Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * kexec: kexec_file_load system call
   4 *
   5 * Copyright (C) 2014 Red Hat Inc.
   6 * Authors:
   7 *      Vivek Goyal <vgoyal@redhat.com>
 
 
 
   8 */
   9
  10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  11
  12#include <linux/capability.h>
  13#include <linux/mm.h>
  14#include <linux/file.h>
  15#include <linux/slab.h>
  16#include <linux/kexec.h>
  17#include <linux/memblock.h>
  18#include <linux/mutex.h>
  19#include <linux/list.h>
  20#include <linux/fs.h>
  21#include <linux/ima.h>
  22#include <crypto/hash.h>
  23#include <crypto/sha2.h>
  24#include <linux/elf.h>
  25#include <linux/elfcore.h>
  26#include <linux/kernel.h>
  27#include <linux/kernel_read_file.h>
  28#include <linux/syscalls.h>
  29#include <linux/vmalloc.h>
  30#include "kexec_internal.h"
  31
  32#ifdef CONFIG_KEXEC_SIG
  33static bool sig_enforce = IS_ENABLED(CONFIG_KEXEC_SIG_FORCE);
  34
  35void set_kexec_sig_enforced(void)
  36{
  37	sig_enforce = true;
  38}
  39#endif
  40
  41static int kexec_calculate_store_digests(struct kimage *image);
  42
  43/* Maximum size in bytes for kernel/initrd files. */
  44#define KEXEC_FILE_SIZE_MAX	min_t(s64, 4LL << 30, SSIZE_MAX)
  45
  46/*
  47 * Currently this is the only default function that is exported as some
  48 * architectures need it to do additional handlings.
  49 * In the future, other default functions may be exported too if required.
  50 */
  51int kexec_image_probe_default(struct kimage *image, void *buf,
  52			      unsigned long buf_len)
  53{
  54	const struct kexec_file_ops * const *fops;
  55	int ret = -ENOEXEC;
  56
  57	for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) {
  58		ret = (*fops)->probe(buf, buf_len);
  59		if (!ret) {
  60			image->fops = *fops;
  61			return ret;
  62		}
  63	}
  64
  65	return ret;
 
 
 
 
  66}
  67
  68static void *kexec_image_load_default(struct kimage *image)
  69{
  70	if (!image->fops || !image->fops->load)
  71		return ERR_PTR(-ENOEXEC);
  72
  73	return image->fops->load(image, image->kernel_buf,
  74				 image->kernel_buf_len, image->initrd_buf,
  75				 image->initrd_buf_len, image->cmdline_buf,
  76				 image->cmdline_buf_len);
  77}
  78
  79int kexec_image_post_load_cleanup_default(struct kimage *image)
 
 
  80{
  81	if (!image->fops || !image->fops->cleanup)
  82		return 0;
 
  83
  84	return image->fops->cleanup(image->image_loader_data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  85}
  86
  87/*
  88 * Free up memory used by kernel, initrd, and command line. This is temporary
  89 * memory allocation which is not needed any more after these buffers have
  90 * been loaded into separate segments and have been copied elsewhere.
  91 */
  92void kimage_file_post_load_cleanup(struct kimage *image)
  93{
  94	struct purgatory_info *pi = &image->purgatory_info;
  95
  96	vfree(image->kernel_buf);
  97	image->kernel_buf = NULL;
  98
  99	vfree(image->initrd_buf);
 100	image->initrd_buf = NULL;
 101
 102	kfree(image->cmdline_buf);
 103	image->cmdline_buf = NULL;
 104
 105	vfree(pi->purgatory_buf);
 106	pi->purgatory_buf = NULL;
 107
 108	vfree(pi->sechdrs);
 109	pi->sechdrs = NULL;
 110
 111#ifdef CONFIG_IMA_KEXEC
 112	vfree(image->ima_buffer);
 113	image->ima_buffer = NULL;
 114#endif /* CONFIG_IMA_KEXEC */
 115
 116	/* See if architecture has anything to cleanup post load */
 117	arch_kimage_file_post_load_cleanup(image);
 118
 119	/*
 120	 * Above call should have called into bootloader to free up
 121	 * any data stored in kimage->image_loader_data. It should
 122	 * be ok now to free it up.
 123	 */
 124	kfree(image->image_loader_data);
 125	image->image_loader_data = NULL;
 126
 127	kexec_file_dbg_print = false;
 128}
 129
 130#ifdef CONFIG_KEXEC_SIG
 131#ifdef CONFIG_SIGNED_PE_FILE_VERIFICATION
 132int kexec_kernel_verify_pe_sig(const char *kernel, unsigned long kernel_len)
 133{
 134	int ret;
 135
 136	ret = verify_pefile_signature(kernel, kernel_len,
 137				      VERIFY_USE_SECONDARY_KEYRING,
 138				      VERIFYING_KEXEC_PE_SIGNATURE);
 139	if (ret == -ENOKEY && IS_ENABLED(CONFIG_INTEGRITY_PLATFORM_KEYRING)) {
 140		ret = verify_pefile_signature(kernel, kernel_len,
 141					      VERIFY_USE_PLATFORM_KEYRING,
 142					      VERIFYING_KEXEC_PE_SIGNATURE);
 143	}
 144	return ret;
 145}
 146#endif
 147
 148static int kexec_image_verify_sig(struct kimage *image, void *buf,
 149				  unsigned long buf_len)
 150{
 151	if (!image->fops || !image->fops->verify_sig) {
 152		pr_debug("kernel loader does not support signature verification.\n");
 153		return -EKEYREJECTED;
 154	}
 155
 156	return image->fops->verify_sig(buf, buf_len);
 157}
 158
 159static int
 160kimage_validate_signature(struct kimage *image)
 161{
 162	int ret;
 163
 164	ret = kexec_image_verify_sig(image, image->kernel_buf,
 165				     image->kernel_buf_len);
 166	if (ret) {
 167
 168		if (sig_enforce) {
 169			pr_notice("Enforced kernel signature verification failed (%d).\n", ret);
 170			return ret;
 171		}
 172
 173		/*
 174		 * If IMA is guaranteed to appraise a signature on the kexec
 175		 * image, permit it even if the kernel is otherwise locked
 176		 * down.
 177		 */
 178		if (!ima_appraise_signature(READING_KEXEC_IMAGE) &&
 179		    security_locked_down(LOCKDOWN_KEXEC))
 180			return -EPERM;
 181
 182		pr_debug("kernel signature verification failed (%d).\n", ret);
 183	}
 184
 185	return 0;
 186}
 187#endif
 188
 189/*
 190 * In file mode list of segments is prepared by kernel. Copy relevant
 191 * data from user space, do error checking, prepare segment list
 192 */
 193static int
 194kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
 195			     const char __user *cmdline_ptr,
 196			     unsigned long cmdline_len, unsigned flags)
 197{
 198	ssize_t ret;
 199	void *ldata;
 
 200
 201	ret = kernel_read_file_from_fd(kernel_fd, 0, &image->kernel_buf,
 202				       KEXEC_FILE_SIZE_MAX, NULL,
 203				       READING_KEXEC_IMAGE);
 204	if (ret < 0)
 205		return ret;
 206	image->kernel_buf_len = ret;
 207	kexec_dprintk("kernel: %p kernel_size: %#lx\n",
 208		      image->kernel_buf, image->kernel_buf_len);
 209
 210	/* Call arch image probe handlers */
 211	ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
 212					    image->kernel_buf_len);
 213	if (ret)
 214		goto out;
 215
 216#ifdef CONFIG_KEXEC_SIG
 217	ret = kimage_validate_signature(image);
 218
 219	if (ret)
 
 220		goto out;
 
 
 221#endif
 222	/* It is possible that there no initramfs is being loaded */
 223	if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
 224		ret = kernel_read_file_from_fd(initrd_fd, 0, &image->initrd_buf,
 225					       KEXEC_FILE_SIZE_MAX, NULL,
 226					       READING_KEXEC_INITRAMFS);
 227		if (ret < 0)
 228			goto out;
 229		image->initrd_buf_len = ret;
 230		ret = 0;
 231	}
 232
 233	if (cmdline_len) {
 234		image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
 235		if (IS_ERR(image->cmdline_buf)) {
 236			ret = PTR_ERR(image->cmdline_buf);
 237			image->cmdline_buf = NULL;
 
 
 
 
 
