Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
  1// SPDX-License-Identifier: GPL-2.0-only
  2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
  3 * Copyright (c) 2016 Facebook
  4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
  5 */
  6#include <uapi/linux/btf.h>
  7#include <linux/kernel.h>
  8#include <linux/types.h>
  9#include <linux/bpf.h>
 10#include <linux/bpf_verifier.h>
 11#include <linux/math64.h>
 12
 13#define verbose(env, fmt, args...) bpf_verifier_log_write(env, fmt, ##args)
 14
 15static bool bpf_verifier_log_attr_valid(const struct bpf_verifier_log *log)
 16{
 17	/* ubuf and len_total should both be specified (or not) together */
 18	if (!!log->ubuf != !!log->len_total)
 19		return false;
 20	/* log buf without log_level is meaningless */
 21	if (log->ubuf && log->level == 0)
 22		return false;
 23	if (log->level & ~BPF_LOG_MASK)
 24		return false;
 25	if (log->len_total > UINT_MAX >> 2)
 26		return false;
 27	return true;
 28}
 29
 30int bpf_vlog_init(struct bpf_verifier_log *log, u32 log_level,
 31		  char __user *log_buf, u32 log_size)
 32{
 33	log->level = log_level;
 34	log->ubuf = log_buf;
 35	log->len_total = log_size;
 36
 37	/* log attributes have to be sane */
 38	if (!bpf_verifier_log_attr_valid(log))
 39		return -EINVAL;
 40
 41	return 0;
 42}
 43
 44static void bpf_vlog_update_len_max(struct bpf_verifier_log *log, u32 add_len)
 45{
 46	/* add_len includes terminal \0, so no need for +1. */
 47	u64 len = log->end_pos + add_len;
 48
 49	/* log->len_max could be larger than our current len due to
 50	 * bpf_vlog_reset() calls, so we maintain the max of any length at any
 51	 * previous point
 52	 */
 53	if (len > UINT_MAX)
 54		log->len_max = UINT_MAX;
 55	else if (len > log->len_max)
 56		log->len_max = len;
 57}
 58
 59void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
 60		       va_list args)
 61{
 62	u64 cur_pos;
 63	u32 new_n, n;
 64
 65	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
 66
 67	if (log->level == BPF_LOG_KERNEL) {
 68		bool newline = n > 0 && log->kbuf[n - 1] == '\n';
 69
 70		pr_err("BPF: %s%s", log->kbuf, newline ? "" : "\n");
 71		return;
 72	}
 73
 74	n += 1; /* include terminating zero */
 75	bpf_vlog_update_len_max(log, n);
 76
 77	if (log->level & BPF_LOG_FIXED) {
 78		/* check if we have at least something to put into user buf */
 79		new_n = 0;
 80		if (log->end_pos < log->len_total) {
 81			new_n = min_t(u32, log->len_total - log->end_pos, n);
 82			log->kbuf[new_n - 1] = '\0';
 83		}
 84
 85		cur_pos = log->end_pos;
 86		log->end_pos += n - 1; /* don't count terminating '\0' */
 87
 88		if (log->ubuf && new_n &&
 89		    copy_to_user(log->ubuf + cur_pos, log->kbuf, new_n))
 90			goto fail;
 91	} else {
 92		u64 new_end, new_start;
 93		u32 buf_start, buf_end, new_n;
 94
 95		new_end = log->end_pos + n;
 96		if (new_end - log->start_pos >= log->len_total)
 97			new_start = new_end - log->len_total;
 98		else
 99			new_start = log->start_pos;
100
101		log->start_pos = new_start;
102		log->end_pos = new_end - 1; /* don't count terminating '\0' */
103
104		if (!log->ubuf)
105			return;
106
107		new_n = min(n, log->len_total);
108		cur_pos = new_end - new_n;
109		div_u64_rem(cur_pos, log->len_total, &buf_start);
110		div_u64_rem(new_end, log->len_total, &buf_end);
111		/* new_end and buf_end are exclusive indices, so if buf_end is
112		 * exactly zero, then it actually points right to the end of
113		 * ubuf and there is no wrap around
114		 */
115		if (buf_end == 0)
116			buf_end = log->len_total;
117
118		/* if buf_start > buf_end, we wrapped around;
119		 * if buf_start == buf_end, then we fill ubuf completely; we
120		 * can't have buf_start == buf_end to mean that there is
