Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  linux/kernel/panic.c
  4 *
  5 *  Copyright (C) 1991, 1992  Linus Torvalds
  6 */
  7
  8/*
  9 * This function is used through-out the kernel (including mm and fs)
 10 * to indicate a major problem.
 11 */
 12#include <linux/debug_locks.h>
 13#include <linux/sched/debug.h>
 14#include <linux/interrupt.h>
 15#include <linux/kgdb.h>
 16#include <linux/kmsg_dump.h>
 17#include <linux/kallsyms.h>
 18#include <linux/notifier.h>
 19#include <linux/vt_kern.h>
 20#include <linux/module.h>
 21#include <linux/random.h>
 22#include <linux/ftrace.h>
 23#include <linux/reboot.h>
 24#include <linux/delay.h>
 25#include <linux/kexec.h>
 26#include <linux/panic_notifier.h>
 27#include <linux/sched.h>
 28#include <linux/string_helpers.h>
 29#include <linux/sysrq.h>
 30#include <linux/init.h>
 31#include <linux/nmi.h>
 32#include <linux/console.h>
 33#include <linux/bug.h>
 34#include <linux/ratelimit.h>
 35#include <linux/debugfs.h>
 36#include <linux/sysfs.h>
 37#include <linux/context_tracking.h>
 38#include <trace/events/error_report.h>
 39#include <asm/sections.h>
 40
 41#define PANIC_TIMER_STEP 100
 42#define PANIC_BLINK_SPD 18
 43
 44#ifdef CONFIG_SMP
 45/*
 46 * Should we dump all CPUs backtraces in an oops event?
 47 * Defaults to 0, can be changed via sysctl.
 48 */
 49static unsigned int __read_mostly sysctl_oops_all_cpu_backtrace;
 50#else
 51#define sysctl_oops_all_cpu_backtrace 0
 52#endif /* CONFIG_SMP */
 53
 54int panic_on_oops = CONFIG_PANIC_ON_OOPS_VALUE;
 55static unsigned long tainted_mask =
 56	IS_ENABLED(CONFIG_RANDSTRUCT) ? (1 << TAINT_RANDSTRUCT) : 0;
 57static int pause_on_oops;
 58static int pause_on_oops_flag;
 59static DEFINE_SPINLOCK(pause_on_oops_lock);
 60bool crash_kexec_post_notifiers;
 61int panic_on_warn __read_mostly;
 62unsigned long panic_on_taint;
 63bool panic_on_taint_nousertaint = false;
 64static unsigned int warn_limit __read_mostly;
 65
 66int panic_timeout = CONFIG_PANIC_TIMEOUT;
 67EXPORT_SYMBOL_GPL(panic_timeout);
 68
 69#define PANIC_PRINT_TASK_INFO		0x00000001
 70#define PANIC_PRINT_MEM_INFO		0x00000002
 71#define PANIC_PRINT_TIMER_INFO		0x00000004
 72#define PANIC_PRINT_LOCK_INFO		0x00000008
 73#define PANIC_PRINT_FTRACE_INFO		0x00000010
 74#define PANIC_PRINT_ALL_PRINTK_MSG	0x00000020
 75#define PANIC_PRINT_ALL_CPU_BT		0x00000040
 76unsigned long panic_print;
 77
 78ATOMIC_NOTIFIER_HEAD(panic_notifier_list);
 79
 80EXPORT_SYMBOL(panic_notifier_list);
 81
 82#ifdef CONFIG_SYSCTL
 83static struct ctl_table kern_panic_table[] = {
 84#ifdef CONFIG_SMP
 85	{
 86		.procname       = "oops_all_cpu_backtrace",
 87		.data           = &sysctl_oops_all_cpu_backtrace,
 88		.maxlen         = sizeof(int),
 89		.mode           = 0644,
 90		.proc_handler   = proc_dointvec_minmax,
 91		.extra1         = SYSCTL_ZERO,
 92		.extra2         = SYSCTL_ONE,
 93	},
 94#endif
 95	{
 96		.procname       = "warn_limit",
 97		.data           = &warn_limit,
 98		.maxlen         = sizeof(warn_limit),
 99		.mode           = 0644,
100		.proc_handler   = proc_douintvec,
101	},
102	{ }
103};
104
105static __init int kernel_panic_sysctls_init(void)
106{
107	register_sysctl_init("kernel", kern_panic_table);
108	return 0;
109}
110late_initcall(kernel_panic_sysctls_init);
111#endif
112
113static atomic_t warn_count = ATOMIC_INIT(0);
114
115#ifdef CONFIG_SYSFS
116static ssize_t warn_count_show(struct kobject *kobj, struct kobj_attribute *attr,
117			       char *page)
118{
119	return sysfs_emit(page, "%d\n", atomic_read(&warn_count));
120}
121
122static struct kobj_attribute warn_count_attr = __ATTR_RO(warn_count);
123
124static __init int kernel_panic_sysfs_init(void)
125{
126	sysfs_add_file_to_group(kernel_kobj, &warn_count_attr.attr, NULL);
127	return 0;
128}
129late_initcall(kernel_panic_sysfs_init);
130#endif
131
132static long no_blink(int state)
133{
134	return 0;
135}
136
137/* Returns how long it waited in ms */
138long (*panic_blink)(int state);
139EXPORT_SYMBOL(panic_blink);
140
141/*
142 * Stop ourself in panic -- architecture code may override this
143 */
144void __weak __noreturn panic_smp_self_stop(void)
145{
146	while (1)
147		cpu_relax();
148}
149
150/*
151 * Stop ourselves in NMI context if another CPU has already panicked. Arch code
152 * may override this to prepare for crash dumping, e.g. save regs info.
153 */
154void __weak __noreturn nmi_panic_self_stop(struct pt_regs *regs)
155{
156	panic_smp_self_stop();
157}
158
159/*
160 * Stop other CPUs in panic.  Architecture dependent code may override this
161 * with more suitable version.  For example, if the architecture supports
162 * crash dump, it should save registers of each stopped CPU and disable
163 * per-CPU features such as virtualization extensions.
164 */
165void __weak crash_smp_send_stop(void)
166{
167	static int cpus_stopped;
168
169	/*
170	 * This function can be called twice in panic path, but obviously
171	 * we execute this only once.
172	 */
173	if (cpus_stopped)
174		return;
175
176	/*
177	 * Note smp_send_stop is the usual smp shutdown function, which
178	 * unfortunately means it may not be hardened to work in a panic
179	 * situation.
180	 */
181	smp_send_stop();
182	cpus_stopped = 1;
183}
184
185atomic_t panic_cpu = ATOMIC_INIT(PANIC_CPU_INVALID);
186
187/*
188 * A variant of panic() called from NMI context. We return if we've already
189 * panicked on this CPU. If another CPU already panicked, loop in
190 * nmi_panic_self_stop() which can provide architecture dependent code such
191 * as saving register state for crash dump.
192 */
193void nmi_panic(struct pt_regs *regs, const char *msg)
194{
195	int old_cpu, this_cpu;
196
197	old_cpu = PANIC_CPU_INVALID;
198	this_cpu = raw_smp_processor_id();
199
200	/* atomic_try_cmpxchg updates old_cpu on failure */
201	if (atomic_try_cmpxchg(&panic_cpu, &old_cpu, this_cpu))
202		panic("%s", msg);
203	else if (old_cpu != this_cpu)
204		nmi_panic_self_stop(regs);
205}
206EXPORT_SYMBOL(nmi_panic);
207
208static void panic_print_sys_info(bool console_flush)
209{
210	if (console_flush) {
211		if (panic_print & PANIC_PRINT_ALL_PRINTK_MSG)
212			console_flush_on_panic(CONSOLE_REPLAY_ALL);
213		return;
214	}
215
216	if (panic_print & PANIC_PRINT_TASK_INFO)
217		show_state();
218
219	if (panic_print & PANIC_PRINT_MEM_INFO)
220		show_mem();
221
222	if (panic_print & PANIC_PRINT_TIMER_INFO)
223		sysrq_timer_list_show();
224
225	if (panic_print & PANIC_PRINT_LOCK_INFO)
226		debug_show_all_locks();
227
228	if (panic_print & PANIC_PRINT_FTRACE_INFO)
229		ftrace_dump(DUMP_ALL);
230}
231
232void check_panic_on_warn(const char *origin)
233{
234	unsigned int limit;
235
236	if (panic_on_warn)
237		panic("%s: panic_on_warn set ...\n", origin);
238
239	limit = READ_ONCE(warn_limit);
240	if (atomic_inc_return(&warn_count) >= limit && limit)
241		panic("%s: system warned too often (kernel.warn_limit is %d)",
242		      origin, limit);
243}
244
245/*
246 * Helper that triggers the NMI backtrace (if set in panic_print)
247 * and then performs the secondary CPUs shutdown - we cannot have
248 * the NMI backtrace after the CPUs are off!
249 */
250static void panic_other_cpus_shutdown(bool crash_kexec)
251{
252	if (panic_print & PANIC_PRINT_ALL_CPU_BT)
253		trigger_all_cpu_backtrace();
254
255	/*
256	 * Note that smp_send_stop() is the usual SMP shutdown function,
257	 * which unfortunately may not be hardened to work in a panic
258	 * situation. If we want to do crash dump after notifier calls
259	 * and kmsg_dump, we will need architecture dependent extra
260	 * bits in addition to stopping other CPUs, hence we rely on
261	 * crash_smp_send_stop() for that.
262	 */
263	if (!crash_kexec)
264		smp_send_stop();
265	else
266		crash_smp_send_stop();
267}
268
269/**
270 *	panic - halt the system
271 *	@fmt: The text string to print
272 *
273 *	Display a message, then perform cleanups.
274 *
275 *	This function never returns.
276 */
277void panic(const char *fmt, ...)
278{
279	static char buf[1024];
280	va_list args;
281	long i, i_next = 0, len;
282	int state = 0;
283	int old_cpu, this_cpu;
284	bool _crash_kexec_post_notifiers = crash_kexec_post_notifiers;
285
286	if (panic_on_warn) {
287		/*
288		 * This thread may hit another WARN() in the panic path.
289		 * Resetting this prevents additional WARN() from panicking the
290		 * system on this thread.  Other threads are blocked by the
291		 * panic_mutex in panic().
292		 */
293		panic_on_warn = 0;
294	}
295
296	/*
297	 * Disable local interrupts. This will prevent panic_smp_self_stop
298	 * from deadlocking the first cpu that invokes the panic, since
299	 * there is nothing to prevent an interrupt handler (that runs
300	 * after setting panic_cpu) from invoking panic() again.
301	 */
302	local_irq_disable();
303	preempt_disable_notrace();
304
305	/*
306	 * It's possible to come here directly from a panic-assertion and
307	 * not have preempt disabled. Some functions called from here want
308	 * preempt to be disabled. No point enabling it later though...
309	 *
310	 * Only one CPU is allowed to execute the panic code from here. For
311	 * multiple parallel invocations of panic, all other CPUs either
312	 * stop themself or will wait until they are stopped by the 1st CPU
313	 * with smp_send_stop().
314	 *
315	 * cmpxchg success means this is the 1st CPU which comes here,
316	 * so go ahead.
317	 * `old_cpu == this_cpu' means we came from nmi_panic() which sets
318	 * panic_cpu to this CPU.  In this case, this is also the 1st CPU.
319	 */
320	old_cpu = PANIC_CPU_INVALID;
321	this_cpu = raw_smp_processor_id();
 