 
 238			goto out;
 239		}
 240
 241		image->cmdline_buf_len = cmdline_len;
 242
 243		/* command line should be a string with last byte null */
 244		if (image->cmdline_buf[cmdline_len - 1] != '\0') {
 245			ret = -EINVAL;
 246			goto out;
 247		}
 248
 249		ima_kexec_cmdline(kernel_fd, image->cmdline_buf,
 250				  image->cmdline_buf_len - 1);
 251	}
 252
 253	/* IMA needs to pass the measurement list to the next kernel. */
 254	ima_add_kexec_buffer(image);
 255
 256	/* Call image load handler */
 257	ldata = kexec_image_load_default(image);
 258
 259	if (IS_ERR(ldata)) {
 260		ret = PTR_ERR(ldata);
 261		goto out;
 262	}
 263
 264	image->image_loader_data = ldata;
 265out:
 266	/* In case of error, free up all allocated memory in this function */
 267	if (ret)
 268		kimage_file_post_load_cleanup(image);
 269	return ret;
 270}
 271
 272static int
 273kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
 274		       int initrd_fd, const char __user *cmdline_ptr,
 275		       unsigned long cmdline_len, unsigned long flags)
 276{
 277	int ret;
 278	struct kimage *image;
 279	bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
 280
 281	image = do_kimage_alloc_init();
 282	if (!image)
 283		return -ENOMEM;
 284
 285	kexec_file_dbg_print = !!(flags & KEXEC_FILE_DEBUG);
 286	image->file_mode = 1;
 287
 288	if (kexec_on_panic) {
 289		/* Enable special crash kernel control page alloc policy. */
 290		image->control_page = crashk_res.start;
 291		image->type = KEXEC_TYPE_CRASH;
 292	}
 293
 294	ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
 295					   cmdline_ptr, cmdline_len, flags);
 296	if (ret)
 297		goto out_free_image;
 298
 299	ret = sanity_check_segment_list(image);
 300	if (ret)
 301		goto out_free_post_load_bufs;
 302
 303	ret = -ENOMEM;
 304	image->control_code_page = kimage_alloc_control_pages(image,
 305					   get_order(KEXEC_CONTROL_PAGE_SIZE));
 306	if (!image->control_code_page) {
 307		pr_err("Could not allocate control_code_buffer\n");
 308		goto out_free_post_load_bufs;
 309	}
 310
 311	if (!kexec_on_panic) {
 312		image->swap_page = kimage_alloc_control_pages(image, 0);
 313		if (!image->swap_page) {
 314			pr_err("Could not allocate swap buffer\n");
 315			goto out_free_control_pages;
 316		}
 317	}
 318
 319	*rimage = image;
 320	return 0;
 321out_free_control_pages:
 322	kimage_free_page_list(&image->control_pages);
 323out_free_post_load_bufs:
 324	kimage_file_post_load_cleanup(image);
 325out_free_image:
 326	kfree(image);
 327	return ret;
 328}
 329
 330SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
 331		unsigned long, cmdline_len, const char __user *, cmdline_ptr,
 332		unsigned long, flags)
 333{
 334	int image_type = (flags & KEXEC_FILE_ON_CRASH) ?
 335			 KEXEC_TYPE_CRASH : KEXEC_TYPE_DEFAULT;
 336	struct kimage **dest_image, *image;
 337	int ret = 0, i;
 
 338
 339	/* We only trust the superuser with rebooting the system. */
 340	if (!kexec_load_permitted(image_type))
 341		return -EPERM;
 342
 343	/* Make sure we have a legal set of flags */
 344	if (flags != (flags & KEXEC_FILE_FLAGS))
 345		return -EINVAL;
 346
 347	image = NULL;
 348
 349	if (!kexec_trylock())
 350		return -EBUSY;
 351
 352	if (image_type == KEXEC_TYPE_CRASH) {
 
 353		dest_image = &kexec_crash_image;
 354		if (kexec_crash_image)
 355			arch_kexec_unprotect_crashkres();
 356	} else {
 357		dest_image = &kexec_image;
 358	}
 359
 360	if (flags & KEXEC_FILE_UNLOAD)
 361		goto exchange;
 362
 363	/*
 364	 * In case of crash, new kernel gets loaded in reserved region. It is
 365	 * same memory where old crash kernel might be loaded. Free any
 366	 * current crash dump kernel before we corrupt it.
 367	 */
 368	if (flags & KEXEC_FILE_ON_CRASH)
 369		kimage_free(xchg(&kexec_crash_image, NULL));
 370
 371	ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
 372				     cmdline_len, flags);
 373	if (ret)
 374		goto out;
 375
 376	ret = machine_kexec_prepare(image);
 377	if (ret)
 378		goto out;
 379
 380	/*
 381	 * Some architecture(like S390) may touch the crash memory before
 382	 * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
 383	 */
 384	ret = kimage_crash_copy_vmcoreinfo(image);
 385	if (ret)
 386		goto out;
 387
 388	ret = kexec_calculate_store_digests(image);
 389	if (ret)
 390		goto out;
 391
 392	kexec_dprintk("nr_segments = %lu\n", image->nr_segments);
 393	for (i = 0; i < image->nr_segments; i++) {
 394		struct kexec_segment *ksegment;
 395
 396		ksegment = &image->segment[i];
 397		kexec_dprintk("segment[%d]: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
 398			      i, ksegment->buf, ksegment->bufsz, ksegment->mem,
 399			      ksegment->memsz);
 400
 401		ret = kimage_load_segment(image, &image->segment[i]);
 402		if (ret)
 403			goto out;
 404	}
 405
 406	kimage_terminate(image);
 407
 408	ret = machine_kexec_post_load(image);
 409	if (ret)
 410		goto out;
 411
 412	kexec_dprintk("kexec_file_load: type:%u, start:0x%lx head:0x%lx flags:0x%lx\n",
 413		      image->type, image->start, image->head, flags);
 414	/*
 415	 * Free up any temporary buffers allocated which are not needed
 416	 * after image has been loaded
 417	 */
 418	kimage_file_post_load_cleanup(image);
 419exchange:
 420	image = xchg(dest_image, image);
 421out:
 422	if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
 423		arch_kexec_protect_crashkres();
 424
 425	kexec_unlock();
 426	kimage_free(image);
 427	return ret;
 428}
 429
 430static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
 431				    struct kexec_buf *kbuf)
 432{
 433	struct kimage *image = kbuf->image;
 434	unsigned long temp_start, temp_end;
 435
 436	temp_end = min(end, kbuf->buf_max);
 437	temp_start = temp_end - kbuf->memsz + 1;
 438
 439	do {
 440		/* align down start */
 441		temp_start = ALIGN_DOWN(temp_start, kbuf->buf_align);
 442
 443		if (temp_start < start || temp_start < kbuf->buf_min)
 444			return 0;
 445
 446		temp_end = temp_start + kbuf->memsz - 1;
 447
 448		/*
 449		 * Make sure this does not conflict with any of existing
 450		 * segments
 451		 */
 452		if (kimage_is_destination_range(image, temp_start, temp_end)) {
 453			temp_start = temp_start - PAGE_SIZE;
 454			continue;
 455		}
 456
 457		/* We found a suitable memory range */
 458		break;
 459	} while (1);
 460
 461	/* If we are here, we found a suitable memory range */
 462	kbuf->mem = temp_start;
 463
 464	/* Success, stop navigating through remaining System RAM ranges */
 465	return 1;
 466}
 467
 468static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
 469				     struct kexec_buf *kbuf)
 470{
 471	struct kimage *image = kbuf->image;
 472	unsigned long temp_start, temp_end;
 473
 474	temp_start = max(start, kbuf->buf_min);
 475
 476	do {
 477		temp_start = ALIGN(temp_start, kbuf->buf_align);
 478		temp_end = temp_start + kbuf->memsz - 1;
 479
 480		if (temp_end > end || temp_end > kbuf->buf_max)
 481			return 0;
 482		/*
 483		 * Make sure this does not conflict with any of existing
 484		 * segments
 485		 */
 486		if (kimage_is_destination_range(image, temp_start, temp_end)) {
 487			temp_start = temp_start + PAGE_SIZE;
 488			continue;
 489		}
 490
 491		/* We found a suitable memory range */
 492		break;
 493	} while (1);
 494
 495	/* If we are here, we found a suitable memory range */
 496	kbuf->mem = temp_start;
 497
 498	/* Success, stop navigating through remaining System RAM ranges */
 499	return 1;
 500}
 501
 502static int locate_mem_hole_callback(struct resource *res, void *arg)
 503{
 504	struct kexec_buf *kbuf = (struct kexec_buf *)arg;
 505	u64 start = res->start, end = res->end;
 506	unsigned long sz = end - start + 1;
 507
 508	/* Returning 0 will take to next memory range */
 509
 510	/* Don't use memory that will be detected and handled by a driver. */
 511	if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED)
 512		return 0;
 513
 514	if (sz < kbuf->memsz)
 515		return 0;
 516
 517	if (end < kbuf->buf_min || start > kbuf->buf_max)
 518		return 0;
 519
 520	/*
 521	 * Allocate memory top down with-in ram range. Otherwise bottom up
 522	 * allocation.
 523	 */
 524	if (kbuf->top_down)
 525		return locate_mem_hole_top_down(start, end, kbuf);
 526	return locate_mem_hole_bottom_up(start, end, kbuf);
 527}
 528
 529#ifdef CONFIG_ARCH_KEEP_MEMBLOCK
 530static int kexec_walk_memblock(struct kexec_buf *kbuf,
 531			       int (*func)(struct resource *, void *))
 532{
 533	int ret = 0;
 534	u64 i;
 535	phys_addr_t mstart, mend;
 536	struct resource res = { };
 537
 538	if (kbuf->image->type == KEXEC_TYPE_CRASH)
 539		return func(&crashk_res, kbuf);
 540
 541	/*
 542	 * Using MEMBLOCK_NONE will properly skip MEMBLOCK_DRIVER_MANAGED. See
 543	 * IORESOURCE_SYSRAM_DRIVER_MANAGED handling in
 544	 * locate_mem_hole_callback().
 545	 */
 546	if (kbuf->top_down) {
 547		for_each_free_mem_range_reverse(i, NUMA_NO_NODE, MEMBLOCK_NONE,
 548						&mstart, &mend, NULL) {
 549			/*
 550			 * In memblock, end points to the first byte after the
 551			 * range while in kexec, end points to the last byte
 552			 * in the range.
 553			 */
 554			res.start = mstart;
 555			res.end = mend - 1;
 556			ret = func(&res, kbuf);
 557			if (ret)
 558				break;
 559		}
 560	} else {
 561		for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
 562					&mstart, &mend, NULL) {
 563			/*
 564			 * In memblock, end points to the first byte after the
 565			 * range while in kexec, end points to the last byte
 566			 * in the range.
 567			 */
 568			res.start = mstart;
 569			res.end = mend - 1;
 570			ret = func(&res, kbuf);
 571			if (ret)
 572				break;
 573		}
 574	}
 575
 576	return ret;
 577}
 578#else
 579static int kexec_walk_memblock(struct kexec_buf *kbuf,
 580			       int (*func)(struct resource *, void *))
 581{
 582	return 0;
 583}
 584#endif
 585
 586/**
 587 * kexec_walk_resources - call func(data) on free memory regions
 588 * @kbuf:	Context info for the search. Also passed to @func.
 589 * @func:	Function to call for each memory region.
 590 *
 591 * Return: The memory walk will stop when func returns a non-zero value
 592 * and that value will be returned. If all free regions are visited without
 593 * func returning non-zero, then zero will be returned.
 594 */
 595static int kexec_walk_resources(struct kexec_buf *kbuf,
 596				int (*func)(struct resource *, void *))
 597{
 598	if (kbuf->image->type == KEXEC_TYPE_CRASH)
 599		return walk_iomem_res_desc(crashk_res.desc,
 600					   IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
 601					   crashk_res.start, crashk_res.end,
 602					   kbuf, func);
 603	else if (kbuf->top_down)
 604		return walk_system_ram_res_rev(0, ULONG_MAX, kbuf, func);
 605	else
 606		return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
 607}
 608
 609/**
 610 * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
 611 * @kbuf:	Parameters for the memory search.
 612 *
 613 * On success, kbuf->mem will have the start address of the memory region found.
 614 *
 615 * Return: 0 on success, negative errno on error.
 616 */
 617int kexec_locate_mem_hole(struct kexec_buf *kbuf)
 