121		 * nothing to write, because we always write at least
122		 * something, even if terminal '\0'
123		 */
124		if (buf_start < buf_end) {
125			/* message fits within contiguous chunk of ubuf */
126			if (copy_to_user(log->ubuf + buf_start,
127					 log->kbuf + n - new_n,
128					 buf_end - buf_start))
129				goto fail;
130		} else {
131			/* message wraps around the end of ubuf, copy in two chunks */
132			if (copy_to_user(log->ubuf + buf_start,
133					 log->kbuf + n - new_n,
134					 log->len_total - buf_start))
135				goto fail;
136			if (copy_to_user(log->ubuf,
137					 log->kbuf + n - buf_end,
138					 buf_end))
139				goto fail;
140		}
141	}
142
143	return;
144fail:
145	log->ubuf = NULL;
146}
147
148void bpf_vlog_reset(struct bpf_verifier_log *log, u64 new_pos)
149{
150	char zero = 0;
151	u32 pos;
152
153	if (WARN_ON_ONCE(new_pos > log->end_pos))
154		return;
155
156	if (!bpf_verifier_log_needed(log) || log->level == BPF_LOG_KERNEL)
157		return;
158
159	/* if position to which we reset is beyond current log window,
160	 * then we didn't preserve any useful content and should adjust
161	 * start_pos to end up with an empty log (start_pos == end_pos)
162	 */
163	log->end_pos = new_pos;
164	if (log->end_pos < log->start_pos)
165		log->start_pos = log->end_pos;
166
167	if (!log->ubuf)
168		return;
169
170	if (log->level & BPF_LOG_FIXED)
171		pos = log->end_pos + 1;
172	else
173		div_u64_rem(new_pos, log->len_total, &pos);
174
175	if (pos < log->len_total && put_user(zero, log->ubuf + pos))
176		log->ubuf = NULL;
177}
178
179static void bpf_vlog_reverse_kbuf(char *buf, int len)
180{
181	int i, j;
182
183	for (i = 0, j = len - 1; i < j; i++, j--)
184		swap(buf[i], buf[j]);
185}
186
187static int bpf_vlog_reverse_ubuf(struct bpf_verifier_log *log, int start, int end)
188{
189	/* we split log->kbuf into two equal parts for both ends of array */
190	int n = sizeof(log->kbuf) / 2, nn;
191	char *lbuf = log->kbuf, *rbuf = log->kbuf + n;
192
193	/* Read ubuf's section [start, end) two chunks at a time, from left
194	 * and right side; within each chunk, swap all the bytes; after that
195	 * reverse the order of lbuf and rbuf and write result back to ubuf.
196	 * This way we'll end up with swapped contents of specified
197	 * [start, end) ubuf segment.
198	 */
199	while (end - start > 1) {
200		nn = min(n, (end - start ) / 2);
201
202		if (copy_from_user(lbuf, log->ubuf + start, nn))
203			return -EFAULT;
204		if (copy_from_user(rbuf, log->ubuf + end - nn, nn))
205			return -EFAULT;
206
207		bpf_vlog_reverse_kbuf(lbuf, nn);
208		bpf_vlog_reverse_kbuf(rbuf, nn);
209
210		/* we write lbuf to the right end of ubuf, while rbuf to the
211		 * left one to end up with properly reversed overall ubuf
212		 */
213		if (copy_to_user(log->ubuf + start, rbuf, nn))
214			return -EFAULT;
215		if (copy_to_user(log->ubuf + end - nn, lbuf, nn))
216			return -EFAULT;
217
218		start += nn;
219		end -= nn;
220	}
221
222	return 0;
223}
224
225int bpf_vlog_finalize(struct bpf_verifier_log *log, u32 *log_size_actual)
226{
227	u32 sublen;
228	int err;
229
230	*log_size_actual = 0;
231	if (!log || log->level == 0 || log->level == BPF_LOG_KERNEL)
232		return 0;
233
234	if (!log->ubuf)
235		goto skip_log_rotate;
236	/* If we never truncated log, there is nothing to move around. */
237	if (log->start_pos == 0)
238		goto skip_log_rotate;
239
240	/* Otherwise we need to rotate log contents to make it start from the
241	 * buffer beginning and be a continuous zero-terminated string. Note
242	 * that if log->start_pos != 0 then we definitely filled up entire log
243	 * buffer with no gaps, and we just need to shift buffer contents to
244	 * the left by (log->start_pos % log->len_total) bytes.
