Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/kernel.h>
7#include <linux/bio.h>
8#include <linux/file.h>
9#include <linux/fs.h>
10#include <linux/fsnotify.h>
11#include <linux/pagemap.h>
12#include <linux/highmem.h>
13#include <linux/time.h>
14#include <linux/string.h>
15#include <linux/backing-dev.h>
16#include <linux/mount.h>
17#include <linux/namei.h>
18#include <linux/writeback.h>
19#include <linux/compat.h>
20#include <linux/security.h>
21#include <linux/xattr.h>
22#include <linux/mm.h>
23#include <linux/slab.h>
24#include <linux/blkdev.h>
25#include <linux/uuid.h>
26#include <linux/btrfs.h>
27#include <linux/uaccess.h>
28#include <linux/iversion.h>
29#include <linux/fileattr.h>
30#include <linux/fsverity.h>
31#include <linux/sched/xacct.h>
32#include "ctree.h"
33#include "disk-io.h"
34#include "export.h"
35#include "transaction.h"
36#include "btrfs_inode.h"
37#include "print-tree.h"
38#include "volumes.h"
39#include "locking.h"
40#include "backref.h"
41#include "rcu-string.h"
42#include "send.h"
43#include "dev-replace.h"
44#include "props.h"
45#include "sysfs.h"
46#include "qgroup.h"
47#include "tree-log.h"
48#include "compression.h"
49#include "space-info.h"
50#include "delalloc-space.h"
51#include "block-group.h"
52#include "subpage.h"
53#include "fs.h"
54#include "accessors.h"
55#include "extent-tree.h"
56#include "root-tree.h"
57#include "defrag.h"
58#include "dir-item.h"
59#include "uuid-tree.h"
60#include "ioctl.h"
61#include "file.h"
62#include "scrub.h"
63#include "super.h"
64
65#ifdef CONFIG_64BIT
66/* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
67 * structures are incorrect, as the timespec structure from userspace
68 * is 4 bytes too small. We define these alternatives here to teach
69 * the kernel about the 32-bit struct packing.
70 */
71struct btrfs_ioctl_timespec_32 {
72 __u64 sec;
73 __u32 nsec;
74} __attribute__ ((__packed__));
75
76struct btrfs_ioctl_received_subvol_args_32 {
77 char uuid[BTRFS_UUID_SIZE]; /* in */
78 __u64 stransid; /* in */
79 __u64 rtransid; /* out */
80 struct btrfs_ioctl_timespec_32 stime; /* in */
81 struct btrfs_ioctl_timespec_32 rtime; /* out */
82 __u64 flags; /* in */
83 __u64 reserved[16]; /* in */
84} __attribute__ ((__packed__));
85
86#define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
87 struct btrfs_ioctl_received_subvol_args_32)
88#endif
89
90#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
91struct btrfs_ioctl_send_args_32 {
92 __s64 send_fd; /* in */
93 __u64 clone_sources_count; /* in */
94 compat_uptr_t clone_sources; /* in */
95 __u64 parent_root; /* in */
96 __u64 flags; /* in */
97 __u32 version; /* in */
98 __u8 reserved[28]; /* in */
99} __attribute__ ((__packed__));
100
101#define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
102 struct btrfs_ioctl_send_args_32)
103
104struct btrfs_ioctl_encoded_io_args_32 {
105 compat_uptr_t iov;
106 compat_ulong_t iovcnt;
107 __s64 offset;
108 __u64 flags;
109 __u64 len;
110 __u64 unencoded_len;
111 __u64 unencoded_offset;
112 __u32 compression;
113 __u32 encryption;
114 __u8 reserved[64];
115};
116
117#define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \
118 struct btrfs_ioctl_encoded_io_args_32)
119#define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \
120 struct btrfs_ioctl_encoded_io_args_32)
121#endif
122
123/* Mask out flags that are inappropriate for the given type of inode. */
124static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
125 unsigned int flags)
126{
127 if (S_ISDIR(inode->i_mode))
128 return flags;
129 else if (S_ISREG(inode->i_mode))
130 return flags & ~FS_DIRSYNC_FL;
131 else
132 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
133}
134
135/*
136 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
137 * ioctl.
138 */
139static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode)
140{
141 unsigned int iflags = 0;
142 u32 flags = binode->flags;
143 u32 ro_flags = binode->ro_flags;
144
145 if (flags & BTRFS_INODE_SYNC)
146 iflags |= FS_SYNC_FL;
147 if (flags & BTRFS_INODE_IMMUTABLE)
148 iflags |= FS_IMMUTABLE_FL;
149 if (flags & BTRFS_INODE_APPEND)
150 iflags |= FS_APPEND_FL;
151 if (flags & BTRFS_INODE_NODUMP)
152 iflags |= FS_NODUMP_FL;
153 if (flags & BTRFS_INODE_NOATIME)
154 iflags |= FS_NOATIME_FL;
155 if (flags & BTRFS_INODE_DIRSYNC)
156 iflags |= FS_DIRSYNC_FL;
157 if (flags & BTRFS_INODE_NODATACOW)
158 iflags |= FS_NOCOW_FL;
159 if (ro_flags & BTRFS_INODE_RO_VERITY)
160 iflags |= FS_VERITY_FL;
161
162 if (flags & BTRFS_INODE_NOCOMPRESS)
163 iflags |= FS_NOCOMP_FL;
164 else if (flags & BTRFS_INODE_COMPRESS)
165 iflags |= FS_COMPR_FL;
166
167 return iflags;
168}
169
170/*
171 * Update inode->i_flags based on the btrfs internal flags.
172 */
173void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
174{
175 struct btrfs_inode *binode = BTRFS_I(inode);
176 unsigned int new_fl = 0;
177
178 if (binode->flags & BTRFS_INODE_SYNC)
179 new_fl |= S_SYNC;
180 if (binode->flags & BTRFS_INODE_IMMUTABLE)
181 new_fl |= S_IMMUTABLE;
182 if (binode->flags & BTRFS_INODE_APPEND)
183 new_fl |= S_APPEND;
184 if (binode->flags & BTRFS_INODE_NOATIME)
185 new_fl |= S_NOATIME;
186 if (binode->flags & BTRFS_INODE_DIRSYNC)
187 new_fl |= S_DIRSYNC;
188 if (binode->ro_flags & BTRFS_INODE_RO_VERITY)
189 new_fl |= S_VERITY;
190
191 set_mask_bits(&inode->i_flags,
192 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC |
193 S_VERITY, new_fl);
194}
195
196/*
197 * Check if @flags are a supported and valid set of FS_*_FL flags and that
198 * the old and new flags are not conflicting
199 */
200static int check_fsflags(unsigned int old_flags, unsigned int flags)
201{
202 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
203 FS_NOATIME_FL | FS_NODUMP_FL | \
204 FS_SYNC_FL | FS_DIRSYNC_FL | \
205 FS_NOCOMP_FL | FS_COMPR_FL |
206 FS_NOCOW_FL))
207 return -EOPNOTSUPP;
208
209 /* COMPR and NOCOMP on new/old are valid */
210 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
211 return -EINVAL;
212
213 if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
214 return -EINVAL;
215
216 /* NOCOW and compression options are mutually exclusive */
217 if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
218 return -EINVAL;
219 if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
220 return -EINVAL;
221
222 return 0;
223}
224
225static int check_fsflags_compatible(struct btrfs_fs_info *fs_info,
226 unsigned int flags)
227{
228 if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
229 return -EPERM;
230
231 return 0;
232}
233
234/*
235 * Set flags/xflags from the internal inode flags. The remaining items of
236 * fsxattr are zeroed.
237 */
238int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
239{
240 struct btrfs_inode *binode = BTRFS_I(d_inode(dentry));
241
242 fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode));
243 return 0;
244}
245
246int btrfs_fileattr_set(struct mnt_idmap *idmap,
247 struct dentry *dentry, struct fileattr *fa)
248{
249 struct inode *inode = d_inode(dentry);
250 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
251 struct btrfs_inode *binode = BTRFS_I(inode);
252 struct btrfs_root *root = binode->root;
253 struct btrfs_trans_handle *trans;
254 unsigned int fsflags, old_fsflags;
255 int ret;
256 const char *comp = NULL;
257 u32 binode_flags;
258
259 if (btrfs_root_readonly(root))
260 return -EROFS;
261
262 if (fileattr_has_fsx(fa))
263 return -EOPNOTSUPP;
264
265 fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags);
266 old_fsflags = btrfs_inode_flags_to_fsflags(binode);
267 ret = check_fsflags(old_fsflags, fsflags);
268 if (ret)
269 return ret;
270
271 ret = check_fsflags_compatible(fs_info, fsflags);
272 if (ret)
273 return ret;
274
275 binode_flags = binode->flags;
276 if (fsflags & FS_SYNC_FL)
277 binode_flags |= BTRFS_INODE_SYNC;
278 else
279 binode_flags &= ~BTRFS_INODE_SYNC;
280 if (fsflags & FS_IMMUTABLE_FL)
281 binode_flags |= BTRFS_INODE_IMMUTABLE;
282 else
283 binode_flags &= ~BTRFS_INODE_IMMUTABLE;
284 if (fsflags & FS_APPEND_FL)
285 binode_flags |= BTRFS_INODE_APPEND;
286 else
287 binode_flags &= ~BTRFS_INODE_APPEND;
288 if (fsflags & FS_NODUMP_FL)
289 binode_flags |= BTRFS_INODE_NODUMP;
290 else
291 binode_flags &= ~BTRFS_INODE_NODUMP;
292 if (fsflags & FS_NOATIME_FL)
293 binode_flags |= BTRFS_INODE_NOATIME;
294 else
295 binode_flags &= ~BTRFS_INODE_NOATIME;
296
297 /* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */
298 if (!fa->flags_valid) {
299 /* 1 item for the inode */
300 trans = btrfs_start_transaction(root, 1);
301 if (IS_ERR(trans))
302 return PTR_ERR(trans);
303 goto update_flags;
304 }
305
306 if (fsflags & FS_DIRSYNC_FL)
307 binode_flags |= BTRFS_INODE_DIRSYNC;
308 else
309 binode_flags &= ~BTRFS_INODE_DIRSYNC;
310 if (fsflags & FS_NOCOW_FL) {
311 if (S_ISREG(inode->i_mode)) {
312 /*
313 * It's safe to turn csums off here, no extents exist.
314 * Otherwise we want the flag to reflect the real COW
315 * status of the file and will not set it.
316 */
317 if (inode->i_size == 0)
318 binode_flags |= BTRFS_INODE_NODATACOW |
319 BTRFS_INODE_NODATASUM;
320 } else {
321 binode_flags |= BTRFS_INODE_NODATACOW;
322 }
323 } else {
324 /*
325 * Revert back under same assumptions as above
326 */
327 if (S_ISREG(inode->i_mode)) {
328 if (inode->i_size == 0)
329 binode_flags &= ~(BTRFS_INODE_NODATACOW |
330 BTRFS_INODE_NODATASUM);
331 } else {
332 binode_flags &= ~BTRFS_INODE_NODATACOW;
333 }
334 }
335
336 /*
337 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
338 * flag may be changed automatically if compression code won't make
339 * things smaller.
340 */
341 if (fsflags & FS_NOCOMP_FL) {
342 binode_flags &= ~BTRFS_INODE_COMPRESS;
343 binode_flags |= BTRFS_INODE_NOCOMPRESS;
344 } else if (fsflags & FS_COMPR_FL) {
345
346 if (IS_SWAPFILE(inode))
347 return -ETXTBSY;
348
349 binode_flags |= BTRFS_INODE_COMPRESS;
350 binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
351
352 comp = btrfs_compress_type2str(fs_info->compress_type);
353 if (!comp || comp[0] == 0)
354 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
355 } else {
356 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
357 }
358
359 /*
360 * 1 for inode item
361 * 2 for properties
362 */
363 trans = btrfs_start_transaction(root, 3);
364 if (IS_ERR(trans))
365 return PTR_ERR(trans);
366
367 if (comp) {
368 ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
369 strlen(comp), 0);
370 if (ret) {
371 btrfs_abort_transaction(trans, ret);
372 goto out_end_trans;
373 }
374 } else {
375 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
376 0, 0);
377 if (ret && ret != -ENODATA) {
378 btrfs_abort_transaction(trans, ret);
379 goto out_end_trans;
380 }
381 }
382
383update_flags:
384 binode->flags = binode_flags;
385 btrfs_sync_inode_flags_to_i_flags(inode);
386 inode_inc_iversion(inode);
387 inode_set_ctime_current(inode);
388 ret = btrfs_update_inode(trans, BTRFS_I(inode));
389
390 out_end_trans:
391 btrfs_end_transaction(trans);
392 return ret;
393}
394
395/*
396 * Start exclusive operation @type, return true on success
397 */
398bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
399 enum btrfs_exclusive_operation type)
400{
401 bool ret = false;
402
403 spin_lock(&fs_info->super_lock);
404 if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) {
405 fs_info->exclusive_operation = type;
406 ret = true;
407 }
408 spin_unlock(&fs_info->super_lock);
409
410 return ret;
411}
412
413/*
414 * Conditionally allow to enter the exclusive operation in case it's compatible
415 * with the running one. This must be paired with btrfs_exclop_start_unlock and
416 * btrfs_exclop_finish.
417 *
418 * Compatibility:
419 * - the same type is already running
420 * - when trying to add a device and balance has been paused
421 * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller
422 * must check the condition first that would allow none -> @type
423 */
424bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
425 enum btrfs_exclusive_operation type)
426{
427 spin_lock(&fs_info->super_lock);
428 if (fs_info->exclusive_operation == type ||
429 (fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED &&
430 type == BTRFS_EXCLOP_DEV_ADD))
431 return true;
432
433 spin_unlock(&fs_info->super_lock);
434 return false;
435}
436
437void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info)
438{
439 spin_unlock(&fs_info->super_lock);
440}
441
442void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
443{
444 spin_lock(&fs_info->super_lock);
445 WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
446 spin_unlock(&fs_info->super_lock);
447 sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
448}
449
450void btrfs_exclop_balance(struct btrfs_fs_info *fs_info,
451 enum btrfs_exclusive_operation op)
452{
453 switch (op) {
454 case BTRFS_EXCLOP_BALANCE_PAUSED:
455 spin_lock(&fs_info->super_lock);
456 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE ||
457 fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD ||
458 fs_info->exclusive_operation == BTRFS_EXCLOP_NONE ||
459 fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
460 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED;
461 spin_unlock(&fs_info->super_lock);
462 break;
463 case BTRFS_EXCLOP_BALANCE:
464 spin_lock(&fs_info->super_lock);
465 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
466 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
467 spin_unlock(&fs_info->super_lock);
468 break;
469 default:
470 btrfs_warn(fs_info,
471 "invalid exclop balance operation %d requested", op);
472 }
473}
474
475static int btrfs_ioctl_getversion(struct inode *inode, int __user *arg)
476{
477 return put_user(inode->i_generation, arg);
478}
479
480static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
481 void __user *arg)
482{
483 struct btrfs_device *device;
484 struct fstrim_range range;
485 u64 minlen = ULLONG_MAX;
486 u64 num_devices = 0;
487 int ret;
488
489 if (!capable(CAP_SYS_ADMIN))
490 return -EPERM;
491
492 /*
493 * btrfs_trim_block_group() depends on space cache, which is not
494 * available in zoned filesystem. So, disallow fitrim on a zoned
495 * filesystem for now.
496 */
497 if (btrfs_is_zoned(fs_info))
498 return -EOPNOTSUPP;
499
500 /*
501 * If the fs is mounted with nologreplay, which requires it to be
502 * mounted in RO mode as well, we can not allow discard on free space
503 * inside block groups, because log trees refer to extents that are not
504 * pinned in a block group's free space cache (pinning the extents is
505 * precisely the first phase of replaying a log tree).
506 */
507 if (btrfs_test_opt(fs_info, NOLOGREPLAY))
508 return -EROFS;
509
510 rcu_read_lock();
511 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
512 dev_list) {
513 if (!device->bdev || !bdev_max_discard_sectors(device->bdev))
514 continue;
515 num_devices++;
516 minlen = min_t(u64, bdev_discard_granularity(device->bdev),
517 minlen);
518 }
519 rcu_read_unlock();
520
521 if (!num_devices)
522 return -EOPNOTSUPP;
523 if (copy_from_user(&range, arg, sizeof(range)))
524 return -EFAULT;
525
526 /*
527 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of
528 * block group is in the logical address space, which can be any
529 * sectorsize aligned bytenr in the range [0, U64_MAX].
530 */
531 if (range.len < fs_info->sb->s_blocksize)
532 return -EINVAL;
533
534 range.minlen = max(range.minlen, minlen);
535 ret = btrfs_trim_fs(fs_info, &range);
536 if (ret < 0)
537 return ret;
538
539 if (copy_to_user(arg, &range, sizeof(range)))
540 return -EFAULT;
541
542 return 0;
543}
544
545int __pure btrfs_is_empty_uuid(u8 *uuid)
546{
547 int i;
548
549 for (i = 0; i < BTRFS_UUID_SIZE; i++) {
550 if (uuid[i])
551 return 0;
552 }
553 return 1;
554}
555
556/*
557 * Calculate the number of transaction items to reserve for creating a subvolume
558 * or snapshot, not including the inode, directory entries, or parent directory.
559 */
560static unsigned int create_subvol_num_items(struct btrfs_qgroup_inherit *inherit)
561{
562 /*
563 * 1 to add root block
564 * 1 to add root item
565 * 1 to add root ref
566 * 1 to add root backref
567 * 1 to add UUID item
568 * 1 to add qgroup info
569 * 1 to add qgroup limit
570 *
571 * Ideally the last two would only be accounted if qgroups are enabled,
572 * but that can change between now and the time we would insert them.
573 */
574 unsigned int num_items = 7;
575
576 if (inherit) {
577 /* 2 to add qgroup relations for each inherited qgroup */
578 num_items += 2 * inherit->num_qgroups;
579 }
580 return num_items;
581}
582
583static noinline int create_subvol(struct mnt_idmap *idmap,
584 struct inode *dir, struct dentry *dentry,
585 struct btrfs_qgroup_inherit *inherit)
586{
587 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
588 struct btrfs_trans_handle *trans;
589 struct btrfs_key key;
590 struct btrfs_root_item *root_item;
591 struct btrfs_inode_item *inode_item;
592 struct extent_buffer *leaf;
593 struct btrfs_root *root = BTRFS_I(dir)->root;
594 struct btrfs_root *new_root;
595 struct btrfs_block_rsv block_rsv;
596 struct timespec64 cur_time = current_time(dir);
597 struct btrfs_new_inode_args new_inode_args = {
598 .dir = dir,
599 .dentry = dentry,
600 .subvol = true,
601 };
602 unsigned int trans_num_items;
603 int ret;
604 dev_t anon_dev;
605 u64 objectid;
606
607 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
608 if (!root_item)
609 return -ENOMEM;
610
611 ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid);
612 if (ret)
613 goto out_root_item;
614
615 /*
616 * Don't create subvolume whose level is not zero. Or qgroup will be
617 * screwed up since it assumes subvolume qgroup's level to be 0.
618 */
619 if (btrfs_qgroup_level(objectid)) {
620 ret = -ENOSPC;
621 goto out_root_item;
622 }
623
624 ret = get_anon_bdev(&anon_dev);
625 if (ret < 0)
626 goto out_root_item;
627
628 new_inode_args.inode = btrfs_new_subvol_inode(idmap, dir);
629 if (!new_inode_args.inode) {
630 ret = -ENOMEM;
631 goto out_anon_dev;
632 }
633 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
634 if (ret)
635 goto out_inode;
636 trans_num_items += create_subvol_num_items(inherit);
637
638 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
639 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
640 trans_num_items, false);
641 if (ret)
642 goto out_new_inode_args;
643
644 trans = btrfs_start_transaction(root, 0);
645 if (IS_ERR(trans)) {
646 ret = PTR_ERR(trans);
647 btrfs_subvolume_release_metadata(root, &block_rsv);
648 goto out_new_inode_args;
649 }
650 trans->block_rsv = &block_rsv;
651 trans->bytes_reserved = block_rsv.size;
652 /* Tree log can't currently deal with an inode which is a new root. */
653 btrfs_set_log_full_commit(trans);
654
655 ret = btrfs_qgroup_inherit(trans, 0, objectid, root->root_key.objectid, inherit);
656 if (ret)
657 goto out;
658
659 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
660 0, BTRFS_NESTING_NORMAL);
661 if (IS_ERR(leaf)) {
662 ret = PTR_ERR(leaf);
663 goto out;
664 }
665
666 btrfs_mark_buffer_dirty(trans, leaf);
667
668 inode_item = &root_item->inode;
669 btrfs_set_stack_inode_generation(inode_item, 1);
670 btrfs_set_stack_inode_size(inode_item, 3);
671 btrfs_set_stack_inode_nlink(inode_item, 1);
672 btrfs_set_stack_inode_nbytes(inode_item,
673 fs_info->nodesize);
674 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
675
676 btrfs_set_root_flags(root_item, 0);
677 btrfs_set_root_limit(root_item, 0);
678 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
679
680 btrfs_set_root_bytenr(root_item, leaf->start);
681 btrfs_set_root_generation(root_item, trans->transid);
682 btrfs_set_root_level(root_item, 0);
683 btrfs_set_root_refs(root_item, 1);
684 btrfs_set_root_used(root_item, leaf->len);
685 btrfs_set_root_last_snapshot(root_item, 0);
686
687 btrfs_set_root_generation_v2(root_item,
688 btrfs_root_generation(root_item));
689 generate_random_guid(root_item->uuid);
690 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
691 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
692 root_item->ctime = root_item->otime;
693 btrfs_set_root_ctransid(root_item, trans->transid);
694 btrfs_set_root_otransid(root_item, trans->transid);
695
696 btrfs_tree_unlock(leaf);
697
698 btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID);
699
700 key.objectid = objectid;
701 key.offset = 0;
702 key.type = BTRFS_ROOT_ITEM_KEY;
703 ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
704 root_item);
705 if (ret) {
706 /*
707 * Since we don't abort the transaction in this case, free the
708 * tree block so that we don't leak space and leave the
709 * filesystem in an inconsistent state (an extent item in the
710 * extent tree with a backreference for a root that does not
711 * exists).
712 */
713 btrfs_tree_lock(leaf);
714 btrfs_clear_buffer_dirty(trans, leaf);
715 btrfs_tree_unlock(leaf);
716 btrfs_free_tree_block(trans, objectid, leaf, 0, 1);
717 free_extent_buffer(leaf);
718 goto out;
719 }
720
721 free_extent_buffer(leaf);
722 leaf = NULL;
723
724 new_root = btrfs_get_new_fs_root(fs_info, objectid, &anon_dev);
725 if (IS_ERR(new_root)) {
726 ret = PTR_ERR(new_root);
727 btrfs_abort_transaction(trans, ret);
728 goto out;
729 }
730 /* anon_dev is owned by new_root now. */
731 anon_dev = 0;
732 BTRFS_I(new_inode_args.inode)->root = new_root;
733 /* ... and new_root is owned by new_inode_args.inode now. */
734
735 ret = btrfs_record_root_in_trans(trans, new_root);
736 if (ret) {
737 btrfs_abort_transaction(trans, ret);
738 goto out;
739 }
740
741 ret = btrfs_uuid_tree_add(trans, root_item->uuid,
742 BTRFS_UUID_KEY_SUBVOL, objectid);
743 if (ret) {
744 btrfs_abort_transaction(trans, ret);
745 goto out;
746 }
747
748 ret = btrfs_create_new_inode(trans, &new_inode_args);
749 if (ret) {
750 btrfs_abort_transaction(trans, ret);
751 goto out;
752 }
753
754 d_instantiate_new(dentry, new_inode_args.inode);
755 new_inode_args.inode = NULL;
756
757out:
758 trans->block_rsv = NULL;
759 trans->bytes_reserved = 0;
760 btrfs_subvolume_release_metadata(root, &block_rsv);
761
762 btrfs_end_transaction(trans);
763out_new_inode_args:
764 btrfs_new_inode_args_destroy(&new_inode_args);
765out_inode:
766 iput(new_inode_args.inode);
767out_anon_dev:
768 if (anon_dev)
769 free_anon_bdev(anon_dev);
770out_root_item:
771 kfree(root_item);
772 return ret;
773}
774
775static int create_snapshot(struct btrfs_root *root, struct inode *dir,
776 struct dentry *dentry, bool readonly,
777 struct btrfs_qgroup_inherit *inherit)
778{
779 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
780 struct inode *inode;
781 struct btrfs_pending_snapshot *pending_snapshot;
782 unsigned int trans_num_items;
783 struct btrfs_trans_handle *trans;
784 int ret;
785
786 /* We do not support snapshotting right now. */
787 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
788 btrfs_warn(fs_info,
789 "extent tree v2 doesn't support snapshotting yet");
790 return -EOPNOTSUPP;
791 }
792
793 if (btrfs_root_refs(&root->root_item) == 0)
794 return -ENOENT;
795
796 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
797 return -EINVAL;
798
799 if (atomic_read(&root->nr_swapfiles)) {
800 btrfs_warn(fs_info,
801 "cannot snapshot subvolume with active swapfile");
802 return -ETXTBSY;
803 }
804
805 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
806 if (!pending_snapshot)
807 return -ENOMEM;
808
809 ret = get_anon_bdev(&pending_snapshot->anon_dev);
810 if (ret < 0)
811 goto free_pending;
812 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
813 GFP_KERNEL);
814 pending_snapshot->path = btrfs_alloc_path();
815 if (!pending_snapshot->root_item || !pending_snapshot->path) {
816 ret = -ENOMEM;
817 goto free_pending;
818 }
819
820 btrfs_init_block_rsv(&pending_snapshot->block_rsv,
821 BTRFS_BLOCK_RSV_TEMP);
822 /*
823 * 1 to add dir item
824 * 1 to add dir index
825 * 1 to update parent inode item
826 */
827 trans_num_items = create_subvol_num_items(inherit) + 3;
828 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
829 &pending_snapshot->block_rsv,
830 trans_num_items, false);
831 if (ret)
832 goto free_pending;
833
834 pending_snapshot->dentry = dentry;
835 pending_snapshot->root = root;
836 pending_snapshot->readonly = readonly;
837 pending_snapshot->dir = dir;
838 pending_snapshot->inherit = inherit;
839
840 trans = btrfs_start_transaction(root, 0);
841 if (IS_ERR(trans)) {
842 ret = PTR_ERR(trans);
843 goto fail;
844 }
845
846 trans->pending_snapshot = pending_snapshot;
847
848 ret = btrfs_commit_transaction(trans);
849 if (ret)
850 goto fail;
851
852 ret = pending_snapshot->error;
853 if (ret)
854 goto fail;
855
856 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
857 if (ret)
858 goto fail;
859
860 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
861 if (IS_ERR(inode)) {
862 ret = PTR_ERR(inode);
863 goto fail;
864 }
865
866 d_instantiate(dentry, inode);
867 ret = 0;
868 pending_snapshot->anon_dev = 0;
869fail:
870 /* Prevent double freeing of anon_dev */
871 if (ret && pending_snapshot->snap)
872 pending_snapshot->snap->anon_dev = 0;
873 btrfs_put_root(pending_snapshot->snap);
874 btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv);
875free_pending:
876 if (pending_snapshot->anon_dev)
877 free_anon_bdev(pending_snapshot->anon_dev);
878 kfree(pending_snapshot->root_item);
879 btrfs_free_path(pending_snapshot->path);
880 kfree(pending_snapshot);
881
882 return ret;
883}
884
885/* copy of may_delete in fs/namei.c()
886 * Check whether we can remove a link victim from directory dir, check
887 * whether the type of victim is right.
888 * 1. We can't do it if dir is read-only (done in permission())
889 * 2. We should have write and exec permissions on dir
890 * 3. We can't remove anything from append-only dir
891 * 4. We can't do anything with immutable dir (done in permission())
892 * 5. If the sticky bit on dir is set we should either
893 * a. be owner of dir, or
894 * b. be owner of victim, or
895 * c. have CAP_FOWNER capability
896 * 6. If the victim is append-only or immutable we can't do anything with
897 * links pointing to it.
898 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
899 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
900 * 9. We can't remove a root or mountpoint.
901 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
902 * nfs_async_unlink().
903 */
904
905static int btrfs_may_delete(struct mnt_idmap *idmap,
906 struct inode *dir, struct dentry *victim, int isdir)
907{
908 int error;
909
910 if (d_really_is_negative(victim))
911 return -ENOENT;
912
913 BUG_ON(d_inode(victim->d_parent) != dir);
914 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
915
916 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
917 if (error)
918 return error;
919 if (IS_APPEND(dir))
920 return -EPERM;
921 if (check_sticky(idmap, dir, d_inode(victim)) ||
922 IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) ||
923 IS_SWAPFILE(d_inode(victim)))
924 return -EPERM;
925 if (isdir) {
926 if (!d_is_dir(victim))
927 return -ENOTDIR;
928 if (IS_ROOT(victim))
929 return -EBUSY;
930 } else if (d_is_dir(victim))
931 return -EISDIR;
932 if (IS_DEADDIR(dir))
933 return -ENOENT;
934 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
935 return -EBUSY;
936 return 0;
937}
938
939/* copy of may_create in fs/namei.c() */
940static inline int btrfs_may_create(struct mnt_idmap *idmap,
941 struct inode *dir, struct dentry *child)
942{
943 if (d_really_is_positive(child))
944 return -EEXIST;
945 if (IS_DEADDIR(dir))
946 return -ENOENT;
947 if (!fsuidgid_has_mapping(dir->i_sb, idmap))
948 return -EOVERFLOW;
949 return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
950}
951
952/*
953 * Create a new subvolume below @parent. This is largely modeled after
954 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
955 * inside this filesystem so it's quite a bit simpler.
956 */
957static noinline int btrfs_mksubvol(const struct path *parent,
958 struct mnt_idmap *idmap,
959 const char *name, int namelen,
960 struct btrfs_root *snap_src,
961 bool readonly,
962 struct btrfs_qgroup_inherit *inherit)
963{
964 struct inode *dir = d_inode(parent->dentry);
965 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
966 struct dentry *dentry;
967 struct fscrypt_str name_str = FSTR_INIT((char *)name, namelen);
968 int error;
969
970 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
971 if (error == -EINTR)
972 return error;
973
974 dentry = lookup_one(idmap, name, parent->dentry, namelen);
975 error = PTR_ERR(dentry);
976 if (IS_ERR(dentry))
977 goto out_unlock;
978
979 error = btrfs_may_create(idmap, dir, dentry);
980 if (error)
981 goto out_dput;
982
983 /*
984 * even if this name doesn't exist, we may get hash collisions.
985 * check for them now when we can safely fail
986 */
987 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
988 dir->i_ino, &name_str);
989 if (error)
990 goto out_dput;
991
992 down_read(&fs_info->subvol_sem);
993
994 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
995 goto out_up_read;
996
997 if (snap_src)
998 error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
999 else
1000 error = create_subvol(idmap, dir, dentry, inherit);
1001
1002 if (!error)
1003 fsnotify_mkdir(dir, dentry);
1004out_up_read:
1005 up_read(&fs_info->subvol_sem);
1006out_dput:
1007 dput(dentry);
1008out_unlock:
1009 btrfs_inode_unlock(BTRFS_I(dir), 0);
1010 return error;
1011}
1012
1013static noinline int btrfs_mksnapshot(const struct path *parent,
1014 struct mnt_idmap *idmap,
1015 const char *name, int namelen,
1016 struct btrfs_root *root,
1017 bool readonly,
1018 struct btrfs_qgroup_inherit *inherit)
1019{
1020 int ret;
1021 bool snapshot_force_cow = false;
1022
1023 /*
1024 * Force new buffered writes to reserve space even when NOCOW is
1025 * possible. This is to avoid later writeback (running dealloc) to
1026 * fallback to COW mode and unexpectedly fail with ENOSPC.
1027 */
1028 btrfs_drew_read_lock(&root->snapshot_lock);
1029
1030 ret = btrfs_start_delalloc_snapshot(root, false);
1031 if (ret)
1032 goto out;
1033
1034 /*
1035 * All previous writes have started writeback in NOCOW mode, so now
1036 * we force future writes to fallback to COW mode during snapshot
1037 * creation.
1038 */
1039 atomic_inc(&root->snapshot_force_cow);
1040 snapshot_force_cow = true;
1041
1042 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
1043
1044 ret = btrfs_mksubvol(parent, idmap, name, namelen,
1045 root, readonly, inherit);
1046out:
1047 if (snapshot_force_cow)
1048 atomic_dec(&root->snapshot_force_cow);
1049 btrfs_drew_read_unlock(&root->snapshot_lock);
1050 return ret;
1051}
1052
1053/*
1054 * Try to start exclusive operation @type or cancel it if it's running.
1055 *
1056 * Return:
1057 * 0 - normal mode, newly claimed op started
1058 * >0 - normal mode, something else is running,
1059 * return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space
1060 * ECANCELED - cancel mode, successful cancel
1061 * ENOTCONN - cancel mode, operation not running anymore
1062 */
1063static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info,
1064 enum btrfs_exclusive_operation type, bool cancel)
1065{
1066 if (!cancel) {
1067 /* Start normal op */
1068 if (!btrfs_exclop_start(fs_info, type))
1069 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1070 /* Exclusive operation is now claimed */
1071 return 0;
1072 }
1073
1074 /* Cancel running op */
1075 if (btrfs_exclop_start_try_lock(fs_info, type)) {
1076 /*
1077 * This blocks any exclop finish from setting it to NONE, so we
1078 * request cancellation. Either it runs and we will wait for it,
1079 * or it has finished and no waiting will happen.
1080 */
1081 atomic_inc(&fs_info->reloc_cancel_req);
1082 btrfs_exclop_start_unlock(fs_info);
1083
1084 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
1085 wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING,
1086 TASK_INTERRUPTIBLE);
1087
1088 return -ECANCELED;
1089 }
1090
1091 /* Something else is running or none */
1092 return -ENOTCONN;
1093}
1094
1095static noinline int btrfs_ioctl_resize(struct file *file,
1096 void __user *arg)
1097{
1098 BTRFS_DEV_LOOKUP_ARGS(args);
1099 struct inode *inode = file_inode(file);
1100 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1101 u64 new_size;
1102 u64 old_size;
1103 u64 devid = 1;
1104 struct btrfs_root *root = BTRFS_I(inode)->root;
1105 struct btrfs_ioctl_vol_args *vol_args;
1106 struct btrfs_trans_handle *trans;
1107 struct btrfs_device *device = NULL;
1108 char *sizestr;
1109 char *retptr;
1110 char *devstr = NULL;
1111 int ret = 0;
1112 int mod = 0;
1113 bool cancel;
1114
1115 if (!capable(CAP_SYS_ADMIN))
1116 return -EPERM;
1117
1118 ret = mnt_want_write_file(file);
1119 if (ret)
1120 return ret;
1121
1122 /*
1123 * Read the arguments before checking exclusivity to be able to
1124 * distinguish regular resize and cancel
1125 */
1126 vol_args = memdup_user(arg, sizeof(*vol_args));
1127 if (IS_ERR(vol_args)) {
1128 ret = PTR_ERR(vol_args);
1129 goto out_drop;
1130 }
1131 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1132 sizestr = vol_args->name;
1133 cancel = (strcmp("cancel", sizestr) == 0);
1134 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel);
1135 if (ret)
1136 goto out_free;
1137 /* Exclusive operation is now claimed */
1138
1139 devstr = strchr(sizestr, ':');
1140 if (devstr) {
1141 sizestr = devstr + 1;
1142 *devstr = '\0';
1143 devstr = vol_args->name;
1144 ret = kstrtoull(devstr, 10, &devid);
1145 if (ret)
1146 goto out_finish;
1147 if (!devid) {
1148 ret = -EINVAL;
1149 goto out_finish;
1150 }
1151 btrfs_info(fs_info, "resizing devid %llu", devid);
1152 }
1153
1154 args.devid = devid;
1155 device = btrfs_find_device(fs_info->fs_devices, &args);
1156 if (!device) {
1157 btrfs_info(fs_info, "resizer unable to find device %llu",
1158 devid);
1159 ret = -ENODEV;
1160 goto out_finish;
1161 }
1162
1163 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1164 btrfs_info(fs_info,
1165 "resizer unable to apply on readonly device %llu",
1166 devid);
1167 ret = -EPERM;
1168 goto out_finish;
1169 }
1170
1171 if (!strcmp(sizestr, "max"))
1172 new_size = bdev_nr_bytes(device->bdev);
1173 else {
1174 if (sizestr[0] == '-') {
1175 mod = -1;
1176 sizestr++;
1177 } else if (sizestr[0] == '+') {
1178 mod = 1;
1179 sizestr++;
1180 }
1181 new_size = memparse(sizestr, &retptr);
1182 if (*retptr != '\0' || new_size == 0) {
1183 ret = -EINVAL;
1184 goto out_finish;
1185 }
1186 }
1187
1188 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1189 ret = -EPERM;
1190 goto out_finish;
1191 }
1192
1193 old_size = btrfs_device_get_total_bytes(device);
1194
1195 if (mod < 0) {
1196 if (new_size > old_size) {
1197 ret = -EINVAL;
1198 goto out_finish;
1199 }
1200 new_size = old_size - new_size;
1201 } else if (mod > 0) {
1202 if (new_size > ULLONG_MAX - old_size) {
1203 ret = -ERANGE;
1204 goto out_finish;
1205 }
1206 new_size = old_size + new_size;
1207 }
1208
1209 if (new_size < SZ_256M) {
1210 ret = -EINVAL;
1211 goto out_finish;
1212 }
1213 if (new_size > bdev_nr_bytes(device->bdev)) {
1214 ret = -EFBIG;
1215 goto out_finish;
1216 }
1217
1218 new_size = round_down(new_size, fs_info->sectorsize);
1219
1220 if (new_size > old_size) {
1221 trans = btrfs_start_transaction(root, 0);
1222 if (IS_ERR(trans)) {
1223 ret = PTR_ERR(trans);
1224 goto out_finish;
1225 }
1226 ret = btrfs_grow_device(trans, device, new_size);
1227 btrfs_commit_transaction(trans);
1228 } else if (new_size < old_size) {
1229 ret = btrfs_shrink_device(device, new_size);
1230 } /* equal, nothing need to do */
1231
1232 if (ret == 0 && new_size != old_size)
1233 btrfs_info_in_rcu(fs_info,
1234 "resize device %s (devid %llu) from %llu to %llu",
1235 btrfs_dev_name(device), device->devid,
1236 old_size, new_size);
1237out_finish:
1238 btrfs_exclop_finish(fs_info);
1239out_free:
1240 kfree(vol_args);
1241out_drop:
1242 mnt_drop_write_file(file);
1243 return ret;
1244}
1245
1246static noinline int __btrfs_ioctl_snap_create(struct file *file,
1247 struct mnt_idmap *idmap,
1248 const char *name, unsigned long fd, int subvol,
1249 bool readonly,
1250 struct btrfs_qgroup_inherit *inherit)
1251{
1252 int namelen;
1253 int ret = 0;
1254
1255 if (!S_ISDIR(file_inode(file)->i_mode))
1256 return -ENOTDIR;
1257
1258 ret = mnt_want_write_file(file);
1259 if (ret)
1260 goto out;
1261
1262 namelen = strlen(name);
1263 if (strchr(name, '/')) {
1264 ret = -EINVAL;
1265 goto out_drop_write;
1266 }
1267
1268 if (name[0] == '.' &&
1269 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1270 ret = -EEXIST;
1271 goto out_drop_write;
1272 }
1273
1274 if (subvol) {
1275 ret = btrfs_mksubvol(&file->f_path, idmap, name,
1276 namelen, NULL, readonly, inherit);
1277 } else {
1278 struct fd src = fdget(fd);
1279 struct inode *src_inode;
1280 if (!src.file) {
1281 ret = -EINVAL;
1282 goto out_drop_write;
1283 }
1284
1285 src_inode = file_inode(src.file);
1286 if (src_inode->i_sb != file_inode(file)->i_sb) {
1287 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1288 "Snapshot src from another FS");
1289 ret = -EXDEV;
1290 } else if (!inode_owner_or_capable(idmap, src_inode)) {
1291 /*
1292 * Subvolume creation is not restricted, but snapshots
1293 * are limited to own subvolumes only
1294 */
1295 ret = -EPERM;
1296 } else if (btrfs_ino(BTRFS_I(src_inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1297 /*
1298 * Snapshots must be made with the src_inode referring
1299 * to the subvolume inode, otherwise the permission
1300 * checking above is useless because we may have
1301 * permission on a lower directory but not the subvol
1302 * itself.
