Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/fs.h>
   7#include <linux/pagemap.h>
 
   8#include <linux/time.h>
   9#include <linux/init.h>
  10#include <linux/string.h>
  11#include <linux/backing-dev.h>
 
  12#include <linux/falloc.h>
 
  13#include <linux/writeback.h>
 
  14#include <linux/compat.h>
  15#include <linux/slab.h>
  16#include <linux/btrfs.h>
  17#include <linux/uio.h>
  18#include <linux/iversion.h>
  19#include <linux/fsverity.h>
  20#include <linux/iomap.h>
  21#include "ctree.h"
  22#include "disk-io.h"
  23#include "transaction.h"
  24#include "btrfs_inode.h"
  25#include "print-tree.h"
  26#include "tree-log.h"
  27#include "locking.h"
  28#include "volumes.h"
  29#include "qgroup.h"
  30#include "compression.h"
  31#include "delalloc-space.h"
  32#include "reflink.h"
  33#include "subpage.h"
  34#include "fs.h"
  35#include "accessors.h"
  36#include "extent-tree.h"
  37#include "file-item.h"
  38#include "ioctl.h"
  39#include "file.h"
  40#include "super.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  41
  42/* simple helper to fault in pages and copy.  This should go away
  43 * and be replaced with calls into generic code.
  44 */
  45static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
  46					 struct page **prepared_pages,
  47					 struct iov_iter *i)
  48{
  49	size_t copied = 0;
  50	size_t total_copied = 0;
  51	int pg = 0;
  52	int offset = offset_in_page(pos);
  53
  54	while (write_bytes > 0) {
  55		size_t count = min_t(size_t,
  56				     PAGE_SIZE - offset, write_bytes);
  57		struct page *page = prepared_pages[pg];
  58		/*
  59		 * Copy data from userspace to the current page
  60		 */
  61		copied = copy_page_from_iter_atomic(page, offset, count, i);
  62
  63		/* Flush processor's dcache for this page */
  64		flush_dcache_page(page);
  65
  66		/*
  67		 * if we get a partial write, we can end up with
  68		 * partially up to date pages.  These add
  69		 * a lot of complexity, so make sure they don't
  70		 * happen by forcing this copy to be retried.
  71		 *
  72		 * The rest of the btrfs_file_write code will fall
  73		 * back to page at a time copies after we return 0.
  74		 */
  75		if (unlikely(copied < count)) {
  76			if (!PageUptodate(page)) {
  77				iov_iter_revert(i, copied);
  78				copied = 0;
  79			}
  80			if (!copied)
  81				break;
  82		}
  83
 
  84		write_bytes -= copied;
  85		total_copied += copied;
  86		offset += copied;
  87		if (offset == PAGE_SIZE) {
 
 
 
 
 
 
  88			pg++;
  89			offset = 0;
  90		}
  91	}
  92	return total_copied;
  93}
  94
  95/*
  96 * unlocks pages after btrfs_file_write is done with them
  97 */
  98static void btrfs_drop_pages(struct btrfs_fs_info *fs_info,
  99			     struct page **pages, size_t num_pages,
 100			     u64 pos, u64 copied)
 101{
 102	size_t i;
 103	u64 block_start = round_down(pos, fs_info->sectorsize);
 104	u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start;
 105
 106	ASSERT(block_len <= U32_MAX);
 107	for (i = 0; i < num_pages; i++) {
 108		/* page checked is some magic around finding pages that
 109		 * have been modified without going through btrfs_set_page_dirty
 110		 * clear it here. There should be no need to mark the pages
 111		 * accessed as prepare_pages should have marked them accessed
 112		 * in prepare_pages via find_or_create_page()
 113		 */
 114		btrfs_folio_clamp_clear_checked(fs_info, page_folio(pages[i]),
 115						block_start, block_len);
 116		unlock_page(pages[i]);
 117		put_page(pages[i]);
 118	}
 119}
 120
 121/*
 122 * After btrfs_copy_from_user(), update the following things for delalloc:
 123 * - Mark newly dirtied pages as DELALLOC in the io tree.
 124 *   Used to advise which range is to be written back.
 125 * - Mark modified pages as Uptodate/Dirty and not needing COW fixup
 126 * - Update inode size for past EOF write
 
 127 */
 128int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
 129		      size_t num_pages, loff_t pos, size_t write_bytes,
 130		      struct extent_state **cached, bool noreserve)
 
 131{
 132	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 133	int err = 0;
 134	int i;
 135	u64 num_bytes;
 136	u64 start_pos;
 137	u64 end_of_last_block;
 138	u64 end_pos = pos + write_bytes;
 139	loff_t isize = i_size_read(&inode->vfs_inode);
 140	unsigned int extra_bits = 0;
 141
 142	if (write_bytes == 0)
 143		return 0;
 144
 145	if (noreserve)
 146		extra_bits |= EXTENT_NORESERVE;
 147
 148	start_pos = round_down(pos, fs_info->sectorsize);
 149	num_bytes = round_up(write_bytes + pos - start_pos,
 150			     fs_info->sectorsize);
 151	ASSERT(num_bytes <= U32_MAX);
 152
 153	end_of_last_block = start_pos + num_bytes - 1;
 154
 155	/*
 156	 * The pages may have already been dirty, clear out old accounting so
 157	 * we can set things up properly
 158	 */
 159	clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
 160			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
 161			 cached);
 162
 163	err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
 164					extra_bits, cached);
 165	if (err)
 166		return err;
 167
 168	for (i = 0; i < num_pages; i++) {
 169		struct page *p = pages[i];
 170
 171		btrfs_folio_clamp_set_uptodate(fs_info, page_folio(p),
 172					       start_pos, num_bytes);
 173		btrfs_folio_clamp_clear_checked(fs_info, page_folio(p),
 174						start_pos, num_bytes);
 175		btrfs_folio_clamp_set_dirty(fs_info, page_folio(p),
 176					    start_pos, num_bytes);
 177	}
 178
 179	/*
 180	 * we've only changed i_size in ram, and we haven't updated
 181	 * the disk i_size.  There is no need to log the inode
 182	 * at this time.
 183	 */
 184	if (end_pos > isize)
 185		i_size_write(&inode->vfs_inode, end_pos);
 186	return 0;
 187}
 188
 189/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 190 * this is very complex, but the basic idea is to drop all extents
 191 * in the range start - end.  hint_block is filled in with a block number
 192 * that would be a good hint to the block allocator for this file.
 193 *
 194 * If an extent intersects the range but is not entirely inside the range
 195 * it is either truncated or split.  Anything entirely inside the range
 196 * is deleted from the tree.
 197 *
 198 * Note: the VFS' inode number of bytes is not updated, it's up to the caller
 199 * to deal with that. We set the field 'bytes_found' of the arguments structure
 200 * with the number of allocated bytes found in the target range, so that the
 201 * caller can update the inode's number of bytes in an atomic way when
 202 * replacing extents in a range to avoid races with stat(2).
 203 */
 204int btrfs_drop_extents(struct btrfs_trans_handle *trans,
 205		       struct btrfs_root *root, struct btrfs_inode *inode,
 206		       struct btrfs_drop_extents_args *args)
 
 
 
 
 207{
 208	struct btrfs_fs_info *fs_info = root->fs_info;
 209	struct extent_buffer *leaf;
 210	struct btrfs_file_extent_item *fi;
 211	struct btrfs_ref ref = { 0 };
 212	struct btrfs_key key;
 213	struct btrfs_key new_key;
 214	u64 ino = btrfs_ino(inode);
 215	u64 search_start = args->start;
 216	u64 disk_bytenr = 0;
 217	u64 num_bytes = 0;
 218	u64 extent_offset = 0;
 219	u64 extent_end = 0;
 220	u64 last_end = args->start;
 221	int del_nr = 0;
 222	int del_slot = 0;
 223	int extent_type;
 224	int recow;
 225	int ret;
 226	int modify_tree = -1;
 227	int update_refs;
 228	int found = 0;
 229	struct btrfs_path *path = args->path;
 230
 231	args->bytes_found = 0;
 232	args->extent_inserted = false;
 233
 234	/* Must always have a path if ->replace_extent is true */
 235	ASSERT(!(args->replace_extent && !args->path));
 236
 237	if (!path) {
 238		path = btrfs_alloc_path();
 239		if (!path) {
 240			ret = -ENOMEM;
 241			goto out;
 242		}
 243	}
 244
 245	if (args->drop_cache)
 246		btrfs_drop_extent_map_range(inode, args->start, args->end - 1, false);
 247
 248	if (args->start >= inode->disk_i_size && !args->replace_extent)
 249		modify_tree = 0;
 250
 251	update_refs = (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID);
 
 252	while (1) {
 253		recow = 0;
 254		ret = btrfs_lookup_file_extent(trans, root, path, ino,
 255					       search_start, modify_tree);
 256		if (ret < 0)
 257			break;
 258		if (ret > 0 && path->slots[0] > 0 && search_start == args->start) {
 259			leaf = path->nodes[0];
 260			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
 261			if (key.objectid == ino &&
 262			    key.type == BTRFS_EXTENT_DATA_KEY)
 263				path->slots[0]--;
 264		}
 265		ret = 0;
 
 266next_slot:
 267		leaf = path->nodes[0];
 268		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
 269			BUG_ON(del_nr > 0);
 270			ret = btrfs_next_leaf(root, path);
 271			if (ret < 0)
 272				break;
 273			if (ret > 0) {
 274				ret = 0;
 275				break;
 276			}
 
 277			leaf = path->nodes[0];
 278			recow = 1;
 279		}
 280
 281		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 282
 283		if (key.objectid > ino)
 284			break;
 285		if (WARN_ON_ONCE(key.objectid < ino) ||
 286		    key.type < BTRFS_EXTENT_DATA_KEY) {
 287			ASSERT(del_nr == 0);
 288			path->slots[0]++;
 289			goto next_slot;
 290		}
 291		if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end)
 292			break;
 293
 294		fi = btrfs_item_ptr(leaf, path->slots[0],
 295				    struct btrfs_file_extent_item);
 296		extent_type = btrfs_file_extent_type(leaf, fi);
 297
 298		if (extent_type == BTRFS_FILE_EXTENT_REG ||
 299		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
 300			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
 301			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
 302			extent_offset = btrfs_file_extent_offset(leaf, fi);
 303			extent_end = key.offset +
 304				btrfs_file_extent_num_bytes(leaf, fi);
 305		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 306			extent_end = key.offset +
 307				btrfs_file_extent_ram_bytes(leaf, fi);
 