245	 *
246	 * Unfortunately, user buffer could be huge and we don't want to
247	 * allocate temporary kernel memory of the same size just to shift
248	 * contents in a straightforward fashion. Instead, we'll be clever and
249	 * do in-place array rotation. This is a leetcode-style problem, which
250	 * could be solved by three rotations.
251	 *
252	 * Let's say we have log buffer that has to be shifted left by 7 bytes
253	 * (spaces and vertical bar is just for demonstrative purposes):
254	 *   E F G H I J K | A B C D
255	 *
256	 * First, we reverse entire array:
257	 *   D C B A | K J I H G F E
258	 *
259	 * Then we rotate first 4 bytes (DCBA) and separately last 7 bytes
260	 * (KJIHGFE), resulting in a properly rotated array:
261	 *   A B C D | E F G H I J K
262	 *
263	 * We'll utilize log->kbuf to read user memory chunk by chunk, swap
264	 * bytes, and write them back. Doing it byte-by-byte would be
265	 * unnecessarily inefficient. Altogether we are going to read and
266	 * write each byte twice, for total 4 memory copies between kernel and
267	 * user space.
268	 */
269
270	/* length of the chopped off part that will be the beginning;
271	 * len(ABCD) in the example above
272	 */
273	div_u64_rem(log->start_pos, log->len_total, &sublen);
274	sublen = log->len_total - sublen;
275
276	err = bpf_vlog_reverse_ubuf(log, 0, log->len_total);
277	err = err ?: bpf_vlog_reverse_ubuf(log, 0, sublen);
278	err = err ?: bpf_vlog_reverse_ubuf(log, sublen, log->len_total);
279	if (err)
280		log->ubuf = NULL;
281
282skip_log_rotate:
283	*log_size_actual = log->len_max;
284
285	/* properly initialized log has either both ubuf!=NULL and len_total>0
286	 * or ubuf==NULL and len_total==0, so if this condition doesn't hold,
287	 * we got a fault somewhere along the way, so report it back
288	 */
289	if (!!log->ubuf != !!log->len_total)
290		return -EFAULT;
291
292	/* did truncation actually happen? */
293	if (log->ubuf && log->len_max > log->len_total)
294		return -ENOSPC;
295
296	return 0;
297}
298
299/* log_level controls verbosity level of eBPF verifier.
300 * bpf_verifier_log_write() is used to dump the verification trace to the log,
301 * so the user can figure out what's wrong with the program
302 */
303__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
304					   const char *fmt, ...)
305{
306	va_list args;
307
308	if (!bpf_verifier_log_needed(&env->log))
309		return;
310
311	va_start(args, fmt);
312	bpf_verifier_vlog(&env->log, fmt, args);
313	va_end(args);
314}
315EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
316
317__printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
318			    const char *fmt, ...)
319{
320	va_list args;
321
322	if (!bpf_verifier_log_needed(log))
323		return;
324
325	va_start(args, fmt);
326	bpf_verifier_vlog(log, fmt, args);
327	va_end(args);
328}
329EXPORT_SYMBOL_GPL(bpf_log);
330
331static const struct bpf_line_info *
332find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
333{
334	const struct bpf_line_info *linfo;
335	const struct bpf_prog *prog;
336	u32 i, nr_linfo;
337
338	prog = env->prog;
339	nr_linfo = prog->aux->nr_linfo;
340
341	if (!nr_linfo || insn_off >= prog->len)
342		return NULL;
343
344	linfo = prog->aux->linfo;
345	for (i = 1; i < nr_linfo; i++)
346		if (insn_off < linfo[i].insn_off)
347			break;
348
349	return &linfo[i - 1];
350}
351
352static const char *ltrim(const char *s)
353{
354	while (isspace(*s))
355		s++;
356
357	return s;
358}
359
360__printf(3, 4) void verbose_linfo(struct bpf_verifier_env *env,
361				  u32 insn_off,
362				  const char *prefix_fmt, ...)