 
 
 618{
 619	int ret;
 620
 621	/* Arch knows where to place */
 622	if (kbuf->mem != KEXEC_BUF_MEM_UNKNOWN)
 623		return 0;
 624
 625	if (!IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
 626		ret = kexec_walk_resources(kbuf, locate_mem_hole_callback);
 627	else
 628		ret = kexec_walk_memblock(kbuf, locate_mem_hole_callback);
 629
 630	return ret == 1 ? 0 : -EADDRNOTAVAIL;
 631}
 632
 633/**
 634 * kexec_add_buffer - place a buffer in a kexec segment
 635 * @kbuf:	Buffer contents and memory parameters.
 636 *
 637 * This function assumes that kexec_lock is held.
 638 * On successful return, @kbuf->mem will have the physical address of
 639 * the buffer in memory.
 640 *
 641 * Return: 0 on success, negative errno on error.
 642 */
 643int kexec_add_buffer(struct kexec_buf *kbuf)
 644{
 645	struct kexec_segment *ksegment;
 
 646	int ret;
 647
 648	/* Currently adding segment this way is allowed only in file mode */
 649	if (!kbuf->image->file_mode)
 650		return -EINVAL;
 651
 652	if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
 653		return -EINVAL;
 654
 655	/*
 656	 * Make sure we are not trying to add buffer after allocating
 657	 * control pages. All segments need to be placed first before
 658	 * any control pages are allocated. As control page allocation
 659	 * logic goes through list of segments to make sure there are
 660	 * no destination overlaps.
 661	 */
 662	if (!list_empty(&kbuf->image->control_pages)) {
 663		WARN_ON(1);
 664		return -EINVAL;
 665	}
 666
 667	/* Ensure minimum alignment needed for segments. */
 668	kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
 669	kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
 
 
 
 
 
 
 
 
 670
 671	/* Walk the RAM ranges and allocate a suitable range for the buffer */
 672	ret = arch_kexec_locate_mem_hole(kbuf);
 673	if (ret)
 674		return ret;
 
 
 
 
 
 
 
 
 
 675
 676	/* Found a suitable memory range */
 677	ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
 678	ksegment->kbuf = kbuf->buffer;
 679	ksegment->bufsz = kbuf->bufsz;
 680	ksegment->mem = kbuf->mem;
 681	ksegment->memsz = kbuf->memsz;
 682	kbuf->image->nr_segments++;
 
 683	return 0;
 684}
 685
 686/* Calculate and store the digest of segments */
 687static int kexec_calculate_store_digests(struct kimage *image)
 688{
 689	struct crypto_shash *tfm;
 690	struct shash_desc *desc;
 691	int ret = 0, i, j, zero_buf_sz, sha_region_sz;
 692	size_t desc_size, nullsz;
 693	char *digest;
 694	void *zero_buf;
 695	struct kexec_sha_region *sha_regions;
 696	struct purgatory_info *pi = &image->purgatory_info;
 697
 698	if (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY))
 699		return 0;
 700
 701	zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
 702	zero_buf_sz = PAGE_SIZE;
 703
 704	tfm = crypto_alloc_shash("sha256", 0, 0);
 705	if (IS_ERR(tfm)) {
 706		ret = PTR_ERR(tfm);
 707		goto out;
 708	}
 709
 710	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
 711	desc = kzalloc(desc_size, GFP_KERNEL);
 712	if (!desc) {
 713		ret = -ENOMEM;
 714		goto out_free_tfm;
 715	}
 716
 717	sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
 718	sha_regions = vzalloc(sha_region_sz);
 719	if (!sha_regions) {
 720		ret = -ENOMEM;
 721		goto out_free_desc;
 722	}
 723
 724	desc->tfm   = tfm;
 
 725
 726	ret = crypto_shash_init(desc);
 727	if (ret < 0)
 728		goto out_free_sha_regions;
 729
 730	digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
 731	if (!digest) {
 732		ret = -ENOMEM;
 733		goto out_free_sha_regions;
 734	}
 735
 736	for (j = i = 0; i < image->nr_segments; i++) {
 737		struct kexec_segment *ksegment;
 738
 739#ifdef CONFIG_CRASH_HOTPLUG
 740		/* Exclude elfcorehdr segment to allow future changes via hotplug */
 741		if (j == image->elfcorehdr_index)
 742			continue;
 743#endif
 744
 745		ksegment = &image->segment[i];
 746		/*
 747		 * Skip purgatory as it will be modified once we put digest
 748		 * info in purgatory.
 749		 */
 750		if (ksegment->kbuf == pi->purgatory_buf)
 751			continue;
 752
 753		ret = crypto_shash_update(desc, ksegment->kbuf,
 754					  ksegment->bufsz);
 755		if (ret)
 756			break;
 757
 758		/*
 759		 * Assume rest of the buffer is filled with zero and
 760		 * update digest accordingly.
 761		 */
 762		nullsz = ksegment->memsz - ksegment->bufsz;
 763		while (nullsz) {
 764			unsigned long bytes = nullsz;
 765
 766			if (bytes > zero_buf_sz)
 767				bytes = zero_buf_sz;
 768			ret = crypto_shash_update(desc, zero_buf, bytes);
 769			if (ret)
 770				break;
 771			nullsz -= bytes;
 772		}
 773
 774		if (ret)
 775			break;
 776
 777		sha_regions[j].start = ksegment->mem;
 778		sha_regions[j].len = ksegment->memsz;
 779		j++;
 780	}
 781
 782	if (!ret) {
 783		ret = crypto_shash_final(desc, digest);
 784		if (ret)
 785			goto out_free_digest;
 786		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
 787						     sha_regions, sha_region_sz, 0);
 788		if (ret)
 789			goto out_free_digest;
 790
 791		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
 792						     digest, SHA256_DIGEST_SIZE, 0);
 793		if (ret)
 794			goto out_free_digest;
 795	}
 796
 797out_free_digest:
 798	kfree(digest);
 799out_free_sha_regions:
 800	vfree(sha_regions);
 801out_free_desc:
 802	kfree(desc);
 803out_free_tfm:
 804	kfree(tfm);
 805out:
 806	return ret;
 807}
 808
 809#ifdef CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY
 810/*
 811 * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory.
 812 * @pi:		Purgatory to be loaded.
 813 * @kbuf:	Buffer to setup.
 814 *
 815 * Allocates the memory needed for the buffer. Caller is responsible to free
 816 * the memory after use.
 817 *
 818 * Return: 0 on success, negative errno on error.
 819 */
 820static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi,
 821				      struct kexec_buf *kbuf)
 822{
 823	const Elf_Shdr *sechdrs;
 824	unsigned long bss_align;
 825	unsigned long bss_sz;
 826	unsigned long align;
 827	int i, ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 828
 829	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
 830	kbuf->buf_align = bss_align = 1;
 831	kbuf->bufsz = bss_sz = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 832
 833	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 834		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
 835			continue;
 836
 837		align = sechdrs[i].sh_addralign;
 838		if (sechdrs[i].sh_type != SHT_NOBITS) {
 839			if (kbuf->buf_align < align)
 840				kbuf->buf_align = align;
 841			kbuf->bufsz = ALIGN(kbuf->bufsz, align);
 842			kbuf->bufsz += sechdrs[i].sh_size;
 843		} else {
 