 308		} else {
 309			/* can't happen */
 310			BUG();
 311		}
 312
 313		/*
 314		 * Don't skip extent items representing 0 byte lengths. They
 315		 * used to be created (bug) if while punching holes we hit
 316		 * -ENOSPC condition. So if we find one here, just ensure we
 317		 * delete it, otherwise we would insert a new file extent item
 318		 * with the same key (offset) as that 0 bytes length file
 319		 * extent item in the call to setup_items_for_insert() later
 320		 * in this function.
 321		 */
 322		if (extent_end == key.offset && extent_end >= search_start) {
 323			last_end = extent_end;
 324			goto delete_extent_item;
 325		}
 326
 327		if (extent_end <= search_start) {
 328			path->slots[0]++;
 329			goto next_slot;
 330		}
 331
 332		found = 1;
 333		search_start = max(key.offset, args->start);
 334		if (recow || !modify_tree) {
 335			modify_tree = -1;
 336			btrfs_release_path(path);
 337			continue;
 338		}
 339
 340		/*
 341		 *     | - range to drop - |
 342		 *  | -------- extent -------- |
 343		 */
 344		if (args->start > key.offset && args->end < extent_end) {
 345			BUG_ON(del_nr > 0);
 346			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 347				ret = -EOPNOTSUPP;
 348				break;
 349			}
 350
 351			memcpy(&new_key, &key, sizeof(new_key));
 352			new_key.offset = args->start;
 353			ret = btrfs_duplicate_item(trans, root, path,
 354						   &new_key);
 355			if (ret == -EAGAIN) {
 356				btrfs_release_path(path);
 357				continue;
 358			}
 359			if (ret < 0)
 360				break;
 361
 362			leaf = path->nodes[0];
 363			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
 364					    struct btrfs_file_extent_item);
 365			btrfs_set_file_extent_num_bytes(leaf, fi,
 366							args->start - key.offset);
 367
 368			fi = btrfs_item_ptr(leaf, path->slots[0],
 369					    struct btrfs_file_extent_item);
 370
 371			extent_offset += args->start - key.offset;
 372			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
 373			btrfs_set_file_extent_num_bytes(leaf, fi,
 374							extent_end - args->start);
 375			btrfs_mark_buffer_dirty(trans, leaf);
 376
 377			if (update_refs && disk_bytenr > 0) {
 378				btrfs_init_generic_ref(&ref,
 379						BTRFS_ADD_DELAYED_REF,
 380						disk_bytenr, num_bytes, 0,
 381						root->root_key.objectid);
 382				btrfs_init_data_ref(&ref,
 383						root->root_key.objectid,
 384						new_key.objectid,
 385						args->start - extent_offset,
 386						0, false);
 387				ret = btrfs_inc_extent_ref(trans, &ref);
 388				if (ret) {
 389					btrfs_abort_transaction(trans, ret);
 390					break;
 391				}
 392			}
 393			key.offset = args->start;
 394		}
 395		/*
 396		 * From here on out we will have actually dropped something, so
 397		 * last_end can be updated.
 398		 */
 399		last_end = extent_end;
 400
 401		/*
 402		 *  | ---- range to drop ----- |
 403		 *      | -------- extent -------- |
 404		 */
 405		if (args->start <= key.offset && args->end < extent_end) {
 406			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 407				ret = -EOPNOTSUPP;
 408				break;
 409			}
 410
 411			memcpy(&new_key, &key, sizeof(new_key));
 412			new_key.offset = args->end;
 413			btrfs_set_item_key_safe(trans, path, &new_key);
 414
 415			extent_offset += args->end - key.offset;
 416			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
 417			btrfs_set_file_extent_num_bytes(leaf, fi,
 418							extent_end - args->end);
 419			btrfs_mark_buffer_dirty(trans, leaf);
 420			if (update_refs && disk_bytenr > 0)
 421				args->bytes_found += args->end - key.offset;
 422			break;
 423		}
 424
 425		search_start = extent_end;
 426		/*
 427		 *       | ---- range to drop ----- |
 428		 *  | -------- extent -------- |
 429		 */
 430		if (args->start > key.offset && args->end >= extent_end) {
 431			BUG_ON(del_nr > 0);
 432			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 433				ret = -EOPNOTSUPP;
 434				break;
 435			}
 436
 437			btrfs_set_file_extent_num_bytes(leaf, fi,
 438							args->start - key.offset);
 439			btrfs_mark_buffer_dirty(trans, leaf);
 440			if (update_refs && disk_bytenr > 0)
 441				args->bytes_found += extent_end - args->start;
 442			if (args->end == extent_end)
 443				break;
 444
 445			path->slots[0]++;
 446			goto next_slot;
 447		}
 448
 449		/*
 450		 *  | ---- range to drop ----- |
 451		 *    | ------ extent ------ |
 452		 */
 453		if (args->start <= key.offset && args->end >= extent_end) {
 454delete_extent_item:
 455			if (del_nr == 0) {
 456				del_slot = path->slots[0];
 457				del_nr = 1;
 458			} else {
 459				BUG_ON(del_slot + del_nr != path->slots[0]);
 460				del_nr++;
 461			}
 462
 463			if (update_refs &&
 464			    extent_type == BTRFS_FILE_EXTENT_INLINE) {
 465				args->bytes_found += extent_end - key.offset;
 
 466				extent_end = ALIGN(extent_end,
 467						   fs_info->sectorsize);
 468			} else if (update_refs && disk_bytenr > 0) {
 469				btrfs_init_generic_ref(&ref,
 470						BTRFS_DROP_DELAYED_REF,
 471						disk_bytenr, num_bytes, 0,
 472						root->root_key.objectid);
 473				btrfs_init_data_ref(&ref,
 474						root->root_key.objectid,
 475						key.objectid,
 476						key.offset - extent_offset, 0,
 477						false);
 478				ret = btrfs_free_extent(trans, &ref);
 479				if (ret) {
 480					btrfs_abort_transaction(trans, ret);
 481					break;
 482				}
 483				args->bytes_found += extent_end - key.offset;
 484			}
 485
 486			if (args->end == extent_end)
 487				break;
 488
 489			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
 490				path->slots[0]++;
 491				goto next_slot;
 492			}
 493
 494			ret = btrfs_del_items(trans, root, path, del_slot,
 495					      del_nr);
 496			if (ret) {
 497				btrfs_abort_transaction(trans, ret);
 498				break;
 499			}
 500
 501			del_nr = 0;
 502			del_slot = 0;
 503
 504			btrfs_release_path(path);
 505			continue;
 506		}
 507
 508		BUG();
 509	}
 510
 511	if (!ret && del_nr > 0) {
 512		/*
 513		 * Set path->slots[0] to first slot, so that after the delete
 514		 * if items are move off from our leaf to its immediate left or
 515		 * right neighbor leafs, we end up with a correct and adjusted
 516		 * path->slots[0] for our insertion (if args->replace_extent).
 517		 */
 518		path->slots[0] = del_slot;
 519		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
 520		if (ret)
 521			btrfs_abort_transaction(trans, ret);
 522	}
 523
 524	leaf = path->nodes[0];
 525	/*
 526	 * If btrfs_del_items() was called, it might have deleted a leaf, in
 527	 * which case it unlocked our path, so check path->locks[0] matches a
 528	 * write lock.
 529	 */
 530	if (!ret && args->replace_extent &&
 531	    path->locks[0] == BTRFS_WRITE_LOCK &&
 532	    btrfs_leaf_free_space(leaf) >=
 533	    sizeof(struct btrfs_item) + args->extent_item_size) {
 
 534
 535		key.objectid = ino;
 536		key.type = BTRFS_EXTENT_DATA_KEY;
 537		key.offset = args->start;
 538		if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
 539			struct btrfs_key slot_key;
 540
 541			btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
 542			if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
 543				path->slots[0]++;
 544		}
 545		btrfs_setup_item_for_insert(trans, root, path, &key,
 546					    args->extent_item_size);
 547		args->extent_inserted = true;
 
 
 
 548	}
 549
 550	if (!args->path)
 551		btrfs_free_path(path);
 552	else if (!args->extent_inserted)
 553		btrfs_release_path(path);
 554out:
 555	args->drop_end = found ? min(args->end, last_end) : args->end;
 
 
 556
 
 
 
 
 
 
 
 
 
 
 
 
 