322
323	/* atomic_try_cmpxchg updates old_cpu on failure */
324	if (atomic_try_cmpxchg(&panic_cpu, &old_cpu, this_cpu)) {
325		/* go ahead */
326	} else if (old_cpu != this_cpu)
327		panic_smp_self_stop();
328
329	console_verbose();
330	bust_spinlocks(1);
331	va_start(args, fmt);
332	len = vscnprintf(buf, sizeof(buf), fmt, args);
333	va_end(args);
334
335	if (len && buf[len - 1] == '\n')
336		buf[len - 1] = '\0';
337
338	pr_emerg("Kernel panic - not syncing: %s\n", buf);
339#ifdef CONFIG_DEBUG_BUGVERBOSE
340	/*
341	 * Avoid nested stack-dumping if a panic occurs during oops processing
342	 */
343	if (!test_taint(TAINT_DIE) && oops_in_progress <= 1)
344		dump_stack();
345#endif
346
347	/*
348	 * If kgdb is enabled, give it a chance to run before we stop all
349	 * the other CPUs or else we won't be able to debug processes left
350	 * running on them.
351	 */
352	kgdb_panic(buf);
353
354	/*
355	 * If we have crashed and we have a crash kernel loaded let it handle
356	 * everything else.
357	 * If we want to run this after calling panic_notifiers, pass
358	 * the "crash_kexec_post_notifiers" option to the kernel.
359	 *
360	 * Bypass the panic_cpu check and call __crash_kexec directly.
361	 */
362	if (!_crash_kexec_post_notifiers)
363		__crash_kexec(NULL);
364
365	panic_other_cpus_shutdown(_crash_kexec_post_notifiers);
 