363{
364	const struct bpf_line_info *linfo;
365
366	if (!bpf_verifier_log_needed(&env->log))
367		return;
368
369	linfo = find_linfo(env, insn_off);
370	if (!linfo || linfo == env->prev_linfo)
371		return;
372
373	if (prefix_fmt) {
374		va_list args;
375
376		va_start(args, prefix_fmt);
377		bpf_verifier_vlog(&env->log, prefix_fmt, args);
378		va_end(args);
379	}
380
381	verbose(env, "%s\n",
382		ltrim(btf_name_by_offset(env->prog->aux->btf,
383					 linfo->line_off)));
384
385	env->prev_linfo = linfo;
386}
387
388static const char *btf_type_name(const struct btf *btf, u32 id)
389{
390	return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
391}
392
393/* string representation of 'enum bpf_reg_type'
394 *
395 * Note that reg_type_str() can not appear more than once in a single verbose()
396 * statement.
397 */
398const char *reg_type_str(struct bpf_verifier_env *env, enum bpf_reg_type type)
399{
400	char postfix[16] = {0}, prefix[64] = {0};
401	static const char * const str[] = {
402		[NOT_INIT]		= "?",
403		[SCALAR_VALUE]		= "scalar",
404		[PTR_TO_CTX]		= "ctx",
405		[CONST_PTR_TO_MAP]	= "map_ptr",
406		[PTR_TO_MAP_VALUE]	= "map_value",
407		[PTR_TO_STACK]		= "fp",
408		[PTR_TO_PACKET]		= "pkt",
409		[PTR_TO_PACKET_META]	= "pkt_meta",
410		[PTR_TO_PACKET_END]	= "pkt_end",
411		[PTR_TO_FLOW_KEYS]	= "flow_keys",
412		[PTR_TO_SOCKET]		= "sock",
413		[PTR_TO_SOCK_COMMON]	= "sock_common",
414		[PTR_TO_TCP_SOCK]	= "tcp_sock",
415		[PTR_TO_TP_BUFFER]	= "tp_buffer",
416		[PTR_TO_XDP_SOCK]	= "xdp_sock",
417		[PTR_TO_BTF_ID]		= "ptr_",
418		[PTR_TO_MEM]		= "mem",
419		[PTR_TO_BUF]		= "buf",
420		[PTR_TO_FUNC]		= "func",
421		[PTR_TO_MAP_KEY]	= "map_key",
422		[CONST_PTR_TO_DYNPTR]	= "dynptr_ptr",
423	};
424
425	if (type & PTR_MAYBE_NULL) {
426		if (base_type(type) == PTR_TO_BTF_ID)
427			strncpy(postfix, "or_null_", 16);
428		else
429			strncpy(postfix, "_or_null", 16);
430	}
431
432	snprintf(prefix, sizeof(prefix), "%s%s%s%s%s%s%s",
433		 type & MEM_RDONLY ? "rdonly_" : "",
434		 type & MEM_RINGBUF ? "ringbuf_" : "",
435		 type & MEM_USER ? "user_" : "",
436		 type & MEM_PERCPU ? "percpu_" : "",
437		 type & MEM_RCU ? "rcu_" : "",
438		 type & PTR_UNTRUSTED ? "untrusted_" : "",
439		 type & PTR_TRUSTED ? "trusted_" : ""
440	);
441
442	snprintf(env->tmp_str_buf, TMP_STR_BUF_LEN, "%s%s%s",
443		 prefix, str[base_type(type)], postfix);
444	return env->tmp_str_buf;
445}
446
447const char *dynptr_type_str(enum bpf_dynptr_type type)
448{
449	switch (type) {
450	case BPF_DYNPTR_TYPE_LOCAL:
451		return "local";
452	case BPF_DYNPTR_TYPE_RINGBUF:
453		return "ringbuf";
454	case BPF_DYNPTR_TYPE_SKB:
455		return "skb";
456	case BPF_DYNPTR_TYPE_XDP:
457		return "xdp";
458	case BPF_DYNPTR_TYPE_INVALID:
459		return "<invalid>";
460	default:
461		WARN_ONCE(1, "unknown dynptr type %d\n", type);
462		return "<unknown>";
463	}
464}
465
466const char *iter_type_str(const struct btf *btf, u32 btf_id)
467{
468	if (!btf || btf_id == 0)
469		return "<invalid>";
470