 557	return ret;
 558}
 559
 560static int extent_mergeable(struct extent_buffer *leaf, int slot,
 561			    u64 objectid, u64 bytenr, u64 orig_offset,
 562			    u64 *start, u64 *end)
 563{
 564	struct btrfs_file_extent_item *fi;
 565	struct btrfs_key key;
 566	u64 extent_end;
 567
 568	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
 569		return 0;
 570
 571	btrfs_item_key_to_cpu(leaf, &key, slot);
 572	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
 573		return 0;
 574
 575	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
 576	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
 577	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
 578	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
 579	    btrfs_file_extent_compression(leaf, fi) ||
 580	    btrfs_file_extent_encryption(leaf, fi) ||
 581	    btrfs_file_extent_other_encoding(leaf, fi))
 582		return 0;
 583
 584	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
 585	if ((*start && *start != key.offset) || (*end && *end != extent_end))
 586		return 0;
 587
 588	*start = key.offset;
 589	*end = extent_end;
 590	return 1;
 591}
 592
 593/*
 594 * Mark extent in the range start - end as written.
 595 *
 596 * This changes extent type from 'pre-allocated' to 'regular'. If only
 597 * part of extent is marked as written, the extent will be split into
 598 * two or three.
 599 */
 600int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
 601			      struct btrfs_inode *inode, u64 start, u64 end)
 602{
 603	struct btrfs_root *root = inode->root;
 604	struct extent_buffer *leaf;
 605	struct btrfs_path *path;
 606	struct btrfs_file_extent_item *fi;
 607	struct btrfs_ref ref = { 0 };
 608	struct btrfs_key key;
 609	struct btrfs_key new_key;
 610	u64 bytenr;
 611	u64 num_bytes;
 612	u64 extent_end;
 613	u64 orig_offset;
 614	u64 other_start;
 615	u64 other_end;
 616	u64 split;
 617	int del_nr = 0;
 618	int del_slot = 0;
 619	int recow;
 620	int ret = 0;
 621	u64 ino = btrfs_ino(inode);
 622
 623	path = btrfs_alloc_path();
 624	if (!path)
 625		return -ENOMEM;
 626again:
 627	recow = 0;
 628	split = start;
 629	key.objectid = ino;
 630	key.type = BTRFS_EXTENT_DATA_KEY;
 631	key.offset = split;
 632
 633	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 634	if (ret < 0)
 635		goto out;
 636	if (ret > 0 && path->slots[0] > 0)
 637		path->slots[0]--;
 638
 639	leaf = path->nodes[0];
 640	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 641	if (key.objectid != ino ||
 642	    key.type != BTRFS_EXTENT_DATA_KEY) {
 643		ret = -EINVAL;
 644		btrfs_abort_transaction(trans, ret);
 645		goto out;
 646	}
 647	fi = btrfs_item_ptr(leaf, path->slots[0],
 648			    struct btrfs_file_extent_item);
 649	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
 650		ret = -EINVAL;
 651		btrfs_abort_transaction(trans, ret);
 652		goto out;
 653	}
 654	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
 655	if (key.offset > start || extent_end < end) {
 656		ret = -EINVAL;
 657		btrfs_abort_transaction(trans, ret);
 658		goto out;
 659	}
 660
 661	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
 662	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
 663	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
 664	memcpy(&new_key, &key, sizeof(new_key));
 665
 666	if (start == key.offset && end < extent_end) {
 667		other_start = 0;
 668		other_end = start;
 669		if (extent_mergeable(leaf, path->slots[0] - 1,
 670				     ino, bytenr, orig_offset,
 671				     &other_start, &other_end)) {
 672			new_key.offset = end;
 673			btrfs_set_item_key_safe(trans, path, &new_key);
 674			fi = btrfs_item_ptr(leaf, path->slots[0],
 675					    struct btrfs_file_extent_item);
 676			btrfs_set_file_extent_generation(leaf, fi,
 677							 trans->transid);
 678			btrfs_set_file_extent_num_bytes(leaf, fi,
 679							extent_end - end);
 680			btrfs_set_file_extent_offset(leaf, fi,
 681						     end - orig_offset);
 682			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
 683					    struct btrfs_file_extent_item);
 684			btrfs_set_file_extent_generation(leaf, fi,
 685							 trans->transid);
 686			btrfs_set_file_extent_num_bytes(leaf, fi,
 687							end - other_start);
 688			btrfs_mark_buffer_dirty(trans, leaf);
 689			goto out;
 690		}
 691	}
 692
 693	if (start > key.offset && end == extent_end) {
 694		other_start = end;
 695		other_end = 0;
 696		if (extent_mergeable(leaf, path->slots[0] + 1,
 697				     ino, bytenr, orig_offset,
 698				     &other_start, &other_end)) {
 699			fi = btrfs_item_ptr(leaf, path->slots[0],
 700					    struct btrfs_file_extent_item);
 701			btrfs_set_file_extent_num_bytes(leaf, fi,
 702							start - key.offset);
 703			btrfs_set_file_extent_generation(leaf, fi,
 704							 trans->transid);
 705			path->slots[0]++;
 706			new_key.offset = start;
 707			btrfs_set_item_key_safe(trans, path, &new_key);
 708
 709			fi = btrfs_item_ptr(leaf, path->slots[0],
 710					    struct btrfs_file_extent_item);
 711			btrfs_set_file_extent_generation(leaf, fi,
 712							 trans->transid);
 713			btrfs_set_file_extent_num_bytes(leaf, fi,
 714							other_end - start);
 715			btrfs_set_file_extent_offset(leaf, fi,
 716						     start - orig_offset);
 717			btrfs_mark_buffer_dirty(trans, leaf);
 718			goto out;
 719		}
 720	}
 721
 722	while (start > key.offset || end < extent_end) {
 723		if (key.offset == start)
 724			split = end;
 725
 726		new_key.offset = split;
 727		ret = btrfs_duplicate_item(trans, root, path, &new_key);
 728		if (ret == -EAGAIN) {
 729			btrfs_release_path(path);
 730			goto again;
 731		}
 732		if (ret < 0) {
 733			btrfs_abort_transaction(trans, ret);
 734			goto out;
 735		}
 736
 737		leaf = path->nodes[0];
 738		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
 739				    struct btrfs_file_extent_item);
 740		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
 741		btrfs_set_file_extent_num_bytes(leaf, fi,
 742						split - key.offset);
 743
 744		fi = btrfs_item_ptr(leaf, path->slots[0],
 745				    struct btrfs_file_extent_item);
 746
 747		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
 748		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
 749		btrfs_set_file_extent_num_bytes(leaf, fi,
 750						extent_end - split);
 751		btrfs_mark_buffer_dirty(trans, leaf);
 752
 753		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
 754				       num_bytes, 0, root->root_key.objectid);
 755		btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
 756				    orig_offset, 0, false);
 757		ret = btrfs_inc_extent_ref(trans, &ref);
 758		if (ret) {
 759			btrfs_abort_transaction(trans, ret);
 760			goto out;
 761		}
 762
 763		if (split == start) {
 764			key.offset = start;
 765		} else {
 766			if (start != key.offset) {
 767				ret = -EINVAL;
 768				btrfs_abort_transaction(trans, ret);
 769				goto out;
 770			}
 771			path->slots[0]--;
 772			extent_end = end;
 773		}
 774		recow = 1;
 775	}
 776
 777	other_start = end;
 778	other_end = 0;
 779	btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
 780			       num_bytes, 0, root->root_key.objectid);
 781	btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset,
 782			    0, false);
 783	if (extent_mergeable(leaf, path->slots[0] + 1,
 784			     ino, bytenr, orig_offset,
 785			     &other_start, &other_end)) {
 786		if (recow) {
 787			btrfs_release_path(path);
 788			goto again;
 789		}
 790		extent_end = other_end;
 791		del_slot = path->slots[0] + 1;
 792		del_nr++;
 793		ret = btrfs_free_extent(trans, &ref);
 794		if (ret) {
 795			btrfs_abort_transaction(trans, ret);
 796			goto out;
 797		}
 798	}
 799	other_start = 0;
 800	other_end = start;
 801	if (extent_mergeable(leaf, path->slots[0] - 1,
 802			     ino, bytenr, orig_offset,
 803			     &other_start, &other_end)) {
 804		if (recow) {
 805			btrfs_release_path(path);
 806			goto again;
 807		}
 808		key.offset = other_start;
 809		del_slot = path->slots[0];
 810		del_nr++;
 811		ret = btrfs_free_extent(trans, &ref);
 812		if (ret) {
 813			btrfs_abort_transaction(trans, ret);
 814			goto out;
 815		}
 816	}
 817	if (del_nr == 0) {
 818		fi = btrfs_item_ptr(leaf, path->slots[0],
 819			   struct btrfs_file_extent_item);
 820		btrfs_set_file_extent_type(leaf, fi,
 821					   BTRFS_FILE_EXTENT_REG);
 822		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
 823		btrfs_mark_buffer_dirty(trans, leaf);
 824	} else {
 825		fi = btrfs_item_ptr(leaf, del_slot - 1,
 826			   struct btrfs_file_extent_item);
 827		btrfs_set_file_extent_type(leaf, fi,
 828					   BTRFS_FILE_EXTENT_REG);
 829		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
 830		btrfs_set_file_extent_num_bytes(leaf, fi,
 831						extent_end - key.offset);
 832		btrfs_mark_buffer_dirty(trans, leaf);
 833
 834		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
 835		if (ret < 0) {
 836			btrfs_abort_transaction(trans, ret);
 837			goto out;
 838		}
 839	}
 840out:
 841	btrfs_free_path(path);
 842	return ret;
 843}
 844
 845/*
 846 * on error we return an unlocked page and the error value
 847 * on success we return a locked page and 0
 848 */
 849static int prepare_uptodate_page(struct inode *inode,
 850				 struct page *page, u64 pos,
 851				 bool force_uptodate)
 852{
 853	struct folio *folio = page_folio(page);
 854	int ret = 0;
 855
 856	if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
 857	    !PageUptodate(page)) {
 858		ret = btrfs_read_folio(NULL, folio);
 859		if (ret)
 860			return ret;
 861		lock_page(page);
 862		if (!PageUptodate(page)) {
 863			unlock_page(page);
 864			return -EIO;
 865		}
 866
 867		/*
 868		 * Since btrfs_read_folio() will unlock the folio before it
 869		 * returns, there is a window where btrfs_release_folio() can be
 870		 * called to release the page.  Here we check both inode
 871		 * mapping and PagePrivate() to make sure the page was not
 872		 * released.
 873		 *
 874		 * The private flag check is essential for subpage as we need
 875		 * to store extra bitmap using folio private.
 876		 */
 877		if (page->mapping != inode->i_mapping || !folio_test_private(folio)) {
 878			unlock_page(page);
 879			return -EAGAIN;
 880		}
 881	}
 882	return 0;
 883}
 884
 885static fgf_t get_prepare_fgp_flags(bool nowait)
 886{
 887	fgf_t fgp_flags = FGP_LOCK | FGP_ACCESSED | FGP_CREAT;
 888
 889	if (nowait)
 890		fgp_flags |= FGP_NOWAIT;
 891
 892	return fgp_flags;
 893}
 894
 895static gfp_t get_prepare_gfp_flags(struct inode *inode, bool nowait)
 896{
 897	gfp_t gfp;
 898
 899	gfp = btrfs_alloc_write_mask(inode->i_mapping);
 900	if (nowait) {
 901		gfp &= ~__GFP_DIRECT_RECLAIM;
 902		gfp |= GFP_NOWAIT;
 903	}
 904
 905	return gfp;
 906}
 907
 908/*
 909 * this just gets pages into the page cache and locks them down.
 910 */
 911static noinline int prepare_pages(struct inode *inode, struct page **pages,
 912				  size_t num_pages, loff_t pos,
 913				  size_t write_bytes, bool force_uptodate,
 914				  bool nowait)
 915{
 916	int i;
 917	unsigned long index = pos >> PAGE_SHIFT;
 918	gfp_t mask = get_prepare_gfp_flags(inode, nowait);
 919	fgf_t fgp_flags = get_prepare_fgp_flags(nowait);
 920	int err = 0;
 921	int faili;
 922
 923	for (i = 0; i < num_pages; i++) {
 924again:
 925		pages[i] = pagecache_get_page(inode->i_mapping, index + i,
 926					      fgp_flags, mask | __GFP_WRITE);
 927		if (!pages[i]) {
 928			faili = i - 1;
 929			if (nowait)
 930				err = -EAGAIN;
 931			else
 932				err = -ENOMEM;
 933			goto fail;
 934		}
 935
 936		err = set_page_extent_mapped(pages[i]);
 937		if (err < 0) {
 938			faili = i;
 939			goto fail;
 940		}
 941
 942		if (i == 0)
 943			err = prepare_uptodate_page(inode, pages[i], pos,
 944						    force_uptodate);
 945		if (!err && i == num_pages - 1)
 946			err = prepare_uptodate_page(inode, pages[i],
 947						    pos + write_bytes, false);
 948		if (err) {
 949			put_page(pages[i]);
 950			if (!nowait && err == -EAGAIN) {
 951				err = 0;
 952				goto again;
 953			}
 954			faili = i - 1;
 955			goto fail;
 956		}
 957		wait_on_page_writeback(pages[i]);
 958	}
 959
 960	return 0;
 961fail:
 962	while (faili >= 0) {
 963		unlock_page(pages[faili]);
 964		put_page(pages[faili]);
 965		faili--;
 966	}
 967	return err;
 968
 969}
 970
 971/*
 972 * This function locks the extent and properly waits for data=ordered extents
 973 * to finish before allowing the pages to be modified if need.
 974 *
 975 * The return value:
 976 * 1 - the extent is locked
 977 * 0 - the extent is not locked, and everything is OK
 978 * -EAGAIN - need re-prepare the pages
 979 * the other < 0 number - Something wrong happens
 980 */
 981static noinline int
 982lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
 983				size_t num_pages, loff_t pos,
 984				size_t write_bytes,
 985				u64 *lockstart, u64 *lockend, bool nowait,
 986				struct extent_state **cached_state)
 987{
 988	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 989	u64 start_pos;
 990	u64 last_pos;
 991	int i;
 992	int ret = 0;
 993
 994	start_pos = round_down(pos, fs_info->sectorsize);
 995	last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1;
 