 844			if (bss_align < align)
 845				bss_align = align;
 846			bss_sz = ALIGN(bss_sz, align);
 847			bss_sz += sechdrs[i].sh_size;
 848		}
 849	}
 850	kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align);
 851	kbuf->memsz = kbuf->bufsz + bss_sz;
 852	if (kbuf->buf_align < bss_align)
 853		kbuf->buf_align = bss_align;
 854
 855	kbuf->buffer = vzalloc(kbuf->bufsz);
 856	if (!kbuf->buffer)
 857		return -ENOMEM;
 858	pi->purgatory_buf = kbuf->buffer;
 859
 860	ret = kexec_add_buffer(kbuf);
 861	if (ret)
 
 
 
 
 
 
 
 
 
 862		goto out;
 
 863
 864	return 0;
 865out:
 866	vfree(pi->purgatory_buf);
 867	pi->purgatory_buf = NULL;
 868	return ret;
 869}
 870
 871/*
 872 * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer.
 873 * @pi:		Purgatory to be loaded.
 874 * @kbuf:	Buffer prepared to store purgatory.
 875 *
 876 * Allocates the memory needed for the buffer. Caller is responsible to free
 877 * the memory after use.
 878 *
 879 * Return: 0 on success, negative errno on error.
 880 */
 881static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi,
 882					 struct kexec_buf *kbuf)
 883{
 884	unsigned long bss_addr;
 885	unsigned long offset;
 886	size_t sechdrs_size;
 887	Elf_Shdr *sechdrs;
 888	int i;
 889
 890	/*
 891	 * The section headers in kexec_purgatory are read-only. In order to
 892	 * have them modifiable make a temporary copy.
 893	 */
 894	sechdrs_size = array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum);
 895	sechdrs = vzalloc(sechdrs_size);
 896	if (!sechdrs)
 897		return -ENOMEM;
 898	memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff, sechdrs_size);
 899	pi->sechdrs = sechdrs;
 900
 901	offset = 0;
 902	bss_addr = kbuf->mem + kbuf->bufsz;
 903	kbuf->image->start = pi->ehdr->e_entry;
 
 904
 905	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 906		unsigned long align;
 907		void *src, *dst;
 908
 909		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
 910			continue;
 911
 912		align = sechdrs[i].sh_addralign;
 913		if (sechdrs[i].sh_type == SHT_NOBITS) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 914			bss_addr = ALIGN(bss_addr, align);
 915			sechdrs[i].sh_addr = bss_addr;
 916			bss_addr += sechdrs[i].sh_size;
 917			continue;
 918		}
 
 919
 920		offset = ALIGN(offset, align);
 
 
 921
 922		/*
 923		 * Check if the segment contains the entry point, if so,
 924		 * calculate the value of image->start based on it.
 925		 * If the compiler has produced more than one .text section
 926		 * (Eg: .text.hot), they are generally after the main .text
 927		 * section, and they shall not be used to calculate
 928		 * image->start. So do not re-calculate image->start if it
 929		 * is not set to the initial value, and warn the user so they
 930		 * have a chance to fix their purgatory's linker script.
 931		 */
 932		if (sechdrs[i].sh_flags & SHF_EXECINSTR &&
 933		    pi->ehdr->e_entry >= sechdrs[i].sh_addr &&
 934		    pi->ehdr->e_entry < (sechdrs[i].sh_addr
 935					 + sechdrs[i].sh_size) &&
 936		    !WARN_ON(kbuf->image->start != pi->ehdr->e_entry)) {
 937			kbuf->image->start -= sechdrs[i].sh_addr;
 938			kbuf->image->start += kbuf->mem + offset;
 939		}
 940
 941		src = (void *)pi->ehdr + sechdrs[i].sh_offset;
 942		dst = pi->purgatory_buf + offset;
 943		memcpy(dst, src, sechdrs[i].sh_size);
 944
 945		sechdrs[i].sh_addr = kbuf->mem + offset;
 946		sechdrs[i].sh_offset = offset;
 947		offset += sechdrs[i].sh_size;
 948	}
 949
 950	return 0;
 
 
 
 
 
 
 
 
 
 951}
 952
 953static int kexec_apply_relocations(struct kimage *image)
 954{
 955	int i, ret;
 956	struct purgatory_info *pi = &image->purgatory_info;
 957	const Elf_Shdr *sechdrs;
 958
 959	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
 960
 
 961	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 962		const Elf_Shdr *relsec;
 963		const Elf_Shdr *symtab;
 964		Elf_Shdr *section;
 965
 966		relsec = sechdrs + i;
 967
 968		if (relsec->sh_type != SHT_RELA &&
 969		    relsec->sh_type != SHT_REL)
 970			continue;
 971
 972		/*
 973		 * For section of type SHT_RELA/SHT_REL,
 974		 * ->sh_link contains section header index of associated
 975		 * symbol table. And ->sh_info contains section header
 976		 * index of section to which relocations apply.
 977		 */
 978		if (relsec->sh_info >= pi->ehdr->e_shnum ||
 979		    relsec->sh_link >= pi->ehdr->e_shnum)
 980			return -ENOEXEC;
 981
 982		section = pi->sechdrs + relsec->sh_info;
 983		symtab = sechdrs + relsec->sh_link;
 984
 985		if (!(section->sh_flags & SHF_ALLOC))
 986			continue;
 987
 988		/*
 989		 * symtab->sh_link contain section header index of associated
 990		 * string table.
 991		 */
 992		if (symtab->sh_link >= pi->ehdr->e_shnum)
 993			/* Invalid section number? */
 994			continue;
 995
 996		/*
 997		 * Respective architecture needs to provide support for applying
 998		 * relocations of type SHT_RELA/SHT_REL.
 999		 */
1000		if (relsec->sh_type == SHT_RELA)
1001			ret = arch_kexec_apply_relocations_add(pi, section,
1002							       relsec, symtab);
1003		else if (relsec->sh_type == SHT_REL)
1004			ret = arch_kexec_apply_relocations(pi, section,
1005							   relsec, symtab);
1006		if (ret)
1007			return ret;
1008	}
1009
1010	return 0;
1011}
1012
1013/*
1014 * kexec_load_purgatory - Load and relocate the purgatory object.
1015 * @image:	Image to add the purgatory to.
1016 * @kbuf:	Memory parameters to use.
1017 *
1018 * Allocates the memory needed for image->purgatory_info.sechdrs and
1019 * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible
1020 * to free the memory after use.
1021 *
1022 * Return: 0 on success, negative errno on error.
1023 */
1024int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf)
1025{
1026	struct purgatory_info *pi = &image->purgatory_info;
1027	int ret;
1028
1029	if (kexec_purgatory_size <= 0)
1030		return -EINVAL;
1031
1032	pi->ehdr = (const Elf_Ehdr *)kexec_purgatory;
 
1033
1034	ret = kexec_purgatory_setup_kbuf(pi, kbuf);
1035	if (ret)
1036		return ret;
 
 
 
 
 
 
 
 
 
1037
1038	ret = kexec_purgatory_setup_sechdrs(pi, kbuf);
1039	if (ret)
1040		goto out_free_kbuf;
1041
1042	ret = kexec_apply_relocations(image);
1043	if (ret)
1044		goto out;
1045
 
1046	return 0;
1047out:
1048	vfree(pi->sechdrs);
1049	pi->sechdrs = NULL;
1050out_free_kbuf:
1051	vfree(pi->purgatory_buf);
1052	pi->purgatory_buf = NULL;
1053	return ret;
1054}
1055
1056/*
1057 * kexec_purgatory_find_symbol - find a symbol in the purgatory
1058 * @pi:		Purgatory to search in.
1059 * @name:	Name of the symbol.
1060 *
1061 * Return: pointer to symbol in read-only symtab on success, NULL on error.
1062 */
1063static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
1064						  const char *name)
1065{
1066	const Elf_Shdr *sechdrs;
1067	const Elf_Ehdr *ehdr;
1068	const Elf_Sym *syms;
1069	const char *strtab;
1070	int i, k;
 