471	/* we already validated that type is valid and has conforming name */
472	return btf_type_name(btf, btf_id) + sizeof(ITER_PREFIX) - 1;
473}
474
475const char *iter_state_str(enum bpf_iter_state state)
476{
477	switch (state) {
478	case BPF_ITER_STATE_ACTIVE:
479		return "active";
480	case BPF_ITER_STATE_DRAINED:
481		return "drained";
482	case BPF_ITER_STATE_INVALID:
483		return "<invalid>";
484	default:
485		WARN_ONCE(1, "unknown iter state %d\n", state);
486		return "<unknown>";
487	}
488}
489
490static char slot_type_char[] = {
491	[STACK_INVALID]	= '?',
492	[STACK_SPILL]	= 'r',
493	[STACK_MISC]	= 'm',
494	[STACK_ZERO]	= '0',
495	[STACK_DYNPTR]	= 'd',
496	[STACK_ITER]	= 'i',
497};
498
499static void print_liveness(struct bpf_verifier_env *env,
500			   enum bpf_reg_liveness live)
501{
502	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
503	    verbose(env, "_");
504	if (live & REG_LIVE_READ)
505		verbose(env, "r");
506	if (live & REG_LIVE_WRITTEN)
507		verbose(env, "w");
508	if (live & REG_LIVE_DONE)
509		verbose(env, "D");
510}
511
512#define UNUM_MAX_DECIMAL U16_MAX
513#define SNUM_MAX_DECIMAL S16_MAX
514#define SNUM_MIN_DECIMAL S16_MIN
515
516static bool is_unum_decimal(u64 num)
517{
518	return num <= UNUM_MAX_DECIMAL;
519}
520
521static bool is_snum_decimal(s64 num)
522{
523	return num >= SNUM_MIN_DECIMAL && num <= SNUM_MAX_DECIMAL;
524}
525
526static void verbose_unum(struct bpf_verifier_env *env, u64 num)
527{
528	if (is_unum_decimal(num))
529		verbose(env, "%llu", num);
530	else
531		verbose(env, "%#llx", num);
532}
533
534static void verbose_snum(struct bpf_verifier_env *env, s64 num)
535{
536	if (is_snum_decimal(num))
537		verbose(env, "%lld", num);
538	else
539		verbose(env, "%#llx", num);
540}
541
542int tnum_strn(char *str, size_t size, struct tnum a)
543{
544	/* print as a constant, if tnum is fully known */
545	if (a.mask == 0) {
546		if (is_unum_decimal(a.value))
547			return snprintf(str, size, "%llu", a.value);
548		else
549			return snprintf(str, size, "%#llx", a.value);
550	}
551	return snprintf(str, size, "(%#llx; %#llx)", a.value, a.mask);
552}
553EXPORT_SYMBOL_GPL(tnum_strn);
554
555static void print_scalar_ranges(struct bpf_verifier_env *env,
556				const struct bpf_reg_state *reg,
557				const char **sep)
558{
559	/* For signed ranges, we want to unify 64-bit and 32-bit values in the
560	 * output as much as possible, but there is a bit of a complication.
561	 * If we choose to print values as decimals, this is natural to do,
562	 * because negative 64-bit and 32-bit values >= -S32_MIN have the same
563	 * representation due to sign extension. But if we choose to print
564	 * them in hex format (see is_snum_decimal()), then sign extension is
565	 * misleading.
566	 * E.g., smin=-2 and smin32=-2 are exactly the same in decimal, but in
567	 * hex they will be smin=0xfffffffffffffffe and smin32=0xfffffffe, two
568	 * very different numbers.
569	 * So we avoid sign extension if we choose to print values in hex.
