Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/kernel.h>
   7#include <linux/bio.h>
 
   8#include <linux/file.h>
   9#include <linux/fs.h>
  10#include <linux/fsnotify.h>
  11#include <linux/pagemap.h>
  12#include <linux/highmem.h>
  13#include <linux/time.h>
 
  14#include <linux/string.h>
  15#include <linux/backing-dev.h>
  16#include <linux/mount.h>
 
  17#include <linux/namei.h>
 
  18#include <linux/writeback.h>
 
  19#include <linux/compat.h>
 
  20#include <linux/security.h>
  21#include <linux/xattr.h>
  22#include <linux/mm.h>
  23#include <linux/slab.h>
  24#include <linux/blkdev.h>
  25#include <linux/uuid.h>
  26#include <linux/btrfs.h>
  27#include <linux/uaccess.h>
  28#include <linux/iversion.h>
  29#include <linux/fileattr.h>
  30#include <linux/fsverity.h>
  31#include <linux/sched/xacct.h>
  32#include "ctree.h"
  33#include "disk-io.h"
  34#include "export.h"
  35#include "transaction.h"
  36#include "btrfs_inode.h"
  37#include "print-tree.h"
  38#include "volumes.h"
  39#include "locking.h"
 
  40#include "backref.h"
  41#include "rcu-string.h"
  42#include "send.h"
  43#include "dev-replace.h"
  44#include "props.h"
  45#include "sysfs.h"
  46#include "qgroup.h"
  47#include "tree-log.h"
  48#include "compression.h"
  49#include "space-info.h"
  50#include "delalloc-space.h"
  51#include "block-group.h"
  52#include "subpage.h"
  53#include "fs.h"
  54#include "accessors.h"
  55#include "extent-tree.h"
  56#include "root-tree.h"
  57#include "defrag.h"
  58#include "dir-item.h"
  59#include "uuid-tree.h"
  60#include "ioctl.h"
  61#include "file.h"
  62#include "scrub.h"
  63#include "super.h"
  64
  65#ifdef CONFIG_64BIT
  66/* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
  67 * structures are incorrect, as the timespec structure from userspace
  68 * is 4 bytes too small. We define these alternatives here to teach
  69 * the kernel about the 32-bit struct packing.
  70 */
  71struct btrfs_ioctl_timespec_32 {
  72	__u64 sec;
  73	__u32 nsec;
  74} __attribute__ ((__packed__));
  75
  76struct btrfs_ioctl_received_subvol_args_32 {
  77	char	uuid[BTRFS_UUID_SIZE];	/* in */
  78	__u64	stransid;		/* in */
  79	__u64	rtransid;		/* out */
  80	struct btrfs_ioctl_timespec_32 stime; /* in */
  81	struct btrfs_ioctl_timespec_32 rtime; /* out */
  82	__u64	flags;			/* in */
  83	__u64	reserved[16];		/* in */
  84} __attribute__ ((__packed__));
  85
  86#define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
  87				struct btrfs_ioctl_received_subvol_args_32)
  88#endif
  89
  90#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
  91struct btrfs_ioctl_send_args_32 {
  92	__s64 send_fd;			/* in */
  93	__u64 clone_sources_count;	/* in */
  94	compat_uptr_t clone_sources;	/* in */
  95	__u64 parent_root;		/* in */
  96	__u64 flags;			/* in */
  97	__u32 version;			/* in */
  98	__u8  reserved[28];		/* in */
  99} __attribute__ ((__packed__));
 100
 101#define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
 102			       struct btrfs_ioctl_send_args_32)
 103
 104struct btrfs_ioctl_encoded_io_args_32 {
 105	compat_uptr_t iov;
 106	compat_ulong_t iovcnt;
 107	__s64 offset;
 108	__u64 flags;
 109	__u64 len;
 110	__u64 unencoded_len;
 111	__u64 unencoded_offset;
 112	__u32 compression;
 113	__u32 encryption;
 114	__u8 reserved[64];
 115};
 116
 117#define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \
 118				       struct btrfs_ioctl_encoded_io_args_32)
 119#define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \
 120					struct btrfs_ioctl_encoded_io_args_32)
 121#endif
 122
 123/* Mask out flags that are inappropriate for the given type of inode. */
 124static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
 125		unsigned int flags)
 126{
 127	if (S_ISDIR(inode->i_mode))
 128		return flags;
 129	else if (S_ISREG(inode->i_mode))
 130		return flags & ~FS_DIRSYNC_FL;
 131	else
 132		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
 133}
 134
 135/*
 136 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
 137 * ioctl.
 138 */
 139static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode)
 140{
 141	unsigned int iflags = 0;
 142	u32 flags = binode->flags;
 143	u32 ro_flags = binode->ro_flags;
 144
 145	if (flags & BTRFS_INODE_SYNC)
 146		iflags |= FS_SYNC_FL;
 147	if (flags & BTRFS_INODE_IMMUTABLE)
 148		iflags |= FS_IMMUTABLE_FL;
 149	if (flags & BTRFS_INODE_APPEND)
 150		iflags |= FS_APPEND_FL;
 151	if (flags & BTRFS_INODE_NODUMP)
 152		iflags |= FS_NODUMP_FL;
 153	if (flags & BTRFS_INODE_NOATIME)
 154		iflags |= FS_NOATIME_FL;
 155	if (flags & BTRFS_INODE_DIRSYNC)
 156		iflags |= FS_DIRSYNC_FL;
 157	if (flags & BTRFS_INODE_NODATACOW)
 158		iflags |= FS_NOCOW_FL;
 159	if (ro_flags & BTRFS_INODE_RO_VERITY)
 160		iflags |= FS_VERITY_FL;
 161
 162	if (flags & BTRFS_INODE_NOCOMPRESS)
 163		iflags |= FS_NOCOMP_FL;
 164	else if (flags & BTRFS_INODE_COMPRESS)
 165		iflags |= FS_COMPR_FL;
 
 
 166
 167	return iflags;
 168}
 169
 170/*
 171 * Update inode->i_flags based on the btrfs internal flags.
 172 */
 173void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
 174{
 175	struct btrfs_inode *binode = BTRFS_I(inode);
 176	unsigned int new_fl = 0;
 177
 178	if (binode->flags & BTRFS_INODE_SYNC)
 179		new_fl |= S_SYNC;
 180	if (binode->flags & BTRFS_INODE_IMMUTABLE)
 181		new_fl |= S_IMMUTABLE;
 182	if (binode->flags & BTRFS_INODE_APPEND)
 183		new_fl |= S_APPEND;
 184	if (binode->flags & BTRFS_INODE_NOATIME)
 185		new_fl |= S_NOATIME;
 186	if (binode->flags & BTRFS_INODE_DIRSYNC)
 187		new_fl |= S_DIRSYNC;
 188	if (binode->ro_flags & BTRFS_INODE_RO_VERITY)
 189		new_fl |= S_VERITY;
 190
 191	set_mask_bits(&inode->i_flags,
 192		      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC |
 193		      S_VERITY, new_fl);
 194}
 195
 196/*
 197 * Check if @flags are a supported and valid set of FS_*_FL flags and that
 198 * the old and new flags are not conflicting
 
 199 */
 200static int check_fsflags(unsigned int old_flags, unsigned int flags)
 201{
 202	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
 203		      FS_NOATIME_FL | FS_NODUMP_FL | \
 204		      FS_SYNC_FL | FS_DIRSYNC_FL | \
 205		      FS_NOCOMP_FL | FS_COMPR_FL |
 206		      FS_NOCOW_FL))
 207		return -EOPNOTSUPP;
 208
 209	/* COMPR and NOCOMP on new/old are valid */
 210	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
 211		return -EINVAL;
 212
 213	if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
 214		return -EINVAL;
 215
 216	/* NOCOW and compression options are mutually exclusive */
 217	if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
 218		return -EINVAL;
 219	if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
 220		return -EINVAL;
 
 
 221
 222	return 0;
 
 
 
 
 
 
 223}
 224
 225static int check_fsflags_compatible(struct btrfs_fs_info *fs_info,
 226				    unsigned int flags)
 227{
 228	if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
 229		return -EPERM;
 230
 
 
 231	return 0;
 232}
 233
 234/*
 235 * Set flags/xflags from the internal inode flags. The remaining items of
 236 * fsxattr are zeroed.
 237 */
 238int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
 239{
 240	struct btrfs_inode *binode = BTRFS_I(d_inode(dentry));
 
 
 
 
 
 
 
 
 241
 242	fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode));
 243	return 0;
 244}
 245
 246int btrfs_fileattr_set(struct mnt_idmap *idmap,
 247		       struct dentry *dentry, struct fileattr *fa)
 248{
 249	struct inode *inode = d_inode(dentry);
 250	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 251	struct btrfs_inode *binode = BTRFS_I(inode);
 252	struct btrfs_root *root = binode->root;
 253	struct btrfs_trans_handle *trans;
 254	unsigned int fsflags, old_fsflags;
 255	int ret;
 256	const char *comp = NULL;
 257	u32 binode_flags;
 
 
 
 
 258
 259	if (btrfs_root_readonly(root))
 260		return -EROFS;
 261
 262	if (fileattr_has_fsx(fa))
 263		return -EOPNOTSUPP;
 264
 265	fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags);
 266	old_fsflags = btrfs_inode_flags_to_fsflags(binode);
 267	ret = check_fsflags(old_fsflags, fsflags);
 268	if (ret)
 269		return ret;
 270
 271	ret = check_fsflags_compatible(fs_info, fsflags);
 272	if (ret)
 273		return ret;
 274
 275	binode_flags = binode->flags;
 276	if (fsflags & FS_SYNC_FL)
 277		binode_flags |= BTRFS_INODE_SYNC;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 278	else
 279		binode_flags &= ~BTRFS_INODE_SYNC;
 280	if (fsflags & FS_IMMUTABLE_FL)
 281		binode_flags |= BTRFS_INODE_IMMUTABLE;
 282	else
 283		binode_flags &= ~BTRFS_INODE_IMMUTABLE;
 284	if (fsflags & FS_APPEND_FL)
 285		binode_flags |= BTRFS_INODE_APPEND;
 286	else
 287		binode_flags &= ~BTRFS_INODE_APPEND;
 288	if (fsflags & FS_NODUMP_FL)
 289		binode_flags |= BTRFS_INODE_NODUMP;
 290	else
 291		binode_flags &= ~BTRFS_INODE_NODUMP;
 292	if (fsflags & FS_NOATIME_FL)
 293		binode_flags |= BTRFS_INODE_NOATIME;
 294	else
 295		binode_flags &= ~BTRFS_INODE_NOATIME;
 296
 297	/* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */
 298	if (!fa->flags_valid) {
 299		/* 1 item for the inode */
 300		trans = btrfs_start_transaction(root, 1);
 301		if (IS_ERR(trans))
 302			return PTR_ERR(trans);
 303		goto update_flags;
 304	}
 305
 306	if (fsflags & FS_DIRSYNC_FL)
 307		binode_flags |= BTRFS_INODE_DIRSYNC;
 308	else
 309		binode_flags &= ~BTRFS_INODE_DIRSYNC;
 310	if (fsflags & FS_NOCOW_FL) {
 311		if (S_ISREG(inode->i_mode)) {
 312			/*
 313			 * It's safe to turn csums off here, no extents exist.
 314			 * Otherwise we want the flag to reflect the real COW
 315			 * status of the file and will not set it.
 316			 */
 317			if (inode->i_size == 0)
 318				binode_flags |= BTRFS_INODE_NODATACOW |
 319						BTRFS_INODE_NODATASUM;
 320		} else {
 321			binode_flags |= BTRFS_INODE_NODATACOW;
 322		}
 323	} else {
 324		/*
 325		 * Revert back under same assumptions as above
 326		 */
 327		if (S_ISREG(inode->i_mode)) {
 328			if (inode->i_size == 0)
 329				binode_flags &= ~(BTRFS_INODE_NODATACOW |
 330						  BTRFS_INODE_NODATASUM);
 331		} else {
 332			binode_flags &= ~BTRFS_INODE_NODATACOW;
 333		}
 334	}
 335
 336	/*
 337	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
 338	 * flag may be changed automatically if compression code won't make
 339	 * things smaller.
 340	 */
 341	if (fsflags & FS_NOCOMP_FL) {
 342		binode_flags &= ~BTRFS_INODE_COMPRESS;
 343		binode_flags |= BTRFS_INODE_NOCOMPRESS;
 344	} else if (fsflags & FS_COMPR_FL) {
 345
 346		if (IS_SWAPFILE(inode))
 347			return -ETXTBSY;
 348
 349		binode_flags |= BTRFS_INODE_COMPRESS;
 350		binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
 351
 352		comp = btrfs_compress_type2str(fs_info->compress_type);
 353		if (!comp || comp[0] == 0)
 354			comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
 355	} else {
 356		binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
 357	}
 358
 359	/*
 360	 * 1 for inode item
 361	 * 2 for properties
 362	 */
 363	trans = btrfs_start_transaction(root, 3);
 364	if (IS_ERR(trans))
 365		return PTR_ERR(trans);
 
 
 
 
 366
 367	if (comp) {
 368		ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
 369				     strlen(comp), 0);
 370		if (ret) {
 371			btrfs_abort_transaction(trans, ret);
 372			goto out_end_trans;
 373		}
 374	} else {
 375		ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
 376				     0, 0);
 377		if (ret && ret != -ENODATA) {
 378			btrfs_abort_transaction(trans, ret);
 379			goto out_end_trans;
 380		}
 381	}
 382
 383update_flags:
 384	binode->flags = binode_flags;
 385	btrfs_sync_inode_flags_to_i_flags(inode);
 386	inode_inc_iversion(inode);
 387	inode_set_ctime_current(inode);
 388	ret = btrfs_update_inode(trans, BTRFS_I(inode));
 389
 390 out_end_trans:
 391	btrfs_end_transaction(trans);
 392	return ret;
 393}
 394
 395/*
 396 * Start exclusive operation @type, return true on success
 397 */
 398bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
 399			enum btrfs_exclusive_operation type)
 400{
 401	bool ret = false;
 402
 403	spin_lock(&fs_info->super_lock);
 404	if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) {
 405		fs_info->exclusive_operation = type;
 406		ret = true;
 
 407	}
 408	spin_unlock(&fs_info->super_lock);
 409
 
 
 
 410	return ret;
 411}
 412
 413/*
 414 * Conditionally allow to enter the exclusive operation in case it's compatible
 415 * with the running one.  This must be paired with btrfs_exclop_start_unlock and
 416 * btrfs_exclop_finish.
 417 *
 418 * Compatibility:
 419 * - the same type is already running
 420 * - when trying to add a device and balance has been paused
 421 * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller
 422 *   must check the condition first that would allow none -> @type
 423 */
 424bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
 425				 enum btrfs_exclusive_operation type)
 426{
 427	spin_lock(&fs_info->super_lock);
 428	if (fs_info->exclusive_operation == type ||
 429	    (fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED &&
 430	     type == BTRFS_EXCLOP_DEV_ADD))
 431		return true;
 432
 433	spin_unlock(&fs_info->super_lock);
 434	return false;
 435}
 436
 437void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info)
 438{
 439	spin_unlock(&fs_info->super_lock);
 440}
 441
 442void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
 443{
 444	spin_lock(&fs_info->super_lock);
 445	WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
 446	spin_unlock(&fs_info->super_lock);
 447	sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
 448}
 449
 450void btrfs_exclop_balance(struct btrfs_fs_info *fs_info,
 451			  enum btrfs_exclusive_operation op)
 452{
 453	switch (op) {
 454	case BTRFS_EXCLOP_BALANCE_PAUSED:
 455		spin_lock(&fs_info->super_lock);
 456		ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE ||
 457		       fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD ||
 458		       fs_info->exclusive_operation == BTRFS_EXCLOP_NONE ||
 459		       fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
 460		fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED;
 461		spin_unlock(&fs_info->super_lock);
 462		break;
 463	case BTRFS_EXCLOP_BALANCE:
 464		spin_lock(&fs_info->super_lock);
 465		ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
 466		fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
 467		spin_unlock(&fs_info->super_lock);
 468		break;
 469	default:
 470		btrfs_warn(fs_info,
 471			"invalid exclop balance operation %d requested", op);
 472	}
 473}
 474
 475static int btrfs_ioctl_getversion(struct inode *inode, int __user *arg)
 476{
 477	return put_user(inode->i_generation, arg);
 478}
 479
 480static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
 481					void __user *arg)
 482{
 
 483	struct btrfs_device *device;
 
 484	struct fstrim_range range;
 485	u64 minlen = ULLONG_MAX;
 486	u64 num_devices = 0;
 
 487	int ret;
 488
 489	if (!capable(CAP_SYS_ADMIN))
 490		return -EPERM;
 491
 492	/*
 493	 * btrfs_trim_block_group() depends on space cache, which is not
 494	 * available in zoned filesystem. So, disallow fitrim on a zoned
 495	 * filesystem for now.
 496	 */
 497	if (btrfs_is_zoned(fs_info))
 498		return -EOPNOTSUPP;
 499
 500	/*
 501	 * If the fs is mounted with nologreplay, which requires it to be
 502	 * mounted in RO mode as well, we can not allow discard on free space
 503	 * inside block groups, because log trees refer to extents that are not
 504	 * pinned in a block group's free space cache (pinning the extents is
 505	 * precisely the first phase of replaying a log tree).
 506	 */
 507	if (btrfs_test_opt(fs_info, NOLOGREPLAY))
 508		return -EROFS;
 509
 510	rcu_read_lock();
 511	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
 512				dev_list) {
 513		if (!device->bdev || !bdev_max_discard_sectors(device->bdev))
 514			continue;
 515		num_devices++;
 516		minlen = min_t(u64, bdev_discard_granularity(device->bdev),
 517				    minlen);
 
 
 
 518	}
 519	rcu_read_unlock();
 520
 521	if (!num_devices)
 522		return -EOPNOTSUPP;
 523	if (copy_from_user(&range, arg, sizeof(range)))
 524		return -EFAULT;
 525
 526	/*
 527	 * NOTE: Don't truncate the range using super->total_bytes.  Bytenr of
 528	 * block group is in the logical address space, which can be any
 529	 * sectorsize aligned bytenr in  the range [0, U64_MAX].
 530	 */
 531	if (range.len < fs_info->sb->s_blocksize)
 532		return -EINVAL;
 533
 
 534	range.minlen = max(range.minlen, minlen);
 535	ret = btrfs_trim_fs(fs_info, &range);
 536	if (ret < 0)
 537		return ret;
 538
 539	if (copy_to_user(arg, &range, sizeof(range)))
 540		return -EFAULT;
 541
 542	return 0;
 543}
 544
 545int __pure btrfs_is_empty_uuid(u8 *uuid)
 546{
 547	int i;
 548
 549	for (i = 0; i < BTRFS_UUID_SIZE; i++) {
 550		if (uuid[i])
 551			return 0;
 552	}
 553	return 1;
 554}
 555
 556/*
 557 * Calculate the number of transaction items to reserve for creating a subvolume
 558 * or snapshot, not including the inode, directory entries, or parent directory.
 559 */
 560static unsigned int create_subvol_num_items(struct btrfs_qgroup_inherit *inherit)
 561{
 562	/*
 563	 * 1 to add root block
 564	 * 1 to add root item
 565	 * 1 to add root ref
 566	 * 1 to add root backref
 567	 * 1 to add UUID item
 568	 * 1 to add qgroup info
 569	 * 1 to add qgroup limit
 570	 *
 571	 * Ideally the last two would only be accounted if qgroups are enabled,
 572	 * but that can change between now and the time we would insert them.
 573	 */
 574	unsigned int num_items = 7;
 575
 576	if (inherit) {
 577		/* 2 to add qgroup relations for each inherited qgroup */
 578		num_items += 2 * inherit->num_qgroups;
 579	}
 580	return num_items;
 581}
 582
 583static noinline int create_subvol(struct mnt_idmap *idmap,
 584				  struct inode *dir, struct dentry *dentry,
 585				  struct btrfs_qgroup_inherit *inherit)
 586{
 587	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
 588	struct btrfs_trans_handle *trans;
 589	struct btrfs_key key;
 590	struct btrfs_root_item *root_item;
 591	struct btrfs_inode_item *inode_item;
 592	struct extent_buffer *leaf;
 593	struct btrfs_root *root = BTRFS_I(dir)->root;
 594	struct btrfs_root *new_root;
 595	struct btrfs_block_rsv block_rsv;
 596	struct timespec64 cur_time = current_time(dir);
 597	struct btrfs_new_inode_args new_inode_args = {
 598		.dir = dir,
 599		.dentry = dentry,
 600		.subvol = true,
 601	};
 602	unsigned int trans_num_items;
 603	int ret;
 604	dev_t anon_dev;
 605	u64 objectid;
 
 
 
 
 606
 607	root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
 608	if (!root_item)
 609		return -ENOMEM;
 610
 611	ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid);
 612	if (ret)
 613		goto out_root_item;
 614
 615	/*
 616	 * Don't create subvolume whose level is not zero. Or qgroup will be
 617	 * screwed up since it assumes subvolume qgroup's level to be 0.
 618	 */
 619	if (btrfs_qgroup_level(objectid)) {
 620		ret = -ENOSPC;
 621		goto out_root_item;
 622	}
 623
 624	ret = get_anon_bdev(&anon_dev);
 625	if (ret < 0)
 626		goto out_root_item;
 627
 628	new_inode_args.inode = btrfs_new_subvol_inode(idmap, dir);
 629	if (!new_inode_args.inode) {
 630		ret = -ENOMEM;
 631		goto out_anon_dev;
 632	}
 633	ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
 634	if (ret)
 635		goto out_inode;
 636	trans_num_items += create_subvol_num_items(inherit);
 637
 638	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
 
 
 
 
 639	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
 640					       trans_num_items, false);
 641	if (ret)
 642		goto out_new_inode_args;
 643
 644	trans = btrfs_start_transaction(root, 0);
 645	if (IS_ERR(trans)) {
 646		ret = PTR_ERR(trans);
 647		btrfs_subvolume_release_metadata(root, &block_rsv);
 648		goto out_new_inode_args;
 
 649	}
 650	trans->block_rsv = &block_rsv;
 651	trans->bytes_reserved = block_rsv.size;
 652	/* Tree log can't currently deal with an inode which is a new root. */
 653	btrfs_set_log_full_commit(trans);
 654
 655	ret = btrfs_qgroup_inherit(trans, 0, objectid, root->root_key.objectid, inherit);
 656	if (ret)
 657		goto out;
 658
 659	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
 660				      0, BTRFS_NESTING_NORMAL);
 661	if (IS_ERR(leaf)) {
 662		ret = PTR_ERR(leaf);
 663		goto out;
 664	}
 665
 666	btrfs_mark_buffer_dirty(trans, leaf);
 
 
 
 
 
 
 
 
 
 
 
 667
 668	inode_item = &root_item->inode;
 
 
 669	btrfs_set_stack_inode_generation(inode_item, 1);
 670	btrfs_set_stack_inode_size(inode_item, 3);
 671	btrfs_set_stack_inode_nlink(inode_item, 1);
 672	btrfs_set_stack_inode_nbytes(inode_item,
 673				     fs_info->nodesize);
 674	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
 675
 676	btrfs_set_root_flags(root_item, 0);
 677	btrfs_set_root_limit(root_item, 0);
 678	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
 679
 680	btrfs_set_root_bytenr(root_item, leaf->start);
 681	btrfs_set_root_generation(root_item, trans->transid);
 682	btrfs_set_root_level(root_item, 0);
 683	btrfs_set_root_refs(root_item, 1);
 684	btrfs_set_root_used(root_item, leaf->len);
 685	btrfs_set_root_last_snapshot(root_item, 0);
 686
 687	btrfs_set_root_generation_v2(root_item,
 688			btrfs_root_generation(root_item));
 689	generate_random_guid(root_item->uuid);
 690	btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
 691	btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
 692	root_item->ctime = root_item->otime;
 693	btrfs_set_root_ctransid(root_item, trans->transid);
 694	btrfs_set_root_otransid(root_item, trans->transid);
 
 695
 696	btrfs_tree_unlock(leaf);
 
 
 697
 698	btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID);
 699
 700	key.objectid = objectid;
 701	key.offset = 0;
 702	key.type = BTRFS_ROOT_ITEM_KEY;
 703	ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
 704				root_item);
 705	if (ret) {
 706		/*
 707		 * Since we don't abort the transaction in this case, free the
 708		 * tree block so that we don't leak space and leave the
 709		 * filesystem in an inconsistent state (an extent item in the
 710		 * extent tree with a backreference for a root that does not
 711		 * exists).
 712		 */
 713		btrfs_tree_lock(leaf);
 714		btrfs_clear_buffer_dirty(trans, leaf);
 715		btrfs_tree_unlock(leaf);
 716		btrfs_free_tree_block(trans, objectid, leaf, 0, 1);
 717		free_extent_buffer(leaf);
 718		goto out;
 719	}
 720
 721	free_extent_buffer(leaf);
 722	leaf = NULL;
 723
 724	new_root = btrfs_get_new_fs_root(fs_info, objectid, &anon_dev);
 
 725	if (IS_ERR(new_root)) {
 726		ret = PTR_ERR(new_root);
 727		btrfs_abort_transaction(trans, ret);
 728		goto out;
 729	}
 730	/* anon_dev is owned by new_root now. */
 731	anon_dev = 0;
 732	BTRFS_I(new_inode_args.inode)->root = new_root;
 733	/* ... and new_root is owned by new_inode_args.inode now. */
 734
 735	ret = btrfs_record_root_in_trans(trans, new_root);
 
 
 736	if (ret) {
 737		btrfs_abort_transaction(trans, ret);
 738		goto out;
 
 739	}
 740
 741	ret = btrfs_uuid_tree_add(trans, root_item->uuid,
 742				  BTRFS_UUID_KEY_SUBVOL, objectid);
 
 
 
 
 
 
 743	if (ret) {
 744		btrfs_abort_transaction(trans, ret);
 745		goto out;
 746	}
 747
 748	ret = btrfs_create_new_inode(trans, &new_inode_args);
 
 
 749	if (ret) {
 750		btrfs_abort_transaction(trans, ret);
 751		goto out;
 752	}
 753
 754	d_instantiate_new(dentry, new_inode_args.inode);
 755	new_inode_args.inode = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 756
 757out:
 758	trans->block_rsv = NULL;
 759	trans->bytes_reserved = 0;
 760	btrfs_subvolume_release_metadata(root, &block_rsv);
 761
 762	btrfs_end_transaction(trans);
 763out_new_inode_args:
 764	btrfs_new_inode_args_destroy(&new_inode_args);
 765out_inode:
 766	iput(new_inode_args.inode);
 767out_anon_dev:
 768	if (anon_dev)
 769		free_anon_bdev(anon_dev);
 770out_root_item:
 771	kfree(root_item);
 
 
 
 
 
 
 
 772	return ret;
 773}
 774
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 775static int create_snapshot(struct btrfs_root *root, struct inode *dir,
 776			   struct dentry *dentry, bool readonly,
 
 777			   struct btrfs_qgroup_inherit *inherit)
 778{
 779	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
 780	struct inode *inode;
 781	struct btrfs_pending_snapshot *pending_snapshot;
 782	unsigned int trans_num_items;
 783	struct btrfs_trans_handle *trans;
 784	int ret;
 785
 786	/* We do not support snapshotting right now. */
 787	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
 788		btrfs_warn(fs_info,
 789			   "extent tree v2 doesn't support snapshotting yet");
 790		return -EOPNOTSUPP;
 791	}
 792
 793	if (btrfs_root_refs(&root->root_item) == 0)
 794		return -ENOENT;
 795
 796	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
 797		return -EINVAL;
 798
 799	if (atomic_read(&root->nr_swapfiles)) {
 800		btrfs_warn(fs_info,
 801			   "cannot snapshot subvolume with active swapfile");
 802		return -ETXTBSY;
 803	}
 804
 805	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
 806	if (!pending_snapshot)
 807		return -ENOMEM;
 808
 809	ret = get_anon_bdev(&pending_snapshot->anon_dev);
 810	if (ret < 0)
 811		goto free_pending;
 812	pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
 813			GFP_KERNEL);
 814	pending_snapshot->path = btrfs_alloc_path();
 815	if (!pending_snapshot->root_item || !pending_snapshot->path) {
 816		ret = -ENOMEM;
 817		goto free_pending;
 818	}
 819
 
 
 
 
 
 
 
 
 
 
 820	btrfs_init_block_rsv(&pending_snapshot->block_rsv,
 821			     BTRFS_BLOCK_RSV_TEMP);
 822	/*
 823	 * 1 to add dir item
 824	 * 1 to add dir index
 825	 * 1 to update parent inode item
 
 
 
 826	 */
 827	trans_num_items = create_subvol_num_items(inherit) + 3;
 828	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
 829					       &pending_snapshot->block_rsv,
 830					       trans_num_items, false);
 
 831	if (ret)
 832		goto free_pending;
 833
 834	pending_snapshot->dentry = dentry;
 835	pending_snapshot->root = root;
 836	pending_snapshot->readonly = readonly;
 837	pending_snapshot->dir = dir;
 838	pending_snapshot->inherit = inherit;
 839
 840	trans = btrfs_start_transaction(root, 0);
 841	if (IS_ERR(trans)) {
 842		ret = PTR_ERR(trans);
 843		goto fail;
 844	}
 845
 846	trans->pending_snapshot = pending_snapshot;
 847
 848	ret = btrfs_commit_transaction(trans);
 
 
 
 
 
 
 
 
 
 
 
 849	if (ret)
 850		goto fail;
 851
 852	ret = pending_snapshot->error;
 853	if (ret)
 854		goto fail;
 855
 856	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
 857	if (ret)
 858		goto fail;
 859
 860	inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
 861	if (IS_ERR(inode)) {
 862		ret = PTR_ERR(inode);
 863		goto fail;
 864	}
 865
 866	d_instantiate(dentry, inode);
 867	ret = 0;
 868	pending_snapshot->anon_dev = 0;
 869fail:
 870	/* Prevent double freeing of anon_dev */
 871	if (ret && pending_snapshot->snap)
 872		pending_snapshot->snap->anon_dev = 0;
 873	btrfs_put_root(pending_snapshot->snap);
 874	btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv);
 
 875free_pending:
 876	if (pending_snapshot->anon_dev)
 877		free_anon_bdev(pending_snapshot->anon_dev);
 878	kfree(pending_snapshot->root_item);
 879	btrfs_free_path(pending_snapshot->path);
 880	kfree(pending_snapshot);
 881
 882	return ret;
 883}
 884
 885/*  copy of may_delete in fs/namei.c()
 886 *	Check whether we can remove a link victim from directory dir, check
 887 *  whether the type of victim is right.
 888 *  1. We can't do it if dir is read-only (done in permission())
 889 *  2. We should have write and exec permissions on dir
 890 *  3. We can't remove anything from append-only dir
 891 *  4. We can't do anything with immutable dir (done in permission())
 892 *  5. If the sticky bit on dir is set we should either
 893 *	a. be owner of dir, or
 894 *	b. be owner of victim, or
 895 *	c. have CAP_FOWNER capability
 896 *  6. If the victim is append-only or immutable we can't do anything with
 897 *     links pointing to it.
 898 *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
 899 *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
 900 *  9. We can't remove a root or mountpoint.
 901 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
 902 *     nfs_async_unlink().
 903 */
 904
 905static int btrfs_may_delete(struct mnt_idmap *idmap,
 906			    struct inode *dir, struct dentry *victim, int isdir)
 907{
 908	int error;
 909
 910	if (d_really_is_negative(victim))
 911		return -ENOENT;
 912
 913	BUG_ON(d_inode(victim->d_parent) != dir);
 914	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
 915
 916	error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
 917	if (error)
 918		return error;
 919	if (IS_APPEND(dir))
 920		return -EPERM;
 921	if (check_sticky(idmap, dir, d_inode(victim)) ||
 922	    IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) ||
 923	    IS_SWAPFILE(d_inode(victim)))
 924		return -EPERM;
 925	if (isdir) {
 926		if (!d_is_dir(victim))
 927			return -ENOTDIR;
 928		if (IS_ROOT(victim))
 929			return -EBUSY;
 930	} else if (d_is_dir(victim))
 931		return -EISDIR;
 932	if (IS_DEADDIR(dir))
 933		return -ENOENT;
 934	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
 935		return -EBUSY;
 936	return 0;
 937}
 938
 939/* copy of may_create in fs/namei.c() */
 940static inline int btrfs_may_create(struct mnt_idmap *idmap,
 941				   struct inode *dir, struct dentry *child)
 942{
 943	if (d_really_is_positive(child))
 944		return -EEXIST;
 945	if (IS_DEADDIR(dir))
 946		return -ENOENT;
 947	if (!fsuidgid_has_mapping(dir->i_sb, idmap))
 948		return -EOVERFLOW;
 949	return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
 950}
 951
 952/*
 953 * Create a new subvolume below @parent.  This is largely modeled after
 954 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
 955 * inside this filesystem so it's quite a bit simpler.
 956 */
 957static noinline int btrfs_mksubvol(const struct path *parent,
 958				   struct mnt_idmap *idmap,
 959				   const char *name, int namelen,
 960				   struct btrfs_root *snap_src,
 961				   bool readonly,
 962				   struct btrfs_qgroup_inherit *inherit)
 963{
 964	struct inode *dir = d_inode(parent->dentry);
 965	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
 966	struct dentry *dentry;
 967	struct fscrypt_str name_str = FSTR_INIT((char *)name, namelen);
 968	int error;
 969
 970	error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
 971	if (error == -EINTR)
 972		return error;
 973
 974	dentry = lookup_one(idmap, name, parent->dentry, namelen);
 975	error = PTR_ERR(dentry);
 976	if (IS_ERR(dentry))
 977		goto out_unlock;
 978
 979	error = btrfs_may_create(idmap, dir, dentry);
 980	if (error)
 981		goto out_dput;
 982
 983	/*
 984	 * even if this name doesn't exist, we may get hash collisions.
 985	 * check for them now when we can safely fail
 986	 */
 987	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
 988					       dir->i_ino, &name_str);
 
 989	if (error)
 990		goto out_dput;
 991
 992	down_read(&fs_info->subvol_sem);
 993
 994	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
 995		goto out_up_read;
 996
 997	if (snap_src)
 998		error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
 999	else
1000		error = create_subvol(idmap, dir, dentry, inherit);
1001
 
 
1002	if (!error)
1003		fsnotify_mkdir(dir, dentry);
1004out_up_read:
1005	up_read(&fs_info->subvol_sem);
1006out_dput:
1007	dput(dentry);
1008out_unlock:
1009	btrfs_inode_unlock(BTRFS_I(dir), 0);
1010	return error;
1011}
1012
1013static noinline int btrfs_mksnapshot(const struct path *parent,
1014				   struct mnt_idmap *idmap,
1015				   const char *name, int namelen,
1016				   struct btrfs_root *root,
1017				   bool readonly,
1018				   struct btrfs_qgroup_inherit *inherit)
 
 
1019{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1020	int ret;
1021	bool snapshot_force_cow = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1022
1023	/*
1024	 * Force new buffered writes to reserve space even when NOCOW is
1025	 * possible. This is to avoid later writeback (running dealloc) to
1026	 * fallback to COW mode and unexpectedly fail with ENOSPC.
1027	 */
1028	btrfs_drew_read_lock(&root->snapshot_lock);
 
 
1029
1030	ret = btrfs_start_delalloc_snapshot(root, false);
1031	if (ret)
1032		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1033
1034	/*
1035	 * All previous writes have started writeback in NOCOW mode, so now
1036	 * we force future writes to fallback to COW mode during snapshot
1037	 * creation.
1038	 */
1039	atomic_inc(&root->snapshot_force_cow);
1040	snapshot_force_cow = true;
 
 
 
 
 
 
 
 
 
 
 
 
1041
1042	btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
 
1043
1044	ret = btrfs_mksubvol(parent, idmap, name, namelen,
1045			     root, readonly, inherit);
 
 
 
 
 
 
1046out:
1047	if (snapshot_force_cow)
1048		atomic_dec(&root->snapshot_force_cow);
1049	btrfs_drew_read_unlock(&root->snapshot_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1050	return ret;
1051}
1052
1053/*
1054 * Try to start exclusive operation @type or cancel it if it's running.
 