 
 
 
 
366
367	/*
368	 * Run any panic handlers, including those that might need to
369	 * add information to the kmsg dump output.
370	 */
371	atomic_notifier_call_chain(&panic_notifier_list, 0, buf);
372
373	panic_print_sys_info(false);
374
375	kmsg_dump(KMSG_DUMP_PANIC);
376
377	/*
378	 * If you doubt kdump always works fine in any situation,
379	 * "crash_kexec_post_notifiers" offers you a chance to run
380	 * panic_notifiers and dumping kmsg before kdump.
381	 * Note: since some panic_notifiers can make crashed kernel
382	 * more unstable, it can increase risks of the kdump failure too.
383	 *
384	 * Bypass the panic_cpu check and call __crash_kexec directly.
385	 */
386	if (_crash_kexec_post_notifiers)
387		__crash_kexec(NULL);
388
389	console_unblank();
390
391	/*
392	 * We may have ended up stopping the CPU holding the lock (in
393	 * smp_send_stop()) while still having some valuable data in the console
394	 * buffer.  Try to acquire the lock then release it regardless of the
395	 * result.  The release will also print the buffers out.  Locks debug
396	 * should be disabled to avoid reporting bad unlock balance when
397	 * panic() is not being callled from OOPS.
398	 */
399	debug_locks_off();
400	console_flush_on_panic(CONSOLE_FLUSH_PENDING);
401
402	panic_print_sys_info(true);
403
404	if (!panic_blink)
405		panic_blink = no_blink;
406
407	if (panic_timeout > 0) {
408		/*
409		 * Delay timeout seconds before rebooting the machine.
410		 * We can't use the "normal" timers since we just panicked.
411		 */
412		pr_emerg("Rebooting in %d seconds..\n", panic_timeout);
413
414		for (i = 0; i < panic_timeout * 1000; i += PANIC_TIMER_STEP) {
415			touch_nmi_watchdog();
416			if (i >= i_next) {
417				i += panic_blink(state ^= 1);
418				i_next = i + 3600 / PANIC_BLINK_SPD;
419			}
420			mdelay(PANIC_TIMER_STEP);
421		}
422	}
423	if (panic_timeout != 0) {
424		/*
425		 * This will not be a clean reboot, with everything
426		 * shutting down.  But if there is a chance of
427		 * rebooting the system it will be rebooted.
428		 */
429		if (panic_reboot_mode != REBOOT_UNDEFINED)
430			reboot_mode = panic_reboot_mode;
431		emergency_restart();
432	}
433#ifdef __sparc__
434	{
435		extern int stop_a_enabled;
436		/* Make sure the user can actually press Stop-A (L1-A) */
437		stop_a_enabled = 1;
438		pr_emerg("Press Stop-A (L1-A) from sun keyboard or send break\n"
439			 "twice on console to return to the boot prom\n");
440	}
441#endif
442#if defined(CONFIG_S390)
443	disabled_wait();
444#endif
445	pr_emerg("---[ end Kernel panic - not syncing: %s ]---\n", buf);
446
447	/* Do not scroll important messages printed above */
448	suppress_printk = 1;
 
 
 