570	 */
571	struct {
572		const char *name;
573		u64 val;
574		bool omit;
575	} minmaxs[] = {
576		{"smin",   reg->smin_value,         reg->smin_value == S64_MIN},
577		{"smax",   reg->smax_value,         reg->smax_value == S64_MAX},
578		{"umin",   reg->umin_value,         reg->umin_value == 0},
579		{"umax",   reg->umax_value,         reg->umax_value == U64_MAX},
580		{"smin32",
581		 is_snum_decimal((s64)reg->s32_min_value)
582			 ? (s64)reg->s32_min_value
583			 : (u32)reg->s32_min_value, reg->s32_min_value == S32_MIN},
584		{"smax32",
585		 is_snum_decimal((s64)reg->s32_max_value)
586			 ? (s64)reg->s32_max_value
587			 : (u32)reg->s32_max_value, reg->s32_max_value == S32_MAX},
588		{"umin32", reg->u32_min_value,      reg->u32_min_value == 0},
589		{"umax32", reg->u32_max_value,      reg->u32_max_value == U32_MAX},
590	}, *m1, *m2, *mend = &minmaxs[ARRAY_SIZE(minmaxs)];
591	bool neg1, neg2;
592
593	for (m1 = &minmaxs[0]; m1 < mend; m1++) {
594		if (m1->omit)
595			continue;
596
597		neg1 = m1->name[0] == 's' && (s64)m1->val < 0;
598
599		verbose(env, "%s%s=", *sep, m1->name);
600		*sep = ",";
601
602		for (m2 = m1 + 2; m2 < mend; m2 += 2) {
603			if (m2->omit || m2->val != m1->val)
604				continue;
605			/* don't mix negatives with positives */
606			neg2 = m2->name[0] == 's' && (s64)m2->val < 0;
607			if (neg2 != neg1)
608				continue;
609			m2->omit = true;
610			verbose(env, "%s=", m2->name);
611		}
612
613		if (m1->name[0] == 's')
614			verbose_snum(env, m1->val);
615		else
616			verbose_unum(env, m1->val);
617	}
618}
619
620static bool type_is_map_ptr(enum bpf_reg_type t) {
621	switch (base_type(t)) {
622	case CONST_PTR_TO_MAP:
623	case PTR_TO_MAP_KEY:
624	case PTR_TO_MAP_VALUE:
625		return true;
626	default:
627		return false;
628	}
629}
630
631/*
632 * _a stands for append, was shortened to avoid multiline statements below.
633 * This macro is used to output a comma separated list of attributes.
634 */
635#define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, ##__VA_ARGS__); sep = ","; })
636
637static void print_reg_state(struct bpf_verifier_env *env,
638			    const struct bpf_func_state *state,
639			    const struct bpf_reg_state *reg)
640{
641	enum bpf_reg_type t;
642	const char *sep = "";
643
644	t = reg->type;
645	if (t == SCALAR_VALUE && reg->precise)
646		verbose(env, "P");
647	if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) {
648		/* reg->off should be 0 for SCALAR_VALUE */
649		verbose_snum(env, reg->var_off.value + reg->off);
650		return;
651	}
652
653	verbose(env, "%s", reg_type_str(env, t));
654	if (t == PTR_TO_STACK) {
655		if (state->frameno != reg->frameno)
656			verbose(env, "[%d]", reg->frameno);
657		if (tnum_is_const(reg->var_off)) {
658			verbose_snum(env, reg->var_off.value + reg->off);
659			return;
660		}
661	}
662	if (base_type(t) == PTR_TO_BTF_ID)
663		verbose(env, "%s", btf_type_name(reg->btf, reg->btf_id));
664	verbose(env, "(");
665	if (reg->id)
666		verbose_a("id=%d", reg->id);
667	if (reg->ref_obj_id)
668		verbose_a("ref_obj_id=%d", reg->ref_obj_id);
669	if (type_is_non_owning_ref(reg->type))
670		verbose_a("%s", "non_own_ref");
671	if (type_is_map_ptr(t)) {
672		if (reg->map_ptr->name[0])
673			verbose_a("map=%s", reg->map_ptr->name);
674		verbose_a("ks=%d,vs=%d",
675			  reg->map_ptr->key_size,
676			  reg->map_ptr->value_size);
677	}
678	if (t != SCALAR_VALUE && reg->off) {
679		verbose_a("off=");
680		verbose_snum(env, reg->off);
681	}
682	if (type_is_pkt_pointer(t)) {
683		verbose_a("r=");
684		verbose_unum(env, reg->range);
685	}
686	if (base_type(t) == PTR_TO_MEM) {
687		verbose_a("sz=");
688		verbose_unum(env, reg->mem_size);
689	}
690	if (t == CONST_PTR_TO_DYNPTR)
691		verbose_a("type=%s",  dynptr_type_str(reg->dynptr.type));
692	if (tnum_is_const(reg->var_off)) {
693		/* a pointer register with fixed offset */
694		if (reg->var_off.value) {
695			verbose_a("imm=");
696			verbose_snum(env, reg->var_off.value);
697		}
698	} else {
699		print_scalar_ranges(env, reg, &sep);
700		if (!tnum_is_unknown(reg->var_off)) {
