__kfree_skb(skb);
6060	}
6061	return 0;
 
 
 
 
6062}
6063EXPORT_SYMBOL(tcp_rcv_state_process);
6064
6065static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6066{
6067	struct inet_request_sock *ireq = inet_rsk(req);
6068
6069	if (family == AF_INET)
6070		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6071				    &ireq->ir_rmt_addr, port);
6072#if IS_ENABLED(CONFIG_IPV6)
6073	else if (family == AF_INET6)
6074		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6075				    &ireq->ir_v6_rmt_addr, port);
6076#endif
6077}
6078
6079/* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6080 *
6081 * If we receive a SYN packet with these bits set, it means a
6082 * network is playing bad games with TOS bits. In order to
6083 * avoid possible false congestion notifications, we disable
6084 * TCP ECN negotiation.
6085 *
6086 * Exception: tcp_ca wants ECN. This is required for DCTCP
6087 * congestion control: Linux DCTCP asserts ECT on all packets,
6088 * including SYN, which is most optimal solution; however,
6089 * others, such as FreeBSD do not.
 
 
 
 
 
6090 */
6091static void tcp_ecn_create_request(struct request_sock *req,
6092				   const struct sk_buff *skb,
6093				   const struct sock *listen_sk,
6094				   const struct dst_entry *dst)
6095{
6096	const struct tcphdr *th = tcp_hdr(skb);
6097	const struct net *net = sock_net(listen_sk);
6098	bool th_ecn = th->ece && th->cwr;
6099	bool ect, ecn_ok;
6100	u32 ecn_ok_dst;
6101
6102	if (!th_ecn)
6103		return;
6104
6105	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6106	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6107	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6108
6109	if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6110	    (ecn_ok_dst & DST_FEATURE_ECN_CA))
 
6111		inet_rsk(req)->ecn_ok = 1;
6112}
6113
6114static void tcp_openreq_init(struct request_sock *req,
6115			     const struct tcp_options_received *rx_opt,
6116			     struct sk_buff *skb, const struct sock *sk)
6117{
6118	struct inet_request_sock *ireq = inet_rsk(req);
6119
6120	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6121	req->cookie_ts = 0;
6122	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6123	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6124	skb_mstamp_get(&tcp_rsk(req)->snt_synack);
6125	tcp_rsk(req)->last_oow_ack_time = 0;
6126	req->mss = rx_opt->mss_clamp;
6127	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6128	ireq->tstamp_ok = rx_opt->tstamp_ok;
6129	ireq->sack_ok = rx_opt->sack_ok;
6130	ireq->snd_wscale = rx_opt->snd_wscale;
6131	ireq->wscale_ok = rx_opt->wscale_ok;
6132	ireq->acked = 0;
6133	ireq->ecn_ok = 0;
6134	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6135	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6136	ireq->ir_mark = inet_request_mark(sk, skb);
 
 
 
 
6137}
6138
6139struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6140				      struct sock *sk_listener,
6141				      bool attach_listener)
6142{
6143	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6144					       attach_listener);
6145
6146	if (req) {
6147		struct inet_request_sock *ireq = inet_rsk(req);
6148
6149		kmemcheck_annotate_bitfield(ireq, flags);
6150		ireq->opt = NULL;
 
 
6151		atomic64_set(&ireq->ir_cookie, 0);
6152		ireq->ireq_state = TCP_NEW_SYN_RECV;
6153		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6154		ireq->ireq_family = sk_listener->sk_family;
 
6155	}
6156
6157	return req;
6158}
6159EXPORT_SYMBOL(inet_reqsk_alloc);
6160
6161/*
6162 * Return true if a syncookie should be sent
6163 */
6164static bool tcp_syn_flood_action(const struct sock *sk,
6165				 const struct sk_buff *skb,
6166				 const char *proto)
6167{
6168	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6169	const char *msg = "Dropping request";
 
6170	bool want_cookie = false;
6171	struct net *net = sock_net(sk);
 
 
6172
6173#ifdef CONFIG_SYN_COOKIES
6174	if (net->ipv4.sysctl_tcp_syncookies) {
6175		msg = "Sending cookies";
6176		want_cookie = true;
6177		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6178	} else
6179#endif
6180		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6181
6182	if (!queue->synflood_warned &&
6183	    net->ipv4.sysctl_tcp_syncookies != 2 &&
6184	    xchg(&queue->synflood_warned, 1) == 0)
6185		pr_info("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6186			proto, ntohs(tcp_hdr(skb)->dest), msg);
 
 
 
 
 
 
 
6187
6188	return want_cookie;
6189}
6190
6191static void tcp_reqsk_record_syn(const struct sock *sk,
6192				 struct request_sock *req,
6193				 const struct sk_buff *skb)
6194{
6195	if (tcp_sk(sk)->save_syn) {
6196		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6197		u32 *copy;
 
 
 
 
 
 
 
 
 
 
 
6198
6199		copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6200		if (copy) {
6201			copy[0] = len;
6202			memcpy(&copy[1], skb_network_header(skb), len);
6203			req->saved_syn = copy;
 
 
 