1303 */
1304 ret = -EINVAL;
1305 } else {
1306 ret = btrfs_mksnapshot(&file->f_path, idmap,
1307 name, namelen,
1308 BTRFS_I(src_inode)->root,
1309 readonly, inherit);
1310 }
1311 fdput(src);
1312 }
1313out_drop_write:
1314 mnt_drop_write_file(file);
1315out:
1316 return ret;
1317}
1318
1319static noinline int btrfs_ioctl_snap_create(struct file *file,
1320 void __user *arg, int subvol)
1321{
1322 struct btrfs_ioctl_vol_args *vol_args;
1323 int ret;
1324
1325 if (!S_ISDIR(file_inode(file)->i_mode))
1326 return -ENOTDIR;
1327
1328 vol_args = memdup_user(arg, sizeof(*vol_args));
1329 if (IS_ERR(vol_args))
1330 return PTR_ERR(vol_args);
1331 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1332
1333 ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1334 vol_args->name, vol_args->fd, subvol,
1335 false, NULL);
1336
1337 kfree(vol_args);
1338 return ret;
1339}
1340
1341static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1342 void __user *arg, int subvol)
1343{
1344 struct btrfs_ioctl_vol_args_v2 *vol_args;
1345 int ret;
1346 bool readonly = false;
1347 struct btrfs_qgroup_inherit *inherit = NULL;
1348
1349 if (!S_ISDIR(file_inode(file)->i_mode))
1350 return -ENOTDIR;
1351
1352 vol_args = memdup_user(arg, sizeof(*vol_args));
1353 if (IS_ERR(vol_args))
1354 return PTR_ERR(vol_args);
1355 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1356
1357 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
1358 ret = -EOPNOTSUPP;
1359 goto free_args;
1360 }
1361
1362 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1363 readonly = true;
1364 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1365 u64 nums;
1366
1367 if (vol_args->size < sizeof(*inherit) ||
1368 vol_args->size > PAGE_SIZE) {
1369 ret = -EINVAL;
1370 goto free_args;
1371 }
1372 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1373 if (IS_ERR(inherit)) {
1374 ret = PTR_ERR(inherit);
1375 goto free_args;
1376 }
1377
1378 if (inherit->num_qgroups > PAGE_SIZE ||
1379 inherit->num_ref_copies > PAGE_SIZE ||
1380 inherit->num_excl_copies > PAGE_SIZE) {
1381 ret = -EINVAL;
1382 goto free_inherit;
1383 }
1384
1385 nums = inherit->num_qgroups + 2 * inherit->num_ref_copies +
1386 2 * inherit->num_excl_copies;
1387 if (vol_args->size != struct_size(inherit, qgroups, nums)) {
1388 ret = -EINVAL;
1389 goto free_inherit;
1390 }
1391 }
1392
1393 ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1394 vol_args->name, vol_args->fd, subvol,
1395 readonly, inherit);
1396 if (ret)
1397 goto free_inherit;
1398free_inherit:
1399 kfree(inherit);
1400free_args:
1401 kfree(vol_args);
1402 return ret;
1403}
1404
1405static noinline int btrfs_ioctl_subvol_getflags(struct inode *inode,
1406 void __user *arg)
1407{
1408 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1409 struct btrfs_root *root = BTRFS_I(inode)->root;
1410 int ret = 0;
1411 u64 flags = 0;
1412
1413 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1414 return -EINVAL;
1415
1416 down_read(&fs_info->subvol_sem);
1417 if (btrfs_root_readonly(root))
1418 flags |= BTRFS_SUBVOL_RDONLY;
1419 up_read(&fs_info->subvol_sem);
1420
1421 if (copy_to_user(arg, &flags, sizeof(flags)))
1422 ret = -EFAULT;
1423
1424 return ret;
1425}
1426
1427static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1428 void __user *arg)
1429{
1430 struct inode *inode = file_inode(file);
1431 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1432 struct btrfs_root *root = BTRFS_I(inode)->root;
1433 struct btrfs_trans_handle *trans;
1434 u64 root_flags;
1435 u64 flags;
1436 int ret = 0;
1437
1438 if (!inode_owner_or_capable(file_mnt_idmap(file), inode))
1439 return -EPERM;
1440
1441 ret = mnt_want_write_file(file);
1442 if (ret)
1443 goto out;
1444
1445 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1446 ret = -EINVAL;
1447 goto out_drop_write;
1448 }
1449
1450 if (copy_from_user(&flags, arg, sizeof(flags))) {
1451 ret = -EFAULT;
1452 goto out_drop_write;
1453 }
1454
1455 if (flags & ~BTRFS_SUBVOL_RDONLY) {
1456 ret = -EOPNOTSUPP;
1457 goto out_drop_write;
1458 }
1459
1460 down_write(&fs_info->subvol_sem);
1461
1462 /* nothing to do */
1463 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1464 goto out_drop_sem;
1465
1466 root_flags = btrfs_root_flags(&root->root_item);
1467 if (flags & BTRFS_SUBVOL_RDONLY) {
1468 btrfs_set_root_flags(&root->root_item,
1469 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1470 } else {
1471 /*
1472 * Block RO -> RW transition if this subvolume is involved in
1473 * send
1474 */
1475 spin_lock(&root->root_item_lock);
1476 if (root->send_in_progress == 0) {
1477 btrfs_set_root_flags(&root->root_item,
1478 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1479 spin_unlock(&root->root_item_lock);
1480 } else {
1481 spin_unlock(&root->root_item_lock);
1482 btrfs_warn(fs_info,
1483 "Attempt to set subvolume %llu read-write during send",
1484 root->root_key.objectid);
1485 ret = -EPERM;
1486 goto out_drop_sem;
1487 }
1488 }
1489
1490 trans = btrfs_start_transaction(root, 1);
1491 if (IS_ERR(trans)) {
1492 ret = PTR_ERR(trans);
1493 goto out_reset;
1494 }
1495
1496 ret = btrfs_update_root(trans, fs_info->tree_root,
1497 &root->root_key, &root->root_item);
1498 if (ret < 0) {
1499 btrfs_end_transaction(trans);
1500 goto out_reset;
1501 }
1502
1503 ret = btrfs_commit_transaction(trans);
1504
1505out_reset:
1506 if (ret)
1507 btrfs_set_root_flags(&root->root_item, root_flags);
1508out_drop_sem:
1509 up_write(&fs_info->subvol_sem);
1510out_drop_write:
1511 mnt_drop_write_file(file);
1512out:
1513 return ret;
1514}
1515
1516static noinline int key_in_sk(struct btrfs_key *key,
1517 struct btrfs_ioctl_search_key *sk)
1518{
1519 struct btrfs_key test;
1520 int ret;
1521
1522 test.objectid = sk->min_objectid;
1523 test.type = sk->min_type;
1524 test.offset = sk->min_offset;
1525
1526 ret = btrfs_comp_cpu_keys(key, &test);
1527 if (ret < 0)
1528 return 0;
1529
1530 test.objectid = sk->max_objectid;
1531 test.type = sk->max_type;
1532 test.offset = sk->max_offset;
1533
1534 ret = btrfs_comp_cpu_keys(key, &test);
1535 if (ret > 0)
1536 return 0;
1537 return 1;
1538}
1539
1540static noinline int copy_to_sk(struct btrfs_path *path,
1541 struct btrfs_key *key,
1542 struct btrfs_ioctl_search_key *sk,
1543 u64 *buf_size,
1544 char __user *ubuf,
1545 unsigned long *sk_offset,
1546 int *num_found)
1547{
1548 u64 found_transid;
1549 struct extent_buffer *leaf;
1550 struct btrfs_ioctl_search_header sh;
1551 struct btrfs_key test;
1552 unsigned long item_off;
1553 unsigned long item_len;
1554 int nritems;
1555 int i;
1556 int slot;
1557 int ret = 0;
1558
1559 leaf = path->nodes[0];
1560 slot = path->slots[0];
1561 nritems = btrfs_header_nritems(leaf);
1562
1563 if (btrfs_header_generation(leaf) > sk->max_transid) {
1564 i = nritems;
1565 goto advance_key;
1566 }
1567 found_transid = btrfs_header_generation(leaf);
1568
1569 for (i = slot; i < nritems; i++) {
1570 item_off = btrfs_item_ptr_offset(leaf, i);
1571 item_len = btrfs_item_size(leaf, i);
1572
1573 btrfs_item_key_to_cpu(leaf, key, i);
1574 if (!key_in_sk(key, sk))
1575 continue;
1576
1577 if (sizeof(sh) + item_len > *buf_size) {
1578 if (*num_found) {
1579 ret = 1;
1580 goto out;
1581 }
1582
1583 /*
1584 * return one empty item back for v1, which does not
1585 * handle -EOVERFLOW
1586 */
1587
1588 *buf_size = sizeof(sh) + item_len;
1589 item_len = 0;
1590 ret = -EOVERFLOW;
1591 }
1592
1593 if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1594 ret = 1;
1595 goto out;
1596 }
1597
1598 sh.objectid = key->objectid;
1599 sh.offset = key->offset;
1600 sh.type = key->type;
1601 sh.len = item_len;
1602 sh.transid = found_transid;
1603
1604 /*
1605 * Copy search result header. If we fault then loop again so we
1606 * can fault in the pages and -EFAULT there if there's a
1607 * problem. Otherwise we'll fault and then copy the buffer in
1608 * properly this next time through
1609 */
1610 if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
1611 ret = 0;
1612 goto out;
1613 }
1614
1615 *sk_offset += sizeof(sh);
1616
1617 if (item_len) {
1618 char __user *up = ubuf + *sk_offset;
1619 /*
1620 * Copy the item, same behavior as above, but reset the
1621 * * sk_offset so we copy the full thing again.
1622 */
1623 if (read_extent_buffer_to_user_nofault(leaf, up,
1624 item_off, item_len)) {
1625 ret = 0;
1626 *sk_offset -= sizeof(sh);
1627 goto out;
1628 }
1629
1630 *sk_offset += item_len;
1631 }
1632 (*num_found)++;
1633
1634 if (ret) /* -EOVERFLOW from above */
1635 goto out;
1636
1637 if (*num_found >= sk->nr_items) {
1638 ret = 1;
1639 goto out;
1640 }
1641 }
1642advance_key:
1643 ret = 0;
1644 test.objectid = sk->max_objectid;
1645 test.type = sk->max_type;
1646 test.offset = sk->max_offset;
1647 if (btrfs_comp_cpu_keys(key, &test) >= 0)
1648 ret = 1;
1649 else if (key->offset < (u64)-1)
1650 key->offset++;
1651 else if (key->type < (u8)-1) {
1652 key->offset = 0;
1653 key->type++;
1654 } else if (key->objectid < (u64)-1) {
1655 key->offset = 0;
1656 key->type = 0;
1657 key->objectid++;
1658 } else
1659 ret = 1;
1660out:
1661 /*
1662 * 0: all items from this leaf copied, continue with next
1663 * 1: * more items can be copied, but unused buffer is too small
1664 * * all items were found
1665 * Either way, it will stops the loop which iterates to the next
1666 * leaf
1667 * -EOVERFLOW: item was to large for buffer
1668 * -EFAULT: could not copy extent buffer back to userspace
1669 */
1670 return ret;
1671}
1672
1673static noinline int search_ioctl(struct inode *inode,
1674 struct btrfs_ioctl_search_key *sk,
1675 u64 *buf_size,
1676 char __user *ubuf)
1677{
1678 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
1679 struct btrfs_root *root;
1680 struct btrfs_key key;
1681 struct btrfs_path *path;
1682 int ret;
1683 int num_found = 0;
1684 unsigned long sk_offset = 0;
1685
1686 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
1687 *buf_size = sizeof(struct btrfs_ioctl_search_header);
1688 return -EOVERFLOW;
1689 }
1690
1691 path = btrfs_alloc_path();
1692 if (!path)
1693 return -ENOMEM;
1694
1695 if (sk->tree_id == 0) {
1696 /* search the root of the inode that was passed */
1697 root = btrfs_grab_root(BTRFS_I(inode)->root);
1698 } else {
1699 root = btrfs_get_fs_root(info, sk->tree_id, true);
1700 if (IS_ERR(root)) {
1701 btrfs_free_path(path);
1702 return PTR_ERR(root);
1703 }
1704 }
1705
1706 key.objectid = sk->min_objectid;
1707 key.type = sk->min_type;
1708 key.offset = sk->min_offset;
1709
1710 while (1) {
1711 ret = -EFAULT;
1712 /*
1713 * Ensure that the whole user buffer is faulted in at sub-page
1714 * granularity, otherwise the loop may live-lock.
1715 */
1716 if (fault_in_subpage_writeable(ubuf + sk_offset,
1717 *buf_size - sk_offset))
1718 break;
1719
1720 ret = btrfs_search_forward(root, &key, path, sk->min_transid);
1721 if (ret != 0) {
1722 if (ret > 0)
1723 ret = 0;
1724 goto err;
1725 }
1726 ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
1727 &sk_offset, &num_found);
1728 btrfs_release_path(path);
1729 if (ret)
1730 break;
1731
1732 }
1733 if (ret > 0)
1734 ret = 0;
1735err:
1736 sk->nr_items = num_found;
1737 btrfs_put_root(root);
1738 btrfs_free_path(path);
1739 return ret;
1740}
1741
1742static noinline int btrfs_ioctl_tree_search(struct inode *inode,
1743 void __user *argp)
1744{
1745 struct btrfs_ioctl_search_args __user *uargs = argp;
1746 struct btrfs_ioctl_search_key sk;
1747 int ret;
1748 u64 buf_size;
1749
1750 if (!capable(CAP_SYS_ADMIN))
1751 return -EPERM;
1752
1753 if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
1754 return -EFAULT;
1755
1756 buf_size = sizeof(uargs->buf);
1757
1758 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
1759
1760 /*
1761 * In the origin implementation an overflow is handled by returning a
1762 * search header with a len of zero, so reset ret.
1763 */
1764 if (ret == -EOVERFLOW)
1765 ret = 0;
1766
1767 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
1768 ret = -EFAULT;
1769 return ret;
1770}
1771
1772static noinline int btrfs_ioctl_tree_search_v2(struct inode *inode,
1773 void __user *argp)
1774{
1775 struct btrfs_ioctl_search_args_v2 __user *uarg = argp;
1776 struct btrfs_ioctl_search_args_v2 args;
1777 int ret;
1778 u64 buf_size;
1779 const u64 buf_limit = SZ_16M;
1780
1781 if (!capable(CAP_SYS_ADMIN))
1782 return -EPERM;
1783
1784 /* copy search header and buffer size */
1785 if (copy_from_user(&args, uarg, sizeof(args)))
1786 return -EFAULT;
1787
1788 buf_size = args.buf_size;
1789
1790 /* limit result size to 16MB */
1791 if (buf_size > buf_limit)
1792 buf_size = buf_limit;
1793
1794 ret = search_ioctl(inode, &args.key, &buf_size,
1795 (char __user *)(&uarg->buf[0]));
1796 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
1797 ret = -EFAULT;
1798 else if (ret == -EOVERFLOW &&
1799 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
1800 ret = -EFAULT;
1801
1802 return ret;
1803}
1804
1805/*
1806 * Search INODE_REFs to identify path name of 'dirid' directory
1807 * in a 'tree_id' tree. and sets path name to 'name'.
1808 */
1809static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1810 u64 tree_id, u64 dirid, char *name)
1811{
1812 struct btrfs_root *root;
1813 struct btrfs_key key;
1814 char *ptr;
1815 int ret = -1;
1816 int slot;
1817 int len;
1818 int total_len = 0;
1819 struct btrfs_inode_ref *iref;
1820 struct extent_buffer *l;
1821 struct btrfs_path *path;
1822
1823 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1824 name[0]='\0';
1825 return 0;
1826 }
1827
1828 path = btrfs_alloc_path();
1829 if (!path)
1830 return -ENOMEM;
1831
1832 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
1833
1834 root = btrfs_get_fs_root(info, tree_id, true);
1835 if (IS_ERR(root)) {
1836 ret = PTR_ERR(root);
1837 root = NULL;
1838 goto out;
1839 }
1840
1841 key.objectid = dirid;
1842 key.type = BTRFS_INODE_REF_KEY;
1843 key.offset = (u64)-1;
1844
1845 while (1) {
1846 ret = btrfs_search_backwards(root, &key, path);
1847 if (ret < 0)
1848 goto out;
1849 else if (ret > 0) {
1850 ret = -ENOENT;
1851 goto out;
1852 }
1853
1854 l = path->nodes[0];
1855 slot = path->slots[0];
1856
1857 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
1858 len = btrfs_inode_ref_name_len(l, iref);
1859 ptr -= len + 1;
1860 total_len += len + 1;
1861 if (ptr < name) {
1862 ret = -ENAMETOOLONG;
1863 goto out;
1864 }
1865
1866 *(ptr + len) = '/';
1867 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
1868
1869 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
1870 break;
1871
1872 btrfs_release_path(path);
1873 key.objectid = key.offset;
1874 key.offset = (u64)-1;
1875 dirid = key.objectid;
1876 }
1877 memmove(name, ptr, total_len);
1878 name[total_len] = '\0';
1879 ret = 0;
1880out:
1881 btrfs_put_root(root);
1882 btrfs_free_path(path);
1883 return ret;
1884}
1885
1886static int btrfs_search_path_in_tree_user(struct mnt_idmap *idmap,
1887 struct inode *inode,
1888 struct btrfs_ioctl_ino_lookup_user_args *args)
1889{
1890 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1891 struct super_block *sb = inode->i_sb;
1892 struct btrfs_key upper_limit = BTRFS_I(inode)->location;
1893 u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
1894 u64 dirid = args->dirid;
1895 unsigned long item_off;
1896 unsigned long item_len;
1897 struct btrfs_inode_ref *iref;
1898 struct btrfs_root_ref *rref;
1899 struct btrfs_root *root = NULL;
1900 struct btrfs_path *path;
1901 struct btrfs_key key, key2;
1902 struct extent_buffer *leaf;
1903 struct inode *temp_inode;
1904 char *ptr;
1905 int slot;
1906 int len;
1907 int total_len = 0;
1908 int ret;
1909
1910 path = btrfs_alloc_path();
1911 if (!path)
1912 return -ENOMEM;
1913
1914 /*
1915 * If the bottom subvolume does not exist directly under upper_limit,
1916 * construct the path in from the bottom up.
1917 */
1918 if (dirid != upper_limit.objectid) {
1919 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
1920
1921 root = btrfs_get_fs_root(fs_info, treeid, true);
1922 if (IS_ERR(root)) {
1923 ret = PTR_ERR(root);
1924 goto out;
1925 }
1926
1927 key.objectid = dirid;
1928 key.type = BTRFS_INODE_REF_KEY;
1929 key.offset = (u64)-1;
1930 while (1) {
1931 ret = btrfs_search_backwards(root, &key, path);
1932 if (ret < 0)
1933 goto out_put;
1934 else if (ret > 0) {
1935 ret = -ENOENT;
1936 goto out_put;
1937 }
1938
1939 leaf = path->nodes[0];
1940 slot = path->slots[0];
1941
1942 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
1943 len = btrfs_inode_ref_name_len(leaf, iref);
1944 ptr -= len + 1;
1945 total_len += len + 1;
1946 if (ptr < args->path) {
1947 ret = -ENAMETOOLONG;
1948 goto out_put;
1949 }
1950
1951 *(ptr + len) = '/';
1952 read_extent_buffer(leaf, ptr,
1953 (unsigned long)(iref + 1), len);
1954
1955 /* Check the read+exec permission of this directory */
1956 ret = btrfs_previous_item(root, path, dirid,
1957 BTRFS_INODE_ITEM_KEY);
1958 if (ret < 0) {
1959 goto out_put;
1960 } else if (ret > 0) {
1961 ret = -ENOENT;
1962 goto out_put;
1963 }
1964
1965 leaf = path->nodes[0];
1966 slot = path->slots[0];
1967 btrfs_item_key_to_cpu(leaf, &key2, slot);
1968 if (key2.objectid != dirid) {
1969 ret = -ENOENT;
1970 goto out_put;
1971 }
1972
1973 /*
1974 * We don't need the path anymore, so release it and
1975 * avoid deadlocks and lockdep warnings in case
1976 * btrfs_iget() needs to lookup the inode from its root
1977 * btree and lock the same leaf.
1978 */
1979 btrfs_release_path(path);
1980 temp_inode = btrfs_iget(sb, key2.objectid, root);
1981 if (IS_ERR(temp_inode)) {
1982 ret = PTR_ERR(temp_inode);
1983 goto out_put;
1984 }
1985 ret = inode_permission(idmap, temp_inode,
1986 MAY_READ | MAY_EXEC);
1987 iput(temp_inode);
1988 if (ret) {
1989 ret = -EACCES;
1990 goto out_put;
1991 }
1992
1993 if (key.offset == upper_limit.objectid)
1994 break;
1995 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
1996 ret = -EACCES;
1997 goto out_put;
1998 }
1999
2000 key.objectid = key.offset;
2001 key.offset = (u64)-1;
2002 dirid = key.objectid;
2003 }
2004
2005 memmove(args->path, ptr, total_len);
2006 args->path[total_len] = '\0';
2007 btrfs_put_root(root);
2008 root = NULL;
2009 btrfs_release_path(path);
2010 }
2011
2012 /* Get the bottom subvolume's name from ROOT_REF */
2013 key.objectid = treeid;
2014 key.type = BTRFS_ROOT_REF_KEY;
2015 key.offset = args->treeid;
2016 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2017 if (ret < 0) {
2018 goto out;
2019 } else if (ret > 0) {
2020 ret = -ENOENT;
2021 goto out;
2022 }
2023
2024 leaf = path->nodes[0];
2025 slot = path->slots[0];
2026 btrfs_item_key_to_cpu(leaf, &key, slot);
2027
2028 item_off = btrfs_item_ptr_offset(leaf, slot);
2029 item_len = btrfs_item_size(leaf, slot);
2030 /* Check if dirid in ROOT_REF corresponds to passed dirid */
2031 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2032 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2033 ret = -EINVAL;
2034 goto out;
2035 }
2036
2037 /* Copy subvolume's name */
2038 item_off += sizeof(struct btrfs_root_ref);
2039 item_len -= sizeof(struct btrfs_root_ref);
2040 read_extent_buffer(leaf, args->name, item_off, item_len);
2041 args->name[item_len] = 0;
2042
2043out_put:
2044 btrfs_put_root(root);
2045out:
2046 btrfs_free_path(path);
2047 return ret;
2048}
2049
2050static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root,
2051 void __user *argp)
2052{
2053 struct btrfs_ioctl_ino_lookup_args *args;
2054 int ret = 0;
2055
2056 args = memdup_user(argp, sizeof(*args));
2057 if (IS_ERR(args))
2058 return PTR_ERR(args);
2059
2060 /*
2061 * Unprivileged query to obtain the containing subvolume root id. The
2062 * path is reset so it's consistent with btrfs_search_path_in_tree.
2063 */
2064 if (args->treeid == 0)
2065 args->treeid = root->root_key.objectid;
2066
2067 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2068 args->name[0] = 0;
2069 goto out;
2070 }
2071
2072 if (!capable(CAP_SYS_ADMIN)) {
2073 ret = -EPERM;
2074 goto out;
2075 }
2076
2077 ret = btrfs_search_path_in_tree(root->fs_info,
2078 args->treeid, args->objectid,
2079 args->name);
2080
2081out:
2082 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2083 ret = -EFAULT;
2084
2085 kfree(args);
2086 return ret;
2087}
2088
2089/*
2090 * Version of ino_lookup ioctl (unprivileged)
2091 *
2092 * The main differences from ino_lookup ioctl are:
2093 *
2094 * 1. Read + Exec permission will be checked using inode_permission() during
2095 * path construction. -EACCES will be returned in case of failure.
2096 * 2. Path construction will be stopped at the inode number which corresponds
2097 * to the fd with which this ioctl is called. If constructed path does not
2098 * exist under fd's inode, -EACCES will be returned.
2099 * 3. The name of bottom subvolume is also searched and filled.
2100 */
2101static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2102{
2103 struct btrfs_ioctl_ino_lookup_user_args *args;
2104 struct inode *inode;
2105 int ret;
2106
2107 args = memdup_user(argp, sizeof(*args));
2108 if (IS_ERR(args))
2109 return PTR_ERR(args);
2110
2111 inode = file_inode(file);
2112
2113 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2114 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2115 /*
2116 * The subvolume does not exist under fd with which this is
2117 * called
2118 */
2119 kfree(args);
2120 return -EACCES;
2121 }
2122
2123 ret = btrfs_search_path_in_tree_user(file_mnt_idmap(file), inode, args);
2124
2125 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2126 ret = -EFAULT;
2127
2128 kfree(args);
2129 return ret;
2130}
2131
2132/* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
2133static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp)
2134{
2135 struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2136 struct btrfs_fs_info *fs_info;
2137 struct btrfs_root *root;
2138 struct btrfs_path *path;
2139 struct btrfs_key key;
2140 struct btrfs_root_item *root_item;
2141 struct btrfs_root_ref *rref;
2142 struct extent_buffer *leaf;
2143 unsigned long item_off;
2144 unsigned long item_len;
2145 int slot;
2146 int ret = 0;
2147
2148 path = btrfs_alloc_path();
2149 if (!path)
2150 return -ENOMEM;
2151
2152 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2153 if (!subvol_info) {
2154 btrfs_free_path(path);
2155 return -ENOMEM;
2156 }
2157
2158 fs_info = BTRFS_I(inode)->root->fs_info;
2159
2160 /* Get root_item of inode's subvolume */
2161 key.objectid = BTRFS_I(inode)->root->root_key.objectid;
2162 root = btrfs_get_fs_root(fs_info, key.objectid, true);
2163 if (IS_ERR(root)) {
2164 ret = PTR_ERR(root);
2165 goto out_free;
2166 }
2167 root_item = &root->root_item;
2168
2169 subvol_info->treeid = key.objectid;
2170
2171 subvol_info->generation = btrfs_root_generation(root_item);
2172 subvol_info->flags = btrfs_root_flags(root_item);
2173
2174 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2175 memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2176 BTRFS_UUID_SIZE);
2177 memcpy(subvol_info->received_uuid, root_item->received_uuid,
2178 BTRFS_UUID_SIZE);
2179
2180 subvol_info->ctransid = btrfs_root_ctransid(root_item);
2181 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2182 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2183
2184 subvol_info->otransid = btrfs_root_otransid(root_item);
2185 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2186 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2187
2188 subvol_info->stransid = btrfs_root_stransid(root_item);
2189 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2190 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2191
2192 subvol_info->rtransid = btrfs_root_rtransid(root_item);
2193 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2194 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2195
2196 if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2197 /* Search root tree for ROOT_BACKREF of this subvolume */
2198 key.type = BTRFS_ROOT_BACKREF_KEY;
2199 key.offset = 0;
2200 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2201 if (ret < 0) {
2202 goto out;
2203 } else if (path->slots[0] >=
2204 btrfs_header_nritems(path->nodes[0])) {
2205 ret = btrfs_next_leaf(fs_info->tree_root, path);
2206 if (ret < 0) {
2207 goto out;
2208 } else if (ret > 0) {
2209 ret = -EUCLEAN;
2210 goto out;
2211 }
2212 }
2213
2214 leaf = path->nodes[0];
2215 slot = path->slots[0];
2216 btrfs_item_key_to_cpu(leaf, &key, slot);
2217 if (key.objectid == subvol_info->treeid &&
2218 key.type == BTRFS_ROOT_BACKREF_KEY) {
2219 subvol_info->parent_id = key.offset;
2220
2221 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2222 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2223
2224 item_off = btrfs_item_ptr_offset(leaf, slot)
2225 + sizeof(struct btrfs_root_ref);
2226 item_len = btrfs_item_size(leaf, slot)
2227 - sizeof(struct btrfs_root_ref);
2228 read_extent_buffer(leaf, subvol_info->name,
2229 item_off, item_len);
2230 } else {
2231 ret = -ENOENT;
2232 goto out;
2233 }
2234 }
2235
2236 btrfs_free_path(path);
2237 path = NULL;
2238 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2239 ret = -EFAULT;
2240
2241out:
2242 btrfs_put_root(root);
2243out_free:
2244 btrfs_free_path(path);
2245 kfree(subvol_info);
2246 return ret;
2247}
2248
2249/*
2250 * Return ROOT_REF information of the subvolume containing this inode
2251 * except the subvolume name.
2252 */
2253static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root,
2254 void __user *argp)
2255{
2256 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2257 struct btrfs_root_ref *rref;
2258 struct btrfs_path *path;
2259 struct btrfs_key key;
2260 struct extent_buffer *leaf;
2261 u64 objectid;
2262 int slot;
2263 int ret;
2264 u8 found;
2265
2266 path = btrfs_alloc_path();
2267 if (!path)
2268 return -ENOMEM;
2269
2270 rootrefs = memdup_user(argp, sizeof(*rootrefs));
2271 if (IS_ERR(rootrefs)) {
2272 btrfs_free_path(path);
2273 return PTR_ERR(rootrefs);
2274 }
2275
2276 objectid = root->root_key.objectid;
2277 key.objectid = objectid;
2278 key.type = BTRFS_ROOT_REF_KEY;
2279 key.offset = rootrefs->min_treeid;
2280 found = 0;
2281
2282 root = root->fs_info->tree_root;
2283 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2284 if (ret < 0) {
2285 goto out;
2286 } else if (path->slots[0] >=
2287 btrfs_header_nritems(path->nodes[0])) {
2288 ret = btrfs_next_leaf(root, path);
2289 if (ret < 0) {
2290 goto out;
2291 } else if (ret > 0) {
2292 ret = -EUCLEAN;
2293 goto out;
2294 }
2295 }
2296 while (1) {
2297 leaf = path->nodes[0];
2298 slot = path->slots[0];
2299
2300 btrfs_item_key_to_cpu(leaf, &key, slot);
2301 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2302 ret = 0;
2303 goto out;
2304 }
2305
2306 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2307 ret = -EOVERFLOW;
2308 goto out;
2309 }
2310
2311 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2312 rootrefs->rootref[found].treeid = key.offset;
2313 rootrefs->rootref[found].dirid =
2314 btrfs_root_ref_dirid(leaf, rref);
2315 found++;
2316
2317 ret = btrfs_next_item(root, path);
2318 if (ret < 0) {
2319 goto out;
2320 } else if (ret > 0) {
2321 ret = -EUCLEAN;
2322 goto out;
2323 }
2324 }
2325
2326out:
2327 btrfs_free_path(path);
2328
2329 if (!ret || ret == -EOVERFLOW) {
2330 rootrefs->num_items = found;
2331 /* update min_treeid for next search */
2332 if (found)
2333 rootrefs->min_treeid =
2334 rootrefs->rootref[found - 1].treeid + 1;
2335 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2336 ret = -EFAULT;
2337 }
2338
2339 kfree(rootrefs);
2340
2341 return ret;
2342}
2343
2344static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2345 void __user *arg,
2346 bool destroy_v2)
2347{
2348 struct dentry *parent = file->f_path.dentry;
2349 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2350 struct dentry *dentry;
2351 struct inode *dir = d_inode(parent);
2352 struct inode *inode;
2353 struct btrfs_root *root = BTRFS_I(dir)->root;
2354 struct btrfs_root *dest = NULL;
2355 struct btrfs_ioctl_vol_args *vol_args = NULL;
2356 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
2357 struct mnt_idmap *idmap = file_mnt_idmap(file);
2358 char *subvol_name, *subvol_name_ptr = NULL;
2359 int subvol_namelen;
2360 int err = 0;
2361 bool destroy_parent = false;
2362
2363 /* We don't support snapshots with extent tree v2 yet. */
2364 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2365 btrfs_err(fs_info,
2366 "extent tree v2 doesn't support snapshot deletion yet");
2367 return -EOPNOTSUPP;
2368 }
2369
2370 if (destroy_v2) {
2371 vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2372 if (IS_ERR(vol_args2))
2373 return PTR_ERR(vol_args2);
2374
2375 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2376 err = -EOPNOTSUPP;
2377 goto out;
2378 }
2379
2380 /*
2381 * If SPEC_BY_ID is not set, we are looking for the subvolume by
2382 * name, same as v1 currently does.
2383 */
2384 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2385 vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0;
2386 subvol_name = vol_args2->name;
2387
2388 err = mnt_want_write_file(file);
2389 if (err)
2390 goto out;
2391 } else {
2392 struct inode *old_dir;
2393
2394 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2395 err = -EINVAL;
2396 goto out;
2397 }
2398
2399 err = mnt_want_write_file(file);
2400 if (err)
2401 goto out;
2402
2403 dentry = btrfs_get_dentry(fs_info->sb,
2404 BTRFS_FIRST_FREE_OBJECTID,
2405 vol_args2->subvolid, 0);
2406 if (IS_ERR(dentry)) {
2407 err = PTR_ERR(dentry);
2408 goto out_drop_write;
2409 }
2410
2411 /*
2412 * Change the default parent since the subvolume being
2413 * deleted can be outside of the current mount point.
2414 */
2415 parent = btrfs_get_parent(dentry);
2416
2417 /*
2418 * At this point dentry->d_name can point to '/' if the
2419 * subvolume we want to destroy is outsite of the
2420 * current mount point, so we need to release the
2421 * current dentry and execute the lookup to return a new
2422 * one with ->d_name pointing to the
2423 * <mount point>/subvol_name.
2424 */
2425 dput(dentry);
2426 if (IS_ERR(parent)) {
2427 err = PTR_ERR(parent);
2428 goto out_drop_write;
2429 }
2430 old_dir = dir;
2431 dir = d_inode(parent);
2432
2433 /*
2434 * If v2 was used with SPEC_BY_ID, a new parent was
2435 * allocated since the subvolume can be outside of the
2436 * current mount point. Later on we need to release this
2437 * new parent dentry.
2438 */
2439 destroy_parent = true;
2440
2441 /*
2442 * On idmapped mounts, deletion via subvolid is
2443 * restricted to subvolumes that are immediate
2444 * ancestors of the inode referenced by the file
2445 * descriptor in the ioctl. Otherwise the idmapping
2446 * could potentially be abused to delete subvolumes
2447 * anywhere in the filesystem the user wouldn't be able
2448 * to delete without an idmapped mount.
2449 */
2450 if (old_dir != dir && idmap != &nop_mnt_idmap) {
2451 err = -EOPNOTSUPP;
2452 goto free_parent;
2453 }
2454
2455 subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
2456 fs_info, vol_args2->subvolid);
2457 if (IS_ERR(subvol_name_ptr)) {
2458 err = PTR_ERR(subvol_name_ptr);
2459 goto free_parent;
2460 }
2461 /* subvol_name_ptr is already nul terminated */
2462 subvol_name = (char *)kbasename(subvol_name_ptr);
2463 }
2464 } else {
2465 vol_args = memdup_user(arg, sizeof(*vol_args));
2466 if (IS_ERR(vol_args))
2467 return PTR_ERR(vol_args);
2468
2469 vol_args->name[BTRFS_PATH_NAME_MAX] = 0;
2470 subvol_name = vol_args->name;
2471
2472 err = mnt_want_write_file(file);
2473 if (err)
2474 goto out;
2475 }
2476
2477 subvol_namelen = strlen(subvol_name);
2478
2479 if (strchr(subvol_name, '/') ||
2480 strncmp(subvol_name, "..", subvol_namelen) == 0) {
2481 err = -EINVAL;
2482 goto free_subvol_name;
2483 }
2484
2485 if (!S_ISDIR(dir->i_mode)) {
2486 err = -ENOTDIR;
2487 goto free_subvol_name;
2488 }
2489
2490 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2491 if (err == -EINTR)
2492 goto free_subvol_name;
2493 dentry = lookup_one(idmap, subvol_name, parent, subvol_namelen);
2494 if (IS_ERR(dentry)) {
2495 err = PTR_ERR(dentry);
2496 goto out_unlock_dir;
2497 }
2498
2499 if (d_really_is_negative(dentry)) {
2500 err = -ENOENT;
2501 goto out_dput;
2502 }
2503
2504 inode = d_inode(dentry);
2505 dest = BTRFS_I(inode)->root;
2506 if (!capable(CAP_SYS_ADMIN)) {
2507 /*
2508 * Regular user. Only allow this with a special mount
2509 * option, when the user has write+exec access to the
2510 * subvol root, and when rmdir(2) would have been
2511 * allowed.
2512 *
2513 * Note that this is _not_ check that the subvol is
2514 * empty or doesn't contain data that we wouldn't
2515 * otherwise be able to delete.
2516 *
2517 * Users who want to delete empty subvols should try
2518 * rmdir(2).
2519 */
2520 err = -EPERM;
2521 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2522 goto out_dput;
2523
2524 /*
2525 * Do not allow deletion if the parent dir is the same
2526 * as the dir to be deleted. That means the ioctl
2527 * must be called on the dentry referencing the root
2528 * of the subvol, not a random directory contained
2529 * within it.
2530 */
2531 err = -EINVAL;
2532 if (root == dest)
2533 goto out_dput;
2534
2535 err = inode_permission(idmap, inode, MAY_WRITE | MAY_EXEC);
2536 if (err)
2537 goto out_dput;
2538 }
2539
2540 /* check if subvolume may be deleted by a user */
2541 err = btrfs_may_delete(idmap, dir, dentry, 1);
2542 if (err)
2543 goto out_dput;
2544
2545 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2546 err = -EINVAL;
2547 goto out_dput;
2548 }
2549
2550 btrfs_inode_lock(BTRFS_I(inode), 0);
2551 err = btrfs_delete_subvolume(BTRFS_I(dir), dentry);
2552 btrfs_inode_unlock(BTRFS_I(inode), 0);
2553 if (!err)
2554 d_delete_notify(dir, dentry);
2555
2556out_dput:
2557 dput(dentry);
2558out_unlock_dir:
2559 btrfs_inode_unlock(BTRFS_I(dir), 0);
2560free_subvol_name:
2561 kfree(subvol_name_ptr);
2562free_parent:
2563 if (destroy_parent)
2564 dput(parent);
2565out_drop_write:
2566 mnt_drop_write_file(file);
2567out:
2568 kfree(vol_args2);
2569 kfree(vol_args);
2570 return err;
2571}
2572
2573static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2574{
2575 struct inode *inode = file_inode(file);
2576 struct btrfs_root *root = BTRFS_I(inode)->root;
2577 struct btrfs_ioctl_defrag_range_args range = {0};
2578 int ret;
2579
2580 ret = mnt_want_write_file(file);
2581 if (ret)
2582 return ret;
2583
2584 if (btrfs_root_readonly(root)) {
2585 ret = -EROFS;
2586 goto out;
2587 }
2588
2589 switch (inode->i_mode & S_IFMT) {
2590 case S_IFDIR:
2591 if (!capable(CAP_SYS_ADMIN)) {
2592 ret = -EPERM;
2593 goto out;
2594 }
2595 ret = btrfs_defrag_root(root);
2596 break;
2597 case S_IFREG:
2598 /*
2599 * Note that this does not check the file descriptor for write
2600 * access. This prevents defragmenting executables that are
2601 * running and allows defrag on files open in read-only mode.