 996
 997	if (start_pos < inode->vfs_inode.i_size) {
 998		struct btrfs_ordered_extent *ordered;
 999
1000		if (nowait) {
1001			if (!try_lock_extent(&inode->io_tree, start_pos, last_pos,
1002					     cached_state)) {
1003				for (i = 0; i < num_pages; i++) {
1004					unlock_page(pages[i]);
1005					put_page(pages[i]);
1006					pages[i] = NULL;
1007				}
1008
1009				return -EAGAIN;
1010			}
1011		} else {
1012			lock_extent(&inode->io_tree, start_pos, last_pos, cached_state);
1013		}
1014
1015		ordered = btrfs_lookup_ordered_range(inode, start_pos,
1016						     last_pos - start_pos + 1);
1017		if (ordered &&
1018		    ordered->file_offset + ordered->num_bytes > start_pos &&
1019		    ordered->file_offset <= last_pos) {
1020			unlock_extent(&inode->io_tree, start_pos, last_pos,
1021				      cached_state);
 
1022			for (i = 0; i < num_pages; i++) {
1023				unlock_page(pages[i]);
1024				put_page(pages[i]);
1025			}
1026			btrfs_start_ordered_extent(ordered);
1027			btrfs_put_ordered_extent(ordered);
1028			return -EAGAIN;
1029		}
1030		if (ordered)
1031			btrfs_put_ordered_extent(ordered);
1032
 
 
 
 
1033		*lockstart = start_pos;
1034		*lockend = last_pos;
1035		ret = 1;
1036	}
1037
1038	/*
1039	 * We should be called after prepare_pages() which should have locked
1040	 * all pages in the range.
1041	 */
1042	for (i = 0; i < num_pages; i++)
1043		WARN_ON(!PageLocked(pages[i]));
 
1044
1045	return ret;
1046}
1047
1048/*
1049 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
1050 *
1051 * @pos:         File offset.
1052 * @write_bytes: The length to write, will be updated to the nocow writeable
1053 *               range.
1054 *
1055 * This function will flush ordered extents in the range to ensure proper
1056 * nocow checks.
1057 *
1058 * Return:
1059 * > 0          If we can nocow, and updates @write_bytes.
1060 *  0           If we can't do a nocow write.
1061 * -EAGAIN      If we can't do a nocow write because snapshoting of the inode's
1062 *              root is in progress.
1063 * < 0          If an error happened.
1064 *
1065 * NOTE: Callers need to call btrfs_check_nocow_unlock() if we return > 0.
1066 */
1067int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
1068			   size_t *write_bytes, bool nowait)
1069{
1070	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1071	struct btrfs_root *root = inode->root;
1072	struct extent_state *cached_state = NULL;
1073	u64 lockstart, lockend;
1074	u64 num_bytes;
1075	int ret;
1076
1077	if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1078		return 0;
 
1079
1080	if (!btrfs_drew_try_write_lock(&root->snapshot_lock))
1081		return -EAGAIN;
1082
1083	lockstart = round_down(pos, fs_info->sectorsize);
1084	lockend = round_up(pos + *write_bytes,
1085			   fs_info->sectorsize) - 1;
1086	num_bytes = lockend - lockstart + 1;
1087
1088	if (nowait) {
1089		if (!btrfs_try_lock_ordered_range(inode, lockstart, lockend,
1090						  &cached_state)) {
1091			btrfs_drew_write_unlock(&root->snapshot_lock);
1092			return -EAGAIN;
1093		}
1094	} else {
1095		btrfs_lock_and_flush_ordered_range(inode, lockstart, lockend,
1096						   &cached_state);
1097	}
1098	ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1099			NULL, NULL, NULL, nowait, false);
1100	if (ret <= 0)
1101		btrfs_drew_write_unlock(&root->snapshot_lock);
1102	else
 
 
1103		*write_bytes = min_t(size_t, *write_bytes ,
1104				     num_bytes - pos + lockstart);
1105	unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
1106
1107	return ret;
1108}
1109
1110void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1111{
1112	btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1113}
1114
1115static void update_time_for_write(struct inode *inode)
1116{
1117	struct timespec64 now, ts;
1118
1119	if (IS_NOCMTIME(inode))
1120		return;
1121
1122	now = current_time(inode);
1123	ts = inode_get_mtime(inode);
1124	if (!timespec64_equal(&ts, &now))
1125		inode_set_mtime_to_ts(inode, now);
1126
1127	ts = inode_get_ctime(inode);
1128	if (!timespec64_equal(&ts, &now))
1129		inode_set_ctime_to_ts(inode, now);
1130
1131	if (IS_I_VERSION(inode))
1132		inode_inc_iversion(inode);
1133}
1134
1135static int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from,
1136			     size_t count)
1137{
1138	struct file *file = iocb->ki_filp;
1139	struct inode *inode = file_inode(file);
1140	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1141	loff_t pos = iocb->ki_pos;
1142	int ret;
1143	loff_t oldsize;
1144	loff_t start_pos;
1145
1146	/*
1147	 * Quickly bail out on NOWAIT writes if we don't have the nodatacow or
1148	 * prealloc flags, as without those flags we always have to COW. We will
1149	 * later check if we can really COW into the target range (using
1150	 * can_nocow_extent() at btrfs_get_blocks_direct_write()).
1151	 */
1152	if ((iocb->ki_flags & IOCB_NOWAIT) &&
1153	    !(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1154		return -EAGAIN;
1155
1156	ret = file_remove_privs(file);
1157	if (ret)
1158		return ret;
1159
1160	/*
1161	 * We reserve space for updating the inode when we reserve space for the
1162	 * extent we are going to write, so we will enospc out there.  We don't
1163	 * need to start yet another transaction to update the inode as we will
1164	 * update the inode when we finish writing whatever data we write.
1165	 */
1166	update_time_for_write(inode);
1167
1168	start_pos = round_down(pos, fs_info->sectorsize);
1169	oldsize = i_size_read(inode);
1170	if (start_pos > oldsize) {
1171		/* Expand hole size to cover write data, preventing empty gap */
1172		loff_t end_pos = round_up(pos + count, fs_info->sectorsize);
1173
1174		ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos);
1175		if (ret)
1176			return ret;
1177	}
1178
1179	return 0;
 
 
1180}
1181
1182static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1183					       struct iov_iter *i)
 
1184{
1185	struct file *file = iocb->ki_filp;
1186	loff_t pos;
1187	struct inode *inode = file_inode(file);
1188	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1189	struct page **pages = NULL;
1190	struct extent_changeset *data_reserved = NULL;
1191	u64 release_bytes = 0;
1192	u64 lockstart;
1193	u64 lockend;
1194	size_t num_written = 0;
1195	int nrptrs;
1196	ssize_t ret;
1197	bool only_release_metadata = false;
1198	bool force_page_uptodate = false;
1199	loff_t old_isize = i_size_read(inode);
1200	unsigned int ilock_flags = 0;
1201	const bool nowait = (iocb->ki_flags & IOCB_NOWAIT);
1202	unsigned int bdp_flags = (nowait ? BDP_ASYNC : 0);
1203
1204	if (nowait)
1205		ilock_flags |= BTRFS_ILOCK_TRY;
1206
1207	ret = btrfs_inode_lock(BTRFS_I(inode), ilock_flags);
1208	if (ret < 0)
1209		return ret;
1210
1211	ret = generic_write_checks(iocb, i);
1212	if (ret <= 0)
1213		goto out;
1214
1215	ret = btrfs_write_check(iocb, i, ret);
1216	if (ret < 0)
1217		goto out;
1218
1219	pos = iocb->ki_pos;
1220	nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1221			PAGE_SIZE / (sizeof(struct page *)));
1222	nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1223	nrptrs = max(nrptrs, 8);
1224	pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1225	if (!pages) {
1226		ret = -ENOMEM;
1227		goto out;
1228	}
1229
1230	while (iov_iter_count(i) > 0) {
1231		struct extent_state *cached_state = NULL;
1232		size_t offset = offset_in_page(pos);
1233		size_t sector_offset;
1234		size_t write_bytes = min(iov_iter_count(i),
1235					 nrptrs * (size_t)PAGE_SIZE -
1236					 offset);
1237		size_t num_pages;
 