 
 
 
 
 
1055 *
1056 * Return:
1057 *   0        - normal mode, newly claimed op started
1058 *  >0        - normal mode, something else is running,
1059 *              return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space
1060 * ECANCELED  - cancel mode, successful cancel
1061 * ENOTCONN   - cancel mode, operation not running anymore
1062 */
1063static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info,
1064			enum btrfs_exclusive_operation type, bool cancel)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1065{
1066	if (!cancel) {
1067		/* Start normal op */
1068		if (!btrfs_exclop_start(fs_info, type))
1069			return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1070		/* Exclusive operation is now claimed */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1071		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1072	}
 
 
 
 
 
 
 
 
 
1073
1074	/* Cancel running op */
1075	if (btrfs_exclop_start_try_lock(fs_info, type)) {
1076		/*
1077		 * This blocks any exclop finish from setting it to NONE, so we
1078		 * request cancellation. Either it runs and we will wait for it,
1079		 * or it has finished and no waiting will happen.
1080		 */
1081		atomic_inc(&fs_info->reloc_cancel_req);
1082		btrfs_exclop_start_unlock(fs_info);
1083
1084		if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
1085			wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING,
1086				    TASK_INTERRUPTIBLE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1087
1088		return -ECANCELED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1089	}
1090
1091	/* Something else is running or none */
1092	return -ENOTCONN;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1093}
1094
1095static noinline int btrfs_ioctl_resize(struct file *file,
1096					void __user *arg)
1097{
1098	BTRFS_DEV_LOOKUP_ARGS(args);
1099	struct inode *inode = file_inode(file);
1100	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1101	u64 new_size;
1102	u64 old_size;
1103	u64 devid = 1;
1104	struct btrfs_root *root = BTRFS_I(inode)->root;
1105	struct btrfs_ioctl_vol_args *vol_args;
1106	struct btrfs_trans_handle *trans;
1107	struct btrfs_device *device = NULL;
1108	char *sizestr;
1109	char *retptr;
1110	char *devstr = NULL;
1111	int ret = 0;
1112	int mod = 0;
1113	bool cancel;
1114
1115	if (!capable(CAP_SYS_ADMIN))
1116		return -EPERM;
1117
1118	ret = mnt_want_write_file(file);
1119	if (ret)
1120		return ret;
1121
1122	/*
1123	 * Read the arguments before checking exclusivity to be able to
1124	 * distinguish regular resize and cancel
1125	 */
 
 
 
1126	vol_args = memdup_user(arg, sizeof(*vol_args));
1127	if (IS_ERR(vol_args)) {
1128		ret = PTR_ERR(vol_args);
1129		goto out_drop;
1130	}
 
1131	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1132	sizestr = vol_args->name;
1133	cancel = (strcmp("cancel", sizestr) == 0);
1134	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel);
1135	if (ret)
1136		goto out_free;
1137	/* Exclusive operation is now claimed */
1138
 
1139	devstr = strchr(sizestr, ':');
1140	if (devstr) {
1141		sizestr = devstr + 1;
1142		*devstr = '\0';
1143		devstr = vol_args->name;
1144		ret = kstrtoull(devstr, 10, &devid);
1145		if (ret)
1146			goto out_finish;
1147		if (!devid) {
1148			ret = -EINVAL;
1149			goto out_finish;
1150		}
1151		btrfs_info(fs_info, "resizing devid %llu", devid);
1152	}
1153
1154	args.devid = devid;
1155	device = btrfs_find_device(fs_info->fs_devices, &args);
1156	if (!device) {
1157		btrfs_info(fs_info, "resizer unable to find device %llu",
1158			   devid);
1159		ret = -ENODEV;
1160		goto out_finish;
1161	}
1162
1163	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1164		btrfs_info(fs_info,
1165			   "resizer unable to apply on readonly device %llu",
1166		       devid);
1167		ret = -EPERM;
1168		goto out_finish;
1169	}
1170
1171	if (!strcmp(sizestr, "max"))
1172		new_size = bdev_nr_bytes(device->bdev);
1173	else {
1174		if (sizestr[0] == '-') {
1175			mod = -1;
1176			sizestr++;
1177		} else if (sizestr[0] == '+') {
1178			mod = 1;
1179			sizestr++;
1180		}
1181		new_size = memparse(sizestr, &retptr);
1182		if (*retptr != '\0' || new_size == 0) {
1183			ret = -EINVAL;
1184			goto out_finish;
1185		}
1186	}
1187
1188	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1189		ret = -EPERM;
1190		goto out_finish;
1191	}
1192
1193	old_size = btrfs_device_get_total_bytes(device);
1194
1195	if (mod < 0) {
1196		if (new_size > old_size) {
1197			ret = -EINVAL;
1198			goto out_finish;
1199		}
1200		new_size = old_size - new_size;
1201	} else if (mod > 0) {
1202		if (new_size > ULLONG_MAX - old_size) {
1203			ret = -ERANGE;
1204			goto out_finish;
1205		}
1206		new_size = old_size + new_size;
1207	}
1208
1209	if (new_size < SZ_256M) {
1210		ret = -EINVAL;
1211		goto out_finish;
1212	}
1213	if (new_size > bdev_nr_bytes(device->bdev)) {
1214		ret = -EFBIG;
1215		goto out_finish;
1216	}
1217
1218	new_size = round_down(new_size, fs_info->sectorsize);
 
 
 
 
1219
1220	if (new_size > old_size) {
1221		trans = btrfs_start_transaction(root, 0);
1222		if (IS_ERR(trans)) {
1223			ret = PTR_ERR(trans);
1224			goto out_finish;
1225		}
1226		ret = btrfs_grow_device(trans, device, new_size);
1227		btrfs_commit_transaction(trans);
1228	} else if (new_size < old_size) {
1229		ret = btrfs_shrink_device(device, new_size);
1230	} /* equal, nothing need to do */
1231
1232	if (ret == 0 && new_size != old_size)
1233		btrfs_info_in_rcu(fs_info,
1234			"resize device %s (devid %llu) from %llu to %llu",
1235			btrfs_dev_name(device), device->devid,
1236			old_size, new_size);
1237out_finish:
1238	btrfs_exclop_finish(fs_info);
1239out_free:
1240	kfree(vol_args);
1241out_drop:
 
 
1242	mnt_drop_write_file(file);
1243	return ret;
1244}
1245
1246static noinline int __btrfs_ioctl_snap_create(struct file *file,
1247				struct mnt_idmap *idmap,
1248				const char *name, unsigned long fd, int subvol,
1249				bool readonly,
1250				struct btrfs_qgroup_inherit *inherit)
1251{
1252	int namelen;
1253	int ret = 0;
1254
1255	if (!S_ISDIR(file_inode(file)->i_mode))
1256		return -ENOTDIR;
1257
1258	ret = mnt_want_write_file(file);
1259	if (ret)
1260		goto out;
1261
1262	namelen = strlen(name);
1263	if (strchr(name, '/')) {
1264		ret = -EINVAL;
1265		goto out_drop_write;
1266	}
1267
1268	if (name[0] == '.' &&
1269	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1270		ret = -EEXIST;
1271		goto out_drop_write;
1272	}
1273
1274	if (subvol) {
1275		ret = btrfs_mksubvol(&file->f_path, idmap, name,
1276				     namelen, NULL, readonly, inherit);
1277	} else {
1278		struct fd src = fdget(fd);
1279		struct inode *src_inode;
1280		if (!src.file) {
1281			ret = -EINVAL;
1282			goto out_drop_write;
1283		}
1284
1285		src_inode = file_inode(src.file);
1286		if (src_inode->i_sb != file_inode(file)->i_sb) {
1287			btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1288				   "Snapshot src from another FS");
1289			ret = -EXDEV;
1290		} else if (!inode_owner_or_capable(idmap, src_inode)) {
1291			/*
1292			 * Subvolume creation is not restricted, but snapshots
1293			 * are limited to own subvolumes only
1294			 */
1295			ret = -EPERM;
1296		} else if (btrfs_ino(BTRFS_I(src_inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1297			/*
1298			 * Snapshots must be made with the src_inode referring
1299			 * to the subvolume inode, otherwise the permission
1300			 * checking above is useless because we may have
1301			 * permission on a lower directory but not the subvol
1302			 * itself.
1303			 */
1304			ret = -EINVAL;
1305		} else {
1306			ret = btrfs_mksnapshot(&file->f_path, idmap,
1307					       name, namelen,
1308					       BTRFS_I(src_inode)->root,
1309					       readonly, inherit);
1310		}
1311		fdput(src);
1312	}
1313out_drop_write:
1314	mnt_drop_write_file(file);
1315out:
1316	return ret;
1317}
1318
1319static noinline int btrfs_ioctl_snap_create(struct file *file,
1320					    void __user *arg, int subvol)
1321{
1322	struct btrfs_ioctl_vol_args *vol_args;
1323	int ret;
1324
1325	if (!S_ISDIR(file_inode(file)->i_mode))
1326		return -ENOTDIR;
1327
1328	vol_args = memdup_user(arg, sizeof(*vol_args));
1329	if (IS_ERR(vol_args))
1330		return PTR_ERR(vol_args);
1331	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1332
1333	ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1334					vol_args->name, vol_args->fd, subvol,
1335					false, NULL);
1336
1337	kfree(vol_args);
1338	return ret;
1339}
1340
1341static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1342					       void __user *arg, int subvol)
1343{
1344	struct btrfs_ioctl_vol_args_v2 *vol_args;
1345	int ret;
 
 
1346	bool readonly = false;
1347	struct btrfs_qgroup_inherit *inherit = NULL;
1348
1349	if (!S_ISDIR(file_inode(file)->i_mode))
1350		return -ENOTDIR;
1351
1352	vol_args = memdup_user(arg, sizeof(*vol_args));
1353	if (IS_ERR(vol_args))
1354		return PTR_ERR(vol_args);
1355	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1356
1357	if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
 
 
1358		ret = -EOPNOTSUPP;
1359		goto free_args;
1360	}
1361
 
 
1362	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1363		readonly = true;
1364	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1365		u64 nums;
1366
1367		if (vol_args->size < sizeof(*inherit) ||
1368		    vol_args->size > PAGE_SIZE) {
1369			ret = -EINVAL;
1370			goto free_args;
1371		}
1372		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1373		if (IS_ERR(inherit)) {
1374			ret = PTR_ERR(inherit);
1375			goto free_args;
1376		}
1377
1378		if (inherit->num_qgroups > PAGE_SIZE ||
1379		    inherit->num_ref_copies > PAGE_SIZE ||
1380		    inherit->num_excl_copies > PAGE_SIZE) {
1381			ret = -EINVAL;
1382			goto free_inherit;
1383		}
1384
1385		nums = inherit->num_qgroups + 2 * inherit->num_ref_copies +
1386		       2 * inherit->num_excl_copies;
1387		if (vol_args->size != struct_size(inherit, qgroups, nums)) {
1388			ret = -EINVAL;
1389			goto free_inherit;
1390		}
1391	}
1392
1393	ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1394					vol_args->name, vol_args->fd, subvol,
1395					readonly, inherit);
1396	if (ret)
1397		goto free_inherit;
 
 
 
 
 
 
 
1398free_inherit:
1399	kfree(inherit);
1400free_args:
1401	kfree(vol_args);
1402	return ret;
1403}
1404
1405static noinline int btrfs_ioctl_subvol_getflags(struct inode *inode,
1406						void __user *arg)
1407{
1408	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1409	struct btrfs_root *root = BTRFS_I(inode)->root;
1410	int ret = 0;
1411	u64 flags = 0;
1412
1413	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1414		return -EINVAL;
1415
1416	down_read(&fs_info->subvol_sem);
1417	if (btrfs_root_readonly(root))
1418		flags |= BTRFS_SUBVOL_RDONLY;
1419	up_read(&fs_info->subvol_sem);
1420
1421	if (copy_to_user(arg, &flags, sizeof(flags)))
1422		ret = -EFAULT;
1423
1424	return ret;
1425}
1426
1427static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1428					      void __user *arg)
1429{
1430	struct inode *inode = file_inode(file);
1431	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1432	struct btrfs_root *root = BTRFS_I(inode)->root;
1433	struct btrfs_trans_handle *trans;
1434	u64 root_flags;
1435	u64 flags;
1436	int ret = 0;
1437
1438	if (!inode_owner_or_capable(file_mnt_idmap(file), inode))
1439		return -EPERM;
1440
1441	ret = mnt_want_write_file(file);
1442	if (ret)
1443		goto out;
1444
1445	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1446		ret = -EINVAL;
1447		goto out_drop_write;
1448	}
1449
1450	if (copy_from_user(&flags, arg, sizeof(flags))) {
1451		ret = -EFAULT;
1452		goto out_drop_write;
1453	}
1454
 
 
 
 
 
1455	if (flags & ~BTRFS_SUBVOL_RDONLY) {
1456		ret = -EOPNOTSUPP;
1457		goto out_drop_write;
1458	}
1459
1460	down_write(&fs_info->subvol_sem);
1461
1462	/* nothing to do */
1463	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1464		goto out_drop_sem;
1465
1466	root_flags = btrfs_root_flags(&root->root_item);
1467	if (flags & BTRFS_SUBVOL_RDONLY) {
1468		btrfs_set_root_flags(&root->root_item,
1469				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1470	} else {
1471		/*
1472		 * Block RO -> RW transition if this subvolume is involved in
1473		 * send
1474		 */
1475		spin_lock(&root->root_item_lock);
1476		if (root->send_in_progress == 0) {
1477			btrfs_set_root_flags(&root->root_item,
1478				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1479			spin_unlock(&root->root_item_lock);
1480		} else {
1481			spin_unlock(&root->root_item_lock);
1482			btrfs_warn(fs_info,
1483				   "Attempt to set subvolume %llu read-write during send",
1484				   root->root_key.objectid);
1485			ret = -EPERM;
1486			goto out_drop_sem;
1487		}
1488	}
1489
1490	trans = btrfs_start_transaction(root, 1);
1491	if (IS_ERR(trans)) {
1492		ret = PTR_ERR(trans);
1493		goto out_reset;
1494	}
1495
1496	ret = btrfs_update_root(trans, fs_info->tree_root,
1497				&root->root_key, &root->root_item);
1498	if (ret < 0) {
1499		btrfs_end_transaction(trans);
1500		goto out_reset;
1501	}
1502
1503	ret = btrfs_commit_transaction(trans);
1504
 
1505out_reset:
1506	if (ret)
1507		btrfs_set_root_flags(&root->root_item, root_flags);
1508out_drop_sem:
1509	up_write(&fs_info->subvol_sem);
1510out_drop_write:
1511	mnt_drop_write_file(file);
1512out:
1513	return ret;
1514}
1515
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1516static noinline int key_in_sk(struct btrfs_key *key,
1517			      struct btrfs_ioctl_search_key *sk)
1518{
1519	struct btrfs_key test;
1520	int ret;
1521
1522	test.objectid = sk->min_objectid;
1523	test.type = sk->min_type;
1524	test.offset = sk->min_offset;
1525
1526	ret = btrfs_comp_cpu_keys(key, &test);
1527	if (ret < 0)
1528		return 0;
1529
1530	test.objectid = sk->max_objectid;
1531	test.type = sk->max_type;
1532	test.offset = sk->max_offset;
1533
1534	ret = btrfs_comp_cpu_keys(key, &test);
1535	if (ret > 0)
1536		return 0;
1537	return 1;
1538}
1539
1540static noinline int copy_to_sk(struct btrfs_path *path,
 
1541			       struct btrfs_key *key,
1542			       struct btrfs_ioctl_search_key *sk,
1543			       u64 *buf_size,
1544			       char __user *ubuf,
1545			       unsigned long *sk_offset,
1546			       int *num_found)
1547{
1548	u64 found_transid;
1549	struct extent_buffer *leaf;
1550	struct btrfs_ioctl_search_header sh;
1551	struct btrfs_key test;
1552	unsigned long item_off;
1553	unsigned long item_len;
1554	int nritems;
1555	int i;
1556	int slot;
1557	int ret = 0;
1558
1559	leaf = path->nodes[0];
1560	slot = path->slots[0];
1561	nritems = btrfs_header_nritems(leaf);
1562
1563	if (btrfs_header_generation(leaf) > sk->max_transid) {
1564		i = nritems;
1565		goto advance_key;
1566	}
1567	found_transid = btrfs_header_generation(leaf);
1568
1569	for (i = slot; i < nritems; i++) {
1570		item_off = btrfs_item_ptr_offset(leaf, i);
1571		item_len = btrfs_item_size(leaf, i);
1572
1573		btrfs_item_key_to_cpu(leaf, key, i);
1574		if (!key_in_sk(key, sk))
1575			continue;
1576
1577		if (sizeof(sh) + item_len > *buf_size) {
1578			if (*num_found) {
1579				ret = 1;
1580				goto out;
1581			}
1582
1583			/*
1584			 * return one empty item back for v1, which does not
1585			 * handle -EOVERFLOW
1586			 */
1587
1588			*buf_size = sizeof(sh) + item_len;
1589			item_len = 0;
1590			ret = -EOVERFLOW;
1591		}
1592
1593		if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1594			ret = 1;
1595			goto out;
1596		}
1597
1598		sh.objectid = key->objectid;
1599		sh.offset = key->offset;
1600		sh.type = key->type;
1601		sh.len = item_len;
1602		sh.transid = found_transid;
1603
1604		/*
1605		 * Copy search result header. If we fault then loop again so we
1606		 * can fault in the pages and -EFAULT there if there's a
1607		 * problem. Otherwise we'll fault and then copy the buffer in
1608		 * properly this next time through
1609		 */
1610		if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
1611			ret = 0;
1612			goto out;
1613		}
1614
1615		*sk_offset += sizeof(sh);
1616
1617		if (item_len) {
1618			char __user *up = ubuf + *sk_offset;
1619			/*
1620			 * Copy the item, same behavior as above, but reset the
1621			 * * sk_offset so we copy the full thing again.
1622			 */
1623			if (read_extent_buffer_to_user_nofault(leaf, up,
1624						item_off, item_len)) {
1625				ret = 0;
1626				*sk_offset -= sizeof(sh);
1627				goto out;
1628			}
1629
1630			*sk_offset += item_len;
1631		}
1632		(*num_found)++;
1633
1634		if (ret) /* -EOVERFLOW from above */
1635			goto out;
1636
1637		if (*num_found >= sk->nr_items) {
1638			ret = 1;
1639			goto out;
1640		}
1641	}
1642advance_key:
1643	ret = 0;
1644	test.objectid = sk->max_objectid;
1645	test.type = sk->max_type;
1646	test.offset = sk->max_offset;
1647	if (btrfs_comp_cpu_keys(key, &test) >= 0)
1648		ret = 1;
1649	else if (key->offset < (u64)-1)
1650		key->offset++;
1651	else if (key->type < (u8)-1) {
1652		key->offset = 0;
1653		key->type++;
1654	} else if (key->objectid < (u64)-1) {
1655		key->offset = 0;
1656		key->type = 0;
1657		key->objectid++;
1658	} else
1659		ret = 1;
1660out:
1661	/*
1662	 *  0: all items from this leaf copied, continue with next
1663	 *  1: * more items can be copied, but unused buffer is too small
1664	 *     * all items were found
1665	 *     Either way, it will stops the loop which iterates to the next
1666	 *     leaf
1667	 *  -EOVERFLOW: item was to large for buffer
1668	 *  -EFAULT: could not copy extent buffer back to userspace
1669	 */
1670	return ret;
1671}
1672
1673static noinline int search_ioctl(struct inode *inode,
1674				 struct btrfs_ioctl_search_key *sk,
1675				 u64 *buf_size,
1676				 char __user *ubuf)
1677{
1678	struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
1679	struct btrfs_root *root;
1680	struct btrfs_key key;
1681	struct btrfs_path *path;
 
1682	int ret;
1683	int num_found = 0;
1684	unsigned long sk_offset = 0;
1685
1686	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
1687		*buf_size = sizeof(struct btrfs_ioctl_search_header);
1688		return -EOVERFLOW;
1689	}
1690
1691	path = btrfs_alloc_path();
1692	if (!path)
1693		return -ENOMEM;
1694
1695	if (sk->tree_id == 0) {
1696		/* search the root of the inode that was passed */
1697		root = btrfs_grab_root(BTRFS_I(inode)->root);
1698	} else {
1699		root = btrfs_get_fs_root(info, sk->tree_id, true);
 
 
 
1700		if (IS_ERR(root)) {
1701			btrfs_free_path(path);
1702			return PTR_ERR(root);
1703		}
1704	}
1705
1706	key.objectid = sk->min_objectid;
1707	key.type = sk->min_type;
1708	key.offset = sk->min_offset;
1709
1710	while (1) {
1711		ret = -EFAULT;
1712		/*
1713		 * Ensure that the whole user buffer is faulted in at sub-page
1714		 * granularity, otherwise the loop may live-lock.
1715		 */
1716		if (fault_in_subpage_writeable(ubuf + sk_offset,
1717					       *buf_size - sk_offset))
1718			break;
1719
1720		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
1721		if (ret != 0) {
1722			if (ret > 0)
1723				ret = 0;
1724			goto err;
1725		}
1726		ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
1727				 &sk_offset, &num_found);
1728		btrfs_release_path(path);
1729		if (ret)
1730			break;
1731
1732	}
1733	if (ret > 0)
1734		ret = 0;
1735err:
1736	sk->nr_items = num_found;
1737	btrfs_put_root(root);
1738	btrfs_free_path(path);
1739	return ret;
1740}
1741
1742static noinline int btrfs_ioctl_tree_search(struct inode *inode,
1743					    void __user *argp)
1744{
1745	struct btrfs_ioctl_search_args __user *uargs = argp;
1746	struct btrfs_ioctl_search_key sk;
 
1747	int ret;
1748	u64 buf_size;
1749
1750	if (!capable(CAP_SYS_ADMIN))
1751		return -EPERM;
1752
 
 
1753	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
1754		return -EFAULT;
1755
1756	buf_size = sizeof(uargs->buf);
1757
 
1758	ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
1759
1760	/*
1761	 * In the origin implementation an overflow is handled by returning a
1762	 * search header with a len of zero, so reset ret.
1763	 */
1764	if (ret == -EOVERFLOW)
1765		ret = 0;
1766
1767	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
1768		ret = -EFAULT;
1769	return ret;
1770}
1771
1772static noinline int btrfs_ioctl_tree_search_v2(struct inode *inode,
1773					       void __user *argp)
1774{
1775	struct btrfs_ioctl_search_args_v2 __user *uarg = argp;
1776	struct btrfs_ioctl_search_args_v2 args;
 
1777	int ret;
1778	u64 buf_size;
1779	const u64 buf_limit = SZ_16M;
1780
1781	if (!capable(CAP_SYS_ADMIN))
1782		return -EPERM;
1783
1784	/* copy search header and buffer size */
 
1785	if (copy_from_user(&args, uarg, sizeof(args)))
1786		return -EFAULT;
1787
1788	buf_size = args.buf_size;
1789
 
 
 
1790	/* limit result size to 16MB */
1791	if (buf_size > buf_limit)
1792		buf_size = buf_limit;
1793
 
1794	ret = search_ioctl(inode, &args.key, &buf_size,
1795			   (char __user *)(&uarg->buf[0]));
1796	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
1797		ret = -EFAULT;
1798	else if (ret == -EOVERFLOW &&
1799		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
1800		ret = -EFAULT;
1801
1802	return ret;
1803}
1804
1805/*
1806 * Search INODE_REFs to identify path name of 'dirid' directory
1807 * in a 'tree_id' tree. and sets path name to 'name'.
1808 */
1809static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1810				u64 tree_id, u64 dirid, char *name)
1811{
1812	struct btrfs_root *root;
1813	struct btrfs_key key;
1814	char *ptr;
1815	int ret = -1;
1816	int slot;
1817	int len;
1818	int total_len = 0;
1819	struct btrfs_inode_ref *iref;
1820	struct extent_buffer *l;
1821	struct btrfs_path *path;
1822
1823	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1824		name[0]='\0';
1825		return 0;
1826	}
1827
1828	path = btrfs_alloc_path();
1829	if (!path)
1830		return -ENOMEM;
1831
1832	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
1833
1834	root = btrfs_get_fs_root(info, tree_id, true);
 
 
 
1835	if (IS_ERR(root)) {
1836		ret = PTR_ERR(root);
1837		root = NULL;
1838		goto out;
1839	}
1840
1841	key.objectid = dirid;
1842	key.type = BTRFS_INODE_REF_KEY;
1843	key.offset = (u64)-1;
1844
1845	while (1) {
1846		ret = btrfs_search_backwards(root, &key, path);
1847		if (ret < 0)
1848			goto out;
1849		else if (ret > 0) {
1850			ret = -ENOENT;
1851			goto out;
 
 
 
 
 
 
1852		}
1853
1854		l = path->nodes[0];
1855		slot = path->slots[0];
 
1856
1857		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
1858		len = btrfs_inode_ref_name_len(l, iref);
1859		ptr -= len + 1;
1860		total_len += len + 1;
1861		if (ptr < name) {
1862			ret = -ENAMETOOLONG;
1863			goto out;
1864		}
1865
1866		*(ptr + len) = '/';
1867		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
1868
1869		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
1870			break;
1871
1872		btrfs_release_path(path);
1873		key.objectid = key.offset;
1874		key.offset = (u64)-1;
1875		dirid = key.objectid;
1876	}
1877	memmove(name, ptr, total_len);
1878	name[total_len] = '\0';
1879	ret = 0;
1880out:
1881	btrfs_put_root(root);
1882	btrfs_free_path(path);
1883	return ret;
1884}
1885
1886static int btrfs_search_path_in_tree_user(struct mnt_idmap *idmap,
1887				struct inode *inode,
1888				struct btrfs_ioctl_ino_lookup_user_args *args)
1889{
1890	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1891	struct super_block *sb = inode->i_sb;
1892	struct btrfs_key upper_limit = BTRFS_I(inode)->location;
1893	u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
1894	u64 dirid = args->dirid;
1895	unsigned long item_off;
1896	unsigned long item_len;
1897	struct btrfs_inode_ref *iref;
1898	struct btrfs_root_ref *rref;
1899	struct btrfs_root *root = NULL;
1900	struct btrfs_path *path;
1901	struct btrfs_key key, key2;
1902	struct extent_buffer *leaf;
1903	struct inode *temp_inode;
1904	char *ptr;
1905	int slot;
1906	int len;
1907	int total_len = 0;
1908	int ret;
1909
1910	path = btrfs_alloc_path();
1911	if (!path)
1912		return -ENOMEM;
1913
1914	/*
1915	 * If the bottom subvolume does not exist directly under upper_limit,
1916	 * construct the path in from the bottom up.
1917	 */
1918	if (dirid != upper_limit.objectid) {
1919		ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
1920
1921		root = btrfs_get_fs_root(fs_info, treeid, true);
1922		if (IS_ERR(root)) {
1923			ret = PTR_ERR(root);
1924			goto out;
1925		}
1926
1927		key.objectid = dirid;
1928		key.type = BTRFS_INODE_REF_KEY;
1929		key.offset = (u64)-1;
1930		while (1) {
1931			ret = btrfs_search_backwards(root, &key, path);
1932			if (ret < 0)
1933				goto out_put;
1934			else if (ret > 0) {
1935				ret = -ENOENT;
1936				goto out_put;
1937			}
1938
1939			leaf = path->nodes[0];
1940			slot = path->slots[0];
1941
1942			iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
1943			len = btrfs_inode_ref_name_len(leaf, iref);
1944			ptr -= len + 1;
1945			total_len += len + 1;
1946			if (ptr < args->path) {
1947				ret = -ENAMETOOLONG;
1948				goto out_put;
1949			}
1950
1951			*(ptr + len) = '/';
1952			read_extent_buffer(leaf, ptr,
1953					(unsigned long)(iref + 1), len);
1954
1955			/* Check the read+exec permission of this directory */
1956			ret = btrfs_previous_item(root, path, dirid,
1957						  BTRFS_INODE_ITEM_KEY);
1958			if (ret < 0) {
1959				goto out_put;
1960			} else if (ret > 0) {
1961				ret = -ENOENT;
1962				goto out_put;
1963			}
1964
1965			leaf = path->nodes[0];
1966			slot = path->slots[0];
1967			btrfs_item_key_to_cpu(leaf, &key2, slot);
1968			if (key2.objectid != dirid) {
1969				ret = -ENOENT;
1970				goto out_put;
1971			}
1972
1973			/*
1974			 * We don't need the path anymore, so release it and
1975			 * avoid deadlocks and lockdep warnings in case
1976			 * btrfs_iget() needs to lookup the inode from its root
1977			 * btree and lock the same leaf.
1978			 */
1979			btrfs_release_path(path);
1980			temp_inode = btrfs_iget(sb, key2.objectid, root);
1981			if (IS_ERR(temp_inode)) {
1982				ret = PTR_ERR(temp_inode);
1983				goto out_put;
1984			}
1985			ret = inode_permission(idmap, temp_inode,
1986					       MAY_READ | MAY_EXEC);
1987			iput(temp_inode);
1988			if (ret) {
1989				ret = -EACCES;
1990				goto out_put;
1991			}
1992
1993			if (key.offset == upper_limit.objectid)
1994				break;
1995			if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
1996				ret = -EACCES;
1997				goto out_put;
1998			}
1999
2000			key.objectid = key.offset;
2001			key.offset = (u64)-1;
2002			dirid = key.objectid;
2003		}
2004
2005		memmove(args->path, ptr, total_len);
2006		args->path[total_len] = '\0';
2007		btrfs_put_root(root);
2008		root = NULL;
2009		btrfs_release_path(path);
2010	}
2011
2012	/* Get the bottom subvolume's name from ROOT_REF */
2013	key.objectid = treeid;
2014	key.type = BTRFS_ROOT_REF_KEY;
2015	key.offset = args->treeid;
2016	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2017	if (ret < 0) {
2018		goto out;
2019	} else if (ret > 0) {
2020		ret = -ENOENT;
2021		goto out;
2022	}
2023
2024	leaf = path->nodes[0];
2025	slot = path->slots[0];
2026	btrfs_item_key_to_cpu(leaf, &key, slot);
2027
2028	item_off = btrfs_item_ptr_offset(leaf, slot);
2029	item_len = btrfs_item_size(leaf, slot);
2030	/* Check if dirid in ROOT_REF corresponds to passed dirid */
2031	rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2032	if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2033		ret = -EINVAL;
2034		goto out;
2035	}
2036
2037	/* Copy subvolume's name */
2038	item_off += sizeof(struct btrfs_root_ref);
2039	item_len -= sizeof(struct btrfs_root_ref);
2040	read_extent_buffer(leaf, args->name, item_off, item_len);
2041	args->name[item_len] = 0;
2042
2043out_put:
2044	btrfs_put_root(root);
2045out:
2046	btrfs_free_path(path);
2047	return ret;
2048}
2049
2050static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root,
2051					   void __user *argp)
2052{
2053	struct btrfs_ioctl_ino_lookup_args *args;
 
2054	int ret = 0;
2055
2056	args = memdup_user(argp, sizeof(*args));
2057	if (IS_ERR(args))
2058		return PTR_ERR(args);
2059
 
 
2060	/*
2061	 * Unprivileged query to obtain the containing subvolume root id. The
2062	 * path is reset so it's consistent with btrfs_search_path_in_tree.
2063	 */
2064	if (args->treeid == 0)
2065		args->treeid = root->root_key.objectid;
2066
2067	if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2068		args->name[0] = 0;
2069		goto out;
2070	}
2071
2072	if (!capable(CAP_SYS_ADMIN)) {
2073		ret = -EPERM;
2074		goto out;
2075	}
2076
2077	ret = btrfs_search_path_in_tree(root->fs_info,
2078					args->treeid, args->objectid,
2079					args->name);
2080
2081out:
2082	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2083		ret = -EFAULT;
2084
2085	kfree(args);
2086	return ret;
2087}
2088
2089/*
2090 * Version of ino_lookup ioctl (unprivileged)
2091 *
2092 * The main differences from ino_lookup ioctl are:
2093 *
2094 *   1. Read + Exec permission will be checked using inode_permission() during
2095 *      path construction. -EACCES will be returned in case of failure.
2096 *   2. Path construction will be stopped at the inode number which corresponds
2097 *      to the fd with which this ioctl is called. If constructed path does not
2098 *      exist under fd's inode, -EACCES will be returned.
2099 *   3. The name of bottom subvolume is also searched and filled.
2100 */
2101static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2102{
2103	struct btrfs_ioctl_ino_lookup_user_args *args;
2104	struct inode *inode;
2105	int ret;
2106
2107	args = memdup_user(argp, sizeof(*args));
2108	if (IS_ERR(args))
2109		return PTR_ERR(args);
2110
2111	inode = file_inode(file);
2112
2113	if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2114	    BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2115		/*
2116		 * The subvolume does not exist under fd with which this is
2117		 * called
2118		 */
2119		kfree(args);
2120		return -EACCES;
2121	}
2122
2123	ret = btrfs_search_path_in_tree_user(file_mnt_idmap(file), inode, args);
2124
2125	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2126		ret = -EFAULT;
2127
2128	kfree(args);
2129	return ret;
2130}
2131
2132/* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
2133static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp)
2134{
2135	struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2136	struct btrfs_fs_info *fs_info;
2137	struct btrfs_root *root;
2138	struct btrfs_path *path;
2139	struct btrfs_key key;
2140	struct btrfs_root_item *root_item;
2141	struct btrfs_root_ref *rref;
2142	struct extent_buffer *leaf;
2143	unsigned long item_off;
2144	unsigned long item_len;
2145	int slot;
2146	int ret = 0;
2147
2148	path = btrfs_alloc_path();
2149	if (!path)
2150		return -ENOMEM;
2151
2152	subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2153	if (!subvol_info) {
2154		btrfs_free_path(path);
2155		return -ENOMEM;
2156	}
2157
2158	fs_info = BTRFS_I(inode)->root->fs_info;
2159
2160	/* Get root_item of inode's subvolume */
2161	key.objectid = BTRFS_I(inode)->root->root_key.objectid;
2162	root = btrfs_get_fs_root(fs_info, key.objectid, true);
2163	if (IS_ERR(root)) {
2164		ret = PTR_ERR(root);
2165		goto out_free;
2166	}
2167	root_item = &root->root_item;
2168
2169	subvol_info->treeid = key.objectid;
2170
2171	subvol_info->generation = btrfs_root_generation(root_item);
2172	subvol_info->flags = btrfs_root_flags(root_item);
2173
2174	memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2175	memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2176						    BTRFS_UUID_SIZE);
2177	memcpy(subvol_info->received_uuid, root_item->received_uuid,
2178						    BTRFS_UUID_SIZE);
2179
2180	subvol_info->ctransid = btrfs_root_ctransid(root_item);
2181	subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2182	subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2183
2184	subvol_info->otransid = btrfs_root_otransid(root_item);
2185	subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2186	subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2187
2188	subvol_info->stransid = btrfs_root_stransid(root_item);
2189	subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2190	subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2191
2192	subvol_info->rtransid = btrfs_root_rtransid(root_item);
2193	subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2194	subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2195
2196	if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2197		/* Search root tree for ROOT_BACKREF of this subvolume */
2198		key.type = BTRFS_ROOT_BACKREF_KEY;
2199		key.offset = 0;
2200		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2201		if (ret < 0) {
2202			goto out;
2203		} else if (path->slots[0] >=
2204			   btrfs_header_nritems(path->nodes[0])) {
2205			ret = btrfs_next_leaf(fs_info->tree_root, path);
2206			if (ret < 0) {
2207				goto out;
2208			} else if (ret > 0) {
2209				ret = -EUCLEAN;
2210				goto out;
2211			}
2212		}
2213
2214		leaf = path->nodes[0];
2215		slot = path->slots[0];
2216		btrfs_item_key_to_cpu(leaf, &key, slot);
2217		if (key.objectid == subvol_info->treeid &&
2218		    key.type == BTRFS_ROOT_BACKREF_KEY) {
2219			subvol_info->parent_id = key.offset;
2220
2221			rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2222			subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2223
2224			item_off = btrfs_item_ptr_offset(leaf, slot)
2225					+ sizeof(struct btrfs_root_ref);
2226			item_len = btrfs_item_size(leaf, slot)
2227					- sizeof(struct btrfs_root_ref);
2228			read_extent_buffer(leaf, subvol_info->name,
2229					   item_off, item_len);
2230		} else {
2231			ret = -ENOENT;
2232			goto out;
2233		}
2234	}
2235
2236	btrfs_free_path(path);
2237	path = NULL;
2238	if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2239		ret = -EFAULT;
2240
2241out:
2242	btrfs_put_root(root);
2243out_free:
2244	btrfs_free_path(path);
2245	kfree(subvol_info);
2246	return ret;
2247}
2248
2249/*
2250 * Return ROOT_REF information of the subvolume containing this inode
2251 * except the subvolume name.
2252 */
2253static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root,
2254					  void __user *argp)
2255{
2256	struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2257	struct btrfs_root_ref *rref;
2258	struct btrfs_path *path;
2259	struct btrfs_key key;
2260	struct extent_buffer *leaf;
2261	u64 objectid;
2262	int slot;
2263	int ret;
2264	u8 found;
2265
2266	path = btrfs_alloc_path();
2267	if (!path)
2268		return -ENOMEM;
2269
2270	rootrefs = memdup_user(argp, sizeof(*rootrefs));
2271	if (IS_ERR(rootrefs)) {
2272		btrfs_free_path(path);
2273		return PTR_ERR(rootrefs);
2274	}
2275
2276	objectid = root->root_key.objectid;
2277	key.objectid = objectid;
2278	key.type = BTRFS_ROOT_REF_KEY;
2279	key.offset = rootrefs->min_treeid;
2280	found = 0;
2281
2282	root = root->fs_info->tree_root;
2283	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2284	if (ret < 0) {
2285		goto out;
2286	} else if (path->slots[0] >=
2287		   btrfs_header_nritems(path->nodes[0])) {
2288		ret = btrfs_next_leaf(root, path);
2289		if (ret < 0) {
2290			goto out;
2291		} else if (ret > 0) {
2292			ret = -EUCLEAN;
2293			goto out;
2294		}
2295	}
2296	while (1) {
2297		leaf = path->nodes[0];
2298		slot = path->slots[0];
2299
2300		btrfs_item_key_to_cpu(leaf, &key, slot);
2301		if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2302			ret = 0;
2303			goto out;
2304		}
2305
2306		if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2307			ret = -EOVERFLOW;
2308			goto out;
2309		}
2310
2311		rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2312		rootrefs->rootref[found].treeid = key.offset;
2313		rootrefs->rootref[found].dirid =
2314				  btrfs_root_ref_dirid(leaf, rref);
2315		found++;
2316
2317		ret = btrfs_next_item(root, path);
2318		if (ret < 0) {
2319			goto out;
2320		} else if (ret > 0) {
2321			ret = -EUCLEAN;
2322			goto out;
2323		}
2324	}
2325
2326out:
2327	btrfs_free_path(path);
2328
2329	if (!ret || ret == -EOVERFLOW) {
2330		rootrefs->num_items = found;
2331		/* update min_treeid for next search */
2332		if (found)
2333			rootrefs->min_treeid =
2334				rootrefs->rootref[found - 1].treeid + 1;
2335		if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2336			ret = -EFAULT;
2337	}
2338
2339	kfree(rootrefs);
2340
2341	return ret;
2342}
2343
2344static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2345					     void __user *arg,
2346					     bool destroy_v2)
2347{
2348	struct dentry *parent = file->f_path.dentry;
2349	struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2350	struct dentry *dentry;
2351	struct inode *dir = d_inode(parent);
2352	struct inode *inode;
2353	struct btrfs_root *root = BTRFS_I(dir)->root;
2354	struct btrfs_root *dest = NULL;
2355	struct btrfs_ioctl_vol_args *vol_args = NULL;
2356	struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
2357	struct mnt_idmap *idmap = file_mnt_idmap(file);
2358	char *subvol_name, *subvol_name_ptr = NULL;
2359	int subvol_namelen;
 
 
2360	int err = 0;
2361	bool destroy_parent = false;
2362
2363	/* We don't support snapshots with extent tree v2 yet. */
2364	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2365		btrfs_err(fs_info,
2366			  "extent tree v2 doesn't support snapshot deletion yet");
2367		return -EOPNOTSUPP;
2368	}
2369
2370	if (destroy_v2) {
2371		vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2372		if (IS_ERR(vol_args2))
2373			return PTR_ERR(vol_args2);
2374
2375		if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2376			err = -EOPNOTSUPP;
2377			goto out;
2378		}
2379
2380		/*
2381		 * If SPEC_BY_ID is not set, we are looking for the subvolume by
2382		 * name, same as v1 currently does.
2383		 */
2384		if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2385			vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0;
2386			subvol_name = vol_args2->name;
2387
2388			err = mnt_want_write_file(file);
2389			if (err)
2390				goto out;
2391		} else {
2392			struct inode *old_dir;
2393
2394			if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2395				err = -EINVAL;
2396				goto out;
2397			}
2398
2399			err = mnt_want_write_file(file);
2400			if (err)
2401				goto out;
2402
2403			dentry = btrfs_get_dentry(fs_info->sb,
2404					BTRFS_FIRST_FREE_OBJECTID,
2405					vol_args2->subvolid, 0);
2406			if (IS_ERR(dentry)) {
2407				err = PTR_ERR(dentry);
2408				goto out_drop_write;
2409			}
2410
2411			/*
2412			 * Change the default parent since the subvolume being
2413			 * deleted can be outside of the current mount point.
2414			 */
2415			parent = btrfs_get_parent(dentry);
2416
2417			/*
2418			 * At this point dentry->d_name can point to '/' if the
2419			 * subvolume we want to destroy is outsite of the
2420			 * current mount point, so we need to release the
2421			 * current dentry and execute the lookup to return a new
2422			 * one with ->d_name pointing to the
2423			 * <mount point>/subvol_name.
2424			 */
2425			dput(dentry);
2426			if (IS_ERR(parent)) {
2427				err = PTR_ERR(parent);
2428				goto out_drop_write;
2429			}
2430			old_dir = dir;
2431			dir = d_inode(parent);
2432
2433			/*
2434			 * If v2 was used with SPEC_BY_ID, a new parent was
2435			 * allocated since the subvolume can be outside of the
2436			 * current mount point. Later on we need to release this
2437			 * new parent dentry.
2438			 */
2439			destroy_parent = true;
2440
2441			/*
2442			 * On idmapped mounts, deletion via subvolid is
2443			 * restricted to subvolumes that are immediate
2444			 * ancestors of the inode referenced by the file
2445			 * descriptor in the ioctl. Otherwise the idmapping
2446			 * could potentially be abused to delete subvolumes
2447			 * anywhere in the filesystem the user wouldn't be able
2448			 * to delete without an idmapped mount.
2449			 */
2450			if (old_dir != dir && idmap != &nop_mnt_idmap) {
2451				err = -EOPNOTSUPP;
2452				goto free_parent;
2453			}
2454
2455			subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
2456						fs_info, vol_args2->subvolid);
2457			if (IS_ERR(subvol_name_ptr)) {
2458				err = PTR_ERR(subvol_name_ptr);
2459				goto free_parent;
2460			}
2461			/* subvol_name_ptr is already nul terminated */
2462			subvol_name = (char *)kbasename(subvol_name_ptr);
2463		}
2464	} else {
2465		vol_args = memdup_user(arg, sizeof(*vol_args));
2466		if (IS_ERR(vol_args))
2467			return PTR_ERR(vol_args);
2468
2469		vol_args->name[BTRFS_PATH_NAME_MAX] = 0;
2470		subvol_name = vol_args->name;
2471
2472		err = mnt_want_write_file(file);
2473		if (err)
2474			goto out;
2475	}
2476
2477	subvol_namelen = strlen(subvol_name);
2478
2479	if (strchr(subvol_name, '/') ||
2480	    strncmp(subvol_name, "..", subvol_namelen) == 0) {
 
 
2481		err = -EINVAL;
2482		goto free_subvol_name;
2483	}
2484
2485	if (!S_ISDIR(dir->i_mode)) {
2486		err = -ENOTDIR;
2487		goto free_subvol_name;
2488	}
2489
2490	err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
 
2491	if (err == -EINTR)
2492		goto free_subvol_name;
2493	dentry = lookup_one(idmap, subvol_name, parent, subvol_namelen);
2494	if (IS_ERR(dentry)) {
2495		err = PTR_ERR(dentry);
2496		goto out_unlock_dir;
2497	}
2498
2499	if (d_really_is_negative(dentry)) {
2500		err = -ENOENT;
2501		goto out_dput;
2502	}
2503
2504	inode = d_inode(dentry);
2505	dest = BTRFS_I(inode)->root;
2506	if (!capable(CAP_SYS_ADMIN)) {
2507		/*
2508		 * Regular user.  Only allow this with a special mount
2509		 * option, when the user has write+exec access to the
2510		 * subvol root, and when rmdir(2) would have been
2511		 * allowed.
2512		 *
2513		 * Note that this is _not_ check that the subvol is
2514		 * empty or doesn't contain data that we wouldn't
2515		 * otherwise be able to delete.
2516		 *
2517		 * Users who want to delete empty subvols should try
2518		 * rmdir(2).
2519		 */
2520		err = -EPERM;
2521		if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2522			goto out_dput;
2523
2524		/*
2525		 * Do not allow deletion if the parent dir is the same
2526		 * as the dir to be deleted.  That means the ioctl
2527		 * must be called on the dentry referencing the root
2528		 * of the subvol, not a random directory contained
2529		 * within it.
2530		 */
2531		err = -EINVAL;
2532		if (root == dest)
2533			goto out_dput;
2534
2535		err = inode_permission(idmap, inode, MAY_WRITE | MAY_EXEC);
2536		if (err)
2537			goto out_dput;
2538	}
2539
2540	/* check if subvolume may be deleted by a user */
2541	err = btrfs_may_delete(idmap, dir, dentry, 1);
2542	if (err)
2543		goto out_dput;
2544
2545	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2546		err = -EINVAL;
2547		goto out_dput;
2548	}
2549
2550	btrfs_inode_lock(BTRFS_I(inode), 0);
2551	err = btrfs_delete_subvolume(BTRFS_I(dir), dentry);
2552	btrfs_inode_unlock(BTRFS_I(inode), 0);
2553	if (!err)
2554		d_delete_notify(dir, dentry);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2555
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2556out_dput:
2557	dput(dentry);
2558out_unlock_dir:
2559	btrfs_inode_unlock(BTRFS_I(dir), 0);
2560free_subvol_name:
2561	kfree(subvol_name_ptr);
2562free_parent:
2563	if (destroy_parent)
2564		dput(parent);
2565out_drop_write:
2566	mnt_drop_write_file(file);
2567out:
2568	kfree(vol_args2);
2569	kfree(vol_args);
2570	return err;
2571}
2572
2573static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2574{
2575	struct inode *inode = file_inode(file);
2576	struct btrfs_root *root = BTRFS_I(inode)->root;
2577	struct btrfs_ioctl_defrag_range_args range = {0};
2578	int ret;
2579
2580	ret = mnt_want_write_file(file);
2581	if (ret)
2582		return ret;
2583
2584	if (btrfs_root_readonly(root)) {
2585		ret = -EROFS;
2586		goto out;
2587	}
2588
2589	switch (inode->i_mode & S_IFMT) {
2590	case S_IFDIR:
2591		if (!capable(CAP_SYS_ADMIN)) {
2592			ret = -EPERM;
2593			goto out;
2594		}
2595		ret = btrfs_defrag_root(root);
 