449	local_irq_enable();
450	for (i = 0; ; i += PANIC_TIMER_STEP) {
451		touch_softlockup_watchdog();
452		if (i >= i_next) {
453			i += panic_blink(state ^= 1);
454			i_next = i + 3600 / PANIC_BLINK_SPD;
455		}
456		mdelay(PANIC_TIMER_STEP);
457	}
458}
459
460EXPORT_SYMBOL(panic);
461
462/*
463 * TAINT_FORCED_RMMOD could be a per-module flag but the module
464 * is being removed anyway.
465 */
466const struct taint_flag taint_flags[TAINT_FLAGS_COUNT] = {
467	[ TAINT_PROPRIETARY_MODULE ]	= { 'P', 'G', true },
468	[ TAINT_FORCED_MODULE ]		= { 'F', ' ', true },
469	[ TAINT_CPU_OUT_OF_SPEC ]	= { 'S', ' ', false },
470	[ TAINT_FORCED_RMMOD ]		= { 'R', ' ', false },
471	[ TAINT_MACHINE_CHECK ]		= { 'M', ' ', false },
472	[ TAINT_BAD_PAGE ]		= { 'B', ' ', false },
473	[ TAINT_USER ]			= { 'U', ' ', false },
474	[ TAINT_DIE ]			= { 'D', ' ', false },
475	[ TAINT_OVERRIDDEN_ACPI_TABLE ]	= { 'A', ' ', false },
476	[ TAINT_WARN ]			= { 'W', ' ', false },
477	[ TAINT_CRAP ]			= { 'C', ' ', true },
478	[ TAINT_FIRMWARE_WORKAROUND ]	= { 'I', ' ', false },
479	[ TAINT_OOT_MODULE ]		= { 'O', ' ', true },
480	[ TAINT_UNSIGNED_MODULE ]	= { 'E', ' ', true },
481	[ TAINT_SOFTLOCKUP ]		= { 'L', ' ', false },
482	[ TAINT_LIVEPATCH ]		= { 'K', ' ', true },
483	[ TAINT_AUX ]			= { 'X', ' ', true },
484	[ TAINT_RANDSTRUCT ]		= { 'T', ' ', true },
485	[ TAINT_TEST ]			= { 'N', ' ', true },
486};
487
488/**
489 * print_tainted - return a string to represent the kernel taint state.
490 *
491 * For individual taint flag meanings, see Documentation/admin-guide/sysctl/kernel.rst
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
492 *
493 * The string is overwritten by the next call to print_tainted(),
494 * but is always NULL terminated.
495 */
496const char *print_tainted(void)
497{
498	static char buf[TAINT_FLAGS_COUNT + sizeof("Tainted: ")];
499
500	BUILD_BUG_ON(ARRAY_SIZE(taint_flags) != TAINT_FLAGS_COUNT);
501
502	if (tainted_mask) {
503		char *s;
504		int i;
505
506		s = buf + sprintf(buf, "Tainted: ");
507		for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
508			const struct taint_flag *t = &taint_flags[i];
509			*s++ = test_bit(i, &tainted_mask) ?
510					t->c_true : t->c_false;
511		}
512		*s = 0;
513	} else
514		snprintf(buf, sizeof(buf), "Not tainted");
515
516	return buf;
517}
518
519int test_taint(unsigned flag)
520{
521	return test_bit(flag, &tainted_mask);
522}
523EXPORT_SYMBOL(test_taint);
524
525unsigned long get_taint(void)
526{
527	return tainted_mask;
528}
529
530/**
531 * add_taint: add a taint flag if not already set.
532 * @flag: one of the TAINT_* constants.
533 * @lockdep_ok: whether lock debugging is still OK.
534 *
535 * If something bad has gone wrong, you'll want @lockdebug_ok = false, but for
536 * some notewortht-but-not-corrupting cases, it can be set to true.
537 */
538void add_taint(unsigned flag, enum lockdep_ok lockdep_ok)
539{
540	if (lockdep_ok == LOCKDEP_NOW_UNRELIABLE && __debug_locks_off())
541		pr_warn("Disabling lock debugging due to kernel taint\n");
542
543	set_bit(flag, &tainted_mask);
544
545	if (tainted_mask & panic_on_taint) {
546		panic_on_taint = 0;
547		panic("panic_on_taint set ...");
548	}
549}
550EXPORT_SYMBOL(add_taint);
551
552static void spin_msec(int msecs)
553{
554	int i;
555
556	for (i = 0; i < msecs; i++) {
557		touch_nmi_watchdog();
558		mdelay(1);
559	}
560}
561
562/*
563 * It just happens that oops_enter() and oops_exit() are identically
564 * implemented...
565 */
566static void do_oops_enter_exit(void)
567{
568	unsigned long flags;
569	static int spin_counter;
570
571	if (!pause_on_oops)
572		return;
573
574	spin_lock_irqsave(&pause_on_oops_lock, flags);
575	if (pause_on_oops_flag == 0) {
576		/* This CPU may now print the oops message */
577		pause_on_oops_flag = 1;
578	} else {
579		/* We need to stall this CPU */
580		if (!spin_counter) {
581			/* This CPU gets to do the counting */
582			spin_counter = pause_on_oops;
583			do {
584				spin_unlock(&pause_on_oops_lock);
585				spin_msec(MSEC_PER_SEC);
586				spin_lock(&pause_on_oops_lock);
587			} while (--spin_counter);
588			pause_on_oops_flag = 0;
589		} else {
590			/* This CPU waits for a different one */
591			while (spin_counter) {
592				spin_unlock(&pause_on_oops_lock);
593				spin_msec(1);
594				spin_lock(&pause_on_oops_lock);
595			}
596		}
597	}
598	spin_unlock_irqrestore(&pause_on_oops_lock, flags);
599}
600
601/*
602 * Return true if the calling CPU is allowed to print oops-related info.
603 * This is a bit racy..
604 */
605bool oops_may_print(void)
606{
607	return pause_on_oops_flag == 0;
608}
609
610/*
611 * Called when the architecture enters its oops handler, before it prints
612 * anything.  If this is the first CPU to oops, and it's oopsing the first
613 * time then let it proceed.
614 *
615 * This is all enabled by the pause_on_oops kernel boot option.  We do all
616 * this to ensure that oopses don't scroll off the screen.  It has the
617 * side-effect of preventing later-oopsing CPUs from mucking up the display,
618 * too.
619 *
620 * It turns out that the CPU which is allowed to print ends up pausing for
621 * the right duration, whereas all the other CPUs pause for twice as long:
622 * once in oops_enter(), once in oops_exit().
623 */
624void oops_enter(void)
625{
626	tracing_off();
627	/* can't trust the integrity of the kernel anymore: */
628	debug_locks_off();
629	do_oops_enter_exit();
 
 
 
 
 
 
630
631	if (sysctl_oops_all_cpu_backtrace)
632		trigger_all_cpu_backtrace();
 
 
 
 
 
 
633}
 
634
635static void print_oops_end_marker(void)
636{
637	pr_warn("---[ end trace %016llx ]---\n", 0ULL);
 
638}
639
640/*
641 * Called when the architecture exits its oops handler, after printing
642 * everything.
643 */
644void oops_exit(void)
645{
646	do_oops_enter_exit();
647	print_oops_end_marker();
648	kmsg_dump(KMSG_DUMP_OOPS);
649}
650
651struct warn_args {
652	const char *fmt;
653	va_list args;
654};
655
656void __warn(const char *file, int line, void *caller, unsigned taint,
657	    struct pt_regs *regs, struct warn_args *args)
658{
659	disable_trace_on_warning();
660
 
 
661	if (file)
662		pr_warn("WARNING: CPU: %d PID: %d at %s:%d %pS\n",
663			raw_smp_processor_id(), current->pid, file, line,
664			caller);
665	else
666		pr_warn("WARNING: CPU: %d PID: %d at %pS\n",
667			raw_smp_processor_id(), current->pid, caller);
668
669	if (args)
670		vprintk(args->fmt, args->args);
671
 
 
 
 
 
 
 
 
 
 
 