1238		size_t reserve_bytes;
1239		size_t dirty_pages;
1240		size_t copied;
1241		size_t dirty_sectors;
1242		size_t num_sectors;
1243		int extents_locked;
 
1244
1245		/*
1246		 * Fault pages before locking them in prepare_pages
1247		 * to avoid recursive lock
1248		 */
1249		if (unlikely(fault_in_iov_iter_readable(i, write_bytes))) {
1250			ret = -EFAULT;
1251			break;
1252		}
1253
1254		only_release_metadata = false;
1255		sector_offset = pos & (fs_info->sectorsize - 1);
1256
1257		extent_changeset_release(data_reserved);
1258		ret = btrfs_check_data_free_space(BTRFS_I(inode),
1259						  &data_reserved, pos,
1260						  write_bytes, nowait);
1261		if (ret < 0) {
1262			int can_nocow;
1263
1264			if (nowait && (ret == -ENOSPC || ret == -EAGAIN)) {
1265				ret = -EAGAIN;
1266				break;
1267			}
1268
 
 
 
1269			/*
1270			 * If we don't have to COW at the offset, reserve
1271			 * metadata only. write_bytes may get smaller than
1272			 * requested here.
1273			 */
1274			can_nocow = btrfs_check_nocow_lock(BTRFS_I(inode), pos,
1275							   &write_bytes, nowait);
1276			if (can_nocow < 0)
1277				ret = can_nocow;
1278			if (can_nocow > 0)
1279				ret = 0;
1280			if (ret)
1281				break;
1282			only_release_metadata = true;
 
 
 
 
 
 
 
 
 
1283		}
1284
1285		num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE);
1286		WARN_ON(num_pages > nrptrs);
1287		reserve_bytes = round_up(write_bytes + sector_offset,
1288					 fs_info->sectorsize);
1289		WARN_ON(reserve_bytes == 0);
1290		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1291						      reserve_bytes,
1292						      reserve_bytes, nowait);
1293		if (ret) {
1294			if (!only_release_metadata)
1295				btrfs_free_reserved_data_space(BTRFS_I(inode),
1296						data_reserved, pos,
1297						write_bytes);
1298			else
1299				btrfs_check_nocow_unlock(BTRFS_I(inode));
1300
1301			if (nowait && ret == -ENOSPC)
1302				ret = -EAGAIN;
1303			break;
1304		}
1305
1306		release_bytes = reserve_bytes;
 
1307again:
1308		ret = balance_dirty_pages_ratelimited_flags(inode->i_mapping, bdp_flags);
1309		if (ret) {
1310			btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1311			break;
1312		}
1313
1314		/*
1315		 * This is going to setup the pages array with the number of
1316		 * pages we want, so we don't really need to worry about the
1317		 * contents of pages from loop to loop
1318		 */
1319		ret = prepare_pages(inode, pages, num_pages,
1320				    pos, write_bytes, force_page_uptodate, false);
1321		if (ret) {
1322			btrfs_delalloc_release_extents(BTRFS_I(inode),
1323						       reserve_bytes);
1324			break;
1325		}
1326
1327		extents_locked = lock_and_cleanup_extent_if_need(
1328				BTRFS_I(inode), pages,
1329				num_pages, pos, write_bytes, &lockstart,
1330				&lockend, nowait, &cached_state);
1331		if (extents_locked < 0) {
1332			if (!nowait && extents_locked == -EAGAIN)
1333				goto again;
1334
1335			btrfs_delalloc_release_extents(BTRFS_I(inode),
1336						       reserve_bytes);
1337			ret = extents_locked;
1338			break;
 
 
 
1339		}
1340
1341		copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1342
1343		num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1344		dirty_sectors = round_up(copied + sector_offset,
1345					fs_info->sectorsize);
1346		dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1347
1348		/*
1349		 * if we have trouble faulting in the pages, fall
1350		 * back to one page at a time
1351		 */
1352		if (copied < write_bytes)
1353			nrptrs = 1;
1354
1355		if (copied == 0) {
1356			force_page_uptodate = true;
1357			dirty_sectors = 0;
1358			dirty_pages = 0;
1359		} else {
1360			force_page_uptodate = false;
1361			dirty_pages = DIV_ROUND_UP(copied + offset,
1362						   PAGE_SIZE);
1363		}
1364
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1365		if (num_sectors > dirty_sectors) {
1366			/* release everything except the sectors we dirtied */
1367			release_bytes -= dirty_sectors << fs_info->sectorsize_bits;
 
 
 
 
 
1368			if (only_release_metadata) {
1369				btrfs_delalloc_release_metadata(BTRFS_I(inode),
1370							release_bytes, true);
1371			} else {
1372				u64 __pos;
1373
1374				__pos = round_down(pos,
1375						   fs_info->sectorsize) +
1376					(dirty_pages << PAGE_SHIFT);
1377				btrfs_delalloc_release_space(BTRFS_I(inode),
1378						data_reserved, __pos,
1379						release_bytes, true);
1380			}
1381		}
1382
1383		release_bytes = round_up(copied + sector_offset,
1384					fs_info->sectorsize);
1385
1386		ret = btrfs_dirty_pages(BTRFS_I(inode), pages,
1387					dirty_pages, pos, copied,
1388					&cached_state, only_release_metadata);
1389
1390		/*
1391		 * If we have not locked the extent range, because the range's
1392		 * start offset is >= i_size, we might still have a non-NULL
1393		 * cached extent state, acquired while marking the extent range
1394		 * as delalloc through btrfs_dirty_pages(). Therefore free any
1395		 * possible cached extent state to avoid a memory leak.
1396		 */
1397		if (extents_locked)
1398			unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
1399				      lockend, &cached_state);
1400		else
1401			free_extent_state(cached_state);
1402
1403		btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1404		if (ret) {
1405			btrfs_drop_pages(fs_info, pages, num_pages, pos, copied);
1406			break;
1407		}
1408
1409		release_bytes = 0;
1410		if (only_release_metadata)
1411			btrfs_check_nocow_unlock(BTRFS_I(inode));
 
 
 
 
 
 
 
 
 
 
1412
1413		btrfs_drop_pages(fs_info, pages, num_pages, pos, copied);
1414
1415		cond_resched();
1416
 
 
 