1071
1072	if (!pi->ehdr)
1073		return NULL;
1074
 
1075	ehdr = pi->ehdr;
1076	sechdrs = (void *)ehdr + ehdr->e_shoff;
1077
1078	for (i = 0; i < ehdr->e_shnum; i++) {
1079		if (sechdrs[i].sh_type != SHT_SYMTAB)
1080			continue;
1081
1082		if (sechdrs[i].sh_link >= ehdr->e_shnum)
1083			/* Invalid strtab section number */
1084			continue;
1085		strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset;
1086		syms = (void *)ehdr + sechdrs[i].sh_offset;
1087
1088		/* Go through symbols for a match */
1089		for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
1090			if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
1091				continue;
1092
1093			if (strcmp(strtab + syms[k].st_name, name) != 0)
1094				continue;
1095
1096			if (syms[k].st_shndx == SHN_UNDEF ||
1097			    syms[k].st_shndx >= ehdr->e_shnum) {
1098				pr_debug("Symbol: %s has bad section index %d.\n",
1099						name, syms[k].st_shndx);
1100				return NULL;
1101			}
1102
1103			/* Found the symbol we are looking for */
1104			return &syms[k];
1105		}
1106	}
1107
1108	return NULL;
1109}
1110
1111void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
1112{
1113	struct purgatory_info *pi = &image->purgatory_info;
1114	const Elf_Sym *sym;
1115	Elf_Shdr *sechdr;
1116
1117	sym = kexec_purgatory_find_symbol(pi, name);
1118	if (!sym)
1119		return ERR_PTR(-EINVAL);
1120
1121	sechdr = &pi->sechdrs[sym->st_shndx];
1122
1123	/*
1124	 * Returns the address where symbol will finally be loaded after
1125	 * kexec_load_segment()
1126	 */
1127	return (void *)(sechdr->sh_addr + sym->st_value);
1128}
1129
1130/*
1131 * Get or set value of a symbol. If "get_value" is true, symbol value is
1132 * returned in buf otherwise symbol value is set based on value in buf.
1133 */
1134int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
1135				   void *buf, unsigned int size, bool get_value)
1136{
 
 
1137	struct purgatory_info *pi = &image->purgatory_info;
1138	const Elf_Sym *sym;
1139	Elf_Shdr *sec;
1140	char *sym_buf;
1141
1142	sym = kexec_purgatory_find_symbol(pi, name);
1143	if (!sym)
1144		return -EINVAL;
1145
1146	if (sym->st_size != size) {
1147		pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1148		       name, (unsigned long)sym->st_size, size);
1149		return -EINVAL;
1150	}
1151
1152	sec = pi->sechdrs + sym->st_shndx;
1153
1154	if (sec->sh_type == SHT_NOBITS) {
1155		pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1156		       get_value ? "get" : "set");
1157		return -EINVAL;
1158	}
1159
1160	sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value;
 
1161
1162	if (get_value)
1163		memcpy((void *)buf, sym_buf, size);
1164	else
1165		memcpy((void *)sym_buf, buf, size);
1166
1167	return 0;
1168}
1169#endif /* CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY */
v4.6
 
  1/*
  2 * kexec: kexec_file_load system call
  3 *
  4 * Copyright (C) 2014 Red Hat Inc.
  5 * Authors:
  6 *      Vivek Goyal <vgoyal@redhat.com>
  7 *
  8 * This source code is licensed under the GNU General Public License,
  9 * Version 2.  See the file COPYING for more details.
 10 */
 11
 12#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 13
 14#include <linux/capability.h>
 15#include <linux/mm.h>
 16#include <linux/file.h>
 17#include <linux/slab.h>
 18#include <linux/kexec.h>
 
 19#include <linux/mutex.h>
 20#include <linux/list.h>
 21#include <linux/fs.h>
 
 22#include <crypto/hash.h>
 23#include <crypto/sha.h>
 
 
 
 
 24#include <linux/syscalls.h>
 25#include <linux/vmalloc.h>
 26#include "kexec_internal.h"
 27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 28/*
 29 * Declare these symbols weak so that if architecture provides a purgatory,
 30 * these will be overridden.
 
 31 */
 32char __weak kexec_purgatory[0];
 33size_t __weak kexec_purgatory_size = 0;
 
 
 
 34
 35static int kexec_calculate_store_digests(struct kimage *image);
 
 
 
 
 
 
 36
 37/* Architectures can provide this probe function */
 38int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
 39					 unsigned long buf_len)
 40{
 41	return -ENOEXEC;
 42}
 43
 44void * __weak arch_kexec_kernel_image_load(struct kimage *image)
 45{
 46	return ERR_PTR(-ENOEXEC);
 47}
 48
 49int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
 50{
 51	return -EINVAL;
 
 52}
 53
 54#ifdef CONFIG_KEXEC_VERIFY_SIG
 55int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
 56					unsigned long buf_len)
 57{
 58	return -EKEYREJECTED;
 59}
 60#endif
 61
 62/* Apply relocations of type RELA */
 63int __weak
 64arch_kexec_apply_relocations_add(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
 65				 unsigned int relsec)
 66{
 67	pr_err("RELA relocation unsupported.\n");
 68	return -ENOEXEC;
 69}
 70
 71/* Apply relocations of type REL */
 72int __weak
 73arch_kexec_apply_relocations(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
 74			     unsigned int relsec)
 75{
 76	pr_err("REL relocation unsupported.\n");
 77	return -ENOEXEC;
 78}
 79
 80/*
 81 * Free up memory used by kernel, initrd, and command line. This is temporary
 82 * memory allocation which is not needed any more after these buffers have
 83 * been loaded into separate segments and have been copied elsewhere.
 84 */
 85void kimage_file_post_load_cleanup(struct kimage *image)
 86{
 87	struct purgatory_info *pi = &image->purgatory_info;
 88
 89	vfree(image->kernel_buf);
 90	image->kernel_buf = NULL;
 91
 92	vfree(image->initrd_buf);
 93	image->initrd_buf = NULL;
 94
 95	kfree(image->cmdline_buf);
 96	image->cmdline_buf = NULL;
 97
 98	vfree(pi->purgatory_buf);
 99	pi->purgatory_buf = NULL;
100
101	vfree(pi->sechdrs);
102	pi->sechdrs = NULL;
103
 
 
 
 
 
104	/* See if architecture has anything to cleanup post load */
105	arch_kimage_file_post_load_cleanup(image);
106
107	/*
108	 * Above call should have called into bootloader to free up
109	 * any data stored in kimage->image_loader_data. It should
110	 * be ok now to free it up.
111	 */
112	kfree(image->image_loader_data);
113	image->image_loader_data = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
114}
 
115
116/*
117 * In file mode list of segments is prepared by kernel. Copy relevant
118 * data from user space, do error checking, prepare segment list
119 */
120static int
121kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
122			     const char __user *cmdline_ptr,
123			     unsigned long cmdline_len, unsigned flags)
124{
125	int ret = 0;
126	void *ldata;
127	loff_t size;
128
129	ret = kernel_read_file_from_fd(kernel_fd, &image->kernel_buf,
130				       &size, INT_MAX, READING_KEXEC_IMAGE);
131	if (ret)
 
132		return ret;
133	image->kernel_buf_len = size;
 
 
134
135	/* Call arch image probe handlers */
136	ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
137					    image->kernel_buf_len);
138	if (ret)
139		goto out;
140
141#ifdef CONFIG_KEXEC_VERIFY_SIG
142	ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
143					   image->kernel_buf_len);
144	if (ret) {
145		pr_debug("kernel signature verification failed.\n");
146		goto out;
147	}
148	pr_debug("kernel signature verification successful.\n");
149#endif
150	/* It is possible that there no initramfs is being loaded */
151	if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
152		ret = kernel_read_file_from_fd(initrd_fd, &image->initrd_buf,
153					       &size, INT_MAX,
154					       READING_KEXEC_INITRAMFS);
155		if (ret)
156			goto out;
157		image->initrd_buf_len = size;
 
158	}
159
160	if (cmdline_len) {
161		image->cmdline_buf = kzalloc(cmdline_len, GFP_KERNEL);
162		if (!image->cmdline_buf) {
163			ret = -ENOMEM;
164			goto out;
165		}
166
167		ret = copy_from_user(image->cmdline_buf, cmdline_ptr,
168				     cmdline_len);
169		if (ret) {
170			ret = -EFAULT;
171			goto out;
172		}
173
174		image->cmdline_buf_len = cmdline_len;
175
176		/* command line should be a string with last byte null */
177		if (image->cmdline_buf[cmdline_len - 1] != '\0') {
178			ret = -EINVAL;
179			goto out;
180		}
 