672	print_modules();
673
674	if (regs)
675		show_regs(regs);
676
677	check_panic_on_warn("kernel");
678
679	if (!regs)
680		dump_stack();
681
682	print_irqtrace_events(current);
683
684	print_oops_end_marker();
685	trace_error_report_end(ERROR_DETECTOR_WARN, (unsigned long)caller);
686
687	/* Just a warning, don't kill lockdep. */
688	add_taint(taint, LOCKDEP_STILL_OK);
689}
690
691#ifdef CONFIG_BUG
692#ifndef __WARN_FLAGS
693void warn_slowpath_fmt(const char *file, int line, unsigned taint,
694		       const char *fmt, ...)
695{
696	bool rcu = warn_rcu_enter();
697	struct warn_args args;
698
699	pr_warn(CUT_HERE);
700
701	if (!fmt) {
702		__warn(file, line, __builtin_return_address(0), taint,
703		       NULL, NULL);
704		warn_rcu_exit(rcu);
705		return;
706	}
707
708	args.fmt = fmt;
709	va_start(args.args, fmt);
710	__warn(file, line, __builtin_return_address(0), taint, NULL, &args);
 
711	va_end(args.args);
712	warn_rcu_exit(rcu);
713}
714EXPORT_SYMBOL(warn_slowpath_fmt);
715#else
716void __warn_printk(const char *fmt, ...)
717{
718	bool rcu = warn_rcu_enter();
719	va_list args;
720
721	pr_warn(CUT_HERE);
722
723	va_start(args, fmt);
724	vprintk(fmt, args);
725	va_end(args);
726	warn_rcu_exit(rcu);
727}
728EXPORT_SYMBOL(__warn_printk);
729#endif
730
731/* Support resetting WARN*_ONCE state */
732
733static int clear_warn_once_set(void *data, u64 val)
734{
735	generic_bug_clear_once();
736	memset(__start_once, 0, __end_once - __start_once);
737	return 0;
738}
739
740DEFINE_DEBUGFS_ATTRIBUTE(clear_warn_once_fops, NULL, clear_warn_once_set,
741			 "%lld\n");
 
 
 
 
742
743static __init int register_warn_debugfs(void)
744{
745	/* Don't care about failure */
746	debugfs_create_file_unsafe("clear_warn_once", 0200, NULL, NULL,
747				   &clear_warn_once_fops);
748	return 0;
749}
750
751device_initcall(register_warn_debugfs);
752#endif
753
754#ifdef CONFIG_STACKPROTECTOR
755
756/*
757 * Called when gcc's -fstack-protector feature is used, and
758 * gcc detects corruption of the on-stack canary value
759 */
760__visible noinstr void __stack_chk_fail(void)
761{
762	instrumentation_begin();
763	panic("stack-protector: Kernel stack is corrupted in: %pB",
764		__builtin_return_address(0));
765	instrumentation_end();
766}
767EXPORT_SYMBOL(__stack_chk_fail);
768
769#endif
770
771core_param(panic, panic_timeout, int, 0644);
772core_param(panic_print, panic_print, ulong, 0644);
773core_param(pause_on_oops, pause_on_oops, int, 0644);
774core_param(panic_on_warn, panic_on_warn, int, 0644);
775core_param(crash_kexec_post_notifiers, crash_kexec_post_notifiers, bool, 0644);
776
777static int __init oops_setup(char *s)
778{
779	if (!s)
780		return -EINVAL;
781	if (!strcmp(s, "panic"))
782		panic_on_oops = 1;
783	return 0;
784}
785early_param("oops", oops_setup);
786
787static int __init panic_on_taint_setup(char *s)
788{
789	char *taint_str;
790
791	if (!s)
792		return -EINVAL;
793
794	taint_str = strsep(&s, ",");
795	if (kstrtoul(taint_str, 16, &panic_on_taint))
796		return -EINVAL;
797
798	/* make sure panic_on_taint doesn't hold out-of-range TAINT flags */
799	panic_on_taint &= TAINT_FLAGS_MAX;
800
801	if (!panic_on_taint)
802		return -EINVAL;
803
804	if (s && !strcmp(s, "nousertaint"))
805		panic_on_taint_nousertaint = true;
806
807	pr_info("panic_on_taint: bitmask=0x%lx nousertaint_mode=%s\n",
808		panic_on_taint, str_enabled_disabled(panic_on_taint_nousertaint));
809
810	return 0;
811}
812early_param("panic_on_taint", panic_on_taint_setup);
v4.6
 
  1/*
  2 *  linux/kernel/panic.c
  3 *
  4 *  Copyright (C) 1991, 1992  Linus Torvalds
  5 */
  6
  7/*
  8 * This function is used through-out the kernel (including mm and fs)
  9 * to indicate a major problem.
 10 */
 11#include <linux/debug_locks.h>
 
 12#include <linux/interrupt.h>
 
 13#include <linux/kmsg_dump.h>
 14#include <linux/kallsyms.h>
 15#include <linux/notifier.h>
 
 16#include <linux/module.h>
 17#include <linux/random.h>
 18#include <linux/ftrace.h>
 19#include <linux/reboot.h>
 20#include <linux/delay.h>
 21#include <linux/kexec.h>
 
 22#include <linux/sched.h>
 
 23#include <linux/sysrq.h>
 24#include <linux/init.h>
 25#include <linux/nmi.h>
 26#include <linux/console.h>
 27#include <linux/bug.h>
 
 
 
 
 
 
 28
 29#define PANIC_TIMER_STEP 100
 30#define PANIC_BLINK_SPD 18
 31
 
 
 
 
 
 
 
 
 
 
 32int panic_on_oops = CONFIG_PANIC_ON_OOPS_VALUE;
 33static unsigned long tainted_mask;
 
 34static int pause_on_oops;
 35static int pause_on_oops_flag;
 36static DEFINE_SPINLOCK(pause_on_oops_lock);
 37bool crash_kexec_post_notifiers;
 38int panic_on_warn __read_mostly;
 
 
 
 39
 40int panic_timeout = CONFIG_PANIC_TIMEOUT;
 41EXPORT_SYMBOL_GPL(panic_timeout);
 42
 
 
 
 
 
 
 
 
 