2602 */
2603 if (!capable(CAP_SYS_ADMIN) &&
2604 inode_permission(&nop_mnt_idmap, inode, MAY_WRITE)) {
2605 ret = -EPERM;
2606 goto out;
2607 }
2608
2609 if (argp) {
2610 if (copy_from_user(&range, argp, sizeof(range))) {
2611 ret = -EFAULT;
2612 goto out;
2613 }
2614 if (range.flags & ~BTRFS_DEFRAG_RANGE_FLAGS_SUPP) {
2615 ret = -EOPNOTSUPP;
2616 goto out;
2617 }
2618 /* compression requires us to start the IO */
2619 if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2620 range.flags |= BTRFS_DEFRAG_RANGE_START_IO;
2621 range.extent_thresh = (u32)-1;
2622 }
2623 } else {
2624 /* the rest are all set to zero by kzalloc */
2625 range.len = (u64)-1;
2626 }
2627 ret = btrfs_defrag_file(file_inode(file), &file->f_ra,
2628 &range, BTRFS_OLDEST_GENERATION, 0);
2629 if (ret > 0)
2630 ret = 0;
2631 break;
2632 default:
2633 ret = -EINVAL;
2634 }
2635out:
2636 mnt_drop_write_file(file);
2637 return ret;
2638}
2639
2640static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
2641{
2642 struct btrfs_ioctl_vol_args *vol_args;
2643 bool restore_op = false;
2644 int ret;
2645
2646 if (!capable(CAP_SYS_ADMIN))
2647 return -EPERM;
2648
2649 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2650 btrfs_err(fs_info, "device add not supported on extent tree v2 yet");
2651 return -EINVAL;
2652 }
2653
2654 if (fs_info->fs_devices->temp_fsid) {
2655 btrfs_err(fs_info,
2656 "device add not supported on cloned temp-fsid mount");
2657 return -EINVAL;
2658 }
2659
2660 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) {
2661 if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD))
2662 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2663
2664 /*
2665 * We can do the device add because we have a paused balanced,
2666 * change the exclusive op type and remember we should bring
2667 * back the paused balance
2668 */
2669 fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD;
2670 btrfs_exclop_start_unlock(fs_info);
2671 restore_op = true;
2672 }
2673
2674 vol_args = memdup_user(arg, sizeof(*vol_args));
2675 if (IS_ERR(vol_args)) {
2676 ret = PTR_ERR(vol_args);
2677 goto out;
2678 }
2679
2680 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2681 ret = btrfs_init_new_device(fs_info, vol_args->name);
2682
2683 if (!ret)
2684 btrfs_info(fs_info, "disk added %s", vol_args->name);
2685
2686 kfree(vol_args);
2687out:
2688 if (restore_op)
2689 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
2690 else
2691 btrfs_exclop_finish(fs_info);
2692 return ret;
2693}
2694
2695static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
2696{
2697 BTRFS_DEV_LOOKUP_ARGS(args);
2698 struct inode *inode = file_inode(file);
2699 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2700 struct btrfs_ioctl_vol_args_v2 *vol_args;
2701 struct bdev_handle *bdev_handle = NULL;
2702 int ret;
2703 bool cancel = false;
2704
2705 if (!capable(CAP_SYS_ADMIN))
2706 return -EPERM;
2707
2708 vol_args = memdup_user(arg, sizeof(*vol_args));
2709 if (IS_ERR(vol_args))
2710 return PTR_ERR(vol_args);
2711
2712 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
2713 ret = -EOPNOTSUPP;
2714 goto out;
2715 }
2716
2717 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
2718 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
2719 args.devid = vol_args->devid;
2720 } else if (!strcmp("cancel", vol_args->name)) {
2721 cancel = true;
2722 } else {
2723 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2724 if (ret)
2725 goto out;
2726 }
2727
2728 ret = mnt_want_write_file(file);
2729 if (ret)
2730 goto out;
2731
2732 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2733 cancel);
2734 if (ret)
2735 goto err_drop;
2736
2737 /* Exclusive operation is now claimed */
2738 ret = btrfs_rm_device(fs_info, &args, &bdev_handle);
2739
2740 btrfs_exclop_finish(fs_info);
2741
2742 if (!ret) {
2743 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
2744 btrfs_info(fs_info, "device deleted: id %llu",
2745 vol_args->devid);
2746 else
2747 btrfs_info(fs_info, "device deleted: %s",
2748 vol_args->name);
2749 }
2750err_drop:
2751 mnt_drop_write_file(file);
2752 if (bdev_handle)
2753 bdev_release(bdev_handle);
2754out:
2755 btrfs_put_dev_args_from_path(&args);
2756 kfree(vol_args);
2757 return ret;
2758}
2759
2760static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2761{
2762 BTRFS_DEV_LOOKUP_ARGS(args);
2763 struct inode *inode = file_inode(file);
2764 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2765 struct btrfs_ioctl_vol_args *vol_args;
2766 struct bdev_handle *bdev_handle = NULL;
2767 int ret;
2768 bool cancel = false;
2769
2770 if (!capable(CAP_SYS_ADMIN))
2771 return -EPERM;
2772
2773 vol_args = memdup_user(arg, sizeof(*vol_args));
2774 if (IS_ERR(vol_args))
2775 return PTR_ERR(vol_args);
2776
2777 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2778 if (!strcmp("cancel", vol_args->name)) {
2779 cancel = true;
2780 } else {
2781 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2782 if (ret)
2783 goto out;
2784 }
2785
2786 ret = mnt_want_write_file(file);
2787 if (ret)
2788 goto out;
2789
2790 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2791 cancel);
2792 if (ret == 0) {
2793 ret = btrfs_rm_device(fs_info, &args, &bdev_handle);
2794 if (!ret)
2795 btrfs_info(fs_info, "disk deleted %s", vol_args->name);
2796 btrfs_exclop_finish(fs_info);
2797 }
2798
2799 mnt_drop_write_file(file);
2800 if (bdev_handle)
2801 bdev_release(bdev_handle);
2802out:
2803 btrfs_put_dev_args_from_path(&args);
2804 kfree(vol_args);
2805 return ret;
2806}
2807
2808static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
2809 void __user *arg)
2810{
2811 struct btrfs_ioctl_fs_info_args *fi_args;
2812 struct btrfs_device *device;
2813 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2814 u64 flags_in;
2815 int ret = 0;
2816
2817 fi_args = memdup_user(arg, sizeof(*fi_args));
2818 if (IS_ERR(fi_args))
2819 return PTR_ERR(fi_args);
2820
2821 flags_in = fi_args->flags;
2822 memset(fi_args, 0, sizeof(*fi_args));
2823
2824 rcu_read_lock();
2825 fi_args->num_devices = fs_devices->num_devices;
2826
2827 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2828 if (device->devid > fi_args->max_id)
2829 fi_args->max_id = device->devid;
2830 }
2831 rcu_read_unlock();
2832
2833 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
2834 fi_args->nodesize = fs_info->nodesize;
2835 fi_args->sectorsize = fs_info->sectorsize;
2836 fi_args->clone_alignment = fs_info->sectorsize;
2837
2838 if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
2839 fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
2840 fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
2841 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
2842 }
2843
2844 if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
2845 fi_args->generation = btrfs_get_fs_generation(fs_info);
2846 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
2847 }
2848
2849 if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
2850 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
2851 sizeof(fi_args->metadata_uuid));
2852 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
2853 }
2854
2855 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2856 ret = -EFAULT;
2857
2858 kfree(fi_args);
2859 return ret;
2860}
2861
2862static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
2863 void __user *arg)
2864{
2865 BTRFS_DEV_LOOKUP_ARGS(args);
2866 struct btrfs_ioctl_dev_info_args *di_args;
2867 struct btrfs_device *dev;
2868 int ret = 0;
2869
2870 di_args = memdup_user(arg, sizeof(*di_args));
2871 if (IS_ERR(di_args))
2872 return PTR_ERR(di_args);
2873
2874 args.devid = di_args->devid;
2875 if (!btrfs_is_empty_uuid(di_args->uuid))
2876 args.uuid = di_args->uuid;
2877
2878 rcu_read_lock();
2879 dev = btrfs_find_device(fs_info->fs_devices, &args);
2880 if (!dev) {
2881 ret = -ENODEV;
2882 goto out;
2883 }
2884
2885 di_args->devid = dev->devid;
2886 di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2887 di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2888 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2889 memcpy(di_args->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2890 if (dev->name)
2891 strscpy(di_args->path, btrfs_dev_name(dev), sizeof(di_args->path));
2892 else
2893 di_args->path[0] = '\0';
2894
2895out:
2896 rcu_read_unlock();
2897 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2898 ret = -EFAULT;
2899
2900 kfree(di_args);
2901 return ret;
2902}
2903
2904static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
2905{
2906 struct inode *inode = file_inode(file);
2907 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2908 struct btrfs_root *root = BTRFS_I(inode)->root;
2909 struct btrfs_root *new_root;
2910 struct btrfs_dir_item *di;
2911 struct btrfs_trans_handle *trans;
2912 struct btrfs_path *path = NULL;
2913 struct btrfs_disk_key disk_key;
2914 struct fscrypt_str name = FSTR_INIT("default", 7);
2915 u64 objectid = 0;
2916 u64 dir_id;
2917 int ret;
2918
2919 if (!capable(CAP_SYS_ADMIN))
2920 return -EPERM;
2921
2922 ret = mnt_want_write_file(file);
2923 if (ret)
2924 return ret;
2925
2926 if (copy_from_user(&objectid, argp, sizeof(objectid))) {
2927 ret = -EFAULT;
2928 goto out;
2929 }
2930
2931 if (!objectid)
2932 objectid = BTRFS_FS_TREE_OBJECTID;
2933
2934 new_root = btrfs_get_fs_root(fs_info, objectid, true);
2935 if (IS_ERR(new_root)) {
2936 ret = PTR_ERR(new_root);
2937 goto out;
2938 }
2939 if (!is_fstree(new_root->root_key.objectid)) {
2940 ret = -ENOENT;
2941 goto out_free;
2942 }
2943
2944 path = btrfs_alloc_path();
2945 if (!path) {
2946 ret = -ENOMEM;
2947 goto out_free;
2948 }
2949
2950 trans = btrfs_start_transaction(root, 1);
2951 if (IS_ERR(trans)) {
2952 ret = PTR_ERR(trans);
2953 goto out_free;
2954 }
2955
2956 dir_id = btrfs_super_root_dir(fs_info->super_copy);
2957 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
2958 dir_id, &name, 1);
2959 if (IS_ERR_OR_NULL(di)) {
2960 btrfs_release_path(path);
2961 btrfs_end_transaction(trans);
2962 btrfs_err(fs_info,
2963 "Umm, you don't have the default diritem, this isn't going to work");
2964 ret = -ENOENT;
2965 goto out_free;
2966 }
2967
2968 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
2969 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
2970 btrfs_mark_buffer_dirty(trans, path->nodes[0]);
2971 btrfs_release_path(path);
2972
2973 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
2974 btrfs_end_transaction(trans);
2975out_free:
2976 btrfs_put_root(new_root);
2977 btrfs_free_path(path);
2978out:
2979 mnt_drop_write_file(file);
2980 return ret;
2981}
2982
2983static void get_block_group_info(struct list_head *groups_list,
2984 struct btrfs_ioctl_space_info *space)
2985{
2986 struct btrfs_block_group *block_group;
2987
2988 space->total_bytes = 0;
2989 space->used_bytes = 0;
2990 space->flags = 0;
2991 list_for_each_entry(block_group, groups_list, list) {
2992 space->flags = block_group->flags;
2993 space->total_bytes += block_group->length;
2994 space->used_bytes += block_group->used;
2995 }
2996}
2997
2998static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
2999 void __user *arg)
3000{
3001 struct btrfs_ioctl_space_args space_args = { 0 };
3002 struct btrfs_ioctl_space_info space;
3003 struct btrfs_ioctl_space_info *dest;
3004 struct btrfs_ioctl_space_info *dest_orig;
3005 struct btrfs_ioctl_space_info __user *user_dest;
3006 struct btrfs_space_info *info;
3007 static const u64 types[] = {
3008 BTRFS_BLOCK_GROUP_DATA,
3009 BTRFS_BLOCK_GROUP_SYSTEM,
3010 BTRFS_BLOCK_GROUP_METADATA,
3011 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
3012 };
3013 int num_types = 4;
3014 int alloc_size;
3015 int ret = 0;
3016 u64 slot_count = 0;
3017 int i, c;
3018
3019 if (copy_from_user(&space_args,
3020 (struct btrfs_ioctl_space_args __user *)arg,
3021 sizeof(space_args)))
3022 return -EFAULT;
3023
3024 for (i = 0; i < num_types; i++) {
3025 struct btrfs_space_info *tmp;
3026
3027 info = NULL;
3028 list_for_each_entry(tmp, &fs_info->space_info, list) {
3029 if (tmp->flags == types[i]) {
3030 info = tmp;
3031 break;
3032 }
3033 }
3034
3035 if (!info)
3036 continue;
3037
3038 down_read(&info->groups_sem);
3039 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3040 if (!list_empty(&info->block_groups[c]))
3041 slot_count++;
3042 }
3043 up_read(&info->groups_sem);
3044 }
3045
3046 /*
3047 * Global block reserve, exported as a space_info
3048 */
3049 slot_count++;
3050
3051 /* space_slots == 0 means they are asking for a count */
3052 if (space_args.space_slots == 0) {
3053 space_args.total_spaces = slot_count;
3054 goto out;
3055 }
3056
3057 slot_count = min_t(u64, space_args.space_slots, slot_count);
3058
3059 alloc_size = sizeof(*dest) * slot_count;
3060
3061 /* we generally have at most 6 or so space infos, one for each raid
3062 * level. So, a whole page should be more than enough for everyone
3063 */
3064 if (alloc_size > PAGE_SIZE)
3065 return -ENOMEM;
3066
3067 space_args.total_spaces = 0;
3068 dest = kmalloc(alloc_size, GFP_KERNEL);
3069 if (!dest)
3070 return -ENOMEM;
3071 dest_orig = dest;
3072
3073 /* now we have a buffer to copy into */
3074 for (i = 0; i < num_types; i++) {
3075 struct btrfs_space_info *tmp;
3076
3077 if (!slot_count)
3078 break;
3079
3080 info = NULL;
3081 list_for_each_entry(tmp, &fs_info->space_info, list) {
3082 if (tmp->flags == types[i]) {
3083 info = tmp;
3084 break;
3085 }
3086 }
3087
3088 if (!info)
3089 continue;
3090 down_read(&info->groups_sem);
3091 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3092 if (!list_empty(&info->block_groups[c])) {
3093 get_block_group_info(&info->block_groups[c],
3094 &space);
3095 memcpy(dest, &space, sizeof(space));
3096 dest++;
3097 space_args.total_spaces++;
3098 slot_count--;
3099 }
3100 if (!slot_count)
3101 break;
3102 }
3103 up_read(&info->groups_sem);
3104 }
3105
3106 /*
3107 * Add global block reserve
3108 */
3109 if (slot_count) {
3110 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3111
3112 spin_lock(&block_rsv->lock);
3113 space.total_bytes = block_rsv->size;
3114 space.used_bytes = block_rsv->size - block_rsv->reserved;
3115 spin_unlock(&block_rsv->lock);
3116 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3117 memcpy(dest, &space, sizeof(space));
3118 space_args.total_spaces++;
3119 }
3120
3121 user_dest = (struct btrfs_ioctl_space_info __user *)
3122 (arg + sizeof(struct btrfs_ioctl_space_args));
3123
3124 if (copy_to_user(user_dest, dest_orig, alloc_size))
3125 ret = -EFAULT;
3126
3127 kfree(dest_orig);
3128out:
3129 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3130 ret = -EFAULT;
3131
3132 return ret;
3133}
3134
3135static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3136 void __user *argp)
3137{
3138 struct btrfs_trans_handle *trans;
3139 u64 transid;
3140
3141 /*
3142 * Start orphan cleanup here for the given root in case it hasn't been
3143 * started already by other means. Errors are handled in the other
3144 * functions during transaction commit.
3145 */
3146 btrfs_orphan_cleanup(root);
3147
3148 trans = btrfs_attach_transaction_barrier(root);
3149 if (IS_ERR(trans)) {
3150 if (PTR_ERR(trans) != -ENOENT)
3151 return PTR_ERR(trans);
3152
3153 /* No running transaction, don't bother */
3154 transid = btrfs_get_last_trans_committed(root->fs_info);
3155 goto out;
3156 }
3157 transid = trans->transid;
3158 btrfs_commit_transaction_async(trans);
3159out:
3160 if (argp)
3161 if (copy_to_user(argp, &transid, sizeof(transid)))
3162 return -EFAULT;
3163 return 0;
3164}
3165
3166static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3167 void __user *argp)
3168{
3169 /* By default wait for the current transaction. */
3170 u64 transid = 0;
3171
3172 if (argp)
3173 if (copy_from_user(&transid, argp, sizeof(transid)))
3174 return -EFAULT;
3175
3176 return btrfs_wait_for_commit(fs_info, transid);
3177}
3178
3179static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3180{
3181 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
3182 struct btrfs_ioctl_scrub_args *sa;
3183 int ret;
3184
3185 if (!capable(CAP_SYS_ADMIN))
3186 return -EPERM;
3187
3188 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3189 btrfs_err(fs_info, "scrub is not supported on extent tree v2 yet");
3190 return -EINVAL;
3191 }
3192
3193 sa = memdup_user(arg, sizeof(*sa));
3194 if (IS_ERR(sa))
3195 return PTR_ERR(sa);
3196
3197 if (sa->flags & ~BTRFS_SCRUB_SUPPORTED_FLAGS) {
3198 ret = -EOPNOTSUPP;
3199 goto out;
3200 }
3201
3202 if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3203 ret = mnt_want_write_file(file);
3204 if (ret)
3205 goto out;
3206 }
3207
3208 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
3209 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3210 0);
3211
3212 /*
3213 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3214 * error. This is important as it allows user space to know how much
3215 * progress scrub has done. For example, if scrub is canceled we get
3216 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3217 * space. Later user space can inspect the progress from the structure
3218 * btrfs_ioctl_scrub_args and resume scrub from where it left off
3219 * previously (btrfs-progs does this).
3220 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3221 * then return -EFAULT to signal the structure was not copied or it may
3222 * be corrupt and unreliable due to a partial copy.
3223 */
3224 if (copy_to_user(arg, sa, sizeof(*sa)))
3225 ret = -EFAULT;
3226
3227 if (!(sa->flags & BTRFS_SCRUB_READONLY))
3228 mnt_drop_write_file(file);
3229out:
3230 kfree(sa);
3231 return ret;
3232}
3233
3234static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3235{
3236 if (!capable(CAP_SYS_ADMIN))
3237 return -EPERM;
3238
3239 return btrfs_scrub_cancel(fs_info);
3240}
3241
3242static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3243 void __user *arg)
3244{
3245 struct btrfs_ioctl_scrub_args *sa;
3246 int ret;
3247
3248 if (!capable(CAP_SYS_ADMIN))
3249 return -EPERM;
3250
3251 sa = memdup_user(arg, sizeof(*sa));
3252 if (IS_ERR(sa))
3253 return PTR_ERR(sa);
3254
3255 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
3256
3257 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3258 ret = -EFAULT;
3259
3260 kfree(sa);
3261 return ret;
3262}
3263
3264static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3265 void __user *arg)
3266{
3267 struct btrfs_ioctl_get_dev_stats *sa;
3268 int ret;
3269
3270 sa = memdup_user(arg, sizeof(*sa));
3271 if (IS_ERR(sa))
3272 return PTR_ERR(sa);
3273
3274 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3275 kfree(sa);
3276 return -EPERM;
3277 }
3278
3279 ret = btrfs_get_dev_stats(fs_info, sa);
3280
3281 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3282 ret = -EFAULT;
3283
3284 kfree(sa);
3285 return ret;
3286}
3287
3288static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3289 void __user *arg)
3290{
3291 struct btrfs_ioctl_dev_replace_args *p;
3292 int ret;
3293
3294 if (!capable(CAP_SYS_ADMIN))
3295 return -EPERM;
3296
3297 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3298 btrfs_err(fs_info, "device replace not supported on extent tree v2 yet");
3299 return -EINVAL;
3300 }
3301
3302 p = memdup_user(arg, sizeof(*p));
3303 if (IS_ERR(p))
3304 return PTR_ERR(p);
3305
3306 switch (p->cmd) {
3307 case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3308 if (sb_rdonly(fs_info->sb)) {
3309 ret = -EROFS;
3310 goto out;
3311 }
3312 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
3313 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3314 } else {
3315 ret = btrfs_dev_replace_by_ioctl(fs_info, p);
3316 btrfs_exclop_finish(fs_info);
3317 }
3318 break;
3319 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3320 btrfs_dev_replace_status(fs_info, p);
3321 ret = 0;
3322 break;
3323 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3324 p->result = btrfs_dev_replace_cancel(fs_info);
3325 ret = 0;
3326 break;
3327 default:
3328 ret = -EINVAL;
3329 break;
3330 }
3331
3332 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
3333 ret = -EFAULT;
3334out:
3335 kfree(p);
3336 return ret;
3337}
3338
3339static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3340{
3341 int ret = 0;
3342 int i;
3343 u64 rel_ptr;
3344 int size;
3345 struct btrfs_ioctl_ino_path_args *ipa = NULL;
3346 struct inode_fs_paths *ipath = NULL;
3347 struct btrfs_path *path;
3348
3349 if (!capable(CAP_DAC_READ_SEARCH))
3350 return -EPERM;
3351
3352 path = btrfs_alloc_path();
3353 if (!path) {
3354 ret = -ENOMEM;
3355 goto out;
3356 }
3357
3358 ipa = memdup_user(arg, sizeof(*ipa));
3359 if (IS_ERR(ipa)) {
3360 ret = PTR_ERR(ipa);
3361 ipa = NULL;
3362 goto out;
3363 }
3364
3365 size = min_t(u32, ipa->size, 4096);
3366 ipath = init_ipath(size, root, path);
3367 if (IS_ERR(ipath)) {
3368 ret = PTR_ERR(ipath);
3369 ipath = NULL;
3370 goto out;
3371 }
3372
3373 ret = paths_from_inode(ipa->inum, ipath);
3374 if (ret < 0)
3375 goto out;
3376
3377 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3378 rel_ptr = ipath->fspath->val[i] -
3379 (u64)(unsigned long)ipath->fspath->val;
3380 ipath->fspath->val[i] = rel_ptr;
3381 }
3382
3383 btrfs_free_path(path);
3384 path = NULL;
3385 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
3386 ipath->fspath, size);
3387 if (ret) {
3388 ret = -EFAULT;
3389 goto out;
3390 }
3391
3392out:
3393 btrfs_free_path(path);
3394 free_ipath(ipath);
3395 kfree(ipa);
3396
3397 return ret;
3398}
3399
3400static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3401 void __user *arg, int version)
3402{
3403 int ret = 0;
3404 int size;
3405 struct btrfs_ioctl_logical_ino_args *loi;
3406 struct btrfs_data_container *inodes = NULL;
3407 struct btrfs_path *path = NULL;
3408 bool ignore_offset;
3409
3410 if (!capable(CAP_SYS_ADMIN))
3411 return -EPERM;
3412
3413 loi = memdup_user(arg, sizeof(*loi));
3414 if (IS_ERR(loi))
3415 return PTR_ERR(loi);
3416
3417 if (version == 1) {
3418 ignore_offset = false;
3419 size = min_t(u32, loi->size, SZ_64K);
3420 } else {
3421 /* All reserved bits must be 0 for now */
3422 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
3423 ret = -EINVAL;
3424 goto out_loi;
3425 }
3426 /* Only accept flags we have defined so far */
3427 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
3428 ret = -EINVAL;
3429 goto out_loi;
3430 }
3431 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
3432 size = min_t(u32, loi->size, SZ_16M);
3433 }
3434
3435 inodes = init_data_container(size);
3436 if (IS_ERR(inodes)) {
3437 ret = PTR_ERR(inodes);
3438 goto out_loi;
3439 }
3440
3441 path = btrfs_alloc_path();
3442 if (!path) {
3443 ret = -ENOMEM;
3444 goto out;
3445 }
3446 ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
3447 inodes, ignore_offset);
3448 btrfs_free_path(path);
3449 if (ret == -EINVAL)
3450 ret = -ENOENT;
3451 if (ret < 0)
3452 goto out;
3453
3454 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
3455 size);
3456 if (ret)
3457 ret = -EFAULT;
3458
3459out:
3460 kvfree(inodes);
3461out_loi:
3462 kfree(loi);
3463
3464 return ret;
3465}
3466
3467void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3468 struct btrfs_ioctl_balance_args *bargs)
3469{
3470 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3471
3472 bargs->flags = bctl->flags;
3473
3474 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
3475 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3476 if (atomic_read(&fs_info->balance_pause_req))
3477 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3478 if (atomic_read(&fs_info->balance_cancel_req))
3479 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3480
3481 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3482 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3483 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3484
3485 spin_lock(&fs_info->balance_lock);
3486 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3487 spin_unlock(&fs_info->balance_lock);
3488}
3489
3490/*
3491 * Try to acquire fs_info::balance_mutex as well as set BTRFS_EXLCOP_BALANCE as
3492 * required.
3493 *
3494 * @fs_info: the filesystem
3495 * @excl_acquired: ptr to boolean value which is set to false in case balance
3496 * is being resumed
3497 *
3498 * Return 0 on success in which case both fs_info::balance is acquired as well
3499 * as exclusive ops are blocked. In case of failure return an error code.
3500 */
3501static int btrfs_try_lock_balance(struct btrfs_fs_info *fs_info, bool *excl_acquired)
3502{
3503 int ret;
3504
3505 /*
3506 * Exclusive operation is locked. Three possibilities:
3507 * (1) some other op is running
3508 * (2) balance is running
3509 * (3) balance is paused -- special case (think resume)
3510 */
3511 while (1) {
3512 if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
3513 *excl_acquired = true;
3514 mutex_lock(&fs_info->balance_mutex);
3515 return 0;
3516 }
3517
3518 mutex_lock(&fs_info->balance_mutex);
3519 if (fs_info->balance_ctl) {
3520 /* This is either (2) or (3) */
3521 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3522 /* This is (2) */
3523 ret = -EINPROGRESS;
3524 goto out_failure;
3525
3526 } else {
3527 mutex_unlock(&fs_info->balance_mutex);
3528 /*
3529 * Lock released to allow other waiters to
3530 * continue, we'll reexamine the status again.
3531 */
3532 mutex_lock(&fs_info->balance_mutex);
3533
3534 if (fs_info->balance_ctl &&
3535 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3536 /* This is (3) */
3537 *excl_acquired = false;
3538 return 0;
3539 }
3540 }
3541 } else {
3542 /* This is (1) */
3543 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3544 goto out_failure;
3545 }
3546
3547 mutex_unlock(&fs_info->balance_mutex);
3548 }
3549
3550out_failure:
3551 mutex_unlock(&fs_info->balance_mutex);
3552 *excl_acquired = false;
3553 return ret;
3554}
3555
3556static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3557{
3558 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3559 struct btrfs_fs_info *fs_info = root->fs_info;
3560 struct btrfs_ioctl_balance_args *bargs;
3561 struct btrfs_balance_control *bctl;
3562 bool need_unlock = true;
3563 int ret;
3564
3565 if (!capable(CAP_SYS_ADMIN))
3566 return -EPERM;
3567
3568 ret = mnt_want_write_file(file);
3569 if (ret)
3570 return ret;
3571
3572 bargs = memdup_user(arg, sizeof(*bargs));
3573 if (IS_ERR(bargs)) {
3574 ret = PTR_ERR(bargs);
3575 bargs = NULL;
3576 goto out;
3577 }
3578
3579 ret = btrfs_try_lock_balance(fs_info, &need_unlock);
3580 if (ret)
3581 goto out;
3582
3583 lockdep_assert_held(&fs_info->balance_mutex);
3584
3585 if (bargs->flags & BTRFS_BALANCE_RESUME) {
3586 if (!fs_info->balance_ctl) {
3587 ret = -ENOTCONN;
3588 goto out_unlock;
3589 }
3590
3591 bctl = fs_info->balance_ctl;
3592 spin_lock(&fs_info->balance_lock);
3593 bctl->flags |= BTRFS_BALANCE_RESUME;
3594 spin_unlock(&fs_info->balance_lock);
3595 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE);
3596
3597 goto do_balance;
3598 }
3599
3600 if (bargs->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
3601 ret = -EINVAL;
3602 goto out_unlock;
3603 }
3604
3605 if (fs_info->balance_ctl) {
3606 ret = -EINPROGRESS;
3607 goto out_unlock;
3608 }
3609
3610 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
3611 if (!bctl) {
3612 ret = -ENOMEM;
3613 goto out_unlock;
3614 }
3615
3616 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
3617 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
3618 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
3619
3620 bctl->flags = bargs->flags;
3621do_balance:
3622 /*
3623 * Ownership of bctl and exclusive operation goes to btrfs_balance.
3624 * bctl is freed in reset_balance_state, or, if restriper was paused
3625 * all the way until unmount, in free_fs_info. The flag should be
3626 * cleared after reset_balance_state.