701			char tn_buf[48];
702
703			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
704			verbose_a("var_off=%s", tn_buf);
705		}
706	}
707	verbose(env, ")");
708}
709
710void print_verifier_state(struct bpf_verifier_env *env, const struct bpf_func_state *state,
711			  bool print_all)
712{
713	const struct bpf_reg_state *reg;
714	int i;
715
716	if (state->frameno)
717		verbose(env, " frame%d:", state->frameno);
718	for (i = 0; i < MAX_BPF_REG; i++) {
719		reg = &state->regs[i];
720		if (reg->type == NOT_INIT)
721			continue;
722		if (!print_all && !reg_scratched(env, i))
723			continue;
724		verbose(env, " R%d", i);
725		print_liveness(env, reg->live);
726		verbose(env, "=");
727		print_reg_state(env, state, reg);
728	}
729	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
730		char types_buf[BPF_REG_SIZE + 1];
731		const char *sep = "";
732		bool valid = false;
733		u8 slot_type;
734		int j;
735
736		if (!print_all && !stack_slot_scratched(env, i))
737			continue;
738
739		for (j = 0; j < BPF_REG_SIZE; j++) {
740			slot_type = state->stack[i].slot_type[j];
741			if (slot_type != STACK_INVALID)
742				valid = true;
743			types_buf[j] = slot_type_char[slot_type];
744		}
745		types_buf[BPF_REG_SIZE] = 0;
746		if (!valid)
747			continue;
748
749		reg = &state->stack[i].spilled_ptr;
750		switch (state->stack[i].slot_type[BPF_REG_SIZE - 1]) {
751		case STACK_SPILL:
752			/* print MISC/ZERO/INVALID slots above subreg spill */
753			for (j = 0; j < BPF_REG_SIZE; j++)
754				if (state->stack[i].slot_type[j] == STACK_SPILL)
755					break;
756			types_buf[j] = '\0';
757
758			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
759			print_liveness(env, reg->live);
760			verbose(env, "=%s", types_buf);
761			print_reg_state(env, state, reg);
762			break;
763		case STACK_DYNPTR:
764			/* skip to main dynptr slot */
765			i += BPF_DYNPTR_NR_SLOTS - 1;
766			reg = &state->stack[i].spilled_ptr;
767
768			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
769			print_liveness(env, reg->live);
770			verbose(env, "=dynptr_%s(", dynptr_type_str(reg->dynptr.type));
771			if (reg->id)
772				verbose_a("id=%d", reg->id);
773			if (reg->ref_obj_id)
774				verbose_a("ref_id=%d", reg->ref_obj_id);
775			if (reg->dynptr_id)
776				verbose_a("dynptr_id=%d", reg->dynptr_id);
777			verbose(env, ")");
778			break;
779		case STACK_ITER:
780			/* only main slot has ref_obj_id set; skip others */
781			if (!reg->ref_obj_id)
782				continue;
783
784			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
785			print_liveness(env, reg->live);
786			verbose(env, "=iter_%s(ref_id=%d,state=%s,depth=%u)",
787				iter_type_str(reg->iter.btf, reg->iter.btf_id),
788				reg->ref_obj_id, iter_state_str(reg->iter.state),
789				reg->iter.depth);
790			break;
791		case STACK_MISC:
792		case STACK_ZERO:
793		default:
794			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
795			print_liveness(env, reg->live);
796			verbose(env, "=%s", types_buf);
797			break;
798		}
799	}
800	if (state->acquired_refs && state->refs[0].id) {
801		verbose(env, " refs=%d", state->refs[0].id);
802		for (i = 1; i < state->acquired_refs; i++)
803			if (state->refs[i].id)
804				verbose(env, ",%d", state->refs[i].id);
805	}
806	if (state->in_callback_fn)
807		verbose(env, " cb");
808	if (state->in_async_callback_fn)
809		verbose(env, " async_cb");
810	verbose(env, "\n");
811	if (!print_all)
812		mark_verifier_state_clean(env);
813}
814
815static inline u32 vlog_alignment(u32 pos)
816{
817	return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT),
818			BPF_LOG_MIN_ALIGNMENT) - pos - 1;
819}
820
821void print_insn_state(struct bpf_verifier_env *env, const struct bpf_func_state *state)
822{
823	if (env->prev_log_pos && env->prev_log_pos == env->log.end_pos) {
824		/* remove new line character */
825		bpf_vlog_reset(&env->log, env->prev_log_pos - 1);
826		verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_pos), ' ');
827	} else {
828		verbose(env, "%d:", env->insn_idx);
829	}
830	print_verifier_state(env, state, false);
831}