 43ATOMIC_NOTIFIER_HEAD(panic_notifier_list);
 44
 45EXPORT_SYMBOL(panic_notifier_list);
 46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 47static long no_blink(int state)
 48{
 49	return 0;
 50}
 51
 52/* Returns how long it waited in ms */
 53long (*panic_blink)(int state);
 54EXPORT_SYMBOL(panic_blink);
 55
 56/*
 57 * Stop ourself in panic -- architecture code may override this
 58 */
 59void __weak panic_smp_self_stop(void)
 60{
 61	while (1)
 62		cpu_relax();
 63}
 64
 65/*
 66 * Stop ourselves in NMI context if another CPU has already panicked. Arch code
 67 * may override this to prepare for crash dumping, e.g. save regs info.
 68 */
 69void __weak nmi_panic_self_stop(struct pt_regs *regs)
 70{
 71	panic_smp_self_stop();
 72}
 73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 74atomic_t panic_cpu = ATOMIC_INIT(PANIC_CPU_INVALID);
 75
 76/*
 77 * A variant of panic() called from NMI context. We return if we've already
 78 * panicked on this CPU. If another CPU already panicked, loop in
 79 * nmi_panic_self_stop() which can provide architecture dependent code such
 80 * as saving register state for crash dump.
 81 */
 82void nmi_panic(struct pt_regs *regs, const char *msg)
 83{
 84	int old_cpu, cpu;
 85
 86	cpu = raw_smp_processor_id();
 87	old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, cpu);
 88
 89	if (old_cpu == PANIC_CPU_INVALID)
 
 90		panic("%s", msg);
 91	else if (old_cpu != cpu)
 92		nmi_panic_self_stop(regs);
 93}
 94EXPORT_SYMBOL(nmi_panic);
 95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 96/**
 97 *	panic - halt the system
 98 *	@fmt: The text string to print
 99 *
100 *	Display a message, then perform cleanups.
101 *
102 *	This function never returns.
103 */
104void panic(const char *fmt, ...)
105{
106	static char buf[1024];
107	va_list args;
108	long i, i_next = 0;
109	int state = 0;
110	int old_cpu, this_cpu;
 
 
 
 
 
 
 
 
 
 
 
111
112	/*
113	 * Disable local interrupts. This will prevent panic_smp_self_stop
114	 * from deadlocking the first cpu that invokes the panic, since
115	 * there is nothing to prevent an interrupt handler (that runs
116	 * after setting panic_cpu) from invoking panic() again.
117	 */
118	local_irq_disable();
 
119
120	/*
121	 * It's possible to come here directly from a panic-assertion and
122	 * not have preempt disabled. Some functions called from here want
123	 * preempt to be disabled. No point enabling it later though...
124	 *
125	 * Only one CPU is allowed to execute the panic code from here. For
126	 * multiple parallel invocations of panic, all other CPUs either
127	 * stop themself or will wait until they are stopped by the 1st CPU
128	 * with smp_send_stop().
129	 *
130	 * `old_cpu == PANIC_CPU_INVALID' means this is the 1st CPU which
131	 * comes here, so go ahead.
132	 * `old_cpu == this_cpu' means we came from nmi_panic() which sets
133	 * panic_cpu to this CPU.  In this case, this is also the 1st CPU.
134	 */
 
135	this_cpu = raw_smp_processor_id();
136	old_cpu  = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu);
137
138	if (old_cpu != PANIC_CPU_INVALID && old_cpu != this_cpu)
 
 
 
139		panic_smp_self_stop();
140
141	console_verbose();
142	bust_spinlocks(1);
143	va_start(args, fmt);
144	vsnprintf(buf, sizeof(buf), fmt, args);
145	va_end(args);
 
 
 
 
146	pr_emerg("Kernel panic - not syncing: %s\n", buf);
147#ifdef CONFIG_DEBUG_BUGVERBOSE
148	/*
149	 * Avoid nested stack-dumping if a panic occurs during oops processing
150	 */
151	if (!test_taint(TAINT_DIE) && oops_in_progress <= 1)
152		dump_stack();
153#endif
154
155	/*
 
 
 
 
 
 
 
156	 * If we have crashed and we have a crash kernel loaded let it handle
157	 * everything else.
158	 * If we want to run this after calling panic_notifiers, pass
159	 * the "crash_kexec_post_notifiers" option to the kernel.
160	 *
161	 * Bypass the panic_cpu check and call __crash_kexec directly.
162	 */
163	if (!crash_kexec_post_notifiers)
164		__crash_kexec(NULL);
165
166	/*
167	 * Note smp_send_stop is the usual smp shutdown function, which
168	 * unfortunately means it may not be hardened to work in a panic
169	 * situation.
170	 */
171	smp_send_stop();
172
173	/*
174	 * Run any panic handlers, including those that might need to
175	 * add information to the kmsg dump output.
176	 */
177	atomic_notifier_call_chain(&panic_notifier_list, 0, buf);
178
 
 
179	kmsg_dump(KMSG_DUMP_PANIC);
180
181	/*
182	 * If you doubt kdump always works fine in any situation,
183	 * "crash_kexec_post_notifiers" offers you a chance to run
184	 * panic_notifiers and dumping kmsg before kdump.
185	 * Note: since some panic_notifiers can make crashed kernel
186	 * more unstable, it can increase risks of the kdump failure too.
187	 *
188	 * Bypass the panic_cpu check and call __crash_kexec directly.
189	 */
190	if (crash_kexec_post_notifiers)
191		__crash_kexec(NULL);
192
193	bust_spinlocks(0);
194
195	/*
196	 * We may have ended up stopping the CPU holding the lock (in
197	 * smp_send_stop()) while still having some valuable data in the console
198	 * buffer.  Try to acquire the lock then release it regardless of the
199	 * result.  The release will also print the buffers out.  Locks debug
200	 * should be disabled to avoid reporting bad unlock balance when
201	 * panic() is not being callled from OOPS.
202	 */
203	debug_locks_off();
204	console_flush_on_panic();
 
 
205
206	if (!panic_blink)
207		panic_blink = no_blink;
208
209	if (panic_timeout > 0) {
210		/*
211		 * Delay timeout seconds before rebooting the machine.
212		 * We can't use the "normal" timers since we just panicked.
213		 */
214		pr_emerg("Rebooting in %d seconds..", panic_timeout);
215
216		for (i = 0; i < panic_timeout * 1000; i += PANIC_TIMER_STEP) {
217			touch_nmi_watchdog();
218			if (i >= i_next) {
219				i += panic_blink(state ^= 1);
220				i_next = i + 3600 / PANIC_BLINK_SPD;
221			}
222			mdelay(PANIC_TIMER_STEP);
223		}
224	}
225	if (panic_timeout != 0) {
226		/*
227		 * This will not be a clean reboot, with everything
228		 * shutting down.  But if there is a chance of
229		 * rebooting the system it will be rebooted.
230		 */
 