3627 */
3628 need_unlock = false;
3629
3630 ret = btrfs_balance(fs_info, bctl, bargs);
3631 bctl = NULL;
3632
3633 if (ret == 0 || ret == -ECANCELED) {
3634 if (copy_to_user(arg, bargs, sizeof(*bargs)))
3635 ret = -EFAULT;
3636 }
3637
3638 kfree(bctl);
3639out_unlock:
3640 mutex_unlock(&fs_info->balance_mutex);
3641 if (need_unlock)
3642 btrfs_exclop_finish(fs_info);
3643out:
3644 mnt_drop_write_file(file);
3645 kfree(bargs);
3646 return ret;
3647}
3648
3649static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
3650{
3651 if (!capable(CAP_SYS_ADMIN))
3652 return -EPERM;
3653
3654 switch (cmd) {
3655 case BTRFS_BALANCE_CTL_PAUSE:
3656 return btrfs_pause_balance(fs_info);
3657 case BTRFS_BALANCE_CTL_CANCEL:
3658 return btrfs_cancel_balance(fs_info);
3659 }
3660
3661 return -EINVAL;
3662}
3663
3664static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
3665 void __user *arg)
3666{
3667 struct btrfs_ioctl_balance_args *bargs;
3668 int ret = 0;
3669
3670 if (!capable(CAP_SYS_ADMIN))
3671 return -EPERM;
3672
3673 mutex_lock(&fs_info->balance_mutex);
3674 if (!fs_info->balance_ctl) {
3675 ret = -ENOTCONN;
3676 goto out;
3677 }
3678
3679 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
3680 if (!bargs) {
3681 ret = -ENOMEM;
3682 goto out;
3683 }
3684
3685 btrfs_update_ioctl_balance_args(fs_info, bargs);
3686
3687 if (copy_to_user(arg, bargs, sizeof(*bargs)))
3688 ret = -EFAULT;
3689
3690 kfree(bargs);
3691out:
3692 mutex_unlock(&fs_info->balance_mutex);
3693 return ret;
3694}
3695
3696static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
3697{
3698 struct inode *inode = file_inode(file);
3699 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3700 struct btrfs_ioctl_quota_ctl_args *sa;
3701 int ret;
3702
3703 if (!capable(CAP_SYS_ADMIN))
3704 return -EPERM;
3705
3706 ret = mnt_want_write_file(file);
3707 if (ret)
3708 return ret;
3709
3710 sa = memdup_user(arg, sizeof(*sa));
3711 if (IS_ERR(sa)) {
3712 ret = PTR_ERR(sa);
3713 goto drop_write;
3714 }
3715
3716 down_write(&fs_info->subvol_sem);
3717
3718 switch (sa->cmd) {
3719 case BTRFS_QUOTA_CTL_ENABLE:
3720 case BTRFS_QUOTA_CTL_ENABLE_SIMPLE_QUOTA:
3721 ret = btrfs_quota_enable(fs_info, sa);
3722 break;
3723 case BTRFS_QUOTA_CTL_DISABLE:
3724 ret = btrfs_quota_disable(fs_info);
3725 break;
3726 default:
3727 ret = -EINVAL;
3728 break;
3729 }
3730
3731 kfree(sa);
3732 up_write(&fs_info->subvol_sem);
3733drop_write:
3734 mnt_drop_write_file(file);
3735 return ret;
3736}
3737
3738static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
3739{
3740 struct inode *inode = file_inode(file);
3741 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3742 struct btrfs_root *root = BTRFS_I(inode)->root;
3743 struct btrfs_ioctl_qgroup_assign_args *sa;
3744 struct btrfs_trans_handle *trans;
3745 int ret;
3746 int err;
3747
3748 if (!capable(CAP_SYS_ADMIN))
3749 return -EPERM;
3750
3751 ret = mnt_want_write_file(file);
3752 if (ret)
3753 return ret;
3754
3755 sa = memdup_user(arg, sizeof(*sa));
3756 if (IS_ERR(sa)) {
3757 ret = PTR_ERR(sa);
3758 goto drop_write;
3759 }
3760
3761 trans = btrfs_join_transaction(root);
3762 if (IS_ERR(trans)) {
3763 ret = PTR_ERR(trans);
3764 goto out;
3765 }
3766
3767 if (sa->assign) {
3768 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
3769 } else {
3770 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
3771 }
3772
3773 /* update qgroup status and info */
3774 mutex_lock(&fs_info->qgroup_ioctl_lock);
3775 err = btrfs_run_qgroups(trans);
3776 mutex_unlock(&fs_info->qgroup_ioctl_lock);
3777 if (err < 0)
3778 btrfs_handle_fs_error(fs_info, err,
3779 "failed to update qgroup status and info");
3780 err = btrfs_end_transaction(trans);
3781 if (err && !ret)
3782 ret = err;
3783
3784out:
3785 kfree(sa);
3786drop_write:
3787 mnt_drop_write_file(file);
3788 return ret;
3789}
3790
3791static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
3792{
3793 struct inode *inode = file_inode(file);
3794 struct btrfs_root *root = BTRFS_I(inode)->root;
3795 struct btrfs_ioctl_qgroup_create_args *sa;
3796 struct btrfs_trans_handle *trans;
3797 int ret;
3798 int err;
3799
3800 if (!capable(CAP_SYS_ADMIN))
3801 return -EPERM;
3802
3803 ret = mnt_want_write_file(file);
3804 if (ret)
3805 return ret;
3806
3807 sa = memdup_user(arg, sizeof(*sa));
3808 if (IS_ERR(sa)) {
3809 ret = PTR_ERR(sa);
3810 goto drop_write;
3811 }
3812
3813 if (!sa->qgroupid) {
3814 ret = -EINVAL;
3815 goto out;
3816 }
3817
3818 if (sa->create && is_fstree(sa->qgroupid)) {
3819 ret = -EINVAL;
3820 goto out;
3821 }
3822
3823 trans = btrfs_join_transaction(root);
3824 if (IS_ERR(trans)) {
3825 ret = PTR_ERR(trans);
3826 goto out;
3827 }
3828
3829 if (sa->create) {
3830 ret = btrfs_create_qgroup(trans, sa->qgroupid);
3831 } else {
3832 ret = btrfs_remove_qgroup(trans, sa->qgroupid);
3833 }
3834
3835 err = btrfs_end_transaction(trans);
3836 if (err && !ret)
3837 ret = err;
3838
3839out:
3840 kfree(sa);
3841drop_write:
3842 mnt_drop_write_file(file);
3843 return ret;
3844}
3845
3846static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
3847{
3848 struct inode *inode = file_inode(file);
3849 struct btrfs_root *root = BTRFS_I(inode)->root;
3850 struct btrfs_ioctl_qgroup_limit_args *sa;
3851 struct btrfs_trans_handle *trans;
3852 int ret;
3853 int err;
3854 u64 qgroupid;
3855
3856 if (!capable(CAP_SYS_ADMIN))
3857 return -EPERM;
3858
3859 ret = mnt_want_write_file(file);
3860 if (ret)
3861 return ret;
3862
3863 sa = memdup_user(arg, sizeof(*sa));
3864 if (IS_ERR(sa)) {
3865 ret = PTR_ERR(sa);
3866 goto drop_write;
3867 }
3868
3869 trans = btrfs_join_transaction(root);
3870 if (IS_ERR(trans)) {
3871 ret = PTR_ERR(trans);
3872 goto out;
3873 }
3874
3875 qgroupid = sa->qgroupid;
3876 if (!qgroupid) {
3877 /* take the current subvol as qgroup */
3878 qgroupid = root->root_key.objectid;
3879 }
3880
3881 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
3882
3883 err = btrfs_end_transaction(trans);
3884 if (err && !ret)
3885 ret = err;
3886
3887out:
3888 kfree(sa);
3889drop_write:
3890 mnt_drop_write_file(file);
3891 return ret;
3892}
3893
3894static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
3895{
3896 struct inode *inode = file_inode(file);
3897 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3898 struct btrfs_ioctl_quota_rescan_args *qsa;
3899 int ret;
3900
3901 if (!capable(CAP_SYS_ADMIN))
3902 return -EPERM;
3903
3904 ret = mnt_want_write_file(file);
3905 if (ret)
3906 return ret;
3907
3908 qsa = memdup_user(arg, sizeof(*qsa));
3909 if (IS_ERR(qsa)) {
3910 ret = PTR_ERR(qsa);
3911 goto drop_write;
3912 }
3913
3914 if (qsa->flags) {
3915 ret = -EINVAL;
3916 goto out;
3917 }
3918
3919 ret = btrfs_qgroup_rescan(fs_info);
3920
3921out:
3922 kfree(qsa);
3923drop_write:
3924 mnt_drop_write_file(file);
3925 return ret;
3926}
3927
3928static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
3929 void __user *arg)
3930{
3931 struct btrfs_ioctl_quota_rescan_args qsa = {0};
3932
3933 if (!capable(CAP_SYS_ADMIN))
3934 return -EPERM;
3935
3936 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
3937 qsa.flags = 1;
3938 qsa.progress = fs_info->qgroup_rescan_progress.objectid;
3939 }
3940
3941 if (copy_to_user(arg, &qsa, sizeof(qsa)))
3942 return -EFAULT;
3943
3944 return 0;
3945}
3946
3947static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
3948 void __user *arg)
3949{
3950 if (!capable(CAP_SYS_ADMIN))
3951 return -EPERM;
3952
3953 return btrfs_qgroup_wait_for_completion(fs_info, true);
3954}
3955
3956static long _btrfs_ioctl_set_received_subvol(struct file *file,
3957 struct mnt_idmap *idmap,
3958 struct btrfs_ioctl_received_subvol_args *sa)
3959{
3960 struct inode *inode = file_inode(file);
3961 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3962 struct btrfs_root *root = BTRFS_I(inode)->root;
3963 struct btrfs_root_item *root_item = &root->root_item;
3964 struct btrfs_trans_handle *trans;
3965 struct timespec64 ct = current_time(inode);
3966 int ret = 0;
3967 int received_uuid_changed;
3968
3969 if (!inode_owner_or_capable(idmap, inode))
3970 return -EPERM;
3971
3972 ret = mnt_want_write_file(file);
3973 if (ret < 0)
3974 return ret;
3975
3976 down_write(&fs_info->subvol_sem);
3977
3978 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
3979 ret = -EINVAL;
3980 goto out;
3981 }
3982
3983 if (btrfs_root_readonly(root)) {
3984 ret = -EROFS;
3985 goto out;
3986 }
3987
3988 /*
3989 * 1 - root item
3990 * 2 - uuid items (received uuid + subvol uuid)
3991 */
3992 trans = btrfs_start_transaction(root, 3);
3993 if (IS_ERR(trans)) {
3994 ret = PTR_ERR(trans);
3995 trans = NULL;
3996 goto out;
3997 }
3998
3999 sa->rtransid = trans->transid;
4000 sa->rtime.sec = ct.tv_sec;
4001 sa->rtime.nsec = ct.tv_nsec;
4002
4003 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4004 BTRFS_UUID_SIZE);
4005 if (received_uuid_changed &&
4006 !btrfs_is_empty_uuid(root_item->received_uuid)) {
4007 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
4008 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4009 root->root_key.objectid);
4010 if (ret && ret != -ENOENT) {
4011 btrfs_abort_transaction(trans, ret);
4012 btrfs_end_transaction(trans);
4013 goto out;
4014 }
4015 }
4016 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4017 btrfs_set_root_stransid(root_item, sa->stransid);
4018 btrfs_set_root_rtransid(root_item, sa->rtransid);
4019 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4020 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4021 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4022 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4023
4024 ret = btrfs_update_root(trans, fs_info->tree_root,
4025 &root->root_key, &root->root_item);
4026 if (ret < 0) {
4027 btrfs_end_transaction(trans);
4028 goto out;
4029 }
4030 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4031 ret = btrfs_uuid_tree_add(trans, sa->uuid,
4032 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4033 root->root_key.objectid);
4034 if (ret < 0 && ret != -EEXIST) {
4035 btrfs_abort_transaction(trans, ret);
4036 btrfs_end_transaction(trans);
4037 goto out;
4038 }
4039 }
4040 ret = btrfs_commit_transaction(trans);
4041out:
4042 up_write(&fs_info->subvol_sem);
4043 mnt_drop_write_file(file);
4044 return ret;
4045}
4046
4047#ifdef CONFIG_64BIT
4048static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4049 void __user *arg)
4050{
4051 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4052 struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4053 int ret = 0;
4054
4055 args32 = memdup_user(arg, sizeof(*args32));
4056 if (IS_ERR(args32))
4057 return PTR_ERR(args32);
4058
4059 args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4060 if (!args64) {
4061 ret = -ENOMEM;
4062 goto out;
4063 }
4064
4065 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4066 args64->stransid = args32->stransid;
4067 args64->rtransid = args32->rtransid;
4068 args64->stime.sec = args32->stime.sec;
4069 args64->stime.nsec = args32->stime.nsec;
4070 args64->rtime.sec = args32->rtime.sec;
4071 args64->rtime.nsec = args32->rtime.nsec;
4072 args64->flags = args32->flags;
4073
4074 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), args64);
4075 if (ret)
4076 goto out;
4077
4078 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4079 args32->stransid = args64->stransid;
4080 args32->rtransid = args64->rtransid;
4081 args32->stime.sec = args64->stime.sec;
4082 args32->stime.nsec = args64->stime.nsec;
4083 args32->rtime.sec = args64->rtime.sec;
4084 args32->rtime.nsec = args64->rtime.nsec;
4085 args32->flags = args64->flags;
4086
4087 ret = copy_to_user(arg, args32, sizeof(*args32));
4088 if (ret)
4089 ret = -EFAULT;
4090
4091out:
4092 kfree(args32);
4093 kfree(args64);
4094 return ret;
4095}
4096#endif
4097
4098static long btrfs_ioctl_set_received_subvol(struct file *file,
4099 void __user *arg)
4100{
4101 struct btrfs_ioctl_received_subvol_args *sa = NULL;
4102 int ret = 0;
4103
4104 sa = memdup_user(arg, sizeof(*sa));
4105 if (IS_ERR(sa))
4106 return PTR_ERR(sa);
4107
4108 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), sa);
4109
4110 if (ret)
4111 goto out;
4112
4113 ret = copy_to_user(arg, sa, sizeof(*sa));
4114 if (ret)
4115 ret = -EFAULT;
4116
4117out:
4118 kfree(sa);
4119 return ret;
4120}
4121
4122static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4123 void __user *arg)
4124{
4125 size_t len;
4126 int ret;
4127 char label[BTRFS_LABEL_SIZE];
4128
4129 spin_lock(&fs_info->super_lock);
4130 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4131 spin_unlock(&fs_info->super_lock);
4132
4133 len = strnlen(label, BTRFS_LABEL_SIZE);
4134
4135 if (len == BTRFS_LABEL_SIZE) {
4136 btrfs_warn(fs_info,
4137 "label is too long, return the first %zu bytes",
4138 --len);
4139 }
4140
4141 ret = copy_to_user(arg, label, len);
4142
4143 return ret ? -EFAULT : 0;
4144}
4145
4146static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4147{
4148 struct inode *inode = file_inode(file);
4149 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4150 struct btrfs_root *root = BTRFS_I(inode)->root;
4151 struct btrfs_super_block *super_block = fs_info->super_copy;
4152 struct btrfs_trans_handle *trans;
4153 char label[BTRFS_LABEL_SIZE];
4154 int ret;
4155
4156 if (!capable(CAP_SYS_ADMIN))
4157 return -EPERM;
4158
4159 if (copy_from_user(label, arg, sizeof(label)))
4160 return -EFAULT;
4161
4162 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4163 btrfs_err(fs_info,
4164 "unable to set label with more than %d bytes",
4165 BTRFS_LABEL_SIZE - 1);
4166 return -EINVAL;
4167 }
4168
4169 ret = mnt_want_write_file(file);
4170 if (ret)
4171 return ret;
4172
4173 trans = btrfs_start_transaction(root, 0);
4174 if (IS_ERR(trans)) {
4175 ret = PTR_ERR(trans);
4176 goto out_unlock;
4177 }
4178
4179 spin_lock(&fs_info->super_lock);
4180 strcpy(super_block->label, label);
4181 spin_unlock(&fs_info->super_lock);
4182 ret = btrfs_commit_transaction(trans);
4183
4184out_unlock:
4185 mnt_drop_write_file(file);
4186 return ret;
4187}
4188
4189#define INIT_FEATURE_FLAGS(suffix) \
4190 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4191 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4192 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4193
4194int btrfs_ioctl_get_supported_features(void __user *arg)
4195{
4196 static const struct btrfs_ioctl_feature_flags features[3] = {
4197 INIT_FEATURE_FLAGS(SUPP),
4198 INIT_FEATURE_FLAGS(SAFE_SET),
4199 INIT_FEATURE_FLAGS(SAFE_CLEAR)
4200 };
4201
4202 if (copy_to_user(arg, &features, sizeof(features)))
4203 return -EFAULT;
4204
4205 return 0;
4206}
4207
4208static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4209 void __user *arg)
4210{
4211 struct btrfs_super_block *super_block = fs_info->super_copy;
4212 struct btrfs_ioctl_feature_flags features;
4213
4214 features.compat_flags = btrfs_super_compat_flags(super_block);
4215 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4216 features.incompat_flags = btrfs_super_incompat_flags(super_block);
4217
4218 if (copy_to_user(arg, &features, sizeof(features)))
4219 return -EFAULT;
4220
4221 return 0;
4222}
4223
4224static int check_feature_bits(struct btrfs_fs_info *fs_info,
4225 enum btrfs_feature_set set,
4226 u64 change_mask, u64 flags, u64 supported_flags,
4227 u64 safe_set, u64 safe_clear)
4228{
4229 const char *type = btrfs_feature_set_name(set);
4230 char *names;
4231 u64 disallowed, unsupported;
4232 u64 set_mask = flags & change_mask;
4233 u64 clear_mask = ~flags & change_mask;
4234
4235 unsupported = set_mask & ~supported_flags;
4236 if (unsupported) {
4237 names = btrfs_printable_features(set, unsupported);
4238 if (names) {
4239 btrfs_warn(fs_info,
4240 "this kernel does not support the %s feature bit%s",
4241 names, strchr(names, ',') ? "s" : "");
4242 kfree(names);
4243 } else
4244 btrfs_warn(fs_info,
4245 "this kernel does not support %s bits 0x%llx",
4246 type, unsupported);
4247 return -EOPNOTSUPP;
4248 }
4249
4250 disallowed = set_mask & ~safe_set;
4251 if (disallowed) {
4252 names = btrfs_printable_features(set, disallowed);
4253 if (names) {
4254 btrfs_warn(fs_info,
4255 "can't set the %s feature bit%s while mounted",
4256 names, strchr(names, ',') ? "s" : "");
4257 kfree(names);
4258 } else
4259 btrfs_warn(fs_info,
4260 "can't set %s bits 0x%llx while mounted",
4261 type, disallowed);
4262 return -EPERM;
4263 }
4264
4265 disallowed = clear_mask & ~safe_clear;
4266 if (disallowed) {
4267 names = btrfs_printable_features(set, disallowed);
4268 if (names) {
4269 btrfs_warn(fs_info,
4270 "can't clear the %s feature bit%s while mounted",
4271 names, strchr(names, ',') ? "s" : "");
4272 kfree(names);
4273 } else
4274 btrfs_warn(fs_info,
4275 "can't clear %s bits 0x%llx while mounted",
4276 type, disallowed);
4277 return -EPERM;
4278 }
4279
4280 return 0;
4281}
4282
4283#define check_feature(fs_info, change_mask, flags, mask_base) \
4284check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \
4285 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
4286 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
4287 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4288
4289static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4290{
4291 struct inode *inode = file_inode(file);
4292 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4293 struct btrfs_root *root = BTRFS_I(inode)->root;
4294 struct btrfs_super_block *super_block = fs_info->super_copy;
4295 struct btrfs_ioctl_feature_flags flags[2];
4296 struct btrfs_trans_handle *trans;
4297 u64 newflags;
4298 int ret;
4299
4300 if (!capable(CAP_SYS_ADMIN))
4301 return -EPERM;
4302
4303 if (copy_from_user(flags, arg, sizeof(flags)))
4304 return -EFAULT;
4305
4306 /* Nothing to do */
4307 if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4308 !flags[0].incompat_flags)
4309 return 0;
4310
4311 ret = check_feature(fs_info, flags[0].compat_flags,
4312 flags[1].compat_flags, COMPAT);
4313 if (ret)
4314 return ret;
4315
4316 ret = check_feature(fs_info, flags[0].compat_ro_flags,
4317 flags[1].compat_ro_flags, COMPAT_RO);
4318 if (ret)
4319 return ret;
4320
4321 ret = check_feature(fs_info, flags[0].incompat_flags,
4322 flags[1].incompat_flags, INCOMPAT);
4323 if (ret)
4324 return ret;
4325
4326 ret = mnt_want_write_file(file);
4327 if (ret)
4328 return ret;
4329
4330 trans = btrfs_start_transaction(root, 0);
4331 if (IS_ERR(trans)) {
4332 ret = PTR_ERR(trans);
4333 goto out_drop_write;
4334 }
4335
4336 spin_lock(&fs_info->super_lock);
4337 newflags = btrfs_super_compat_flags(super_block);
4338 newflags |= flags[0].compat_flags & flags[1].compat_flags;
4339 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4340 btrfs_set_super_compat_flags(super_block, newflags);
4341
4342 newflags = btrfs_super_compat_ro_flags(super_block);
4343 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4344 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4345 btrfs_set_super_compat_ro_flags(super_block, newflags);
4346
4347 newflags = btrfs_super_incompat_flags(super_block);
4348 newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4349 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4350 btrfs_set_super_incompat_flags(super_block, newflags);
4351 spin_unlock(&fs_info->super_lock);
4352
4353 ret = btrfs_commit_transaction(trans);
4354out_drop_write:
4355 mnt_drop_write_file(file);
4356
4357 return ret;
4358}
4359
4360static int _btrfs_ioctl_send(struct inode *inode, void __user *argp, bool compat)
4361{
4362 struct btrfs_ioctl_send_args *arg;
4363 int ret;
4364
4365 if (compat) {
4366#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4367 struct btrfs_ioctl_send_args_32 args32 = { 0 };
4368
4369 ret = copy_from_user(&args32, argp, sizeof(args32));
4370 if (ret)
4371 return -EFAULT;
4372 arg = kzalloc(sizeof(*arg), GFP_KERNEL);
4373 if (!arg)
4374 return -ENOMEM;
4375 arg->send_fd = args32.send_fd;
4376 arg->clone_sources_count = args32.clone_sources_count;
4377 arg->clone_sources = compat_ptr(args32.clone_sources);
4378 arg->parent_root = args32.parent_root;
4379 arg->flags = args32.flags;
4380 arg->version = args32.version;
4381 memcpy(arg->reserved, args32.reserved,
4382 sizeof(args32.reserved));
4383#else
4384 return -ENOTTY;
4385#endif
4386 } else {
4387 arg = memdup_user(argp, sizeof(*arg));
4388 if (IS_ERR(arg))
4389 return PTR_ERR(arg);
4390 }
4391 ret = btrfs_ioctl_send(inode, arg);
4392 kfree(arg);
4393 return ret;
4394}
4395
4396static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp,
4397 bool compat)
4398{
4399 struct btrfs_ioctl_encoded_io_args args = { 0 };
4400 size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args,
4401 flags);
4402 size_t copy_end;
4403 struct iovec iovstack[UIO_FASTIOV];
4404 struct iovec *iov = iovstack;
4405 struct iov_iter iter;
4406 loff_t pos;
4407 struct kiocb kiocb;
4408 ssize_t ret;
4409
4410 if (!capable(CAP_SYS_ADMIN)) {
4411 ret = -EPERM;
4412 goto out_acct;
4413 }
4414
4415 if (compat) {
4416#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4417 struct btrfs_ioctl_encoded_io_args_32 args32;
4418
4419 copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32,
4420 flags);
4421 if (copy_from_user(&args32, argp, copy_end)) {
4422 ret = -EFAULT;
4423 goto out_acct;
4424 }
4425 args.iov = compat_ptr(args32.iov);
4426 args.iovcnt = args32.iovcnt;
4427 args.offset = args32.offset;
4428 args.flags = args32.flags;
4429#else
4430 return -ENOTTY;
4431#endif
4432 } else {
4433 copy_end = copy_end_kernel;
4434 if (copy_from_user(&args, argp, copy_end)) {
4435 ret = -EFAULT;
4436 goto out_acct;
4437 }
4438 }
4439 if (args.flags != 0) {
4440 ret = -EINVAL;
4441 goto out_acct;
4442 }
4443
4444 ret = import_iovec(ITER_DEST, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4445 &iov, &iter);
4446 if (ret < 0)
4447 goto out_acct;
4448
4449 if (iov_iter_count(&iter) == 0) {
4450 ret = 0;
4451 goto out_iov;
4452 }
4453 pos = args.offset;
4454 ret = rw_verify_area(READ, file, &pos, args.len);
4455 if (ret < 0)
4456 goto out_iov;
4457
4458 init_sync_kiocb(&kiocb, file);
4459 kiocb.ki_pos = pos;
4460
4461 ret = btrfs_encoded_read(&kiocb, &iter, &args);
4462 if (ret >= 0) {
4463 fsnotify_access(file);
4464 if (copy_to_user(argp + copy_end,
4465 (char *)&args + copy_end_kernel,
4466 sizeof(args) - copy_end_kernel))
4467 ret = -EFAULT;
4468 }
4469
4470out_iov:
4471 kfree(iov);
4472out_acct:
4473 if (ret > 0)
4474 add_rchar(current, ret);
4475 inc_syscr(current);
4476 return ret;
4477}
4478
4479static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat)
4480{
4481 struct btrfs_ioctl_encoded_io_args args;
4482 struct iovec iovstack[UIO_FASTIOV];
4483 struct iovec *iov = iovstack;
4484 struct iov_iter iter;
4485 loff_t pos;
4486 struct kiocb kiocb;
4487 ssize_t ret;
4488
4489 if (!capable(CAP_SYS_ADMIN)) {
4490 ret = -EPERM;
4491 goto out_acct;
4492 }
4493
4494 if (!(file->f_mode & FMODE_WRITE)) {
4495 ret = -EBADF;
4496 goto out_acct;
4497 }
4498
4499 if (compat) {
4500#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4501 struct btrfs_ioctl_encoded_io_args_32 args32;
4502
4503 if (copy_from_user(&args32, argp, sizeof(args32))) {
4504 ret = -EFAULT;
4505 goto out_acct;
4506 }
4507 args.iov = compat_ptr(args32.iov);
4508 args.iovcnt = args32.iovcnt;
4509 args.offset = args32.offset;
4510 args.flags = args32.flags;
4511 args.len = args32.len;
4512 args.unencoded_len = args32.unencoded_len;
4513 args.unencoded_offset = args32.unencoded_offset;
4514 args.compression = args32.compression;
4515 args.encryption = args32.encryption;
4516 memcpy(args.reserved, args32.reserved, sizeof(args.reserved));
4517#else
4518 return -ENOTTY;
4519#endif
4520 } else {
4521 if (copy_from_user(&args, argp, sizeof(args))) {
4522 ret = -EFAULT;
4523 goto out_acct;
4524 }
4525 }
4526
4527 ret = -EINVAL;
4528 if (args.flags != 0)
4529 goto out_acct;
4530 if (memchr_inv(args.reserved, 0, sizeof(args.reserved)))
4531 goto out_acct;
4532 if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE &&
4533 args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE)
4534 goto out_acct;
4535 if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES ||
4536 args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES)
4537 goto out_acct;
4538 if (args.unencoded_offset > args.unencoded_len)
4539 goto out_acct;
4540 if (args.len > args.unencoded_len - args.unencoded_offset)
4541 goto out_acct;
4542
4543 ret = import_iovec(ITER_SOURCE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4544 &iov, &iter);
4545 if (ret < 0)
4546 goto out_acct;
4547
4548 if (iov_iter_count(&iter) == 0) {
4549 ret = 0;
4550 goto out_iov;
4551 }
4552 pos = args.offset;
4553 ret = rw_verify_area(WRITE, file, &pos, args.len);
4554 if (ret < 0)
4555 goto out_iov;
4556
4557 init_sync_kiocb(&kiocb, file);
4558 ret = kiocb_set_rw_flags(&kiocb, 0);
4559 if (ret)
4560 goto out_iov;
4561 kiocb.ki_pos = pos;
4562
4563 file_start_write(file);
4564
4565 ret = btrfs_do_write_iter(&kiocb, &iter, &args);
4566 if (ret > 0)
4567 fsnotify_modify(file);
4568
4569 file_end_write(file);
4570out_iov:
4571 kfree(iov);
4572out_acct:
4573 if (ret > 0)
4574 add_wchar(current, ret);
4575 inc_syscw(current);
4576 return ret;
4577}
4578
4579long btrfs_ioctl(struct file *file, unsigned int
4580 cmd, unsigned long arg)
4581{
4582 struct inode *inode = file_inode(file);
4583 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4584 struct btrfs_root *root = BTRFS_I(inode)->root;
4585 void __user *argp = (void __user *)arg;
4586
4587 switch (cmd) {
4588 case FS_IOC_GETVERSION:
4589 return btrfs_ioctl_getversion(inode, argp);
4590 case FS_IOC_GETFSLABEL:
4591 return btrfs_ioctl_get_fslabel(fs_info, argp);
4592 case FS_IOC_SETFSLABEL:
4593 return btrfs_ioctl_set_fslabel(file, argp);
4594 case FITRIM:
4595 return btrfs_ioctl_fitrim(fs_info, argp);
4596 case BTRFS_IOC_SNAP_CREATE:
4597 return btrfs_ioctl_snap_create(file, argp, 0);
4598 case BTRFS_IOC_SNAP_CREATE_V2:
4599 return btrfs_ioctl_snap_create_v2(file, argp, 0);
4600 case BTRFS_IOC_SUBVOL_CREATE:
4601 return btrfs_ioctl_snap_create(file, argp, 1);
4602 case BTRFS_IOC_SUBVOL_CREATE_V2:
4603 return btrfs_ioctl_snap_create_v2(file, argp, 1);
4604 case BTRFS_IOC_SNAP_DESTROY:
4605 return btrfs_ioctl_snap_destroy(file, argp, false);
4606 case BTRFS_IOC_SNAP_DESTROY_V2:
4607 return btrfs_ioctl_snap_destroy(file, argp, true);
4608 case BTRFS_IOC_SUBVOL_GETFLAGS:
4609 return btrfs_ioctl_subvol_getflags(inode, argp);
4610 case BTRFS_IOC_SUBVOL_SETFLAGS:
4611 return btrfs_ioctl_subvol_setflags(file, argp);
4612 case BTRFS_IOC_DEFAULT_SUBVOL:
4613 return btrfs_ioctl_default_subvol(file, argp);
4614 case BTRFS_IOC_DEFRAG:
4615 return btrfs_ioctl_defrag(file, NULL);
4616 case BTRFS_IOC_DEFRAG_RANGE:
4617 return btrfs_ioctl_defrag(file, argp);
4618 case BTRFS_IOC_RESIZE:
4619 return btrfs_ioctl_resize(file, argp);
4620 case BTRFS_IOC_ADD_DEV:
4621 return btrfs_ioctl_add_dev(fs_info, argp);
4622 case BTRFS_IOC_RM_DEV:
4623 return btrfs_ioctl_rm_dev(file, argp);
4624 case BTRFS_IOC_RM_DEV_V2:
4625 return btrfs_ioctl_rm_dev_v2(file, argp);
4626 case BTRFS_IOC_FS_INFO:
4627 return btrfs_ioctl_fs_info(fs_info, argp);
4628 case BTRFS_IOC_DEV_INFO:
4629 return btrfs_ioctl_dev_info(fs_info, argp);
4630 case BTRFS_IOC_TREE_SEARCH:
4631 return btrfs_ioctl_tree_search(inode, argp);
4632 case BTRFS_IOC_TREE_SEARCH_V2:
4633 return btrfs_ioctl_tree_search_v2(inode, argp);
4634 case BTRFS_IOC_INO_LOOKUP:
4635 return btrfs_ioctl_ino_lookup(root, argp);
4636 case BTRFS_IOC_INO_PATHS:
4637 return btrfs_ioctl_ino_to_path(root, argp);
4638 case BTRFS_IOC_LOGICAL_INO:
4639 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
4640 case BTRFS_IOC_LOGICAL_INO_V2:
4641 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
4642 case BTRFS_IOC_SPACE_INFO:
4643 return btrfs_ioctl_space_info(fs_info, argp);
4644 case BTRFS_IOC_SYNC: {
4645 int ret;
4646
4647 ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false);
4648 if (ret)
4649 return ret;
4650 ret = btrfs_sync_fs(inode->i_sb, 1);
4651 /*
4652 * The transaction thread may want to do more work,
4653 * namely it pokes the cleaner kthread that will start
4654 * processing uncleaned subvols.
4655 */
4656 wake_up_process(fs_info->transaction_kthread);
4657 return ret;
4658 }
4659 case BTRFS_IOC_START_SYNC:
4660 return btrfs_ioctl_start_sync(root, argp);
4661 case BTRFS_IOC_WAIT_SYNC:
4662 return btrfs_ioctl_wait_sync(fs_info, argp);
4663 case BTRFS_IOC_SCRUB:
4664 return btrfs_ioctl_scrub(file, argp);
4665 case BTRFS_IOC_SCRUB_CANCEL:
4666 return btrfs_ioctl_scrub_cancel(fs_info);
4667 case BTRFS_IOC_SCRUB_PROGRESS:
4668 return btrfs_ioctl_scrub_progress(fs_info, argp);
4669 case BTRFS_IOC_BALANCE_V2:
4670 return btrfs_ioctl_balance(file, argp);
4671 case BTRFS_IOC_BALANCE_CTL:
4672 return btrfs_ioctl_balance_ctl(fs_info, arg);
4673 case BTRFS_IOC_BALANCE_PROGRESS:
4674 return btrfs_ioctl_balance_progress(fs_info, argp);
4675 case BTRFS_IOC_SET_RECEIVED_SUBVOL:
4676 return btrfs_ioctl_set_received_subvol(file, argp);
4677#ifdef CONFIG_64BIT
4678 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
4679 return btrfs_ioctl_set_received_subvol_32(file, argp);
4680#endif
4681 case BTRFS_IOC_SEND:
4682 return _btrfs_ioctl_send(inode, argp, false);
4683#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4684 case BTRFS_IOC_SEND_32:
4685 return _btrfs_ioctl_send(inode, argp, true);
4686#endif
4687 case BTRFS_IOC_GET_DEV_STATS:
4688 return btrfs_ioctl_get_dev_stats(fs_info, argp);
4689 case BTRFS_IOC_QUOTA_CTL:
4690 return btrfs_ioctl_quota_ctl(file, argp);
4691 case BTRFS_IOC_QGROUP_ASSIGN:
4692 return btrfs_ioctl_qgroup_assign(file, argp);
4693 case BTRFS_IOC_QGROUP_CREATE:
4694 return btrfs_ioctl_qgroup_create(file, argp);
4695 case BTRFS_IOC_QGROUP_LIMIT:
4696 return btrfs_ioctl_qgroup_limit(file, argp);
4697 case BTRFS_IOC_QUOTA_RESCAN:
4698 return btrfs_ioctl_quota_rescan(file, argp);
4699 case BTRFS_IOC_QUOTA_RESCAN_STATUS:
4700 return btrfs_ioctl_quota_rescan_status(fs_info, argp);
4701 case BTRFS_IOC_QUOTA_RESCAN_WAIT:
4702 return btrfs_ioctl_quota_rescan_wait(fs_info, argp);
4703 case BTRFS_IOC_DEV_REPLACE:
4704 return btrfs_ioctl_dev_replace(fs_info, argp);
4705 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
4706 return btrfs_ioctl_get_supported_features(argp);
4707 case BTRFS_IOC_GET_FEATURES:
4708 return btrfs_ioctl_get_features(fs_info, argp);
4709 case BTRFS_IOC_SET_FEATURES:
4710 return btrfs_ioctl_set_features(file, argp);
4711 case BTRFS_IOC_GET_SUBVOL_INFO:
4712 return btrfs_ioctl_get_subvol_info(inode, argp);
4713 case BTRFS_IOC_GET_SUBVOL_ROOTREF:
4714 return btrfs_ioctl_get_subvol_rootref(root, argp);
4715 case BTRFS_IOC_INO_LOOKUP_USER:
4716 return btrfs_ioctl_ino_lookup_user(file, argp);
4717 case FS_IOC_ENABLE_VERITY:
4718 return fsverity_ioctl_enable(file, (const void __user *)argp);
4719 case FS_IOC_MEASURE_VERITY:
4720 return fsverity_ioctl_measure(file, argp);
4721 case BTRFS_IOC_ENCODED_READ:
4722 return btrfs_ioctl_encoded_read(file, argp, false);
4723 case BTRFS_IOC_ENCODED_WRITE:
4724 return btrfs_ioctl_encoded_write(file, argp, false);
4725#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4726 case BTRFS_IOC_ENCODED_READ_32:
4727 return btrfs_ioctl_encoded_read(file, argp, true);
4728 case BTRFS_IOC_ENCODED_WRITE_32:
4729 return btrfs_ioctl_encoded_write(file, argp, true);
4730#endif
4731 }
4732
4733 return -ENOTTY;
4734}
4735
4736#ifdef CONFIG_COMPAT
4737long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4738{
4739 /*
4740 * These all access 32-bit values anyway so no further
4741 * handling is necessary.
4742 */
4743 switch (cmd) {
4744 case FS_IOC32_GETVERSION:
4745 cmd = FS_IOC_GETVERSION;
4746 break;
4747 }
4748
4749 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
4750}
4751#endif
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/kernel.h>
20#include <linux/bio.h>
21#include <linux/buffer_head.h>
22#include <linux/file.h>
23#include <linux/fs.h>
24#include <linux/fsnotify.h>
25#include <linux/pagemap.h>
26#include <linux/highmem.h>
27#include <linux/time.h>
28#include <linux/init.h>
29#include <linux/string.h>
30#include <linux/backing-dev.h>
31#include <linux/mount.h>
32#include <linux/mpage.h>
33#include <linux/namei.h>
34#include <linux/swap.h>
35#include <linux/writeback.h>
36#include <linux/statfs.h>
37#include <linux/compat.h>
38#include <linux/bit_spinlock.h>
39#include <linux/security.h>
40#include <linux/xattr.h>
41#include <linux/vmalloc.h>
42#include <linux/slab.h>
43#include <linux/blkdev.h>
44#include <linux/uuid.h>
45#include <linux/btrfs.h>
46#include <linux/uaccess.h>
47#include "ctree.h"
48#include "disk-io.h"
49#include "transaction.h"
50#include "btrfs_inode.h"
51#include "print-tree.h"
52#include "volumes.h"
53#include "locking.h"
54#include "inode-map.h"
55#include "backref.h"
56#include "rcu-string.h"
57#include "send.h"
58#include "dev-replace.h"
59#include "props.h"
60#include "sysfs.h"
61#include "qgroup.h"
62#include "tree-log.h"
63#include "compression.h"
64
65#ifdef CONFIG_64BIT
66/* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
67 * structures are incorrect, as the timespec structure from userspace
68 * is 4 bytes too small. We define these alternatives here to teach
69 * the kernel about the 32-bit struct packing.
70 */
71struct btrfs_ioctl_timespec_32 {
72 __u64 sec;
73 __u32 nsec;
74} __attribute__ ((__packed__));
75
76struct btrfs_ioctl_received_subvol_args_32 {
77 char uuid[BTRFS_UUID_SIZE]; /* in */
78 __u64 stransid; /* in */
79 __u64 rtransid; /* out */
80 struct btrfs_ioctl_timespec_32 stime; /* in */
81 struct btrfs_ioctl_timespec_32 rtime; /* out */
82 __u64 flags; /* in */
83 __u64 reserved[16]; /* in */
84} __attribute__ ((__packed__));
85
86#define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
87 struct btrfs_ioctl_received_subvol_args_32)
88#endif
89
90
91static int btrfs_clone(struct inode *src, struct inode *inode,
92 u64 off, u64 olen, u64 olen_aligned, u64 destoff,
93 int no_time_update);
94
95/* Mask out flags that are inappropriate for the given type of inode. */
96static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
97{
98 if (S_ISDIR(mode))
99 return flags;
100 else if (S_ISREG(mode))
101 return flags & ~FS_DIRSYNC_FL;
102 else
103 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
104}
105
106/*
107 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
108 */
109static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
110{
111 unsigned int iflags = 0;
112
113 if (flags & BTRFS_INODE_SYNC)
114 iflags |= FS_SYNC_FL;
115 if (flags & BTRFS_INODE_IMMUTABLE)
116 iflags |= FS_IMMUTABLE_FL;
117 if (flags & BTRFS_INODE_APPEND)
118 iflags |= FS_APPEND_FL;
119 if (flags & BTRFS_INODE_NODUMP)
120 iflags |= FS_NODUMP_FL;
121 if (flags & BTRFS_INODE_NOATIME)
122 iflags |= FS_NOATIME_FL;
123 if (flags & BTRFS_INODE_DIRSYNC)
124 iflags |= FS_DIRSYNC_FL;
125 if (flags & BTRFS_INODE_NODATACOW)
126 iflags |= FS_NOCOW_FL;
127
128 if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS))
129 iflags |= FS_COMPR_FL;
130 else if (flags & BTRFS_INODE_NOCOMPRESS)
131 iflags |= FS_NOCOMP_FL;
132
133 return iflags;
134}
135
136/*
137 * Update inode->i_flags based on the btrfs internal flags.
138 */
139void btrfs_update_iflags(struct inode *inode)
140{
141 struct btrfs_inode *ip = BTRFS_I(inode);
142 unsigned int new_fl = 0;
143
144 if (ip->flags & BTRFS_INODE_SYNC)
145 new_fl |= S_SYNC;
146 if (ip->flags & BTRFS_INODE_IMMUTABLE)
147 new_fl |= S_IMMUTABLE;
148 if (ip->flags & BTRFS_INODE_APPEND)
149 new_fl |= S_APPEND;
150 if (ip->flags & BTRFS_INODE_NOATIME)
151 new_fl |= S_NOATIME;
152 if (ip->flags & BTRFS_INODE_DIRSYNC)
153 new_fl |= S_DIRSYNC;
154
155 set_mask_bits(&inode->i_flags,
156 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
157 new_fl);
158}
159
160/*
161 * Inherit flags from the parent inode.
162 *
163 * Currently only the compression flags and the cow flags are inherited.
164 */
165void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
166{
167 unsigned int flags;
168
169 if (!dir)
170 return;
171
172 flags = BTRFS_I(dir)->flags;
173
174 if (flags & BTRFS_INODE_NOCOMPRESS) {
175 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
176 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
177 } else if (flags & BTRFS_INODE_COMPRESS) {
178 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
179 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
180 }
181
182 if (flags & BTRFS_INODE_NODATACOW) {
183 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
184 if (S_ISREG(inode->i_mode))
185 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
186 }
187
188 btrfs_update_iflags(inode);
189}
190
191static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
192{
193 struct btrfs_inode *ip = BTRFS_I(file_inode(file));
194 unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
195
196 if (copy_to_user(arg, &flags, sizeof(flags)))
197 return -EFAULT;
198 return 0;
199}
200
201static int check_flags(unsigned int flags)
202{
203 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
204 FS_NOATIME_FL | FS_NODUMP_FL | \
205 FS_SYNC_FL | FS_DIRSYNC_FL | \
206 FS_NOCOMP_FL | FS_COMPR_FL |
207 FS_NOCOW_FL))
208 return -EOPNOTSUPP;
209
210 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
211 return -EINVAL;
212
213 return 0;
214}
215
216static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
217{
218 struct inode *inode = file_inode(file);
219 struct btrfs_inode *ip = BTRFS_I(inode);
220 struct btrfs_root *root = ip->root;
221 struct btrfs_trans_handle *trans;
222 unsigned int flags, oldflags;
223 int ret;
224 u64 ip_oldflags;
225 unsigned int i_oldflags;
226 umode_t mode;
227
228 if (!inode_owner_or_capable(inode))
229 return -EPERM;
230
231 if (btrfs_root_readonly(root))
232 return -EROFS;
233
234 if (copy_from_user(&flags, arg, sizeof(flags)))
235 return -EFAULT;
236
237 ret = check_flags(flags);
238 if (ret)
239 return ret;
240
241 ret = mnt_want_write_file(file);
242 if (ret)
243 return ret;
244
245 inode_lock(inode);
246
247 ip_oldflags = ip->flags;
248 i_oldflags = inode->i_flags;
249 mode = inode->i_mode;
250
251 flags = btrfs_mask_flags(inode->i_mode, flags);
252 oldflags = btrfs_flags_to_ioctl(ip->flags);
253 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
254 if (!capable(CAP_LINUX_IMMUTABLE)) {
255 ret = -EPERM;
256 goto out_unlock;
257 }
258 }
259
260 if (flags & FS_SYNC_FL)
261 ip->flags |= BTRFS_INODE_SYNC;
262 else
263 ip->flags &= ~BTRFS_INODE_SYNC;
264 if (flags & FS_IMMUTABLE_FL)
265 ip->flags |= BTRFS_INODE_IMMUTABLE;
266 else
267 ip->flags &= ~BTRFS_INODE_IMMUTABLE;
268 if (flags & FS_APPEND_FL)
269 ip->flags |= BTRFS_INODE_APPEND;
270 else
271 ip->flags &= ~BTRFS_INODE_APPEND;
272 if (flags & FS_NODUMP_FL)
273 ip->flags |= BTRFS_INODE_NODUMP;
274 else
275 ip->flags &= ~BTRFS_INODE_NODUMP;
276 if (flags & FS_NOATIME_FL)
277 ip->flags |= BTRFS_INODE_NOATIME;
278 else
279 ip->flags &= ~BTRFS_INODE_NOATIME;
280 if (flags & FS_DIRSYNC_FL)
281 ip->flags |= BTRFS_INODE_DIRSYNC;
282 else
283 ip->flags &= ~BTRFS_INODE_DIRSYNC;
284 if (flags & FS_NOCOW_FL) {
285 if (S_ISREG(mode)) {
286 /*
287 * It's safe to turn csums off here, no extents exist.
288 * Otherwise we want the flag to reflect the real COW
289 * status of the file and will not set it.
290 */
291 if (inode->i_size == 0)
292 ip->flags |= BTRFS_INODE_NODATACOW
293 | BTRFS_INODE_NODATASUM;
294 } else {
295 ip->flags |= BTRFS_INODE_NODATACOW;
296 }
297 } else {
298 /*
299 * Revert back under same assuptions as above
300 */
301 if (S_ISREG(mode)) {
302 if (inode->i_size == 0)
303 ip->flags &= ~(BTRFS_INODE_NODATACOW
304 | BTRFS_INODE_NODATASUM);
305 } else {
306 ip->flags &= ~BTRFS_INODE_NODATACOW;
307 }
308 }
309
310 /*
311 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
312 * flag may be changed automatically if compression code won't make
313 * things smaller.
314 */
315 if (flags & FS_NOCOMP_FL) {
316 ip->flags &= ~BTRFS_INODE_COMPRESS;
317 ip->flags |= BTRFS_INODE_NOCOMPRESS;
318
319 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
320 if (ret && ret != -ENODATA)
321 goto out_drop;
322 } else if (flags & FS_COMPR_FL) {
323 const char *comp;
324
325 ip->flags |= BTRFS_INODE_COMPRESS;
326 ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
327
328 if (root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
329 comp = "lzo";
330 else
331 comp = "zlib";
332 ret = btrfs_set_prop(inode, "btrfs.compression",
333 comp, strlen(comp), 0);
334 if (ret)
335 goto out_drop;
336
337 } else {
338 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
339 if (ret && ret != -ENODATA)
340 goto out_drop;
341 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
342 }
343
344 trans = btrfs_start_transaction(root, 1);
345 if (IS_ERR(trans)) {
346 ret = PTR_ERR(trans);
347 goto out_drop;
348 }
349
350 btrfs_update_iflags(inode);
351 inode_inc_iversion(inode);
352 inode->i_ctime = current_fs_time(inode->i_sb);
353 ret = btrfs_update_inode(trans, root, inode);
354
355 btrfs_end_transaction(trans, root);
356 out_drop:
357 if (ret) {
358 ip->flags = ip_oldflags;
359 inode->i_flags = i_oldflags;
360 }
361
362 out_unlock:
363 inode_unlock(inode);
364 mnt_drop_write_file(file);
365 return ret;
366}
367
368static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
369{
370 struct inode *inode = file_inode(file);
371
372 return put_user(inode->i_generation, arg);
373}
374
375static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
376{
377 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
378 struct btrfs_device *device;
379 struct request_queue *q;
380 struct fstrim_range range;
381 u64 minlen = ULLONG_MAX;
382 u64 num_devices = 0;
383 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
384 int ret;
385
386 if (!capable(CAP_SYS_ADMIN))
387 return -EPERM;
388
389 rcu_read_lock();
390 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
391 dev_list) {
392 if (!device->bdev)
393 continue;
394 q = bdev_get_queue(device->bdev);
395 if (blk_queue_discard(q)) {
396 num_devices++;
397 minlen = min((u64)q->limits.discard_granularity,
398 minlen);
399 }
400 }
401 rcu_read_unlock();
402
403 if (!num_devices)
404 return -EOPNOTSUPP;
405 if (copy_from_user(&range, arg, sizeof(range)))
406 return -EFAULT;
407 if (range.start > total_bytes ||
408 range.len < fs_info->sb->s_blocksize)
409 return -EINVAL;
410
411 range.len = min(range.len, total_bytes - range.start);
412 range.minlen = max(range.minlen, minlen);
413 ret = btrfs_trim_fs(fs_info->tree_root, &range);
414 if (ret < 0)
415 return ret;
416
417 if (copy_to_user(arg, &range, sizeof(range)))
418 return -EFAULT;
419
420 return 0;
421}
422
423int btrfs_is_empty_uuid(u8 *uuid)
424{
425 int i;
426
427 for (i = 0; i < BTRFS_UUID_SIZE; i++) {
428 if (uuid[i])
429 return 0;
430 }
431 return 1;
432}
433
434static noinline int create_subvol(struct inode *dir,
435 struct dentry *dentry,
436 char *name, int namelen,
437 u64 *async_transid,
438 struct btrfs_qgroup_inherit *inherit)
439{
440 struct btrfs_trans_handle *trans;
441 struct btrfs_key key;
442 struct btrfs_root_item root_item;
443 struct btrfs_inode_item *inode_item;
444 struct extent_buffer *leaf;
445 struct btrfs_root *root = BTRFS_I(dir)->root;
446 struct btrfs_root *new_root;
447 struct btrfs_block_rsv block_rsv;
448 struct timespec cur_time = current_fs_time(dir->i_sb);
449 struct inode *inode;
450 int ret;
451 int err;
452 u64 objectid;
453 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
454 u64 index = 0;
455 u64 qgroup_reserved;
456 uuid_le new_uuid;
457
458 ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid);
459 if (ret)
460 return ret;
461
462 /*
463 * Don't create subvolume whose level is not zero. Or qgroup will be
464 * screwed up since it assume subvolme qgroup's level to be 0.