 
 
2596		break;
2597	case S_IFREG:
2598		/*
2599		 * Note that this does not check the file descriptor for write
2600		 * access. This prevents defragmenting executables that are
2601		 * running and allows defrag on files open in read-only mode.
2602		 */
2603		if (!capable(CAP_SYS_ADMIN) &&
2604		    inode_permission(&nop_mnt_idmap, inode, MAY_WRITE)) {
2605			ret = -EPERM;
2606			goto out;
2607		}
2608
2609		if (argp) {
2610			if (copy_from_user(&range, argp, sizeof(range))) {
 
2611				ret = -EFAULT;
2612				goto out;
2613			}
2614			if (range.flags & ~BTRFS_DEFRAG_RANGE_FLAGS_SUPP) {
2615				ret = -EOPNOTSUPP;
2616				goto out;
2617			}
2618			/* compression requires us to start the IO */
2619			if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2620				range.flags |= BTRFS_DEFRAG_RANGE_START_IO;
2621				range.extent_thresh = (u32)-1;
2622			}
2623		} else {
2624			/* the rest are all set to zero by kzalloc */
2625			range.len = (u64)-1;
2626		}
2627		ret = btrfs_defrag_file(file_inode(file), &file->f_ra,
2628					&range, BTRFS_OLDEST_GENERATION, 0);
2629		if (ret > 0)
2630			ret = 0;
 
2631		break;
2632	default:
2633		ret = -EINVAL;
2634	}
2635out:
2636	mnt_drop_write_file(file);
2637	return ret;
2638}
2639
2640static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
2641{
2642	struct btrfs_ioctl_vol_args *vol_args;
2643	bool restore_op = false;
2644	int ret;
2645
2646	if (!capable(CAP_SYS_ADMIN))
2647		return -EPERM;
2648
2649	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2650		btrfs_err(fs_info, "device add not supported on extent tree v2 yet");
2651		return -EINVAL;
2652	}
2653
2654	if (fs_info->fs_devices->temp_fsid) {
2655		btrfs_err(fs_info,
2656			  "device add not supported on cloned temp-fsid mount");
2657		return -EINVAL;
2658	}
2659
2660	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) {
2661		if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD))
2662			return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2663
2664		/*
2665		 * We can do the device add because we have a paused balanced,
2666		 * change the exclusive op type and remember we should bring
2667		 * back the paused balance
2668		 */
2669		fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD;
2670		btrfs_exclop_start_unlock(fs_info);
2671		restore_op = true;
2672	}
2673
 
2674	vol_args = memdup_user(arg, sizeof(*vol_args));
2675	if (IS_ERR(vol_args)) {
2676		ret = PTR_ERR(vol_args);
2677		goto out;
2678	}
2679
2680	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2681	ret = btrfs_init_new_device(fs_info, vol_args->name);
2682
2683	if (!ret)
2684		btrfs_info(fs_info, "disk added %s", vol_args->name);
2685
2686	kfree(vol_args);
2687out:
2688	if (restore_op)
2689		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
2690	else
2691		btrfs_exclop_finish(fs_info);
2692	return ret;
2693}
2694
2695static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
2696{
2697	BTRFS_DEV_LOOKUP_ARGS(args);
2698	struct inode *inode = file_inode(file);
2699	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2700	struct btrfs_ioctl_vol_args_v2 *vol_args;
2701	struct bdev_handle *bdev_handle = NULL;
2702	int ret;
2703	bool cancel = false;
2704
2705	if (!capable(CAP_SYS_ADMIN))
2706		return -EPERM;
2707
2708	vol_args = memdup_user(arg, sizeof(*vol_args));
2709	if (IS_ERR(vol_args))
2710		return PTR_ERR(vol_args);
2711
2712	if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
2713		ret = -EOPNOTSUPP;
2714		goto out;
2715	}
2716
2717	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
2718	if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
2719		args.devid = vol_args->devid;
2720	} else if (!strcmp("cancel", vol_args->name)) {
2721		cancel = true;
2722	} else {
2723		ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2724		if (ret)
2725			goto out;
2726	}
2727
2728	ret = mnt_want_write_file(file);
2729	if (ret)
2730		goto out;
2731
2732	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2733					   cancel);
2734	if (ret)
2735		goto err_drop;
2736
2737	/* Exclusive operation is now claimed */
2738	ret = btrfs_rm_device(fs_info, &args, &bdev_handle);
2739
2740	btrfs_exclop_finish(fs_info);
2741
2742	if (!ret) {
2743		if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
2744			btrfs_info(fs_info, "device deleted: id %llu",
2745					vol_args->devid);
2746		else
2747			btrfs_info(fs_info, "device deleted: %s",
2748					vol_args->name);
2749	}
2750err_drop:
2751	mnt_drop_write_file(file);
2752	if (bdev_handle)
2753		bdev_release(bdev_handle);
2754out:
2755	btrfs_put_dev_args_from_path(&args);
2756	kfree(vol_args);
2757	return ret;
2758}
2759
2760static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2761{
2762	BTRFS_DEV_LOOKUP_ARGS(args);
2763	struct inode *inode = file_inode(file);
2764	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2765	struct btrfs_ioctl_vol_args *vol_args;
2766	struct bdev_handle *bdev_handle = NULL;
2767	int ret;
2768	bool cancel = false;
2769
2770	if (!capable(CAP_SYS_ADMIN))
2771		return -EPERM;
2772
2773	vol_args = memdup_user(arg, sizeof(*vol_args));
2774	if (IS_ERR(vol_args))
2775		return PTR_ERR(vol_args);
2776
2777	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2778	if (!strcmp("cancel", vol_args->name)) {
2779		cancel = true;
2780	} else {
2781		ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2782		if (ret)
2783			goto out;
2784	}
2785
2786	ret = mnt_want_write_file(file);
2787	if (ret)
 
2788		goto out;
2789
2790	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2791					   cancel);
2792	if (ret == 0) {
2793		ret = btrfs_rm_device(fs_info, &args, &bdev_handle);
2794		if (!ret)
2795			btrfs_info(fs_info, "disk deleted %s", vol_args->name);
2796		btrfs_exclop_finish(fs_info);
2797	}
2798
2799	mnt_drop_write_file(file);
2800	if (bdev_handle)
2801		bdev_release(bdev_handle);
 
 
 
 
 
2802out:
2803	btrfs_put_dev_args_from_path(&args);
2804	kfree(vol_args);
 
 
2805	return ret;
2806}
2807
2808static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
2809				void __user *arg)
2810{
2811	struct btrfs_ioctl_fs_info_args *fi_args;
2812	struct btrfs_device *device;
2813	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2814	u64 flags_in;
2815	int ret = 0;
2816
2817	fi_args = memdup_user(arg, sizeof(*fi_args));
2818	if (IS_ERR(fi_args))
2819		return PTR_ERR(fi_args);
2820
2821	flags_in = fi_args->flags;
2822	memset(fi_args, 0, sizeof(*fi_args));
2823
2824	rcu_read_lock();
2825	fi_args->num_devices = fs_devices->num_devices;
 
2826
2827	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2828		if (device->devid > fi_args->max_id)
2829			fi_args->max_id = device->devid;
2830	}
2831	rcu_read_unlock();
2832
2833	memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
2834	fi_args->nodesize = fs_info->nodesize;
2835	fi_args->sectorsize = fs_info->sectorsize;
2836	fi_args->clone_alignment = fs_info->sectorsize;
2837
2838	if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
2839		fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
2840		fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
2841		fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
2842	}
2843
2844	if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
2845		fi_args->generation = btrfs_get_fs_generation(fs_info);
2846		fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
2847	}
2848
2849	if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
2850		memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
2851		       sizeof(fi_args->metadata_uuid));
2852		fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
2853	}
2854
2855	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2856		ret = -EFAULT;
2857
2858	kfree(fi_args);
2859	return ret;
2860}
2861
2862static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
2863				 void __user *arg)
2864{
2865	BTRFS_DEV_LOOKUP_ARGS(args);
2866	struct btrfs_ioctl_dev_info_args *di_args;
2867	struct btrfs_device *dev;
 
2868	int ret = 0;
 
2869
2870	di_args = memdup_user(arg, sizeof(*di_args));
2871	if (IS_ERR(di_args))
2872		return PTR_ERR(di_args);
2873
2874	args.devid = di_args->devid;
2875	if (!btrfs_is_empty_uuid(di_args->uuid))
2876		args.uuid = di_args->uuid;
 
 
 
2877
2878	rcu_read_lock();
2879	dev = btrfs_find_device(fs_info->fs_devices, &args);
2880	if (!dev) {
2881		ret = -ENODEV;
2882		goto out;
2883	}
2884
2885	di_args->devid = dev->devid;
2886	di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2887	di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2888	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2889	memcpy(di_args->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2890	if (dev->name)
2891		strscpy(di_args->path, btrfs_dev_name(dev), sizeof(di_args->path));
2892	else
 
 
 
 
 
2893		di_args->path[0] = '\0';
 
2894
2895out:
2896	rcu_read_unlock();
2897	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2898		ret = -EFAULT;
2899
2900	kfree(di_args);
2901	return ret;
2902}
2903
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2904static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
2905{
2906	struct inode *inode = file_inode(file);
2907	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2908	struct btrfs_root *root = BTRFS_I(inode)->root;
2909	struct btrfs_root *new_root;
2910	struct btrfs_dir_item *di;
2911	struct btrfs_trans_handle *trans;
2912	struct btrfs_path *path = NULL;
 
2913	struct btrfs_disk_key disk_key;
2914	struct fscrypt_str name = FSTR_INIT("default", 7);
2915	u64 objectid = 0;
2916	u64 dir_id;
2917	int ret;
2918
2919	if (!capable(CAP_SYS_ADMIN))
2920		return -EPERM;
2921
2922	ret = mnt_want_write_file(file);
2923	if (ret)
2924		return ret;
2925
2926	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
2927		ret = -EFAULT;
2928		goto out;
2929	}
2930
2931	if (!objectid)
2932		objectid = BTRFS_FS_TREE_OBJECTID;
2933
2934	new_root = btrfs_get_fs_root(fs_info, objectid, true);
 
 
 
 
2935	if (IS_ERR(new_root)) {
2936		ret = PTR_ERR(new_root);
2937		goto out;
2938	}
2939	if (!is_fstree(new_root->root_key.objectid)) {
2940		ret = -ENOENT;
2941		goto out_free;
2942	}
2943
2944	path = btrfs_alloc_path();
2945	if (!path) {
2946		ret = -ENOMEM;
2947		goto out_free;
2948	}
 
2949
2950	trans = btrfs_start_transaction(root, 1);
2951	if (IS_ERR(trans)) {
 
2952		ret = PTR_ERR(trans);
2953		goto out_free;
2954	}
2955
2956	dir_id = btrfs_super_root_dir(fs_info->super_copy);
2957	di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
2958				   dir_id, &name, 1);
2959	if (IS_ERR_OR_NULL(di)) {
2960		btrfs_release_path(path);
2961		btrfs_end_transaction(trans);
2962		btrfs_err(fs_info,
2963			  "Umm, you don't have the default diritem, this isn't going to work");
2964		ret = -ENOENT;
2965		goto out_free;
2966	}
2967
2968	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
2969	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
2970	btrfs_mark_buffer_dirty(trans, path->nodes[0]);
2971	btrfs_release_path(path);
2972
2973	btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
2974	btrfs_end_transaction(trans);
2975out_free:
2976	btrfs_put_root(new_root);
2977	btrfs_free_path(path);
 
 
 
2978out:
2979	mnt_drop_write_file(file);
2980	return ret;
2981}
2982
2983static void get_block_group_info(struct list_head *groups_list,
2984				 struct btrfs_ioctl_space_info *space)
2985{
2986	struct btrfs_block_group *block_group;
2987
2988	space->total_bytes = 0;
2989	space->used_bytes = 0;
2990	space->flags = 0;
2991	list_for_each_entry(block_group, groups_list, list) {
2992		space->flags = block_group->flags;
2993		space->total_bytes += block_group->length;
2994		space->used_bytes += block_group->used;
 
2995	}
2996}
2997
2998static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
2999				   void __user *arg)
3000{
3001	struct btrfs_ioctl_space_args space_args = { 0 };
3002	struct btrfs_ioctl_space_info space;
3003	struct btrfs_ioctl_space_info *dest;
3004	struct btrfs_ioctl_space_info *dest_orig;
3005	struct btrfs_ioctl_space_info __user *user_dest;
3006	struct btrfs_space_info *info;
3007	static const u64 types[] = {
3008		BTRFS_BLOCK_GROUP_DATA,
3009		BTRFS_BLOCK_GROUP_SYSTEM,
3010		BTRFS_BLOCK_GROUP_METADATA,
3011		BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
3012	};
3013	int num_types = 4;
3014	int alloc_size;
3015	int ret = 0;
3016	u64 slot_count = 0;
3017	int i, c;
3018
3019	if (copy_from_user(&space_args,
3020			   (struct btrfs_ioctl_space_args __user *)arg,
3021			   sizeof(space_args)))
3022		return -EFAULT;
3023
3024	for (i = 0; i < num_types; i++) {
3025		struct btrfs_space_info *tmp;
3026
3027		info = NULL;
3028		list_for_each_entry(tmp, &fs_info->space_info, list) {
 
 
3029			if (tmp->flags == types[i]) {
3030				info = tmp;
3031				break;
3032			}
3033		}
 
3034
3035		if (!info)
3036			continue;
3037
3038		down_read(&info->groups_sem);
3039		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3040			if (!list_empty(&info->block_groups[c]))
3041				slot_count++;
3042		}
3043		up_read(&info->groups_sem);
3044	}
3045
3046	/*
3047	 * Global block reserve, exported as a space_info
3048	 */
3049	slot_count++;
3050
3051	/* space_slots == 0 means they are asking for a count */
3052	if (space_args.space_slots == 0) {
3053		space_args.total_spaces = slot_count;
3054		goto out;
3055	}
3056
3057	slot_count = min_t(u64, space_args.space_slots, slot_count);
3058
3059	alloc_size = sizeof(*dest) * slot_count;
3060
3061	/* we generally have at most 6 or so space infos, one for each raid
3062	 * level.  So, a whole page should be more than enough for everyone
3063	 */
3064	if (alloc_size > PAGE_SIZE)
3065		return -ENOMEM;
3066
3067	space_args.total_spaces = 0;
3068	dest = kmalloc(alloc_size, GFP_KERNEL);
3069	if (!dest)
3070		return -ENOMEM;
3071	dest_orig = dest;
3072
3073	/* now we have a buffer to copy into */
3074	for (i = 0; i < num_types; i++) {
3075		struct btrfs_space_info *tmp;
3076
3077		if (!slot_count)
3078			break;
3079
3080		info = NULL;
3081		list_for_each_entry(tmp, &fs_info->space_info, list) {
 
 
3082			if (tmp->flags == types[i]) {
3083				info = tmp;
3084				break;
3085			}
3086		}
 
3087
3088		if (!info)
3089			continue;
3090		down_read(&info->groups_sem);
3091		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3092			if (!list_empty(&info->block_groups[c])) {
3093				get_block_group_info(&info->block_groups[c],
3094						     &space);
3095				memcpy(dest, &space, sizeof(space));
3096				dest++;
3097				space_args.total_spaces++;
3098				slot_count--;
3099			}
3100			if (!slot_count)
3101				break;
3102		}
3103		up_read(&info->groups_sem);
3104	}
3105
3106	/*
3107	 * Add global block reserve
3108	 */
3109	if (slot_count) {
3110		struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3111
3112		spin_lock(&block_rsv->lock);
3113		space.total_bytes = block_rsv->size;
3114		space.used_bytes = block_rsv->size - block_rsv->reserved;
3115		spin_unlock(&block_rsv->lock);
3116		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3117		memcpy(dest, &space, sizeof(space));
3118		space_args.total_spaces++;
3119	}
3120
3121	user_dest = (struct btrfs_ioctl_space_info __user *)
3122		(arg + sizeof(struct btrfs_ioctl_space_args));
3123
3124	if (copy_to_user(user_dest, dest_orig, alloc_size))
3125		ret = -EFAULT;
3126
3127	kfree(dest_orig);
3128out:
3129	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3130		ret = -EFAULT;
3131
3132	return ret;
3133}
3134
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3135static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3136					    void __user *argp)
3137{
3138	struct btrfs_trans_handle *trans;
3139	u64 transid;
3140
3141	/*
3142	 * Start orphan cleanup here for the given root in case it hasn't been
3143	 * started already by other means. Errors are handled in the other
3144	 * functions during transaction commit.
3145	 */
3146	btrfs_orphan_cleanup(root);
3147
3148	trans = btrfs_attach_transaction_barrier(root);
3149	if (IS_ERR(trans)) {
3150		if (PTR_ERR(trans) != -ENOENT)
3151			return PTR_ERR(trans);
3152
3153		/* No running transaction, don't bother */
3154		transid = btrfs_get_last_trans_committed(root->fs_info);
3155		goto out;
3156	}
3157	transid = trans->transid;
3158	btrfs_commit_transaction_async(trans);
 
 
 
 
3159out:
3160	if (argp)
3161		if (copy_to_user(argp, &transid, sizeof(transid)))
3162			return -EFAULT;
3163	return 0;
3164}
3165
3166static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3167					   void __user *argp)
3168{
3169	/* By default wait for the current transaction. */
3170	u64 transid = 0;
3171
3172	if (argp)
3173		if (copy_from_user(&transid, argp, sizeof(transid)))
3174			return -EFAULT;
3175
3176	return btrfs_wait_for_commit(fs_info, transid);
 
 
3177}
3178
3179static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3180{
3181	struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
3182	struct btrfs_ioctl_scrub_args *sa;
3183	int ret;
3184
3185	if (!capable(CAP_SYS_ADMIN))
3186		return -EPERM;
3187
3188	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3189		btrfs_err(fs_info, "scrub is not supported on extent tree v2 yet");
3190		return -EINVAL;
3191	}
3192
3193	sa = memdup_user(arg, sizeof(*sa));
3194	if (IS_ERR(sa))
3195		return PTR_ERR(sa);
3196
3197	if (sa->flags & ~BTRFS_SCRUB_SUPPORTED_FLAGS) {
3198		ret = -EOPNOTSUPP;
3199		goto out;
3200	}
3201
3202	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3203		ret = mnt_want_write_file(file);
3204		if (ret)
3205			goto out;
3206	}
3207
3208	ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
3209			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3210			      0);
3211
3212	/*
3213	 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3214	 * error. This is important as it allows user space to know how much
3215	 * progress scrub has done. For example, if scrub is canceled we get
3216	 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3217	 * space. Later user space can inspect the progress from the structure
3218	 * btrfs_ioctl_scrub_args and resume scrub from where it left off
3219	 * previously (btrfs-progs does this).
3220	 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3221	 * then return -EFAULT to signal the structure was not copied or it may
3222	 * be corrupt and unreliable due to a partial copy.
3223	 */
3224	if (copy_to_user(arg, sa, sizeof(*sa)))
3225		ret = -EFAULT;
3226
3227	if (!(sa->flags & BTRFS_SCRUB_READONLY))
3228		mnt_drop_write_file(file);
3229out:
3230	kfree(sa);
3231	return ret;
3232}
3233
3234static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3235{
3236	if (!capable(CAP_SYS_ADMIN))
3237		return -EPERM;
3238
3239	return btrfs_scrub_cancel(fs_info);
3240}
3241
3242static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3243				       void __user *arg)
3244{
3245	struct btrfs_ioctl_scrub_args *sa;
3246	int ret;
3247
3248	if (!capable(CAP_SYS_ADMIN))
3249		return -EPERM;
3250
3251	sa = memdup_user(arg, sizeof(*sa));
3252	if (IS_ERR(sa))
3253		return PTR_ERR(sa);
3254
3255	ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
3256
3257	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3258		ret = -EFAULT;
3259
3260	kfree(sa);
3261	return ret;
3262}
3263
3264static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3265				      void __user *arg)
3266{
3267	struct btrfs_ioctl_get_dev_stats *sa;
3268	int ret;
3269
3270	sa = memdup_user(arg, sizeof(*sa));
3271	if (IS_ERR(sa))
3272		return PTR_ERR(sa);
3273
3274	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3275		kfree(sa);
3276		return -EPERM;
3277	}
3278
3279	ret = btrfs_get_dev_stats(fs_info, sa);
3280
3281	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3282		ret = -EFAULT;
3283
3284	kfree(sa);
3285	return ret;
3286}
3287
3288static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3289				    void __user *arg)
3290{
3291	struct btrfs_ioctl_dev_replace_args *p;
3292	int ret;
3293
3294	if (!capable(CAP_SYS_ADMIN))
3295		return -EPERM;
3296
3297	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3298		btrfs_err(fs_info, "device replace not supported on extent tree v2 yet");
3299		return -EINVAL;
3300	}
3301
3302	p = memdup_user(arg, sizeof(*p));
3303	if (IS_ERR(p))
3304		return PTR_ERR(p);
3305
3306	switch (p->cmd) {
3307	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3308		if (sb_rdonly(fs_info->sb)) {
3309			ret = -EROFS;
3310			goto out;
3311		}
3312		if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
 
 
3313			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3314		} else {
3315			ret = btrfs_dev_replace_by_ioctl(fs_info, p);
3316			btrfs_exclop_finish(fs_info);
 
 
3317		}
3318		break;
3319	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3320		btrfs_dev_replace_status(fs_info, p);
3321		ret = 0;
3322		break;
3323	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3324		p->result = btrfs_dev_replace_cancel(fs_info);
3325		ret = 0;
3326		break;
3327	default:
3328		ret = -EINVAL;
3329		break;
3330	}
3331
3332	if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
3333		ret = -EFAULT;
3334out:
3335	kfree(p);
3336	return ret;
3337}
3338
3339static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3340{
3341	int ret = 0;
3342	int i;
3343	u64 rel_ptr;
3344	int size;
3345	struct btrfs_ioctl_ino_path_args *ipa = NULL;
3346	struct inode_fs_paths *ipath = NULL;
3347	struct btrfs_path *path;
3348
3349	if (!capable(CAP_DAC_READ_SEARCH))
3350		return -EPERM;
3351
3352	path = btrfs_alloc_path();
3353	if (!path) {
3354		ret = -ENOMEM;
3355		goto out;
3356	}
3357
3358	ipa = memdup_user(arg, sizeof(*ipa));
3359	if (IS_ERR(ipa)) {
3360		ret = PTR_ERR(ipa);
3361		ipa = NULL;
3362		goto out;
3363	}
3364
3365	size = min_t(u32, ipa->size, 4096);
3366	ipath = init_ipath(size, root, path);
3367	if (IS_ERR(ipath)) {
3368		ret = PTR_ERR(ipath);
3369		ipath = NULL;
3370		goto out;
3371	}
3372
3373	ret = paths_from_inode(ipa->inum, ipath);
3374	if (ret < 0)
3375		goto out;
3376
3377	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3378		rel_ptr = ipath->fspath->val[i] -
3379			  (u64)(unsigned long)ipath->fspath->val;
3380		ipath->fspath->val[i] = rel_ptr;
3381	}
3382
3383	btrfs_free_path(path);
3384	path = NULL;
3385	ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
3386			   ipath->fspath, size);
3387	if (ret) {
3388		ret = -EFAULT;
3389		goto out;
3390	}
3391
3392out:
3393	btrfs_free_path(path);
3394	free_ipath(ipath);
3395	kfree(ipa);
3396
3397	return ret;
3398}
3399
3400static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3401					void __user *arg, int version)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3402{
3403	int ret = 0;
3404	int size;
3405	struct btrfs_ioctl_logical_ino_args *loi;
3406	struct btrfs_data_container *inodes = NULL;
3407	struct btrfs_path *path = NULL;
3408	bool ignore_offset;
3409
3410	if (!capable(CAP_SYS_ADMIN))
3411		return -EPERM;
3412
3413	loi = memdup_user(arg, sizeof(*loi));
3414	if (IS_ERR(loi))
3415		return PTR_ERR(loi);
 
 
 
3416
3417	if (version == 1) {
3418		ignore_offset = false;
3419		size = min_t(u32, loi->size, SZ_64K);
3420	} else {
3421		/* All reserved bits must be 0 for now */
3422		if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
3423			ret = -EINVAL;
3424			goto out_loi;
3425		}
3426		/* Only accept flags we have defined so far */
3427		if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
3428			ret = -EINVAL;
3429			goto out_loi;
3430		}
3431		ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
3432		size = min_t(u32, loi->size, SZ_16M);
3433	}
3434
 
3435	inodes = init_data_container(size);
3436	if (IS_ERR(inodes)) {
3437		ret = PTR_ERR(inodes);
3438		goto out_loi;
3439	}
3440
3441	path = btrfs_alloc_path();
3442	if (!path) {
3443		ret = -ENOMEM;
3444		goto out;
3445	}
3446	ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
3447					  inodes, ignore_offset);
3448	btrfs_free_path(path);
3449	if (ret == -EINVAL)
3450		ret = -ENOENT;
3451	if (ret < 0)
3452		goto out;
3453
3454	ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
3455			   size);
3456	if (ret)
3457		ret = -EFAULT;
3458
3459out:
3460	kvfree(inodes);
3461out_loi:
3462	kfree(loi);
3463
3464	return ret;
3465}
3466
3467void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3468			       struct btrfs_ioctl_balance_args *bargs)
3469{
3470	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3471
3472	bargs->flags = bctl->flags;
3473
3474	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
3475		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3476	if (atomic_read(&fs_info->balance_pause_req))
3477		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3478	if (atomic_read(&fs_info->balance_cancel_req))
3479		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3480
3481	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3482	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3483	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3484
3485	spin_lock(&fs_info->balance_lock);
3486	memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3487	spin_unlock(&fs_info->balance_lock);
3488}
3489
3490/*
3491 * Try to acquire fs_info::balance_mutex as well as set BTRFS_EXLCOP_BALANCE as
3492 * required.
3493 *
3494 * @fs_info:       the filesystem
3495 * @excl_acquired: ptr to boolean value which is set to false in case balance
3496 *                 is being resumed
3497 *
3498 * Return 0 on success in which case both fs_info::balance is acquired as well
3499 * as exclusive ops are blocked. In case of failure return an error code.
3500 */
3501static int btrfs_try_lock_balance(struct btrfs_fs_info *fs_info, bool *excl_acquired)
3502{
3503	int ret;
3504
3505	/*
3506	 * Exclusive operation is locked. Three possibilities:
3507	 *   (1) some other op is running
3508	 *   (2) balance is running
3509	 *   (3) balance is paused -- special case (think resume)
3510	 */
3511	while (1) {
3512		if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
3513			*excl_acquired = true;
3514			mutex_lock(&fs_info->balance_mutex);
3515			return 0;
3516		}
3517
3518		mutex_lock(&fs_info->balance_mutex);
3519		if (fs_info->balance_ctl) {
3520			/* This is either (2) or (3) */
3521			if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3522				/* This is (2) */
3523				ret = -EINPROGRESS;
3524				goto out_failure;
3525
3526			} else {
3527				mutex_unlock(&fs_info->balance_mutex);
3528				/*
3529				 * Lock released to allow other waiters to
3530				 * continue, we'll reexamine the status again.
3531				 */
3532				mutex_lock(&fs_info->balance_mutex);
3533
3534				if (fs_info->balance_ctl &&
3535				    !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3536					/* This is (3) */
3537					*excl_acquired = false;
3538					return 0;
3539				}
3540			}
3541		} else {
3542			/* This is (1) */
3543			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3544			goto out_failure;
3545		}
3546
3547		mutex_unlock(&fs_info->balance_mutex);
3548	}
3549
3550out_failure:
3551	mutex_unlock(&fs_info->balance_mutex);
3552	*excl_acquired = false;
3553	return ret;
3554}
3555
3556static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3557{
3558	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3559	struct btrfs_fs_info *fs_info = root->fs_info;
3560	struct btrfs_ioctl_balance_args *bargs;
3561	struct btrfs_balance_control *bctl;
3562	bool need_unlock = true;
3563	int ret;
3564
3565	if (!capable(CAP_SYS_ADMIN))
3566		return -EPERM;
3567
3568	ret = mnt_want_write_file(file);
3569	if (ret)
3570		return ret;
3571
3572	bargs = memdup_user(arg, sizeof(*bargs));
3573	if (IS_ERR(bargs)) {
3574		ret = PTR_ERR(bargs);
3575		bargs = NULL;
3576		goto out;
 
3577	}
3578
3579	ret = btrfs_try_lock_balance(fs_info, &need_unlock);
3580	if (ret)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3581		goto out;
 
3582
3583	lockdep_assert_held(&fs_info->balance_mutex);
 
3584
3585	if (bargs->flags & BTRFS_BALANCE_RESUME) {
3586		if (!fs_info->balance_ctl) {
3587			ret = -ENOTCONN;
 
3588			goto out_unlock;
3589		}
3590
3591		bctl = fs_info->balance_ctl;
3592		spin_lock(&fs_info->balance_lock);
3593		bctl->flags |= BTRFS_BALANCE_RESUME;
3594		spin_unlock(&fs_info->balance_lock);
3595		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE);
3596
3597		goto do_balance;
3598	}
 
 
3599
3600	if (bargs->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
3601		ret = -EINVAL;
3602		goto out_unlock;
 
3603	}
3604
3605	if (fs_info->balance_ctl) {
3606		ret = -EINPROGRESS;
3607		goto out_unlock;
3608	}
3609
3610	bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
3611	if (!bctl) {
3612		ret = -ENOMEM;
3613		goto out_unlock;
 
 
 
 
 
 
 
 
 
 
 
 
3614	}
3615
3616	memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
3617	memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
3618	memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
 
3619
3620	bctl->flags = bargs->flags;
3621do_balance:
3622	/*
3623	 * Ownership of bctl and exclusive operation goes to btrfs_balance.
3624	 * bctl is freed in reset_balance_state, or, if restriper was paused
3625	 * all the way until unmount, in free_fs_info.  The flag should be
3626	 * cleared after reset_balance_state.
 
3627	 */
3628	need_unlock = false;
3629
3630	ret = btrfs_balance(fs_info, bctl, bargs);
3631	bctl = NULL;
3632
3633	if (ret == 0 || ret == -ECANCELED) {
3634		if (copy_to_user(arg, bargs, sizeof(*bargs)))
3635			ret = -EFAULT;
3636	}
3637
 
3638	kfree(bctl);
 
 
3639out_unlock:
3640	mutex_unlock(&fs_info->balance_mutex);
 
3641	if (need_unlock)
3642		btrfs_exclop_finish(fs_info);
3643out:
3644	mnt_drop_write_file(file);
3645	kfree(bargs);
3646	return ret;
3647}
3648
3649static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
3650{
3651	if (!capable(CAP_SYS_ADMIN))
3652		return -EPERM;
3653
3654	switch (cmd) {
3655	case BTRFS_BALANCE_CTL_PAUSE:
3656		return btrfs_pause_balance(fs_info);
3657	case BTRFS_BALANCE_CTL_CANCEL:
3658		return btrfs_cancel_balance(fs_info);
3659	}
3660
3661	return -EINVAL;
3662}
3663
3664static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
3665					 void __user *arg)
3666{
 
3667	struct btrfs_ioctl_balance_args *bargs;
3668	int ret = 0;
3669
3670	if (!capable(CAP_SYS_ADMIN))
3671		return -EPERM;
3672
3673	mutex_lock(&fs_info->balance_mutex);
3674	if (!fs_info->balance_ctl) {
3675		ret = -ENOTCONN;
3676		goto out;
3677	}
3678
3679	bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
3680	if (!bargs) {
3681		ret = -ENOMEM;
3682		goto out;
3683	}
3684
3685	btrfs_update_ioctl_balance_args(fs_info, bargs);
3686
3687	if (copy_to_user(arg, bargs, sizeof(*bargs)))
3688		ret = -EFAULT;
3689
3690	kfree(bargs);
3691out:
3692	mutex_unlock(&fs_info->balance_mutex);
3693	return ret;
3694}
3695
3696static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
3697{
3698	struct inode *inode = file_inode(file);
3699	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3700	struct btrfs_ioctl_quota_ctl_args *sa;
 
3701	int ret;
 
3702
3703	if (!capable(CAP_SYS_ADMIN))
3704		return -EPERM;
3705
3706	ret = mnt_want_write_file(file);
3707	if (ret)
3708		return ret;
3709
3710	sa = memdup_user(arg, sizeof(*sa));
3711	if (IS_ERR(sa)) {
3712		ret = PTR_ERR(sa);
3713		goto drop_write;
3714	}
3715
3716	down_write(&fs_info->subvol_sem);
 
 
 
 
 
3717
3718	switch (sa->cmd) {
3719	case BTRFS_QUOTA_CTL_ENABLE:
3720	case BTRFS_QUOTA_CTL_ENABLE_SIMPLE_QUOTA:
3721		ret = btrfs_quota_enable(fs_info, sa);
3722		break;
3723	case BTRFS_QUOTA_CTL_DISABLE:
3724		ret = btrfs_quota_disable(fs_info);
3725		break;
3726	default:
3727		ret = -EINVAL;
3728		break;
3729	}
3730
 
 
 
 
3731	kfree(sa);
3732	up_write(&fs_info->subvol_sem);
3733drop_write:
3734	mnt_drop_write_file(file);
3735	return ret;
3736}
3737
3738static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
3739{
3740	struct inode *inode = file_inode(file);
3741	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3742	struct btrfs_root *root = BTRFS_I(inode)->root;
3743	struct btrfs_ioctl_qgroup_assign_args *sa;
3744	struct btrfs_trans_handle *trans;
3745	int ret;
3746	int err;
3747
3748	if (!capable(CAP_SYS_ADMIN))
3749		return -EPERM;
3750
3751	ret = mnt_want_write_file(file);
3752	if (ret)
3753		return ret;
3754
3755	sa = memdup_user(arg, sizeof(*sa));
3756	if (IS_ERR(sa)) {
3757		ret = PTR_ERR(sa);
3758		goto drop_write;
3759	}
3760
3761	trans = btrfs_join_transaction(root);
3762	if (IS_ERR(trans)) {
3763		ret = PTR_ERR(trans);
3764		goto out;
3765	}
3766
 
3767	if (sa->assign) {
3768		ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
 
3769	} else {
3770		ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
 
3771	}
3772
3773	/* update qgroup status and info */
3774	mutex_lock(&fs_info->qgroup_ioctl_lock);
3775	err = btrfs_run_qgroups(trans);
3776	mutex_unlock(&fs_info->qgroup_ioctl_lock);
3777	if (err < 0)
3778		btrfs_handle_fs_error(fs_info, err,
3779				      "failed to update qgroup status and info");
3780	err = btrfs_end_transaction(trans);
3781	if (err && !ret)
3782		ret = err;
3783
3784out:
3785	kfree(sa);
3786drop_write:
3787	mnt_drop_write_file(file);
3788	return ret;
3789}
3790
3791static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
3792{
3793	struct inode *inode = file_inode(file);
3794	struct btrfs_root *root = BTRFS_I(inode)->root;
3795	struct btrfs_ioctl_qgroup_create_args *sa;
3796	struct btrfs_trans_handle *trans;
3797	int ret;
3798	int err;
3799
3800	if (!capable(CAP_SYS_ADMIN))
3801		return -EPERM;
3802
3803	ret = mnt_want_write_file(file);
3804	if (ret)
3805		return ret;
3806
3807	sa = memdup_user(arg, sizeof(*sa));
3808	if (IS_ERR(sa)) {
3809		ret = PTR_ERR(sa);
3810		goto drop_write;
3811	}
3812
3813	if (!sa->qgroupid) {
3814		ret = -EINVAL;
3815		goto out;
3816	}
3817
3818	if (sa->create && is_fstree(sa->qgroupid)) {
3819		ret = -EINVAL;
3820		goto out;
3821	}
3822
3823	trans = btrfs_join_transaction(root);
3824	if (IS_ERR(trans)) {
3825		ret = PTR_ERR(trans);
3826		goto out;
3827	}
3828
 
3829	if (sa->create) {
3830		ret = btrfs_create_qgroup(trans, sa->qgroupid);
3831	} else {
3832		ret = btrfs_remove_qgroup(trans, sa->qgroupid);
3833	}
3834
3835	err = btrfs_end_transaction(trans);
3836	if (err && !ret)
3837		ret = err;
3838
3839out:
3840	kfree(sa);
3841drop_write:
3842	mnt_drop_write_file(file);
3843	return ret;
3844}
3845
3846static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
3847{
3848	struct inode *inode = file_inode(file);
3849	struct btrfs_root *root = BTRFS_I(inode)->root;
3850	struct btrfs_ioctl_qgroup_limit_args *sa;
3851	struct btrfs_trans_handle *trans;
3852	int ret;
3853	int err;
3854	u64 qgroupid;
3855
3856	if (!capable(CAP_SYS_ADMIN))
3857		return -EPERM;
3858
3859	ret = mnt_want_write_file(file);
3860	if (ret)
3861		return ret;
3862
3863	sa = memdup_user(arg, sizeof(*sa));
3864	if (IS_ERR(sa)) {
3865		ret = PTR_ERR(sa);
3866		goto drop_write;
3867	}
3868
3869	trans = btrfs_join_transaction(root);
3870	if (IS_ERR(trans)) {
3871		ret = PTR_ERR(trans);
3872		goto out;
3873	}
3874
3875	qgroupid = sa->qgroupid;
3876	if (!qgroupid) {
3877		/* take the current subvol as qgroup */
3878		qgroupid = root->root_key.objectid;
3879	}
3880
3881	ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
 
3882
3883	err = btrfs_end_transaction(trans);
3884	if (err && !ret)
3885		ret = err;
3886
3887out:
3888	kfree(sa);
3889drop_write:
3890	mnt_drop_write_file(file);
3891	return ret;
3892}
3893
3894static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
3895{
3896	struct inode *inode = file_inode(file);
3897	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3898	struct btrfs_ioctl_quota_rescan_args *qsa;
3899	int ret;
3900
3901	if (!capable(CAP_SYS_ADMIN))
3902		return -EPERM;
3903
3904	ret = mnt_want_write_file(file);
3905	if (ret)
3906		return ret;
3907
3908	qsa = memdup_user(arg, sizeof(*qsa));
3909	if (IS_ERR(qsa)) {
3910		ret = PTR_ERR(qsa);
3911		goto drop_write;
3912	}
3913
3914	if (qsa->flags) {
3915		ret = -EINVAL;
3916		goto out;
3917	}
3918
3919	ret = btrfs_qgroup_rescan(fs_info);
3920
3921out:
3922	kfree(qsa);
3923drop_write:
3924	mnt_drop_write_file(file);
3925	return ret;
3926}
3927
3928static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
3929						void __user *arg)
3930{
3931	struct btrfs_ioctl_quota_rescan_args qsa = {0};
 
 
3932
3933	if (!capable(CAP_SYS_ADMIN))
3934		return -EPERM;
3935
3936	if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
3937		qsa.flags = 1;
3938		qsa.progress = fs_info->qgroup_rescan_progress.objectid;
 
 
 
 
3939	}
3940
3941	if (copy_to_user(arg, &qsa, sizeof(qsa)))
3942		return -EFAULT;
3943
3944	return 0;
 
3945}
3946
3947static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
3948						void __user *arg)
3949{
 