 
231		emergency_restart();
232	}
233#ifdef __sparc__
234	{
235		extern int stop_a_enabled;
236		/* Make sure the user can actually press Stop-A (L1-A) */
237		stop_a_enabled = 1;
238		pr_emerg("Press Stop-A (L1-A) to return to the boot prom\n");
 
239	}
240#endif
241#if defined(CONFIG_S390)
242	{
243		unsigned long caller;
 
244
245		caller = (unsigned long)__builtin_return_address(0);
246		disabled_wait(caller);
247	}
248#endif
249	pr_emerg("---[ end Kernel panic - not syncing: %s\n", buf);
250	local_irq_enable();
251	for (i = 0; ; i += PANIC_TIMER_STEP) {
252		touch_softlockup_watchdog();
253		if (i >= i_next) {
254			i += panic_blink(state ^= 1);
255			i_next = i + 3600 / PANIC_BLINK_SPD;
256		}
257		mdelay(PANIC_TIMER_STEP);
258	}
259}
260
261EXPORT_SYMBOL(panic);
262
263
264struct tnt {
265	u8	bit;
266	char	true;
267	char	false;
268};
269
270static const struct tnt tnts[] = {
271	{ TAINT_PROPRIETARY_MODULE,	'P', 'G' },
272	{ TAINT_FORCED_MODULE,		'F', ' ' },
273	{ TAINT_CPU_OUT_OF_SPEC,	'S', ' ' },
274	{ TAINT_FORCED_RMMOD,		'R', ' ' },
275	{ TAINT_MACHINE_CHECK,		'M', ' ' },
276	{ TAINT_BAD_PAGE,		'B', ' ' },
277	{ TAINT_USER,			'U', ' ' },
278	{ TAINT_DIE,			'D', ' ' },
279	{ TAINT_OVERRIDDEN_ACPI_TABLE,	'A', ' ' },
280	{ TAINT_WARN,			'W', ' ' },
281	{ TAINT_CRAP,			'C', ' ' },
282	{ TAINT_FIRMWARE_WORKAROUND,	'I', ' ' },
283	{ TAINT_OOT_MODULE,		'O', ' ' },
284	{ TAINT_UNSIGNED_MODULE,	'E', ' ' },
285	{ TAINT_SOFTLOCKUP,		'L', ' ' },
286	{ TAINT_LIVEPATCH,		'K', ' ' },
287};
288
289/**
290 *	print_tainted - return a string to represent the kernel taint state.
291 *
292 *  'P' - Proprietary module has been loaded.
293 *  'F' - Module has been forcibly loaded.
294 *  'S' - SMP with CPUs not designed for SMP.
295 *  'R' - User forced a module unload.
296 *  'M' - System experienced a machine check exception.
297 *  'B' - System has hit bad_page.
298 *  'U' - Userspace-defined naughtiness.
299 *  'D' - Kernel has oopsed before
300 *  'A' - ACPI table overridden.
301 *  'W' - Taint on warning.
302 *  'C' - modules from drivers/staging are loaded.
303 *  'I' - Working around severe firmware bug.
304 *  'O' - Out-of-tree module has been loaded.
305 *  'E' - Unsigned module has been loaded.
306 *  'L' - A soft lockup has previously occurred.
307 *  'K' - Kernel has been live patched.
308 *
309 *	The string is overwritten by the next call to print_tainted().
 
310 */
311const char *print_tainted(void)
312{
313	static char buf[ARRAY_SIZE(tnts) + sizeof("Tainted: ")];
 
 
314
315	if (tainted_mask) {
316		char *s;
317		int i;
318
319		s = buf + sprintf(buf, "Tainted: ");
320		for (i = 0; i < ARRAY_SIZE(tnts); i++) {
321			const struct tnt *t = &tnts[i];
322			*s++ = test_bit(t->bit, &tainted_mask) ?
323					t->true : t->false;
324		}
325		*s = 0;
326	} else
327		snprintf(buf, sizeof(buf), "Not tainted");
328
329	return buf;
330}
331
332int test_taint(unsigned flag)
333{
334	return test_bit(flag, &tainted_mask);
335}
336EXPORT_SYMBOL(test_taint);
337
338unsigned long get_taint(void)
339{
340	return tainted_mask;
341}
342
343/**
344 * add_taint: add a taint flag if not already set.
345 * @flag: one of the TAINT_* constants.
346 * @lockdep_ok: whether lock debugging is still OK.
347 *
348 * If something bad has gone wrong, you'll want @lockdebug_ok = false, but for
349 * some notewortht-but-not-corrupting cases, it can be set to true.
350 */
351void add_taint(unsigned flag, enum lockdep_ok lockdep_ok)
352{
353	if (lockdep_ok == LOCKDEP_NOW_UNRELIABLE && __debug_locks_off())
354		pr_warn("Disabling lock debugging due to kernel taint\n");
355
356	set_bit(flag, &tainted_mask);
 
 
 
 
 