465 */
466 if (btrfs_qgroup_level(objectid))
467 return -ENOSPC;
468
469 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
470 /*
471 * The same as the snapshot creation, please see the comment
472 * of create_snapshot().
473 */
474 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
475 8, &qgroup_reserved, false);
476 if (ret)
477 return ret;
478
479 trans = btrfs_start_transaction(root, 0);
480 if (IS_ERR(trans)) {
481 ret = PTR_ERR(trans);
482 btrfs_subvolume_release_metadata(root, &block_rsv,
483 qgroup_reserved);
484 return ret;
485 }
486 trans->block_rsv = &block_rsv;
487 trans->bytes_reserved = block_rsv.size;
488
489 ret = btrfs_qgroup_inherit(trans, root->fs_info, 0, objectid, inherit);
490 if (ret)
491 goto fail;
492
493 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
494 if (IS_ERR(leaf)) {
495 ret = PTR_ERR(leaf);
496 goto fail;
497 }
498
499 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
500 btrfs_set_header_bytenr(leaf, leaf->start);
501 btrfs_set_header_generation(leaf, trans->transid);
502 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
503 btrfs_set_header_owner(leaf, objectid);
504
505 write_extent_buffer(leaf, root->fs_info->fsid, btrfs_header_fsid(),
506 BTRFS_FSID_SIZE);
507 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
508 btrfs_header_chunk_tree_uuid(leaf),
509 BTRFS_UUID_SIZE);
510 btrfs_mark_buffer_dirty(leaf);
511
512 memset(&root_item, 0, sizeof(root_item));
513
514 inode_item = &root_item.inode;
515 btrfs_set_stack_inode_generation(inode_item, 1);
516 btrfs_set_stack_inode_size(inode_item, 3);
517 btrfs_set_stack_inode_nlink(inode_item, 1);
518 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
519 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
520
521 btrfs_set_root_flags(&root_item, 0);
522 btrfs_set_root_limit(&root_item, 0);
523 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
524
525 btrfs_set_root_bytenr(&root_item, leaf->start);
526 btrfs_set_root_generation(&root_item, trans->transid);
527 btrfs_set_root_level(&root_item, 0);
528 btrfs_set_root_refs(&root_item, 1);
529 btrfs_set_root_used(&root_item, leaf->len);
530 btrfs_set_root_last_snapshot(&root_item, 0);
531
532 btrfs_set_root_generation_v2(&root_item,
533 btrfs_root_generation(&root_item));
534 uuid_le_gen(&new_uuid);
535 memcpy(root_item.uuid, new_uuid.b, BTRFS_UUID_SIZE);
536 btrfs_set_stack_timespec_sec(&root_item.otime, cur_time.tv_sec);
537 btrfs_set_stack_timespec_nsec(&root_item.otime, cur_time.tv_nsec);
538 root_item.ctime = root_item.otime;
539 btrfs_set_root_ctransid(&root_item, trans->transid);
540 btrfs_set_root_otransid(&root_item, trans->transid);
541
542 btrfs_tree_unlock(leaf);
543 free_extent_buffer(leaf);
544 leaf = NULL;
545
546 btrfs_set_root_dirid(&root_item, new_dirid);
547
548 key.objectid = objectid;
549 key.offset = 0;
550 key.type = BTRFS_ROOT_ITEM_KEY;
551 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
552 &root_item);
553 if (ret)
554 goto fail;
555
556 key.offset = (u64)-1;
557 new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
558 if (IS_ERR(new_root)) {
559 ret = PTR_ERR(new_root);
560 btrfs_abort_transaction(trans, root, ret);
561 goto fail;
562 }
563
564 btrfs_record_root_in_trans(trans, new_root);
565
566 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
567 if (ret) {
568 /* We potentially lose an unused inode item here */
569 btrfs_abort_transaction(trans, root, ret);
570 goto fail;
571 }
572
573 mutex_lock(&new_root->objectid_mutex);
574 new_root->highest_objectid = new_dirid;
575 mutex_unlock(&new_root->objectid_mutex);
576
577 /*
578 * insert the directory item
579 */
580 ret = btrfs_set_inode_index(dir, &index);
581 if (ret) {
582 btrfs_abort_transaction(trans, root, ret);
583 goto fail;
584 }
585
586 ret = btrfs_insert_dir_item(trans, root,
587 name, namelen, dir, &key,
588 BTRFS_FT_DIR, index);
589 if (ret) {
590 btrfs_abort_transaction(trans, root, ret);
591 goto fail;
592 }
593
594 btrfs_i_size_write(dir, dir->i_size + namelen * 2);
595 ret = btrfs_update_inode(trans, root, dir);
596 BUG_ON(ret);
597
598 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
599 objectid, root->root_key.objectid,
600 btrfs_ino(dir), index, name, namelen);
601 BUG_ON(ret);
602
603 ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
604 root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
605 objectid);
606 if (ret)
607 btrfs_abort_transaction(trans, root, ret);
608
609fail:
610 trans->block_rsv = NULL;
611 trans->bytes_reserved = 0;
612 btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
613
614 if (async_transid) {
615 *async_transid = trans->transid;
616 err = btrfs_commit_transaction_async(trans, root, 1);
617 if (err)
618 err = btrfs_commit_transaction(trans, root);
619 } else {
620 err = btrfs_commit_transaction(trans, root);
621 }
622 if (err && !ret)
623 ret = err;
624
625 if (!ret) {
626 inode = btrfs_lookup_dentry(dir, dentry);
627 if (IS_ERR(inode))
628 return PTR_ERR(inode);
629 d_instantiate(dentry, inode);
630 }
631 return ret;
632}
633
634static void btrfs_wait_for_no_snapshoting_writes(struct btrfs_root *root)
635{
636 s64 writers;
637 DEFINE_WAIT(wait);
638
639 do {
640 prepare_to_wait(&root->subv_writers->wait, &wait,
641 TASK_UNINTERRUPTIBLE);
642
643 writers = percpu_counter_sum(&root->subv_writers->counter);
644 if (writers)
645 schedule();
646
647 finish_wait(&root->subv_writers->wait, &wait);
648 } while (writers);
649}
650
651static int create_snapshot(struct btrfs_root *root, struct inode *dir,
652 struct dentry *dentry, char *name, int namelen,
653 u64 *async_transid, bool readonly,
654 struct btrfs_qgroup_inherit *inherit)
655{
656 struct inode *inode;
657 struct btrfs_pending_snapshot *pending_snapshot;
658 struct btrfs_trans_handle *trans;
659 int ret;
660
661 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
662 return -EINVAL;
663
664 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
665 if (!pending_snapshot)
666 return -ENOMEM;
667
668 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
669 GFP_NOFS);
670 pending_snapshot->path = btrfs_alloc_path();
671 if (!pending_snapshot->root_item || !pending_snapshot->path) {
672 ret = -ENOMEM;
673 goto free_pending;
674 }
675
676 atomic_inc(&root->will_be_snapshoted);
677 smp_mb__after_atomic();
678 btrfs_wait_for_no_snapshoting_writes(root);
679
680 ret = btrfs_start_delalloc_inodes(root, 0);
681 if (ret)
682 goto dec_and_free;
683
684 btrfs_wait_ordered_extents(root, -1);
685
686 btrfs_init_block_rsv(&pending_snapshot->block_rsv,
687 BTRFS_BLOCK_RSV_TEMP);
688 /*
689 * 1 - parent dir inode
690 * 2 - dir entries
691 * 1 - root item
692 * 2 - root ref/backref
693 * 1 - root of snapshot
694 * 1 - UUID item
695 */
696 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
697 &pending_snapshot->block_rsv, 8,
698 &pending_snapshot->qgroup_reserved,
699 false);
700 if (ret)
701 goto dec_and_free;
702
703 pending_snapshot->dentry = dentry;
704 pending_snapshot->root = root;
705 pending_snapshot->readonly = readonly;
706 pending_snapshot->dir = dir;
707 pending_snapshot->inherit = inherit;
708
709 trans = btrfs_start_transaction(root, 0);
710 if (IS_ERR(trans)) {
711 ret = PTR_ERR(trans);
712 goto fail;
713 }
714
715 spin_lock(&root->fs_info->trans_lock);
716 list_add(&pending_snapshot->list,
717 &trans->transaction->pending_snapshots);
718 spin_unlock(&root->fs_info->trans_lock);
719 if (async_transid) {
720 *async_transid = trans->transid;
721 ret = btrfs_commit_transaction_async(trans,
722 root->fs_info->extent_root, 1);
723 if (ret)
724 ret = btrfs_commit_transaction(trans, root);
725 } else {
726 ret = btrfs_commit_transaction(trans,
727 root->fs_info->extent_root);
728 }
729 if (ret)
730 goto fail;
731
732 ret = pending_snapshot->error;
733 if (ret)
734 goto fail;
735
736 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
737 if (ret)
738 goto fail;
739
740 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
741 if (IS_ERR(inode)) {
742 ret = PTR_ERR(inode);
743 goto fail;
744 }
745
746 d_instantiate(dentry, inode);
747 ret = 0;
748fail:
749 btrfs_subvolume_release_metadata(BTRFS_I(dir)->root,
750 &pending_snapshot->block_rsv,
751 pending_snapshot->qgroup_reserved);
752dec_and_free:
753 if (atomic_dec_and_test(&root->will_be_snapshoted))
754 wake_up_atomic_t(&root->will_be_snapshoted);
755free_pending:
756 kfree(pending_snapshot->root_item);
757 btrfs_free_path(pending_snapshot->path);
758 kfree(pending_snapshot);
759
760 return ret;
761}
762
763/* copy of may_delete in fs/namei.c()
764 * Check whether we can remove a link victim from directory dir, check
765 * whether the type of victim is right.
766 * 1. We can't do it if dir is read-only (done in permission())
767 * 2. We should have write and exec permissions on dir
768 * 3. We can't remove anything from append-only dir
769 * 4. We can't do anything with immutable dir (done in permission())
770 * 5. If the sticky bit on dir is set we should either
771 * a. be owner of dir, or
772 * b. be owner of victim, or
773 * c. have CAP_FOWNER capability
774 * 6. If the victim is append-only or immutable we can't do antyhing with
775 * links pointing to it.
776 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
777 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
778 * 9. We can't remove a root or mountpoint.
779 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
780 * nfs_async_unlink().
781 */
782
783static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
784{
785 int error;
786
787 if (d_really_is_negative(victim))
788 return -ENOENT;
789
790 BUG_ON(d_inode(victim->d_parent) != dir);
791 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
792
793 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
794 if (error)
795 return error;
796 if (IS_APPEND(dir))
797 return -EPERM;
798 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
799 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
800 return -EPERM;
801 if (isdir) {
802 if (!d_is_dir(victim))
803 return -ENOTDIR;
804 if (IS_ROOT(victim))
805 return -EBUSY;
806 } else if (d_is_dir(victim))
807 return -EISDIR;
808 if (IS_DEADDIR(dir))
809 return -ENOENT;
810 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
811 return -EBUSY;
812 return 0;
813}
814
815/* copy of may_create in fs/namei.c() */
816static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
817{
818 if (d_really_is_positive(child))
819 return -EEXIST;
820 if (IS_DEADDIR(dir))
821 return -ENOENT;
822 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
823}
824
825/*
826 * Create a new subvolume below @parent. This is largely modeled after
827 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
828 * inside this filesystem so it's quite a bit simpler.
829 */
830static noinline int btrfs_mksubvol(struct path *parent,
831 char *name, int namelen,
832 struct btrfs_root *snap_src,
833 u64 *async_transid, bool readonly,
834 struct btrfs_qgroup_inherit *inherit)
835{
836 struct inode *dir = d_inode(parent->dentry);
837 struct dentry *dentry;
838 int error;
839
840 error = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
841 if (error == -EINTR)
842 return error;
843
844 dentry = lookup_one_len(name, parent->dentry, namelen);
845 error = PTR_ERR(dentry);
846 if (IS_ERR(dentry))
847 goto out_unlock;
848
849 error = btrfs_may_create(dir, dentry);
850 if (error)
851 goto out_dput;
852
853 /*
854 * even if this name doesn't exist, we may get hash collisions.
855 * check for them now when we can safely fail
856 */
857 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
858 dir->i_ino, name,
859 namelen);
860 if (error)
861 goto out_dput;
862
863 down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
864
865 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
866 goto out_up_read;
867
868 if (snap_src) {
869 error = create_snapshot(snap_src, dir, dentry, name, namelen,
870 async_transid, readonly, inherit);
871 } else {
872 error = create_subvol(dir, dentry, name, namelen,
873 async_transid, inherit);
874 }
875 if (!error)
876 fsnotify_mkdir(dir, dentry);
877out_up_read:
878 up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
879out_dput:
880 dput(dentry);
881out_unlock:
882 inode_unlock(dir);
883 return error;
884}
885
886/*
887 * When we're defragging a range, we don't want to kick it off again
888 * if it is really just waiting for delalloc to send it down.
889 * If we find a nice big extent or delalloc range for the bytes in the
890 * file you want to defrag, we return 0 to let you know to skip this
891 * part of the file
892 */
893static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
894{
895 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
896 struct extent_map *em = NULL;
897 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
898 u64 end;
899
900 read_lock(&em_tree->lock);
901 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
902 read_unlock(&em_tree->lock);
903
904 if (em) {
905 end = extent_map_end(em);
906 free_extent_map(em);
907 if (end - offset > thresh)
908 return 0;
909 }
910 /* if we already have a nice delalloc here, just stop */
911 thresh /= 2;
912 end = count_range_bits(io_tree, &offset, offset + thresh,
913 thresh, EXTENT_DELALLOC, 1);
914 if (end >= thresh)
915 return 0;
916 return 1;
917}
918
919/*
920 * helper function to walk through a file and find extents
921 * newer than a specific transid, and smaller than thresh.
922 *
923 * This is used by the defragging code to find new and small
924 * extents
925 */
926static int find_new_extents(struct btrfs_root *root,
927 struct inode *inode, u64 newer_than,
928 u64 *off, u32 thresh)
929{
930 struct btrfs_path *path;
931 struct btrfs_key min_key;
932 struct extent_buffer *leaf;
933 struct btrfs_file_extent_item *extent;
934 int type;
935 int ret;
936 u64 ino = btrfs_ino(inode);
937
938 path = btrfs_alloc_path();
939 if (!path)
940 return -ENOMEM;
941
942 min_key.objectid = ino;
943 min_key.type = BTRFS_EXTENT_DATA_KEY;
944 min_key.offset = *off;
945
946 while (1) {
947 ret = btrfs_search_forward(root, &min_key, path, newer_than);
948 if (ret != 0)
949 goto none;
950process_slot:
951 if (min_key.objectid != ino)
952 goto none;
953 if (min_key.type != BTRFS_EXTENT_DATA_KEY)
954 goto none;
955
956 leaf = path->nodes[0];
957 extent = btrfs_item_ptr(leaf, path->slots[0],
958 struct btrfs_file_extent_item);
959
960 type = btrfs_file_extent_type(leaf, extent);
961 if (type == BTRFS_FILE_EXTENT_REG &&
962 btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
963 check_defrag_in_cache(inode, min_key.offset, thresh)) {
964 *off = min_key.offset;
965 btrfs_free_path(path);
966 return 0;
967 }
968
969 path->slots[0]++;
970 if (path->slots[0] < btrfs_header_nritems(leaf)) {
971 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
972 goto process_slot;
973 }
974
975 if (min_key.offset == (u64)-1)
976 goto none;
977
978 min_key.offset++;
979 btrfs_release_path(path);
980 }
981none:
982 btrfs_free_path(path);
983 return -ENOENT;
984}
985
986static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
987{
988 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
989 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
990 struct extent_map *em;
991 u64 len = PAGE_SIZE;
992
993 /*
994 * hopefully we have this extent in the tree already, try without
995 * the full extent lock
996 */
997 read_lock(&em_tree->lock);
998 em = lookup_extent_mapping(em_tree, start, len);
999 read_unlock(&em_tree->lock);
1000
1001 if (!em) {
1002 struct extent_state *cached = NULL;
1003 u64 end = start + len - 1;
1004
1005 /* get the big lock and read metadata off disk */
1006 lock_extent_bits(io_tree, start, end, &cached);
1007 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
1008 unlock_extent_cached(io_tree, start, end, &cached, GFP_NOFS);
1009
1010 if (IS_ERR(em))
1011 return NULL;
1012 }
1013
1014 return em;
1015}
1016
1017static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1018{
1019 struct extent_map *next;
1020 bool ret = true;
1021
1022 /* this is the last extent */
1023 if (em->start + em->len >= i_size_read(inode))
1024 return false;
1025
1026 next = defrag_lookup_extent(inode, em->start + em->len);
1027 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1028 ret = false;
1029 else if ((em->block_start + em->block_len == next->block_start) &&
1030 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1031 ret = false;
1032
1033 free_extent_map(next);
1034 return ret;
1035}
1036
1037static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1038 u64 *last_len, u64 *skip, u64 *defrag_end,
1039 int compress)
1040{
1041 struct extent_map *em;
1042 int ret = 1;
1043 bool next_mergeable = true;
1044 bool prev_mergeable = true;
1045
1046 /*
1047 * make sure that once we start defragging an extent, we keep on
1048 * defragging it
1049 */
1050 if (start < *defrag_end)
1051 return 1;
1052
1053 *skip = 0;
1054
1055 em = defrag_lookup_extent(inode, start);
1056 if (!em)
1057 return 0;
1058
1059 /* this will cover holes, and inline extents */
1060 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1061 ret = 0;
1062 goto out;
1063 }
1064
1065 if (!*defrag_end)
1066 prev_mergeable = false;
1067
1068 next_mergeable = defrag_check_next_extent(inode, em);
1069 /*
1070 * we hit a real extent, if it is big or the next extent is not a
1071 * real extent, don't bother defragging it
1072 */
1073 if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1074 (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1075 ret = 0;
1076out:
1077 /*
1078 * last_len ends up being a counter of how many bytes we've defragged.
1079 * every time we choose not to defrag an extent, we reset *last_len
1080 * so that the next tiny extent will force a defrag.
1081 *
1082 * The end result of this is that tiny extents before a single big
1083 * extent will force at least part of that big extent to be defragged.
1084 */
1085 if (ret) {
1086 *defrag_end = extent_map_end(em);
1087 } else {
1088 *last_len = 0;
1089 *skip = extent_map_end(em);
1090 *defrag_end = 0;
1091 }
1092
1093 free_extent_map(em);
1094 return ret;
1095}
1096
1097/*
1098 * it doesn't do much good to defrag one or two pages
1099 * at a time. This pulls in a nice chunk of pages
1100 * to COW and defrag.
1101 *
1102 * It also makes sure the delalloc code has enough
1103 * dirty data to avoid making new small extents as part
1104 * of the defrag
1105 *
1106 * It's a good idea to start RA on this range
1107 * before calling this.
1108 */
1109static int cluster_pages_for_defrag(struct inode *inode,
1110 struct page **pages,
1111 unsigned long start_index,
1112 unsigned long num_pages)
1113{
1114 unsigned long file_end;
1115 u64 isize = i_size_read(inode);
1116 u64 page_start;
1117 u64 page_end;
1118 u64 page_cnt;
1119 int ret;
1120 int i;
1121 int i_done;
1122 struct btrfs_ordered_extent *ordered;
1123 struct extent_state *cached_state = NULL;
1124 struct extent_io_tree *tree;
1125 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1126
1127 file_end = (isize - 1) >> PAGE_SHIFT;
1128 if (!isize || start_index > file_end)
1129 return 0;
1130
1131 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1132
1133 ret = btrfs_delalloc_reserve_space(inode,
1134 start_index << PAGE_SHIFT,
1135 page_cnt << PAGE_SHIFT);
1136 if (ret)
1137 return ret;
1138 i_done = 0;
1139 tree = &BTRFS_I(inode)->io_tree;
1140
1141 /* step one, lock all the pages */
1142 for (i = 0; i < page_cnt; i++) {
1143 struct page *page;
1144again:
1145 page = find_or_create_page(inode->i_mapping,
1146 start_index + i, mask);
1147 if (!page)
1148 break;
1149
1150 page_start = page_offset(page);
1151 page_end = page_start + PAGE_SIZE - 1;
1152 while (1) {
1153 lock_extent_bits(tree, page_start, page_end,
1154 &cached_state);
1155 ordered = btrfs_lookup_ordered_extent(inode,
1156 page_start);
1157 unlock_extent_cached(tree, page_start, page_end,
1158 &cached_state, GFP_NOFS);
1159 if (!ordered)
1160 break;
1161
1162 unlock_page(page);
1163 btrfs_start_ordered_extent(inode, ordered, 1);
1164 btrfs_put_ordered_extent(ordered);
1165 lock_page(page);
1166 /*
1167 * we unlocked the page above, so we need check if
1168 * it was released or not.
1169 */
1170 if (page->mapping != inode->i_mapping) {
1171 unlock_page(page);
1172 put_page(page);
1173 goto again;
1174 }
1175 }
1176
1177 if (!PageUptodate(page)) {
1178 btrfs_readpage(NULL, page);
1179 lock_page(page);
1180 if (!PageUptodate(page)) {
1181 unlock_page(page);
1182 put_page(page);
1183 ret = -EIO;
1184 break;
1185 }
1186 }
1187
1188 if (page->mapping != inode->i_mapping) {
1189 unlock_page(page);
1190 put_page(page);
1191 goto again;
1192 }
1193
1194 pages[i] = page;
1195 i_done++;
1196 }
1197 if (!i_done || ret)
1198 goto out;
1199
1200 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1201 goto out;
1202
1203 /*
1204 * so now we have a nice long stream of locked
1205 * and up to date pages, lets wait on them
1206 */
1207 for (i = 0; i < i_done; i++)
1208 wait_on_page_writeback(pages[i]);
1209
1210 page_start = page_offset(pages[0]);
1211 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
1212
1213 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1214 page_start, page_end - 1, &cached_state);
1215 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1216 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1217 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1218 &cached_state, GFP_NOFS);
1219
1220 if (i_done != page_cnt) {
1221 spin_lock(&BTRFS_I(inode)->lock);
1222 BTRFS_I(inode)->outstanding_extents++;
1223 spin_unlock(&BTRFS_I(inode)->lock);
1224 btrfs_delalloc_release_space(inode,
1225 start_index << PAGE_SHIFT,
1226 (page_cnt - i_done) << PAGE_SHIFT);
1227 }
1228
1229
1230 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1231 &cached_state, GFP_NOFS);
1232
1233 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1234 page_start, page_end - 1, &cached_state,
1235 GFP_NOFS);
1236
1237 for (i = 0; i < i_done; i++) {
1238 clear_page_dirty_for_io(pages[i]);
1239 ClearPageChecked(pages[i]);
1240 set_page_extent_mapped(pages[i]);
1241 set_page_dirty(pages[i]);
1242 unlock_page(pages[i]);
1243 put_page(pages[i]);
1244 }
1245 return i_done;
1246out:
1247 for (i = 0; i < i_done; i++) {
1248 unlock_page(pages[i]);
1249 put_page(pages[i]);
1250 }
1251 btrfs_delalloc_release_space(inode,
1252 start_index << PAGE_SHIFT,
1253 page_cnt << PAGE_SHIFT);
1254 return ret;
1255
1256}
1257
1258int btrfs_defrag_file(struct inode *inode, struct file *file,
1259 struct btrfs_ioctl_defrag_range_args *range,
1260 u64 newer_than, unsigned long max_to_defrag)
1261{
1262 struct btrfs_root *root = BTRFS_I(inode)->root;
1263 struct file_ra_state *ra = NULL;
1264 unsigned long last_index;
1265 u64 isize = i_size_read(inode);
1266 u64 last_len = 0;
1267 u64 skip = 0;
1268 u64 defrag_end = 0;
1269 u64 newer_off = range->start;
1270 unsigned long i;
1271 unsigned long ra_index = 0;
1272 int ret;
1273 int defrag_count = 0;
1274 int compress_type = BTRFS_COMPRESS_ZLIB;
1275 u32 extent_thresh = range->extent_thresh;
1276 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
1277 unsigned long cluster = max_cluster;
1278 u64 new_align = ~((u64)SZ_128K - 1);
1279 struct page **pages = NULL;
1280
1281 if (isize == 0)
1282 return 0;
1283
1284 if (range->start >= isize)
1285 return -EINVAL;
1286
1287 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1288 if (range->compress_type > BTRFS_COMPRESS_TYPES)
1289 return -EINVAL;
1290 if (range->compress_type)
1291 compress_type = range->compress_type;
1292 }
1293
1294 if (extent_thresh == 0)
1295 extent_thresh = SZ_256K;
1296
1297 /*
1298 * if we were not given a file, allocate a readahead
1299 * context
1300 */
1301 if (!file) {
1302 ra = kzalloc(sizeof(*ra), GFP_NOFS);
1303 if (!ra)
1304 return -ENOMEM;
1305 file_ra_state_init(ra, inode->i_mapping);
1306 } else {
1307 ra = &file->f_ra;
1308 }
1309
1310 pages = kmalloc_array(max_cluster, sizeof(struct page *),
1311 GFP_NOFS);
1312 if (!pages) {
1313 ret = -ENOMEM;
1314 goto out_ra;
1315 }
1316
1317 /* find the last page to defrag */
1318 if (range->start + range->len > range->start) {
1319 last_index = min_t(u64, isize - 1,
1320 range->start + range->len - 1) >> PAGE_SHIFT;
1321 } else {
1322 last_index = (isize - 1) >> PAGE_SHIFT;
1323 }
1324
1325 if (newer_than) {
1326 ret = find_new_extents(root, inode, newer_than,
1327 &newer_off, SZ_64K);
1328 if (!ret) {
1329 range->start = newer_off;
1330 /*
1331 * we always align our defrag to help keep
1332 * the extents in the file evenly spaced
1333 */
1334 i = (newer_off & new_align) >> PAGE_SHIFT;
1335 } else
1336 goto out_ra;
1337 } else {
1338 i = range->start >> PAGE_SHIFT;
1339 }
1340 if (!max_to_defrag)
1341 max_to_defrag = last_index - i + 1;
1342
1343 /*
1344 * make writeback starts from i, so the defrag range can be
1345 * written sequentially.
1346 */
1347 if (i < inode->i_mapping->writeback_index)
1348 inode->i_mapping->writeback_index = i;
1349
1350 while (i <= last_index && defrag_count < max_to_defrag &&
1351 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
1352 /*
1353 * make sure we stop running if someone unmounts
1354 * the FS
1355 */
1356 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1357 break;
1358
1359 if (btrfs_defrag_cancelled(root->fs_info)) {
1360 btrfs_debug(root->fs_info, "defrag_file cancelled");
1361 ret = -EAGAIN;
1362 break;
1363 }
1364
1365 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
1366 extent_thresh, &last_len, &skip,
1367 &defrag_end, range->flags &
1368 BTRFS_DEFRAG_RANGE_COMPRESS)) {
1369 unsigned long next;
1370 /*
1371 * the should_defrag function tells us how much to skip
1372 * bump our counter by the suggested amount
1373 */
1374 next = DIV_ROUND_UP(skip, PAGE_SIZE);
1375 i = max(i + 1, next);
1376 continue;
1377 }
1378
1379 if (!newer_than) {
1380 cluster = (PAGE_ALIGN(defrag_end) >>
1381 PAGE_SHIFT) - i;
1382 cluster = min(cluster, max_cluster);
1383 } else {
1384 cluster = max_cluster;
1385 }
1386
1387 if (i + cluster > ra_index) {
1388 ra_index = max(i, ra_index);
1389 btrfs_force_ra(inode->i_mapping, ra, file, ra_index,
1390 cluster);
1391 ra_index += cluster;
1392 }
1393
1394 inode_lock(inode);
1395 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1396 BTRFS_I(inode)->force_compress = compress_type;
1397 ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1398 if (ret < 0) {
1399 inode_unlock(inode);
1400 goto out_ra;
1401 }
1402
1403 defrag_count += ret;
1404 balance_dirty_pages_ratelimited(inode->i_mapping);
1405 inode_unlock(inode);
1406
1407 if (newer_than) {
1408 if (newer_off == (u64)-1)
1409 break;
1410
1411 if (ret > 0)
1412 i += ret;
1413
1414 newer_off = max(newer_off + 1,
1415 (u64)i << PAGE_SHIFT);
1416
1417 ret = find_new_extents(root, inode, newer_than,
1418 &newer_off, SZ_64K);
1419 if (!ret) {
1420 range->start = newer_off;
1421 i = (newer_off & new_align) >> PAGE_SHIFT;
1422 } else {
1423 break;
1424 }
1425 } else {
1426 if (ret > 0) {
1427 i += ret;
1428 last_len += ret << PAGE_SHIFT;
1429 } else {
1430 i++;
1431 last_len = 0;
1432 }
1433 }
1434 }
1435
1436 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1437 filemap_flush(inode->i_mapping);
1438 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1439 &BTRFS_I(inode)->runtime_flags))
1440 filemap_flush(inode->i_mapping);
1441 }
1442
1443 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1444 /* the filemap_flush will queue IO into the worker threads, but
1445 * we have to make sure the IO is actually started and that
1446 * ordered extents get created before we return
1447 */
1448 atomic_inc(&root->fs_info->async_submit_draining);
1449 while (atomic_read(&root->fs_info->nr_async_submits) ||
1450 atomic_read(&root->fs_info->async_delalloc_pages)) {
1451 wait_event(root->fs_info->async_submit_wait,
1452 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
1453 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
1454 }
1455 atomic_dec(&root->fs_info->async_submit_draining);
1456 }
1457
1458 if (range->compress_type == BTRFS_COMPRESS_LZO) {
1459 btrfs_set_fs_incompat(root->fs_info, COMPRESS_LZO);
1460 }
1461
1462 ret = defrag_count;
1463
1464out_ra:
1465 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1466 inode_lock(inode);
1467 BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1468 inode_unlock(inode);
1469 }
1470 if (!file)
1471 kfree(ra);
1472 kfree(pages);
1473 return ret;
1474}
1475
1476static noinline int btrfs_ioctl_resize(struct file *file,
1477 void __user *arg)
1478{
1479 u64 new_size;
1480 u64 old_size;
1481 u64 devid = 1;
1482 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
1483 struct btrfs_ioctl_vol_args *vol_args;
1484 struct btrfs_trans_handle *trans;
1485 struct btrfs_device *device = NULL;
1486 char *sizestr;
1487 char *retptr;
1488 char *devstr = NULL;
1489 int ret = 0;
1490 int mod = 0;
1491
1492 if (!capable(CAP_SYS_ADMIN))
1493 return -EPERM;
1494
1495 ret = mnt_want_write_file(file);
1496 if (ret)
1497 return ret;
1498
1499 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
1500 1)) {
1501 mnt_drop_write_file(file);
1502 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1503 }
1504
1505 mutex_lock(&root->fs_info->volume_mutex);
1506 vol_args = memdup_user(arg, sizeof(*vol_args));
1507 if (IS_ERR(vol_args)) {
1508 ret = PTR_ERR(vol_args);
1509 goto out;
1510 }
1511
1512 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1513
1514 sizestr = vol_args->name;
1515 devstr = strchr(sizestr, ':');
1516 if (devstr) {
1517 sizestr = devstr + 1;
1518 *devstr = '\0';
1519 devstr = vol_args->name;
1520 ret = kstrtoull(devstr, 10, &devid);
1521 if (ret)
1522 goto out_free;
1523 if (!devid) {
1524 ret = -EINVAL;
1525 goto out_free;
1526 }
1527 btrfs_info(root->fs_info, "resizing devid %llu", devid);
1528 }
1529
1530 device = btrfs_find_device(root->fs_info, devid, NULL, NULL);
1531 if (!device) {
1532 btrfs_info(root->fs_info, "resizer unable to find device %llu",
1533 devid);
1534 ret = -ENODEV;
1535 goto out_free;
1536 }
1537
1538 if (!device->writeable) {
1539 btrfs_info(root->fs_info,
1540 "resizer unable to apply on readonly device %llu",
1541 devid);
1542 ret = -EPERM;
1543 goto out_free;
1544 }
1545
1546 if (!strcmp(sizestr, "max"))
1547 new_size = device->bdev->bd_inode->i_size;
1548 else {
1549 if (sizestr[0] == '-') {
1550 mod = -1;
1551 sizestr++;
1552 } else if (sizestr[0] == '+') {
1553 mod = 1;
1554 sizestr++;
1555 }
1556 new_size = memparse(sizestr, &retptr);
1557 if (*retptr != '\0' || new_size == 0) {
1558 ret = -EINVAL;
1559 goto out_free;
1560 }
1561 }
1562
1563 if (device->is_tgtdev_for_dev_replace) {
1564 ret = -EPERM;
1565 goto out_free;
1566 }
1567
1568 old_size = btrfs_device_get_total_bytes(device);
1569
1570 if (mod < 0) {
1571 if (new_size > old_size) {
1572 ret = -EINVAL;
1573 goto out_free;
1574 }
1575 new_size = old_size - new_size;
1576 } else if (mod > 0) {
1577 if (new_size > ULLONG_MAX - old_size) {
1578 ret = -ERANGE;
1579 goto out_free;
1580 }
1581 new_size = old_size + new_size;
1582 }
1583
1584 if (new_size < SZ_256M) {
1585 ret = -EINVAL;
1586 goto out_free;
1587 }
1588 if (new_size > device->bdev->bd_inode->i_size) {
1589 ret = -EFBIG;
1590 goto out_free;
1591 }
1592
1593 new_size = div_u64(new_size, root->sectorsize);
1594 new_size *= root->sectorsize;
1595
1596 btrfs_info_in_rcu(root->fs_info, "new size for %s is %llu",
1597 rcu_str_deref(device->name), new_size);
1598
1599 if (new_size > old_size) {
1600 trans = btrfs_start_transaction(root, 0);
1601 if (IS_ERR(trans)) {
1602 ret = PTR_ERR(trans);
1603 goto out_free;
1604 }
1605 ret = btrfs_grow_device(trans, device, new_size);
1606 btrfs_commit_transaction(trans, root);
1607 } else if (new_size < old_size) {
1608 ret = btrfs_shrink_device(device, new_size);
1609 } /* equal, nothing need to do */
1610
1611out_free:
1612 kfree(vol_args);
1613out:
1614 mutex_unlock(&root->fs_info->volume_mutex);
1615 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
1616 mnt_drop_write_file(file);
1617 return ret;
1618}
1619
1620static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1621 char *name, unsigned long fd, int subvol,
1622 u64 *transid, bool readonly,
1623 struct btrfs_qgroup_inherit *inherit)
1624{
1625 int namelen;
1626 int ret = 0;
1627
1628 ret = mnt_want_write_file(file);
1629 if (ret)
1630 goto out;
1631
1632 namelen = strlen(name);
1633 if (strchr(name, '/')) {
1634 ret = -EINVAL;
1635 goto out_drop_write;
1636 }
1637
1638 if (name[0] == '.' &&
1639 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1640 ret = -EEXIST;
1641 goto out_drop_write;
1642 }
1643
1644 if (subvol) {
1645 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1646 NULL, transid, readonly, inherit);
1647 } else {
1648 struct fd src = fdget(fd);
1649 struct inode *src_inode;
1650 if (!src.file) {
1651 ret = -EINVAL;
1652 goto out_drop_write;
1653 }
1654
1655 src_inode = file_inode(src.file);
1656 if (src_inode->i_sb != file_inode(file)->i_sb) {
1657 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1658 "Snapshot src from another FS");
1659 ret = -EXDEV;
1660 } else if (!inode_owner_or_capable(src_inode)) {
1661 /*
1662 * Subvolume creation is not restricted, but snapshots
1663 * are limited to own subvolumes only
1664 */
1665 ret = -EPERM;
1666 } else {
1667 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1668 BTRFS_I(src_inode)->root,
1669 transid, readonly, inherit);
1670 }
1671 fdput(src);
1672 }
1673out_drop_write:
1674 mnt_drop_write_file(file);
1675out:
1676 return ret;
1677}
1678
1679static noinline int btrfs_ioctl_snap_create(struct file *file,
1680 void __user *arg, int subvol)
1681{
1682 struct btrfs_ioctl_vol_args *vol_args;
1683 int ret;
1684
1685 vol_args = memdup_user(arg, sizeof(*vol_args));
1686 if (IS_ERR(vol_args))
1687 return PTR_ERR(vol_args);
1688 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1689
1690 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1691 vol_args->fd, subvol,
1692 NULL, false, NULL);
1693
1694 kfree(vol_args);
1695 return ret;
1696}
1697
1698static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1699 void __user *arg, int subvol)
1700{
1701 struct btrfs_ioctl_vol_args_v2 *vol_args;
1702 int ret;
1703 u64 transid = 0;
1704 u64 *ptr = NULL;
1705 bool readonly = false;
1706 struct btrfs_qgroup_inherit *inherit = NULL;
1707
1708 vol_args = memdup_user(arg, sizeof(*vol_args));
1709 if (IS_ERR(vol_args))
1710 return PTR_ERR(vol_args);
1711 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1712
1713 if (vol_args->flags &
1714 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1715 BTRFS_SUBVOL_QGROUP_INHERIT)) {
1716 ret = -EOPNOTSUPP;
1717 goto free_args;
1718 }
1719
1720 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1721 ptr = &transid;
1722 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1723 readonly = true;
1724 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1725 if (vol_args->size > PAGE_SIZE) {
1726 ret = -EINVAL;
1727 goto free_args;
1728 }
1729 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1730 if (IS_ERR(inherit)) {
1731 ret = PTR_ERR(inherit);
1732 goto free_args;
1733 }
1734 }
1735
1736 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1737 vol_args->fd, subvol, ptr,
1738 readonly, inherit);
1739 if (ret)
1740 goto free_inherit;
1741
1742 if (ptr && copy_to_user(arg +
1743 offsetof(struct btrfs_ioctl_vol_args_v2,
1744 transid),
1745 ptr, sizeof(*ptr)))
1746 ret = -EFAULT;
1747
1748free_inherit:
1749 kfree(inherit);
1750free_args:
1751 kfree(vol_args);
1752 return ret;
1753}
1754
1755static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1756 void __user *arg)
1757{
1758 struct inode *inode = file_inode(file);
1759 struct btrfs_root *root = BTRFS_I(inode)->root;
1760 int ret = 0;
1761 u64 flags = 0;
1762
1763 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1764 return -EINVAL;
1765
1766 down_read(&root->fs_info->subvol_sem);
1767 if (btrfs_root_readonly(root))
1768 flags |= BTRFS_SUBVOL_RDONLY;
1769 up_read(&root->fs_info->subvol_sem);
1770
1771 if (copy_to_user(arg, &flags, sizeof(flags)))
1772 ret = -EFAULT;
1773
1774 return ret;
1775}
1776
1777static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1778 void __user *arg)
1779{
1780 struct inode *inode = file_inode(file);
1781 struct btrfs_root *root = BTRFS_I(inode)->root;
1782 struct btrfs_trans_handle *trans;
1783 u64 root_flags;
1784 u64 flags;
1785 int ret = 0;
1786
1787 if (!inode_owner_or_capable(inode))
1788 return -EPERM;
1789
1790 ret = mnt_want_write_file(file);
1791 if (ret)
1792 goto out;
1793
1794 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
1795 ret = -EINVAL;
1796 goto out_drop_write;
1797 }
1798
1799 if (copy_from_user(&flags, arg, sizeof(flags))) {
1800 ret = -EFAULT;
1801 goto out_drop_write;
1802 }
1803
1804 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1805 ret = -EINVAL;
1806 goto out_drop_write;
1807 }
1808
1809 if (flags & ~BTRFS_SUBVOL_RDONLY) {
1810 ret = -EOPNOTSUPP;
1811 goto out_drop_write;
1812 }
1813
1814 down_write(&root->fs_info->subvol_sem);
1815
1816 /* nothing to do */
1817 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1818 goto out_drop_sem;
1819
1820 root_flags = btrfs_root_flags(&root->root_item);
1821 if (flags & BTRFS_SUBVOL_RDONLY) {
1822 btrfs_set_root_flags(&root->root_item,
1823 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1824 } else {
1825 /*
1826 * Block RO -> RW transition if this subvolume is involved in
1827 * send
1828 */
1829 spin_lock(&root->root_item_lock);
1830 if (root->send_in_progress == 0) {
1831 btrfs_set_root_flags(&root->root_item,
1832 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1833 spin_unlock(&root->root_item_lock);
1834 } else {
1835 spin_unlock(&root->root_item_lock);
1836 btrfs_warn(root->fs_info,
1837 "Attempt to set subvolume %llu read-write during send",
1838 root->root_key.objectid);
1839 ret = -EPERM;
1840 goto out_drop_sem;
1841 }
1842 }
1843
1844 trans = btrfs_start_transaction(root, 1);
1845 if (IS_ERR(trans)) {
1846 ret = PTR_ERR(trans);
1847 goto out_reset;
1848 }
1849
1850 ret = btrfs_update_root(trans, root->fs_info->tree_root,
1851 &root->root_key, &root->root_item);
1852
1853 btrfs_commit_transaction(trans, root);
1854out_reset:
1855 if (ret)
1856 btrfs_set_root_flags(&root->root_item, root_flags);
1857out_drop_sem:
1858 up_write(&root->fs_info->subvol_sem);
1859out_drop_write:
1860 mnt_drop_write_file(file);
1861out:
1862 return ret;
1863}
1864
1865/*
1866 * helper to check if the subvolume references other subvolumes
1867 */
1868static noinline int may_destroy_subvol(struct btrfs_root *root)
1869{
1870 struct btrfs_path *path;
1871 struct btrfs_dir_item *di;
1872 struct btrfs_key key;
1873 u64 dir_id;
1874 int ret;
1875
1876 path = btrfs_alloc_path();
1877 if (!path)
1878 return -ENOMEM;
1879
1880 /* Make sure this root isn't set as the default subvol */
1881 dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
1882 di = btrfs_lookup_dir_item(NULL, root->fs_info->tree_root, path,
1883 dir_id, "default", 7, 0);
1884 if (di && !IS_ERR(di)) {
1885 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1886 if (key.objectid == root->root_key.objectid) {
1887 ret = -EPERM;
1888 btrfs_err(root->fs_info, "deleting default subvolume "
1889 "%llu is not allowed", key.objectid);
1890 goto out;
1891 }
1892 btrfs_release_path(path);
1893 }
1894
1895 key.objectid = root->root_key.objectid;
1896 key.type = BTRFS_ROOT_REF_KEY;
1897 key.offset = (u64)-1;
1898
1899 ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
1900 &key, path, 0, 0);
1901 if (ret < 0)
1902 goto out;
1903 BUG_ON(ret == 0);
1904
1905 ret = 0;
1906 if (path->slots[0] > 0) {
1907 path->slots[0]--;
1908 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1909 if (key.objectid == root->root_key.objectid &&
1910 key.type == BTRFS_ROOT_REF_KEY)
1911 ret = -ENOTEMPTY;
1912 }
1913out:
1914 btrfs_free_path(path);
1915 return ret;
1916}
1917
1918static noinline int key_in_sk(struct btrfs_key *key,
1919 struct btrfs_ioctl_search_key *sk)
1920{
1921 struct btrfs_key test;
1922 int ret;
1923
1924 test.objectid = sk->min_objectid;
1925 test.type = sk->min_type;
1926 test.offset = sk->min_offset;
1927
1928 ret = btrfs_comp_cpu_keys(key, &test);
1929 if (ret < 0)
1930 return 0;
1931
1932 test.objectid = sk->max_objectid;
1933 test.type = sk->max_type;
1934 test.offset = sk->max_offset;
1935
1936 ret = btrfs_comp_cpu_keys(key, &test);
1937 if (ret > 0)
1938 return 0;
1939 return 1;
1940}
1941
1942static noinline int copy_to_sk(struct btrfs_root *root,
1943 struct btrfs_path *path,
1944 struct btrfs_key *key,
1945 struct btrfs_ioctl_search_key *sk,
1946 size_t *buf_size,
1947 char __user *ubuf,
1948 unsigned long *sk_offset,
1949 int *num_found)
1950{
1951 u64 found_transid;
1952 struct extent_buffer *leaf;
1953 struct btrfs_ioctl_search_header sh;
1954 struct btrfs_key test;
1955 unsigned long item_off;
1956 unsigned long item_len;
1957 int nritems;
1958 int i;
1959 int slot;
1960 int ret = 0;
1961
1962 leaf = path->nodes[0];
1963 slot = path->slots[0];
1964 nritems = btrfs_header_nritems(leaf);
1965
1966 if (btrfs_header_generation(leaf) > sk->max_transid) {
1967 i = nritems;
1968 goto advance_key;
1969 }
1970 found_transid = btrfs_header_generation(leaf);
1971
1972 for (i = slot; i < nritems; i++) {
1973 item_off = btrfs_item_ptr_offset(leaf, i);
1974 item_len = btrfs_item_size_nr(leaf, i);
1975
1976 btrfs_item_key_to_cpu(leaf, key, i);
1977 if (!key_in_sk(key, sk))
1978 continue;
1979
1980 if (sizeof(sh) + item_len > *buf_size) {
1981 if (*num_found) {
1982 ret = 1;
1983 goto out;
1984 }
1985
1986 /*
1987 * return one empty item back for v1, which does not
1988 * handle -EOVERFLOW
1989 */
1990
1991 *buf_size = sizeof(sh) + item_len;
1992 item_len = 0;
1993 ret = -EOVERFLOW;
1994 }
1995
1996 if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1997 ret = 1;
1998 goto out;
1999 }
2000
2001 sh.objectid = key->objectid;
2002 sh.offset = key->offset;
2003 sh.type = key->type;
2004 sh.len = item_len;
2005 sh.transid = found_transid;
2006
2007 /* copy search result header */
2008 if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) {
2009 ret = -EFAULT;
2010 goto out;
2011 }
2012
2013 *sk_offset += sizeof(sh);
2014
2015 if (item_len) {
2016 char __user *up = ubuf + *sk_offset;
2017 /* copy the item */
2018 if (read_extent_buffer_to_user(leaf, up,
2019 item_off, item_len)) {
2020 ret = -EFAULT;
2021 goto out;
2022 }
2023
2024 *sk_offset += item_len;
2025 }
2026 (*num_found)++;
2027
2028 if (ret) /* -EOVERFLOW from above */
2029 goto out;
2030
2031 if (*num_found >= sk->nr_items) {
2032 ret = 1;
2033 goto out;
2034 }
2035 }
2036advance_key:
2037 ret = 0;
2038 test.objectid = sk->max_objectid;
2039 test.type = sk->max_type;
2040 test.offset = sk->max_offset;
2041 if (btrfs_comp_cpu_keys(key, &test) >= 0)
2042 ret = 1;
2043 else if (key->offset < (u64)-1)
2044 key->offset++;
2045 else if (key->type < (u8)-1) {
2046 key->offset = 0;
2047 key->type++;
2048 } else if (key->objectid < (u64)-1) {
2049 key->offset = 0;
2050 key->type = 0;
2051 key->objectid++;
2052 } else
2053 ret = 1;
2054out:
2055 /*
2056 * 0: all items from this leaf copied, continue with next
2057 * 1: * more items can be copied, but unused buffer is too small
2058 * * all items were found
2059 * Either way, it will stops the loop which iterates to the next
2060 * leaf
2061 * -EOVERFLOW: item was to large for buffer
2062 * -EFAULT: could not copy extent buffer back to userspace
2063 */
2064 return ret;
2065}
2066
2067static noinline int search_ioctl(struct inode *inode,
2068 struct btrfs_ioctl_search_key *sk,
2069 size_t *buf_size,
2070 char __user *ubuf)
2071{
2072 struct btrfs_root *root;
2073 struct btrfs_key key;
2074 struct btrfs_path *path;
2075 struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
2076 int ret;
2077 int num_found = 0;
2078 unsigned long sk_offset = 0;
2079
2080 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2081 *buf_size = sizeof(struct btrfs_ioctl_search_header);
2082 return -EOVERFLOW;
2083 }
2084
2085 path = btrfs_alloc_path();
2086 if (!path)
2087 return -ENOMEM;
2088
2089 if (sk->tree_id == 0) {
2090 /* search the root of the inode that was passed */
2091 root = BTRFS_I(inode)->root;
2092 } else {
2093 key.objectid = sk->tree_id;
2094 key.type = BTRFS_ROOT_ITEM_KEY;
2095 key.offset = (u64)-1;
2096 root = btrfs_read_fs_root_no_name(info, &key);
2097 if (IS_ERR(root)) {
2098 btrfs_free_path(path);
2099 return -ENOENT;
2100 }
2101 }
2102
2103 key.objectid = sk->min_objectid;
2104 key.type = sk->min_type;
2105 key.offset = sk->min_offset;
2106
2107 while (1) {
2108 ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2109 if (ret != 0) {
2110 if (ret > 0)
2111 ret = 0;
2112 goto err;
2113 }
2114 ret = copy_to_sk(root, path, &key, sk, buf_size, ubuf,
2115 &sk_offset, &num_found);
2116 btrfs_release_path(path);
2117 if (ret)
2118 break;
2119
2120 }
2121 if (ret > 0)
2122 ret = 0;
2123err:
2124 sk->nr_items = num_found;
2125 btrfs_free_path(path);
2126 return ret;
2127}
2128
2129static noinline int btrfs_ioctl_tree_search(struct file *file,
2130 void __user *argp)
2131{
2132 struct btrfs_ioctl_search_args __user *uargs;
2133 struct btrfs_ioctl_search_key sk;
2134 struct inode *inode;
2135 int ret;
2136 size_t buf_size;
2137
2138 if (!capable(CAP_SYS_ADMIN))
2139 return -EPERM;
2140
2141 uargs = (struct btrfs_ioctl_search_args __user *)argp;
2142
2143 if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2144 return -EFAULT;
2145
2146 buf_size = sizeof(uargs->buf);
2147
2148 inode = file_inode(file);
2149 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2150
2151 /*
2152 * In the origin implementation an overflow is handled by returning a
2153 * search header with a len of zero, so reset ret.