 
3950	if (!capable(CAP_SYS_ADMIN))
3951		return -EPERM;
3952
3953	return btrfs_qgroup_wait_for_completion(fs_info, true);
3954}
3955
3956static long _btrfs_ioctl_set_received_subvol(struct file *file,
3957					    struct mnt_idmap *idmap,
3958					    struct btrfs_ioctl_received_subvol_args *sa)
3959{
3960	struct inode *inode = file_inode(file);
3961	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3962	struct btrfs_root *root = BTRFS_I(inode)->root;
3963	struct btrfs_root_item *root_item = &root->root_item;
3964	struct btrfs_trans_handle *trans;
3965	struct timespec64 ct = current_time(inode);
3966	int ret = 0;
3967	int received_uuid_changed;
3968
3969	if (!inode_owner_or_capable(idmap, inode))
3970		return -EPERM;
3971
3972	ret = mnt_want_write_file(file);
3973	if (ret < 0)
3974		return ret;
3975
3976	down_write(&fs_info->subvol_sem);
3977
3978	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
3979		ret = -EINVAL;
3980		goto out;
3981	}
3982
3983	if (btrfs_root_readonly(root)) {
3984		ret = -EROFS;
3985		goto out;
3986	}
3987
3988	/*
3989	 * 1 - root item
3990	 * 2 - uuid items (received uuid + subvol uuid)
3991	 */
3992	trans = btrfs_start_transaction(root, 3);
3993	if (IS_ERR(trans)) {
3994		ret = PTR_ERR(trans);
3995		trans = NULL;
3996		goto out;
3997	}
3998
3999	sa->rtransid = trans->transid;
4000	sa->rtime.sec = ct.tv_sec;
4001	sa->rtime.nsec = ct.tv_nsec;
4002
4003	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4004				       BTRFS_UUID_SIZE);
4005	if (received_uuid_changed &&
4006	    !btrfs_is_empty_uuid(root_item->received_uuid)) {
4007		ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
4008					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4009					  root->root_key.objectid);
4010		if (ret && ret != -ENOENT) {
4011		        btrfs_abort_transaction(trans, ret);
4012		        btrfs_end_transaction(trans);
4013		        goto out;
4014		}
4015	}
4016	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4017	btrfs_set_root_stransid(root_item, sa->stransid);
4018	btrfs_set_root_rtransid(root_item, sa->rtransid);
4019	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4020	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4021	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4022	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4023
4024	ret = btrfs_update_root(trans, fs_info->tree_root,
4025				&root->root_key, &root->root_item);
4026	if (ret < 0) {
4027		btrfs_end_transaction(trans);
4028		goto out;
4029	}
4030	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4031		ret = btrfs_uuid_tree_add(trans, sa->uuid,
 
4032					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4033					  root->root_key.objectid);
4034		if (ret < 0 && ret != -EEXIST) {
4035			btrfs_abort_transaction(trans, ret);
4036			btrfs_end_transaction(trans);
4037			goto out;
4038		}
4039	}
4040	ret = btrfs_commit_transaction(trans);
 
 
 
 
 
4041out:
4042	up_write(&fs_info->subvol_sem);
4043	mnt_drop_write_file(file);
4044	return ret;
4045}
4046
4047#ifdef CONFIG_64BIT
4048static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4049						void __user *arg)
4050{
4051	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4052	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4053	int ret = 0;
4054
4055	args32 = memdup_user(arg, sizeof(*args32));
4056	if (IS_ERR(args32))
4057		return PTR_ERR(args32);
 
 
 
4058
4059	args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4060	if (!args64) {
4061		ret = -ENOMEM;
4062		goto out;
4063	}
4064
4065	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4066	args64->stransid = args32->stransid;
4067	args64->rtransid = args32->rtransid;
4068	args64->stime.sec = args32->stime.sec;
4069	args64->stime.nsec = args32->stime.nsec;
4070	args64->rtime.sec = args32->rtime.sec;
4071	args64->rtime.nsec = args32->rtime.nsec;
4072	args64->flags = args32->flags;
4073
4074	ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), args64);
4075	if (ret)
4076		goto out;
4077
4078	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4079	args32->stransid = args64->stransid;
4080	args32->rtransid = args64->rtransid;
4081	args32->stime.sec = args64->stime.sec;
4082	args32->stime.nsec = args64->stime.nsec;
4083	args32->rtime.sec = args64->rtime.sec;
4084	args32->rtime.nsec = args64->rtime.nsec;
4085	args32->flags = args64->flags;
4086
4087	ret = copy_to_user(arg, args32, sizeof(*args32));
4088	if (ret)
4089		ret = -EFAULT;
4090
4091out:
4092	kfree(args32);
4093	kfree(args64);
4094	return ret;
4095}
4096#endif
4097
4098static long btrfs_ioctl_set_received_subvol(struct file *file,
4099					    void __user *arg)
4100{
4101	struct btrfs_ioctl_received_subvol_args *sa = NULL;
4102	int ret = 0;
4103
4104	sa = memdup_user(arg, sizeof(*sa));
4105	if (IS_ERR(sa))
4106		return PTR_ERR(sa);
 
 
 
4107
4108	ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), sa);
4109
4110	if (ret)
4111		goto out;
4112
4113	ret = copy_to_user(arg, sa, sizeof(*sa));
4114	if (ret)
4115		ret = -EFAULT;
4116
4117out:
4118	kfree(sa);
4119	return ret;
4120}
4121
4122static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4123					void __user *arg)
4124{
 
4125	size_t len;
4126	int ret;
4127	char label[BTRFS_LABEL_SIZE];
4128
4129	spin_lock(&fs_info->super_lock);
4130	memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4131	spin_unlock(&fs_info->super_lock);
4132
4133	len = strnlen(label, BTRFS_LABEL_SIZE);
4134
4135	if (len == BTRFS_LABEL_SIZE) {
4136		btrfs_warn(fs_info,
4137			   "label is too long, return the first %zu bytes",
4138			   --len);
4139	}
4140
4141	ret = copy_to_user(arg, label, len);
4142
4143	return ret ? -EFAULT : 0;
4144}
4145
4146static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4147{
4148	struct inode *inode = file_inode(file);
4149	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4150	struct btrfs_root *root = BTRFS_I(inode)->root;
4151	struct btrfs_super_block *super_block = fs_info->super_copy;
4152	struct btrfs_trans_handle *trans;
4153	char label[BTRFS_LABEL_SIZE];
4154	int ret;
4155
4156	if (!capable(CAP_SYS_ADMIN))
4157		return -EPERM;
4158
4159	if (copy_from_user(label, arg, sizeof(label)))
4160		return -EFAULT;
4161
4162	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4163		btrfs_err(fs_info,
4164			  "unable to set label with more than %d bytes",
4165			  BTRFS_LABEL_SIZE - 1);
4166		return -EINVAL;
4167	}
4168
4169	ret = mnt_want_write_file(file);
4170	if (ret)
4171		return ret;
4172
4173	trans = btrfs_start_transaction(root, 0);
4174	if (IS_ERR(trans)) {
4175		ret = PTR_ERR(trans);
4176		goto out_unlock;
4177	}
4178
4179	spin_lock(&fs_info->super_lock);
4180	strcpy(super_block->label, label);
4181	spin_unlock(&fs_info->super_lock);
4182	ret = btrfs_commit_transaction(trans);
4183
4184out_unlock:
4185	mnt_drop_write_file(file);
4186	return ret;
4187}
4188
4189#define INIT_FEATURE_FLAGS(suffix) \
4190	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4191	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4192	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4193
4194int btrfs_ioctl_get_supported_features(void __user *arg)
4195{
4196	static const struct btrfs_ioctl_feature_flags features[3] = {
4197		INIT_FEATURE_FLAGS(SUPP),
4198		INIT_FEATURE_FLAGS(SAFE_SET),
4199		INIT_FEATURE_FLAGS(SAFE_CLEAR)
4200	};
4201
4202	if (copy_to_user(arg, &features, sizeof(features)))
4203		return -EFAULT;
4204
4205	return 0;
4206}
4207
4208static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4209					void __user *arg)
4210{
4211	struct btrfs_super_block *super_block = fs_info->super_copy;
 
4212	struct btrfs_ioctl_feature_flags features;
4213
4214	features.compat_flags = btrfs_super_compat_flags(super_block);
4215	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4216	features.incompat_flags = btrfs_super_incompat_flags(super_block);
4217
4218	if (copy_to_user(arg, &features, sizeof(features)))
4219		return -EFAULT;
4220
4221	return 0;
4222}
4223
4224static int check_feature_bits(struct btrfs_fs_info *fs_info,
4225			      enum btrfs_feature_set set,
4226			      u64 change_mask, u64 flags, u64 supported_flags,
4227			      u64 safe_set, u64 safe_clear)
4228{
4229	const char *type = btrfs_feature_set_name(set);
4230	char *names;
4231	u64 disallowed, unsupported;
4232	u64 set_mask = flags & change_mask;
4233	u64 clear_mask = ~flags & change_mask;
4234
4235	unsupported = set_mask & ~supported_flags;
4236	if (unsupported) {
4237		names = btrfs_printable_features(set, unsupported);
4238		if (names) {
4239			btrfs_warn(fs_info,
4240				   "this kernel does not support the %s feature bit%s",
4241				   names, strchr(names, ',') ? "s" : "");
4242			kfree(names);
4243		} else
4244			btrfs_warn(fs_info,
4245				   "this kernel does not support %s bits 0x%llx",
4246				   type, unsupported);
4247		return -EOPNOTSUPP;
4248	}
4249
4250	disallowed = set_mask & ~safe_set;
4251	if (disallowed) {
4252		names = btrfs_printable_features(set, disallowed);
4253		if (names) {
4254			btrfs_warn(fs_info,
4255				   "can't set the %s feature bit%s while mounted",
4256				   names, strchr(names, ',') ? "s" : "");
4257			kfree(names);
4258		} else
4259			btrfs_warn(fs_info,
4260				   "can't set %s bits 0x%llx while mounted",
4261				   type, disallowed);
4262		return -EPERM;
4263	}
4264
4265	disallowed = clear_mask & ~safe_clear;
4266	if (disallowed) {
4267		names = btrfs_printable_features(set, disallowed);
4268		if (names) {
4269			btrfs_warn(fs_info,
4270				   "can't clear the %s feature bit%s while mounted",
4271				   names, strchr(names, ',') ? "s" : "");
4272			kfree(names);
4273		} else
4274			btrfs_warn(fs_info,
4275				   "can't clear %s bits 0x%llx while mounted",
4276				   type, disallowed);
4277		return -EPERM;
4278	}
4279
4280	return 0;
4281}
4282
4283#define check_feature(fs_info, change_mask, flags, mask_base)	\
4284check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags,	\
4285		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
4286		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
4287		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4288
4289static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4290{
4291	struct inode *inode = file_inode(file);
4292	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4293	struct btrfs_root *root = BTRFS_I(inode)->root;
4294	struct btrfs_super_block *super_block = fs_info->super_copy;
4295	struct btrfs_ioctl_feature_flags flags[2];
4296	struct btrfs_trans_handle *trans;
4297	u64 newflags;
4298	int ret;
4299
4300	if (!capable(CAP_SYS_ADMIN))
4301		return -EPERM;
4302
4303	if (copy_from_user(flags, arg, sizeof(flags)))
4304		return -EFAULT;
4305
4306	/* Nothing to do */
4307	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4308	    !flags[0].incompat_flags)
4309		return 0;
4310
4311	ret = check_feature(fs_info, flags[0].compat_flags,
4312			    flags[1].compat_flags, COMPAT);
4313	if (ret)
4314		return ret;
4315
4316	ret = check_feature(fs_info, flags[0].compat_ro_flags,
4317			    flags[1].compat_ro_flags, COMPAT_RO);
4318	if (ret)
4319		return ret;
4320
4321	ret = check_feature(fs_info, flags[0].incompat_flags,
4322			    flags[1].incompat_flags, INCOMPAT);
4323	if (ret)
4324		return ret;
4325
4326	ret = mnt_want_write_file(file);
4327	if (ret)
4328		return ret;
4329
4330	trans = btrfs_start_transaction(root, 0);
4331	if (IS_ERR(trans)) {
4332		ret = PTR_ERR(trans);
4333		goto out_drop_write;
4334	}
4335
4336	spin_lock(&fs_info->super_lock);
4337	newflags = btrfs_super_compat_flags(super_block);
4338	newflags |= flags[0].compat_flags & flags[1].compat_flags;
4339	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4340	btrfs_set_super_compat_flags(super_block, newflags);
4341
4342	newflags = btrfs_super_compat_ro_flags(super_block);
4343	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4344	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4345	btrfs_set_super_compat_ro_flags(super_block, newflags);
4346
4347	newflags = btrfs_super_incompat_flags(super_block);
4348	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4349	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4350	btrfs_set_super_incompat_flags(super_block, newflags);
4351	spin_unlock(&fs_info->super_lock);
4352
4353	ret = btrfs_commit_transaction(trans);
4354out_drop_write:
4355	mnt_drop_write_file(file);
4356
4357	return ret;
4358}
4359
4360static int _btrfs_ioctl_send(struct inode *inode, void __user *argp, bool compat)
4361{
4362	struct btrfs_ioctl_send_args *arg;
4363	int ret;
4364
4365	if (compat) {
4366#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4367		struct btrfs_ioctl_send_args_32 args32 = { 0 };
4368
4369		ret = copy_from_user(&args32, argp, sizeof(args32));
4370		if (ret)
4371			return -EFAULT;
4372		arg = kzalloc(sizeof(*arg), GFP_KERNEL);
4373		if (!arg)
4374			return -ENOMEM;
4375		arg->send_fd = args32.send_fd;
4376		arg->clone_sources_count = args32.clone_sources_count;
4377		arg->clone_sources = compat_ptr(args32.clone_sources);
4378		arg->parent_root = args32.parent_root;
4379		arg->flags = args32.flags;
4380		arg->version = args32.version;
4381		memcpy(arg->reserved, args32.reserved,
4382		       sizeof(args32.reserved));
4383#else
4384		return -ENOTTY;
4385#endif
4386	} else {
4387		arg = memdup_user(argp, sizeof(*arg));
4388		if (IS_ERR(arg))
4389			return PTR_ERR(arg);
4390	}
4391	ret = btrfs_ioctl_send(inode, arg);
4392	kfree(arg);
4393	return ret;
4394}
4395
4396static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp,
4397				    bool compat)
4398{
4399	struct btrfs_ioctl_encoded_io_args args = { 0 };
4400	size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args,
4401					     flags);
4402	size_t copy_end;
4403	struct iovec iovstack[UIO_FASTIOV];
4404	struct iovec *iov = iovstack;
4405	struct iov_iter iter;
4406	loff_t pos;
4407	struct kiocb kiocb;
4408	ssize_t ret;
4409
4410	if (!capable(CAP_SYS_ADMIN)) {
4411		ret = -EPERM;
4412		goto out_acct;
4413	}
4414
4415	if (compat) {
4416#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4417		struct btrfs_ioctl_encoded_io_args_32 args32;
4418
4419		copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32,
4420				       flags);
4421		if (copy_from_user(&args32, argp, copy_end)) {
4422			ret = -EFAULT;
4423			goto out_acct;
4424		}
4425		args.iov = compat_ptr(args32.iov);
4426		args.iovcnt = args32.iovcnt;
4427		args.offset = args32.offset;
4428		args.flags = args32.flags;
4429#else
4430		return -ENOTTY;
4431#endif
4432	} else {
4433		copy_end = copy_end_kernel;
4434		if (copy_from_user(&args, argp, copy_end)) {
4435			ret = -EFAULT;
4436			goto out_acct;
4437		}
4438	}
4439	if (args.flags != 0) {
4440		ret = -EINVAL;
4441		goto out_acct;
4442	}
4443
4444	ret = import_iovec(ITER_DEST, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4445			   &iov, &iter);
4446	if (ret < 0)
4447		goto out_acct;
4448
4449	if (iov_iter_count(&iter) == 0) {
4450		ret = 0;
4451		goto out_iov;
4452	}
4453	pos = args.offset;
4454	ret = rw_verify_area(READ, file, &pos, args.len);
4455	if (ret < 0)
4456		goto out_iov;
4457
4458	init_sync_kiocb(&kiocb, file);
4459	kiocb.ki_pos = pos;
4460
4461	ret = btrfs_encoded_read(&kiocb, &iter, &args);
4462	if (ret >= 0) {
4463		fsnotify_access(file);
4464		if (copy_to_user(argp + copy_end,
4465				 (char *)&args + copy_end_kernel,
4466				 sizeof(args) - copy_end_kernel))
4467			ret = -EFAULT;
4468	}
4469
4470out_iov:
4471	kfree(iov);
4472out_acct:
4473	if (ret > 0)
4474		add_rchar(current, ret);
4475	inc_syscr(current);
4476	return ret;
4477}
4478
4479static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat)
4480{
4481	struct btrfs_ioctl_encoded_io_args args;
4482	struct iovec iovstack[UIO_FASTIOV];
4483	struct iovec *iov = iovstack;
4484	struct iov_iter iter;
4485	loff_t pos;
4486	struct kiocb kiocb;
4487	ssize_t ret;
4488
4489	if (!capable(CAP_SYS_ADMIN)) {
4490		ret = -EPERM;
4491		goto out_acct;
4492	}
4493
4494	if (!(file->f_mode & FMODE_WRITE)) {
4495		ret = -EBADF;
4496		goto out_acct;
4497	}
4498
4499	if (compat) {
4500#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4501		struct btrfs_ioctl_encoded_io_args_32 args32;
4502
4503		if (copy_from_user(&args32, argp, sizeof(args32))) {
4504			ret = -EFAULT;
4505			goto out_acct;
4506		}
4507		args.iov = compat_ptr(args32.iov);
4508		args.iovcnt = args32.iovcnt;
4509		args.offset = args32.offset;
4510		args.flags = args32.flags;
4511		args.len = args32.len;
4512		args.unencoded_len = args32.unencoded_len;
4513		args.unencoded_offset = args32.unencoded_offset;
4514		args.compression = args32.compression;
4515		args.encryption = args32.encryption;
4516		memcpy(args.reserved, args32.reserved, sizeof(args.reserved));
4517#else
4518		return -ENOTTY;
4519#endif
4520	} else {
4521		if (copy_from_user(&args, argp, sizeof(args))) {
4522			ret = -EFAULT;
4523			goto out_acct;
4524		}
4525	}
4526
4527	ret = -EINVAL;
4528	if (args.flags != 0)
4529		goto out_acct;
4530	if (memchr_inv(args.reserved, 0, sizeof(args.reserved)))
4531		goto out_acct;
4532	if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE &&
4533	    args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE)
4534		goto out_acct;
4535	if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES ||
4536	    args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES)
4537		goto out_acct;
4538	if (args.unencoded_offset > args.unencoded_len)
4539		goto out_acct;
4540	if (args.len > args.unencoded_len - args.unencoded_offset)
4541		goto out_acct;
4542
4543	ret = import_iovec(ITER_SOURCE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4544			   &iov, &iter);
4545	if (ret < 0)
4546		goto out_acct;
4547
4548	if (iov_iter_count(&iter) == 0) {
4549		ret = 0;
4550		goto out_iov;
4551	}
4552	pos = args.offset;
4553	ret = rw_verify_area(WRITE, file, &pos, args.len);
4554	if (ret < 0)
4555		goto out_iov;
4556
4557	init_sync_kiocb(&kiocb, file);
4558	ret = kiocb_set_rw_flags(&kiocb, 0);
4559	if (ret)
4560		goto out_iov;
4561	kiocb.ki_pos = pos;
4562
4563	file_start_write(file);
4564
4565	ret = btrfs_do_write_iter(&kiocb, &iter, &args);
4566	if (ret > 0)
4567		fsnotify_modify(file);
4568
4569	file_end_write(file);
4570out_iov:
4571	kfree(iov);
4572out_acct:
4573	if (ret > 0)
4574		add_wchar(current, ret);
4575	inc_syscw(current);
4576	return ret;
4577}
4578
4579long btrfs_ioctl(struct file *file, unsigned int
4580		cmd, unsigned long arg)
4581{
4582	struct inode *inode = file_inode(file);
4583	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4584	struct btrfs_root *root = BTRFS_I(inode)->root;
4585	void __user *argp = (void __user *)arg;
4586
4587	switch (cmd) {
 
 
 
 
4588	case FS_IOC_GETVERSION:
4589		return btrfs_ioctl_getversion(inode, argp);
4590	case FS_IOC_GETFSLABEL:
4591		return btrfs_ioctl_get_fslabel(fs_info, argp);
4592	case FS_IOC_SETFSLABEL:
4593		return btrfs_ioctl_set_fslabel(file, argp);
4594	case FITRIM:
4595		return btrfs_ioctl_fitrim(fs_info, argp);
4596	case BTRFS_IOC_SNAP_CREATE:
4597		return btrfs_ioctl_snap_create(file, argp, 0);
4598	case BTRFS_IOC_SNAP_CREATE_V2:
4599		return btrfs_ioctl_snap_create_v2(file, argp, 0);
4600	case BTRFS_IOC_SUBVOL_CREATE:
4601		return btrfs_ioctl_snap_create(file, argp, 1);
4602	case BTRFS_IOC_SUBVOL_CREATE_V2:
4603		return btrfs_ioctl_snap_create_v2(file, argp, 1);
4604	case BTRFS_IOC_SNAP_DESTROY:
4605		return btrfs_ioctl_snap_destroy(file, argp, false);
4606	case BTRFS_IOC_SNAP_DESTROY_V2:
4607		return btrfs_ioctl_snap_destroy(file, argp, true);
4608	case BTRFS_IOC_SUBVOL_GETFLAGS:
4609		return btrfs_ioctl_subvol_getflags(inode, argp);
4610	case BTRFS_IOC_SUBVOL_SETFLAGS:
4611		return btrfs_ioctl_subvol_setflags(file, argp);
4612	case BTRFS_IOC_DEFAULT_SUBVOL:
4613		return btrfs_ioctl_default_subvol(file, argp);
4614	case BTRFS_IOC_DEFRAG:
4615		return btrfs_ioctl_defrag(file, NULL);
4616	case BTRFS_IOC_DEFRAG_RANGE:
4617		return btrfs_ioctl_defrag(file, argp);
4618	case BTRFS_IOC_RESIZE:
4619		return btrfs_ioctl_resize(file, argp);
4620	case BTRFS_IOC_ADD_DEV:
4621		return btrfs_ioctl_add_dev(fs_info, argp);
4622	case BTRFS_IOC_RM_DEV:
4623		return btrfs_ioctl_rm_dev(file, argp);
4624	case BTRFS_IOC_RM_DEV_V2:
4625		return btrfs_ioctl_rm_dev_v2(file, argp);
4626	case BTRFS_IOC_FS_INFO:
4627		return btrfs_ioctl_fs_info(fs_info, argp);
4628	case BTRFS_IOC_DEV_INFO:
4629		return btrfs_ioctl_dev_info(fs_info, argp);
 
 
 
 
 
 
4630	case BTRFS_IOC_TREE_SEARCH:
4631		return btrfs_ioctl_tree_search(inode, argp);
4632	case BTRFS_IOC_TREE_SEARCH_V2:
4633		return btrfs_ioctl_tree_search_v2(inode, argp);
4634	case BTRFS_IOC_INO_LOOKUP:
4635		return btrfs_ioctl_ino_lookup(root, argp);
4636	case BTRFS_IOC_INO_PATHS:
4637		return btrfs_ioctl_ino_to_path(root, argp);
4638	case BTRFS_IOC_LOGICAL_INO:
4639		return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
4640	case BTRFS_IOC_LOGICAL_INO_V2:
4641		return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
4642	case BTRFS_IOC_SPACE_INFO:
4643		return btrfs_ioctl_space_info(fs_info, argp);
4644	case BTRFS_IOC_SYNC: {
4645		int ret;
4646
4647		ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false);
4648		if (ret)
4649			return ret;
4650		ret = btrfs_sync_fs(inode->i_sb, 1);
4651		/*
4652		 * The transaction thread may want to do more work,
4653		 * namely it pokes the cleaner kthread that will start
4654		 * processing uncleaned subvols.
4655		 */
4656		wake_up_process(fs_info->transaction_kthread);
4657		return ret;
4658	}
4659	case BTRFS_IOC_START_SYNC:
4660		return btrfs_ioctl_start_sync(root, argp);
4661	case BTRFS_IOC_WAIT_SYNC:
4662		return btrfs_ioctl_wait_sync(fs_info, argp);
4663	case BTRFS_IOC_SCRUB:
4664		return btrfs_ioctl_scrub(file, argp);
4665	case BTRFS_IOC_SCRUB_CANCEL:
4666		return btrfs_ioctl_scrub_cancel(fs_info);
4667	case BTRFS_IOC_SCRUB_PROGRESS:
4668		return btrfs_ioctl_scrub_progress(fs_info, argp);
4669	case BTRFS_IOC_BALANCE_V2:
4670		return btrfs_ioctl_balance(file, argp);
4671	case BTRFS_IOC_BALANCE_CTL:
4672		return btrfs_ioctl_balance_ctl(fs_info, arg);
4673	case BTRFS_IOC_BALANCE_PROGRESS:
4674		return btrfs_ioctl_balance_progress(fs_info, argp);
4675	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
4676		return btrfs_ioctl_set_received_subvol(file, argp);
4677#ifdef CONFIG_64BIT
4678	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
4679		return btrfs_ioctl_set_received_subvol_32(file, argp);
4680#endif
4681	case BTRFS_IOC_SEND:
4682		return _btrfs_ioctl_send(inode, argp, false);
4683#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4684	case BTRFS_IOC_SEND_32:
4685		return _btrfs_ioctl_send(inode, argp, true);
4686#endif
4687	case BTRFS_IOC_GET_DEV_STATS:
4688		return btrfs_ioctl_get_dev_stats(fs_info, argp);
4689	case BTRFS_IOC_QUOTA_CTL:
4690		return btrfs_ioctl_quota_ctl(file, argp);
4691	case BTRFS_IOC_QGROUP_ASSIGN:
4692		return btrfs_ioctl_qgroup_assign(file, argp);
4693	case BTRFS_IOC_QGROUP_CREATE:
4694		return btrfs_ioctl_qgroup_create(file, argp);
4695	case BTRFS_IOC_QGROUP_LIMIT:
4696		return btrfs_ioctl_qgroup_limit(file, argp);
4697	case BTRFS_IOC_QUOTA_RESCAN:
4698		return btrfs_ioctl_quota_rescan(file, argp);
4699	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
4700		return btrfs_ioctl_quota_rescan_status(fs_info, argp);
4701	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
4702		return btrfs_ioctl_quota_rescan_wait(fs_info, argp);
4703	case BTRFS_IOC_DEV_REPLACE:
4704		return btrfs_ioctl_dev_replace(fs_info, argp);
 
 
 
 
4705	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
4706		return btrfs_ioctl_get_supported_features(argp);
4707	case BTRFS_IOC_GET_FEATURES:
4708		return btrfs_ioctl_get_features(fs_info, argp);
4709	case BTRFS_IOC_SET_FEATURES:
4710		return btrfs_ioctl_set_features(file, argp);
4711	case BTRFS_IOC_GET_SUBVOL_INFO:
4712		return btrfs_ioctl_get_subvol_info(inode, argp);
4713	case BTRFS_IOC_GET_SUBVOL_ROOTREF:
4714		return btrfs_ioctl_get_subvol_rootref(root, argp);
4715	case BTRFS_IOC_INO_LOOKUP_USER:
4716		return btrfs_ioctl_ino_lookup_user(file, argp);
4717	case FS_IOC_ENABLE_VERITY:
4718		return fsverity_ioctl_enable(file, (const void __user *)argp);
4719	case FS_IOC_MEASURE_VERITY:
4720		return fsverity_ioctl_measure(file, argp);
4721	case BTRFS_IOC_ENCODED_READ:
4722		return btrfs_ioctl_encoded_read(file, argp, false);
4723	case BTRFS_IOC_ENCODED_WRITE:
4724		return btrfs_ioctl_encoded_write(file, argp, false);
4725#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4726	case BTRFS_IOC_ENCODED_READ_32:
4727		return btrfs_ioctl_encoded_read(file, argp, true);
4728	case BTRFS_IOC_ENCODED_WRITE_32:
4729		return btrfs_ioctl_encoded_write(file, argp, true);
4730#endif
4731	}
4732
4733	return -ENOTTY;
4734}
4735
4736#ifdef CONFIG_COMPAT
4737long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4738{
4739	/*
4740	 * These all access 32-bit values anyway so no further
4741	 * handling is necessary.
4742	 */
4743	switch (cmd) {
4744	case FS_IOC32_GETVERSION:
4745		cmd = FS_IOC_GETVERSION;
4746		break;
4747	}
4748
4749	return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
4750}
4751#endif
v4.6
 
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/kernel.h>
  20#include <linux/bio.h>
  21#include <linux/buffer_head.h>
  22#include <linux/file.h>
  23#include <linux/fs.h>
  24#include <linux/fsnotify.h>
  25#include <linux/pagemap.h>
  26#include <linux/highmem.h>
  27#include <linux/time.h>
  28#include <linux/init.h>
  29#include <linux/string.h>
  30#include <linux/backing-dev.h>
  31#include <linux/mount.h>
  32#include <linux/mpage.h>
  33#include <linux/namei.h>
  34#include <linux/swap.h>
  35#include <linux/writeback.h>
  36#include <linux/statfs.h>
  37#include <linux/compat.h>
  38#include <linux/bit_spinlock.h>
  39#include <linux/security.h>
  40#include <linux/xattr.h>
  41#include <linux/vmalloc.h>
  42#include <linux/slab.h>
  43#include <linux/blkdev.h>
  44#include <linux/uuid.h>
  45#include <linux/btrfs.h>
  46#include <linux/uaccess.h>
 
 
 
 
  47#include "ctree.h"
  48#include "disk-io.h"
 
  49#include "transaction.h"
  50#include "btrfs_inode.h"
  51#include "print-tree.h"
  52#include "volumes.h"
  53#include "locking.h"
  54#include "inode-map.h"
  55#include "backref.h"
  56#include "rcu-string.h"
  57#include "send.h"
  58#include "dev-replace.h"
  59#include "props.h"
  60#include "sysfs.h"
  61#include "qgroup.h"
  62#include "tree-log.h"
  63#include "compression.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  64
  65#ifdef CONFIG_64BIT
  66/* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
  67 * structures are incorrect, as the timespec structure from userspace
  68 * is 4 bytes too small. We define these alternatives here to teach
  69 * the kernel about the 32-bit struct packing.
  70 */
  71struct btrfs_ioctl_timespec_32 {
  72	__u64 sec;
  73	__u32 nsec;
  74} __attribute__ ((__packed__));
  75
  76struct btrfs_ioctl_received_subvol_args_32 {
  77	char	uuid[BTRFS_UUID_SIZE];	/* in */
  78	__u64	stransid;		/* in */
  79	__u64	rtransid;		/* out */
  80	struct btrfs_ioctl_timespec_32 stime; /* in */
  81	struct btrfs_ioctl_timespec_32 rtime; /* out */
  82	__u64	flags;			/* in */
  83	__u64	reserved[16];		/* in */
  84} __attribute__ ((__packed__));
  85
  86#define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
  87				struct btrfs_ioctl_received_subvol_args_32)
  88#endif
  89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  90
  91static int btrfs_clone(struct inode *src, struct inode *inode,
  92		       u64 off, u64 olen, u64 olen_aligned, u64 destoff,
  93		       int no_time_update);
 
 
  94
  95/* Mask out flags that are inappropriate for the given type of inode. */
  96static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
 
  97{
  98	if (S_ISDIR(mode))
  99		return flags;
 100	else if (S_ISREG(mode))
 101		return flags & ~FS_DIRSYNC_FL;
 102	else
 103		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
 104}
 105
 106/*
 107 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
 
 108 */
 109static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
 110{
 111	unsigned int iflags = 0;
 
 
 112
 113	if (flags & BTRFS_INODE_SYNC)
 114		iflags |= FS_SYNC_FL;
 115	if (flags & BTRFS_INODE_IMMUTABLE)
 116		iflags |= FS_IMMUTABLE_FL;
 117	if (flags & BTRFS_INODE_APPEND)
 118		iflags |= FS_APPEND_FL;
 119	if (flags & BTRFS_INODE_NODUMP)
 120		iflags |= FS_NODUMP_FL;
 121	if (flags & BTRFS_INODE_NOATIME)
 122		iflags |= FS_NOATIME_FL;
 123	if (flags & BTRFS_INODE_DIRSYNC)
 124		iflags |= FS_DIRSYNC_FL;
 125	if (flags & BTRFS_INODE_NODATACOW)
 126		iflags |= FS_NOCOW_FL;
 
 
 127
 128	if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS))
 
 
 129		iflags |= FS_COMPR_FL;
 130	else if (flags & BTRFS_INODE_NOCOMPRESS)
 131		iflags |= FS_NOCOMP_FL;
 132
 133	return iflags;
 134}
 135
 136/*
 137 * Update inode->i_flags based on the btrfs internal flags.
 138 */
 139void btrfs_update_iflags(struct inode *inode)
 140{
 141	struct btrfs_inode *ip = BTRFS_I(inode);
 142	unsigned int new_fl = 0;
 143
 144	if (ip->flags & BTRFS_INODE_SYNC)
 145		new_fl |= S_SYNC;
 146	if (ip->flags & BTRFS_INODE_IMMUTABLE)
 147		new_fl |= S_IMMUTABLE;
 148	if (ip->flags & BTRFS_INODE_APPEND)
 149		new_fl |= S_APPEND;
 150	if (ip->flags & BTRFS_INODE_NOATIME)
 151		new_fl |= S_NOATIME;
 152	if (ip->flags & BTRFS_INODE_DIRSYNC)
 153		new_fl |= S_DIRSYNC;
 
 
 154
 155	set_mask_bits(&inode->i_flags,
 156		      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
 157		      new_fl);
 158}
 159
 160/*
 161 * Inherit flags from the parent inode.
 162 *
 163 * Currently only the compression flags and the cow flags are inherited.
 164 */
 165void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
 166{
 167	unsigned int flags;
 
 
 
 
 
 168
 169	if (!dir)
 170		return;
 
 171
 172	flags = BTRFS_I(dir)->flags;
 
 173
 174	if (flags & BTRFS_INODE_NOCOMPRESS) {
 175		BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
 176		BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
 177	} else if (flags & BTRFS_INODE_COMPRESS) {
 178		BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
 179		BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
 180	}
 181
 182	if (flags & BTRFS_INODE_NODATACOW) {
 183		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
 184		if (S_ISREG(inode->i_mode))
 185			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
 186	}
 187
 188	btrfs_update_iflags(inode);
 189}
 190
 191static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
 
 192{
 193	struct btrfs_inode *ip = BTRFS_I(file_inode(file));
 194	unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
 195
 196	if (copy_to_user(arg, &flags, sizeof(flags)))
 197		return -EFAULT;
 198	return 0;
 199}
 200
 201static int check_flags(unsigned int flags)
 
 
 
 
 202{
 203	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
 204		      FS_NOATIME_FL | FS_NODUMP_FL | \
 205		      FS_SYNC_FL | FS_DIRSYNC_FL | \
 206		      FS_NOCOMP_FL | FS_COMPR_FL |
 207		      FS_NOCOW_FL))
 208		return -EOPNOTSUPP;
 209
 210	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
 211		return -EINVAL;
 212
 
 213	return 0;
 214}
 215
 216static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
 
 217{
 218	struct inode *inode = file_inode(file);
 219	struct btrfs_inode *ip = BTRFS_I(inode);
 220	struct btrfs_root *root = ip->root;
 
 221	struct btrfs_trans_handle *trans;
 222	unsigned int flags, oldflags;
 223	int ret;
 224	u64 ip_oldflags;
 225	unsigned int i_oldflags;
 226	umode_t mode;
 227
 228	if (!inode_owner_or_capable(inode))
 229		return -EPERM;
 230
 231	if (btrfs_root_readonly(root))
 232		return -EROFS;
 233
 234	if (copy_from_user(&flags, arg, sizeof(flags)))
 235		return -EFAULT;
 236
 237	ret = check_flags(flags);
 
 
 238	if (ret)
 239		return ret;
 240
 241	ret = mnt_want_write_file(file);
 242	if (ret)
 243		return ret;
 244
 245	inode_lock(inode);
 246
 247	ip_oldflags = ip->flags;
 248	i_oldflags = inode->i_flags;
 249	mode = inode->i_mode;
 250
 251	flags = btrfs_mask_flags(inode->i_mode, flags);
 252	oldflags = btrfs_flags_to_ioctl(ip->flags);
 253	if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
 254		if (!capable(CAP_LINUX_IMMUTABLE)) {
 255			ret = -EPERM;
 256			goto out_unlock;
 257		}
 258	}
 259
 260	if (flags & FS_SYNC_FL)
 261		ip->flags |= BTRFS_INODE_SYNC;
 262	else
 263		ip->flags &= ~BTRFS_INODE_SYNC;
 264	if (flags & FS_IMMUTABLE_FL)
 265		ip->flags |= BTRFS_INODE_IMMUTABLE;
 266	else
 267		ip->flags &= ~BTRFS_INODE_IMMUTABLE;
 268	if (flags & FS_APPEND_FL)
 269		ip->flags |= BTRFS_INODE_APPEND;
 270	else
 271		ip->flags &= ~BTRFS_INODE_APPEND;
 272	if (flags & FS_NODUMP_FL)
 273		ip->flags |= BTRFS_INODE_NODUMP;
 274	else
 275		ip->flags &= ~BTRFS_INODE_NODUMP;
 276	if (flags & FS_NOATIME_FL)
 277		ip->flags |= BTRFS_INODE_NOATIME;
 278	else
 279		ip->flags &= ~BTRFS_INODE_NOATIME;
 280	if (flags & FS_DIRSYNC_FL)
 281		ip->flags |= BTRFS_INODE_DIRSYNC;
 
 
 
 
 
 
 
 
 
 
 282	else
 283		ip->flags &= ~BTRFS_INODE_DIRSYNC;
 284	if (flags & FS_NOCOW_FL) {
 285		if (S_ISREG(mode)) {
 286			/*
 287			 * It's safe to turn csums off here, no extents exist.
 288			 * Otherwise we want the flag to reflect the real COW
 289			 * status of the file and will not set it.
 290			 */
 291			if (inode->i_size == 0)
 292				ip->flags |= BTRFS_INODE_NODATACOW
 293					   | BTRFS_INODE_NODATASUM;
 294		} else {
 295			ip->flags |= BTRFS_INODE_NODATACOW;
 296		}
 297	} else {
 298		/*
 299		 * Revert back under same assuptions as above
 300		 */
 301		if (S_ISREG(mode)) {
 302			if (inode->i_size == 0)
 303				ip->flags &= ~(BTRFS_INODE_NODATACOW
 304				             | BTRFS_INODE_NODATASUM);
 305		} else {
 306			ip->flags &= ~BTRFS_INODE_NODATACOW;
 307		}
 308	}
 309
 310	/*
 311	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
 312	 * flag may be changed automatically if compression code won't make
 313	 * things smaller.
 314	 */
 315	if (flags & FS_NOCOMP_FL) {
 316		ip->flags &= ~BTRFS_INODE_COMPRESS;
 317		ip->flags |= BTRFS_INODE_NOCOMPRESS;
 318
 319		ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
 320		if (ret && ret != -ENODATA)
 321			goto out_drop;
 322	} else if (flags & FS_COMPR_FL) {
 323		const char *comp;
 
 
 
 
 
 
 
 
 324
 325		ip->flags |= BTRFS_INODE_COMPRESS;
 326		ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
 327
 328		if (root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
 329			comp = "lzo";
 330		else
 331			comp = "zlib";
 332		ret = btrfs_set_prop(inode, "btrfs.compression",
 333				     comp, strlen(comp), 0);
 334		if (ret)
 335			goto out_drop;
 336
 
 
 
 
 
 
 
 337	} else {
 338		ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
 339		if (ret && ret != -ENODATA)
 340			goto out_drop;
 341		ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
 
 
 342	}
 343
 344	trans = btrfs_start_transaction(root, 1);
 345	if (IS_ERR(trans)) {
 346		ret = PTR_ERR(trans);
 347		goto out_drop;
 348	}
 
 
 
 
 
 
 349
 350	btrfs_update_iflags(inode);
 351	inode_inc_iversion(inode);
 352	inode->i_ctime = current_fs_time(inode->i_sb);
 353	ret = btrfs_update_inode(trans, root, inode);
 
 
 
 354
 355	btrfs_end_transaction(trans, root);
 356 out_drop:
 357	if (ret) {
 358		ip->flags = ip_oldflags;
 359		inode->i_flags = i_oldflags;
 360	}
 
 361
 362 out_unlock:
 363	inode_unlock(inode);
 364	mnt_drop_write_file(file);
 365	return ret;
 366}
 367
 368static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 369{
 370	struct inode *inode = file_inode(file);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 371
 
 
 372	return put_user(inode->i_generation, arg);
 373}
 374
 375static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
 
 376{
 377	struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
 378	struct btrfs_device *device;
 379	struct request_queue *q;
 380	struct fstrim_range range;
 381	u64 minlen = ULLONG_MAX;
 382	u64 num_devices = 0;
 383	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
 384	int ret;
 385
 386	if (!capable(CAP_SYS_ADMIN))
 387		return -EPERM;
 388
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 389	rcu_read_lock();
 390	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
 391				dev_list) {
 392		if (!device->bdev)
 393			continue;
 394		q = bdev_get_queue(device->bdev);
 395		if (blk_queue_discard(q)) {
 396			num_devices++;
 397			minlen = min((u64)q->limits.discard_granularity,
 398				     minlen);
 399		}
 400	}
 401	rcu_read_unlock();
 402
 403	if (!num_devices)
 404		return -EOPNOTSUPP;
 405	if (copy_from_user(&range, arg, sizeof(range)))
 406		return -EFAULT;
 407	if (range.start > total_bytes ||
 408	    range.len < fs_info->sb->s_blocksize)
 