 
 
181	}
182
183	/* Call arch image load handlers */
184	ldata = arch_kexec_kernel_image_load(image);
 
 
 
185
186	if (IS_ERR(ldata)) {
187		ret = PTR_ERR(ldata);
188		goto out;
189	}
190
191	image->image_loader_data = ldata;
192out:
193	/* In case of error, free up all allocated memory in this function */
194	if (ret)
195		kimage_file_post_load_cleanup(image);
196	return ret;
197}
198
199static int
200kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
201		       int initrd_fd, const char __user *cmdline_ptr,
202		       unsigned long cmdline_len, unsigned long flags)
203{
204	int ret;
205	struct kimage *image;
206	bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
207
208	image = do_kimage_alloc_init();
209	if (!image)
210		return -ENOMEM;
211
 
212	image->file_mode = 1;
213
214	if (kexec_on_panic) {
215		/* Enable special crash kernel control page alloc policy. */
216		image->control_page = crashk_res.start;
217		image->type = KEXEC_TYPE_CRASH;
218	}
219
220	ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
221					   cmdline_ptr, cmdline_len, flags);
222	if (ret)
223		goto out_free_image;
224
225	ret = sanity_check_segment_list(image);
226	if (ret)
227		goto out_free_post_load_bufs;
228
229	ret = -ENOMEM;
230	image->control_code_page = kimage_alloc_control_pages(image,
231					   get_order(KEXEC_CONTROL_PAGE_SIZE));
232	if (!image->control_code_page) {
233		pr_err("Could not allocate control_code_buffer\n");
234		goto out_free_post_load_bufs;
235	}
236
237	if (!kexec_on_panic) {
238		image->swap_page = kimage_alloc_control_pages(image, 0);
239		if (!image->swap_page) {
240			pr_err("Could not allocate swap buffer\n");
241			goto out_free_control_pages;
242		}
243	}
244
245	*rimage = image;
246	return 0;
247out_free_control_pages:
248	kimage_free_page_list(&image->control_pages);
249out_free_post_load_bufs:
250	kimage_file_post_load_cleanup(image);
251out_free_image:
252	kfree(image);
253	return ret;
254}
255
256SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
257		unsigned long, cmdline_len, const char __user *, cmdline_ptr,
258		unsigned long, flags)
259{
 
 
 
260	int ret = 0, i;
261	struct kimage **dest_image, *image;
262
263	/* We only trust the superuser with rebooting the system. */
264	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
265		return -EPERM;
266
267	/* Make sure we have a legal set of flags */
268	if (flags != (flags & KEXEC_FILE_FLAGS))
269		return -EINVAL;
270
271	image = NULL;
272
273	if (!mutex_trylock(&kexec_mutex))
274		return -EBUSY;
275
276	dest_image = &kexec_image;
277	if (flags & KEXEC_FILE_ON_CRASH)
278		dest_image = &kexec_crash_image;
 
 
 
 
 
279
280	if (flags & KEXEC_FILE_UNLOAD)
281		goto exchange;
282
283	/*
284	 * In case of crash, new kernel gets loaded in reserved region. It is
285	 * same memory where old crash kernel might be loaded. Free any
286	 * current crash dump kernel before we corrupt it.
287	 */
288	if (flags & KEXEC_FILE_ON_CRASH)
289		kimage_free(xchg(&kexec_crash_image, NULL));
290
291	ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
292				     cmdline_len, flags);
293	if (ret)
294		goto out;
295
296	ret = machine_kexec_prepare(image);
297	if (ret)
298		goto out;
299
 
 
 
 
 
 
 
 
300	ret = kexec_calculate_store_digests(image);
301	if (ret)
302		goto out;
303
 
304	for (i = 0; i < image->nr_segments; i++) {
305		struct kexec_segment *ksegment;
306
307		ksegment = &image->segment[i];
308		pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
309			 i, ksegment->buf, ksegment->bufsz, ksegment->mem,
310			 ksegment->memsz);
311
312		ret = kimage_load_segment(image, &image->segment[i]);
313		if (ret)
314			goto out;
315	}
316
317	kimage_terminate(image);
318
 
 
 
 
 
 
319	/*
320	 * Free up any temporary buffers allocated which are not needed
321	 * after image has been loaded
322	 */
323	kimage_file_post_load_cleanup(image);
324exchange:
325	image = xchg(dest_image, image);
326out:
327	mutex_unlock(&kexec_mutex);
 
 
 
328	kimage_free(image);
329	return ret;
330}
331
332static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
333				    struct kexec_buf *kbuf)
334{
335	struct kimage *image = kbuf->image;
336	unsigned long temp_start, temp_end;
337
338	temp_end = min(end, kbuf->buf_max);
339	temp_start = temp_end - kbuf->memsz;
340
341	do {
342		/* align down start */
343		temp_start = temp_start & (~(kbuf->buf_align - 1));
344
345		if (temp_start < start || temp_start < kbuf->buf_min)
346			return 0;
347
348		temp_end = temp_start + kbuf->memsz - 1;
349
350		/*
351		 * Make sure this does not conflict with any of existing
352		 * segments
353		 */
354		if (kimage_is_destination_range(image, temp_start, temp_end)) {
355			temp_start = temp_start - PAGE_SIZE;
356			continue;
357		}
358
359		/* We found a suitable memory range */
360		break;
361	} while (1);
362
363	/* If we are here, we found a suitable memory range */
364	kbuf->mem = temp_start;
365
366	/* Success, stop navigating through remaining System RAM ranges */
367	return 1;
368}
369
370static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
371				     struct kexec_buf *kbuf)
372{
373	struct kimage *image = kbuf->image;
374	unsigned long temp_start, temp_end;
375
376	temp_start = max(start, kbuf->buf_min);
377
378	do {
379		temp_start = ALIGN(temp_start, kbuf->buf_align);
380		temp_end = temp_start + kbuf->memsz - 1;
381
382		if (temp_end > end || temp_end > kbuf->buf_max)
383			return 0;
384		/*
385		 * Make sure this does not conflict with any of existing
386		 * segments
387		 */
388		if (kimage_is_destination_range(image, temp_start, temp_end)) {
389			temp_start = temp_start + PAGE_SIZE;
390			continue;
391		}
392
393		/* We found a suitable memory range */
394		break;
395	} while (1);
396
397	/* If we are here, we found a suitable memory range */
398	kbuf->mem = temp_start;
399
400	/* Success, stop navigating through remaining System RAM ranges */
401	return 1;
402}
403
404static int locate_mem_hole_callback(u64 start, u64 end, void *arg)
405{
406	struct kexec_buf *kbuf = (struct kexec_buf *)arg;
 
407	unsigned long sz = end - start + 1;
408
409	/* Returning 0 will take to next memory range */
 
 
 
 
 
410	if (sz < kbuf->memsz)
411		return 0;
412
413	if (end < kbuf->buf_min || start > kbuf->buf_max)
414		return 0;
415
416	/*
417	 * Allocate memory top down with-in ram range. Otherwise bottom up
418	 * allocation.
419	 */
420	if (kbuf->top_down)
421		return locate_mem_hole_top_down(start, end, kbuf);
422	return locate_mem_hole_bottom_up(start, end, kbuf);
423}
424
425/*
426 * Helper function for placing a buffer in a kexec segment. This assumes
427 * that kexec_mutex is held.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
428 */
429int kexec_add_buffer(struct kimage *image, char *buffer, unsigned long bufsz,
430		     unsigned long memsz, unsigned long buf_align,
431		     unsigned long buf_min, unsigned long buf_max,
432		     bool top_down, unsigned long *load_addr)
433{
 