2154 */
2155 if (ret == -EOVERFLOW)
2156 ret = 0;
2157
2158 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2159 ret = -EFAULT;
2160 return ret;
2161}
2162
2163static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2164 void __user *argp)
2165{
2166 struct btrfs_ioctl_search_args_v2 __user *uarg;
2167 struct btrfs_ioctl_search_args_v2 args;
2168 struct inode *inode;
2169 int ret;
2170 size_t buf_size;
2171 const size_t buf_limit = SZ_16M;
2172
2173 if (!capable(CAP_SYS_ADMIN))
2174 return -EPERM;
2175
2176 /* copy search header and buffer size */
2177 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2178 if (copy_from_user(&args, uarg, sizeof(args)))
2179 return -EFAULT;
2180
2181 buf_size = args.buf_size;
2182
2183 if (buf_size < sizeof(struct btrfs_ioctl_search_header))
2184 return -EOVERFLOW;
2185
2186 /* limit result size to 16MB */
2187 if (buf_size > buf_limit)
2188 buf_size = buf_limit;
2189
2190 inode = file_inode(file);
2191 ret = search_ioctl(inode, &args.key, &buf_size,
2192 (char *)(&uarg->buf[0]));
2193 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2194 ret = -EFAULT;
2195 else if (ret == -EOVERFLOW &&
2196 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2197 ret = -EFAULT;
2198
2199 return ret;
2200}
2201
2202/*
2203 * Search INODE_REFs to identify path name of 'dirid' directory
2204 * in a 'tree_id' tree. and sets path name to 'name'.
2205 */
2206static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2207 u64 tree_id, u64 dirid, char *name)
2208{
2209 struct btrfs_root *root;
2210 struct btrfs_key key;
2211 char *ptr;
2212 int ret = -1;
2213 int slot;
2214 int len;
2215 int total_len = 0;
2216 struct btrfs_inode_ref *iref;
2217 struct extent_buffer *l;
2218 struct btrfs_path *path;
2219
2220 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2221 name[0]='\0';
2222 return 0;
2223 }
2224
2225 path = btrfs_alloc_path();
2226 if (!path)
2227 return -ENOMEM;
2228
2229 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
2230
2231 key.objectid = tree_id;
2232 key.type = BTRFS_ROOT_ITEM_KEY;
2233 key.offset = (u64)-1;
2234 root = btrfs_read_fs_root_no_name(info, &key);
2235 if (IS_ERR(root)) {
2236 btrfs_err(info, "could not find root %llu", tree_id);
2237 ret = -ENOENT;
2238 goto out;
2239 }
2240
2241 key.objectid = dirid;
2242 key.type = BTRFS_INODE_REF_KEY;
2243 key.offset = (u64)-1;
2244
2245 while (1) {
2246 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2247 if (ret < 0)
2248 goto out;
2249 else if (ret > 0) {
2250 ret = btrfs_previous_item(root, path, dirid,
2251 BTRFS_INODE_REF_KEY);
2252 if (ret < 0)
2253 goto out;
2254 else if (ret > 0) {
2255 ret = -ENOENT;
2256 goto out;
2257 }
2258 }
2259
2260 l = path->nodes[0];
2261 slot = path->slots[0];
2262 btrfs_item_key_to_cpu(l, &key, slot);
2263
2264 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2265 len = btrfs_inode_ref_name_len(l, iref);
2266 ptr -= len + 1;
2267 total_len += len + 1;
2268 if (ptr < name) {
2269 ret = -ENAMETOOLONG;
2270 goto out;
2271 }
2272
2273 *(ptr + len) = '/';
2274 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2275
2276 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2277 break;
2278
2279 btrfs_release_path(path);
2280 key.objectid = key.offset;
2281 key.offset = (u64)-1;
2282 dirid = key.objectid;
2283 }
2284 memmove(name, ptr, total_len);
2285 name[total_len] = '\0';
2286 ret = 0;
2287out:
2288 btrfs_free_path(path);
2289 return ret;
2290}
2291
2292static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2293 void __user *argp)
2294{
2295 struct btrfs_ioctl_ino_lookup_args *args;
2296 struct inode *inode;
2297 int ret = 0;
2298
2299 args = memdup_user(argp, sizeof(*args));
2300 if (IS_ERR(args))
2301 return PTR_ERR(args);
2302
2303 inode = file_inode(file);
2304
2305 /*
2306 * Unprivileged query to obtain the containing subvolume root id. The
2307 * path is reset so it's consistent with btrfs_search_path_in_tree.
2308 */
2309 if (args->treeid == 0)
2310 args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2311
2312 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2313 args->name[0] = 0;
2314 goto out;
2315 }
2316
2317 if (!capable(CAP_SYS_ADMIN)) {
2318 ret = -EPERM;
2319 goto out;
2320 }
2321
2322 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2323 args->treeid, args->objectid,
2324 args->name);
2325
2326out:
2327 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2328 ret = -EFAULT;
2329
2330 kfree(args);
2331 return ret;
2332}
2333
2334static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2335 void __user *arg)
2336{
2337 struct dentry *parent = file->f_path.dentry;
2338 struct dentry *dentry;
2339 struct inode *dir = d_inode(parent);
2340 struct inode *inode;
2341 struct btrfs_root *root = BTRFS_I(dir)->root;
2342 struct btrfs_root *dest = NULL;
2343 struct btrfs_ioctl_vol_args *vol_args;
2344 struct btrfs_trans_handle *trans;
2345 struct btrfs_block_rsv block_rsv;
2346 u64 root_flags;
2347 u64 qgroup_reserved;
2348 int namelen;
2349 int ret;
2350 int err = 0;
2351
2352 vol_args = memdup_user(arg, sizeof(*vol_args));
2353 if (IS_ERR(vol_args))
2354 return PTR_ERR(vol_args);
2355
2356 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2357 namelen = strlen(vol_args->name);
2358 if (strchr(vol_args->name, '/') ||
2359 strncmp(vol_args->name, "..", namelen) == 0) {
2360 err = -EINVAL;
2361 goto out;
2362 }
2363
2364 err = mnt_want_write_file(file);
2365 if (err)
2366 goto out;
2367
2368
2369 err = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
2370 if (err == -EINTR)
2371 goto out_drop_write;
2372 dentry = lookup_one_len(vol_args->name, parent, namelen);
2373 if (IS_ERR(dentry)) {
2374 err = PTR_ERR(dentry);
2375 goto out_unlock_dir;
2376 }
2377
2378 if (d_really_is_negative(dentry)) {
2379 err = -ENOENT;
2380 goto out_dput;
2381 }
2382
2383 inode = d_inode(dentry);
2384 dest = BTRFS_I(inode)->root;
2385 if (!capable(CAP_SYS_ADMIN)) {
2386 /*
2387 * Regular user. Only allow this with a special mount
2388 * option, when the user has write+exec access to the
2389 * subvol root, and when rmdir(2) would have been
2390 * allowed.
2391 *
2392 * Note that this is _not_ check that the subvol is
2393 * empty or doesn't contain data that we wouldn't
2394 * otherwise be able to delete.
2395 *
2396 * Users who want to delete empty subvols should try
2397 * rmdir(2).
2398 */
2399 err = -EPERM;
2400 if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
2401 goto out_dput;
2402
2403 /*
2404 * Do not allow deletion if the parent dir is the same
2405 * as the dir to be deleted. That means the ioctl
2406 * must be called on the dentry referencing the root
2407 * of the subvol, not a random directory contained
2408 * within it.
2409 */
2410 err = -EINVAL;
2411 if (root == dest)
2412 goto out_dput;
2413
2414 err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2415 if (err)
2416 goto out_dput;
2417 }
2418
2419 /* check if subvolume may be deleted by a user */
2420 err = btrfs_may_delete(dir, dentry, 1);
2421 if (err)
2422 goto out_dput;
2423
2424 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
2425 err = -EINVAL;
2426 goto out_dput;
2427 }
2428
2429 inode_lock(inode);
2430
2431 /*
2432 * Don't allow to delete a subvolume with send in progress. This is
2433 * inside the i_mutex so the error handling that has to drop the bit
2434 * again is not run concurrently.
2435 */
2436 spin_lock(&dest->root_item_lock);
2437 root_flags = btrfs_root_flags(&dest->root_item);
2438 if (dest->send_in_progress == 0) {
2439 btrfs_set_root_flags(&dest->root_item,
2440 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
2441 spin_unlock(&dest->root_item_lock);
2442 } else {
2443 spin_unlock(&dest->root_item_lock);
2444 btrfs_warn(root->fs_info,
2445 "Attempt to delete subvolume %llu during send",
2446 dest->root_key.objectid);
2447 err = -EPERM;
2448 goto out_unlock_inode;
2449 }
2450
2451 down_write(&root->fs_info->subvol_sem);
2452
2453 err = may_destroy_subvol(dest);
2454 if (err)
2455 goto out_up_write;
2456
2457 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
2458 /*
2459 * One for dir inode, two for dir entries, two for root
2460 * ref/backref.
2461 */
2462 err = btrfs_subvolume_reserve_metadata(root, &block_rsv,
2463 5, &qgroup_reserved, true);
2464 if (err)
2465 goto out_up_write;
2466
2467 trans = btrfs_start_transaction(root, 0);
2468 if (IS_ERR(trans)) {
2469 err = PTR_ERR(trans);
2470 goto out_release;
2471 }
2472 trans->block_rsv = &block_rsv;
2473 trans->bytes_reserved = block_rsv.size;
2474
2475 btrfs_record_snapshot_destroy(trans, dir);
2476
2477 ret = btrfs_unlink_subvol(trans, root, dir,
2478 dest->root_key.objectid,
2479 dentry->d_name.name,
2480 dentry->d_name.len);
2481 if (ret) {
2482 err = ret;
2483 btrfs_abort_transaction(trans, root, ret);
2484 goto out_end_trans;
2485 }
2486
2487 btrfs_record_root_in_trans(trans, dest);
2488
2489 memset(&dest->root_item.drop_progress, 0,
2490 sizeof(dest->root_item.drop_progress));
2491 dest->root_item.drop_level = 0;
2492 btrfs_set_root_refs(&dest->root_item, 0);
2493
2494 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
2495 ret = btrfs_insert_orphan_item(trans,
2496 root->fs_info->tree_root,
2497 dest->root_key.objectid);
2498 if (ret) {
2499 btrfs_abort_transaction(trans, root, ret);
2500 err = ret;
2501 goto out_end_trans;
2502 }
2503 }
2504
2505 ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2506 dest->root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
2507 dest->root_key.objectid);
2508 if (ret && ret != -ENOENT) {
2509 btrfs_abort_transaction(trans, root, ret);
2510 err = ret;
2511 goto out_end_trans;
2512 }
2513 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
2514 ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2515 dest->root_item.received_uuid,
2516 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
2517 dest->root_key.objectid);
2518 if (ret && ret != -ENOENT) {
2519 btrfs_abort_transaction(trans, root, ret);
2520 err = ret;
2521 goto out_end_trans;
2522 }
2523 }
2524
2525out_end_trans:
2526 trans->block_rsv = NULL;
2527 trans->bytes_reserved = 0;
2528 ret = btrfs_end_transaction(trans, root);
2529 if (ret && !err)
2530 err = ret;
2531 inode->i_flags |= S_DEAD;
2532out_release:
2533 btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
2534out_up_write:
2535 up_write(&root->fs_info->subvol_sem);
2536 if (err) {
2537 spin_lock(&dest->root_item_lock);
2538 root_flags = btrfs_root_flags(&dest->root_item);
2539 btrfs_set_root_flags(&dest->root_item,
2540 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
2541 spin_unlock(&dest->root_item_lock);
2542 }
2543out_unlock_inode:
2544 inode_unlock(inode);
2545 if (!err) {
2546 d_invalidate(dentry);
2547 btrfs_invalidate_inodes(dest);
2548 d_delete(dentry);
2549 ASSERT(dest->send_in_progress == 0);
2550
2551 /* the last ref */
2552 if (dest->ino_cache_inode) {
2553 iput(dest->ino_cache_inode);
2554 dest->ino_cache_inode = NULL;
2555 }
2556 }
2557out_dput:
2558 dput(dentry);
2559out_unlock_dir:
2560 inode_unlock(dir);
2561out_drop_write:
2562 mnt_drop_write_file(file);
2563out:
2564 kfree(vol_args);
2565 return err;
2566}
2567
2568static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2569{
2570 struct inode *inode = file_inode(file);
2571 struct btrfs_root *root = BTRFS_I(inode)->root;
2572 struct btrfs_ioctl_defrag_range_args *range;
2573 int ret;
2574
2575 ret = mnt_want_write_file(file);
2576 if (ret)
2577 return ret;
2578
2579 if (btrfs_root_readonly(root)) {
2580 ret = -EROFS;
2581 goto out;
2582 }
2583
2584 switch (inode->i_mode & S_IFMT) {
2585 case S_IFDIR:
2586 if (!capable(CAP_SYS_ADMIN)) {
2587 ret = -EPERM;
2588 goto out;
2589 }
2590 ret = btrfs_defrag_root(root);
2591 if (ret)
2592 goto out;
2593 ret = btrfs_defrag_root(root->fs_info->extent_root);
2594 break;
2595 case S_IFREG:
2596 if (!(file->f_mode & FMODE_WRITE)) {
2597 ret = -EINVAL;
2598 goto out;
2599 }
2600
2601 range = kzalloc(sizeof(*range), GFP_KERNEL);
2602 if (!range) {
2603 ret = -ENOMEM;
2604 goto out;
2605 }
2606
2607 if (argp) {
2608 if (copy_from_user(range, argp,
2609 sizeof(*range))) {
2610 ret = -EFAULT;
2611 kfree(range);
2612 goto out;
2613 }
2614 /* compression requires us to start the IO */
2615 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2616 range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2617 range->extent_thresh = (u32)-1;
2618 }
2619 } else {
2620 /* the rest are all set to zero by kzalloc */
2621 range->len = (u64)-1;
2622 }
2623 ret = btrfs_defrag_file(file_inode(file), file,
2624 range, 0, 0);
2625 if (ret > 0)
2626 ret = 0;
2627 kfree(range);
2628 break;
2629 default:
2630 ret = -EINVAL;
2631 }
2632out:
2633 mnt_drop_write_file(file);
2634 return ret;
2635}
2636
2637static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
2638{
2639 struct btrfs_ioctl_vol_args *vol_args;
2640 int ret;
2641
2642 if (!capable(CAP_SYS_ADMIN))
2643 return -EPERM;
2644
2645 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2646 1)) {
2647 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2648 }
2649
2650 mutex_lock(&root->fs_info->volume_mutex);
2651 vol_args = memdup_user(arg, sizeof(*vol_args));
2652 if (IS_ERR(vol_args)) {
2653 ret = PTR_ERR(vol_args);
2654 goto out;
2655 }
2656
2657 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2658 ret = btrfs_init_new_device(root, vol_args->name);
2659
2660 if (!ret)
2661 btrfs_info(root->fs_info, "disk added %s",vol_args->name);
2662
2663 kfree(vol_args);
2664out:
2665 mutex_unlock(&root->fs_info->volume_mutex);
2666 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2667 return ret;
2668}
2669
2670static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2671{
2672 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
2673 struct btrfs_ioctl_vol_args *vol_args;
2674 int ret;
2675
2676 if (!capable(CAP_SYS_ADMIN))
2677 return -EPERM;
2678
2679 ret = mnt_want_write_file(file);
2680 if (ret)
2681 return ret;
2682
2683 vol_args = memdup_user(arg, sizeof(*vol_args));
2684 if (IS_ERR(vol_args)) {
2685 ret = PTR_ERR(vol_args);
2686 goto err_drop;
2687 }
2688
2689 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2690
2691 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2692 1)) {
2693 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2694 goto out;
2695 }
2696
2697 mutex_lock(&root->fs_info->volume_mutex);
2698 ret = btrfs_rm_device(root, vol_args->name);
2699 mutex_unlock(&root->fs_info->volume_mutex);
2700 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2701
2702 if (!ret)
2703 btrfs_info(root->fs_info, "disk deleted %s",vol_args->name);
2704
2705out:
2706 kfree(vol_args);
2707err_drop:
2708 mnt_drop_write_file(file);
2709 return ret;
2710}
2711
2712static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg)
2713{
2714 struct btrfs_ioctl_fs_info_args *fi_args;
2715 struct btrfs_device *device;
2716 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2717 int ret = 0;
2718
2719 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2720 if (!fi_args)
2721 return -ENOMEM;
2722
2723 mutex_lock(&fs_devices->device_list_mutex);
2724 fi_args->num_devices = fs_devices->num_devices;
2725 memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid));
2726
2727 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2728 if (device->devid > fi_args->max_id)
2729 fi_args->max_id = device->devid;
2730 }
2731 mutex_unlock(&fs_devices->device_list_mutex);
2732
2733 fi_args->nodesize = root->fs_info->super_copy->nodesize;
2734 fi_args->sectorsize = root->fs_info->super_copy->sectorsize;
2735 fi_args->clone_alignment = root->fs_info->super_copy->sectorsize;
2736
2737 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2738 ret = -EFAULT;
2739
2740 kfree(fi_args);
2741 return ret;
2742}
2743
2744static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg)
2745{
2746 struct btrfs_ioctl_dev_info_args *di_args;
2747 struct btrfs_device *dev;
2748 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2749 int ret = 0;
2750 char *s_uuid = NULL;
2751
2752 di_args = memdup_user(arg, sizeof(*di_args));
2753 if (IS_ERR(di_args))
2754 return PTR_ERR(di_args);
2755
2756 if (!btrfs_is_empty_uuid(di_args->uuid))
2757 s_uuid = di_args->uuid;
2758
2759 mutex_lock(&fs_devices->device_list_mutex);
2760 dev = btrfs_find_device(root->fs_info, di_args->devid, s_uuid, NULL);
2761
2762 if (!dev) {
2763 ret = -ENODEV;
2764 goto out;
2765 }
2766
2767 di_args->devid = dev->devid;
2768 di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2769 di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2770 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2771 if (dev->name) {
2772 struct rcu_string *name;
2773
2774 rcu_read_lock();
2775 name = rcu_dereference(dev->name);
2776 strncpy(di_args->path, name->str, sizeof(di_args->path));
2777 rcu_read_unlock();
2778 di_args->path[sizeof(di_args->path) - 1] = 0;
2779 } else {
2780 di_args->path[0] = '\0';
2781 }
2782
2783out:
2784 mutex_unlock(&fs_devices->device_list_mutex);
2785 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2786 ret = -EFAULT;
2787
2788 kfree(di_args);
2789 return ret;
2790}
2791
2792static struct page *extent_same_get_page(struct inode *inode, pgoff_t index)
2793{
2794 struct page *page;
2795
2796 page = grab_cache_page(inode->i_mapping, index);
2797 if (!page)
2798 return ERR_PTR(-ENOMEM);
2799
2800 if (!PageUptodate(page)) {
2801 int ret;
2802
2803 ret = btrfs_readpage(NULL, page);
2804 if (ret)
2805 return ERR_PTR(ret);
2806 lock_page(page);
2807 if (!PageUptodate(page)) {
2808 unlock_page(page);
2809 put_page(page);
2810 return ERR_PTR(-EIO);
2811 }
2812 if (page->mapping != inode->i_mapping) {
2813 unlock_page(page);
2814 put_page(page);
2815 return ERR_PTR(-EAGAIN);
2816 }
2817 }
2818
2819 return page;
2820}
2821
2822static int gather_extent_pages(struct inode *inode, struct page **pages,
2823 int num_pages, u64 off)
2824{
2825 int i;
2826 pgoff_t index = off >> PAGE_SHIFT;
2827
2828 for (i = 0; i < num_pages; i++) {
2829again:
2830 pages[i] = extent_same_get_page(inode, index + i);
2831 if (IS_ERR(pages[i])) {
2832 int err = PTR_ERR(pages[i]);
2833
2834 if (err == -EAGAIN)
2835 goto again;
2836 pages[i] = NULL;
2837 return err;
2838 }
2839 }
2840 return 0;
2841}
2842
2843static int lock_extent_range(struct inode *inode, u64 off, u64 len,
2844 bool retry_range_locking)
2845{
2846 /*
2847 * Do any pending delalloc/csum calculations on inode, one way or
2848 * another, and lock file content.
2849 * The locking order is:
2850 *
2851 * 1) pages
2852 * 2) range in the inode's io tree
2853 */
2854 while (1) {
2855 struct btrfs_ordered_extent *ordered;
2856 lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2857 ordered = btrfs_lookup_first_ordered_extent(inode,
2858 off + len - 1);
2859 if ((!ordered ||
2860 ordered->file_offset + ordered->len <= off ||
2861 ordered->file_offset >= off + len) &&
2862 !test_range_bit(&BTRFS_I(inode)->io_tree, off,
2863 off + len - 1, EXTENT_DELALLOC, 0, NULL)) {
2864 if (ordered)
2865 btrfs_put_ordered_extent(ordered);
2866 break;
2867 }
2868 unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2869 if (ordered)
2870 btrfs_put_ordered_extent(ordered);
2871 if (!retry_range_locking)
2872 return -EAGAIN;
2873 btrfs_wait_ordered_range(inode, off, len);
2874 }
2875 return 0;
2876}
2877
2878static void btrfs_double_inode_unlock(struct inode *inode1, struct inode *inode2)
2879{
2880 inode_unlock(inode1);
2881 inode_unlock(inode2);
2882}
2883
2884static void btrfs_double_inode_lock(struct inode *inode1, struct inode *inode2)
2885{
2886 if (inode1 < inode2)
2887 swap(inode1, inode2);
2888
2889 inode_lock_nested(inode1, I_MUTEX_PARENT);
2890 inode_lock_nested(inode2, I_MUTEX_CHILD);
2891}
2892
2893static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
2894 struct inode *inode2, u64 loff2, u64 len)
2895{
2896 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
2897 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
2898}
2899
2900static int btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
2901 struct inode *inode2, u64 loff2, u64 len,
2902 bool retry_range_locking)
2903{
2904 int ret;
2905
2906 if (inode1 < inode2) {
2907 swap(inode1, inode2);
2908 swap(loff1, loff2);
2909 }
2910 ret = lock_extent_range(inode1, loff1, len, retry_range_locking);
2911 if (ret)
2912 return ret;
2913 ret = lock_extent_range(inode2, loff2, len, retry_range_locking);
2914 if (ret)
2915 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1,
2916 loff1 + len - 1);
2917 return ret;
2918}
2919
2920struct cmp_pages {
2921 int num_pages;
2922 struct page **src_pages;
2923 struct page **dst_pages;
2924};
2925
2926static void btrfs_cmp_data_free(struct cmp_pages *cmp)
2927{
2928 int i;
2929 struct page *pg;
2930
2931 for (i = 0; i < cmp->num_pages; i++) {
2932 pg = cmp->src_pages[i];
2933 if (pg) {
2934 unlock_page(pg);
2935 put_page(pg);
2936 }
2937 pg = cmp->dst_pages[i];
2938 if (pg) {
2939 unlock_page(pg);
2940 put_page(pg);
2941 }
2942 }
2943 kfree(cmp->src_pages);
2944 kfree(cmp->dst_pages);
2945}
2946
2947static int btrfs_cmp_data_prepare(struct inode *src, u64 loff,
2948 struct inode *dst, u64 dst_loff,
2949 u64 len, struct cmp_pages *cmp)
2950{
2951 int ret;
2952 int num_pages = PAGE_ALIGN(len) >> PAGE_SHIFT;
2953 struct page **src_pgarr, **dst_pgarr;
2954
2955 /*
2956 * We must gather up all the pages before we initiate our
2957 * extent locking. We use an array for the page pointers. Size
2958 * of the array is bounded by len, which is in turn bounded by
2959 * BTRFS_MAX_DEDUPE_LEN.
2960 */
2961 src_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
2962 dst_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
2963 if (!src_pgarr || !dst_pgarr) {
2964 kfree(src_pgarr);
2965 kfree(dst_pgarr);
2966 return -ENOMEM;
2967 }
2968 cmp->num_pages = num_pages;
2969 cmp->src_pages = src_pgarr;
2970 cmp->dst_pages = dst_pgarr;
2971
2972 ret = gather_extent_pages(src, cmp->src_pages, cmp->num_pages, loff);
2973 if (ret)
2974 goto out;
2975
2976 ret = gather_extent_pages(dst, cmp->dst_pages, cmp->num_pages, dst_loff);
2977
2978out:
2979 if (ret)
2980 btrfs_cmp_data_free(cmp);
2981 return 0;
2982}
2983
2984static int btrfs_cmp_data(struct inode *src, u64 loff, struct inode *dst,
2985 u64 dst_loff, u64 len, struct cmp_pages *cmp)
2986{
2987 int ret = 0;
2988 int i;
2989 struct page *src_page, *dst_page;
2990 unsigned int cmp_len = PAGE_SIZE;
2991 void *addr, *dst_addr;
2992
2993 i = 0;
2994 while (len) {
2995 if (len < PAGE_SIZE)
2996 cmp_len = len;
2997
2998 BUG_ON(i >= cmp->num_pages);
2999
3000 src_page = cmp->src_pages[i];
3001 dst_page = cmp->dst_pages[i];
3002 ASSERT(PageLocked(src_page));
3003 ASSERT(PageLocked(dst_page));
3004
3005 addr = kmap_atomic(src_page);
3006 dst_addr = kmap_atomic(dst_page);
3007
3008 flush_dcache_page(src_page);
3009 flush_dcache_page(dst_page);
3010
3011 if (memcmp(addr, dst_addr, cmp_len))
3012 ret = -EBADE;
3013
3014 kunmap_atomic(addr);
3015 kunmap_atomic(dst_addr);
3016
3017 if (ret)
3018 break;
3019
3020 len -= cmp_len;
3021 i++;
3022 }
3023
3024 return ret;
3025}
3026
3027static int extent_same_check_offsets(struct inode *inode, u64 off, u64 *plen,
3028 u64 olen)
3029{
3030 u64 len = *plen;
3031 u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize;
3032
3033 if (off + olen > inode->i_size || off + olen < off)
3034 return -EINVAL;
3035
3036 /* if we extend to eof, continue to block boundary */
3037 if (off + len == inode->i_size)
3038 *plen = len = ALIGN(inode->i_size, bs) - off;
3039
3040 /* Check that we are block aligned - btrfs_clone() requires this */
3041 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs))
3042 return -EINVAL;
3043
3044 return 0;
3045}
3046
3047static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
3048 struct inode *dst, u64 dst_loff)
3049{
3050 int ret;
3051 u64 len = olen;
3052 struct cmp_pages cmp;
3053 int same_inode = 0;
3054 u64 same_lock_start = 0;
3055 u64 same_lock_len = 0;
3056
3057 if (src == dst)
3058 same_inode = 1;
3059
3060 if (len == 0)
3061 return 0;
3062
3063 if (same_inode) {
3064 inode_lock(src);
3065
3066 ret = extent_same_check_offsets(src, loff, &len, olen);
3067 if (ret)
3068 goto out_unlock;
3069 ret = extent_same_check_offsets(src, dst_loff, &len, olen);
3070 if (ret)
3071 goto out_unlock;
3072
3073 /*
3074 * Single inode case wants the same checks, except we
3075 * don't want our length pushed out past i_size as
3076 * comparing that data range makes no sense.
3077 *
3078 * extent_same_check_offsets() will do this for an
3079 * unaligned length at i_size, so catch it here and
3080 * reject the request.
3081 *
3082 * This effectively means we require aligned extents
3083 * for the single-inode case, whereas the other cases
3084 * allow an unaligned length so long as it ends at
3085 * i_size.