6204		}
6205	}
6206}
6207
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6208int tcp_conn_request(struct request_sock_ops *rsk_ops,
6209		     const struct tcp_request_sock_ops *af_ops,
6210		     struct sock *sk, struct sk_buff *skb)
6211{
6212	struct tcp_fastopen_cookie foc = { .len = -1 };
6213	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6214	struct tcp_options_received tmp_opt;
6215	struct tcp_sock *tp = tcp_sk(sk);
6216	struct net *net = sock_net(sk);
6217	struct sock *fastopen_sk = NULL;
6218	struct dst_entry *dst = NULL;
6219	struct request_sock *req;
6220	bool want_cookie = false;
 
6221	struct flowi fl;
 
 
 
 
 
 
 
6222
6223	/* TW buckets are converted to open requests without
6224	 * limitations, they conserve resources and peer is
6225	 * evidently real one.
6226	 */
6227	if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6228	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6229		want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6230		if (!want_cookie)
6231			goto drop;
6232	}
6233
6234
6235	/* Accept backlog is full. If we have already queued enough
6236	 * of warm entries in syn queue, drop request. It is better than
6237	 * clogging syn queue with openreqs with exponentially increasing
6238	 * timeout.
6239	 */
6240	if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) {
6241		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6242		goto drop;
6243	}
6244
6245	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6246	if (!req)
6247		goto drop;
6248
 
6249	tcp_rsk(req)->af_specific = af_ops;
 
 
 
 
 
6250
6251	tcp_clear_options(&tmp_opt);
6252	tmp_opt.mss_clamp = af_ops->mss_clamp;
6253	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6254	tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
 
6255
6256	if (want_cookie && !tmp_opt.saw_tstamp)
6257		tcp_clear_options(&tmp_opt);
6258
 
 
 
6259	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6260	tcp_openreq_init(req, &tmp_opt, skb, sk);
 
6261
6262	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6263	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6264
6265	af_ops->init_req(req, sk, skb);
6266
6267	if (security_inet_conn_request(sk, skb, req))
6268		goto drop_and_free;
6269
 
 
 
 
6270	if (!want_cookie && !isn) {
6271		/* VJ's idea. We save last timestamp seen
6272		 * from the destination in peer table, when entering
6273		 * state TIME-WAIT, and check against it before
6274		 * accepting new connection request.
6275		 *
6276		 * If "isn" is not zero, this request hit alive
6277		 * timewait bucket, so that all the necessary checks
6278		 * are made in the function processing timewait state.
6279		 */
6280		if (tcp_death_row.sysctl_tw_recycle) {
6281			bool strict;
6282
6283			dst = af_ops->route_req(sk, &fl, req, &strict);
6284
6285			if (dst && strict &&
6286			    !tcp_peer_is_proven(req, dst, true,
6287						tmp_opt.saw_tstamp)) {
6288				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
6289				goto drop_and_release;
6290			}
6291		}
6292		/* Kill the following clause, if you dislike this way. */
6293		else if (!net->ipv4.sysctl_tcp_syncookies &&
6294			 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6295			  (sysctl_max_syn_backlog >> 2)) &&
6296			 !tcp_peer_is_proven(req, dst, false,
6297					     tmp_opt.saw_tstamp)) {
6298			/* Without syncookies last quarter of
6299			 * backlog is filled with destinations,
6300			 * proven to be alive.
6301			 * It means that we continue to communicate
6302			 * to destinations, already remembered
6303			 * to the moment of synflood.
6304			 */
6305			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6306				    rsk_ops->family);
6307			goto drop_and_release;
6308		}
6309
6310		isn = af_ops->init_seq(skb);
6311	}
6312	if (!dst) {
6313		dst = af_ops->route_req(sk, &fl, req, NULL);
6314		if (!dst)
6315			goto drop_and_free;
6316	}
6317
6318	tcp_ecn_create_request(req, skb, sk, dst);
6319
6320	if (want_cookie) {
6321		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6322		req->cookie_ts = tmp_opt.tstamp_ok;
6323		if (!tmp_opt.tstamp_ok)
6324			inet_rsk(req)->ecn_ok = 0;
6325	}
6326
 
 
 
 
 
 
 
 
 
 
 
 
6327	tcp_rsk(req)->snt_isn = isn;
6328	tcp_rsk(req)->txhash = net_tx_rndhash();
 
6329	tcp_openreq_init_rwin(req, sk, dst);
 
6330	if (!want_cookie) {
6331		tcp_reqsk_record_syn(sk, req, skb);
6332		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6333	}
6334	if (fastopen_sk) {
6335		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6336				    &foc, false);
6337		/* Add the child socket directly into the accept queue */
6338		inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
 
 
 
 
 
6339		sk->sk_data_ready(sk);
6340		bh_unlock_sock(fastopen_sk);
6341		sock_put(fastopen_sk);
6342	} else {
6343		tcp_rsk(req)->tfo_listener = false;
6344		if (!want_cookie)
6345			inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
6346		af_ops->send_synack(sk, dst, &fl, req,
6347				    &foc, !want_cookie);
6348		if (want_cookie)
6349			goto drop_and_free;
 
 
 
 
 
 
6350	}
6351	reqsk_put(req);
6352	return 0;
6353
6354drop_and_release:
6355	dst_release(dst);
6356drop_and_free:
6357	reqsk_free(req);
6358drop:
6359	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
6360	return 0;
6361}
6362EXPORT_SYMBOL(tcp_conn_request);