 
1417		pos += copied;
1418		num_written += copied;
1419	}
1420
1421	kfree(pages);
1422
1423	if (release_bytes) {
1424		if (only_release_metadata) {
1425			btrfs_check_nocow_unlock(BTRFS_I(inode));
1426			btrfs_delalloc_release_metadata(BTRFS_I(inode),
1427					release_bytes, true);
1428		} else {
1429			btrfs_delalloc_release_space(BTRFS_I(inode),
1430					data_reserved,
1431					round_down(pos, fs_info->sectorsize),
1432					release_bytes, true);
1433		}
1434	}
1435
1436	extent_changeset_free(data_reserved);
1437	if (num_written > 0) {
1438		pagecache_isize_extended(inode, old_isize, iocb->ki_pos);
1439		iocb->ki_pos += num_written;
1440	}
1441out:
1442	btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1443	return num_written ? num_written : ret;
1444}
1445
1446static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
1447			       const struct iov_iter *iter, loff_t offset)
1448{
1449	const u32 blocksize_mask = fs_info->sectorsize - 1;
1450
1451	if (offset & blocksize_mask)
1452		return -EINVAL;
1453
1454	if (iov_iter_alignment(iter) & blocksize_mask)
1455		return -EINVAL;
1456
1457	return 0;
1458}
1459
1460static ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1461{
1462	struct file *file = iocb->ki_filp;
1463	struct inode *inode = file_inode(file);
1464	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1465	loff_t pos;
1466	ssize_t written = 0;
1467	ssize_t written_buffered;
1468	size_t prev_left = 0;
1469	loff_t endbyte;
1470	ssize_t err;
1471	unsigned int ilock_flags = 0;
1472	struct iomap_dio *dio;
1473
1474	if (iocb->ki_flags & IOCB_NOWAIT)
1475		ilock_flags |= BTRFS_ILOCK_TRY;
1476
1477	/*
1478	 * If the write DIO is within EOF, use a shared lock and also only if
1479	 * security bits will likely not be dropped by file_remove_privs() called
1480	 * from btrfs_write_check(). Either will need to be rechecked after the
1481	 * lock was acquired.
1482	 */
1483	if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode) && IS_NOSEC(inode))
1484		ilock_flags |= BTRFS_ILOCK_SHARED;
1485
1486relock:
1487	err = btrfs_inode_lock(BTRFS_I(inode), ilock_flags);
1488	if (err < 0)
1489		return err;
1490
1491	/* Shared lock cannot be used with security bits set. */
1492	if ((ilock_flags & BTRFS_ILOCK_SHARED) && !IS_NOSEC(inode)) {
1493		btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1494		ilock_flags &= ~BTRFS_ILOCK_SHARED;
1495		goto relock;
1496	}
1497
1498	err = generic_write_checks(iocb, from);
1499	if (err <= 0) {
1500		btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1501		return err;
1502	}
1503
1504	err = btrfs_write_check(iocb, from, err);
1505	if (err < 0) {
1506		btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1507		goto out;
1508	}
1509
1510	pos = iocb->ki_pos;
1511	/*
1512	 * Re-check since file size may have changed just before taking the
1513	 * lock or pos may have changed because of O_APPEND in generic_write_check()
1514	 */
1515	if ((ilock_flags & BTRFS_ILOCK_SHARED) &&
1516	    pos + iov_iter_count(from) > i_size_read(inode)) {
1517		btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1518		ilock_flags &= ~BTRFS_ILOCK_SHARED;
1519		goto relock;
1520	}
1521
1522	if (check_direct_IO(fs_info, from, pos)) {
1523		btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1524		goto buffered;
1525	}
1526
1527	/*
1528	 * The iov_iter can be mapped to the same file range we are writing to.
1529	 * If that's the case, then we will deadlock in the iomap code, because
1530	 * it first calls our callback btrfs_dio_iomap_begin(), which will create
1531	 * an ordered extent, and after that it will fault in the pages that the
1532	 * iov_iter refers to. During the fault in we end up in the readahead
1533	 * pages code (starting at btrfs_readahead()), which will lock the range,
1534	 * find that ordered extent and then wait for it to complete (at
1535	 * btrfs_lock_and_flush_ordered_range()), resulting in a deadlock since
1536	 * obviously the ordered extent can never complete as we didn't submit
1537	 * yet the respective bio(s). This always happens when the buffer is
1538	 * memory mapped to the same file range, since the iomap DIO code always
1539	 * invalidates pages in the target file range (after starting and waiting
1540	 * for any writeback).
1541	 *
1542	 * So here we disable page faults in the iov_iter and then retry if we
1543	 * got -EFAULT, faulting in the pages before the retry.
1544	 */
1545	from->nofault = true;
1546	dio = btrfs_dio_write(iocb, from, written);
1547	from->nofault = false;
1548
1549	/*
1550	 * iomap_dio_complete() will call btrfs_sync_file() if we have a dsync
1551	 * iocb, and that needs to lock the inode. So unlock it before calling
1552	 * iomap_dio_complete() to avoid a deadlock.
1553	 */
1554	btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1555
1556	if (IS_ERR_OR_NULL(dio))
1557		err = PTR_ERR_OR_ZERO(dio);
1558	else
1559		err = iomap_dio_complete(dio);
1560
1561	/* No increment (+=) because iomap returns a cumulative value. */
1562	if (err > 0)
1563		written = err;
1564
1565	if (iov_iter_count(from) > 0 && (err == -EFAULT || err > 0)) {
1566		const size_t left = iov_iter_count(from);
1567		/*
1568		 * We have more data left to write. Try to fault in as many as
1569		 * possible of the remainder pages and retry. We do this without
1570		 * releasing and locking again the inode, to prevent races with
1571		 * truncate.
1572		 *
1573		 * Also, in case the iov refers to pages in the file range of the
1574		 * file we want to write to (due to a mmap), we could enter an
1575		 * infinite loop if we retry after faulting the pages in, since
1576		 * iomap will invalidate any pages in the range early on, before
1577		 * it tries to fault in the pages of the iov. So we keep track of
1578		 * how much was left of iov in the previous EFAULT and fallback
1579		 * to buffered IO in case we haven't made any progress.
1580		 */
1581		if (left == prev_left) {
1582			err = -ENOTBLK;
1583		} else {
1584			fault_in_iov_iter_readable(from, left);
1585			prev_left = left;
1586			goto relock;
1587		}
1588	}
1589
1590	/*
1591	 * If 'err' is -ENOTBLK or we have not written all data, then it means
1592	 * we must fallback to buffered IO.
1593	 */
1594	if ((err < 0 && err != -ENOTBLK) || !iov_iter_count(from))
1595		goto out;
1596
1597buffered:
1598	/*
1599	 * If we are in a NOWAIT context, then return -EAGAIN to signal the caller
1600	 * it must retry the operation in a context where blocking is acceptable,
1601	 * because even if we end up not blocking during the buffered IO attempt
1602	 * below, we will block when flushing and waiting for the IO.
1603	 */
1604	if (iocb->ki_flags & IOCB_NOWAIT) {
1605		err = -EAGAIN;
1606		goto out;
1607	}
1608
1609	pos = iocb->ki_pos;
1610	written_buffered = btrfs_buffered_write(iocb, from);
1611	if (written_buffered < 0) {
1612		err = written_buffered;
1613		goto out;
1614	}
1615	/*
1616	 * Ensure all data is persisted. We want the next direct IO read to be
1617	 * able to read what was just written.
1618	 */
1619	endbyte = pos + written_buffered - 1;
1620	err = btrfs_fdatawrite_range(inode, pos, endbyte);
1621	if (err)
1622		goto out;
1623	err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1624	if (err)
1625		goto out;
1626	written += written_buffered;
1627	iocb->ki_pos = pos + written_buffered;
1628	invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1629				 endbyte >> PAGE_SHIFT);
1630out:
1631	return err < 0 ? err : written;
1632}
1633
1634static ssize_t btrfs_encoded_write(struct kiocb *iocb, struct iov_iter *from,
1635			const struct btrfs_ioctl_encoded_io_args *encoded)
1636{
1637	struct file *file = iocb->ki_filp;
1638	struct inode *inode = file_inode(file);
1639	loff_t count;
1640	ssize_t ret;
1641
1642	btrfs_inode_lock(BTRFS_I(inode), 0);
1643	count = encoded->len;
1644	ret = generic_write_checks_count(iocb, &count);
1645	if (ret == 0 && count != encoded->len) {
1646		/*
1647		 * The write got truncated by generic_write_checks_count(). We
1648		 * can't do a partial encoded write.
1649		 */
1650		ret = -EFBIG;
1651	}
1652	if (ret || encoded->len == 0)
1653		goto out;
1654
1655	ret = btrfs_write_check(iocb, from, encoded->len);
1656	if (ret < 0)
1657		goto out;
1658
1659	ret = btrfs_do_encoded_write(iocb, from, encoded);
1660out:
1661	btrfs_inode_unlock(BTRFS_I(inode), 0);
1662	return ret;
 
1663}
1664
1665ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from,
1666			    const struct btrfs_ioctl_encoded_io_args *encoded)
1667{
1668	struct file *file = iocb->ki_filp;
1669	struct btrfs_inode *inode = BTRFS_I(file_inode(file));
1670	ssize_t num_written, num_sync;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1671
1672	/*
1673	 * If the fs flips readonly due to some impossible error, although we
1674	 * have opened a file as writable, we have to stop this write operation
1675	 * to ensure consistency.
 
1676	 */
1677	if (BTRFS_FS_ERROR(inode->root->fs_info))
1678		return -EROFS;
 
 
 
1679
1680	if (encoded && (iocb->ki_flags & IOCB_NOWAIT))
1681		return -EOPNOTSUPP;
 
 
 
 
 
1682
1683	if (encoded) {
1684		num_written = btrfs_encoded_write(iocb, from, encoded);
1685		num_sync = encoded->len;
1686	} else if (iocb->ki_flags & IOCB_DIRECT) {
1687		num_written = btrfs_direct_write(iocb, from);
1688		num_sync = num_written;
1689	} else {
1690		num_written = btrfs_buffered_write(iocb, from);
1691		num_sync = num_written;
 
 
 
 
 
1692	}
1693
1694	btrfs_set_inode_last_sub_trans(inode);
 
1695
1696	if (num_sync > 0) {
1697		num_sync = generic_write_sync(iocb, num_sync);
1698		if (num_sync < 0)
1699			num_written = num_sync;
 
 
 
 
 
1700	}
1701
1702	return num_written;
1703}
1704
1705static ssize_t btrfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1706{
1707	return btrfs_do_write_iter(iocb, from, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1708}
1709
1710int btrfs_release_file(struct inode *inode, struct file *filp)
1711{
1712	struct btrfs_file_private *private = filp->private_data;
1713
1714	if (private) {
1715		kfree(private->filldir_buf);
1716		free_extent_state(private->llseek_cached_state);
1717		kfree(private);
1718		filp->private_data = NULL;
1719	}
1720
1721	/*
1722	 * Set by setattr when we are about to truncate a file from a non-zero
1723	 * size to a zero size.  This tries to flush down new bytes that may
1724	 * have been written if the application were using truncate to replace
1725	 * a file in place.
1726	 */
1727	if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
1728			       &BTRFS_I(inode)->runtime_flags))
1729			filemap_flush(inode->i_mapping);
1730	return 0;
1731}
1732
1733static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
1734{
1735	int ret;
1736	struct blk_plug plug;
1737
1738	/*
1739	 * This is only called in fsync, which would do synchronous writes, so
1740	 * a plug can merge adjacent IOs as much as possible.  Esp. in case of
1741	 * multiple disks using raid profile, a large IO can be split to
1742	 * several segments of stripe length (currently 64K).
1743	 */
1744	blk_start_plug(&plug);
1745	ret = btrfs_fdatawrite_range(inode, start, end);
1746	blk_finish_plug(&plug);
1747
1748	return ret;
1749}
1750
1751static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx)
1752{
1753	struct btrfs_inode *inode = BTRFS_I(ctx->inode);
1754	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1755
1756	if (btrfs_inode_in_log(inode, btrfs_get_fs_generation(fs_info)) &&
1757	    list_empty(&ctx->ordered_extents))
1758		return true;
1759
1760	/*
1761	 * If we are doing a fast fsync we can not bail out if the inode's
1762	 * last_trans is <= then the last committed transaction, because we only
1763	 * update the last_trans of the inode during ordered extent completion,
1764	 * and for a fast fsync we don't wait for that, we only wait for the
1765	 * writeback to complete.
1766	 */
1767	if (inode->last_trans <= btrfs_get_last_trans_committed(fs_info) &&
1768	    (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) ||
1769	     list_empty(&ctx->ordered_extents)))
1770		return true;
1771
1772	return false;
1773}
1774
1775/*
1776 * fsync call for both files and directories.  This logs the inode into
1777 * the tree log instead of forcing full commits whenever possible.
1778 *
1779 * It needs to call filemap_fdatawait so that all ordered extent updates are
1780 * in the metadata btree are up to date for copying to the log.
1781 *
1782 * It drops the inode mutex before doing the tree log commit.  This is an
1783 * important optimization for directories because holding the mutex prevents
1784 * new operations on the dir while we write to disk.
1785 */
1786int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1787{
1788	struct dentry *dentry = file_dentry(file);
1789	struct inode *inode = d_inode(dentry);
1790	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1791	struct btrfs_root *root = BTRFS_I(inode)->root;
1792	struct btrfs_trans_handle *trans;
1793	struct btrfs_log_ctx ctx;
1794	int ret = 0, err;
 