 
 
 
 
 409		return -EINVAL;
 410
 411	range.len = min(range.len, total_bytes - range.start);
 412	range.minlen = max(range.minlen, minlen);
 413	ret = btrfs_trim_fs(fs_info->tree_root, &range);
 414	if (ret < 0)
 415		return ret;
 416
 417	if (copy_to_user(arg, &range, sizeof(range)))
 418		return -EFAULT;
 419
 420	return 0;
 421}
 422
 423int btrfs_is_empty_uuid(u8 *uuid)
 424{
 425	int i;
 426
 427	for (i = 0; i < BTRFS_UUID_SIZE; i++) {
 428		if (uuid[i])
 429			return 0;
 430	}
 431	return 1;
 432}
 433
 434static noinline int create_subvol(struct inode *dir,
 435				  struct dentry *dentry,
 436				  char *name, int namelen,
 437				  u64 *async_transid,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 438				  struct btrfs_qgroup_inherit *inherit)
 439{
 
 440	struct btrfs_trans_handle *trans;
 441	struct btrfs_key key;
 442	struct btrfs_root_item root_item;
 443	struct btrfs_inode_item *inode_item;
 444	struct extent_buffer *leaf;
 445	struct btrfs_root *root = BTRFS_I(dir)->root;
 446	struct btrfs_root *new_root;
 447	struct btrfs_block_rsv block_rsv;
 448	struct timespec cur_time = current_fs_time(dir->i_sb);
 449	struct inode *inode;
 
 
 
 
 
 450	int ret;
 451	int err;
 452	u64 objectid;
 453	u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
 454	u64 index = 0;
 455	u64 qgroup_reserved;
 456	uuid_le new_uuid;
 457
 458	ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid);
 
 
 
 
 459	if (ret)
 460		return ret;
 461
 462	/*
 463	 * Don't create subvolume whose level is not zero. Or qgroup will be
 464	 * screwed up since it assume subvolme qgroup's level to be 0.
 465	 */
 466	if (btrfs_qgroup_level(objectid))
 467		return -ENOSPC;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 468
 469	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
 470	/*
 471	 * The same as the snapshot creation, please see the comment
 472	 * of create_snapshot().
 473	 */
 474	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
 475					       8, &qgroup_reserved, false);
 476	if (ret)
 477		return ret;
 478
 479	trans = btrfs_start_transaction(root, 0);
 480	if (IS_ERR(trans)) {
 481		ret = PTR_ERR(trans);
 482		btrfs_subvolume_release_metadata(root, &block_rsv,
 483						 qgroup_reserved);
 484		return ret;
 485	}
 486	trans->block_rsv = &block_rsv;
 487	trans->bytes_reserved = block_rsv.size;
 
 
 488
 489	ret = btrfs_qgroup_inherit(trans, root->fs_info, 0, objectid, inherit);
 490	if (ret)
 491		goto fail;
 492
 493	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
 
 494	if (IS_ERR(leaf)) {
 495		ret = PTR_ERR(leaf);
 496		goto fail;
 497	}
 498
 499	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
 500	btrfs_set_header_bytenr(leaf, leaf->start);
 501	btrfs_set_header_generation(leaf, trans->transid);
 502	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
 503	btrfs_set_header_owner(leaf, objectid);
 504
 505	write_extent_buffer(leaf, root->fs_info->fsid, btrfs_header_fsid(),
 506			    BTRFS_FSID_SIZE);
 507	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
 508			    btrfs_header_chunk_tree_uuid(leaf),
 509			    BTRFS_UUID_SIZE);
 510	btrfs_mark_buffer_dirty(leaf);
 511
 512	memset(&root_item, 0, sizeof(root_item));
 513
 514	inode_item = &root_item.inode;
 515	btrfs_set_stack_inode_generation(inode_item, 1);
 516	btrfs_set_stack_inode_size(inode_item, 3);
 517	btrfs_set_stack_inode_nlink(inode_item, 1);
 518	btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
 
 519	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
 520
 521	btrfs_set_root_flags(&root_item, 0);
 522	btrfs_set_root_limit(&root_item, 0);
 523	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
 524
 525	btrfs_set_root_bytenr(&root_item, leaf->start);
 526	btrfs_set_root_generation(&root_item, trans->transid);
 527	btrfs_set_root_level(&root_item, 0);
 528	btrfs_set_root_refs(&root_item, 1);
 529	btrfs_set_root_used(&root_item, leaf->len);
 530	btrfs_set_root_last_snapshot(&root_item, 0);
 531
 532	btrfs_set_root_generation_v2(&root_item,
 533			btrfs_root_generation(&root_item));
 534	uuid_le_gen(&new_uuid);
 535	memcpy(root_item.uuid, new_uuid.b, BTRFS_UUID_SIZE);
 536	btrfs_set_stack_timespec_sec(&root_item.otime, cur_time.tv_sec);
 537	btrfs_set_stack_timespec_nsec(&root_item.otime, cur_time.tv_nsec);
 538	root_item.ctime = root_item.otime;
 539	btrfs_set_root_ctransid(&root_item, trans->transid);
 540	btrfs_set_root_otransid(&root_item, trans->transid);
 541
 542	btrfs_tree_unlock(leaf);
 543	free_extent_buffer(leaf);
 544	leaf = NULL;
 545
 546	btrfs_set_root_dirid(&root_item, new_dirid);
 547
 548	key.objectid = objectid;
 549	key.offset = 0;
 550	key.type = BTRFS_ROOT_ITEM_KEY;
 551	ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
 552				&root_item);
 553	if (ret)
 554		goto fail;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 555
 556	key.offset = (u64)-1;
 557	new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
 558	if (IS_ERR(new_root)) {
 559		ret = PTR_ERR(new_root);
 560		btrfs_abort_transaction(trans, root, ret);
 561		goto fail;
 562	}
 
 
 
 
 563
 564	btrfs_record_root_in_trans(trans, new_root);
 565
 566	ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
 567	if (ret) {
 568		/* We potentially lose an unused inode item here */
 569		btrfs_abort_transaction(trans, root, ret);
 570		goto fail;
 571	}
 572
 573	mutex_lock(&new_root->objectid_mutex);
 574	new_root->highest_objectid = new_dirid;
 575	mutex_unlock(&new_root->objectid_mutex);
 576
 577	/*
 578	 * insert the directory item
 579	 */
 580	ret = btrfs_set_inode_index(dir, &index);
 581	if (ret) {
 582		btrfs_abort_transaction(trans, root, ret);
 583		goto fail;
 584	}
 585
 586	ret = btrfs_insert_dir_item(trans, root,
 587				    name, namelen, dir, &key,
 588				    BTRFS_FT_DIR, index);
 589	if (ret) {
 590		btrfs_abort_transaction(trans, root, ret);
 591		goto fail;
 592	}
 593
 594	btrfs_i_size_write(dir, dir->i_size + namelen * 2);
 595	ret = btrfs_update_inode(trans, root, dir);
 596	BUG_ON(ret);
 597
 598	ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
 599				 objectid, root->root_key.objectid,
 600				 btrfs_ino(dir), index, name, namelen);
 601	BUG_ON(ret);
 602
 603	ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
 604				  root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
 605				  objectid);
 606	if (ret)
 607		btrfs_abort_transaction(trans, root, ret);
 608
 609fail:
 610	trans->block_rsv = NULL;
 611	trans->bytes_reserved = 0;
 612	btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
 613
 614	if (async_transid) {
 615		*async_transid = trans->transid;
 616		err = btrfs_commit_transaction_async(trans, root, 1);
 617		if (err)
 618			err = btrfs_commit_transaction(trans, root);
 619	} else {
 620		err = btrfs_commit_transaction(trans, root);
 621	}
 622	if (err && !ret)
 623		ret = err;
 624
 625	if (!ret) {
 626		inode = btrfs_lookup_dentry(dir, dentry);
 627		if (IS_ERR(inode))
 628			return PTR_ERR(inode);
 629		d_instantiate(dentry, inode);
 630	}
 631	return ret;
 632}
 633
 634static void btrfs_wait_for_no_snapshoting_writes(struct btrfs_root *root)
 635{
 636	s64 writers;
 637	DEFINE_WAIT(wait);
 638
 639	do {
 640		prepare_to_wait(&root->subv_writers->wait, &wait,
 641				TASK_UNINTERRUPTIBLE);
 642
 643		writers = percpu_counter_sum(&root->subv_writers->counter);
 644		if (writers)
 645			schedule();
 646
 647		finish_wait(&root->subv_writers->wait, &wait);
 648	} while (writers);
 649}
 650
 651static int create_snapshot(struct btrfs_root *root, struct inode *dir,
 652			   struct dentry *dentry, char *name, int namelen,
 653			   u64 *async_transid, bool readonly,
 654			   struct btrfs_qgroup_inherit *inherit)
 655{
 
 656	struct inode *inode;
 657	struct btrfs_pending_snapshot *pending_snapshot;
 
 658	struct btrfs_trans_handle *trans;
 659	int ret;
 660
 661	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
 
 
 
 
 
 
 
 
 
 
 662		return -EINVAL;
 663
 664	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
 
 
 
 
 
 
 665	if (!pending_snapshot)
 666		return -ENOMEM;
 667
 
 
 
 668	pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
 669			GFP_NOFS);
 670	pending_snapshot->path = btrfs_alloc_path();
 671	if (!pending_snapshot->root_item || !pending_snapshot->path) {
 672		ret = -ENOMEM;
 673		goto free_pending;
 674	}
 675
 676	atomic_inc(&root->will_be_snapshoted);
 677	smp_mb__after_atomic();
 678	btrfs_wait_for_no_snapshoting_writes(root);
 679
 680	ret = btrfs_start_delalloc_inodes(root, 0);
 681	if (ret)
 682		goto dec_and_free;
 683
 684	btrfs_wait_ordered_extents(root, -1);
 685
 686	btrfs_init_block_rsv(&pending_snapshot->block_rsv,
 687			     BTRFS_BLOCK_RSV_TEMP);
 688	/*
 689	 * 1 - parent dir inode
 690	 * 2 - dir entries
 691	 * 1 - root item
 692	 * 2 - root ref/backref
 693	 * 1 - root of snapshot
 694	 * 1 - UUID item
 695	 */
 
 696	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
 697					&pending_snapshot->block_rsv, 8,
 698					&pending_snapshot->qgroup_reserved,
 699					false);
 700	if (ret)
 701		goto dec_and_free;
 702
 703	pending_snapshot->dentry = dentry;
 704	pending_snapshot->root = root;
 705	pending_snapshot->readonly = readonly;
 706	pending_snapshot->dir = dir;
 707	pending_snapshot->inherit = inherit;
 708
 709	trans = btrfs_start_transaction(root, 0);
 710	if (IS_ERR(trans)) {
 711		ret = PTR_ERR(trans);
 712		goto fail;
 713	}
 714
 715	spin_lock(&root->fs_info->trans_lock);
 716	list_add(&pending_snapshot->list,
 717		 &trans->transaction->pending_snapshots);
 718	spin_unlock(&root->fs_info->trans_lock);
 719	if (async_transid) {
 720		*async_transid = trans->transid;
 721		ret = btrfs_commit_transaction_async(trans,
 722				     root->fs_info->extent_root, 1);
 723		if (ret)
 724			ret = btrfs_commit_transaction(trans, root);
 725	} else {
 726		ret = btrfs_commit_transaction(trans,
 727					       root->fs_info->extent_root);
 728	}
 729	if (ret)
 730		goto fail;
 731
 732	ret = pending_snapshot->error;
 733	if (ret)
 734		goto fail;
 735
 736	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
 737	if (ret)
 738		goto fail;
 739
 740	inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
 741	if (IS_ERR(inode)) {
 742		ret = PTR_ERR(inode);
 743		goto fail;
 744	}
 745
 746	d_instantiate(dentry, inode);
 747	ret = 0;
 
 748fail:
 749	btrfs_subvolume_release_metadata(BTRFS_I(dir)->root,
 750					 &pending_snapshot->block_rsv,
 751					 pending_snapshot->qgroup_reserved);
 752dec_and_free:
 753	if (atomic_dec_and_test(&root->will_be_snapshoted))
 754		wake_up_atomic_t(&root->will_be_snapshoted);
 755free_pending:
 
 
 756	kfree(pending_snapshot->root_item);
 757	btrfs_free_path(pending_snapshot->path);
 758	kfree(pending_snapshot);
 759
 760	return ret;
 761}
 762
 763/*  copy of may_delete in fs/namei.c()
 764 *	Check whether we can remove a link victim from directory dir, check
 765 *  whether the type of victim is right.
 766 *  1. We can't do it if dir is read-only (done in permission())
 767 *  2. We should have write and exec permissions on dir
 768 *  3. We can't remove anything from append-only dir
 769 *  4. We can't do anything with immutable dir (done in permission())
 770 *  5. If the sticky bit on dir is set we should either
 771 *	a. be owner of dir, or
 772 *	b. be owner of victim, or
 773 *	c. have CAP_FOWNER capability
 774 *  6. If the victim is append-only or immutable we can't do antyhing with
 775 *     links pointing to it.
 776 *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
 777 *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
 778 *  9. We can't remove a root or mountpoint.
 779 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
 780 *     nfs_async_unlink().
 781 */
 782
 783static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
 
 784{
 785	int error;
 786
 787	if (d_really_is_negative(victim))
 788		return -ENOENT;
 789
 790	BUG_ON(d_inode(victim->d_parent) != dir);
 791	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
 792
 793	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
 794	if (error)
 795		return error;
 796	if (IS_APPEND(dir))
 797		return -EPERM;
 798	if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
 799	    IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
 
 800		return -EPERM;
 801	if (isdir) {
 802		if (!d_is_dir(victim))
 803			return -ENOTDIR;
 804		if (IS_ROOT(victim))
 805			return -EBUSY;
 806	} else if (d_is_dir(victim))
 807		return -EISDIR;
 808	if (IS_DEADDIR(dir))
 809		return -ENOENT;
 810	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
 811		return -EBUSY;
 812	return 0;
 813}
 814
 815/* copy of may_create in fs/namei.c() */
 816static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
 
 817{
 818	if (d_really_is_positive(child))
 819		return -EEXIST;
 820	if (IS_DEADDIR(dir))
 821		return -ENOENT;
 822	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
 
 
 823}
 824
 825/*
 826 * Create a new subvolume below @parent.  This is largely modeled after
 827 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
 828 * inside this filesystem so it's quite a bit simpler.
 829 */
 830static noinline int btrfs_mksubvol(struct path *parent,
 831				   char *name, int namelen,
 
 832				   struct btrfs_root *snap_src,
 833				   u64 *async_transid, bool readonly,
 834				   struct btrfs_qgroup_inherit *inherit)
 835{
 836	struct inode *dir  = d_inode(parent->dentry);
 
 837	struct dentry *dentry;
 
 838	int error;
 839
 840	error = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
 841	if (error == -EINTR)
 842		return error;
 843
 844	dentry = lookup_one_len(name, parent->dentry, namelen);
 845	error = PTR_ERR(dentry);
 846	if (IS_ERR(dentry))
 847		goto out_unlock;
 848
 849	error = btrfs_may_create(dir, dentry);
 850	if (error)
 851		goto out_dput;
 852
 853	/*
 854	 * even if this name doesn't exist, we may get hash collisions.
 855	 * check for them now when we can safely fail
 856	 */
 857	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
 858					       dir->i_ino, name,
 859					       namelen);
 860	if (error)
 861		goto out_dput;
 862
 863	down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
 864
 865	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
 866		goto out_up_read;
 867
 868	if (snap_src) {
 869		error = create_snapshot(snap_src, dir, dentry, name, namelen,
 870					async_transid, readonly, inherit);
 871	} else {
 872		error = create_subvol(dir, dentry, name, namelen,
 873				      async_transid, inherit);
 874	}
 875	if (!error)
 876		fsnotify_mkdir(dir, dentry);
 877out_up_read:
 878	up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
 879out_dput:
 880	dput(dentry);
 881out_unlock:
 882	inode_unlock(dir);
 883	return error;
 884}
 885
 886/*
 887 * When we're defragging a range, we don't want to kick it off again
 888 * if it is really just waiting for delalloc to send it down.
 889 * If we find a nice big extent or delalloc range for the bytes in the
 890 * file you want to defrag, we return 0 to let you know to skip this
 891 * part of the file
 892 */
 893static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
 894{
 895	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
 896	struct extent_map *em = NULL;
 897	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 898	u64 end;
 899
 900	read_lock(&em_tree->lock);
 901	em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
 902	read_unlock(&em_tree->lock);
 903
 904	if (em) {
 905		end = extent_map_end(em);
 906		free_extent_map(em);
 907		if (end - offset > thresh)
 908			return 0;
 909	}
 910	/* if we already have a nice delalloc here, just stop */
 911	thresh /= 2;
 912	end = count_range_bits(io_tree, &offset, offset + thresh,
 913			       thresh, EXTENT_DELALLOC, 1);
 914	if (end >= thresh)
 915		return 0;
 916	return 1;
 917}
 918
 919/*
 920 * helper function to walk through a file and find extents
 921 * newer than a specific transid, and smaller than thresh.
 922 *
 923 * This is used by the defragging code to find new and small
 924 * extents
 925 */
 926static int find_new_extents(struct btrfs_root *root,
 927			    struct inode *inode, u64 newer_than,
 928			    u64 *off, u32 thresh)
 929{
 930	struct btrfs_path *path;
 931	struct btrfs_key min_key;
 932	struct extent_buffer *leaf;
 933	struct btrfs_file_extent_item *extent;
 934	int type;
 935	int ret;
 936	u64 ino = btrfs_ino(inode);
 937
 938	path = btrfs_alloc_path();
 939	if (!path)
 940		return -ENOMEM;
 941
 942	min_key.objectid = ino;
 943	min_key.type = BTRFS_EXTENT_DATA_KEY;
 944	min_key.offset = *off;
 945
 946	while (1) {
 947		ret = btrfs_search_forward(root, &min_key, path, newer_than);
 948		if (ret != 0)
 949			goto none;
 950process_slot:
 951		if (min_key.objectid != ino)
 952			goto none;
 953		if (min_key.type != BTRFS_EXTENT_DATA_KEY)
 954			goto none;
 955
 956		leaf = path->nodes[0];
 957		extent = btrfs_item_ptr(leaf, path->slots[0],
 958					struct btrfs_file_extent_item);
 959
 960		type = btrfs_file_extent_type(leaf, extent);
 961		if (type == BTRFS_FILE_EXTENT_REG &&
 962		    btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
 963		    check_defrag_in_cache(inode, min_key.offset, thresh)) {
 964			*off = min_key.offset;
 965			btrfs_free_path(path);
 966			return 0;
 967		}
 968
 969		path->slots[0]++;
 970		if (path->slots[0] < btrfs_header_nritems(leaf)) {
 971			btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
 972			goto process_slot;
 973		}
 974
 975		if (min_key.offset == (u64)-1)
 976			goto none;
 977
 978		min_key.offset++;
 979		btrfs_release_path(path);
 980	}
 981none:
 982	btrfs_free_path(path);
 983	return -ENOENT;
 984}
 985
 986static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
 987{
 988	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 989	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
 990	struct extent_map *em;
 991	u64 len = PAGE_SIZE;
 992
 993	/*
 994	 * hopefully we have this extent in the tree already, try without
 995	 * the full extent lock
 
 996	 */
 997	read_lock(&em_tree->lock);
 998	em = lookup_extent_mapping(em_tree, start, len);
 999	read_unlock(&em_tree->lock);
1000
1001	if (!em) {
1002		struct extent_state *cached = NULL;
1003		u64 end = start + len - 1;
1004
1005		/* get the big lock and read metadata off disk */
1006		lock_extent_bits(io_tree, start, end, &cached);
1007		em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
1008		unlock_extent_cached(io_tree, start, end, &cached, GFP_NOFS);
1009
1010		if (IS_ERR(em))
1011			return NULL;
1012	}
1013
1014	return em;
1015}
1016
1017static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1018{
1019	struct extent_map *next;
1020	bool ret = true;
1021
1022	/* this is the last extent */
1023	if (em->start + em->len >= i_size_read(inode))
1024		return false;
1025
1026	next = defrag_lookup_extent(inode, em->start + em->len);
1027	if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1028		ret = false;
1029	else if ((em->block_start + em->block_len == next->block_start) &&
1030		 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1031		ret = false;
1032
1033	free_extent_map(next);
1034	return ret;
1035}
1036
1037static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1038			       u64 *last_len, u64 *skip, u64 *defrag_end,
1039			       int compress)
1040{
1041	struct extent_map *em;
1042	int ret = 1;
1043	bool next_mergeable = true;
1044	bool prev_mergeable = true;
1045
1046	/*
1047	 * make sure that once we start defragging an extent, we keep on
1048	 * defragging it
 
1049	 */
1050	if (start < *defrag_end)
1051		return 1;
1052
1053	*skip = 0;
1054
1055	em = defrag_lookup_extent(inode, start);
1056	if (!em)
1057		return 0;
1058
1059	/* this will cover holes, and inline extents */
1060	if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1061		ret = 0;
1062		goto out;
1063	}
1064
1065	if (!*defrag_end)
1066		prev_mergeable = false;
1067
1068	next_mergeable = defrag_check_next_extent(inode, em);
1069	/*
1070	 * we hit a real extent, if it is big or the next extent is not a
1071	 * real extent, don't bother defragging it
1072	 */
1073	if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1074	    (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1075		ret = 0;
1076out:
1077	/*
1078	 * last_len ends up being a counter of how many bytes we've defragged.
1079	 * every time we choose not to defrag an extent, we reset *last_len
1080	 * so that the next tiny extent will force a defrag.
1081	 *
1082	 * The end result of this is that tiny extents before a single big
1083	 * extent will force at least part of that big extent to be defragged.
1084	 */
1085	if (ret) {
1086		*defrag_end = extent_map_end(em);
1087	} else {
1088		*last_len = 0;
1089		*skip = extent_map_end(em);
1090		*defrag_end = 0;
1091	}
1092
1093	free_extent_map(em);
1094	return ret;
1095}
1096
1097/*
1098 * it doesn't do much good to defrag one or two pages
1099 * at a time.  This pulls in a nice chunk of pages
1100 * to COW and defrag.
1101 *
1102 * It also makes sure the delalloc code has enough
1103 * dirty data to avoid making new small extents as part
1104 * of the defrag
1105 *
1106 * It's a good idea to start RA on this range
1107 * before calling this.
 
 
 
 
1108 */
1109static int cluster_pages_for_defrag(struct inode *inode,
1110				    struct page **pages,
1111				    unsigned long start_index,
1112				    unsigned long num_pages)
1113{
1114	unsigned long file_end;
1115	u64 isize = i_size_read(inode);
1116	u64 page_start;
1117	u64 page_end;
1118	u64 page_cnt;
1119	int ret;
1120	int i;
1121	int i_done;
1122	struct btrfs_ordered_extent *ordered;
1123	struct extent_state *cached_state = NULL;
1124	struct extent_io_tree *tree;
1125	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1126
1127	file_end = (isize - 1) >> PAGE_SHIFT;
1128	if (!isize || start_index > file_end)
1129		return 0;
1130
1131	page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1132
1133	ret = btrfs_delalloc_reserve_space(inode,
1134			start_index << PAGE_SHIFT,
1135			page_cnt << PAGE_SHIFT);
1136	if (ret)
1137		return ret;
1138	i_done = 0;
1139	tree = &BTRFS_I(inode)->io_tree;
1140
1141	/* step one, lock all the pages */
1142	for (i = 0; i < page_cnt; i++) {
1143		struct page *page;
1144again:
1145		page = find_or_create_page(inode->i_mapping,
1146					   start_index + i, mask);
1147		if (!page)
1148			break;
1149
1150		page_start = page_offset(page);
1151		page_end = page_start + PAGE_SIZE - 1;
1152		while (1) {
1153			lock_extent_bits(tree, page_start, page_end,
1154					 &cached_state);
1155			ordered = btrfs_lookup_ordered_extent(inode,
1156							      page_start);
1157			unlock_extent_cached(tree, page_start, page_end,
1158					     &cached_state, GFP_NOFS);
1159			if (!ordered)
1160				break;
1161
1162			unlock_page(page);
1163			btrfs_start_ordered_extent(inode, ordered, 1);
1164			btrfs_put_ordered_extent(ordered);
1165			lock_page(page);
1166			/*
1167			 * we unlocked the page above, so we need check if
1168			 * it was released or not.
1169			 */
1170			if (page->mapping != inode->i_mapping) {
1171				unlock_page(page);
1172				put_page(page);
1173				goto again;
1174			}
1175		}
1176
1177		if (!PageUptodate(page)) {
1178			btrfs_readpage(NULL, page);
1179			lock_page(page);
1180			if (!PageUptodate(page)) {
1181				unlock_page(page);
1182				put_page(page);
1183				ret = -EIO;
1184				break;
1185			}
1186		}
1187
1188		if (page->mapping != inode->i_mapping) {
1189			unlock_page(page);
1190			put_page(page);
1191			goto again;
1192		}
1193
1194		pages[i] = page;
1195		i_done++;
1196	}
1197	if (!i_done || ret)
1198		goto out;
1199
1200	if (!(inode->i_sb->s_flags & MS_ACTIVE))
1201		goto out;
1202
1203	/*
1204	 * so now we have a nice long stream of locked
1205	 * and up to date pages, lets wait on them
1206	 */
1207	for (i = 0; i < i_done; i++)
1208		wait_on_page_writeback(pages[i]);
1209
1210	page_start = page_offset(pages[0]);
1211	page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
1212
1213	lock_extent_bits(&BTRFS_I(inode)->io_tree,
1214			 page_start, page_end - 1, &cached_state);
1215	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1216			  page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1217			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1218			  &cached_state, GFP_NOFS);
1219
1220	if (i_done != page_cnt) {
1221		spin_lock(&BTRFS_I(inode)->lock);
1222		BTRFS_I(inode)->outstanding_extents++;
1223		spin_unlock(&BTRFS_I(inode)->lock);
1224		btrfs_delalloc_release_space(inode,
1225				start_index << PAGE_SHIFT,
1226				(page_cnt - i_done) << PAGE_SHIFT);
1227	}
1228
1229
1230	set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1231			  &cached_state, GFP_NOFS);
1232
1233	unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1234			     page_start, page_end - 1, &cached_state,
1235			     GFP_NOFS);
1236
1237	for (i = 0; i < i_done; i++) {
1238		clear_page_dirty_for_io(pages[i]);
1239		ClearPageChecked(pages[i]);
1240		set_page_extent_mapped(pages[i]);
1241		set_page_dirty(pages[i]);
1242		unlock_page(pages[i]);
1243		put_page(pages[i]);
1244	}
1245	return i_done;
1246out:
1247	for (i = 0; i < i_done; i++) {
1248		unlock_page(pages[i]);
1249		put_page(pages[i]);
1250	}
1251	btrfs_delalloc_release_space(inode,
1252			start_index << PAGE_SHIFT,
1253			page_cnt << PAGE_SHIFT);
1254	return ret;
1255
1256}
1257
1258int btrfs_defrag_file(struct inode *inode, struct file *file,
1259		      struct btrfs_ioctl_defrag_range_args *range,
1260		      u64 newer_than, unsigned long max_to_defrag)
1261{
1262	struct btrfs_root *root = BTRFS_I(inode)->root;
1263	struct file_ra_state *ra = NULL;
1264	unsigned long last_index;
1265	u64 isize = i_size_read(inode);
1266	u64 last_len = 0;
1267	u64 skip = 0;
1268	u64 defrag_end = 0;
1269	u64 newer_off = range->start;
1270	unsigned long i;
1271	unsigned long ra_index = 0;
1272	int ret;
1273	int defrag_count = 0;
1274	int compress_type = BTRFS_COMPRESS_ZLIB;
1275	u32 extent_thresh = range->extent_thresh;
1276	unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
1277	unsigned long cluster = max_cluster;
1278	u64 new_align = ~((u64)SZ_128K - 1);
1279	struct page **pages = NULL;
1280
1281	if (isize == 0)
1282		return 0;
1283
1284	if (range->start >= isize)
1285		return -EINVAL;
1286
1287	if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1288		if (range->compress_type > BTRFS_COMPRESS_TYPES)
1289			return -EINVAL;
1290		if (range->compress_type)
1291			compress_type = range->compress_type;
1292	}
1293
1294	if (extent_thresh == 0)
1295		extent_thresh = SZ_256K;
1296
1297	/*
1298	 * if we were not given a file, allocate a readahead
1299	 * context
1300	 */
1301	if (!file) {
1302		ra = kzalloc(sizeof(*ra), GFP_NOFS);
1303		if (!ra)
1304			return -ENOMEM;
1305		file_ra_state_init(ra, inode->i_mapping);
1306	} else {
1307		ra = &file->f_ra;
1308	}
1309
1310	pages = kmalloc_array(max_cluster, sizeof(struct page *),
1311			GFP_NOFS);
1312	if (!pages) {
1313		ret = -ENOMEM;
1314		goto out_ra;
1315	}
1316
1317	/* find the last page to defrag */
1318	if (range->start + range->len > range->start) {
1319		last_index = min_t(u64, isize - 1,
1320			 range->start + range->len - 1) >> PAGE_SHIFT;
1321	} else {
1322		last_index = (isize - 1) >> PAGE_SHIFT;
1323	}
1324
1325	if (newer_than) {
1326		ret = find_new_extents(root, inode, newer_than,
1327				       &newer_off, SZ_64K);
1328		if (!ret) {
1329			range->start = newer_off;
1330			/*
1331			 * we always align our defrag to help keep
1332			 * the extents in the file evenly spaced
1333			 */
1334			i = (newer_off & new_align) >> PAGE_SHIFT;
1335		} else
1336			goto out_ra;
1337	} else {
1338		i = range->start >> PAGE_SHIFT;
1339	}
1340	if (!max_to_defrag)
1341		max_to_defrag = last_index - i + 1;
1342
1343	/*
1344	 * make writeback starts from i, so the defrag range can be
1345	 * written sequentially.
1346	 */
1347	if (i < inode->i_mapping->writeback_index)
1348		inode->i_mapping->writeback_index = i;
1349
1350	while (i <= last_index && defrag_count < max_to_defrag &&
1351	       (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
1352		/*
1353		 * make sure we stop running if someone unmounts
1354		 * the FS
 
1355		 */
1356		if (!(inode->i_sb->s_flags & MS_ACTIVE))
1357			break;
1358
1359		if (btrfs_defrag_cancelled(root->fs_info)) {
1360			btrfs_debug(root->fs_info, "defrag_file cancelled");
1361			ret = -EAGAIN;
1362			break;
1363		}
1364
1365		if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
1366					 extent_thresh, &last_len, &skip,
1367					 &defrag_end, range->flags &
1368					 BTRFS_DEFRAG_RANGE_COMPRESS)) {
1369			unsigned long next;
1370			/*
1371			 * the should_defrag function tells us how much to skip
1372			 * bump our counter by the suggested amount
1373			 */
1374			next = DIV_ROUND_UP(skip, PAGE_SIZE);
1375			i = max(i + 1, next);
1376			continue;
1377		}
1378
1379		if (!newer_than) {
1380			cluster = (PAGE_ALIGN(defrag_end) >>
1381				   PAGE_SHIFT) - i;
1382			cluster = min(cluster, max_cluster);
1383		} else {
1384			cluster = max_cluster;
1385		}
1386
1387		if (i + cluster > ra_index) {
1388			ra_index = max(i, ra_index);
1389			btrfs_force_ra(inode->i_mapping, ra, file, ra_index,
1390				       cluster);
1391			ra_index += cluster;
1392		}
1393
1394		inode_lock(inode);
1395		if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1396			BTRFS_I(inode)->force_compress = compress_type;
1397		ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1398		if (ret < 0) {
1399			inode_unlock(inode);
1400			goto out_ra;
1401		}
1402
1403		defrag_count += ret;
1404		balance_dirty_pages_ratelimited(inode->i_mapping);
1405		inode_unlock(inode);
1406
1407		if (newer_than) {
1408			if (newer_off == (u64)-1)
1409				break;
1410
1411			if (ret > 0)
1412				i += ret;
1413
1414			newer_off = max(newer_off + 1,
1415					(u64)i << PAGE_SHIFT);
1416
1417			ret = find_new_extents(root, inode, newer_than,
1418					       &newer_off, SZ_64K);
1419			if (!ret) {
1420				range->start = newer_off;
1421				i = (newer_off & new_align) >> PAGE_SHIFT;
1422			} else {
1423				break;
1424			}
1425		} else {
1426			if (ret > 0) {
1427				i += ret;
1428				last_len += ret << PAGE_SHIFT;
1429			} else {
1430				i++;
1431				last_len = 0;
1432			}
1433		}
1434	}
1435
1436	if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1437		filemap_flush(inode->i_mapping);
1438		if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1439			     &BTRFS_I(inode)->runtime_flags))
1440			filemap_flush(inode->i_mapping);
1441	}
1442
1443	if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1444		/* the filemap_flush will queue IO into the worker threads, but
1445		 * we have to make sure the IO is actually started and that
1446		 * ordered extents get created before we return
1447		 */
1448		atomic_inc(&root->fs_info->async_submit_draining);
1449		while (atomic_read(&root->fs_info->nr_async_submits) ||
1450		      atomic_read(&root->fs_info->async_delalloc_pages)) {
1451			wait_event(root->fs_info->async_submit_wait,
1452			   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
1453			    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
1454		}
1455		atomic_dec(&root->fs_info->async_submit_draining);
1456	}
1457
1458	if (range->compress_type == BTRFS_COMPRESS_LZO) {
1459		btrfs_set_fs_incompat(root->fs_info, COMPRESS_LZO);
1460	}
1461
1462	ret = defrag_count;
1463
1464out_ra:
1465	if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1466		inode_lock(inode);
1467		BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1468		inode_unlock(inode);
1469	}
1470	if (!file)
1471		kfree(ra);
1472	kfree(pages);
1473	return ret;
1474}
1475
1476static noinline int btrfs_ioctl_resize(struct file *file,
1477					void __user *arg)
1478{
 
 
 
1479	u64 new_size;
1480	u64 old_size;
1481	u64 devid = 1;
1482	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
1483	struct btrfs_ioctl_vol_args *vol_args;
1484	struct btrfs_trans_handle *trans;
1485	struct btrfs_device *device = NULL;
1486	char *sizestr;
1487	char *retptr;
1488	char *devstr = NULL;
1489	int ret = 0;
1490	int mod = 0;
 
1491
1492	if (!capable(CAP_SYS_ADMIN))
1493		return -EPERM;
1494
1495	ret = mnt_want_write_file(file);
1496	if (ret)
1497		return ret;
1498
1499	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
1500			1)) {
1501		mnt_drop_write_file(file);
1502		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1503	}
1504
1505	mutex_lock(&root->fs_info->volume_mutex);
1506	vol_args = memdup_user(arg, sizeof(*vol_args));
1507	if (IS_ERR(vol_args)) {
1508		ret = PTR_ERR(vol_args);
1509		goto out;
1510	}
1511
1512	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
 
 
 
 
 
 
1513
1514	sizestr = vol_args->name;
1515	devstr = strchr(sizestr, ':');
1516	if (devstr) {
1517		sizestr = devstr + 1;
1518		*devstr = '\0';
1519		devstr = vol_args->name;
1520		ret = kstrtoull(devstr, 10, &devid);
1521		if (ret)
1522			goto out_free;
1523		if (!devid) {
1524			ret = -EINVAL;
1525			goto out_free;
1526		}
1527		btrfs_info(root->fs_info, "resizing devid %llu", devid);
1528	}
1529
1530	device = btrfs_find_device(root->fs_info, devid, NULL, NULL);
 
1531	if (!device) {
1532		btrfs_info(root->fs_info, "resizer unable to find device %llu",
1533		       devid);
1534		ret = -ENODEV;
1535		goto out_free;
1536	}
1537
1538	if (!device->writeable) {
1539		btrfs_info(root->fs_info,
1540			   "resizer unable to apply on readonly device %llu",
1541		       devid);
1542		ret = -EPERM;
1543		goto out_free;
1544	}
1545
1546	if (!strcmp(sizestr, "max"))
1547		new_size = device->bdev->bd_inode->i_size;
1548	else {
1549		if (sizestr[0] == '-') {
1550			mod = -1;
1551			sizestr++;
1552		} else if (sizestr[0] == '+') {
1553			mod = 1;
1554			sizestr++;
1555		}
1556		new_size = memparse(sizestr, &retptr);
1557		if (*retptr != '\0' || new_size == 0) {
1558			ret = -EINVAL;
1559			goto out_free;
1560		}
1561	}
1562
1563	if (device->is_tgtdev_for_dev_replace) {
1564		ret = -EPERM;
1565		goto out_free;
1566	}
1567
1568	old_size = btrfs_device_get_total_bytes(device);
1569
1570	if (mod < 0) {
1571		if (new_size > old_size) {
1572			ret = -EINVAL;
1573			goto out_free;
1574		}
1575		new_size = old_size - new_size;
1576	} else if (mod > 0) {
1577		if (new_size > ULLONG_MAX - old_size) {
1578			ret = -ERANGE;
1579			goto out_free;
1580		}
1581		new_size = old_size + new_size;
1582	}
1583
1584	if (new_size < SZ_256M) {
1585		ret = -EINVAL;
1586		goto out_free;
1587	}
1588	if (new_size > device->bdev->bd_inode->i_size) {
1589		ret = -EFBIG;
1590		goto out_free;
1591	}
1592
1593	new_size = div_u64(new_size, root->sectorsize);
1594	new_size *= root->sectorsize;
1595
1596	btrfs_info_in_rcu(root->fs_info, "new size for %s is %llu",
1597		      rcu_str_deref(device->name), new_size);
1598
1599	if (new_size > old_size) {
1600		trans = btrfs_start_transaction(root, 0);
1601		if (IS_ERR(trans)) {
1602			ret = PTR_ERR(trans);
1603			goto out_free;
1604		}
1605		ret = btrfs_grow_device(trans, device, new_size);
1606		btrfs_commit_transaction(trans, root);
1607	} else if (new_size < old_size) {
1608		ret = btrfs_shrink_device(device, new_size);
1609	} /* equal, nothing need to do */
1610
 
 
 
 
 
 
 
1611out_free:
1612	kfree(vol_args);
1613out:
1614	mutex_unlock(&root->fs_info->volume_mutex);
1615	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
1616	mnt_drop_write_file(file);
1617	return ret;
1618}
1619
1620static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1621				char *name, unsigned long fd, int subvol,
1622				u64 *transid, bool readonly,
 
1623				struct btrfs_qgroup_inherit *inherit)
1624{
1625	int namelen;
1626	int ret = 0;
1627
 
 
 
1628	ret = mnt_want_write_file(file);
1629	if (ret)
1630		goto out;
1631
1632	namelen = strlen(name);
1633	if (strchr(name, '/')) {
1634		ret = -EINVAL;
1635		goto out_drop_write;
1636	}
1637
1638	if (name[0] == '.' &&
1639	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1640		ret = -EEXIST;
1641		goto out_drop_write;
1642	}
1643
1644	if (subvol) {
1645		ret = btrfs_mksubvol(&file->f_path, name, namelen,
1646				     NULL, transid, readonly, inherit);
1647	} else {
1648		struct fd src = fdget(fd);
1649		struct inode *src_inode;
1650		if (!src.file) {
1651			ret = -EINVAL;
1652			goto out_drop_write;
1653		}
1654
1655		src_inode = file_inode(src.file);
1656		if (src_inode->i_sb != file_inode(file)->i_sb) {
1657			btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1658				   "Snapshot src from another FS");
1659			ret = -EXDEV;
1660		} else if (!inode_owner_or_capable(src_inode)) {
1661			/*
1662			 * Subvolume creation is not restricted, but snapshots
1663			 * are limited to own subvolumes only
1664			 */
1665			ret = -EPERM;
 
 
 
 
 
 
 
 
 
1666		} else {
1667			ret = btrfs_mksubvol(&file->f_path, name, namelen,
1668					     BTRFS_I(src_inode)->root,
1669					     transid, readonly, inherit);
 
1670		}
1671		fdput(src);
1672	}
1673out_drop_write:
1674	mnt_drop_write_file(file);
1675out:
1676	return ret;
1677}
1678
1679static noinline int btrfs_ioctl_snap_create(struct file *file,
1680					    void __user *arg, int subvol)
1681{
1682	struct btrfs_ioctl_vol_args *vol_args;
1683	int ret;
1684
 
 
 