434
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
435	struct kexec_segment *ksegment;
436	struct kexec_buf buf, *kbuf;
437	int ret;
438
439	/* Currently adding segment this way is allowed only in file mode */
440	if (!image->file_mode)
441		return -EINVAL;
442
443	if (image->nr_segments >= KEXEC_SEGMENT_MAX)
444		return -EINVAL;
445
446	/*
447	 * Make sure we are not trying to add buffer after allocating
448	 * control pages. All segments need to be placed first before
449	 * any control pages are allocated. As control page allocation
450	 * logic goes through list of segments to make sure there are
451	 * no destination overlaps.
452	 */
453	if (!list_empty(&image->control_pages)) {
454		WARN_ON(1);
455		return -EINVAL;
456	}
457
458	memset(&buf, 0, sizeof(struct kexec_buf));
459	kbuf = &buf;
460	kbuf->image = image;
461	kbuf->buffer = buffer;
462	kbuf->bufsz = bufsz;
463
464	kbuf->memsz = ALIGN(memsz, PAGE_SIZE);
465	kbuf->buf_align = max(buf_align, PAGE_SIZE);
466	kbuf->buf_min = buf_min;
467	kbuf->buf_max = buf_max;
468	kbuf->top_down = top_down;
469
470	/* Walk the RAM ranges and allocate a suitable range for the buffer */
471	if (image->type == KEXEC_TYPE_CRASH)
472		ret = walk_iomem_res_desc(crashk_res.desc,
473				IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
474				crashk_res.start, crashk_res.end, kbuf,
475				locate_mem_hole_callback);
476	else
477		ret = walk_system_ram_res(0, -1, kbuf,
478					  locate_mem_hole_callback);
479	if (ret != 1) {
480		/* A suitable memory range could not be found for buffer */
481		return -EADDRNOTAVAIL;
482	}
483
484	/* Found a suitable memory range */
485	ksegment = &image->segment[image->nr_segments];
486	ksegment->kbuf = kbuf->buffer;
487	ksegment->bufsz = kbuf->bufsz;
488	ksegment->mem = kbuf->mem;
489	ksegment->memsz = kbuf->memsz;
490	image->nr_segments++;
491	*load_addr = ksegment->mem;
492	return 0;
493}
494
495/* Calculate and store the digest of segments */
496static int kexec_calculate_store_digests(struct kimage *image)
497{
498	struct crypto_shash *tfm;
499	struct shash_desc *desc;
500	int ret = 0, i, j, zero_buf_sz, sha_region_sz;
501	size_t desc_size, nullsz;
502	char *digest;
503	void *zero_buf;
504	struct kexec_sha_region *sha_regions;
505	struct purgatory_info *pi = &image->purgatory_info;
506
 
 
 
507	zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
508	zero_buf_sz = PAGE_SIZE;
509
510	tfm = crypto_alloc_shash("sha256", 0, 0);
511	if (IS_ERR(tfm)) {
512		ret = PTR_ERR(tfm);
513		goto out;
514	}
515
516	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
517	desc = kzalloc(desc_size, GFP_KERNEL);
518	if (!desc) {
519		ret = -ENOMEM;
520		goto out_free_tfm;
521	}
522
523	sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
524	sha_regions = vzalloc(sha_region_sz);
525	if (!sha_regions)
 
526		goto out_free_desc;
 
527
528	desc->tfm   = tfm;
529	desc->flags = 0;
530
531	ret = crypto_shash_init(desc);
532	if (ret < 0)
533		goto out_free_sha_regions;
534
535	digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
536	if (!digest) {
537		ret = -ENOMEM;
538		goto out_free_sha_regions;
539	}
540
541	for (j = i = 0; i < image->nr_segments; i++) {
542		struct kexec_segment *ksegment;
543
 
 
 
 
 
 
544		ksegment = &image->segment[i];
545		/*
546		 * Skip purgatory as it will be modified once we put digest
547		 * info in purgatory.
548		 */
549		if (ksegment->kbuf == pi->purgatory_buf)
550			continue;
551
552		ret = crypto_shash_update(desc, ksegment->kbuf,
553					  ksegment->bufsz);
554		if (ret)
555			break;
556
557		/*
558		 * Assume rest of the buffer is filled with zero and
559		 * update digest accordingly.
560		 */
561		nullsz = ksegment->memsz - ksegment->bufsz;
562		while (nullsz) {
563			unsigned long bytes = nullsz;
564
565			if (bytes > zero_buf_sz)
566				bytes = zero_buf_sz;
567			ret = crypto_shash_update(desc, zero_buf, bytes);
568			if (ret)
569				break;
570			nullsz -= bytes;
571		}
572
573		if (ret)
574			break;
575
576		sha_regions[j].start = ksegment->mem;
577		sha_regions[j].len = ksegment->memsz;
578		j++;
579	}
580
581	if (!ret) {
582		ret = crypto_shash_final(desc, digest);
583		if (ret)
584			goto out_free_digest;
585		ret = kexec_purgatory_get_set_symbol(image, "sha_regions",
586						sha_regions, sha_region_sz, 0);
587		if (ret)
588			goto out_free_digest;
589
590		ret = kexec_purgatory_get_set_symbol(image, "sha256_digest",
591						digest, SHA256_DIGEST_SIZE, 0);
592		if (ret)
593			goto out_free_digest;
594	}
595
596out_free_digest:
597	kfree(digest);
598out_free_sha_regions:
599	vfree(sha_regions);
600out_free_desc:
601	kfree(desc);
602out_free_tfm:
603	kfree(tfm);
604out:
605	return ret;
606}
607
608/* Actually load purgatory. Lot of code taken from kexec-tools */
609static int __kexec_load_purgatory(struct kimage *image, unsigned long min,
610				  unsigned long max, int top_down)
 
 
 
 
 
 
 
 
 
 
611{
612	struct purgatory_info *pi = &image->purgatory_info;
613	unsigned long align, buf_align, bss_align, buf_sz, bss_sz, bss_pad;
614	unsigned long memsz, entry, load_addr, curr_load_addr, bss_addr, offset;
615	unsigned char *buf_addr, *src;
616	int i, ret = 0, entry_sidx = -1;
617	const Elf_Shdr *sechdrs_c;
618	Elf_Shdr *sechdrs = NULL;
619	void *purgatory_buf = NULL;
620
621	/*
622	 * sechdrs_c points to section headers in purgatory and are read
623	 * only. No modifications allowed.
624	 */
625	sechdrs_c = (void *)pi->ehdr + pi->ehdr->e_shoff;
626
627	/*
628	 * We can not modify sechdrs_c[] and its fields. It is read only.
629	 * Copy it over to a local copy where one can store some temporary
630	 * data and free it at the end. We need to modify ->sh_addr and
631	 * ->sh_offset fields to keep track of permanent and temporary
632	 * locations of sections.
633	 */
634	sechdrs = vzalloc(pi->ehdr->e_shnum * sizeof(Elf_Shdr));
635	if (!sechdrs)
636		return -ENOMEM;
637
638	memcpy(sechdrs, sechdrs_c, pi->ehdr->e_shnum * sizeof(Elf_Shdr));
639
640	/*
641	 * We seem to have multiple copies of sections. First copy is which
642	 * is embedded in kernel in read only section. Some of these sections
643	 * will be copied to a temporary buffer and relocated. And these
644	 * sections will finally be copied to their final destination at
645	 * segment load time.
646	 *
647	 * Use ->sh_offset to reflect section address in memory. It will
648	 * point to original read only copy if section is not allocatable.
649	 * Otherwise it will point to temporary copy which will be relocated.
650	 *
651	 * Use ->sh_addr to contain final address of the section where it
652	 * will go during execution time.
653	 */
654	for (i = 0; i < pi->ehdr->e_shnum; i++) {
655		if (sechdrs[i].sh_type == SHT_NOBITS)
656			continue;
657
658		sechdrs[i].sh_offset = (unsigned long)pi->ehdr +
659						sechdrs[i].sh_offset;
660	}
661
662	/*
663	 * Identify entry point section and make entry relative to section
664	 * start.
665	 */
666	entry = pi->ehdr->e_entry;
667	for (i = 0; i < pi->ehdr->e_shnum; i++) {
668		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
669			continue;
670
671		if (!(sechdrs[i].sh_flags & SHF_EXECINSTR))
672			continue;
673
674		/* Make entry section relative */
675		if (sechdrs[i].sh_addr <= pi->ehdr->e_entry &&
676		    ((sechdrs[i].sh_addr + sechdrs[i].sh_size) >
677		     pi->ehdr->e_entry)) {
678			entry_sidx = i;
679			entry -= sechdrs[i].sh_addr;
680			break;
681		}
682	}
683
684	/* Determine how much memory is needed to load relocatable object. */
685	buf_align = 1;
686	bss_align = 1;
687	buf_sz = 0;
688	bss_sz = 0;
689
690	for (i = 0; i < pi->ehdr->e_shnum; i++) {
691		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
692			continue;
693
694		align = sechdrs[i].sh_addralign;
695		if (sechdrs[i].sh_type != SHT_NOBITS) {
696			if (buf_align < align)
697				buf_align = align;
698			buf_sz = ALIGN(buf_sz, align);
699			buf_sz += sechdrs[i].sh_size;
700		} else {
701			/* bss section */
702			if (bss_align < align)
703				bss_align = align;
704			bss_sz = ALIGN(bss_sz, align);
705			bss_sz += sechdrs[i].sh_size;
706		}
707	}
 
 
 
 
 
 
 
 
 
708
709	/* Determine the bss padding required to align bss properly */
710	bss_pad = 0;
711	if (buf_sz & (bss_align - 1))
712		bss_pad = bss_align - (buf_sz & (bss_align - 1));
713
714	memsz = buf_sz + bss_pad + bss_sz;
715
716	/* Allocate buffer for purgatory */
717	purgatory_buf = vzalloc(buf_sz);
718	if (!purgatory_buf) {
719		ret = -ENOMEM;
720		goto out;
721	}
722
723	if (buf_align < bss_align)
724		buf_align = bss_align;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
725
726	/* Add buffer to segment list */
727	ret = kexec_add_buffer(image, purgatory_buf, buf_sz, memsz,
728				buf_align, min, max, top_down,
729				&pi->purgatory_load_addr);
730	if (ret)
731		goto out;
 