1795	u64 len;
1796	bool full_sync;
1797
1798	trace_btrfs_sync_file(file, datasync);
1799
1800	btrfs_init_log_ctx(&ctx, inode);
1801
1802	/*
1803	 * Always set the range to a full range, otherwise we can get into
1804	 * several problems, from missing file extent items to represent holes
1805	 * when not using the NO_HOLES feature, to log tree corruption due to
1806	 * races between hole detection during logging and completion of ordered
1807	 * extents outside the range, to missing checksums due to ordered extents
1808	 * for which we flushed only a subset of their pages.
1809	 */
1810	start = 0;
1811	end = LLONG_MAX;
1812	len = (u64)LLONG_MAX + 1;
1813
1814	/*
1815	 * We write the dirty pages in the range and wait until they complete
1816	 * out of the ->i_mutex. If so, we can flush the dirty pages by
1817	 * multi-task, and make the performance up.  See
1818	 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1819	 */
1820	ret = start_ordered_ops(inode, start, end);
1821	if (ret)
1822		goto out;
1823
1824	btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
1825
 
1826	atomic_inc(&root->log_batch);
1827
1828	/*
1829	 * Before we acquired the inode's lock and the mmap lock, someone may
1830	 * have dirtied more pages in the target range. We need to make sure
1831	 * that writeback for any such pages does not start while we are logging
1832	 * the inode, because if it does, any of the following might happen when
1833	 * we are not doing a full inode sync:
1834	 *
1835	 * 1) We log an extent after its writeback finishes but before its
1836	 *    checksums are added to the csum tree, leading to -EIO errors
1837	 *    when attempting to read the extent after a log replay.
1838	 *
1839	 * 2) We can end up logging an extent before its writeback finishes.
1840	 *    Therefore after the log replay we will have a file extent item
1841	 *    pointing to an unwritten extent (and no data checksums as well).
1842	 *
1843	 * So trigger writeback for any eventual new dirty pages and then we
1844	 * wait for all ordered extents to complete below.
1845	 */
1846	ret = start_ordered_ops(inode, start, end);
1847	if (ret) {
1848		btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
1849		goto out;
1850	}
1851
1852	/*
1853	 * Always check for the full sync flag while holding the inode's lock,
1854	 * to avoid races with other tasks. The flag must be either set all the
1855	 * time during logging or always off all the time while logging.
1856	 * We check the flag here after starting delalloc above, because when
1857	 * running delalloc the full sync flag may be set if we need to drop
1858	 * extra extent map ranges due to temporary memory allocation failures.
1859	 */
1860	full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1861			     &BTRFS_I(inode)->runtime_flags);
1862
1863	/*
1864	 * We have to do this here to avoid the priority inversion of waiting on
1865	 * IO of a lower priority task while holding a transaction open.
1866	 *
1867	 * For a full fsync we wait for the ordered extents to complete while
1868	 * for a fast fsync we wait just for writeback to complete, and then
1869	 * attach the ordered extents to the transaction so that a transaction
1870	 * commit waits for their completion, to avoid data loss if we fsync,
1871	 * the current transaction commits before the ordered extents complete
1872	 * and a power failure happens right after that.
1873	 *
1874	 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the
1875	 * logical address recorded in the ordered extent may change. We need
1876	 * to wait for the IO to stabilize the logical address.
1877	 */
1878	if (full_sync || btrfs_is_zoned(fs_info)) {
 
 
 
 
 
 
1879		ret = btrfs_wait_ordered_range(inode, start, len);
1880	} else {
1881		/*
1882		 * Get our ordered extents as soon as possible to avoid doing
1883		 * checksum lookups in the csum tree, and use instead the
1884		 * checksums attached to the ordered extents.
1885		 */
1886		btrfs_get_ordered_extents_for_logging(BTRFS_I(inode),
1887						      &ctx.ordered_extents);
1888		ret = filemap_fdatawait_range(inode->i_mapping, start, end);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1889	}
1890
1891	if (ret)
1892		goto out_release_extents;
1893
1894	atomic_inc(&root->log_batch);
1895
1896	if (skip_inode_logging(&ctx)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1897		/*
1898		 * We've had everything committed since the last time we were
1899		 * modified so clear this flag in case it was set for whatever
1900		 * reason, it's no longer relevant.
1901		 */
1902		clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1903			  &BTRFS_I(inode)->runtime_flags);
1904		/*
1905		 * An ordered extent might have started before and completed
1906		 * already with io errors, in which case the inode was not
1907		 * updated and we end up here. So check the inode's mapping
1908		 * for any errors that might have happened since we last
1909		 * checked called fsync.
1910		 */
1911		ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
1912		goto out_release_extents;
1913	}
1914
1915	/*
 
 
 
 
 
 
1916	 * We use start here because we will need to wait on the IO to complete
1917	 * in btrfs_sync_log, which could require joining a transaction (for
1918	 * example checking cross references in the nocow path).  If we use join
1919	 * here we could get into a situation where we're waiting on IO to
1920	 * happen that is blocked on a transaction trying to commit.  With start
1921	 * we inc the extwriter counter, so we wait for all extwriters to exit
1922	 * before we start blocking joiners.  This comment is to keep somebody
1923	 * from thinking they are super smart and changing this to
1924	 * btrfs_join_transaction *cough*Josef*cough*.
1925	 */
1926	trans = btrfs_start_transaction(root, 0);
1927	if (IS_ERR(trans)) {
1928		ret = PTR_ERR(trans);
1929		goto out_release_extents;
 
1930	}
1931	trans->in_fsync = true;
 
 
1932
1933	ret = btrfs_log_dentry_safe(trans, dentry, &ctx);
1934	btrfs_release_log_ctx_extents(&ctx);
1935	if (ret < 0) {
1936		/* Fallthrough and commit/free transaction. */
1937		ret = BTRFS_LOG_FORCE_COMMIT;
1938	}
1939
1940	/* we've logged all the items and now have a consistent
1941	 * version of the file in the log.  It is possible that
1942	 * someone will come in and modify the file, but that's
1943	 * fine because the log is consistent on disk, and we
1944	 * have references to all of the file's extents
1945	 *
1946	 * It is possible that someone will come in and log the
1947	 * file again, but that will end up using the synchronization
1948	 * inside btrfs_sync_log to keep things safe.
1949	 */
1950	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
1951
1952	if (ret == BTRFS_NO_LOG_SYNC) {
1953		ret = btrfs_end_transaction(trans);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1954		goto out;
1955	}
1956
1957	/* We successfully logged the inode, attempt to sync the log. */
1958	if (!ret) {
1959		ret = btrfs_sync_log(trans, root, &ctx);
1960		if (!ret) {
1961			ret = btrfs_end_transaction(trans);
1962			goto out;
 
 
 
1963		}
1964	}
1965
1966	/*
1967	 * At this point we need to commit the transaction because we had
1968	 * btrfs_need_log_full_commit() or some other error.
1969	 *
1970	 * If we didn't do a full sync we have to stop the trans handle, wait on
1971	 * the ordered extents, start it again and commit the transaction.  If
1972	 * we attempt to wait on the ordered extents here we could deadlock with
1973	 * something like fallocate() that is holding the extent lock trying to
1974	 * start a transaction while some other thread is trying to commit the
1975	 * transaction while we (fsync) are currently holding the transaction
1976	 * open.
1977	 */
1978	if (!full_sync) {
1979		ret = btrfs_end_transaction(trans);
1980		if (ret)
1981			goto out;
1982		ret = btrfs_wait_ordered_range(inode, start, len);
1983		if (ret)
1984			goto out;
1985
1986		/*
1987		 * This is safe to use here because we're only interested in
1988		 * making sure the transaction that had the ordered extents is
1989		 * committed.  We aren't waiting on anything past this point,
1990		 * we're purely getting the transaction and committing it.
1991		 */
1992		trans = btrfs_attach_transaction_barrier(root);
1993		if (IS_ERR(trans)) {
1994			ret = PTR_ERR(trans);
1995
1996			/*
1997			 * We committed the transaction and there's no currently
1998			 * running transaction, this means everything we care
1999			 * about made it to disk and we are done.
2000			 */
2001			if (ret == -ENOENT)
2002				ret = 0;
2003			goto out;
2004		}
 
 
 
2005	}
2006
2007	ret = btrfs_commit_transaction(trans);
2008out:
2009	ASSERT(list_empty(&ctx.list));
2010	ASSERT(list_empty(&ctx.conflict_inodes));
2011	err = file_check_and_advance_wb_err(file);
2012	if (!ret)
2013		ret = err;
2014	return ret > 0 ? -EIO : ret;
2015
2016out_release_extents:
2017	btrfs_release_log_ctx_extents(&ctx);
2018	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2019	goto out;
2020}
2021
2022static const struct vm_operations_struct btrfs_file_vm_ops = {
2023	.fault		= filemap_fault,
2024	.map_pages	= filemap_map_pages,
2025	.page_mkwrite	= btrfs_page_mkwrite,
2026};
2027
2028static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
2029{
2030	struct address_space *mapping = filp->f_mapping;
2031
2032	if (!mapping->a_ops->read_folio)
2033		return -ENOEXEC;
2034
2035	file_accessed(filp);
2036	vma->vm_ops = &btrfs_file_vm_ops;
2037
2038	return 0;
2039}
2040
2041static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2042			  int slot, u64 start, u64 end)
2043{
2044	struct btrfs_file_extent_item *fi;
2045	struct btrfs_key key;
2046
2047	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2048		return 0;
2049
2050	btrfs_item_key_to_cpu(leaf, &key, slot);
2051	if (key.objectid != btrfs_ino(inode) ||
2052	    key.type != BTRFS_EXTENT_DATA_KEY)
2053		return 0;
2054
2055	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2056
2057	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2058		return 0;
2059
2060	if (btrfs_file_extent_disk_bytenr(leaf, fi))
2061		return 0;
2062
2063	if (key.offset == end)
2064		return 1;
2065	if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2066		return 1;
2067	return 0;
2068}
2069
2070static int fill_holes(struct btrfs_trans_handle *trans,
2071		struct btrfs_inode *inode,
2072		struct btrfs_path *path, u64 offset, u64 end)
2073{
2074	struct btrfs_fs_info *fs_info = trans->fs_info;
2075	struct btrfs_root *root = inode->root;
2076	struct extent_buffer *leaf;
2077	struct btrfs_file_extent_item *fi;
2078	struct extent_map *hole_em;
 