1685	vol_args = memdup_user(arg, sizeof(*vol_args));
1686	if (IS_ERR(vol_args))
1687		return PTR_ERR(vol_args);
1688	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1689
1690	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1691					      vol_args->fd, subvol,
1692					      NULL, false, NULL);
1693
1694	kfree(vol_args);
1695	return ret;
1696}
1697
1698static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1699					       void __user *arg, int subvol)
1700{
1701	struct btrfs_ioctl_vol_args_v2 *vol_args;
1702	int ret;
1703	u64 transid = 0;
1704	u64 *ptr = NULL;
1705	bool readonly = false;
1706	struct btrfs_qgroup_inherit *inherit = NULL;
1707
 
 
 
1708	vol_args = memdup_user(arg, sizeof(*vol_args));
1709	if (IS_ERR(vol_args))
1710		return PTR_ERR(vol_args);
1711	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1712
1713	if (vol_args->flags &
1714	    ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1715	      BTRFS_SUBVOL_QGROUP_INHERIT)) {
1716		ret = -EOPNOTSUPP;
1717		goto free_args;
1718	}
1719
1720	if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1721		ptr = &transid;
1722	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1723		readonly = true;
1724	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1725		if (vol_args->size > PAGE_SIZE) {
 
 
 
1726			ret = -EINVAL;
1727			goto free_args;
1728		}
1729		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1730		if (IS_ERR(inherit)) {
1731			ret = PTR_ERR(inherit);
1732			goto free_args;
1733		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1734	}
1735
1736	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1737					      vol_args->fd, subvol, ptr,
1738					      readonly, inherit);
1739	if (ret)
1740		goto free_inherit;
1741
1742	if (ptr && copy_to_user(arg +
1743				offsetof(struct btrfs_ioctl_vol_args_v2,
1744					transid),
1745				ptr, sizeof(*ptr)))
1746		ret = -EFAULT;
1747
1748free_inherit:
1749	kfree(inherit);
1750free_args:
1751	kfree(vol_args);
1752	return ret;
1753}
1754
1755static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1756						void __user *arg)
1757{
1758	struct inode *inode = file_inode(file);
1759	struct btrfs_root *root = BTRFS_I(inode)->root;
1760	int ret = 0;
1761	u64 flags = 0;
1762
1763	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1764		return -EINVAL;
1765
1766	down_read(&root->fs_info->subvol_sem);
1767	if (btrfs_root_readonly(root))
1768		flags |= BTRFS_SUBVOL_RDONLY;
1769	up_read(&root->fs_info->subvol_sem);
1770
1771	if (copy_to_user(arg, &flags, sizeof(flags)))
1772		ret = -EFAULT;
1773
1774	return ret;
1775}
1776
1777static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1778					      void __user *arg)
1779{
1780	struct inode *inode = file_inode(file);
 
1781	struct btrfs_root *root = BTRFS_I(inode)->root;
1782	struct btrfs_trans_handle *trans;
1783	u64 root_flags;
1784	u64 flags;
1785	int ret = 0;
1786
1787	if (!inode_owner_or_capable(inode))
1788		return -EPERM;
1789
1790	ret = mnt_want_write_file(file);
1791	if (ret)
1792		goto out;
1793
1794	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
1795		ret = -EINVAL;
1796		goto out_drop_write;
1797	}
1798
1799	if (copy_from_user(&flags, arg, sizeof(flags))) {
1800		ret = -EFAULT;
1801		goto out_drop_write;
1802	}
1803
1804	if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1805		ret = -EINVAL;
1806		goto out_drop_write;
1807	}
1808
1809	if (flags & ~BTRFS_SUBVOL_RDONLY) {
1810		ret = -EOPNOTSUPP;
1811		goto out_drop_write;
1812	}
1813
1814	down_write(&root->fs_info->subvol_sem);
1815
1816	/* nothing to do */
1817	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1818		goto out_drop_sem;
1819
1820	root_flags = btrfs_root_flags(&root->root_item);
1821	if (flags & BTRFS_SUBVOL_RDONLY) {
1822		btrfs_set_root_flags(&root->root_item,
1823				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1824	} else {
1825		/*
1826		 * Block RO -> RW transition if this subvolume is involved in
1827		 * send
1828		 */
1829		spin_lock(&root->root_item_lock);
1830		if (root->send_in_progress == 0) {
1831			btrfs_set_root_flags(&root->root_item,
1832				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1833			spin_unlock(&root->root_item_lock);
1834		} else {
1835			spin_unlock(&root->root_item_lock);
1836			btrfs_warn(root->fs_info,
1837			"Attempt to set subvolume %llu read-write during send",
1838					root->root_key.objectid);
1839			ret = -EPERM;
1840			goto out_drop_sem;
1841		}
1842	}
1843
1844	trans = btrfs_start_transaction(root, 1);
1845	if (IS_ERR(trans)) {
1846		ret = PTR_ERR(trans);
1847		goto out_reset;
1848	}
1849
1850	ret = btrfs_update_root(trans, root->fs_info->tree_root,
1851				&root->root_key, &root->root_item);
 
 
 
 
 
 
1852
1853	btrfs_commit_transaction(trans, root);
1854out_reset:
1855	if (ret)
1856		btrfs_set_root_flags(&root->root_item, root_flags);
1857out_drop_sem:
1858	up_write(&root->fs_info->subvol_sem);
1859out_drop_write:
1860	mnt_drop_write_file(file);
1861out:
1862	return ret;
1863}
1864
1865/*
1866 * helper to check if the subvolume references other subvolumes
1867 */
1868static noinline int may_destroy_subvol(struct btrfs_root *root)
1869{
1870	struct btrfs_path *path;
1871	struct btrfs_dir_item *di;
1872	struct btrfs_key key;
1873	u64 dir_id;
1874	int ret;
1875
1876	path = btrfs_alloc_path();
1877	if (!path)
1878		return -ENOMEM;
1879
1880	/* Make sure this root isn't set as the default subvol */
1881	dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
1882	di = btrfs_lookup_dir_item(NULL, root->fs_info->tree_root, path,
1883				   dir_id, "default", 7, 0);
1884	if (di && !IS_ERR(di)) {
1885		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1886		if (key.objectid == root->root_key.objectid) {
1887			ret = -EPERM;
1888			btrfs_err(root->fs_info, "deleting default subvolume "
1889				  "%llu is not allowed", key.objectid);
1890			goto out;
1891		}
1892		btrfs_release_path(path);
1893	}
1894
1895	key.objectid = root->root_key.objectid;
1896	key.type = BTRFS_ROOT_REF_KEY;
1897	key.offset = (u64)-1;
1898
1899	ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
1900				&key, path, 0, 0);
1901	if (ret < 0)
1902		goto out;
1903	BUG_ON(ret == 0);
1904
1905	ret = 0;
1906	if (path->slots[0] > 0) {
1907		path->slots[0]--;
1908		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1909		if (key.objectid == root->root_key.objectid &&
1910		    key.type == BTRFS_ROOT_REF_KEY)
1911			ret = -ENOTEMPTY;
1912	}
1913out:
1914	btrfs_free_path(path);
1915	return ret;
1916}
1917
1918static noinline int key_in_sk(struct btrfs_key *key,
1919			      struct btrfs_ioctl_search_key *sk)
1920{
1921	struct btrfs_key test;
1922	int ret;
1923
1924	test.objectid = sk->min_objectid;
1925	test.type = sk->min_type;
1926	test.offset = sk->min_offset;
1927
1928	ret = btrfs_comp_cpu_keys(key, &test);
1929	if (ret < 0)
1930		return 0;
1931
1932	test.objectid = sk->max_objectid;
1933	test.type = sk->max_type;
1934	test.offset = sk->max_offset;
1935
1936	ret = btrfs_comp_cpu_keys(key, &test);
1937	if (ret > 0)
1938		return 0;
1939	return 1;
1940}
1941
1942static noinline int copy_to_sk(struct btrfs_root *root,
1943			       struct btrfs_path *path,
1944			       struct btrfs_key *key,
1945			       struct btrfs_ioctl_search_key *sk,
1946			       size_t *buf_size,
1947			       char __user *ubuf,
1948			       unsigned long *sk_offset,
1949			       int *num_found)
1950{
1951	u64 found_transid;
1952	struct extent_buffer *leaf;
1953	struct btrfs_ioctl_search_header sh;
1954	struct btrfs_key test;
1955	unsigned long item_off;
1956	unsigned long item_len;
1957	int nritems;
1958	int i;
1959	int slot;
1960	int ret = 0;
1961
1962	leaf = path->nodes[0];
1963	slot = path->slots[0];
1964	nritems = btrfs_header_nritems(leaf);
1965
1966	if (btrfs_header_generation(leaf) > sk->max_transid) {
1967		i = nritems;
1968		goto advance_key;
1969	}
1970	found_transid = btrfs_header_generation(leaf);
1971
1972	for (i = slot; i < nritems; i++) {
1973		item_off = btrfs_item_ptr_offset(leaf, i);
1974		item_len = btrfs_item_size_nr(leaf, i);
1975
1976		btrfs_item_key_to_cpu(leaf, key, i);
1977		if (!key_in_sk(key, sk))
1978			continue;
1979
1980		if (sizeof(sh) + item_len > *buf_size) {
1981			if (*num_found) {
1982				ret = 1;
1983				goto out;
1984			}
1985
1986			/*
1987			 * return one empty item back for v1, which does not
1988			 * handle -EOVERFLOW
1989			 */
1990
1991			*buf_size = sizeof(sh) + item_len;
1992			item_len = 0;
1993			ret = -EOVERFLOW;
1994		}
1995
1996		if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1997			ret = 1;
1998			goto out;
1999		}
2000
2001		sh.objectid = key->objectid;
2002		sh.offset = key->offset;
2003		sh.type = key->type;
2004		sh.len = item_len;
2005		sh.transid = found_transid;
2006
2007		/* copy search result header */
2008		if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) {
2009			ret = -EFAULT;
 
 
 
 
 
2010			goto out;
2011		}
2012
2013		*sk_offset += sizeof(sh);
2014
2015		if (item_len) {
2016			char __user *up = ubuf + *sk_offset;
2017			/* copy the item */
2018			if (read_extent_buffer_to_user(leaf, up,
2019						       item_off, item_len)) {
2020				ret = -EFAULT;
 
 
 
 
2021				goto out;
2022			}
2023
2024			*sk_offset += item_len;
2025		}
2026		(*num_found)++;
2027
2028		if (ret) /* -EOVERFLOW from above */
2029			goto out;
2030
2031		if (*num_found >= sk->nr_items) {
2032			ret = 1;
2033			goto out;
2034		}
2035	}
2036advance_key:
2037	ret = 0;
2038	test.objectid = sk->max_objectid;
2039	test.type = sk->max_type;
2040	test.offset = sk->max_offset;
2041	if (btrfs_comp_cpu_keys(key, &test) >= 0)
2042		ret = 1;
2043	else if (key->offset < (u64)-1)
2044		key->offset++;
2045	else if (key->type < (u8)-1) {
2046		key->offset = 0;
2047		key->type++;
2048	} else if (key->objectid < (u64)-1) {
2049		key->offset = 0;
2050		key->type = 0;
2051		key->objectid++;
2052	} else
2053		ret = 1;
2054out:
2055	/*
2056	 *  0: all items from this leaf copied, continue with next
2057	 *  1: * more items can be copied, but unused buffer is too small
2058	 *     * all items were found
2059	 *     Either way, it will stops the loop which iterates to the next
2060	 *     leaf
2061	 *  -EOVERFLOW: item was to large for buffer
2062	 *  -EFAULT: could not copy extent buffer back to userspace
2063	 */
2064	return ret;
2065}
2066
2067static noinline int search_ioctl(struct inode *inode,
2068				 struct btrfs_ioctl_search_key *sk,
2069				 size_t *buf_size,
2070				 char __user *ubuf)
2071{
 
2072	struct btrfs_root *root;
2073	struct btrfs_key key;
2074	struct btrfs_path *path;
2075	struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
2076	int ret;
2077	int num_found = 0;
2078	unsigned long sk_offset = 0;
2079
2080	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2081		*buf_size = sizeof(struct btrfs_ioctl_search_header);
2082		return -EOVERFLOW;
2083	}
2084
2085	path = btrfs_alloc_path();
2086	if (!path)
2087		return -ENOMEM;
2088
2089	if (sk->tree_id == 0) {
2090		/* search the root of the inode that was passed */
2091		root = BTRFS_I(inode)->root;
2092	} else {
2093		key.objectid = sk->tree_id;
2094		key.type = BTRFS_ROOT_ITEM_KEY;
2095		key.offset = (u64)-1;
2096		root = btrfs_read_fs_root_no_name(info, &key);
2097		if (IS_ERR(root)) {
2098			btrfs_free_path(path);
2099			return -ENOENT;
2100		}
2101	}
2102
2103	key.objectid = sk->min_objectid;
2104	key.type = sk->min_type;
2105	key.offset = sk->min_offset;
2106
2107	while (1) {
 
 
 
 
 
 
 
 
 
2108		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2109		if (ret != 0) {
2110			if (ret > 0)
2111				ret = 0;
2112			goto err;
2113		}
2114		ret = copy_to_sk(root, path, &key, sk, buf_size, ubuf,
2115				 &sk_offset, &num_found);
2116		btrfs_release_path(path);
2117		if (ret)
2118			break;
2119
2120	}
2121	if (ret > 0)
2122		ret = 0;
2123err:
2124	sk->nr_items = num_found;
 
2125	btrfs_free_path(path);
2126	return ret;
2127}
2128
2129static noinline int btrfs_ioctl_tree_search(struct file *file,
2130					   void __user *argp)
2131{
2132	struct btrfs_ioctl_search_args __user *uargs;
2133	struct btrfs_ioctl_search_key sk;
2134	struct inode *inode;
2135	int ret;
2136	size_t buf_size;
2137
2138	if (!capable(CAP_SYS_ADMIN))
2139		return -EPERM;
2140
2141	uargs = (struct btrfs_ioctl_search_args __user *)argp;
2142
2143	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2144		return -EFAULT;
2145
2146	buf_size = sizeof(uargs->buf);
2147
2148	inode = file_inode(file);
2149	ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2150
2151	/*
2152	 * In the origin implementation an overflow is handled by returning a
2153	 * search header with a len of zero, so reset ret.
2154	 */
2155	if (ret == -EOVERFLOW)
2156		ret = 0;
2157
2158	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2159		ret = -EFAULT;
2160	return ret;
2161}
2162
2163static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2164					       void __user *argp)
2165{
2166	struct btrfs_ioctl_search_args_v2 __user *uarg;
2167	struct btrfs_ioctl_search_args_v2 args;
2168	struct inode *inode;
2169	int ret;
2170	size_t buf_size;
2171	const size_t buf_limit = SZ_16M;
2172
2173	if (!capable(CAP_SYS_ADMIN))
2174		return -EPERM;
2175
2176	/* copy search header and buffer size */
2177	uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2178	if (copy_from_user(&args, uarg, sizeof(args)))
2179		return -EFAULT;
2180
2181	buf_size = args.buf_size;
2182
2183	if (buf_size < sizeof(struct btrfs_ioctl_search_header))
2184		return -EOVERFLOW;
2185
2186	/* limit result size to 16MB */
2187	if (buf_size > buf_limit)
2188		buf_size = buf_limit;
2189
2190	inode = file_inode(file);
2191	ret = search_ioctl(inode, &args.key, &buf_size,
2192			   (char *)(&uarg->buf[0]));
2193	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2194		ret = -EFAULT;
2195	else if (ret == -EOVERFLOW &&
2196		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2197		ret = -EFAULT;
2198
2199	return ret;
2200}
2201
2202/*
2203 * Search INODE_REFs to identify path name of 'dirid' directory
2204 * in a 'tree_id' tree. and sets path name to 'name'.
2205 */
2206static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2207				u64 tree_id, u64 dirid, char *name)
2208{
2209	struct btrfs_root *root;
2210	struct btrfs_key key;
2211	char *ptr;
2212	int ret = -1;
2213	int slot;
2214	int len;
2215	int total_len = 0;
2216	struct btrfs_inode_ref *iref;
2217	struct extent_buffer *l;
2218	struct btrfs_path *path;
2219
2220	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2221		name[0]='\0';
2222		return 0;
2223	}
2224
2225	path = btrfs_alloc_path();
2226	if (!path)
2227		return -ENOMEM;
2228
2229	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
2230
2231	key.objectid = tree_id;
2232	key.type = BTRFS_ROOT_ITEM_KEY;
2233	key.offset = (u64)-1;
2234	root = btrfs_read_fs_root_no_name(info, &key);
2235	if (IS_ERR(root)) {
2236		btrfs_err(info, "could not find root %llu", tree_id);
2237		ret = -ENOENT;
2238		goto out;
2239	}
2240
2241	key.objectid = dirid;
2242	key.type = BTRFS_INODE_REF_KEY;
2243	key.offset = (u64)-1;
2244
2245	while (1) {
2246		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2247		if (ret < 0)
2248			goto out;
2249		else if (ret > 0) {
2250			ret = btrfs_previous_item(root, path, dirid,
2251						  BTRFS_INODE_REF_KEY);
2252			if (ret < 0)
2253				goto out;
2254			else if (ret > 0) {
2255				ret = -ENOENT;
2256				goto out;
2257			}
2258		}
2259
2260		l = path->nodes[0];
2261		slot = path->slots[0];
2262		btrfs_item_key_to_cpu(l, &key, slot);
2263
2264		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2265		len = btrfs_inode_ref_name_len(l, iref);
2266		ptr -= len + 1;
2267		total_len += len + 1;
2268		if (ptr < name) {
2269			ret = -ENAMETOOLONG;
2270			goto out;
2271		}
2272
2273		*(ptr + len) = '/';
2274		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2275
2276		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2277			break;
2278
2279		btrfs_release_path(path);
2280		key.objectid = key.offset;
2281		key.offset = (u64)-1;
2282		dirid = key.objectid;
2283	}
2284	memmove(name, ptr, total_len);
2285	name[total_len] = '\0';
2286	ret = 0;
2287out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2288	btrfs_free_path(path);
2289	return ret;
2290}
2291
2292static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2293					   void __user *argp)
2294{
2295	 struct btrfs_ioctl_ino_lookup_args *args;
2296	 struct inode *inode;
2297	int ret = 0;
2298
2299	args = memdup_user(argp, sizeof(*args));
2300	if (IS_ERR(args))
2301		return PTR_ERR(args);
2302
2303	inode = file_inode(file);
2304
2305	/*
2306	 * Unprivileged query to obtain the containing subvolume root id. The
2307	 * path is reset so it's consistent with btrfs_search_path_in_tree.
2308	 */
2309	if (args->treeid == 0)
2310		args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2311
2312	if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2313		args->name[0] = 0;
2314		goto out;
2315	}
2316
2317	if (!capable(CAP_SYS_ADMIN)) {
2318		ret = -EPERM;
2319		goto out;
2320	}
2321
2322	ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2323					args->treeid, args->objectid,
2324					args->name);
2325
2326out:
2327	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2328		ret = -EFAULT;
2329
2330	kfree(args);
2331	return ret;
2332}
2333
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2334static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2335					     void __user *arg)
 
2336{
2337	struct dentry *parent = file->f_path.dentry;
 
2338	struct dentry *dentry;
2339	struct inode *dir = d_inode(parent);
2340	struct inode *inode;
2341	struct btrfs_root *root = BTRFS_I(dir)->root;
2342	struct btrfs_root *dest = NULL;
2343	struct btrfs_ioctl_vol_args *vol_args;
2344	struct btrfs_trans_handle *trans;
2345	struct btrfs_block_rsv block_rsv;
2346	u64 root_flags;
2347	u64 qgroup_reserved;
2348	int namelen;
2349	int ret;
2350	int err = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2351
2352	vol_args = memdup_user(arg, sizeof(*vol_args));
2353	if (IS_ERR(vol_args))
2354		return PTR_ERR(vol_args);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2355
2356	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2357	namelen = strlen(vol_args->name);
2358	if (strchr(vol_args->name, '/') ||
2359	    strncmp(vol_args->name, "..", namelen) == 0) {
2360		err = -EINVAL;
2361		goto out;
2362	}
2363
2364	err = mnt_want_write_file(file);
2365	if (err)
2366		goto out;
 
2367
2368
2369	err = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
2370	if (err == -EINTR)
2371		goto out_drop_write;
2372	dentry = lookup_one_len(vol_args->name, parent, namelen);
2373	if (IS_ERR(dentry)) {
2374		err = PTR_ERR(dentry);
2375		goto out_unlock_dir;
2376	}
2377
2378	if (d_really_is_negative(dentry)) {
2379		err = -ENOENT;
2380		goto out_dput;
2381	}
2382
2383	inode = d_inode(dentry);
2384	dest = BTRFS_I(inode)->root;
2385	if (!capable(CAP_SYS_ADMIN)) {
2386		/*
2387		 * Regular user.  Only allow this with a special mount
2388		 * option, when the user has write+exec access to the
2389		 * subvol root, and when rmdir(2) would have been
2390		 * allowed.
2391		 *
2392		 * Note that this is _not_ check that the subvol is
2393		 * empty or doesn't contain data that we wouldn't
2394		 * otherwise be able to delete.
2395		 *
2396		 * Users who want to delete empty subvols should try
2397		 * rmdir(2).
2398		 */
2399		err = -EPERM;
2400		if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
2401			goto out_dput;
2402
2403		/*
2404		 * Do not allow deletion if the parent dir is the same
2405		 * as the dir to be deleted.  That means the ioctl
2406		 * must be called on the dentry referencing the root
2407		 * of the subvol, not a random directory contained
2408		 * within it.
2409		 */
2410		err = -EINVAL;
2411		if (root == dest)
2412			goto out_dput;
2413
2414		err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2415		if (err)
2416			goto out_dput;
2417	}
2418
2419	/* check if subvolume may be deleted by a user */
2420	err = btrfs_may_delete(dir, dentry, 1);
2421	if (err)
2422		goto out_dput;
2423
2424	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
2425		err = -EINVAL;
2426		goto out_dput;
2427	}
2428
2429	inode_lock(inode);
2430
2431	/*
2432	 * Don't allow to delete a subvolume with send in progress. This is
2433	 * inside the i_mutex so the error handling that has to drop the bit
2434	 * again is not run concurrently.
2435	 */
2436	spin_lock(&dest->root_item_lock);
2437	root_flags = btrfs_root_flags(&dest->root_item);
2438	if (dest->send_in_progress == 0) {
2439		btrfs_set_root_flags(&dest->root_item,
2440				root_flags | BTRFS_ROOT_SUBVOL_DEAD);
2441		spin_unlock(&dest->root_item_lock);
2442	} else {
2443		spin_unlock(&dest->root_item_lock);
2444		btrfs_warn(root->fs_info,
2445			"Attempt to delete subvolume %llu during send",
2446			dest->root_key.objectid);
2447		err = -EPERM;
2448		goto out_unlock_inode;
2449	}
2450
2451	down_write(&root->fs_info->subvol_sem);
2452
2453	err = may_destroy_subvol(dest);
2454	if (err)
2455		goto out_up_write;
2456
2457	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
2458	/*
2459	 * One for dir inode, two for dir entries, two for root
2460	 * ref/backref.
2461	 */
2462	err = btrfs_subvolume_reserve_metadata(root, &block_rsv,
2463					       5, &qgroup_reserved, true);
2464	if (err)
2465		goto out_up_write;
2466
2467	trans = btrfs_start_transaction(root, 0);
2468	if (IS_ERR(trans)) {
2469		err = PTR_ERR(trans);
2470		goto out_release;
2471	}
2472	trans->block_rsv = &block_rsv;
2473	trans->bytes_reserved = block_rsv.size;
2474
2475	btrfs_record_snapshot_destroy(trans, dir);
2476
2477	ret = btrfs_unlink_subvol(trans, root, dir,
2478				dest->root_key.objectid,
2479				dentry->d_name.name,
2480				dentry->d_name.len);
2481	if (ret) {
2482		err = ret;
2483		btrfs_abort_transaction(trans, root, ret);
2484		goto out_end_trans;
2485	}
2486
2487	btrfs_record_root_in_trans(trans, dest);
2488
2489	memset(&dest->root_item.drop_progress, 0,
2490		sizeof(dest->root_item.drop_progress));
2491	dest->root_item.drop_level = 0;
2492	btrfs_set_root_refs(&dest->root_item, 0);
2493
2494	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
2495		ret = btrfs_insert_orphan_item(trans,
2496					root->fs_info->tree_root,
2497					dest->root_key.objectid);
2498		if (ret) {
2499			btrfs_abort_transaction(trans, root, ret);
2500			err = ret;
2501			goto out_end_trans;
2502		}
2503	}
2504
2505	ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2506				  dest->root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
2507				  dest->root_key.objectid);
2508	if (ret && ret != -ENOENT) {
2509		btrfs_abort_transaction(trans, root, ret);
2510		err = ret;
2511		goto out_end_trans;
2512	}
2513	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
2514		ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2515					  dest->root_item.received_uuid,
2516					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
2517					  dest->root_key.objectid);
2518		if (ret && ret != -ENOENT) {
2519			btrfs_abort_transaction(trans, root, ret);
2520			err = ret;
2521			goto out_end_trans;
2522		}
2523	}
2524
2525out_end_trans:
2526	trans->block_rsv = NULL;
2527	trans->bytes_reserved = 0;
2528	ret = btrfs_end_transaction(trans, root);
2529	if (ret && !err)
2530		err = ret;
2531	inode->i_flags |= S_DEAD;
2532out_release:
2533	btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
2534out_up_write:
2535	up_write(&root->fs_info->subvol_sem);
2536	if (err) {
2537		spin_lock(&dest->root_item_lock);
2538		root_flags = btrfs_root_flags(&dest->root_item);
2539		btrfs_set_root_flags(&dest->root_item,
2540				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
2541		spin_unlock(&dest->root_item_lock);
2542	}
2543out_unlock_inode:
2544	inode_unlock(inode);
2545	if (!err) {
2546		d_invalidate(dentry);
2547		btrfs_invalidate_inodes(dest);
2548		d_delete(dentry);
2549		ASSERT(dest->send_in_progress == 0);
2550
2551		/* the last ref */
2552		if (dest->ino_cache_inode) {
2553			iput(dest->ino_cache_inode);
2554			dest->ino_cache_inode = NULL;
2555		}
2556	}
2557out_dput:
2558	dput(dentry);
2559out_unlock_dir:
2560	inode_unlock(dir);
 
 
 
 
 
2561out_drop_write:
2562	mnt_drop_write_file(file);
2563out:
 
2564	kfree(vol_args);
2565	return err;
2566}
2567
2568static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2569{
2570	struct inode *inode = file_inode(file);
2571	struct btrfs_root *root = BTRFS_I(inode)->root;
2572	struct btrfs_ioctl_defrag_range_args *range;
2573	int ret;
2574
2575	ret = mnt_want_write_file(file);
2576	if (ret)
2577		return ret;
2578
2579	if (btrfs_root_readonly(root)) {
2580		ret = -EROFS;
2581		goto out;
2582	}
2583
2584	switch (inode->i_mode & S_IFMT) {
2585	case S_IFDIR:
2586		if (!capable(CAP_SYS_ADMIN)) {
2587			ret = -EPERM;
2588			goto out;
2589		}
2590		ret = btrfs_defrag_root(root);
2591		if (ret)
2592			goto out;
2593		ret = btrfs_defrag_root(root->fs_info->extent_root);
2594		break;
2595	case S_IFREG:
2596		if (!(file->f_mode & FMODE_WRITE)) {
2597			ret = -EINVAL;
2598			goto out;
2599		}
2600
2601		range = kzalloc(sizeof(*range), GFP_KERNEL);
2602		if (!range) {
2603			ret = -ENOMEM;
2604			goto out;
2605		}
2606
2607		if (argp) {
2608			if (copy_from_user(range, argp,
2609					   sizeof(*range))) {
2610				ret = -EFAULT;
2611				kfree(range);
 
 
 
2612				goto out;
2613			}
2614			/* compression requires us to start the IO */
2615			if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2616				range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2617				range->extent_thresh = (u32)-1;
2618			}
2619		} else {
2620			/* the rest are all set to zero by kzalloc */
2621			range->len = (u64)-1;
2622		}
2623		ret = btrfs_defrag_file(file_inode(file), file,
2624					range, 0, 0);
2625		if (ret > 0)
2626			ret = 0;
2627		kfree(range);
2628		break;
2629	default:
2630		ret = -EINVAL;
2631	}
2632out:
2633	mnt_drop_write_file(file);
2634	return ret;
2635}
2636
2637static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
2638{
2639	struct btrfs_ioctl_vol_args *vol_args;
 
2640	int ret;
2641
2642	if (!capable(CAP_SYS_ADMIN))
2643		return -EPERM;
2644
2645	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2646			1)) {
2647		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2648	}
2649
2650	mutex_lock(&root->fs_info->volume_mutex);
2651	vol_args = memdup_user(arg, sizeof(*vol_args));
2652	if (IS_ERR(vol_args)) {
2653		ret = PTR_ERR(vol_args);
2654		goto out;
2655	}
2656
2657	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2658	ret = btrfs_init_new_device(root, vol_args->name);
2659
2660	if (!ret)
2661		btrfs_info(root->fs_info, "disk added %s",vol_args->name);
2662
2663	kfree(vol_args);
2664out:
2665	mutex_unlock(&root->fs_info->volume_mutex);
2666	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
 
 
2667	return ret;
2668}
2669
2670static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2671{
2672	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
2673	struct btrfs_ioctl_vol_args *vol_args;
 
 
 
2674	int ret;
 
2675
2676	if (!capable(CAP_SYS_ADMIN))
2677		return -EPERM;
2678
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2679	ret = mnt_want_write_file(file);
2680	if (ret)
2681		return ret;
2682
2683	vol_args = memdup_user(arg, sizeof(*vol_args));
2684	if (IS_ERR(vol_args)) {
2685		ret = PTR_ERR(vol_args);
2686		goto err_drop;
 
 
 
 
 
 
 
 
 
 
 
 
 
2687	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2688
2689	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
 
 
 
 
 
 
 
2690
2691	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2692			1)) {
2693		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2694		goto out;
 
 
 
 
 
 
 
 
2695	}
2696
2697	mutex_lock(&root->fs_info->volume_mutex);
2698	ret = btrfs_rm_device(root, vol_args->name);
2699	mutex_unlock(&root->fs_info->volume_mutex);
2700	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2701
2702	if (!ret)
2703		btrfs_info(root->fs_info, "disk deleted %s",vol_args->name);
2704
2705out:
 
2706	kfree(vol_args);
2707err_drop:
2708	mnt_drop_write_file(file);
2709	return ret;
2710}
2711
2712static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg)
 
2713{
2714	struct btrfs_ioctl_fs_info_args *fi_args;
2715	struct btrfs_device *device;
2716	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
 
2717	int ret = 0;
2718
2719	fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2720	if (!fi_args)
2721		return -ENOMEM;
 
 
 
2722
2723	mutex_lock(&fs_devices->device_list_mutex);
2724	fi_args->num_devices = fs_devices->num_devices;
2725	memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid));
2726
2727	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2728		if (device->devid > fi_args->max_id)
2729			fi_args->max_id = device->devid;
2730	}
2731	mutex_unlock(&fs_devices->device_list_mutex);
2732
2733	fi_args->nodesize = root->fs_info->super_copy->nodesize;
2734	fi_args->sectorsize = root->fs_info->super_copy->sectorsize;
2735	fi_args->clone_alignment = root->fs_info->super_copy->sectorsize;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2736
2737	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2738		ret = -EFAULT;
2739
2740	kfree(fi_args);
2741	return ret;
2742}
2743
2744static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg)
 
2745{
 
2746	struct btrfs_ioctl_dev_info_args *di_args;
2747	struct btrfs_device *dev;
2748	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2749	int ret = 0;
2750	char *s_uuid = NULL;
2751
2752	di_args = memdup_user(arg, sizeof(*di_args));
2753	if (IS_ERR(di_args))
2754		return PTR_ERR(di_args);
2755
 
2756	if (!btrfs_is_empty_uuid(di_args->uuid))
2757		s_uuid = di_args->uuid;
2758
2759	mutex_lock(&fs_devices->device_list_mutex);
2760	dev = btrfs_find_device(root->fs_info, di_args->devid, s_uuid, NULL);
2761
 