357}
358EXPORT_SYMBOL(add_taint);
359
360static void spin_msec(int msecs)
361{
362	int i;
363
364	for (i = 0; i < msecs; i++) {
365		touch_nmi_watchdog();
366		mdelay(1);
367	}
368}
369
370/*
371 * It just happens that oops_enter() and oops_exit() are identically
372 * implemented...
373 */
374static void do_oops_enter_exit(void)
375{
376	unsigned long flags;
377	static int spin_counter;
378
379	if (!pause_on_oops)
380		return;
381
382	spin_lock_irqsave(&pause_on_oops_lock, flags);
383	if (pause_on_oops_flag == 0) {
384		/* This CPU may now print the oops message */
385		pause_on_oops_flag = 1;
386	} else {
387		/* We need to stall this CPU */
388		if (!spin_counter) {
389			/* This CPU gets to do the counting */
390			spin_counter = pause_on_oops;
391			do {
392				spin_unlock(&pause_on_oops_lock);
393				spin_msec(MSEC_PER_SEC);
394				spin_lock(&pause_on_oops_lock);
395			} while (--spin_counter);
396			pause_on_oops_flag = 0;
397		} else {
398			/* This CPU waits for a different one */
399			while (spin_counter) {
400				spin_unlock(&pause_on_oops_lock);
401				spin_msec(1);
402				spin_lock(&pause_on_oops_lock);
403			}
404		}
405	}
406	spin_unlock_irqrestore(&pause_on_oops_lock, flags);
407}
408
409/*
410 * Return true if the calling CPU is allowed to print oops-related info.
411 * This is a bit racy..
412 */
413int oops_may_print(void)
414{
415	return pause_on_oops_flag == 0;
416}
417
418/*
419 * Called when the architecture enters its oops handler, before it prints
420 * anything.  If this is the first CPU to oops, and it's oopsing the first
421 * time then let it proceed.
422 *
423 * This is all enabled by the pause_on_oops kernel boot option.  We do all
424 * this to ensure that oopses don't scroll off the screen.  It has the
425 * side-effect of preventing later-oopsing CPUs from mucking up the display,
426 * too.
427 *
428 * It turns out that the CPU which is allowed to print ends up pausing for
429 * the right duration, whereas all the other CPUs pause for twice as long:
430 * once in oops_enter(), once in oops_exit().
431 */
432void oops_enter(void)
433{
434	tracing_off();
435	/* can't trust the integrity of the kernel anymore: */
436	debug_locks_off();
437	do_oops_enter_exit();
438}
439
440/*
441 * 64-bit random ID for oopses:
442 */
443static u64 oops_id;
444
445static int init_oops_id(void)
446{
447	if (!oops_id)
448		get_random_bytes(&oops_id, sizeof(oops_id));
449	else
450		oops_id++;
451
452	return 0;
453}
454late_initcall(init_oops_id);
455
456void print_oops_end_marker(void)
457{
458	init_oops_id();
459	pr_warn("---[ end trace %016llx ]---\n", (unsigned long long)oops_id);
460}
461
462/*
463 * Called when the architecture exits its oops handler, after printing
464 * everything.
465 */
466void oops_exit(void)
467{
468	do_oops_enter_exit();
469	print_oops_end_marker();
470	kmsg_dump(KMSG_DUMP_OOPS);
471}
472
473struct warn_args {
474	const char *fmt;
475	va_list args;
476};
477
478void __warn(const char *file, int line, void *caller, unsigned taint,
479	    struct pt_regs *regs, struct warn_args *args)
480{
481	disable_trace_on_warning();
482
483	pr_warn("------------[ cut here ]------------\n");
484
485	if (file)
486		pr_warn("WARNING: CPU: %d PID: %d at %s:%d %pS\n",
487			raw_smp_processor_id(), current->pid, file, line,
488			caller);
489	else
490		pr_warn("WARNING: CPU: %d PID: %d at %pS\n",
491			raw_smp_processor_id(), current->pid, caller);
492
493	if (args)
494		vprintk(args->fmt, args->args);
495
496	if (panic_on_warn) {
497		/*
498		 * This thread may hit another WARN() in the panic path.
499		 * Resetting this prevents additional WARN() from panicking the
500		 * system on this thread.  Other threads are blocked by the
501		 * panic_mutex in panic().
502		 */
503		panic_on_warn = 0;
504		panic("panic_on_warn set ...\n");
505	}
506
507	print_modules();
508
509	if (regs)
510		show_regs(regs);
511	else
 
 
 
512		dump_stack();
513
 
 
514	print_oops_end_marker();
 
515
516	/* Just a warning, don't kill lockdep. */
517	add_taint(taint, LOCKDEP_STILL_OK);
518}
519
520#ifdef WANT_WARN_ON_SLOWPATH
521void warn_slowpath_fmt(const char *file, int line, const char *fmt, ...)
 
 
522{
 
523	struct warn_args args;
524
 
 
 
 
 
 
 
 
 
525	args.fmt = fmt;
526	va_start(args.args, fmt);
527	__warn(file, line, __builtin_return_address(0), TAINT_WARN, NULL,
528	       &args);
529	va_end(args.args);
 
530}
531EXPORT_SYMBOL(warn_slowpath_fmt);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
532
533void warn_slowpath_fmt_taint(const char *file, int line,
534			     unsigned taint, const char *fmt, ...)
 
535{
536	struct warn_args args;
 
 
 
537
538	args.fmt = fmt;
539	va_start(args.args, fmt);
540	__warn(file, line, __builtin_return_address(0), taint, NULL, &args);
541	va_end(args.args);
542}
543EXPORT_SYMBOL(warn_slowpath_fmt_taint);
544
545void warn_slowpath_null(const char *file, int line)
546{
547	__warn(file, line, __builtin_return_address(0), TAINT_WARN, NULL, NULL);
 
 
 
548}
549EXPORT_SYMBOL(warn_slowpath_null);
 
550#endif
551
552#ifdef CONFIG_CC_STACKPROTECTOR
553
554/*
555 * Called when gcc's -fstack-protector feature is used, and
556 * gcc detects corruption of the on-stack canary value
557 */
558__visible void __stack_chk_fail(void)
559{
560	panic("stack-protector: Kernel stack is corrupted in: %p\n",
 
561		__builtin_return_address(0));
 
562}
563EXPORT_SYMBOL(__stack_chk_fail);
564
565#endif
566
567core_param(panic, panic_timeout, int, 0644);
 
568core_param(pause_on_oops, pause_on_oops, int, 0644);
569core_param(panic_on_warn, panic_on_warn, int, 0644);
 
570
571static int __init setup_crash_kexec_post_notifiers(char *s)
572{
573	crash_kexec_post_notifiers = true;
 
 
 
574	return 0;
575}
576early_param("crash_kexec_post_notifiers", setup_crash_kexec_post_notifiers);
577
578static int __init oops_setup(char *s)
579{
 
 
580	if (!s)
581		return -EINVAL;
582	if (!strcmp(s, "panic"))
583		panic_on_oops = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
584	return 0;
585}
586early_param("oops", oops_setup);