3086 */
3087 if (len != olen) {
3088 ret = -EINVAL;
3089 goto out_unlock;
3090 }
3091
3092 /* Check for overlapping ranges */
3093 if (dst_loff + len > loff && dst_loff < loff + len) {
3094 ret = -EINVAL;
3095 goto out_unlock;
3096 }
3097
3098 same_lock_start = min_t(u64, loff, dst_loff);
3099 same_lock_len = max_t(u64, loff, dst_loff) + len - same_lock_start;
3100 } else {
3101 btrfs_double_inode_lock(src, dst);
3102
3103 ret = extent_same_check_offsets(src, loff, &len, olen);
3104 if (ret)
3105 goto out_unlock;
3106
3107 ret = extent_same_check_offsets(dst, dst_loff, &len, olen);
3108 if (ret)
3109 goto out_unlock;
3110 }
3111
3112 /* don't make the dst file partly checksummed */
3113 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3114 (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) {
3115 ret = -EINVAL;
3116 goto out_unlock;
3117 }
3118
3119again:
3120 ret = btrfs_cmp_data_prepare(src, loff, dst, dst_loff, olen, &cmp);
3121 if (ret)
3122 goto out_unlock;
3123
3124 if (same_inode)
3125 ret = lock_extent_range(src, same_lock_start, same_lock_len,
3126 false);
3127 else
3128 ret = btrfs_double_extent_lock(src, loff, dst, dst_loff, len,
3129 false);
3130 /*
3131 * If one of the inodes has dirty pages in the respective range or
3132 * ordered extents, we need to flush dellaloc and wait for all ordered
3133 * extents in the range. We must unlock the pages and the ranges in the
3134 * io trees to avoid deadlocks when flushing delalloc (requires locking
3135 * pages) and when waiting for ordered extents to complete (they require
3136 * range locking).
3137 */
3138 if (ret == -EAGAIN) {
3139 /*
3140 * Ranges in the io trees already unlocked. Now unlock all
3141 * pages before waiting for all IO to complete.
3142 */
3143 btrfs_cmp_data_free(&cmp);
3144 if (same_inode) {
3145 btrfs_wait_ordered_range(src, same_lock_start,
3146 same_lock_len);
3147 } else {
3148 btrfs_wait_ordered_range(src, loff, len);
3149 btrfs_wait_ordered_range(dst, dst_loff, len);
3150 }
3151 goto again;
3152 }
3153 ASSERT(ret == 0);
3154 if (WARN_ON(ret)) {
3155 /* ranges in the io trees already unlocked */
3156 btrfs_cmp_data_free(&cmp);
3157 return ret;
3158 }
3159
3160 /* pass original length for comparison so we stay within i_size */
3161 ret = btrfs_cmp_data(src, loff, dst, dst_loff, olen, &cmp);
3162 if (ret == 0)
3163 ret = btrfs_clone(src, dst, loff, olen, len, dst_loff, 1);
3164
3165 if (same_inode)
3166 unlock_extent(&BTRFS_I(src)->io_tree, same_lock_start,
3167 same_lock_start + same_lock_len - 1);
3168 else
3169 btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
3170
3171 btrfs_cmp_data_free(&cmp);
3172out_unlock:
3173 if (same_inode)
3174 inode_unlock(src);
3175 else
3176 btrfs_double_inode_unlock(src, dst);
3177
3178 return ret;
3179}
3180
3181#define BTRFS_MAX_DEDUPE_LEN SZ_16M
3182
3183ssize_t btrfs_dedupe_file_range(struct file *src_file, u64 loff, u64 olen,
3184 struct file *dst_file, u64 dst_loff)
3185{
3186 struct inode *src = file_inode(src_file);
3187 struct inode *dst = file_inode(dst_file);
3188 u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
3189 ssize_t res;
3190
3191 if (olen > BTRFS_MAX_DEDUPE_LEN)
3192 olen = BTRFS_MAX_DEDUPE_LEN;
3193
3194 if (WARN_ON_ONCE(bs < PAGE_SIZE)) {
3195 /*
3196 * Btrfs does not support blocksize < page_size. As a
3197 * result, btrfs_cmp_data() won't correctly handle
3198 * this situation without an update.
3199 */
3200 return -EINVAL;
3201 }
3202
3203 res = btrfs_extent_same(src, loff, olen, dst, dst_loff);
3204 if (res)
3205 return res;
3206 return olen;
3207}
3208
3209static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
3210 struct inode *inode,
3211 u64 endoff,
3212 const u64 destoff,
3213 const u64 olen,
3214 int no_time_update)
3215{
3216 struct btrfs_root *root = BTRFS_I(inode)->root;
3217 int ret;
3218
3219 inode_inc_iversion(inode);
3220 if (!no_time_update)
3221 inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb);
3222 /*
3223 * We round up to the block size at eof when determining which
3224 * extents to clone above, but shouldn't round up the file size.
3225 */
3226 if (endoff > destoff + olen)
3227 endoff = destoff + olen;
3228 if (endoff > inode->i_size)
3229 btrfs_i_size_write(inode, endoff);
3230
3231 ret = btrfs_update_inode(trans, root, inode);
3232 if (ret) {
3233 btrfs_abort_transaction(trans, root, ret);
3234 btrfs_end_transaction(trans, root);
3235 goto out;
3236 }
3237 ret = btrfs_end_transaction(trans, root);
3238out:
3239 return ret;
3240}
3241
3242static void clone_update_extent_map(struct inode *inode,
3243 const struct btrfs_trans_handle *trans,
3244 const struct btrfs_path *path,
3245 const u64 hole_offset,
3246 const u64 hole_len)
3247{
3248 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3249 struct extent_map *em;
3250 int ret;
3251
3252 em = alloc_extent_map();
3253 if (!em) {
3254 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3255 &BTRFS_I(inode)->runtime_flags);
3256 return;
3257 }
3258
3259 if (path) {
3260 struct btrfs_file_extent_item *fi;
3261
3262 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
3263 struct btrfs_file_extent_item);
3264 btrfs_extent_item_to_extent_map(inode, path, fi, false, em);
3265 em->generation = -1;
3266 if (btrfs_file_extent_type(path->nodes[0], fi) ==
3267 BTRFS_FILE_EXTENT_INLINE)
3268 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3269 &BTRFS_I(inode)->runtime_flags);
3270 } else {
3271 em->start = hole_offset;
3272 em->len = hole_len;
3273 em->ram_bytes = em->len;
3274 em->orig_start = hole_offset;
3275 em->block_start = EXTENT_MAP_HOLE;
3276 em->block_len = 0;
3277 em->orig_block_len = 0;
3278 em->compress_type = BTRFS_COMPRESS_NONE;
3279 em->generation = trans->transid;
3280 }
3281
3282 while (1) {
3283 write_lock(&em_tree->lock);
3284 ret = add_extent_mapping(em_tree, em, 1);
3285 write_unlock(&em_tree->lock);
3286 if (ret != -EEXIST) {
3287 free_extent_map(em);
3288 break;
3289 }
3290 btrfs_drop_extent_cache(inode, em->start,
3291 em->start + em->len - 1, 0);
3292 }
3293
3294 if (ret)
3295 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3296 &BTRFS_I(inode)->runtime_flags);
3297}
3298
3299/*
3300 * Make sure we do not end up inserting an inline extent into a file that has
3301 * already other (non-inline) extents. If a file has an inline extent it can
3302 * not have any other extents and the (single) inline extent must start at the
3303 * file offset 0. Failing to respect these rules will lead to file corruption,
3304 * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc
3305 *
3306 * We can have extents that have been already written to disk or we can have
3307 * dirty ranges still in delalloc, in which case the extent maps and items are
3308 * created only when we run delalloc, and the delalloc ranges might fall outside
3309 * the range we are currently locking in the inode's io tree. So we check the
3310 * inode's i_size because of that (i_size updates are done while holding the
3311 * i_mutex, which we are holding here).
3312 * We also check to see if the inode has a size not greater than "datal" but has
3313 * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are
3314 * protected against such concurrent fallocate calls by the i_mutex).
3315 *
3316 * If the file has no extents but a size greater than datal, do not allow the
3317 * copy because we would need turn the inline extent into a non-inline one (even
3318 * with NO_HOLES enabled). If we find our destination inode only has one inline
3319 * extent, just overwrite it with the source inline extent if its size is less
3320 * than the source extent's size, or we could copy the source inline extent's
3321 * data into the destination inode's inline extent if the later is greater then
3322 * the former.
3323 */
3324static int clone_copy_inline_extent(struct inode *src,
3325 struct inode *dst,
3326 struct btrfs_trans_handle *trans,
3327 struct btrfs_path *path,
3328 struct btrfs_key *new_key,
3329 const u64 drop_start,
3330 const u64 datal,
3331 const u64 skip,
3332 const u64 size,
3333 char *inline_data)
3334{
3335 struct btrfs_root *root = BTRFS_I(dst)->root;
3336 const u64 aligned_end = ALIGN(new_key->offset + datal,
3337 root->sectorsize);
3338 int ret;
3339 struct btrfs_key key;
3340
3341 if (new_key->offset > 0)
3342 return -EOPNOTSUPP;
3343
3344 key.objectid = btrfs_ino(dst);
3345 key.type = BTRFS_EXTENT_DATA_KEY;
3346 key.offset = 0;
3347 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3348 if (ret < 0) {
3349 return ret;
3350 } else if (ret > 0) {
3351 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
3352 ret = btrfs_next_leaf(root, path);
3353 if (ret < 0)
3354 return ret;
3355 else if (ret > 0)
3356 goto copy_inline_extent;
3357 }
3358 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3359 if (key.objectid == btrfs_ino(dst) &&
3360 key.type == BTRFS_EXTENT_DATA_KEY) {
3361 ASSERT(key.offset > 0);
3362 return -EOPNOTSUPP;
3363 }
3364 } else if (i_size_read(dst) <= datal) {
3365 struct btrfs_file_extent_item *ei;
3366 u64 ext_len;
3367
3368 /*
3369 * If the file size is <= datal, make sure there are no other
3370 * extents following (can happen do to an fallocate call with
3371 * the flag FALLOC_FL_KEEP_SIZE).
3372 */
3373 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3374 struct btrfs_file_extent_item);
3375 /*
3376 * If it's an inline extent, it can not have other extents
3377 * following it.
3378 */
3379 if (btrfs_file_extent_type(path->nodes[0], ei) ==
3380 BTRFS_FILE_EXTENT_INLINE)
3381 goto copy_inline_extent;
3382
3383 ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
3384 if (ext_len > aligned_end)
3385 return -EOPNOTSUPP;
3386
3387 ret = btrfs_next_item(root, path);
3388 if (ret < 0) {
3389 return ret;
3390 } else if (ret == 0) {
3391 btrfs_item_key_to_cpu(path->nodes[0], &key,
3392 path->slots[0]);
3393 if (key.objectid == btrfs_ino(dst) &&
3394 key.type == BTRFS_EXTENT_DATA_KEY)
3395 return -EOPNOTSUPP;
3396 }
3397 }
3398
3399copy_inline_extent:
3400 /*
3401 * We have no extent items, or we have an extent at offset 0 which may
3402 * or may not be inlined. All these cases are dealt the same way.
3403 */
3404 if (i_size_read(dst) > datal) {
3405 /*
3406 * If the destination inode has an inline extent...
3407 * This would require copying the data from the source inline
3408 * extent into the beginning of the destination's inline extent.
3409 * But this is really complex, both extents can be compressed
3410 * or just one of them, which would require decompressing and
3411 * re-compressing data (which could increase the new compressed
3412 * size, not allowing the compressed data to fit anymore in an
3413 * inline extent).
3414 * So just don't support this case for now (it should be rare,
3415 * we are not really saving space when cloning inline extents).
3416 */
3417 return -EOPNOTSUPP;
3418 }
3419
3420 btrfs_release_path(path);
3421 ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1);
3422 if (ret)
3423 return ret;
3424 ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
3425 if (ret)
3426 return ret;
3427
3428 if (skip) {
3429 const u32 start = btrfs_file_extent_calc_inline_size(0);
3430
3431 memmove(inline_data + start, inline_data + start + skip, datal);
3432 }
3433
3434 write_extent_buffer(path->nodes[0], inline_data,
3435 btrfs_item_ptr_offset(path->nodes[0],
3436 path->slots[0]),
3437 size);
3438 inode_add_bytes(dst, datal);
3439
3440 return 0;
3441}
3442
3443/**
3444 * btrfs_clone() - clone a range from inode file to another
3445 *
3446 * @src: Inode to clone from
3447 * @inode: Inode to clone to
3448 * @off: Offset within source to start clone from
3449 * @olen: Original length, passed by user, of range to clone
3450 * @olen_aligned: Block-aligned value of olen
3451 * @destoff: Offset within @inode to start clone
3452 * @no_time_update: Whether to update mtime/ctime on the target inode
3453 */
3454static int btrfs_clone(struct inode *src, struct inode *inode,
3455 const u64 off, const u64 olen, const u64 olen_aligned,
3456 const u64 destoff, int no_time_update)
3457{
3458 struct btrfs_root *root = BTRFS_I(inode)->root;
3459 struct btrfs_path *path = NULL;
3460 struct extent_buffer *leaf;
3461 struct btrfs_trans_handle *trans;
3462 char *buf = NULL;
3463 struct btrfs_key key;
3464 u32 nritems;
3465 int slot;
3466 int ret;
3467 const u64 len = olen_aligned;
3468 u64 last_dest_end = destoff;
3469
3470 ret = -ENOMEM;
3471 buf = vmalloc(root->nodesize);
3472 if (!buf)
3473 return ret;
3474
3475 path = btrfs_alloc_path();
3476 if (!path) {
3477 vfree(buf);
3478 return ret;
3479 }
3480
3481 path->reada = READA_FORWARD;
3482 /* clone data */
3483 key.objectid = btrfs_ino(src);
3484 key.type = BTRFS_EXTENT_DATA_KEY;
3485 key.offset = off;
3486
3487 while (1) {
3488 u64 next_key_min_offset = key.offset + 1;
3489
3490 /*
3491 * note the key will change type as we walk through the
3492 * tree.
3493 */
3494 path->leave_spinning = 1;
3495 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
3496 0, 0);
3497 if (ret < 0)
3498 goto out;
3499 /*
3500 * First search, if no extent item that starts at offset off was
3501 * found but the previous item is an extent item, it's possible
3502 * it might overlap our target range, therefore process it.
3503 */
3504 if (key.offset == off && ret > 0 && path->slots[0] > 0) {
3505 btrfs_item_key_to_cpu(path->nodes[0], &key,
3506 path->slots[0] - 1);
3507 if (key.type == BTRFS_EXTENT_DATA_KEY)
3508 path->slots[0]--;
3509 }
3510
3511 nritems = btrfs_header_nritems(path->nodes[0]);
3512process_slot:
3513 if (path->slots[0] >= nritems) {
3514 ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
3515 if (ret < 0)
3516 goto out;
3517 if (ret > 0)
3518 break;
3519 nritems = btrfs_header_nritems(path->nodes[0]);
3520 }
3521 leaf = path->nodes[0];
3522 slot = path->slots[0];
3523
3524 btrfs_item_key_to_cpu(leaf, &key, slot);
3525 if (key.type > BTRFS_EXTENT_DATA_KEY ||
3526 key.objectid != btrfs_ino(src))
3527 break;
3528
3529 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3530 struct btrfs_file_extent_item *extent;
3531 int type;
3532 u32 size;
3533 struct btrfs_key new_key;
3534 u64 disko = 0, diskl = 0;
3535 u64 datao = 0, datal = 0;
3536 u8 comp;
3537 u64 drop_start;
3538
3539 extent = btrfs_item_ptr(leaf, slot,
3540 struct btrfs_file_extent_item);
3541 comp = btrfs_file_extent_compression(leaf, extent);
3542 type = btrfs_file_extent_type(leaf, extent);
3543 if (type == BTRFS_FILE_EXTENT_REG ||
3544 type == BTRFS_FILE_EXTENT_PREALLOC) {
3545 disko = btrfs_file_extent_disk_bytenr(leaf,
3546 extent);
3547 diskl = btrfs_file_extent_disk_num_bytes(leaf,
3548 extent);
3549 datao = btrfs_file_extent_offset(leaf, extent);
3550 datal = btrfs_file_extent_num_bytes(leaf,
3551 extent);
3552 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
3553 /* take upper bound, may be compressed */
3554 datal = btrfs_file_extent_ram_bytes(leaf,
3555 extent);
3556 }
3557
3558 /*
3559 * The first search might have left us at an extent
3560 * item that ends before our target range's start, can
3561 * happen if we have holes and NO_HOLES feature enabled.
3562 */
3563 if (key.offset + datal <= off) {
3564 path->slots[0]++;
3565 goto process_slot;
3566 } else if (key.offset >= off + len) {
3567 break;
3568 }
3569 next_key_min_offset = key.offset + datal;
3570 size = btrfs_item_size_nr(leaf, slot);
3571 read_extent_buffer(leaf, buf,
3572 btrfs_item_ptr_offset(leaf, slot),
3573 size);
3574
3575 btrfs_release_path(path);
3576 path->leave_spinning = 0;
3577
3578 memcpy(&new_key, &key, sizeof(new_key));
3579 new_key.objectid = btrfs_ino(inode);
3580 if (off <= key.offset)
3581 new_key.offset = key.offset + destoff - off;
3582 else
3583 new_key.offset = destoff;
3584
3585 /*
3586 * Deal with a hole that doesn't have an extent item
3587 * that represents it (NO_HOLES feature enabled).
3588 * This hole is either in the middle of the cloning
3589 * range or at the beginning (fully overlaps it or
3590 * partially overlaps it).
3591 */
3592 if (new_key.offset != last_dest_end)
3593 drop_start = last_dest_end;
3594 else
3595 drop_start = new_key.offset;
3596
3597 /*
3598 * 1 - adjusting old extent (we may have to split it)
3599 * 1 - add new extent
3600 * 1 - inode update
3601 */
3602 trans = btrfs_start_transaction(root, 3);
3603 if (IS_ERR(trans)) {
3604 ret = PTR_ERR(trans);
3605 goto out;
3606 }
3607
3608 if (type == BTRFS_FILE_EXTENT_REG ||
3609 type == BTRFS_FILE_EXTENT_PREALLOC) {
3610 /*
3611 * a | --- range to clone ---| b
3612 * | ------------- extent ------------- |
3613 */
3614
3615 /* subtract range b */
3616 if (key.offset + datal > off + len)
3617 datal = off + len - key.offset;
3618
3619 /* subtract range a */
3620 if (off > key.offset) {
3621 datao += off - key.offset;
3622 datal -= off - key.offset;
3623 }
3624
3625 ret = btrfs_drop_extents(trans, root, inode,
3626 drop_start,
3627 new_key.offset + datal,
3628 1);
3629 if (ret) {
3630 if (ret != -EOPNOTSUPP)
3631 btrfs_abort_transaction(trans,
3632 root, ret);
3633 btrfs_end_transaction(trans, root);
3634 goto out;
3635 }
3636
3637 ret = btrfs_insert_empty_item(trans, root, path,
3638 &new_key, size);
3639 if (ret) {
3640 btrfs_abort_transaction(trans, root,
3641 ret);
3642 btrfs_end_transaction(trans, root);
3643 goto out;
3644 }
3645
3646 leaf = path->nodes[0];
3647 slot = path->slots[0];
3648 write_extent_buffer(leaf, buf,
3649 btrfs_item_ptr_offset(leaf, slot),
3650 size);
3651
3652 extent = btrfs_item_ptr(leaf, slot,
3653 struct btrfs_file_extent_item);
3654
3655 /* disko == 0 means it's a hole */
3656 if (!disko)
3657 datao = 0;
3658
3659 btrfs_set_file_extent_offset(leaf, extent,
3660 datao);
3661 btrfs_set_file_extent_num_bytes(leaf, extent,
3662 datal);
3663
3664 if (disko) {
3665 inode_add_bytes(inode, datal);
3666 ret = btrfs_inc_extent_ref(trans, root,
3667 disko, diskl, 0,
3668 root->root_key.objectid,
3669 btrfs_ino(inode),
3670 new_key.offset - datao);
3671 if (ret) {
3672 btrfs_abort_transaction(trans,
3673 root,
3674 ret);
3675 btrfs_end_transaction(trans,
3676 root);
3677 goto out;
3678
3679 }
3680 }
3681 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
3682 u64 skip = 0;
3683 u64 trim = 0;
3684
3685 if (off > key.offset) {
3686 skip = off - key.offset;
3687 new_key.offset += skip;
3688 }
3689
3690 if (key.offset + datal > off + len)
3691 trim = key.offset + datal - (off + len);
3692
3693 if (comp && (skip || trim)) {
3694 ret = -EINVAL;
3695 btrfs_end_transaction(trans, root);
3696 goto out;
3697 }
3698 size -= skip + trim;
3699 datal -= skip + trim;
3700
3701 ret = clone_copy_inline_extent(src, inode,
3702 trans, path,
3703 &new_key,
3704 drop_start,
3705 datal,
3706 skip, size, buf);
3707 if (ret) {
3708 if (ret != -EOPNOTSUPP)
3709 btrfs_abort_transaction(trans,
3710 root,
3711 ret);
3712 btrfs_end_transaction(trans, root);
3713 goto out;
3714 }
3715 leaf = path->nodes[0];
3716 slot = path->slots[0];
3717 }
3718
3719 /* If we have an implicit hole (NO_HOLES feature). */
3720 if (drop_start < new_key.offset)
3721 clone_update_extent_map(inode, trans,
3722 NULL, drop_start,
3723 new_key.offset - drop_start);
3724
3725 clone_update_extent_map(inode, trans, path, 0, 0);
3726
3727 btrfs_mark_buffer_dirty(leaf);
3728 btrfs_release_path(path);
3729
3730 last_dest_end = ALIGN(new_key.offset + datal,
3731 root->sectorsize);
3732 ret = clone_finish_inode_update(trans, inode,
3733 last_dest_end,
3734 destoff, olen,
3735 no_time_update);
3736 if (ret)
3737 goto out;
3738 if (new_key.offset + datal >= destoff + len)
3739 break;
3740 }
3741 btrfs_release_path(path);
3742 key.offset = next_key_min_offset;
3743 }
3744 ret = 0;
3745
3746 if (last_dest_end < destoff + len) {
3747 /*
3748 * We have an implicit hole (NO_HOLES feature is enabled) that
3749 * fully or partially overlaps our cloning range at its end.
3750 */
3751 btrfs_release_path(path);
3752
3753 /*
3754 * 1 - remove extent(s)
3755 * 1 - inode update
3756 */
3757 trans = btrfs_start_transaction(root, 2);
3758 if (IS_ERR(trans)) {
3759 ret = PTR_ERR(trans);
3760 goto out;
3761 }
3762 ret = btrfs_drop_extents(trans, root, inode,
3763 last_dest_end, destoff + len, 1);
3764 if (ret) {
3765 if (ret != -EOPNOTSUPP)
3766 btrfs_abort_transaction(trans, root, ret);
3767 btrfs_end_transaction(trans, root);
3768 goto out;
3769 }
3770 clone_update_extent_map(inode, trans, NULL, last_dest_end,
3771 destoff + len - last_dest_end);
3772 ret = clone_finish_inode_update(trans, inode, destoff + len,
3773 destoff, olen, no_time_update);
3774 }
3775
3776out:
3777 btrfs_free_path(path);
3778 vfree(buf);
3779 return ret;
3780}
3781
3782static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
3783 u64 off, u64 olen, u64 destoff)
3784{
3785 struct inode *inode = file_inode(file);
3786 struct inode *src = file_inode(file_src);
3787 struct btrfs_root *root = BTRFS_I(inode)->root;
3788 int ret;
3789 u64 len = olen;
3790 u64 bs = root->fs_info->sb->s_blocksize;
3791 int same_inode = src == inode;
3792
3793 /*
3794 * TODO:
3795 * - split compressed inline extents. annoying: we need to
3796 * decompress into destination's address_space (the file offset
3797 * may change, so source mapping won't do), then recompress (or
3798 * otherwise reinsert) a subrange.
3799 *
3800 * - split destination inode's inline extents. The inline extents can
3801 * be either compressed or non-compressed.
3802 */
3803
3804 if (btrfs_root_readonly(root))
3805 return -EROFS;
3806
3807 if (file_src->f_path.mnt != file->f_path.mnt ||
3808 src->i_sb != inode->i_sb)
3809 return -EXDEV;
3810
3811 /* don't make the dst file partly checksummed */
3812 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3813 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
3814 return -EINVAL;
3815
3816 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
3817 return -EISDIR;
3818
3819 if (!same_inode) {
3820 btrfs_double_inode_lock(src, inode);
3821 } else {
3822 inode_lock(src);
3823 }
3824
3825 /* determine range to clone */
3826 ret = -EINVAL;
3827 if (off + len > src->i_size || off + len < off)
3828 goto out_unlock;
3829 if (len == 0)
3830 olen = len = src->i_size - off;
3831 /* if we extend to eof, continue to block boundary */
3832 if (off + len == src->i_size)
3833 len = ALIGN(src->i_size, bs) - off;
3834
3835 if (len == 0) {
3836 ret = 0;
3837 goto out_unlock;
3838 }
3839
3840 /* verify the end result is block aligned */
3841 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
3842 !IS_ALIGNED(destoff, bs))
3843 goto out_unlock;
3844
3845 /* verify if ranges are overlapped within the same file */
3846 if (same_inode) {
3847 if (destoff + len > off && destoff < off + len)
3848 goto out_unlock;
3849 }
3850
3851 if (destoff > inode->i_size) {
3852 ret = btrfs_cont_expand(inode, inode->i_size, destoff);
3853 if (ret)
3854 goto out_unlock;
3855 }
3856
3857 /*
3858 * Lock the target range too. Right after we replace the file extent
3859 * items in the fs tree (which now point to the cloned data), we might
3860 * have a worker replace them with extent items relative to a write
3861 * operation that was issued before this clone operation (i.e. confront
3862 * with inode.c:btrfs_finish_ordered_io).
3863 */
3864 if (same_inode) {
3865 u64 lock_start = min_t(u64, off, destoff);
3866 u64 lock_len = max_t(u64, off, destoff) + len - lock_start;
3867
3868 ret = lock_extent_range(src, lock_start, lock_len, true);
3869 } else {
3870 ret = btrfs_double_extent_lock(src, off, inode, destoff, len,
3871 true);
3872 }
3873 ASSERT(ret == 0);
3874 if (WARN_ON(ret)) {
3875 /* ranges in the io trees already unlocked */
3876 goto out_unlock;
3877 }
3878
3879 ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
3880
3881 if (same_inode) {
3882 u64 lock_start = min_t(u64, off, destoff);
3883 u64 lock_end = max_t(u64, off, destoff) + len - 1;
3884
3885 unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end);
3886 } else {
3887 btrfs_double_extent_unlock(src, off, inode, destoff, len);
3888 }
3889 /*
3890 * Truncate page cache pages so that future reads will see the cloned
3891 * data immediately and not the previous data.
3892 */
3893 truncate_inode_pages_range(&inode->i_data,
3894 round_down(destoff, PAGE_SIZE),
3895 round_up(destoff + len, PAGE_SIZE) - 1);
3896out_unlock:
3897 if (!same_inode)
3898 btrfs_double_inode_unlock(src, inode);
3899 else
3900 inode_unlock(src);
3901 return ret;
3902}
3903
3904ssize_t btrfs_copy_file_range(struct file *file_in, loff_t pos_in,
3905 struct file *file_out, loff_t pos_out,
3906 size_t len, unsigned int flags)
3907{
3908 ssize_t ret;
3909
3910 ret = btrfs_clone_files(file_out, file_in, pos_in, len, pos_out);
3911 if (ret == 0)
3912 ret = len;
3913 return ret;
3914}
3915
3916int btrfs_clone_file_range(struct file *src_file, loff_t off,
3917 struct file *dst_file, loff_t destoff, u64 len)
3918{
3919 return btrfs_clone_files(dst_file, src_file, off, len, destoff);
3920}
3921
3922/*
3923 * there are many ways the trans_start and trans_end ioctls can lead
3924 * to deadlocks. They should only be used by applications that
3925 * basically own the machine, and have a very in depth understanding
3926 * of all the possible deadlocks and enospc problems.
3927 */
3928static long btrfs_ioctl_trans_start(struct file *file)
3929{
3930 struct inode *inode = file_inode(file);
3931 struct btrfs_root *root = BTRFS_I(inode)->root;
3932 struct btrfs_trans_handle *trans;
3933 int ret;
3934
3935 ret = -EPERM;
3936 if (!capable(CAP_SYS_ADMIN))
3937 goto out;
3938
3939 ret = -EINPROGRESS;
3940 if (file->private_data)
3941 goto out;
3942
3943 ret = -EROFS;
3944 if (btrfs_root_readonly(root))
3945 goto out;
3946
3947 ret = mnt_want_write_file(file);
3948 if (ret)
3949 goto out;
3950
3951 atomic_inc(&root->fs_info->open_ioctl_trans);
3952
3953 ret = -ENOMEM;
3954 trans = btrfs_start_ioctl_transaction(root);
3955 if (IS_ERR(trans))
3956 goto out_drop;
3957
3958 file->private_data = trans;
3959 return 0;
3960
3961out_drop:
3962 atomic_dec(&root->fs_info->open_ioctl_trans);
3963 mnt_drop_write_file(file);
3964out:
3965 return ret;
3966}
3967
3968static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3969{
3970 struct inode *inode = file_inode(file);
3971 struct btrfs_root *root = BTRFS_I(inode)->root;
3972 struct btrfs_root *new_root;
3973 struct btrfs_dir_item *di;
3974 struct btrfs_trans_handle *trans;
3975 struct btrfs_path *path;
3976 struct btrfs_key location;
3977 struct btrfs_disk_key disk_key;
3978 u64 objectid = 0;
3979 u64 dir_id;
3980 int ret;
3981
3982 if (!capable(CAP_SYS_ADMIN))
3983 return -EPERM;
3984
3985 ret = mnt_want_write_file(file);
3986 if (ret)
3987 return ret;
3988
3989 if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3990 ret = -EFAULT;
3991 goto out;
3992 }
3993
3994 if (!objectid)
3995 objectid = BTRFS_FS_TREE_OBJECTID;
3996
3997 location.objectid = objectid;
3998 location.type = BTRFS_ROOT_ITEM_KEY;
3999 location.offset = (u64)-1;
4000
4001 new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
4002 if (IS_ERR(new_root)) {
4003 ret = PTR_ERR(new_root);
4004 goto out;
4005 }
4006
4007 path = btrfs_alloc_path();
4008 if (!path) {
4009 ret = -ENOMEM;
4010 goto out;
4011 }
4012 path->leave_spinning = 1;
4013
4014 trans = btrfs_start_transaction(root, 1);
4015 if (IS_ERR(trans)) {
4016 btrfs_free_path(path);
4017 ret = PTR_ERR(trans);
4018 goto out;
4019 }
4020
4021 dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
4022 di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
4023 dir_id, "default", 7, 1);
4024 if (IS_ERR_OR_NULL(di)) {
4025 btrfs_free_path(path);
4026 btrfs_end_transaction(trans, root);
4027 btrfs_err(new_root->fs_info, "Umm, you don't have the default dir"
4028 "item, this isn't going to work");
4029 ret = -ENOENT;
4030 goto out;
4031 }
4032
4033 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
4034 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
4035 btrfs_mark_buffer_dirty(path->nodes[0]);
4036 btrfs_free_path(path);
4037
4038 btrfs_set_fs_incompat(root->fs_info, DEFAULT_SUBVOL);
4039 btrfs_end_transaction(trans, root);
4040out:
4041 mnt_drop_write_file(file);
4042 return ret;
4043}
4044
4045void btrfs_get_block_group_info(struct list_head *groups_list,
4046 struct btrfs_ioctl_space_info *space)
4047{
4048 struct btrfs_block_group_cache *block_group;
4049
4050 space->total_bytes = 0;
4051 space->used_bytes = 0;
4052 space->flags = 0;
4053 list_for_each_entry(block_group, groups_list, list) {
4054 space->flags = block_group->flags;
4055 space->total_bytes += block_group->key.offset;
4056 space->used_bytes +=
4057 btrfs_block_group_used(&block_group->item);
4058 }
4059}
4060
4061static long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
4062{
4063 struct btrfs_ioctl_space_args space_args;
4064 struct btrfs_ioctl_space_info space;
4065 struct btrfs_ioctl_space_info *dest;
4066 struct btrfs_ioctl_space_info *dest_orig;
4067 struct btrfs_ioctl_space_info __user *user_dest;
4068 struct btrfs_space_info *info;
4069 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
4070 BTRFS_BLOCK_GROUP_SYSTEM,
4071 BTRFS_BLOCK_GROUP_METADATA,
4072 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
4073 int num_types = 4;
4074 int alloc_size;
4075 int ret = 0;
4076 u64 slot_count = 0;
4077 int i, c;
4078
4079 if (copy_from_user(&space_args,
4080 (struct btrfs_ioctl_space_args __user *)arg,
4081 sizeof(space_args)))
4082 return -EFAULT;
4083
4084 for (i = 0; i < num_types; i++) {
4085 struct btrfs_space_info *tmp;
4086
4087 info = NULL;
4088 rcu_read_lock();
4089 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
4090 list) {
4091 if (tmp->flags == types[i]) {
4092 info = tmp;
4093 break;
4094 }
4095 }
4096 rcu_read_unlock();
4097
4098 if (!info)
4099 continue;
4100
4101 down_read(&info->groups_sem);
4102 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4103 if (!list_empty(&info->block_groups[c]))
4104 slot_count++;
4105 }
4106 up_read(&info->groups_sem);
4107 }
4108
4109 /*
4110 * Global block reserve, exported as a space_info
4111 */
4112 slot_count++;
4113
4114 /* space_slots == 0 means they are asking for a count */
4115 if (space_args.space_slots == 0) {
4116 space_args.total_spaces = slot_count;
4117 goto out;
4118 }
4119
4120 slot_count = min_t(u64, space_args.space_slots, slot_count);
4121
4122 alloc_size = sizeof(*dest) * slot_count;
4123
4124 /* we generally have at most 6 or so space infos, one for each raid
4125 * level. So, a whole page should be more than enough for everyone
4126 */
4127 if (alloc_size > PAGE_SIZE)
4128 return -ENOMEM;
4129
4130 space_args.total_spaces = 0;
4131 dest = kmalloc(alloc_size, GFP_KERNEL);
4132 if (!dest)
4133 return -ENOMEM;
4134 dest_orig = dest;
4135
4136 /* now we have a buffer to copy into */
4137 for (i = 0; i < num_types; i++) {
4138 struct btrfs_space_info *tmp;
4139
4140 if (!slot_count)
4141 break;
4142
4143 info = NULL;
4144 rcu_read_lock();
4145 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
4146 list) {
4147 if (tmp->flags == types[i]) {
4148 info = tmp;
4149 break;
4150 }
4151 }
4152 rcu_read_unlock();
4153
4154 if (!info)
4155 continue;
4156 down_read(&info->groups_sem);
4157 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4158 if (!list_empty(&info->block_groups[c])) {
4159 btrfs_get_block_group_info(
4160 &info->block_groups[c], &space);
4161 memcpy(dest, &space, sizeof(space));
4162 dest++;
4163 space_args.total_spaces++;
4164 slot_count--;
4165 }
4166 if (!slot_count)
4167 break;
4168 }
4169 up_read(&info->groups_sem);
4170 }
4171
4172 /*
4173 * Add global block reserve
4174 */
4175 if (slot_count) {
4176 struct btrfs_block_rsv *block_rsv = &root->fs_info->global_block_rsv;
4177
4178 spin_lock(&block_rsv->lock);
4179 space.total_bytes = block_rsv->size;
4180 space.used_bytes = block_rsv->size - block_rsv->reserved;
4181 spin_unlock(&block_rsv->lock);
4182 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
4183 memcpy(dest, &space, sizeof(space));
4184 space_args.total_spaces++;
4185 }
4186
4187 user_dest = (struct btrfs_ioctl_space_info __user *)
4188 (arg + sizeof(struct btrfs_ioctl_space_args));
4189
4190 if (copy_to_user(user_dest, dest_orig, alloc_size))
4191 ret = -EFAULT;
4192
4193 kfree(dest_orig);
4194out:
4195 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
4196 ret = -EFAULT;
4197
4198 return ret;
4199}
4200
4201/*
4202 * there are many ways the trans_start and trans_end ioctls can lead
4203 * to deadlocks. They should only be used by applications that
4204 * basically own the machine, and have a very in depth understanding
4205 * of all the possible deadlocks and enospc problems.