 
2762	if (!dev) {
2763		ret = -ENODEV;
2764		goto out;
2765	}
2766
2767	di_args->devid = dev->devid;
2768	di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2769	di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2770	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2771	if (dev->name) {
2772		struct rcu_string *name;
2773
2774		rcu_read_lock();
2775		name = rcu_dereference(dev->name);
2776		strncpy(di_args->path, name->str, sizeof(di_args->path));
2777		rcu_read_unlock();
2778		di_args->path[sizeof(di_args->path) - 1] = 0;
2779	} else {
2780		di_args->path[0] = '\0';
2781	}
2782
2783out:
2784	mutex_unlock(&fs_devices->device_list_mutex);
2785	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2786		ret = -EFAULT;
2787
2788	kfree(di_args);
2789	return ret;
2790}
2791
2792static struct page *extent_same_get_page(struct inode *inode, pgoff_t index)
2793{
2794	struct page *page;
2795
2796	page = grab_cache_page(inode->i_mapping, index);
2797	if (!page)
2798		return ERR_PTR(-ENOMEM);
2799
2800	if (!PageUptodate(page)) {
2801		int ret;
2802
2803		ret = btrfs_readpage(NULL, page);
2804		if (ret)
2805			return ERR_PTR(ret);
2806		lock_page(page);
2807		if (!PageUptodate(page)) {
2808			unlock_page(page);
2809			put_page(page);
2810			return ERR_PTR(-EIO);
2811		}
2812		if (page->mapping != inode->i_mapping) {
2813			unlock_page(page);
2814			put_page(page);
2815			return ERR_PTR(-EAGAIN);
2816		}
2817	}
2818
2819	return page;
2820}
2821
2822static int gather_extent_pages(struct inode *inode, struct page **pages,
2823			       int num_pages, u64 off)
2824{
2825	int i;
2826	pgoff_t index = off >> PAGE_SHIFT;
2827
2828	for (i = 0; i < num_pages; i++) {
2829again:
2830		pages[i] = extent_same_get_page(inode, index + i);
2831		if (IS_ERR(pages[i])) {
2832			int err = PTR_ERR(pages[i]);
2833
2834			if (err == -EAGAIN)
2835				goto again;
2836			pages[i] = NULL;
2837			return err;
2838		}
2839	}
2840	return 0;
2841}
2842
2843static int lock_extent_range(struct inode *inode, u64 off, u64 len,
2844			     bool retry_range_locking)
2845{
2846	/*
2847	 * Do any pending delalloc/csum calculations on inode, one way or
2848	 * another, and lock file content.
2849	 * The locking order is:
2850	 *
2851	 *   1) pages
2852	 *   2) range in the inode's io tree
2853	 */
2854	while (1) {
2855		struct btrfs_ordered_extent *ordered;
2856		lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2857		ordered = btrfs_lookup_first_ordered_extent(inode,
2858							    off + len - 1);
2859		if ((!ordered ||
2860		     ordered->file_offset + ordered->len <= off ||
2861		     ordered->file_offset >= off + len) &&
2862		    !test_range_bit(&BTRFS_I(inode)->io_tree, off,
2863				    off + len - 1, EXTENT_DELALLOC, 0, NULL)) {
2864			if (ordered)
2865				btrfs_put_ordered_extent(ordered);
2866			break;
2867		}
2868		unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2869		if (ordered)
2870			btrfs_put_ordered_extent(ordered);
2871		if (!retry_range_locking)
2872			return -EAGAIN;
2873		btrfs_wait_ordered_range(inode, off, len);
2874	}
2875	return 0;
2876}
2877
2878static void btrfs_double_inode_unlock(struct inode *inode1, struct inode *inode2)
2879{
2880	inode_unlock(inode1);
2881	inode_unlock(inode2);
2882}
2883
2884static void btrfs_double_inode_lock(struct inode *inode1, struct inode *inode2)
2885{
2886	if (inode1 < inode2)
2887		swap(inode1, inode2);
2888
2889	inode_lock_nested(inode1, I_MUTEX_PARENT);
2890	inode_lock_nested(inode2, I_MUTEX_CHILD);
2891}
2892
2893static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
2894				      struct inode *inode2, u64 loff2, u64 len)
2895{
2896	unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
2897	unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
2898}
2899
2900static int btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
2901				    struct inode *inode2, u64 loff2, u64 len,
2902				    bool retry_range_locking)
2903{
2904	int ret;
2905
2906	if (inode1 < inode2) {
2907		swap(inode1, inode2);
2908		swap(loff1, loff2);
2909	}
2910	ret = lock_extent_range(inode1, loff1, len, retry_range_locking);
2911	if (ret)
2912		return ret;
2913	ret = lock_extent_range(inode2, loff2, len, retry_range_locking);
2914	if (ret)
2915		unlock_extent(&BTRFS_I(inode1)->io_tree, loff1,
2916			      loff1 + len - 1);
2917	return ret;
2918}
2919
2920struct cmp_pages {
2921	int		num_pages;
2922	struct page	**src_pages;
2923	struct page	**dst_pages;
2924};
2925
2926static void btrfs_cmp_data_free(struct cmp_pages *cmp)
2927{
2928	int i;
2929	struct page *pg;
2930
2931	for (i = 0; i < cmp->num_pages; i++) {
2932		pg = cmp->src_pages[i];
2933		if (pg) {
2934			unlock_page(pg);
2935			put_page(pg);
2936		}
2937		pg = cmp->dst_pages[i];
2938		if (pg) {
2939			unlock_page(pg);
2940			put_page(pg);
2941		}
2942	}
2943	kfree(cmp->src_pages);
2944	kfree(cmp->dst_pages);
2945}
2946
2947static int btrfs_cmp_data_prepare(struct inode *src, u64 loff,
2948				  struct inode *dst, u64 dst_loff,
2949				  u64 len, struct cmp_pages *cmp)
2950{
2951	int ret;
2952	int num_pages = PAGE_ALIGN(len) >> PAGE_SHIFT;
2953	struct page **src_pgarr, **dst_pgarr;
2954
2955	/*
2956	 * We must gather up all the pages before we initiate our
2957	 * extent locking. We use an array for the page pointers. Size
2958	 * of the array is bounded by len, which is in turn bounded by
2959	 * BTRFS_MAX_DEDUPE_LEN.
2960	 */
2961	src_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
2962	dst_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
2963	if (!src_pgarr || !dst_pgarr) {
2964		kfree(src_pgarr);
2965		kfree(dst_pgarr);
2966		return -ENOMEM;
2967	}
2968	cmp->num_pages = num_pages;
2969	cmp->src_pages = src_pgarr;
2970	cmp->dst_pages = dst_pgarr;
2971
2972	ret = gather_extent_pages(src, cmp->src_pages, cmp->num_pages, loff);
2973	if (ret)
2974		goto out;
2975
2976	ret = gather_extent_pages(dst, cmp->dst_pages, cmp->num_pages, dst_loff);
2977
2978out:
2979	if (ret)
2980		btrfs_cmp_data_free(cmp);
2981	return 0;
2982}
2983
2984static int btrfs_cmp_data(struct inode *src, u64 loff, struct inode *dst,
2985			  u64 dst_loff, u64 len, struct cmp_pages *cmp)
2986{
2987	int ret = 0;
2988	int i;
2989	struct page *src_page, *dst_page;
2990	unsigned int cmp_len = PAGE_SIZE;
2991	void *addr, *dst_addr;
2992
2993	i = 0;
2994	while (len) {
2995		if (len < PAGE_SIZE)
2996			cmp_len = len;
2997
2998		BUG_ON(i >= cmp->num_pages);
2999
3000		src_page = cmp->src_pages[i];
3001		dst_page = cmp->dst_pages[i];
3002		ASSERT(PageLocked(src_page));
3003		ASSERT(PageLocked(dst_page));
3004
3005		addr = kmap_atomic(src_page);
3006		dst_addr = kmap_atomic(dst_page);
3007
3008		flush_dcache_page(src_page);
3009		flush_dcache_page(dst_page);
3010
3011		if (memcmp(addr, dst_addr, cmp_len))
3012			ret = -EBADE;
3013
3014		kunmap_atomic(addr);
3015		kunmap_atomic(dst_addr);
3016
3017		if (ret)
3018			break;
3019
3020		len -= cmp_len;
3021		i++;
3022	}
3023
3024	return ret;
3025}
3026
3027static int extent_same_check_offsets(struct inode *inode, u64 off, u64 *plen,
3028				     u64 olen)
3029{
3030	u64 len = *plen;
3031	u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize;
3032
3033	if (off + olen > inode->i_size || off + olen < off)
3034		return -EINVAL;
3035
3036	/* if we extend to eof, continue to block boundary */
3037	if (off + len == inode->i_size)
3038		*plen = len = ALIGN(inode->i_size, bs) - off;
3039
3040	/* Check that we are block aligned - btrfs_clone() requires this */
3041	if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs))
3042		return -EINVAL;
3043
3044	return 0;
3045}
3046
3047static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
3048			     struct inode *dst, u64 dst_loff)
3049{
3050	int ret;
3051	u64 len = olen;
3052	struct cmp_pages cmp;
3053	int same_inode = 0;
3054	u64 same_lock_start = 0;
3055	u64 same_lock_len = 0;
3056
3057	if (src == dst)
3058		same_inode = 1;
3059
3060	if (len == 0)
3061		return 0;
3062
3063	if (same_inode) {
3064		inode_lock(src);
3065
3066		ret = extent_same_check_offsets(src, loff, &len, olen);
3067		if (ret)
3068			goto out_unlock;
3069		ret = extent_same_check_offsets(src, dst_loff, &len, olen);
3070		if (ret)
3071			goto out_unlock;
3072
3073		/*
3074		 * Single inode case wants the same checks, except we
3075		 * don't want our length pushed out past i_size as
3076		 * comparing that data range makes no sense.
3077		 *
3078		 * extent_same_check_offsets() will do this for an
3079		 * unaligned length at i_size, so catch it here and
3080		 * reject the request.
3081		 *
3082		 * This effectively means we require aligned extents
3083		 * for the single-inode case, whereas the other cases
3084		 * allow an unaligned length so long as it ends at
3085		 * i_size.
3086		 */
3087		if (len != olen) {
3088			ret = -EINVAL;
3089			goto out_unlock;
3090		}
3091
3092		/* Check for overlapping ranges */
3093		if (dst_loff + len > loff && dst_loff < loff + len) {
3094			ret = -EINVAL;
3095			goto out_unlock;
3096		}
3097
3098		same_lock_start = min_t(u64, loff, dst_loff);
3099		same_lock_len = max_t(u64, loff, dst_loff) + len - same_lock_start;
3100	} else {
3101		btrfs_double_inode_lock(src, dst);
3102
3103		ret = extent_same_check_offsets(src, loff, &len, olen);
3104		if (ret)
3105			goto out_unlock;
3106
3107		ret = extent_same_check_offsets(dst, dst_loff, &len, olen);
3108		if (ret)
3109			goto out_unlock;
3110	}
3111
3112	/* don't make the dst file partly checksummed */
3113	if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3114	    (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) {
3115		ret = -EINVAL;
3116		goto out_unlock;
3117	}
3118
3119again:
3120	ret = btrfs_cmp_data_prepare(src, loff, dst, dst_loff, olen, &cmp);
3121	if (ret)
3122		goto out_unlock;
3123
3124	if (same_inode)
3125		ret = lock_extent_range(src, same_lock_start, same_lock_len,
3126					false);
3127	else
3128		ret = btrfs_double_extent_lock(src, loff, dst, dst_loff, len,
3129					       false);
3130	/*
3131	 * If one of the inodes has dirty pages in the respective range or
3132	 * ordered extents, we need to flush dellaloc and wait for all ordered
3133	 * extents in the range. We must unlock the pages and the ranges in the
3134	 * io trees to avoid deadlocks when flushing delalloc (requires locking
3135	 * pages) and when waiting for ordered extents to complete (they require
3136	 * range locking).
3137	 */
3138	if (ret == -EAGAIN) {
3139		/*
3140		 * Ranges in the io trees already unlocked. Now unlock all
3141		 * pages before waiting for all IO to complete.
3142		 */
3143		btrfs_cmp_data_free(&cmp);
3144		if (same_inode) {
3145			btrfs_wait_ordered_range(src, same_lock_start,
3146						 same_lock_len);
3147		} else {
3148			btrfs_wait_ordered_range(src, loff, len);
3149			btrfs_wait_ordered_range(dst, dst_loff, len);
3150		}
3151		goto again;
3152	}
3153	ASSERT(ret == 0);
3154	if (WARN_ON(ret)) {
3155		/* ranges in the io trees already unlocked */
3156		btrfs_cmp_data_free(&cmp);
3157		return ret;
3158	}
3159
3160	/* pass original length for comparison so we stay within i_size */
3161	ret = btrfs_cmp_data(src, loff, dst, dst_loff, olen, &cmp);
3162	if (ret == 0)
3163		ret = btrfs_clone(src, dst, loff, olen, len, dst_loff, 1);
3164
3165	if (same_inode)
3166		unlock_extent(&BTRFS_I(src)->io_tree, same_lock_start,
3167			      same_lock_start + same_lock_len - 1);
3168	else
3169		btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
3170
3171	btrfs_cmp_data_free(&cmp);
3172out_unlock:
3173	if (same_inode)
3174		inode_unlock(src);
3175	else
3176		btrfs_double_inode_unlock(src, dst);
3177
3178	return ret;
3179}
3180
3181#define BTRFS_MAX_DEDUPE_LEN	SZ_16M
3182
3183ssize_t btrfs_dedupe_file_range(struct file *src_file, u64 loff, u64 olen,
3184				struct file *dst_file, u64 dst_loff)
3185{
3186	struct inode *src = file_inode(src_file);
3187	struct inode *dst = file_inode(dst_file);
3188	u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
3189	ssize_t res;
3190
3191	if (olen > BTRFS_MAX_DEDUPE_LEN)
3192		olen = BTRFS_MAX_DEDUPE_LEN;
3193
3194	if (WARN_ON_ONCE(bs < PAGE_SIZE)) {
3195		/*
3196		 * Btrfs does not support blocksize < page_size. As a
3197		 * result, btrfs_cmp_data() won't correctly handle
3198		 * this situation without an update.
3199		 */
3200		return -EINVAL;
3201	}
3202
3203	res = btrfs_extent_same(src, loff, olen, dst, dst_loff);
3204	if (res)
3205		return res;
3206	return olen;
3207}
3208
3209static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
3210				     struct inode *inode,
3211				     u64 endoff,
3212				     const u64 destoff,
3213				     const u64 olen,
3214				     int no_time_update)
3215{
3216	struct btrfs_root *root = BTRFS_I(inode)->root;
3217	int ret;
3218
3219	inode_inc_iversion(inode);
3220	if (!no_time_update)
3221		inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb);
3222	/*
3223	 * We round up to the block size at eof when determining which
3224	 * extents to clone above, but shouldn't round up the file size.
3225	 */
3226	if (endoff > destoff + olen)
3227		endoff = destoff + olen;
3228	if (endoff > inode->i_size)
3229		btrfs_i_size_write(inode, endoff);
3230
3231	ret = btrfs_update_inode(trans, root, inode);
3232	if (ret) {
3233		btrfs_abort_transaction(trans, root, ret);
3234		btrfs_end_transaction(trans, root);
3235		goto out;
3236	}
3237	ret = btrfs_end_transaction(trans, root);
3238out:
3239	return ret;
3240}
3241
3242static void clone_update_extent_map(struct inode *inode,
3243				    const struct btrfs_trans_handle *trans,
3244				    const struct btrfs_path *path,
3245				    const u64 hole_offset,
3246				    const u64 hole_len)
3247{
3248	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3249	struct extent_map *em;
3250	int ret;
3251
3252	em = alloc_extent_map();
3253	if (!em) {
3254		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3255			&BTRFS_I(inode)->runtime_flags);
3256		return;
3257	}
3258
3259	if (path) {
3260		struct btrfs_file_extent_item *fi;
3261
3262		fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
3263				    struct btrfs_file_extent_item);
3264		btrfs_extent_item_to_extent_map(inode, path, fi, false, em);
3265		em->generation = -1;
3266		if (btrfs_file_extent_type(path->nodes[0], fi) ==
3267		    BTRFS_FILE_EXTENT_INLINE)
3268			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3269				&BTRFS_I(inode)->runtime_flags);
3270	} else {
3271		em->start = hole_offset;
3272		em->len = hole_len;
3273		em->ram_bytes = em->len;
3274		em->orig_start = hole_offset;
3275		em->block_start = EXTENT_MAP_HOLE;
3276		em->block_len = 0;
3277		em->orig_block_len = 0;
3278		em->compress_type = BTRFS_COMPRESS_NONE;
3279		em->generation = trans->transid;
3280	}
3281
3282	while (1) {
3283		write_lock(&em_tree->lock);
3284		ret = add_extent_mapping(em_tree, em, 1);
3285		write_unlock(&em_tree->lock);
3286		if (ret != -EEXIST) {
3287			free_extent_map(em);
3288			break;
3289		}
3290		btrfs_drop_extent_cache(inode, em->start,
3291					em->start + em->len - 1, 0);
3292	}
3293
3294	if (ret)
3295		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3296			&BTRFS_I(inode)->runtime_flags);
3297}
3298
3299/*
3300 * Make sure we do not end up inserting an inline extent into a file that has
3301 * already other (non-inline) extents. If a file has an inline extent it can
3302 * not have any other extents and the (single) inline extent must start at the
3303 * file offset 0. Failing to respect these rules will lead to file corruption,
3304 * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc
3305 *
3306 * We can have extents that have been already written to disk or we can have
3307 * dirty ranges still in delalloc, in which case the extent maps and items are
3308 * created only when we run delalloc, and the delalloc ranges might fall outside
3309 * the range we are currently locking in the inode's io tree. So we check the
3310 * inode's i_size because of that (i_size updates are done while holding the
3311 * i_mutex, which we are holding here).
3312 * We also check to see if the inode has a size not greater than "datal" but has
3313 * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are
3314 * protected against such concurrent fallocate calls by the i_mutex).
3315 *
3316 * If the file has no extents but a size greater than datal, do not allow the
3317 * copy because we would need turn the inline extent into a non-inline one (even
3318 * with NO_HOLES enabled). If we find our destination inode only has one inline
3319 * extent, just overwrite it with the source inline extent if its size is less
3320 * than the source extent's size, or we could copy the source inline extent's
3321 * data into the destination inode's inline extent if the later is greater then
3322 * the former.
3323 */
3324static int clone_copy_inline_extent(struct inode *src,
3325				    struct inode *dst,
3326				    struct btrfs_trans_handle *trans,
3327				    struct btrfs_path *path,
3328				    struct btrfs_key *new_key,
3329				    const u64 drop_start,
3330				    const u64 datal,
3331				    const u64 skip,
3332				    const u64 size,
3333				    char *inline_data)
3334{
3335	struct btrfs_root *root = BTRFS_I(dst)->root;
3336	const u64 aligned_end = ALIGN(new_key->offset + datal,
3337				      root->sectorsize);
3338	int ret;
3339	struct btrfs_key key;
3340
3341	if (new_key->offset > 0)
3342		return -EOPNOTSUPP;
3343
3344	key.objectid = btrfs_ino(dst);
3345	key.type = BTRFS_EXTENT_DATA_KEY;
3346	key.offset = 0;
3347	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3348	if (ret < 0) {
3349		return ret;
3350	} else if (ret > 0) {
3351		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
3352			ret = btrfs_next_leaf(root, path);
3353			if (ret < 0)
3354				return ret;
3355			else if (ret > 0)
3356				goto copy_inline_extent;
3357		}
3358		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3359		if (key.objectid == btrfs_ino(dst) &&
3360		    key.type == BTRFS_EXTENT_DATA_KEY) {
3361			ASSERT(key.offset > 0);
3362			return -EOPNOTSUPP;
3363		}
3364	} else if (i_size_read(dst) <= datal) {
3365		struct btrfs_file_extent_item *ei;
3366		u64 ext_len;
3367
3368		/*
3369		 * If the file size is <= datal, make sure there are no other
3370		 * extents following (can happen do to an fallocate call with
3371		 * the flag FALLOC_FL_KEEP_SIZE).
3372		 */
3373		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3374				    struct btrfs_file_extent_item);
3375		/*
3376		 * If it's an inline extent, it can not have other extents
3377		 * following it.
3378		 */
3379		if (btrfs_file_extent_type(path->nodes[0], ei) ==
3380		    BTRFS_FILE_EXTENT_INLINE)
3381			goto copy_inline_extent;
3382
3383		ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
3384		if (ext_len > aligned_end)
3385			return -EOPNOTSUPP;
3386
3387		ret = btrfs_next_item(root, path);
3388		if (ret < 0) {
3389			return ret;
3390		} else if (ret == 0) {
3391			btrfs_item_key_to_cpu(path->nodes[0], &key,
3392					      path->slots[0]);
3393			if (key.objectid == btrfs_ino(dst) &&
3394			    key.type == BTRFS_EXTENT_DATA_KEY)
3395				return -EOPNOTSUPP;
3396		}
3397	}
3398
3399copy_inline_extent:
3400	/*
3401	 * We have no extent items, or we have an extent at offset 0 which may
3402	 * or may not be inlined. All these cases are dealt the same way.
3403	 */
3404	if (i_size_read(dst) > datal) {
3405		/*
3406		 * If the destination inode has an inline extent...
3407		 * This would require copying the data from the source inline
3408		 * extent into the beginning of the destination's inline extent.
3409		 * But this is really complex, both extents can be compressed
3410		 * or just one of them, which would require decompressing and
3411		 * re-compressing data (which could increase the new compressed
3412		 * size, not allowing the compressed data to fit anymore in an
3413		 * inline extent).
3414		 * So just don't support this case for now (it should be rare,
3415		 * we are not really saving space when cloning inline extents).
3416		 */
3417		return -EOPNOTSUPP;
3418	}
3419
3420	btrfs_release_path(path);
3421	ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1);
3422	if (ret)
3423		return ret;
3424	ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
3425	if (ret)
3426		return ret;
3427
3428	if (skip) {
3429		const u32 start = btrfs_file_extent_calc_inline_size(0);
3430
3431		memmove(inline_data + start, inline_data + start + skip, datal);
3432	}
3433
3434	write_extent_buffer(path->nodes[0], inline_data,
3435			    btrfs_item_ptr_offset(path->nodes[0],
3436						  path->slots[0]),
3437			    size);
3438	inode_add_bytes(dst, datal);
3439
3440	return 0;
3441}
3442
3443/**
3444 * btrfs_clone() - clone a range from inode file to another
3445 *
3446 * @src: Inode to clone from
3447 * @inode: Inode to clone to
3448 * @off: Offset within source to start clone from
3449 * @olen: Original length, passed by user, of range to clone
3450 * @olen_aligned: Block-aligned value of olen
3451 * @destoff: Offset within @inode to start clone
3452 * @no_time_update: Whether to update mtime/ctime on the target inode
3453 */
3454static int btrfs_clone(struct inode *src, struct inode *inode,
3455		       const u64 off, const u64 olen, const u64 olen_aligned,
3456		       const u64 destoff, int no_time_update)
3457{
3458	struct btrfs_root *root = BTRFS_I(inode)->root;
3459	struct btrfs_path *path = NULL;
3460	struct extent_buffer *leaf;
3461	struct btrfs_trans_handle *trans;
3462	char *buf = NULL;
3463	struct btrfs_key key;
3464	u32 nritems;
3465	int slot;
3466	int ret;
3467	const u64 len = olen_aligned;
3468	u64 last_dest_end = destoff;
3469
3470	ret = -ENOMEM;
3471	buf = vmalloc(root->nodesize);
3472	if (!buf)
3473		return ret;
3474
3475	path = btrfs_alloc_path();
3476	if (!path) {
3477		vfree(buf);
3478		return ret;
3479	}
3480
3481	path->reada = READA_FORWARD;
3482	/* clone data */
3483	key.objectid = btrfs_ino(src);
3484	key.type = BTRFS_EXTENT_DATA_KEY;
3485	key.offset = off;
3486
3487	while (1) {
3488		u64 next_key_min_offset = key.offset + 1;
3489
3490		/*
3491		 * note the key will change type as we walk through the
3492		 * tree.
3493		 */
3494		path->leave_spinning = 1;
3495		ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
3496				0, 0);
3497		if (ret < 0)
3498			goto out;
3499		/*
3500		 * First search, if no extent item that starts at offset off was
3501		 * found but the previous item is an extent item, it's possible
3502		 * it might overlap our target range, therefore process it.
3503		 */
3504		if (key.offset == off && ret > 0 && path->slots[0] > 0) {
3505			btrfs_item_key_to_cpu(path->nodes[0], &key,
3506					      path->slots[0] - 1);
3507			if (key.type == BTRFS_EXTENT_DATA_KEY)
3508				path->slots[0]--;
3509		}
3510
3511		nritems = btrfs_header_nritems(path->nodes[0]);
3512process_slot:
3513		if (path->slots[0] >= nritems) {
3514			ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
3515			if (ret < 0)
3516				goto out;
3517			if (ret > 0)
3518				break;
3519			nritems = btrfs_header_nritems(path->nodes[0]);
3520		}
3521		leaf = path->nodes[0];
3522		slot = path->slots[0];
3523
3524		btrfs_item_key_to_cpu(leaf, &key, slot);
3525		if (key.type > BTRFS_EXTENT_DATA_KEY ||
3526		    key.objectid != btrfs_ino(src))
3527			break;
3528
3529		if (key.type == BTRFS_EXTENT_DATA_KEY) {
3530			struct btrfs_file_extent_item *extent;
3531			int type;
3532			u32 size;
3533			struct btrfs_key new_key;
3534			u64 disko = 0, diskl = 0;
3535			u64 datao = 0, datal = 0;
3536			u8 comp;
3537			u64 drop_start;
3538
3539			extent = btrfs_item_ptr(leaf, slot,
3540						struct btrfs_file_extent_item);
3541			comp = btrfs_file_extent_compression(leaf, extent);
3542			type = btrfs_file_extent_type(leaf, extent);
3543			if (type == BTRFS_FILE_EXTENT_REG ||
3544			    type == BTRFS_FILE_EXTENT_PREALLOC) {
3545				disko = btrfs_file_extent_disk_bytenr(leaf,
3546								      extent);
3547				diskl = btrfs_file_extent_disk_num_bytes(leaf,
3548								 extent);
3549				datao = btrfs_file_extent_offset(leaf, extent);
3550				datal = btrfs_file_extent_num_bytes(leaf,
3551								    extent);
3552			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
3553				/* take upper bound, may be compressed */
3554				datal = btrfs_file_extent_ram_bytes(leaf,
3555								    extent);
3556			}
3557
3558			/*
3559			 * The first search might have left us at an extent
3560			 * item that ends before our target range's start, can
3561			 * happen if we have holes and NO_HOLES feature enabled.
3562			 */
3563			if (key.offset + datal <= off) {
3564				path->slots[0]++;
3565				goto process_slot;
3566			} else if (key.offset >= off + len) {
3567				break;
3568			}
3569			next_key_min_offset = key.offset + datal;
3570			size = btrfs_item_size_nr(leaf, slot);
3571			read_extent_buffer(leaf, buf,
3572					   btrfs_item_ptr_offset(leaf, slot),
3573					   size);
3574
3575			btrfs_release_path(path);
3576			path->leave_spinning = 0;
3577
3578			memcpy(&new_key, &key, sizeof(new_key));
3579			new_key.objectid = btrfs_ino(inode);
3580			if (off <= key.offset)
3581				new_key.offset = key.offset + destoff - off;
3582			else
3583				new_key.offset = destoff;
3584
3585			/*
3586			 * Deal with a hole that doesn't have an extent item
3587			 * that represents it (NO_HOLES feature enabled).
3588			 * This hole is either in the middle of the cloning
3589			 * range or at the beginning (fully overlaps it or
3590			 * partially overlaps it).
3591			 */
3592			if (new_key.offset != last_dest_end)
3593				drop_start = last_dest_end;
3594			else
3595				drop_start = new_key.offset;
3596
3597			/*
3598			 * 1 - adjusting old extent (we may have to split it)
3599			 * 1 - add new extent
3600			 * 1 - inode update
3601			 */
3602			trans = btrfs_start_transaction(root, 3);
3603			if (IS_ERR(trans)) {
3604				ret = PTR_ERR(trans);
3605				goto out;
3606			}
3607
3608			if (type == BTRFS_FILE_EXTENT_REG ||
3609			    type == BTRFS_FILE_EXTENT_PREALLOC) {
3610				/*
3611				 *    a  | --- range to clone ---|  b
3612				 * | ------------- extent ------------- |
3613				 */
3614
3615				/* subtract range b */
3616				if (key.offset + datal > off + len)
3617					datal = off + len - key.offset;
3618
3619				/* subtract range a */
3620				if (off > key.offset) {
3621					datao += off - key.offset;
3622					datal -= off - key.offset;
3623				}
3624
3625				ret = btrfs_drop_extents(trans, root, inode,
3626							 drop_start,
3627							 new_key.offset + datal,
3628							 1);
3629				if (ret) {
3630					if (ret != -EOPNOTSUPP)
3631						btrfs_abort_transaction(trans,
3632								root, ret);
3633					btrfs_end_transaction(trans, root);
3634					goto out;
3635				}
3636
3637				ret = btrfs_insert_empty_item(trans, root, path,
3638							      &new_key, size);
3639				if (ret) {
3640					btrfs_abort_transaction(trans, root,
3641								ret);
3642					btrfs_end_transaction(trans, root);
3643					goto out;
3644				}
3645
3646				leaf = path->nodes[0];
3647				slot = path->slots[0];
3648				write_extent_buffer(leaf, buf,
3649					    btrfs_item_ptr_offset(leaf, slot),
3650					    size);
3651
3652				extent = btrfs_item_ptr(leaf, slot,
3653						struct btrfs_file_extent_item);
3654
3655				/* disko == 0 means it's a hole */
3656				if (!disko)
3657					datao = 0;
3658
3659				btrfs_set_file_extent_offset(leaf, extent,
3660							     datao);
3661				btrfs_set_file_extent_num_bytes(leaf, extent,
3662								datal);
3663
3664				if (disko) {
3665					inode_add_bytes(inode, datal);
3666					ret = btrfs_inc_extent_ref(trans, root,
3667							disko, diskl, 0,
3668							root->root_key.objectid,
3669							btrfs_ino(inode),
3670							new_key.offset - datao);
3671					if (ret) {
3672						btrfs_abort_transaction(trans,
3673									root,
3674									ret);
3675						btrfs_end_transaction(trans,
3676								      root);
3677						goto out;
3678
3679					}
3680				}
3681			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
3682				u64 skip = 0;
3683				u64 trim = 0;
3684
3685				if (off > key.offset) {
3686					skip = off - key.offset;
3687					new_key.offset += skip;
3688				}
3689
3690				if (key.offset + datal > off + len)
3691					trim = key.offset + datal - (off + len);
3692
3693				if (comp && (skip || trim)) {
3694					ret = -EINVAL;
3695					btrfs_end_transaction(trans, root);
3696					goto out;
3697				}
3698				size -= skip + trim;
3699				datal -= skip + trim;
3700
3701				ret = clone_copy_inline_extent(src, inode,
3702							       trans, path,
3703							       &new_key,
3704							       drop_start,
3705							       datal,
3706							       skip, size, buf);
3707				if (ret) {
3708					if (ret != -EOPNOTSUPP)
3709						btrfs_abort_transaction(trans,
3710									root,
3711									ret);
3712					btrfs_end_transaction(trans, root);
3713					goto out;
3714				}
3715				leaf = path->nodes[0];
3716				slot = path->slots[0];
3717			}
3718
3719			/* If we have an implicit hole (NO_HOLES feature). */
3720			if (drop_start < new_key.offset)
3721				clone_update_extent_map(inode, trans,
3722						NULL, drop_start,
3723						new_key.offset - drop_start);
3724
3725			clone_update_extent_map(inode, trans, path, 0, 0);
3726
3727			btrfs_mark_buffer_dirty(leaf);
3728			btrfs_release_path(path);
3729
3730			last_dest_end = ALIGN(new_key.offset + datal,
3731					      root->sectorsize);
3732			ret = clone_finish_inode_update(trans, inode,
3733							last_dest_end,
3734							destoff, olen,
3735							no_time_update);
3736			if (ret)
3737				goto out;
3738			if (new_key.offset + datal >= destoff + len)
3739				break;
3740		}
3741		btrfs_release_path(path);
3742		key.offset = next_key_min_offset;
3743	}
3744	ret = 0;
3745
3746	if (last_dest_end < destoff + len) {
3747		/*
3748		 * We have an implicit hole (NO_HOLES feature is enabled) that
3749		 * fully or partially overlaps our cloning range at its end.
3750		 */
3751		btrfs_release_path(path);
3752
3753		/*
3754		 * 1 - remove extent(s)
3755		 * 1 - inode update
3756		 */
3757		trans = btrfs_start_transaction(root, 2);
3758		if (IS_ERR(trans)) {
3759			ret = PTR_ERR(trans);
3760			goto out;
3761		}
3762		ret = btrfs_drop_extents(trans, root, inode,
3763					 last_dest_end, destoff + len, 1);
3764		if (ret) {
3765			if (ret != -EOPNOTSUPP)
3766				btrfs_abort_transaction(trans, root, ret);
3767			btrfs_end_transaction(trans, root);
3768			goto out;
3769		}
3770		clone_update_extent_map(inode, trans, NULL, last_dest_end,
3771					destoff + len - last_dest_end);
3772		ret = clone_finish_inode_update(trans, inode, destoff + len,
3773						destoff, olen, no_time_update);
3774	}
3775
3776out:
3777	btrfs_free_path(path);
3778	vfree(buf);
3779	return ret;
3780}
3781
3782static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
3783					u64 off, u64 olen, u64 destoff)
3784{
3785	struct inode *inode = file_inode(file);
3786	struct inode *src = file_inode(file_src);
3787	struct btrfs_root *root = BTRFS_I(inode)->root;
3788	int ret;
3789	u64 len = olen;
3790	u64 bs = root->fs_info->sb->s_blocksize;
3791	int same_inode = src == inode;
3792
3793	/*
3794	 * TODO:
3795	 * - split compressed inline extents.  annoying: we need to
3796	 *   decompress into destination's address_space (the file offset
3797	 *   may change, so source mapping won't do), then recompress (or
3798	 *   otherwise reinsert) a subrange.
3799	 *
3800	 * - split destination inode's inline extents.  The inline extents can
3801	 *   be either compressed or non-compressed.
3802	 */
3803
3804	if (btrfs_root_readonly(root))
3805		return -EROFS;
3806
3807	if (file_src->f_path.mnt != file->f_path.mnt ||
3808	    src->i_sb != inode->i_sb)
3809		return -EXDEV;
3810
3811	/* don't make the dst file partly checksummed */
3812	if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3813	    (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
3814		return -EINVAL;
3815
3816	if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
3817		return -EISDIR;
3818
3819	if (!same_inode) {
3820		btrfs_double_inode_lock(src, inode);
3821	} else {
3822		inode_lock(src);
3823	}
3824
3825	/* determine range to clone */
3826	ret = -EINVAL;
3827	if (off + len > src->i_size || off + len < off)
3828		goto out_unlock;
3829	if (len == 0)
3830		olen = len = src->i_size - off;
3831	/* if we extend to eof, continue to block boundary */
3832	if (off + len == src->i_size)
3833		len = ALIGN(src->i_size, bs) - off;
3834
3835	if (len == 0) {
3836		ret = 0;
3837		goto out_unlock;
3838	}
3839
3840	/* verify the end result is block aligned */
3841	if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
3842	    !IS_ALIGNED(destoff, bs))
3843		goto out_unlock;
3844
3845	/* verify if ranges are overlapped within the same file */
3846	if (same_inode) {
3847		if (destoff + len > off && destoff < off + len)
3848			goto out_unlock;
3849	}
3850
3851	if (destoff > inode->i_size) {
3852		ret = btrfs_cont_expand(inode, inode->i_size, destoff);
3853		if (ret)
3854			goto out_unlock;
3855	}
3856
3857	/*
3858	 * Lock the target range too. Right after we replace the file extent
3859	 * items in the fs tree (which now point to the cloned data), we might
3860	 * have a worker replace them with extent items relative to a write
3861	 * operation that was issued before this clone operation (i.e. confront
3862	 * with inode.c:btrfs_finish_ordered_io).
3863	 */
3864	if (same_inode) {
3865		u64 lock_start = min_t(u64, off, destoff);
3866		u64 lock_len = max_t(u64, off, destoff) + len - lock_start;
3867
3868		ret = lock_extent_range(src, lock_start, lock_len, true);
3869	} else {
3870		ret = btrfs_double_extent_lock(src, off, inode, destoff, len,
3871					       true);
3872	}
3873	ASSERT(ret == 0);
3874	if (WARN_ON(ret)) {
3875		/* ranges in the io trees already unlocked */
3876		goto out_unlock;
3877	}
3878
3879	ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
3880
3881	if (same_inode) {
3882		u64 lock_start = min_t(u64, off, destoff);
3883		u64 lock_end = max_t(u64, off, destoff) + len - 1;
3884
3885		unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end);
3886	} else {
3887		btrfs_double_extent_unlock(src, off, inode, destoff, len);
3888	}
3889	/*
3890	 * Truncate page cache pages so that future reads will see the cloned
3891	 * data immediately and not the previous data.
3892	 */
3893	truncate_inode_pages_range(&inode->i_data,
3894				round_down(destoff, PAGE_SIZE),
3895				round_up(destoff + len, PAGE_SIZE) - 1);
3896out_unlock:
3897	if (!same_inode)
3898		btrfs_double_inode_unlock(src, inode);
3899	else
3900		inode_unlock(src);
3901	return ret;
3902}
3903
3904ssize_t btrfs_copy_file_range(struct file *file_in, loff_t pos_in,
3905			      struct file *file_out, loff_t pos_out,
3906			      size_t len, unsigned int flags)
3907{
3908	ssize_t ret;
3909
3910	ret = btrfs_clone_files(file_out, file_in, pos_in, len, pos_out);
3911	if (ret == 0)
3912		ret = len;
3913	return ret;
3914}
3915
3916int btrfs_clone_file_range(struct file *src_file, loff_t off,
3917		struct file *dst_file, loff_t destoff, u64 len)
3918{
3919	return btrfs_clone_files(dst_file, src_file, off, len, destoff);
3920}
3921
3922/*
3923 * there are many ways the trans_start and trans_end ioctls can lead
3924 * to deadlocks.  They should only be used by applications that
3925 * basically own the machine, and have a very in depth understanding
3926 * of all the possible deadlocks and enospc problems.
3927 */
3928static long btrfs_ioctl_trans_start(struct file *file)
3929{
3930	struct inode *inode = file_inode(file);
3931	struct btrfs_root *root = BTRFS_I(inode)->root;
3932	struct btrfs_trans_handle *trans;
3933	int ret;
3934
3935	ret = -EPERM;
3936	if (!capable(CAP_SYS_ADMIN))
3937		goto out;
3938
3939	ret = -EINPROGRESS;
3940	if (file->private_data)
3941		goto out;
3942
3943	ret = -EROFS;
3944	if (btrfs_root_readonly(root))
3945		goto out;
3946
3947	ret = mnt_want_write_file(file);
3948	if (ret)
3949		goto out;
3950
3951	atomic_inc(&root->fs_info->open_ioctl_trans);
3952
3953	ret = -ENOMEM;
3954	trans = btrfs_start_ioctl_transaction(root);
3955	if (IS_ERR(trans))
3956		goto out_drop;
3957
3958	file->private_data = trans;
3959	return 0;
3960
3961out_drop:
3962	atomic_dec(&root->fs_info->open_ioctl_trans);
3963	mnt_drop_write_file(file);
3964out:
3965	return ret;
3966}
3967
3968static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3969{
3970	struct inode *inode = file_inode(file);
 
3971	struct btrfs_root *root = BTRFS_I(inode)->root;
3972	struct btrfs_root *new_root;
3973	struct btrfs_dir_item *di;
3974	struct btrfs_trans_handle *trans;
3975	struct btrfs_path *path;
3976	struct btrfs_key location;
3977	struct btrfs_disk_key disk_key;
 
3978	u64 objectid = 0;
3979	u64 dir_id;
3980	int ret;
3981
3982	if (!capable(CAP_SYS_ADMIN))
3983		return -EPERM;
3984
3985	ret = mnt_want_write_file(file);
3986	if (ret)
3987		return ret;
3988
3989	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3990		ret = -EFAULT;
3991		goto out;
3992	}
3993
3994	if (!objectid)
3995		objectid = BTRFS_FS_TREE_OBJECTID;
3996
3997	location.objectid = objectid;
3998	location.type = BTRFS_ROOT_ITEM_KEY;
3999	location.offset = (u64)-1;
4000
4001	new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
4002	if (IS_ERR(new_root)) {
4003		ret = PTR_ERR(new_root);
4004		goto out;
4005	}
 
 
 
 
4006
4007	path = btrfs_alloc_path();
4008	if (!path) {
4009		ret = -ENOMEM;
4010		goto out;
4011	}
4012	path->leave_spinning = 1;
4013
4014	trans = btrfs_start_transaction(root, 1);
4015	if (IS_ERR(trans)) {
4016		btrfs_free_path(path);
4017		ret = PTR_ERR(trans);
4018		goto out;
4019	}
4020
4021	dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
4022	di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
4023				   dir_id, "default", 7, 1);
4024	if (IS_ERR_OR_NULL(di)) {
4025		btrfs_free_path(path);
4026		btrfs_end_transaction(trans, root);
4027		btrfs_err(new_root->fs_info, "Umm, you don't have the default dir"
4028			   "item, this isn't going to work");
4029		ret = -ENOENT;
4030		goto out;
4031	}
4032
4033	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
4034	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
4035	btrfs_mark_buffer_dirty(path->nodes[0]);
 
 
 
 
 
 
4036	btrfs_free_path(path);
4037
4038	btrfs_set_fs_incompat(root->fs_info, DEFAULT_SUBVOL);
4039	btrfs_end_transaction(trans, root);
4040out:
4041	mnt_drop_write_file(file);
4042	return ret;
4043}
4044
4045void btrfs_get_block_group_info(struct list_head *groups_list,
4046				struct btrfs_ioctl_space_info *space)
4047{
4048	struct btrfs_block_group_cache *block_group;
4049
4050	space->total_bytes = 0;
4051	space->used_bytes = 0;
4052	space->flags = 0;
4053	list_for_each_entry(block_group, groups_list, list) {
4054		space->flags = block_group->flags;
4055		space->total_bytes += block_group->key.offset;
4056		space->used_bytes +=
4057			btrfs_block_group_used(&block_group->item);
4058	}
4059}
4060
4061static long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
 
4062{
4063	struct btrfs_ioctl_space_args space_args;
4064	struct btrfs_ioctl_space_info space;
4065	struct btrfs_ioctl_space_info *dest;
4066	struct btrfs_ioctl_space_info *dest_orig;
4067	struct btrfs_ioctl_space_info __user *user_dest;
4068	struct btrfs_space_info *info;
4069	u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
4070		       BTRFS_BLOCK_GROUP_SYSTEM,
4071		       BTRFS_BLOCK_GROUP_METADATA,
4072		       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
 
 
4073	int num_types = 4;
4074	int alloc_size;
4075	int ret = 0;
4076	u64 slot_count = 0;
4077	int i, c;
4078
4079	if (copy_from_user(&space_args,
4080			   (struct btrfs_ioctl_space_args __user *)arg,
4081			   sizeof(space_args)))
4082		return -EFAULT;
4083
4084	for (i = 0; i < num_types; i++) {
4085		struct btrfs_space_info *tmp;
4086
4087		info = NULL;
4088		rcu_read_lock();
4089		list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
4090					list) {
4091			if (tmp->flags == types[i]) {
4092				info = tmp;
4093				break;
4094			}
4095		}
4096		rcu_read_unlock();
4097
4098		if (!info)
4099			continue;
4100
4101		down_read(&info->groups_sem);
4102		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4103			if (!list_empty(&info->block_groups[c]))
4104				slot_count++;
4105		}
4106		up_read(&info->groups_sem);
4107	}
4108
4109	/*
4110	 * Global block reserve, exported as a space_info
4111	 */
4112	slot_count++;
4113
4114	/* space_slots == 0 means they are asking for a count */
4115	if (space_args.space_slots == 0) {
4116		space_args.total_spaces = slot_count;
4117		goto out;
4118	}
4119
4120	slot_count = min_t(u64, space_args.space_slots, slot_count);
4121
4122	alloc_size = sizeof(*dest) * slot_count;
4123
4124	/* we generally have at most 6 or so space infos, one for each raid
4125	 * level.  So, a whole page should be more than enough for everyone
4126	 */
4127	if (alloc_size > PAGE_SIZE)
4128		return -ENOMEM;
4129
4130	space_args.total_spaces = 0;
4131	dest = kmalloc(alloc_size, GFP_KERNEL);
4132	if (!dest)
4133		return -ENOMEM;
4134	dest_orig = dest;
4135
4136	/* now we have a buffer to copy into */
4137	for (i = 0; i < num_types; i++) {
4138		struct btrfs_space_info *tmp;
4139
4140		if (!slot_count)
4141			break;
4142
4143		info = NULL;
4144		rcu_read_lock();
4145		list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
4146					list) {
4147			if (tmp->flags == types[i]) {
4148				info = tmp;
4149				break;
4150			}
4151		}
4152		rcu_read_unlock();
4153
4154		if (!info)
4155			continue;
4156		down_read(&info->groups_sem);
4157		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4158			if (!list_empty(&info->block_groups[c])) {
4159				btrfs_get_block_group_info(
4160					&info->block_groups[c], &space);
4161				memcpy(dest, &space, sizeof(space));
4162				dest++;
4163				space_args.total_spaces++;
4164				slot_count--;
4165			}
4166			if (!slot_count)
4167				break;
4168		}
4169		up_read(&info->groups_sem);
4170	}
4171
4172	/*
4173	 * Add global block reserve
4174	 */
4175	if (slot_count) {
4176		struct btrfs_block_rsv *block_rsv = &root->fs_info->global_block_rsv;
4177
4178		spin_lock(&block_rsv->lock);
4179		space.total_bytes = block_rsv->size;
4180		space.used_bytes = block_rsv->size - block_rsv->reserved;
4181		spin_unlock(&block_rsv->lock);
4182		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
4183		memcpy(dest, &space, sizeof(space));
4184		space_args.total_spaces++;
4185	}
4186
4187	user_dest = (struct btrfs_ioctl_space_info __user *)
4188		(arg + sizeof(struct btrfs_ioctl_space_args));
4189
4190	if (copy_to_user(user_dest, dest_orig, alloc_size))
4191		ret = -EFAULT;
4192
4193	kfree(dest_orig);
4194out:
4195	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
4196		ret = -EFAULT;
4197
4198	return ret;
4199}
4200
4201/*
4202 * there are many ways the trans_start and trans_end ioctls can lead
4203 * to deadlocks.  They should only be used by applications that
4204 * basically own the machine, and have a very in depth understanding
4205 * of all the possible deadlocks and enospc problems.
4206 */
4207long btrfs_ioctl_trans_end(struct file *file)
4208{
4209	struct inode *inode = file_inode(file);
4210	struct btrfs_root *root = BTRFS_I(inode)->root;
4211	struct btrfs_trans_handle *trans;
4212
4213	trans = file->private_data;
4214	if (!trans)
4215		return -EINVAL;
4216	file->private_data = NULL;
4217
4218	btrfs_end_transaction(trans, root);
4219
4220	atomic_dec(&root->fs_info->open_ioctl_trans);
4221
4222	mnt_drop_write_file(file);
4223	return 0;
4224}
4225
4226static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
4227					    void __user *argp)
4228{
4229	struct btrfs_trans_handle *trans;
4230	u64 transid;
4231	int ret;
 
 
 
 
 
 
4232
4233	trans = btrfs_attach_transaction_barrier(root);
4234	if (IS_ERR(trans)) {
4235		if (PTR_ERR(trans) != -ENOENT)
4236			return PTR_ERR(trans);
4237
4238		/* No running transaction, don't bother */
4239		transid = root->fs_info->last_trans_committed;
4240		goto out;
4241	}
4242	transid = trans->transid;
4243	ret = btrfs_commit_transaction_async(trans, root, 0);
4244	if (ret) {
4245		btrfs_end_transaction(trans, root);
4246		return ret;
4247	}
4248out:
4249	if (argp)
4250		if (copy_to_user(argp, &transid, sizeof(transid)))
4251			return -EFAULT;
4252	return 0;
4253}
4254
4255static noinline long btrfs_ioctl_wait_sync(struct btrfs_root *root,
4256					   void __user *argp)
4257{
4258	u64 transid;
 
4259
4260	if (argp) {
4261		if (copy_from_user(&transid, argp, sizeof(transid)))
4262			return -EFAULT;
4263	} else {
4264		transid = 0;  /* current trans */
4265	}
4266	return btrfs_wait_for_commit(root, transid);
4267}
4268
4269static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
4270{
4271	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4272	struct btrfs_ioctl_scrub_args *sa;
4273	int ret;
4274
4275	if (!capable(CAP_SYS_ADMIN))
4276		return -EPERM;
4277
 
 
 
 
 
4278	sa = memdup_user(arg, sizeof(*sa));
4279	if (IS_ERR(sa))
4280		return PTR_ERR(sa);
4281
 
 
 
 
 
4282	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
4283		ret = mnt_want_write_file(file);
4284		if (ret)
4285			goto out;
4286	}
4287
4288	ret = btrfs_scrub_dev(root->fs_info, sa->devid, sa->start, sa->end,
4289			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
4290			      0);
4291
 
 
 
 
 
 
 
 
 
 
 