 
 
 
732
733	/* Load SHF_ALLOC sections */
734	buf_addr = purgatory_buf;
735	load_addr = curr_load_addr = pi->purgatory_load_addr;
736	bss_addr = load_addr + buf_sz + bss_pad;
737
738	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 
 
 
739		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
740			continue;
741
742		align = sechdrs[i].sh_addralign;
743		if (sechdrs[i].sh_type != SHT_NOBITS) {
744			curr_load_addr = ALIGN(curr_load_addr, align);
745			offset = curr_load_addr - load_addr;
746			/* We already modifed ->sh_offset to keep src addr */
747			src = (char *) sechdrs[i].sh_offset;
748			memcpy(buf_addr + offset, src, sechdrs[i].sh_size);
749
750			/* Store load address and source address of section */
751			sechdrs[i].sh_addr = curr_load_addr;
752
753			/*
754			 * This section got copied to temporary buffer. Update
755			 * ->sh_offset accordingly.
756			 */
757			sechdrs[i].sh_offset = (unsigned long)(buf_addr + offset);
758
759			/* Advance to the next address */
760			curr_load_addr += sechdrs[i].sh_size;
761		} else {
762			bss_addr = ALIGN(bss_addr, align);
763			sechdrs[i].sh_addr = bss_addr;
764			bss_addr += sechdrs[i].sh_size;
 
765		}
766	}
767
768	/* Update entry point based on load address of text section */
769	if (entry_sidx >= 0)
770		entry += sechdrs[entry_sidx].sh_addr;
771
772	/* Make kernel jump to purgatory after shutdown */
773	image->start = entry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
774
775	/* Used later to get/set symbol values */
776	pi->sechdrs = sechdrs;
 
 
 
 
 
 
777
778	/*
779	 * Used later to identify which section is purgatory and skip it
780	 * from checksumming.
781	 */
782	pi->purgatory_buf = purgatory_buf;
783	return ret;
784out:
785	vfree(sechdrs);
786	vfree(purgatory_buf);
787	return ret;
788}
789
790static int kexec_apply_relocations(struct kimage *image)
791{
792	int i, ret;
793	struct purgatory_info *pi = &image->purgatory_info;
794	Elf_Shdr *sechdrs = pi->sechdrs;
 
 
795
796	/* Apply relocations */
797	for (i = 0; i < pi->ehdr->e_shnum; i++) {
798		Elf_Shdr *section, *symtab;
 
 
 
 
799
800		if (sechdrs[i].sh_type != SHT_RELA &&
801		    sechdrs[i].sh_type != SHT_REL)
802			continue;
803
804		/*
805		 * For section of type SHT_RELA/SHT_REL,
806		 * ->sh_link contains section header index of associated
807		 * symbol table. And ->sh_info contains section header
808		 * index of section to which relocations apply.
809		 */
810		if (sechdrs[i].sh_info >= pi->ehdr->e_shnum ||
811		    sechdrs[i].sh_link >= pi->ehdr->e_shnum)
812			return -ENOEXEC;
813
814		section = &sechdrs[sechdrs[i].sh_info];
815		symtab = &sechdrs[sechdrs[i].sh_link];
816
817		if (!(section->sh_flags & SHF_ALLOC))
818			continue;
819
820		/*
821		 * symtab->sh_link contain section header index of associated
822		 * string table.
823		 */
824		if (symtab->sh_link >= pi->ehdr->e_shnum)
825			/* Invalid section number? */
826			continue;
827
828		/*
829		 * Respective architecture needs to provide support for applying
830		 * relocations of type SHT_RELA/SHT_REL.
831		 */
832		if (sechdrs[i].sh_type == SHT_RELA)
833			ret = arch_kexec_apply_relocations_add(pi->ehdr,
834							       sechdrs, i);
835		else if (sechdrs[i].sh_type == SHT_REL)
836			ret = arch_kexec_apply_relocations(pi->ehdr,
837							   sechdrs, i);
838		if (ret)
839			return ret;
840	}
841
842	return 0;
843}
844
845/* Load relocatable purgatory object and relocate it appropriately */
846int kexec_load_purgatory(struct kimage *image, unsigned long min,
847			 unsigned long max, int top_down,
848			 unsigned long *load_addr)
 
 
 
 
 
 
 
 
849{
850	struct purgatory_info *pi = &image->purgatory_info;
851	int ret;
852
853	if (kexec_purgatory_size <= 0)
854		return -EINVAL;
855
856	if (kexec_purgatory_size < sizeof(Elf_Ehdr))
857		return -ENOEXEC;
858
859	pi->ehdr = (Elf_Ehdr *)kexec_purgatory;
860
861	if (memcmp(pi->ehdr->e_ident, ELFMAG, SELFMAG) != 0
862	    || pi->ehdr->e_type != ET_REL
863	    || !elf_check_arch(pi->ehdr)
864	    || pi->ehdr->e_shentsize != sizeof(Elf_Shdr))
865		return -ENOEXEC;
866
867	if (pi->ehdr->e_shoff >= kexec_purgatory_size
868	    || (pi->ehdr->e_shnum * sizeof(Elf_Shdr) >
869	    kexec_purgatory_size - pi->ehdr->e_shoff))
870		return -ENOEXEC;
871
872	ret = __kexec_load_purgatory(image, min, max, top_down);
873	if (ret)
874		return ret;
875
876	ret = kexec_apply_relocations(image);
877	if (ret)
878		goto out;
879
880	*load_addr = pi->purgatory_load_addr;
881	return 0;
882out:
883	vfree(pi->sechdrs);
 
 
884	vfree(pi->purgatory_buf);
 
885	return ret;
886}
887
888static Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
889					    const char *name)
 
 
 
 
 
 
 
890{
891	Elf_Sym *syms;
892	Elf_Shdr *sechdrs;
893	Elf_Ehdr *ehdr;
 
894	int i, k;
895	const char *strtab;
896
897	if (!pi->sechdrs || !pi->ehdr)
898		return NULL;
899
900	sechdrs = pi->sechdrs;
901	ehdr = pi->ehdr;
 
902
903	for (i = 0; i < ehdr->e_shnum; i++) {
904		if (sechdrs[i].sh_type != SHT_SYMTAB)
905			continue;
906
907		if (sechdrs[i].sh_link >= ehdr->e_shnum)
908			/* Invalid strtab section number */
909			continue;
910		strtab = (char *)sechdrs[sechdrs[i].sh_link].sh_offset;
911		syms = (Elf_Sym *)sechdrs[i].sh_offset;
912
913		/* Go through symbols for a match */
914		for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
915			if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
916				continue;
917
918			if (strcmp(strtab + syms[k].st_name, name) != 0)
919				continue;
920
921			if (syms[k].st_shndx == SHN_UNDEF ||
922			    syms[k].st_shndx >= ehdr->e_shnum) {
923				pr_debug("Symbol: %s has bad section index %d.\n",
924						name, syms[k].st_shndx);
925				return NULL;
926			}
927
928			/* Found the symbol we are looking for */
929			return &syms[k];
930		}
931	}
932
933	return NULL;
934}
935
936void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
937{
938	struct purgatory_info *pi = &image->purgatory_info;
939	Elf_Sym *sym;
940	Elf_Shdr *sechdr;
941
942	sym = kexec_purgatory_find_symbol(pi, name);
943	if (!sym)
944		return ERR_PTR(-EINVAL);
945
946	sechdr = &pi->sechdrs[sym->st_shndx];
947
948	/*
949	 * Returns the address where symbol will finally be loaded after
950	 * kexec_load_segment()
951	 */
952	return (void *)(sechdr->sh_addr + sym->st_value);
953}
954
955/*
956 * Get or set value of a symbol. If "get_value" is true, symbol value is
957 * returned in buf otherwise symbol value is set based on value in buf.
958 */
959int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
960				   void *buf, unsigned int size, bool get_value)
961{
962	Elf_Sym *sym;
963	Elf_Shdr *sechdrs;
964	struct purgatory_info *pi = &image->purgatory_info;
 
 
965	char *sym_buf;
966
967	sym = kexec_purgatory_find_symbol(pi, name);
968	if (!sym)
969		return -EINVAL;
970
971	if (sym->st_size != size) {
972		pr_err("symbol %s size mismatch: expected %lu actual %u\n",
973		       name, (unsigned long)sym->st_size, size);
974		return -EINVAL;
975	}
976
977	sechdrs = pi->sechdrs;
978
979	if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
980		pr_err("symbol %s is in a bss section. Cannot %s\n", name,
981		       get_value ? "get" : "set");
982		return -EINVAL;
983	}
984
985	sym_buf = (unsigned char *)sechdrs[sym->st_shndx].sh_offset +
986					sym->st_value;
987
988	if (get_value)
989		memcpy((void *)buf, sym_buf, size);
990	else
991		memcpy((void *)sym_buf, buf, size);
992
993	return 0;
994}