4206 */
4207long btrfs_ioctl_trans_end(struct file *file)
4208{
4209 struct inode *inode = file_inode(file);
4210 struct btrfs_root *root = BTRFS_I(inode)->root;
4211 struct btrfs_trans_handle *trans;
4212
4213 trans = file->private_data;
4214 if (!trans)
4215 return -EINVAL;
4216 file->private_data = NULL;
4217
4218 btrfs_end_transaction(trans, root);
4219
4220 atomic_dec(&root->fs_info->open_ioctl_trans);
4221
4222 mnt_drop_write_file(file);
4223 return 0;
4224}
4225
4226static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
4227 void __user *argp)
4228{
4229 struct btrfs_trans_handle *trans;
4230 u64 transid;
4231 int ret;
4232
4233 trans = btrfs_attach_transaction_barrier(root);
4234 if (IS_ERR(trans)) {
4235 if (PTR_ERR(trans) != -ENOENT)
4236 return PTR_ERR(trans);
4237
4238 /* No running transaction, don't bother */
4239 transid = root->fs_info->last_trans_committed;
4240 goto out;
4241 }
4242 transid = trans->transid;
4243 ret = btrfs_commit_transaction_async(trans, root, 0);
4244 if (ret) {
4245 btrfs_end_transaction(trans, root);
4246 return ret;
4247 }
4248out:
4249 if (argp)
4250 if (copy_to_user(argp, &transid, sizeof(transid)))
4251 return -EFAULT;
4252 return 0;
4253}
4254
4255static noinline long btrfs_ioctl_wait_sync(struct btrfs_root *root,
4256 void __user *argp)
4257{
4258 u64 transid;
4259
4260 if (argp) {
4261 if (copy_from_user(&transid, argp, sizeof(transid)))
4262 return -EFAULT;
4263 } else {
4264 transid = 0; /* current trans */
4265 }
4266 return btrfs_wait_for_commit(root, transid);
4267}
4268
4269static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
4270{
4271 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4272 struct btrfs_ioctl_scrub_args *sa;
4273 int ret;
4274
4275 if (!capable(CAP_SYS_ADMIN))
4276 return -EPERM;
4277
4278 sa = memdup_user(arg, sizeof(*sa));
4279 if (IS_ERR(sa))
4280 return PTR_ERR(sa);
4281
4282 if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
4283 ret = mnt_want_write_file(file);
4284 if (ret)
4285 goto out;
4286 }
4287
4288 ret = btrfs_scrub_dev(root->fs_info, sa->devid, sa->start, sa->end,
4289 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
4290 0);
4291
4292 if (copy_to_user(arg, sa, sizeof(*sa)))
4293 ret = -EFAULT;
4294
4295 if (!(sa->flags & BTRFS_SCRUB_READONLY))
4296 mnt_drop_write_file(file);
4297out:
4298 kfree(sa);
4299 return ret;
4300}
4301
4302static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg)
4303{
4304 if (!capable(CAP_SYS_ADMIN))
4305 return -EPERM;
4306
4307 return btrfs_scrub_cancel(root->fs_info);
4308}
4309
4310static long btrfs_ioctl_scrub_progress(struct btrfs_root *root,
4311 void __user *arg)
4312{
4313 struct btrfs_ioctl_scrub_args *sa;
4314 int ret;
4315
4316 if (!capable(CAP_SYS_ADMIN))
4317 return -EPERM;
4318
4319 sa = memdup_user(arg, sizeof(*sa));
4320 if (IS_ERR(sa))
4321 return PTR_ERR(sa);
4322
4323 ret = btrfs_scrub_progress(root, sa->devid, &sa->progress);
4324
4325 if (copy_to_user(arg, sa, sizeof(*sa)))
4326 ret = -EFAULT;
4327
4328 kfree(sa);
4329 return ret;
4330}
4331
4332static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root,
4333 void __user *arg)
4334{
4335 struct btrfs_ioctl_get_dev_stats *sa;
4336 int ret;
4337
4338 sa = memdup_user(arg, sizeof(*sa));
4339 if (IS_ERR(sa))
4340 return PTR_ERR(sa);
4341
4342 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
4343 kfree(sa);
4344 return -EPERM;
4345 }
4346
4347 ret = btrfs_get_dev_stats(root, sa);
4348
4349 if (copy_to_user(arg, sa, sizeof(*sa)))
4350 ret = -EFAULT;
4351
4352 kfree(sa);
4353 return ret;
4354}
4355
4356static long btrfs_ioctl_dev_replace(struct btrfs_root *root, void __user *arg)
4357{
4358 struct btrfs_ioctl_dev_replace_args *p;
4359 int ret;
4360
4361 if (!capable(CAP_SYS_ADMIN))
4362 return -EPERM;
4363
4364 p = memdup_user(arg, sizeof(*p));
4365 if (IS_ERR(p))
4366 return PTR_ERR(p);
4367
4368 switch (p->cmd) {
4369 case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
4370 if (root->fs_info->sb->s_flags & MS_RDONLY) {
4371 ret = -EROFS;
4372 goto out;
4373 }
4374 if (atomic_xchg(
4375 &root->fs_info->mutually_exclusive_operation_running,
4376 1)) {
4377 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4378 } else {
4379 ret = btrfs_dev_replace_start(root, p);
4380 atomic_set(
4381 &root->fs_info->mutually_exclusive_operation_running,
4382 0);
4383 }
4384 break;
4385 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
4386 btrfs_dev_replace_status(root->fs_info, p);
4387 ret = 0;
4388 break;
4389 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
4390 ret = btrfs_dev_replace_cancel(root->fs_info, p);
4391 break;
4392 default:
4393 ret = -EINVAL;
4394 break;
4395 }
4396
4397 if (copy_to_user(arg, p, sizeof(*p)))
4398 ret = -EFAULT;
4399out:
4400 kfree(p);
4401 return ret;
4402}
4403
4404static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
4405{
4406 int ret = 0;
4407 int i;
4408 u64 rel_ptr;
4409 int size;
4410 struct btrfs_ioctl_ino_path_args *ipa = NULL;
4411 struct inode_fs_paths *ipath = NULL;
4412 struct btrfs_path *path;
4413
4414 if (!capable(CAP_DAC_READ_SEARCH))
4415 return -EPERM;
4416
4417 path = btrfs_alloc_path();
4418 if (!path) {
4419 ret = -ENOMEM;
4420 goto out;
4421 }
4422
4423 ipa = memdup_user(arg, sizeof(*ipa));
4424 if (IS_ERR(ipa)) {
4425 ret = PTR_ERR(ipa);
4426 ipa = NULL;
4427 goto out;
4428 }
4429
4430 size = min_t(u32, ipa->size, 4096);
4431 ipath = init_ipath(size, root, path);
4432 if (IS_ERR(ipath)) {
4433 ret = PTR_ERR(ipath);
4434 ipath = NULL;
4435 goto out;
4436 }
4437
4438 ret = paths_from_inode(ipa->inum, ipath);
4439 if (ret < 0)
4440 goto out;
4441
4442 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
4443 rel_ptr = ipath->fspath->val[i] -
4444 (u64)(unsigned long)ipath->fspath->val;
4445 ipath->fspath->val[i] = rel_ptr;
4446 }
4447
4448 ret = copy_to_user((void *)(unsigned long)ipa->fspath,
4449 (void *)(unsigned long)ipath->fspath, size);
4450 if (ret) {
4451 ret = -EFAULT;
4452 goto out;
4453 }
4454
4455out:
4456 btrfs_free_path(path);
4457 free_ipath(ipath);
4458 kfree(ipa);
4459
4460 return ret;
4461}
4462
4463static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
4464{
4465 struct btrfs_data_container *inodes = ctx;
4466 const size_t c = 3 * sizeof(u64);
4467
4468 if (inodes->bytes_left >= c) {
4469 inodes->bytes_left -= c;
4470 inodes->val[inodes->elem_cnt] = inum;
4471 inodes->val[inodes->elem_cnt + 1] = offset;
4472 inodes->val[inodes->elem_cnt + 2] = root;
4473 inodes->elem_cnt += 3;
4474 } else {
4475 inodes->bytes_missing += c - inodes->bytes_left;
4476 inodes->bytes_left = 0;
4477 inodes->elem_missed += 3;
4478 }
4479
4480 return 0;
4481}
4482
4483static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root,
4484 void __user *arg)
4485{
4486 int ret = 0;
4487 int size;
4488 struct btrfs_ioctl_logical_ino_args *loi;
4489 struct btrfs_data_container *inodes = NULL;
4490 struct btrfs_path *path = NULL;
4491
4492 if (!capable(CAP_SYS_ADMIN))
4493 return -EPERM;
4494
4495 loi = memdup_user(arg, sizeof(*loi));
4496 if (IS_ERR(loi)) {
4497 ret = PTR_ERR(loi);
4498 loi = NULL;
4499 goto out;
4500 }
4501
4502 path = btrfs_alloc_path();
4503 if (!path) {
4504 ret = -ENOMEM;
4505 goto out;
4506 }
4507
4508 size = min_t(u32, loi->size, SZ_64K);
4509 inodes = init_data_container(size);
4510 if (IS_ERR(inodes)) {
4511 ret = PTR_ERR(inodes);
4512 inodes = NULL;
4513 goto out;
4514 }
4515
4516 ret = iterate_inodes_from_logical(loi->logical, root->fs_info, path,
4517 build_ino_list, inodes);
4518 if (ret == -EINVAL)
4519 ret = -ENOENT;
4520 if (ret < 0)
4521 goto out;
4522
4523 ret = copy_to_user((void *)(unsigned long)loi->inodes,
4524 (void *)(unsigned long)inodes, size);
4525 if (ret)
4526 ret = -EFAULT;
4527
4528out:
4529 btrfs_free_path(path);
4530 vfree(inodes);
4531 kfree(loi);
4532
4533 return ret;
4534}
4535
4536void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
4537 struct btrfs_ioctl_balance_args *bargs)
4538{
4539 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4540
4541 bargs->flags = bctl->flags;
4542
4543 if (atomic_read(&fs_info->balance_running))
4544 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4545 if (atomic_read(&fs_info->balance_pause_req))
4546 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4547 if (atomic_read(&fs_info->balance_cancel_req))
4548 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4549
4550 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4551 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4552 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4553
4554 if (lock) {
4555 spin_lock(&fs_info->balance_lock);
4556 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4557 spin_unlock(&fs_info->balance_lock);
4558 } else {
4559 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4560 }
4561}
4562
4563static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4564{
4565 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4566 struct btrfs_fs_info *fs_info = root->fs_info;
4567 struct btrfs_ioctl_balance_args *bargs;
4568 struct btrfs_balance_control *bctl;
4569 bool need_unlock; /* for mut. excl. ops lock */
4570 int ret;
4571
4572 if (!capable(CAP_SYS_ADMIN))
4573 return -EPERM;
4574
4575 ret = mnt_want_write_file(file);
4576 if (ret)
4577 return ret;
4578
4579again:
4580 if (!atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) {
4581 mutex_lock(&fs_info->volume_mutex);
4582 mutex_lock(&fs_info->balance_mutex);
4583 need_unlock = true;
4584 goto locked;
4585 }
4586
4587 /*
4588 * mut. excl. ops lock is locked. Three possibilites:
4589 * (1) some other op is running
4590 * (2) balance is running
4591 * (3) balance is paused -- special case (think resume)
4592 */
4593 mutex_lock(&fs_info->balance_mutex);
4594 if (fs_info->balance_ctl) {
4595 /* this is either (2) or (3) */
4596 if (!atomic_read(&fs_info->balance_running)) {
4597 mutex_unlock(&fs_info->balance_mutex);
4598 if (!mutex_trylock(&fs_info->volume_mutex))
4599 goto again;
4600 mutex_lock(&fs_info->balance_mutex);
4601
4602 if (fs_info->balance_ctl &&
4603 !atomic_read(&fs_info->balance_running)) {
4604 /* this is (3) */
4605 need_unlock = false;
4606 goto locked;
4607 }
4608
4609 mutex_unlock(&fs_info->balance_mutex);
4610 mutex_unlock(&fs_info->volume_mutex);
4611 goto again;
4612 } else {
4613 /* this is (2) */
4614 mutex_unlock(&fs_info->balance_mutex);
4615 ret = -EINPROGRESS;
4616 goto out;
4617 }
4618 } else {
4619 /* this is (1) */
4620 mutex_unlock(&fs_info->balance_mutex);
4621 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4622 goto out;
4623 }
4624
4625locked:
4626 BUG_ON(!atomic_read(&fs_info->mutually_exclusive_operation_running));
4627
4628 if (arg) {
4629 bargs = memdup_user(arg, sizeof(*bargs));
4630 if (IS_ERR(bargs)) {
4631 ret = PTR_ERR(bargs);
4632 goto out_unlock;
4633 }
4634
4635 if (bargs->flags & BTRFS_BALANCE_RESUME) {
4636 if (!fs_info->balance_ctl) {
4637 ret = -ENOTCONN;
4638 goto out_bargs;
4639 }
4640
4641 bctl = fs_info->balance_ctl;
4642 spin_lock(&fs_info->balance_lock);
4643 bctl->flags |= BTRFS_BALANCE_RESUME;
4644 spin_unlock(&fs_info->balance_lock);
4645
4646 goto do_balance;
4647 }
4648 } else {
4649 bargs = NULL;
4650 }
4651
4652 if (fs_info->balance_ctl) {
4653 ret = -EINPROGRESS;
4654 goto out_bargs;
4655 }
4656
4657 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4658 if (!bctl) {
4659 ret = -ENOMEM;
4660 goto out_bargs;
4661 }
4662
4663 bctl->fs_info = fs_info;
4664 if (arg) {
4665 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4666 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4667 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4668
4669 bctl->flags = bargs->flags;
4670 } else {
4671 /* balance everything - no filters */
4672 bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4673 }
4674
4675 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4676 ret = -EINVAL;
4677 goto out_bctl;
4678 }
4679
4680do_balance:
4681 /*
4682 * Ownership of bctl and mutually_exclusive_operation_running
4683 * goes to to btrfs_balance. bctl is freed in __cancel_balance,
4684 * or, if restriper was paused all the way until unmount, in
4685 * free_fs_info. mutually_exclusive_operation_running is
4686 * cleared in __cancel_balance.
4687 */
4688 need_unlock = false;
4689
4690 ret = btrfs_balance(bctl, bargs);
4691 bctl = NULL;
4692
4693 if (arg) {
4694 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4695 ret = -EFAULT;
4696 }
4697
4698out_bctl:
4699 kfree(bctl);
4700out_bargs:
4701 kfree(bargs);
4702out_unlock:
4703 mutex_unlock(&fs_info->balance_mutex);
4704 mutex_unlock(&fs_info->volume_mutex);
4705 if (need_unlock)
4706 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
4707out:
4708 mnt_drop_write_file(file);
4709 return ret;
4710}
4711
4712static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd)
4713{
4714 if (!capable(CAP_SYS_ADMIN))
4715 return -EPERM;
4716
4717 switch (cmd) {
4718 case BTRFS_BALANCE_CTL_PAUSE:
4719 return btrfs_pause_balance(root->fs_info);
4720 case BTRFS_BALANCE_CTL_CANCEL:
4721 return btrfs_cancel_balance(root->fs_info);
4722 }
4723
4724 return -EINVAL;
4725}
4726
4727static long btrfs_ioctl_balance_progress(struct btrfs_root *root,
4728 void __user *arg)
4729{
4730 struct btrfs_fs_info *fs_info = root->fs_info;
4731 struct btrfs_ioctl_balance_args *bargs;
4732 int ret = 0;
4733
4734 if (!capable(CAP_SYS_ADMIN))
4735 return -EPERM;
4736
4737 mutex_lock(&fs_info->balance_mutex);
4738 if (!fs_info->balance_ctl) {
4739 ret = -ENOTCONN;
4740 goto out;
4741 }
4742
4743 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4744 if (!bargs) {
4745 ret = -ENOMEM;
4746 goto out;
4747 }
4748
4749 update_ioctl_balance_args(fs_info, 1, bargs);
4750
4751 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4752 ret = -EFAULT;
4753
4754 kfree(bargs);
4755out:
4756 mutex_unlock(&fs_info->balance_mutex);
4757 return ret;
4758}
4759
4760static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4761{
4762 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4763 struct btrfs_ioctl_quota_ctl_args *sa;
4764 struct btrfs_trans_handle *trans = NULL;
4765 int ret;
4766 int err;
4767
4768 if (!capable(CAP_SYS_ADMIN))
4769 return -EPERM;
4770
4771 ret = mnt_want_write_file(file);
4772 if (ret)
4773 return ret;
4774
4775 sa = memdup_user(arg, sizeof(*sa));
4776 if (IS_ERR(sa)) {
4777 ret = PTR_ERR(sa);
4778 goto drop_write;
4779 }
4780
4781 down_write(&root->fs_info->subvol_sem);
4782 trans = btrfs_start_transaction(root->fs_info->tree_root, 2);
4783 if (IS_ERR(trans)) {
4784 ret = PTR_ERR(trans);
4785 goto out;
4786 }
4787
4788 switch (sa->cmd) {
4789 case BTRFS_QUOTA_CTL_ENABLE:
4790 ret = btrfs_quota_enable(trans, root->fs_info);
4791 break;
4792 case BTRFS_QUOTA_CTL_DISABLE:
4793 ret = btrfs_quota_disable(trans, root->fs_info);
4794 break;
4795 default:
4796 ret = -EINVAL;
4797 break;
4798 }
4799
4800 err = btrfs_commit_transaction(trans, root->fs_info->tree_root);
4801 if (err && !ret)
4802 ret = err;
4803out:
4804 kfree(sa);
4805 up_write(&root->fs_info->subvol_sem);
4806drop_write:
4807 mnt_drop_write_file(file);
4808 return ret;
4809}
4810
4811static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4812{
4813 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4814 struct btrfs_ioctl_qgroup_assign_args *sa;
4815 struct btrfs_trans_handle *trans;
4816 int ret;
4817 int err;
4818
4819 if (!capable(CAP_SYS_ADMIN))
4820 return -EPERM;
4821
4822 ret = mnt_want_write_file(file);
4823 if (ret)
4824 return ret;
4825
4826 sa = memdup_user(arg, sizeof(*sa));
4827 if (IS_ERR(sa)) {
4828 ret = PTR_ERR(sa);
4829 goto drop_write;
4830 }
4831
4832 trans = btrfs_join_transaction(root);
4833 if (IS_ERR(trans)) {
4834 ret = PTR_ERR(trans);
4835 goto out;
4836 }
4837
4838 /* FIXME: check if the IDs really exist */
4839 if (sa->assign) {
4840 ret = btrfs_add_qgroup_relation(trans, root->fs_info,
4841 sa->src, sa->dst);
4842 } else {
4843 ret = btrfs_del_qgroup_relation(trans, root->fs_info,
4844 sa->src, sa->dst);
4845 }
4846
4847 /* update qgroup status and info */
4848 err = btrfs_run_qgroups(trans, root->fs_info);
4849 if (err < 0)
4850 btrfs_std_error(root->fs_info, ret,
4851 "failed to update qgroup status and info\n");
4852 err = btrfs_end_transaction(trans, root);
4853 if (err && !ret)
4854 ret = err;
4855
4856out:
4857 kfree(sa);
4858drop_write:
4859 mnt_drop_write_file(file);
4860 return ret;
4861}
4862
4863static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4864{
4865 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4866 struct btrfs_ioctl_qgroup_create_args *sa;
4867 struct btrfs_trans_handle *trans;
4868 int ret;
4869 int err;
4870
4871 if (!capable(CAP_SYS_ADMIN))
4872 return -EPERM;
4873
4874 ret = mnt_want_write_file(file);
4875 if (ret)
4876 return ret;
4877
4878 sa = memdup_user(arg, sizeof(*sa));
4879 if (IS_ERR(sa)) {
4880 ret = PTR_ERR(sa);
4881 goto drop_write;
4882 }
4883
4884 if (!sa->qgroupid) {
4885 ret = -EINVAL;
4886 goto out;
4887 }
4888
4889 trans = btrfs_join_transaction(root);
4890 if (IS_ERR(trans)) {
4891 ret = PTR_ERR(trans);
4892 goto out;
4893 }
4894
4895 /* FIXME: check if the IDs really exist */
4896 if (sa->create) {
4897 ret = btrfs_create_qgroup(trans, root->fs_info, sa->qgroupid);
4898 } else {
4899 ret = btrfs_remove_qgroup(trans, root->fs_info, sa->qgroupid);
4900 }
4901
4902 err = btrfs_end_transaction(trans, root);
4903 if (err && !ret)
4904 ret = err;
4905
4906out:
4907 kfree(sa);
4908drop_write:
4909 mnt_drop_write_file(file);
4910 return ret;
4911}
4912
4913static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4914{
4915 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4916 struct btrfs_ioctl_qgroup_limit_args *sa;
4917 struct btrfs_trans_handle *trans;
4918 int ret;
4919 int err;
4920 u64 qgroupid;
4921
4922 if (!capable(CAP_SYS_ADMIN))
4923 return -EPERM;
4924
4925 ret = mnt_want_write_file(file);
4926 if (ret)
4927 return ret;
4928
4929 sa = memdup_user(arg, sizeof(*sa));
4930 if (IS_ERR(sa)) {
4931 ret = PTR_ERR(sa);
4932 goto drop_write;
4933 }
4934
4935 trans = btrfs_join_transaction(root);
4936 if (IS_ERR(trans)) {
4937 ret = PTR_ERR(trans);
4938 goto out;
4939 }
4940
4941 qgroupid = sa->qgroupid;
4942 if (!qgroupid) {
4943 /* take the current subvol as qgroup */
4944 qgroupid = root->root_key.objectid;
4945 }
4946
4947 /* FIXME: check if the IDs really exist */
4948 ret = btrfs_limit_qgroup(trans, root->fs_info, qgroupid, &sa->lim);
4949
4950 err = btrfs_end_transaction(trans, root);
4951 if (err && !ret)
4952 ret = err;
4953
4954out:
4955 kfree(sa);
4956drop_write:
4957 mnt_drop_write_file(file);
4958 return ret;
4959}
4960
4961static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4962{
4963 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4964 struct btrfs_ioctl_quota_rescan_args *qsa;
4965 int ret;
4966
4967 if (!capable(CAP_SYS_ADMIN))
4968 return -EPERM;
4969
4970 ret = mnt_want_write_file(file);
4971 if (ret)
4972 return ret;
4973
4974 qsa = memdup_user(arg, sizeof(*qsa));
4975 if (IS_ERR(qsa)) {
4976 ret = PTR_ERR(qsa);
4977 goto drop_write;
4978 }
4979
4980 if (qsa->flags) {
4981 ret = -EINVAL;
4982 goto out;
4983 }
4984
4985 ret = btrfs_qgroup_rescan(root->fs_info);
4986
4987out:
4988 kfree(qsa);
4989drop_write:
4990 mnt_drop_write_file(file);
4991 return ret;
4992}
4993
4994static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
4995{
4996 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4997 struct btrfs_ioctl_quota_rescan_args *qsa;
4998 int ret = 0;
4999
5000 if (!capable(CAP_SYS_ADMIN))
5001 return -EPERM;
5002
5003 qsa = kzalloc(sizeof(*qsa), GFP_KERNEL);
5004 if (!qsa)
5005 return -ENOMEM;
5006
5007 if (root->fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
5008 qsa->flags = 1;
5009 qsa->progress = root->fs_info->qgroup_rescan_progress.objectid;
5010 }
5011
5012 if (copy_to_user(arg, qsa, sizeof(*qsa)))
5013 ret = -EFAULT;
5014
5015 kfree(qsa);
5016 return ret;
5017}
5018
5019static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
5020{
5021 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5022
5023 if (!capable(CAP_SYS_ADMIN))
5024 return -EPERM;
5025
5026 return btrfs_qgroup_wait_for_completion(root->fs_info);
5027}
5028
5029static long _btrfs_ioctl_set_received_subvol(struct file *file,
5030 struct btrfs_ioctl_received_subvol_args *sa)
5031{
5032 struct inode *inode = file_inode(file);
5033 struct btrfs_root *root = BTRFS_I(inode)->root;
5034 struct btrfs_root_item *root_item = &root->root_item;
5035 struct btrfs_trans_handle *trans;
5036 struct timespec ct = current_fs_time(inode->i_sb);
5037 int ret = 0;
5038 int received_uuid_changed;
5039
5040 if (!inode_owner_or_capable(inode))
5041 return -EPERM;
5042
5043 ret = mnt_want_write_file(file);
5044 if (ret < 0)
5045 return ret;
5046
5047 down_write(&root->fs_info->subvol_sem);
5048
5049 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
5050 ret = -EINVAL;
5051 goto out;
5052 }
5053
5054 if (btrfs_root_readonly(root)) {
5055 ret = -EROFS;
5056 goto out;
5057 }
5058
5059 /*
5060 * 1 - root item
5061 * 2 - uuid items (received uuid + subvol uuid)
5062 */
5063 trans = btrfs_start_transaction(root, 3);
5064 if (IS_ERR(trans)) {
5065 ret = PTR_ERR(trans);
5066 trans = NULL;
5067 goto out;
5068 }
5069
5070 sa->rtransid = trans->transid;
5071 sa->rtime.sec = ct.tv_sec;
5072 sa->rtime.nsec = ct.tv_nsec;
5073
5074 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
5075 BTRFS_UUID_SIZE);
5076 if (received_uuid_changed &&
5077 !btrfs_is_empty_uuid(root_item->received_uuid))
5078 btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
5079 root_item->received_uuid,
5080 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5081 root->root_key.objectid);
5082 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
5083 btrfs_set_root_stransid(root_item, sa->stransid);
5084 btrfs_set_root_rtransid(root_item, sa->rtransid);
5085 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
5086 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
5087 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
5088 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
5089
5090 ret = btrfs_update_root(trans, root->fs_info->tree_root,
5091 &root->root_key, &root->root_item);
5092 if (ret < 0) {
5093 btrfs_end_transaction(trans, root);
5094 goto out;
5095 }
5096 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
5097 ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
5098 sa->uuid,
5099 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5100 root->root_key.objectid);
5101 if (ret < 0 && ret != -EEXIST) {
5102 btrfs_abort_transaction(trans, root, ret);
5103 goto out;
5104 }
5105 }
5106 ret = btrfs_commit_transaction(trans, root);
5107 if (ret < 0) {
5108 btrfs_abort_transaction(trans, root, ret);
5109 goto out;
5110 }
5111
5112out:
5113 up_write(&root->fs_info->subvol_sem);
5114 mnt_drop_write_file(file);
5115 return ret;
5116}
5117
5118#ifdef CONFIG_64BIT
5119static long btrfs_ioctl_set_received_subvol_32(struct file *file,
5120 void __user *arg)
5121{
5122 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
5123 struct btrfs_ioctl_received_subvol_args *args64 = NULL;
5124 int ret = 0;
5125
5126 args32 = memdup_user(arg, sizeof(*args32));
5127 if (IS_ERR(args32)) {
5128 ret = PTR_ERR(args32);
5129 args32 = NULL;
5130 goto out;
5131 }
5132
5133 args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
5134 if (!args64) {
5135 ret = -ENOMEM;
5136 goto out;
5137 }
5138
5139 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
5140 args64->stransid = args32->stransid;
5141 args64->rtransid = args32->rtransid;
5142 args64->stime.sec = args32->stime.sec;
5143 args64->stime.nsec = args32->stime.nsec;
5144 args64->rtime.sec = args32->rtime.sec;
5145 args64->rtime.nsec = args32->rtime.nsec;
5146 args64->flags = args32->flags;
5147
5148 ret = _btrfs_ioctl_set_received_subvol(file, args64);
5149 if (ret)
5150 goto out;
5151
5152 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
5153 args32->stransid = args64->stransid;
5154 args32->rtransid = args64->rtransid;
5155 args32->stime.sec = args64->stime.sec;
5156 args32->stime.nsec = args64->stime.nsec;
5157 args32->rtime.sec = args64->rtime.sec;
5158 args32->rtime.nsec = args64->rtime.nsec;
5159 args32->flags = args64->flags;
5160
5161 ret = copy_to_user(arg, args32, sizeof(*args32));
5162 if (ret)
5163 ret = -EFAULT;
5164
5165out:
5166 kfree(args32);
5167 kfree(args64);
5168 return ret;
5169}
5170#endif
5171
5172static long btrfs_ioctl_set_received_subvol(struct file *file,
5173 void __user *arg)
5174{
5175 struct btrfs_ioctl_received_subvol_args *sa = NULL;
5176 int ret = 0;
5177
5178 sa = memdup_user(arg, sizeof(*sa));
5179 if (IS_ERR(sa)) {
5180 ret = PTR_ERR(sa);
5181 sa = NULL;
5182 goto out;
5183 }
5184
5185 ret = _btrfs_ioctl_set_received_subvol(file, sa);
5186
5187 if (ret)
5188 goto out;
5189
5190 ret = copy_to_user(arg, sa, sizeof(*sa));
5191 if (ret)
5192 ret = -EFAULT;
5193
5194out:
5195 kfree(sa);
5196 return ret;
5197}
5198
5199static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
5200{
5201 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5202 size_t len;
5203 int ret;
5204 char label[BTRFS_LABEL_SIZE];
5205
5206 spin_lock(&root->fs_info->super_lock);
5207 memcpy(label, root->fs_info->super_copy->label, BTRFS_LABEL_SIZE);
5208 spin_unlock(&root->fs_info->super_lock);
5209
5210 len = strnlen(label, BTRFS_LABEL_SIZE);
5211
5212 if (len == BTRFS_LABEL_SIZE) {
5213 btrfs_warn(root->fs_info,
5214 "label is too long, return the first %zu bytes", --len);
5215 }
5216
5217 ret = copy_to_user(arg, label, len);
5218
5219 return ret ? -EFAULT : 0;
5220}
5221
5222static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
5223{
5224 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5225 struct btrfs_super_block *super_block = root->fs_info->super_copy;
5226 struct btrfs_trans_handle *trans;
5227 char label[BTRFS_LABEL_SIZE];
5228 int ret;
5229
5230 if (!capable(CAP_SYS_ADMIN))
5231 return -EPERM;
5232
5233 if (copy_from_user(label, arg, sizeof(label)))
5234 return -EFAULT;
5235
5236 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
5237 btrfs_err(root->fs_info, "unable to set label with more than %d bytes",
5238 BTRFS_LABEL_SIZE - 1);
5239 return -EINVAL;
5240 }
5241
5242 ret = mnt_want_write_file(file);
5243 if (ret)
5244 return ret;
5245
5246 trans = btrfs_start_transaction(root, 0);
5247 if (IS_ERR(trans)) {
5248 ret = PTR_ERR(trans);
5249 goto out_unlock;
5250 }
5251
5252 spin_lock(&root->fs_info->super_lock);
5253 strcpy(super_block->label, label);
5254 spin_unlock(&root->fs_info->super_lock);
5255 ret = btrfs_commit_transaction(trans, root);
5256
5257out_unlock:
5258 mnt_drop_write_file(file);
5259 return ret;
5260}
5261
5262#define INIT_FEATURE_FLAGS(suffix) \
5263 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5264 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5265 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5266
5267int btrfs_ioctl_get_supported_features(void __user *arg)
5268{
5269 static const struct btrfs_ioctl_feature_flags features[3] = {
5270 INIT_FEATURE_FLAGS(SUPP),
5271 INIT_FEATURE_FLAGS(SAFE_SET),
5272 INIT_FEATURE_FLAGS(SAFE_CLEAR)
5273 };
5274
5275 if (copy_to_user(arg, &features, sizeof(features)))
5276 return -EFAULT;
5277
5278 return 0;
5279}
5280
5281static int btrfs_ioctl_get_features(struct file *file, void __user *arg)
5282{
5283 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5284 struct btrfs_super_block *super_block = root->fs_info->super_copy;
5285 struct btrfs_ioctl_feature_flags features;
5286
5287 features.compat_flags = btrfs_super_compat_flags(super_block);
5288 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
5289 features.incompat_flags = btrfs_super_incompat_flags(super_block);
5290
5291 if (copy_to_user(arg, &features, sizeof(features)))
5292 return -EFAULT;
5293
5294 return 0;
5295}
5296
5297static int check_feature_bits(struct btrfs_root *root,
5298 enum btrfs_feature_set set,
5299 u64 change_mask, u64 flags, u64 supported_flags,
5300 u64 safe_set, u64 safe_clear)
5301{
5302 const char *type = btrfs_feature_set_names[set];
5303 char *names;
5304 u64 disallowed, unsupported;
5305 u64 set_mask = flags & change_mask;
5306 u64 clear_mask = ~flags & change_mask;
5307
5308 unsupported = set_mask & ~supported_flags;
5309 if (unsupported) {
5310 names = btrfs_printable_features(set, unsupported);
5311 if (names) {
5312 btrfs_warn(root->fs_info,
5313 "this kernel does not support the %s feature bit%s",
5314 names, strchr(names, ',') ? "s" : "");
5315 kfree(names);
5316 } else
5317 btrfs_warn(root->fs_info,
5318 "this kernel does not support %s bits 0x%llx",
5319 type, unsupported);
5320 return -EOPNOTSUPP;
5321 }
5322
5323 disallowed = set_mask & ~safe_set;
5324 if (disallowed) {
5325 names = btrfs_printable_features(set, disallowed);
5326 if (names) {
5327 btrfs_warn(root->fs_info,
5328 "can't set the %s feature bit%s while mounted",
5329 names, strchr(names, ',') ? "s" : "");
5330 kfree(names);
5331 } else
5332 btrfs_warn(root->fs_info,
5333 "can't set %s bits 0x%llx while mounted",
5334 type, disallowed);
5335 return -EPERM;
5336 }
5337
5338 disallowed = clear_mask & ~safe_clear;
5339 if (disallowed) {
5340 names = btrfs_printable_features(set, disallowed);
5341 if (names) {
5342 btrfs_warn(root->fs_info,
5343 "can't clear the %s feature bit%s while mounted",
5344 names, strchr(names, ',') ? "s" : "");
5345 kfree(names);
5346 } else
5347 btrfs_warn(root->fs_info,
5348 "can't clear %s bits 0x%llx while mounted",
5349 type, disallowed);
5350 return -EPERM;
5351 }
5352
5353 return 0;
5354}
5355
5356#define check_feature(root, change_mask, flags, mask_base) \
5357check_feature_bits(root, FEAT_##mask_base, change_mask, flags, \
5358 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
5359 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
5360 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5361
5362static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
5363{
5364 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5365 struct btrfs_super_block *super_block = root->fs_info->super_copy;
5366 struct btrfs_ioctl_feature_flags flags[2];
5367 struct btrfs_trans_handle *trans;
5368 u64 newflags;
5369 int ret;
5370
5371 if (!capable(CAP_SYS_ADMIN))
5372 return -EPERM;
5373
5374 if (copy_from_user(flags, arg, sizeof(flags)))
5375 return -EFAULT;
5376
5377 /* Nothing to do */
5378 if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
5379 !flags[0].incompat_flags)
5380 return 0;
5381
5382 ret = check_feature(root, flags[0].compat_flags,
5383 flags[1].compat_flags, COMPAT);
5384 if (ret)
5385 return ret;
5386
5387 ret = check_feature(root, flags[0].compat_ro_flags,
5388 flags[1].compat_ro_flags, COMPAT_RO);
5389 if (ret)
5390 return ret;
5391
5392 ret = check_feature(root, flags[0].incompat_flags,
5393 flags[1].incompat_flags, INCOMPAT);
5394 if (ret)
5395 return ret;
5396
5397 trans = btrfs_start_transaction(root, 0);
5398 if (IS_ERR(trans))
5399 return PTR_ERR(trans);
5400
5401 spin_lock(&root->fs_info->super_lock);
5402 newflags = btrfs_super_compat_flags(super_block);
5403 newflags |= flags[0].compat_flags & flags[1].compat_flags;
5404 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
5405 btrfs_set_super_compat_flags(super_block, newflags);
5406
5407 newflags = btrfs_super_compat_ro_flags(super_block);
5408 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
5409 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
5410 btrfs_set_super_compat_ro_flags(super_block, newflags);
5411
5412 newflags = btrfs_super_incompat_flags(super_block);
5413 newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
5414 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
5415 btrfs_set_super_incompat_flags(super_block, newflags);
5416 spin_unlock(&root->fs_info->super_lock);
5417
5418 return btrfs_commit_transaction(trans, root);
5419}
5420
5421long btrfs_ioctl(struct file *file, unsigned int
5422 cmd, unsigned long arg)
5423{
5424 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5425 void __user *argp = (void __user *)arg;
5426
5427 switch (cmd) {
5428 case FS_IOC_GETFLAGS:
5429 return btrfs_ioctl_getflags(file, argp);
5430 case FS_IOC_SETFLAGS:
5431 return btrfs_ioctl_setflags(file, argp);
5432 case FS_IOC_GETVERSION:
5433 return btrfs_ioctl_getversion(file, argp);
5434 case FITRIM:
5435 return btrfs_ioctl_fitrim(file, argp);
5436 case BTRFS_IOC_SNAP_CREATE:
5437 return btrfs_ioctl_snap_create(file, argp, 0);
5438 case BTRFS_IOC_SNAP_CREATE_V2:
5439 return btrfs_ioctl_snap_create_v2(file, argp, 0);
5440 case BTRFS_IOC_SUBVOL_CREATE:
5441 return btrfs_ioctl_snap_create(file, argp, 1);
5442 case BTRFS_IOC_SUBVOL_CREATE_V2:
5443 return btrfs_ioctl_snap_create_v2(file, argp, 1);
5444 case BTRFS_IOC_SNAP_DESTROY:
5445 return btrfs_ioctl_snap_destroy(file, argp);
5446 case BTRFS_IOC_SUBVOL_GETFLAGS:
5447 return btrfs_ioctl_subvol_getflags(file, argp);
5448 case BTRFS_IOC_SUBVOL_SETFLAGS:
5449 return btrfs_ioctl_subvol_setflags(file, argp);
5450 case BTRFS_IOC_DEFAULT_SUBVOL:
5451 return btrfs_ioctl_default_subvol(file, argp);
5452 case BTRFS_IOC_DEFRAG:
5453 return btrfs_ioctl_defrag(file, NULL);
5454 case BTRFS_IOC_DEFRAG_RANGE:
5455 return btrfs_ioctl_defrag(file, argp);
5456 case BTRFS_IOC_RESIZE:
5457 return btrfs_ioctl_resize(file, argp);
5458 case BTRFS_IOC_ADD_DEV:
5459 return btrfs_ioctl_add_dev(root, argp);
5460 case BTRFS_IOC_RM_DEV:
5461 return btrfs_ioctl_rm_dev(file, argp);
5462 case BTRFS_IOC_FS_INFO:
5463 return btrfs_ioctl_fs_info(root, argp);
5464 case BTRFS_IOC_DEV_INFO:
5465 return btrfs_ioctl_dev_info(root, argp);
5466 case BTRFS_IOC_BALANCE:
5467 return btrfs_ioctl_balance(file, NULL);
5468 case BTRFS_IOC_TRANS_START:
5469 return btrfs_ioctl_trans_start(file);
5470 case BTRFS_IOC_TRANS_END:
5471 return btrfs_ioctl_trans_end(file);
5472 case BTRFS_IOC_TREE_SEARCH:
5473 return btrfs_ioctl_tree_search(file, argp);
5474 case BTRFS_IOC_TREE_SEARCH_V2:
5475 return btrfs_ioctl_tree_search_v2(file, argp);
5476 case BTRFS_IOC_INO_LOOKUP:
5477 return btrfs_ioctl_ino_lookup(file, argp);
5478 case BTRFS_IOC_INO_PATHS:
5479 return btrfs_ioctl_ino_to_path(root, argp);
5480 case BTRFS_IOC_LOGICAL_INO:
5481 return btrfs_ioctl_logical_to_ino(root, argp);
5482 case BTRFS_IOC_SPACE_INFO:
5483 return btrfs_ioctl_space_info(root, argp);
5484 case BTRFS_IOC_SYNC: {
5485 int ret;
5486
5487 ret = btrfs_start_delalloc_roots(root->fs_info, 0, -1);
5488 if (ret)
5489 return ret;
5490 ret = btrfs_sync_fs(file_inode(file)->i_sb, 1);
5491 /*
5492 * The transaction thread may want to do more work,
5493 * namely it pokes the cleaner ktread that will start
5494 * processing uncleaned subvols.
5495 */
5496 wake_up_process(root->fs_info->transaction_kthread);
5497 return ret;
5498 }
5499 case BTRFS_IOC_START_SYNC:
5500 return btrfs_ioctl_start_sync(root, argp);
5501 case BTRFS_IOC_WAIT_SYNC:
5502 return btrfs_ioctl_wait_sync(root, argp);
5503 case BTRFS_IOC_SCRUB:
5504 return btrfs_ioctl_scrub(file, argp);
5505 case BTRFS_IOC_SCRUB_CANCEL:
5506 return btrfs_ioctl_scrub_cancel(root, argp);
5507 case BTRFS_IOC_SCRUB_PROGRESS:
5508 return btrfs_ioctl_scrub_progress(root, argp);
5509 case BTRFS_IOC_BALANCE_V2:
5510 return btrfs_ioctl_balance(file, argp);
5511 case BTRFS_IOC_BALANCE_CTL:
5512 return btrfs_ioctl_balance_ctl(root, arg);
5513 case BTRFS_IOC_BALANCE_PROGRESS:
5514 return btrfs_ioctl_balance_progress(root, argp);
5515 case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5516 return btrfs_ioctl_set_received_subvol(file, argp);
5517#ifdef CONFIG_64BIT
5518 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5519 return btrfs_ioctl_set_received_subvol_32(file, argp);
5520#endif
5521 case BTRFS_IOC_SEND:
5522 return btrfs_ioctl_send(file, argp);
5523 case BTRFS_IOC_GET_DEV_STATS:
5524 return btrfs_ioctl_get_dev_stats(root, argp);
5525 case BTRFS_IOC_QUOTA_CTL:
5526 return btrfs_ioctl_quota_ctl(file, argp);
5527 case BTRFS_IOC_QGROUP_ASSIGN:
5528 return btrfs_ioctl_qgroup_assign(file, argp);
5529 case BTRFS_IOC_QGROUP_CREATE:
5530 return btrfs_ioctl_qgroup_create(file, argp);
5531 case BTRFS_IOC_QGROUP_LIMIT:
5532 return btrfs_ioctl_qgroup_limit(file, argp);
5533 case BTRFS_IOC_QUOTA_RESCAN:
5534 return btrfs_ioctl_quota_rescan(file, argp);
5535 case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5536 return btrfs_ioctl_quota_rescan_status(file, argp);
5537 case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5538 return btrfs_ioctl_quota_rescan_wait(file, argp);
5539 case BTRFS_IOC_DEV_REPLACE:
5540 return btrfs_ioctl_dev_replace(root, argp);
5541 case BTRFS_IOC_GET_FSLABEL:
5542 return btrfs_ioctl_get_fslabel(file, argp);
5543 case BTRFS_IOC_SET_FSLABEL:
5544 return btrfs_ioctl_set_fslabel(file, argp);
5545 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5546 return btrfs_ioctl_get_supported_features(argp);
5547 case BTRFS_IOC_GET_FEATURES:
5548 return btrfs_ioctl_get_features(file, argp);
5549 case BTRFS_IOC_SET_FEATURES:
5550 return btrfs_ioctl_set_features(file, argp);
5551 }
5552
5553 return -ENOTTY;
5554}