 
4292	if (copy_to_user(arg, sa, sizeof(*sa)))
4293		ret = -EFAULT;
4294
4295	if (!(sa->flags & BTRFS_SCRUB_READONLY))
4296		mnt_drop_write_file(file);
4297out:
4298	kfree(sa);
4299	return ret;
4300}
4301
4302static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg)
4303{
4304	if (!capable(CAP_SYS_ADMIN))
4305		return -EPERM;
4306
4307	return btrfs_scrub_cancel(root->fs_info);
4308}
4309
4310static long btrfs_ioctl_scrub_progress(struct btrfs_root *root,
4311				       void __user *arg)
4312{
4313	struct btrfs_ioctl_scrub_args *sa;
4314	int ret;
4315
4316	if (!capable(CAP_SYS_ADMIN))
4317		return -EPERM;
4318
4319	sa = memdup_user(arg, sizeof(*sa));
4320	if (IS_ERR(sa))
4321		return PTR_ERR(sa);
4322
4323	ret = btrfs_scrub_progress(root, sa->devid, &sa->progress);
4324
4325	if (copy_to_user(arg, sa, sizeof(*sa)))
4326		ret = -EFAULT;
4327
4328	kfree(sa);
4329	return ret;
4330}
4331
4332static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root,
4333				      void __user *arg)
4334{
4335	struct btrfs_ioctl_get_dev_stats *sa;
4336	int ret;
4337
4338	sa = memdup_user(arg, sizeof(*sa));
4339	if (IS_ERR(sa))
4340		return PTR_ERR(sa);
4341
4342	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
4343		kfree(sa);
4344		return -EPERM;
4345	}
4346
4347	ret = btrfs_get_dev_stats(root, sa);
4348
4349	if (copy_to_user(arg, sa, sizeof(*sa)))
4350		ret = -EFAULT;
4351
4352	kfree(sa);
4353	return ret;
4354}
4355
4356static long btrfs_ioctl_dev_replace(struct btrfs_root *root, void __user *arg)
 
4357{
4358	struct btrfs_ioctl_dev_replace_args *p;
4359	int ret;
4360
4361	if (!capable(CAP_SYS_ADMIN))
4362		return -EPERM;
4363
 
 
 
 
 
4364	p = memdup_user(arg, sizeof(*p));
4365	if (IS_ERR(p))
4366		return PTR_ERR(p);
4367
4368	switch (p->cmd) {
4369	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
4370		if (root->fs_info->sb->s_flags & MS_RDONLY) {
4371			ret = -EROFS;
4372			goto out;
4373		}
4374		if (atomic_xchg(
4375			&root->fs_info->mutually_exclusive_operation_running,
4376			1)) {
4377			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4378		} else {
4379			ret = btrfs_dev_replace_start(root, p);
4380			atomic_set(
4381			 &root->fs_info->mutually_exclusive_operation_running,
4382			 0);
4383		}
4384		break;
4385	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
4386		btrfs_dev_replace_status(root->fs_info, p);
4387		ret = 0;
4388		break;
4389	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
4390		ret = btrfs_dev_replace_cancel(root->fs_info, p);
 
4391		break;
4392	default:
4393		ret = -EINVAL;
4394		break;
4395	}
4396
4397	if (copy_to_user(arg, p, sizeof(*p)))
4398		ret = -EFAULT;
4399out:
4400	kfree(p);
4401	return ret;
4402}
4403
4404static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
4405{
4406	int ret = 0;
4407	int i;
4408	u64 rel_ptr;
4409	int size;
4410	struct btrfs_ioctl_ino_path_args *ipa = NULL;
4411	struct inode_fs_paths *ipath = NULL;
4412	struct btrfs_path *path;
4413
4414	if (!capable(CAP_DAC_READ_SEARCH))
4415		return -EPERM;
4416
4417	path = btrfs_alloc_path();
4418	if (!path) {
4419		ret = -ENOMEM;
4420		goto out;
4421	}
4422
4423	ipa = memdup_user(arg, sizeof(*ipa));
4424	if (IS_ERR(ipa)) {
4425		ret = PTR_ERR(ipa);
4426		ipa = NULL;
4427		goto out;
4428	}
4429
4430	size = min_t(u32, ipa->size, 4096);
4431	ipath = init_ipath(size, root, path);
4432	if (IS_ERR(ipath)) {
4433		ret = PTR_ERR(ipath);
4434		ipath = NULL;
4435		goto out;
4436	}
4437
4438	ret = paths_from_inode(ipa->inum, ipath);
4439	if (ret < 0)
4440		goto out;
4441
4442	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
4443		rel_ptr = ipath->fspath->val[i] -
4444			  (u64)(unsigned long)ipath->fspath->val;
4445		ipath->fspath->val[i] = rel_ptr;
4446	}
4447
4448	ret = copy_to_user((void *)(unsigned long)ipa->fspath,
4449			   (void *)(unsigned long)ipath->fspath, size);
 
 
4450	if (ret) {
4451		ret = -EFAULT;
4452		goto out;
4453	}
4454
4455out:
4456	btrfs_free_path(path);
4457	free_ipath(ipath);
4458	kfree(ipa);
4459
4460	return ret;
4461}
4462
4463static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
4464{
4465	struct btrfs_data_container *inodes = ctx;
4466	const size_t c = 3 * sizeof(u64);
4467
4468	if (inodes->bytes_left >= c) {
4469		inodes->bytes_left -= c;
4470		inodes->val[inodes->elem_cnt] = inum;
4471		inodes->val[inodes->elem_cnt + 1] = offset;
4472		inodes->val[inodes->elem_cnt + 2] = root;
4473		inodes->elem_cnt += 3;
4474	} else {
4475		inodes->bytes_missing += c - inodes->bytes_left;
4476		inodes->bytes_left = 0;
4477		inodes->elem_missed += 3;
4478	}
4479
4480	return 0;
4481}
4482
4483static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root,
4484					void __user *arg)
4485{
4486	int ret = 0;
4487	int size;
4488	struct btrfs_ioctl_logical_ino_args *loi;
4489	struct btrfs_data_container *inodes = NULL;
4490	struct btrfs_path *path = NULL;
 
4491
4492	if (!capable(CAP_SYS_ADMIN))
4493		return -EPERM;
4494
4495	loi = memdup_user(arg, sizeof(*loi));
4496	if (IS_ERR(loi)) {
4497		ret = PTR_ERR(loi);
4498		loi = NULL;
4499		goto out;
4500	}
4501
4502	path = btrfs_alloc_path();
4503	if (!path) {
4504		ret = -ENOMEM;
4505		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
4506	}
4507
4508	size = min_t(u32, loi->size, SZ_64K);
4509	inodes = init_data_container(size);
4510	if (IS_ERR(inodes)) {
4511		ret = PTR_ERR(inodes);
4512		inodes = NULL;
 
 
 
 
 
4513		goto out;
4514	}
4515
4516	ret = iterate_inodes_from_logical(loi->logical, root->fs_info, path,
4517					  build_ino_list, inodes);
4518	if (ret == -EINVAL)
4519		ret = -ENOENT;
4520	if (ret < 0)
4521		goto out;
4522
4523	ret = copy_to_user((void *)(unsigned long)loi->inodes,
4524			   (void *)(unsigned long)inodes, size);
4525	if (ret)
4526		ret = -EFAULT;
4527
4528out:
4529	btrfs_free_path(path);
4530	vfree(inodes);
4531	kfree(loi);
4532
4533	return ret;
4534}
4535
4536void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
4537			       struct btrfs_ioctl_balance_args *bargs)
4538{
4539	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4540
4541	bargs->flags = bctl->flags;
4542
4543	if (atomic_read(&fs_info->balance_running))
4544		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4545	if (atomic_read(&fs_info->balance_pause_req))
4546		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4547	if (atomic_read(&fs_info->balance_cancel_req))
4548		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4549
4550	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4551	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4552	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4553
4554	if (lock) {
4555		spin_lock(&fs_info->balance_lock);
4556		memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4557		spin_unlock(&fs_info->balance_lock);
4558	} else {
4559		memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4560	}
 
 
 
 
 
4561}
4562
4563static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4564{
4565	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4566	struct btrfs_fs_info *fs_info = root->fs_info;
4567	struct btrfs_ioctl_balance_args *bargs;
4568	struct btrfs_balance_control *bctl;
4569	bool need_unlock; /* for mut. excl. ops lock */
4570	int ret;
4571
4572	if (!capable(CAP_SYS_ADMIN))
4573		return -EPERM;
4574
4575	ret = mnt_want_write_file(file);
4576	if (ret)
4577		return ret;
4578
4579again:
4580	if (!atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) {
4581		mutex_lock(&fs_info->volume_mutex);
4582		mutex_lock(&fs_info->balance_mutex);
4583		need_unlock = true;
4584		goto locked;
4585	}
4586
4587	/*
4588	 * mut. excl. ops lock is locked.  Three possibilites:
4589	 *   (1) some other op is running
4590	 *   (2) balance is running
4591	 *   (3) balance is paused -- special case (think resume)
4592	 */
4593	mutex_lock(&fs_info->balance_mutex);
4594	if (fs_info->balance_ctl) {
4595		/* this is either (2) or (3) */
4596		if (!atomic_read(&fs_info->balance_running)) {
4597			mutex_unlock(&fs_info->balance_mutex);
4598			if (!mutex_trylock(&fs_info->volume_mutex))
4599				goto again;
4600			mutex_lock(&fs_info->balance_mutex);
4601
4602			if (fs_info->balance_ctl &&
4603			    !atomic_read(&fs_info->balance_running)) {
4604				/* this is (3) */
4605				need_unlock = false;
4606				goto locked;
4607			}
4608
4609			mutex_unlock(&fs_info->balance_mutex);
4610			mutex_unlock(&fs_info->volume_mutex);
4611			goto again;
4612		} else {
4613			/* this is (2) */
4614			mutex_unlock(&fs_info->balance_mutex);
4615			ret = -EINPROGRESS;
4616			goto out;
4617		}
4618	} else {
4619		/* this is (1) */
4620		mutex_unlock(&fs_info->balance_mutex);
4621		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4622		goto out;
4623	}
4624
4625locked:
4626	BUG_ON(!atomic_read(&fs_info->mutually_exclusive_operation_running));
4627
4628	if (arg) {
4629		bargs = memdup_user(arg, sizeof(*bargs));
4630		if (IS_ERR(bargs)) {
4631			ret = PTR_ERR(bargs);
4632			goto out_unlock;
4633		}
4634
4635		if (bargs->flags & BTRFS_BALANCE_RESUME) {
4636			if (!fs_info->balance_ctl) {
4637				ret = -ENOTCONN;
4638				goto out_bargs;
4639			}
4640
4641			bctl = fs_info->balance_ctl;
4642			spin_lock(&fs_info->balance_lock);
4643			bctl->flags |= BTRFS_BALANCE_RESUME;
4644			spin_unlock(&fs_info->balance_lock);
4645
4646			goto do_balance;
4647		}
4648	} else {
4649		bargs = NULL;
4650	}
4651
4652	if (fs_info->balance_ctl) {
4653		ret = -EINPROGRESS;
4654		goto out_bargs;
4655	}
4656
4657	bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4658	if (!bctl) {
4659		ret = -ENOMEM;
4660		goto out_bargs;
4661	}
4662
4663	bctl->fs_info = fs_info;
4664	if (arg) {
4665		memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4666		memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4667		memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4668
4669		bctl->flags = bargs->flags;
4670	} else {
4671		/* balance everything - no filters */
4672		bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4673	}
4674
4675	if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4676		ret = -EINVAL;
4677		goto out_bctl;
4678	}
4679
 
4680do_balance:
4681	/*
4682	 * Ownership of bctl and mutually_exclusive_operation_running
4683	 * goes to to btrfs_balance.  bctl is freed in __cancel_balance,
4684	 * or, if restriper was paused all the way until unmount, in
4685	 * free_fs_info.  mutually_exclusive_operation_running is
4686	 * cleared in __cancel_balance.
4687	 */
4688	need_unlock = false;
4689
4690	ret = btrfs_balance(bctl, bargs);
4691	bctl = NULL;
4692
4693	if (arg) {
4694		if (copy_to_user(arg, bargs, sizeof(*bargs)))
4695			ret = -EFAULT;
4696	}
4697
4698out_bctl:
4699	kfree(bctl);
4700out_bargs:
4701	kfree(bargs);
4702out_unlock:
4703	mutex_unlock(&fs_info->balance_mutex);
4704	mutex_unlock(&fs_info->volume_mutex);
4705	if (need_unlock)
4706		atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
4707out:
4708	mnt_drop_write_file(file);
 
4709	return ret;
4710}
4711
4712static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd)
4713{
4714	if (!capable(CAP_SYS_ADMIN))
4715		return -EPERM;
4716
4717	switch (cmd) {
4718	case BTRFS_BALANCE_CTL_PAUSE:
4719		return btrfs_pause_balance(root->fs_info);
4720	case BTRFS_BALANCE_CTL_CANCEL:
4721		return btrfs_cancel_balance(root->fs_info);
4722	}
4723
4724	return -EINVAL;
4725}
4726
4727static long btrfs_ioctl_balance_progress(struct btrfs_root *root,
4728					 void __user *arg)
4729{
4730	struct btrfs_fs_info *fs_info = root->fs_info;
4731	struct btrfs_ioctl_balance_args *bargs;
4732	int ret = 0;
4733
4734	if (!capable(CAP_SYS_ADMIN))
4735		return -EPERM;
4736
4737	mutex_lock(&fs_info->balance_mutex);
4738	if (!fs_info->balance_ctl) {
4739		ret = -ENOTCONN;
4740		goto out;
4741	}
4742
4743	bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4744	if (!bargs) {
4745		ret = -ENOMEM;
4746		goto out;
4747	}
4748
4749	update_ioctl_balance_args(fs_info, 1, bargs);
4750
4751	if (copy_to_user(arg, bargs, sizeof(*bargs)))
4752		ret = -EFAULT;
4753
4754	kfree(bargs);
4755out:
4756	mutex_unlock(&fs_info->balance_mutex);
4757	return ret;
4758}
4759
4760static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4761{
4762	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
 
4763	struct btrfs_ioctl_quota_ctl_args *sa;
4764	struct btrfs_trans_handle *trans = NULL;
4765	int ret;
4766	int err;
4767
4768	if (!capable(CAP_SYS_ADMIN))
4769		return -EPERM;
4770
4771	ret = mnt_want_write_file(file);
4772	if (ret)
4773		return ret;
4774
4775	sa = memdup_user(arg, sizeof(*sa));
4776	if (IS_ERR(sa)) {
4777		ret = PTR_ERR(sa);
4778		goto drop_write;
4779	}
4780
4781	down_write(&root->fs_info->subvol_sem);
4782	trans = btrfs_start_transaction(root->fs_info->tree_root, 2);
4783	if (IS_ERR(trans)) {
4784		ret = PTR_ERR(trans);
4785		goto out;
4786	}
4787
4788	switch (sa->cmd) {
4789	case BTRFS_QUOTA_CTL_ENABLE:
4790		ret = btrfs_quota_enable(trans, root->fs_info);
 
4791		break;
4792	case BTRFS_QUOTA_CTL_DISABLE:
4793		ret = btrfs_quota_disable(trans, root->fs_info);
4794		break;
4795	default:
4796		ret = -EINVAL;
4797		break;
4798	}
4799
4800	err = btrfs_commit_transaction(trans, root->fs_info->tree_root);
4801	if (err && !ret)
4802		ret = err;
4803out:
4804	kfree(sa);
4805	up_write(&root->fs_info->subvol_sem);
4806drop_write:
4807	mnt_drop_write_file(file);
4808	return ret;
4809}
4810
4811static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4812{
4813	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
 
 
4814	struct btrfs_ioctl_qgroup_assign_args *sa;
4815	struct btrfs_trans_handle *trans;
4816	int ret;
4817	int err;
4818
4819	if (!capable(CAP_SYS_ADMIN))
4820		return -EPERM;
4821
4822	ret = mnt_want_write_file(file);
4823	if (ret)
4824		return ret;
4825
4826	sa = memdup_user(arg, sizeof(*sa));
4827	if (IS_ERR(sa)) {
4828		ret = PTR_ERR(sa);
4829		goto drop_write;
4830	}
4831
4832	trans = btrfs_join_transaction(root);
4833	if (IS_ERR(trans)) {
4834		ret = PTR_ERR(trans);
4835		goto out;
4836	}
4837
4838	/* FIXME: check if the IDs really exist */
4839	if (sa->assign) {
4840		ret = btrfs_add_qgroup_relation(trans, root->fs_info,
4841						sa->src, sa->dst);
4842	} else {
4843		ret = btrfs_del_qgroup_relation(trans, root->fs_info,
4844						sa->src, sa->dst);
4845	}
4846
4847	/* update qgroup status and info */
4848	err = btrfs_run_qgroups(trans, root->fs_info);
 
 
4849	if (err < 0)
4850		btrfs_std_error(root->fs_info, ret,
4851			    "failed to update qgroup status and info\n");
4852	err = btrfs_end_transaction(trans, root);
4853	if (err && !ret)
4854		ret = err;
4855
4856out:
4857	kfree(sa);
4858drop_write:
4859	mnt_drop_write_file(file);
4860	return ret;
4861}
4862
4863static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4864{
4865	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
 
4866	struct btrfs_ioctl_qgroup_create_args *sa;
4867	struct btrfs_trans_handle *trans;
4868	int ret;
4869	int err;
4870
4871	if (!capable(CAP_SYS_ADMIN))
4872		return -EPERM;
4873
4874	ret = mnt_want_write_file(file);
4875	if (ret)
4876		return ret;
4877
4878	sa = memdup_user(arg, sizeof(*sa));
4879	if (IS_ERR(sa)) {
4880		ret = PTR_ERR(sa);
4881		goto drop_write;
4882	}
4883
4884	if (!sa->qgroupid) {
4885		ret = -EINVAL;
4886		goto out;
4887	}
4888
 
 
 
 
 
4889	trans = btrfs_join_transaction(root);
4890	if (IS_ERR(trans)) {
4891		ret = PTR_ERR(trans);
4892		goto out;
4893	}
4894
4895	/* FIXME: check if the IDs really exist */
4896	if (sa->create) {
4897		ret = btrfs_create_qgroup(trans, root->fs_info, sa->qgroupid);
4898	} else {
4899		ret = btrfs_remove_qgroup(trans, root->fs_info, sa->qgroupid);
4900	}
4901
4902	err = btrfs_end_transaction(trans, root);
4903	if (err && !ret)
4904		ret = err;
4905
4906out:
4907	kfree(sa);
4908drop_write:
4909	mnt_drop_write_file(file);
4910	return ret;
4911}
4912
4913static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4914{
4915	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
 
4916	struct btrfs_ioctl_qgroup_limit_args *sa;
4917	struct btrfs_trans_handle *trans;
4918	int ret;
4919	int err;
4920	u64 qgroupid;
4921
4922	if (!capable(CAP_SYS_ADMIN))
4923		return -EPERM;
4924
4925	ret = mnt_want_write_file(file);
4926	if (ret)
4927		return ret;
4928
4929	sa = memdup_user(arg, sizeof(*sa));
4930	if (IS_ERR(sa)) {
4931		ret = PTR_ERR(sa);
4932		goto drop_write;
4933	}
4934
4935	trans = btrfs_join_transaction(root);
4936	if (IS_ERR(trans)) {
4937		ret = PTR_ERR(trans);
4938		goto out;
4939	}
4940
4941	qgroupid = sa->qgroupid;
4942	if (!qgroupid) {
4943		/* take the current subvol as qgroup */
4944		qgroupid = root->root_key.objectid;
4945	}
4946
4947	/* FIXME: check if the IDs really exist */
4948	ret = btrfs_limit_qgroup(trans, root->fs_info, qgroupid, &sa->lim);
4949
4950	err = btrfs_end_transaction(trans, root);
4951	if (err && !ret)
4952		ret = err;
4953
4954out:
4955	kfree(sa);
4956drop_write:
4957	mnt_drop_write_file(file);
4958	return ret;
4959}
4960
4961static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4962{
4963	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
 
4964	struct btrfs_ioctl_quota_rescan_args *qsa;
4965	int ret;
4966
4967	if (!capable(CAP_SYS_ADMIN))
4968		return -EPERM;
4969
4970	ret = mnt_want_write_file(file);
4971	if (ret)
4972		return ret;
4973
4974	qsa = memdup_user(arg, sizeof(*qsa));
4975	if (IS_ERR(qsa)) {
4976		ret = PTR_ERR(qsa);
4977		goto drop_write;
4978	}
4979
4980	if (qsa->flags) {
4981		ret = -EINVAL;
4982		goto out;
4983	}
4984
4985	ret = btrfs_qgroup_rescan(root->fs_info);
4986
4987out:
4988	kfree(qsa);
4989drop_write:
4990	mnt_drop_write_file(file);
4991	return ret;
4992}
4993
4994static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
 
4995{
4996	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4997	struct btrfs_ioctl_quota_rescan_args *qsa;
4998	int ret = 0;
4999
5000	if (!capable(CAP_SYS_ADMIN))
5001		return -EPERM;
5002
5003	qsa = kzalloc(sizeof(*qsa), GFP_KERNEL);
5004	if (!qsa)
5005		return -ENOMEM;
5006
5007	if (root->fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
5008		qsa->flags = 1;
5009		qsa->progress = root->fs_info->qgroup_rescan_progress.objectid;
5010	}
5011
5012	if (copy_to_user(arg, qsa, sizeof(*qsa)))
5013		ret = -EFAULT;
5014
5015	kfree(qsa);
5016	return ret;
5017}
5018
5019static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
 
5020{
5021	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5022
5023	if (!capable(CAP_SYS_ADMIN))
5024		return -EPERM;
5025
5026	return btrfs_qgroup_wait_for_completion(root->fs_info);
5027}
5028
5029static long _btrfs_ioctl_set_received_subvol(struct file *file,
 
5030					    struct btrfs_ioctl_received_subvol_args *sa)
5031{
5032	struct inode *inode = file_inode(file);
 
5033	struct btrfs_root *root = BTRFS_I(inode)->root;
5034	struct btrfs_root_item *root_item = &root->root_item;
5035	struct btrfs_trans_handle *trans;
5036	struct timespec ct = current_fs_time(inode->i_sb);
5037	int ret = 0;
5038	int received_uuid_changed;
5039
5040	if (!inode_owner_or_capable(inode))
5041		return -EPERM;
5042
5043	ret = mnt_want_write_file(file);
5044	if (ret < 0)
5045		return ret;
5046
5047	down_write(&root->fs_info->subvol_sem);
5048
5049	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
5050		ret = -EINVAL;
5051		goto out;
5052	}
5053
5054	if (btrfs_root_readonly(root)) {
5055		ret = -EROFS;
5056		goto out;
5057	}
5058
5059	/*
5060	 * 1 - root item
5061	 * 2 - uuid items (received uuid + subvol uuid)
5062	 */
5063	trans = btrfs_start_transaction(root, 3);
5064	if (IS_ERR(trans)) {
5065		ret = PTR_ERR(trans);
5066		trans = NULL;
5067		goto out;
5068	}
5069
5070	sa->rtransid = trans->transid;
5071	sa->rtime.sec = ct.tv_sec;
5072	sa->rtime.nsec = ct.tv_nsec;
5073
5074	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
5075				       BTRFS_UUID_SIZE);
5076	if (received_uuid_changed &&
5077	    !btrfs_is_empty_uuid(root_item->received_uuid))
5078		btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
5079				    root_item->received_uuid,
5080				    BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5081				    root->root_key.objectid);
 
 
 
 
 
5082	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
5083	btrfs_set_root_stransid(root_item, sa->stransid);
5084	btrfs_set_root_rtransid(root_item, sa->rtransid);
5085	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
5086	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
5087	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
5088	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
5089
5090	ret = btrfs_update_root(trans, root->fs_info->tree_root,
5091				&root->root_key, &root->root_item);
5092	if (ret < 0) {
5093		btrfs_end_transaction(trans, root);
5094		goto out;
5095	}
5096	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
5097		ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
5098					  sa->uuid,
5099					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5100					  root->root_key.objectid);
5101		if (ret < 0 && ret != -EEXIST) {
5102			btrfs_abort_transaction(trans, root, ret);
 
5103			goto out;
5104		}
5105	}
5106	ret = btrfs_commit_transaction(trans, root);
5107	if (ret < 0) {
5108		btrfs_abort_transaction(trans, root, ret);
5109		goto out;
5110	}
5111
5112out:
5113	up_write(&root->fs_info->subvol_sem);
5114	mnt_drop_write_file(file);
5115	return ret;
5116}
5117
5118#ifdef CONFIG_64BIT
5119static long btrfs_ioctl_set_received_subvol_32(struct file *file,
5120						void __user *arg)
5121{
5122	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
5123	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
5124	int ret = 0;
5125
5126	args32 = memdup_user(arg, sizeof(*args32));
5127	if (IS_ERR(args32)) {
5128		ret = PTR_ERR(args32);
5129		args32 = NULL;
5130		goto out;
5131	}
5132
5133	args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
5134	if (!args64) {
5135		ret = -ENOMEM;
5136		goto out;
5137	}
5138
5139	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
5140	args64->stransid = args32->stransid;
5141	args64->rtransid = args32->rtransid;
5142	args64->stime.sec = args32->stime.sec;
5143	args64->stime.nsec = args32->stime.nsec;
5144	args64->rtime.sec = args32->rtime.sec;
5145	args64->rtime.nsec = args32->rtime.nsec;
5146	args64->flags = args32->flags;
5147
5148	ret = _btrfs_ioctl_set_received_subvol(file, args64);
5149	if (ret)
5150		goto out;
5151
5152	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
5153	args32->stransid = args64->stransid;
5154	args32->rtransid = args64->rtransid;
5155	args32->stime.sec = args64->stime.sec;
5156	args32->stime.nsec = args64->stime.nsec;
5157	args32->rtime.sec = args64->rtime.sec;
5158	args32->rtime.nsec = args64->rtime.nsec;
5159	args32->flags = args64->flags;
5160
5161	ret = copy_to_user(arg, args32, sizeof(*args32));
5162	if (ret)
5163		ret = -EFAULT;
5164
5165out:
5166	kfree(args32);
5167	kfree(args64);
5168	return ret;
5169}
5170#endif
5171
5172static long btrfs_ioctl_set_received_subvol(struct file *file,
5173					    void __user *arg)
5174{
5175	struct btrfs_ioctl_received_subvol_args *sa = NULL;
5176	int ret = 0;
5177
5178	sa = memdup_user(arg, sizeof(*sa));
5179	if (IS_ERR(sa)) {
5180		ret = PTR_ERR(sa);
5181		sa = NULL;
5182		goto out;
5183	}
5184
5185	ret = _btrfs_ioctl_set_received_subvol(file, sa);
5186
5187	if (ret)
5188		goto out;
5189
5190	ret = copy_to_user(arg, sa, sizeof(*sa));
5191	if (ret)
5192		ret = -EFAULT;
5193
5194out:
5195	kfree(sa);
5196	return ret;
5197}
5198
5199static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
 
5200{
5201	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5202	size_t len;
5203	int ret;
5204	char label[BTRFS_LABEL_SIZE];
5205
5206	spin_lock(&root->fs_info->super_lock);
5207	memcpy(label, root->fs_info->super_copy->label, BTRFS_LABEL_SIZE);
5208	spin_unlock(&root->fs_info->super_lock);
5209
5210	len = strnlen(label, BTRFS_LABEL_SIZE);
5211
5212	if (len == BTRFS_LABEL_SIZE) {
5213		btrfs_warn(root->fs_info,
5214			"label is too long, return the first %zu bytes", --len);
 
5215	}
5216
5217	ret = copy_to_user(arg, label, len);
5218
5219	return ret ? -EFAULT : 0;
5220}
5221
5222static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
5223{
5224	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5225	struct btrfs_super_block *super_block = root->fs_info->super_copy;
 
 
5226	struct btrfs_trans_handle *trans;
5227	char label[BTRFS_LABEL_SIZE];
5228	int ret;
5229
5230	if (!capable(CAP_SYS_ADMIN))
5231		return -EPERM;
5232
5233	if (copy_from_user(label, arg, sizeof(label)))
5234		return -EFAULT;
5235
5236	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
5237		btrfs_err(root->fs_info, "unable to set label with more than %d bytes",
5238		       BTRFS_LABEL_SIZE - 1);
 
5239		return -EINVAL;
5240	}
5241
5242	ret = mnt_want_write_file(file);
5243	if (ret)
5244		return ret;
5245
5246	trans = btrfs_start_transaction(root, 0);
5247	if (IS_ERR(trans)) {
5248		ret = PTR_ERR(trans);
5249		goto out_unlock;
5250	}
5251
5252	spin_lock(&root->fs_info->super_lock);
5253	strcpy(super_block->label, label);
5254	spin_unlock(&root->fs_info->super_lock);
5255	ret = btrfs_commit_transaction(trans, root);
5256
5257out_unlock:
5258	mnt_drop_write_file(file);
5259	return ret;
5260}
5261
5262#define INIT_FEATURE_FLAGS(suffix) \
5263	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5264	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5265	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5266
5267int btrfs_ioctl_get_supported_features(void __user *arg)
5268{
5269	static const struct btrfs_ioctl_feature_flags features[3] = {
5270		INIT_FEATURE_FLAGS(SUPP),
5271		INIT_FEATURE_FLAGS(SAFE_SET),
5272		INIT_FEATURE_FLAGS(SAFE_CLEAR)
5273	};
5274
5275	if (copy_to_user(arg, &features, sizeof(features)))
5276		return -EFAULT;
5277
5278	return 0;
5279}
5280
5281static int btrfs_ioctl_get_features(struct file *file, void __user *arg)
 
5282{
5283	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5284	struct btrfs_super_block *super_block = root->fs_info->super_copy;
5285	struct btrfs_ioctl_feature_flags features;
5286
5287	features.compat_flags = btrfs_super_compat_flags(super_block);
5288	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
5289	features.incompat_flags = btrfs_super_incompat_flags(super_block);
5290
5291	if (copy_to_user(arg, &features, sizeof(features)))
5292		return -EFAULT;
5293
5294	return 0;
5295}
5296
5297static int check_feature_bits(struct btrfs_root *root,
5298			      enum btrfs_feature_set set,
5299			      u64 change_mask, u64 flags, u64 supported_flags,
5300			      u64 safe_set, u64 safe_clear)
5301{
5302	const char *type = btrfs_feature_set_names[set];
5303	char *names;
5304	u64 disallowed, unsupported;
5305	u64 set_mask = flags & change_mask;
5306	u64 clear_mask = ~flags & change_mask;
5307
5308	unsupported = set_mask & ~supported_flags;
5309	if (unsupported) {
5310		names = btrfs_printable_features(set, unsupported);
5311		if (names) {
5312			btrfs_warn(root->fs_info,
5313			   "this kernel does not support the %s feature bit%s",
5314			   names, strchr(names, ',') ? "s" : "");
5315			kfree(names);
5316		} else
5317			btrfs_warn(root->fs_info,
5318			   "this kernel does not support %s bits 0x%llx",
5319			   type, unsupported);
5320		return -EOPNOTSUPP;
5321	}
5322
5323	disallowed = set_mask & ~safe_set;
5324	if (disallowed) {
5325		names = btrfs_printable_features(set, disallowed);
5326		if (names) {
5327			btrfs_warn(root->fs_info,
5328			   "can't set the %s feature bit%s while mounted",
5329			   names, strchr(names, ',') ? "s" : "");
5330			kfree(names);
5331		} else
5332			btrfs_warn(root->fs_info,
5333			   "can't set %s bits 0x%llx while mounted",
5334			   type, disallowed);
5335		return -EPERM;
5336	}
5337
5338	disallowed = clear_mask & ~safe_clear;
5339	if (disallowed) {
5340		names = btrfs_printable_features(set, disallowed);
5341		if (names) {
5342			btrfs_warn(root->fs_info,
5343			   "can't clear the %s feature bit%s while mounted",
5344			   names, strchr(names, ',') ? "s" : "");
5345			kfree(names);
5346		} else
5347			btrfs_warn(root->fs_info,
5348			   "can't clear %s bits 0x%llx while mounted",
5349			   type, disallowed);
5350		return -EPERM;
5351	}
5352
5353	return 0;
5354}
5355
5356#define check_feature(root, change_mask, flags, mask_base)	\
5357check_feature_bits(root, FEAT_##mask_base, change_mask, flags,	\
5358		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
5359		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
5360		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5361
5362static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
5363{
5364	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5365	struct btrfs_super_block *super_block = root->fs_info->super_copy;
 
 
5366	struct btrfs_ioctl_feature_flags flags[2];
5367	struct btrfs_trans_handle *trans;
5368	u64 newflags;
5369	int ret;
5370
5371	if (!capable(CAP_SYS_ADMIN))
5372		return -EPERM;
5373
5374	if (copy_from_user(flags, arg, sizeof(flags)))
5375		return -EFAULT;
5376
5377	/* Nothing to do */
5378	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
5379	    !flags[0].incompat_flags)
5380		return 0;
5381
5382	ret = check_feature(root, flags[0].compat_flags,
5383			    flags[1].compat_flags, COMPAT);
5384	if (ret)
5385		return ret;
5386
5387	ret = check_feature(root, flags[0].compat_ro_flags,
5388			    flags[1].compat_ro_flags, COMPAT_RO);
5389	if (ret)
5390		return ret;
5391
5392	ret = check_feature(root, flags[0].incompat_flags,
5393			    flags[1].incompat_flags, INCOMPAT);
5394	if (ret)
5395		return ret;
5396
 
 
 
 
5397	trans = btrfs_start_transaction(root, 0);
5398	if (IS_ERR(trans))
5399		return PTR_ERR(trans);
 
 
5400
5401	spin_lock(&root->fs_info->super_lock);
5402	newflags = btrfs_super_compat_flags(super_block);
5403	newflags |= flags[0].compat_flags & flags[1].compat_flags;
5404	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
5405	btrfs_set_super_compat_flags(super_block, newflags);
5406
5407	newflags = btrfs_super_compat_ro_flags(super_block);
5408	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
5409	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
5410	btrfs_set_super_compat_ro_flags(super_block, newflags);
5411
5412	newflags = btrfs_super_incompat_flags(super_block);
5413	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
5414	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
5415	btrfs_set_super_incompat_flags(super_block, newflags);
5416	spin_unlock(&root->fs_info->super_lock);
 
 
 
 
5417
5418	return btrfs_commit_transaction(trans, root);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5419}
5420
5421long btrfs_ioctl(struct file *file, unsigned int
5422		cmd, unsigned long arg)
5423{
5424	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
 
 
5425	void __user *argp = (void __user *)arg;
5426
5427	switch (cmd) {
5428	case FS_IOC_GETFLAGS:
5429		return btrfs_ioctl_getflags(file, argp);
5430	case FS_IOC_SETFLAGS:
5431		return btrfs_ioctl_setflags(file, argp);
5432	case FS_IOC_GETVERSION:
5433		return btrfs_ioctl_getversion(file, argp);
 
 
 
 
5434	case FITRIM:
5435		return btrfs_ioctl_fitrim(file, argp);
5436	case BTRFS_IOC_SNAP_CREATE:
5437		return btrfs_ioctl_snap_create(file, argp, 0);
5438	case BTRFS_IOC_SNAP_CREATE_V2:
5439		return btrfs_ioctl_snap_create_v2(file, argp, 0);
5440	case BTRFS_IOC_SUBVOL_CREATE:
5441		return btrfs_ioctl_snap_create(file, argp, 1);
5442	case BTRFS_IOC_SUBVOL_CREATE_V2:
5443		return btrfs_ioctl_snap_create_v2(file, argp, 1);
5444	case BTRFS_IOC_SNAP_DESTROY:
5445		return btrfs_ioctl_snap_destroy(file, argp);
 
 
5446	case BTRFS_IOC_SUBVOL_GETFLAGS:
5447		return btrfs_ioctl_subvol_getflags(file, argp);
5448	case BTRFS_IOC_SUBVOL_SETFLAGS:
5449		return btrfs_ioctl_subvol_setflags(file, argp);
5450	case BTRFS_IOC_DEFAULT_SUBVOL:
5451		return btrfs_ioctl_default_subvol(file, argp);
5452	case BTRFS_IOC_DEFRAG:
5453		return btrfs_ioctl_defrag(file, NULL);
5454	case BTRFS_IOC_DEFRAG_RANGE:
5455		return btrfs_ioctl_defrag(file, argp);
5456	case BTRFS_IOC_RESIZE:
5457		return btrfs_ioctl_resize(file, argp);
5458	case BTRFS_IOC_ADD_DEV:
5459		return btrfs_ioctl_add_dev(root, argp);
5460	case BTRFS_IOC_RM_DEV:
5461		return btrfs_ioctl_rm_dev(file, argp);
 
 
5462	case BTRFS_IOC_FS_INFO:
5463		return btrfs_ioctl_fs_info(root, argp);
5464	case BTRFS_IOC_DEV_INFO:
5465		return btrfs_ioctl_dev_info(root, argp);
5466	case BTRFS_IOC_BALANCE:
5467		return btrfs_ioctl_balance(file, NULL);
5468	case BTRFS_IOC_TRANS_START:
5469		return btrfs_ioctl_trans_start(file);
5470	case BTRFS_IOC_TRANS_END:
5471		return btrfs_ioctl_trans_end(file);
5472	case BTRFS_IOC_TREE_SEARCH:
5473		return btrfs_ioctl_tree_search(file, argp);
5474	case BTRFS_IOC_TREE_SEARCH_V2:
5475		return btrfs_ioctl_tree_search_v2(file, argp);
5476	case BTRFS_IOC_INO_LOOKUP:
5477		return btrfs_ioctl_ino_lookup(file, argp);
5478	case BTRFS_IOC_INO_PATHS:
5479		return btrfs_ioctl_ino_to_path(root, argp);
5480	case BTRFS_IOC_LOGICAL_INO:
5481		return btrfs_ioctl_logical_to_ino(root, argp);
 
 
5482	case BTRFS_IOC_SPACE_INFO:
5483		return btrfs_ioctl_space_info(root, argp);
5484	case BTRFS_IOC_SYNC: {
5485		int ret;
5486
5487		ret = btrfs_start_delalloc_roots(root->fs_info, 0, -1);
5488		if (ret)
5489			return ret;
5490		ret = btrfs_sync_fs(file_inode(file)->i_sb, 1);
5491		/*
5492		 * The transaction thread may want to do more work,
5493		 * namely it pokes the cleaner ktread that will start
5494		 * processing uncleaned subvols.
5495		 */
5496		wake_up_process(root->fs_info->transaction_kthread);
5497		return ret;
5498	}
5499	case BTRFS_IOC_START_SYNC:
5500		return btrfs_ioctl_start_sync(root, argp);
5501	case BTRFS_IOC_WAIT_SYNC:
5502		return btrfs_ioctl_wait_sync(root, argp);
5503	case BTRFS_IOC_SCRUB:
5504		return btrfs_ioctl_scrub(file, argp);
5505	case BTRFS_IOC_SCRUB_CANCEL:
5506		return btrfs_ioctl_scrub_cancel(root, argp);
5507	case BTRFS_IOC_SCRUB_PROGRESS:
5508		return btrfs_ioctl_scrub_progress(root, argp);
5509	case BTRFS_IOC_BALANCE_V2:
5510		return btrfs_ioctl_balance(file, argp);
5511	case BTRFS_IOC_BALANCE_CTL:
5512		return btrfs_ioctl_balance_ctl(root, arg);
5513	case BTRFS_IOC_BALANCE_PROGRESS:
5514		return btrfs_ioctl_balance_progress(root, argp);
5515	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5516		return btrfs_ioctl_set_received_subvol(file, argp);
5517#ifdef CONFIG_64BIT
5518	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5519		return btrfs_ioctl_set_received_subvol_32(file, argp);
5520#endif
5521	case BTRFS_IOC_SEND:
5522		return btrfs_ioctl_send(file, argp);
 
 
 
 
5523	case BTRFS_IOC_GET_DEV_STATS:
5524		return btrfs_ioctl_get_dev_stats(root, argp);
5525	case BTRFS_IOC_QUOTA_CTL:
5526		return btrfs_ioctl_quota_ctl(file, argp);
5527	case BTRFS_IOC_QGROUP_ASSIGN:
5528		return btrfs_ioctl_qgroup_assign(file, argp);
5529	case BTRFS_IOC_QGROUP_CREATE:
5530		return btrfs_ioctl_qgroup_create(file, argp);
5531	case BTRFS_IOC_QGROUP_LIMIT:
5532		return btrfs_ioctl_qgroup_limit(file, argp);
5533	case BTRFS_IOC_QUOTA_RESCAN:
5534		return btrfs_ioctl_quota_rescan(file, argp);
5535	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5536		return btrfs_ioctl_quota_rescan_status(file, argp);
5537	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5538		return btrfs_ioctl_quota_rescan_wait(file, argp);
5539	case BTRFS_IOC_DEV_REPLACE:
5540		return btrfs_ioctl_dev_replace(root, argp);
5541	case BTRFS_IOC_GET_FSLABEL:
5542		return btrfs_ioctl_get_fslabel(file, argp);
5543	case BTRFS_IOC_SET_FSLABEL:
5544		return btrfs_ioctl_set_fslabel(file, argp);
5545	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5546		return btrfs_ioctl_get_supported_features(argp);
5547	case BTRFS_IOC_GET_FEATURES:
5548		return btrfs_ioctl_get_features(file, argp);
5549	case BTRFS_IOC_SET_FEATURES:
5550		return btrfs_ioctl_set_features(file, argp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5551	}
5552
5553	return -ENOTTY;
5554}