2079	struct btrfs_key key;
2080	int ret;
2081
2082	if (btrfs_fs_incompat(fs_info, NO_HOLES))
2083		goto out;
2084
2085	key.objectid = btrfs_ino(inode);
2086	key.type = BTRFS_EXTENT_DATA_KEY;
2087	key.offset = offset;
2088
2089	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2090	if (ret <= 0) {
2091		/*
2092		 * We should have dropped this offset, so if we find it then
2093		 * something has gone horribly wrong.
2094		 */
2095		if (ret == 0)
2096			ret = -EINVAL;
2097		return ret;
2098	}
2099
2100	leaf = path->nodes[0];
2101	if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2102		u64 num_bytes;
2103
2104		path->slots[0]--;
2105		fi = btrfs_item_ptr(leaf, path->slots[0],
2106				    struct btrfs_file_extent_item);
2107		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2108			end - offset;
2109		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2110		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2111		btrfs_set_file_extent_offset(leaf, fi, 0);
2112		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2113		btrfs_mark_buffer_dirty(trans, leaf);
2114		goto out;
2115	}
2116
2117	if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2118		u64 num_bytes;
2119
2120		key.offset = offset;
2121		btrfs_set_item_key_safe(trans, path, &key);
2122		fi = btrfs_item_ptr(leaf, path->slots[0],
2123				    struct btrfs_file_extent_item);
2124		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2125			offset;
2126		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2127		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2128		btrfs_set_file_extent_offset(leaf, fi, 0);
2129		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2130		btrfs_mark_buffer_dirty(trans, leaf);
2131		goto out;
2132	}
2133	btrfs_release_path(path);
2134
2135	ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset,
2136				       end - offset);
 
2137	if (ret)
2138		return ret;
2139
2140out:
2141	btrfs_release_path(path);
2142
2143	hole_em = alloc_extent_map();
2144	if (!hole_em) {
2145		btrfs_drop_extent_map_range(inode, offset, end - 1, false);
2146		btrfs_set_inode_full_sync(inode);
 
2147	} else {
2148		hole_em->start = offset;
2149		hole_em->len = end - offset;
2150		hole_em->ram_bytes = hole_em->len;
2151		hole_em->orig_start = offset;
2152
2153		hole_em->block_start = EXTENT_MAP_HOLE;
2154		hole_em->block_len = 0;
2155		hole_em->orig_block_len = 0;
 
 
2156		hole_em->generation = trans->transid;
2157
2158		ret = btrfs_replace_extent_map_range(inode, hole_em, true);
 
 
 
 
 
2159		free_extent_map(hole_em);
2160		if (ret)
2161			btrfs_set_inode_full_sync(inode);
 
2162	}
2163
2164	return 0;
2165}
2166
2167/*
2168 * Find a hole extent on given inode and change start/len to the end of hole
2169 * extent.(hole/vacuum extent whose em->start <= start &&
2170 *	   em->start + em->len > start)
2171 * When a hole extent is found, return 1 and modify start/len.
2172 */
2173static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len)
2174{
2175	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2176	struct extent_map *em;
2177	int ret = 0;
2178
2179	em = btrfs_get_extent(inode, NULL, 0,
2180			      round_down(*start, fs_info->sectorsize),
2181			      round_up(*len, fs_info->sectorsize));
2182	if (IS_ERR(em))
2183		return PTR_ERR(em);
 
 
 
2184
2185	/* Hole or vacuum extent(only exists in no-hole mode) */
2186	if (em->block_start == EXTENT_MAP_HOLE) {
2187		ret = 1;
2188		*len = em->start + em->len > *start + *len ?
2189		       0 : *start + *len - em->start - em->len;
2190		*start = em->start + em->len;
2191	}
2192	free_extent_map(em);
2193	return ret;
2194}
2195
2196static void btrfs_punch_hole_lock_range(struct inode *inode,
2197					const u64 lockstart,
2198					const u64 lockend,
2199					struct extent_state **cached_state)
2200{
2201	/*
2202	 * For subpage case, if the range is not at page boundary, we could
2203	 * have pages at the leading/tailing part of the range.
2204	 * This could lead to dead loop since filemap_range_has_page()
2205	 * will always return true.
2206	 * So here we need to do extra page alignment for
2207	 * filemap_range_has_page().
2208	 */
2209	const u64 page_lockstart = round_up(lockstart, PAGE_SIZE);
2210	const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1;
2211
2212	while (1) {
2213		truncate_pagecache_range(inode, lockstart, lockend);
2214
2215		lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2216			    cached_state);
2217		/*
2218		 * We can't have ordered extents in the range, nor dirty/writeback
2219		 * pages, because we have locked the inode's VFS lock in exclusive
2220		 * mode, we have locked the inode's i_mmap_lock in exclusive mode,
2221		 * we have flushed all delalloc in the range and we have waited
2222		 * for any ordered extents in the range to complete.
2223		 * We can race with anyone reading pages from this range, so after
2224		 * locking the range check if we have pages in the range, and if
2225		 * we do, unlock the range and retry.
2226		 */
2227		if (!filemap_range_has_page(inode->i_mapping, page_lockstart,
2228					    page_lockend))
2229			break;
2230
2231		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2232			      cached_state);
2233	}
2234
2235	btrfs_assert_inode_range_clean(BTRFS_I(inode), lockstart, lockend);
2236}
2237
2238static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans,
2239				     struct btrfs_inode *inode,
2240				     struct btrfs_path *path,
2241				     struct btrfs_replace_extent_info *extent_info,
2242				     const u64 replace_len,
2243				     const u64 bytes_to_drop)
2244{
2245	struct btrfs_fs_info *fs_info = trans->fs_info;
2246	struct btrfs_root *root = inode->root;
2247	struct btrfs_file_extent_item *extent;
2248	struct extent_buffer *leaf;
2249	struct btrfs_key key;
2250	int slot;
2251	struct btrfs_ref ref = { 0 };
2252	int ret;
2253
2254	if (replace_len == 0)
2255		return 0;
2256
2257	if (extent_info->disk_offset == 0 &&
2258	    btrfs_fs_incompat(fs_info, NO_HOLES)) {
2259		btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2260		return 0;
2261	}
2262
2263	key.objectid = btrfs_ino(inode);
2264	key.type = BTRFS_EXTENT_DATA_KEY;
2265	key.offset = extent_info->file_offset;
2266	ret = btrfs_insert_empty_item(trans, root, path, &key,
2267				      sizeof(struct btrfs_file_extent_item));
2268	if (ret)
2269		return ret;
2270	leaf = path->nodes[0];
2271	slot = path->slots[0];
2272	write_extent_buffer(leaf, extent_info->extent_buf,
2273			    btrfs_item_ptr_offset(leaf, slot),
2274			    sizeof(struct btrfs_file_extent_item));
2275	extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2276	ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE);
2277	btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset);
2278	btrfs_set_file_extent_num_bytes(leaf, extent, replace_len);
2279	if (extent_info->is_new_extent)
2280		btrfs_set_file_extent_generation(leaf, extent, trans->transid);
2281	btrfs_mark_buffer_dirty(trans, leaf);
2282	btrfs_release_path(path);
2283
2284	ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset,
2285						replace_len);
2286	if (ret)
2287		return ret;
2288
2289	/* If it's a hole, nothing more needs to be done. */
2290	if (extent_info->disk_offset == 0) {
2291		btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2292		return 0;
2293	}
2294
2295	btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop);
2296
2297	if (extent_info->is_new_extent && extent_info->insertions == 0) {
2298		key.objectid = extent_info->disk_offset;
2299		key.type = BTRFS_EXTENT_ITEM_KEY;
2300		key.offset = extent_info->disk_len;
2301		ret = btrfs_alloc_reserved_file_extent(trans, root,
2302						       btrfs_ino(inode),
2303						       extent_info->file_offset,
2304						       extent_info->qgroup_reserved,
2305						       &key);
2306	} else {
2307		u64 ref_offset;
2308
2309		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2310				       extent_info->disk_offset,
2311				       extent_info->disk_len, 0,
2312				       root->root_key.objectid);
2313		ref_offset = extent_info->file_offset - extent_info->data_offset;
2314		btrfs_init_data_ref(&ref, root->root_key.objectid,
2315				    btrfs_ino(inode), ref_offset, 0, false);
2316		ret = btrfs_inc_extent_ref(trans, &ref);
2317	}
2318
2319	extent_info->insertions++;
2320
2321	return ret;
2322}
2323
2324/*
2325 * The respective range must have been previously locked, as well as the inode.
2326 * The end offset is inclusive (last byte of the range).
2327 * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing
2328 * the file range with an extent.
2329 * When not punching a hole, we don't want to end up in a state where we dropped
2330 * extents without inserting a new one, so we must abort the transaction to avoid
2331 * a corruption.
2332 */
2333int btrfs_replace_file_extents(struct btrfs_inode *inode,
2334			       struct btrfs_path *path, const u64 start,
2335			       const u64 end,
2336			       struct btrfs_replace_extent_info *extent_info,
2337			       struct btrfs_trans_handle **trans_out)
2338{
2339	struct btrfs_drop_extents_args drop_args = { 0 };
2340	struct btrfs_root *root = inode->root;
2341	struct btrfs_fs_info *fs_info = root->fs_info;
2342	u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2343	u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize);
2344	struct btrfs_trans_handle *trans = NULL;
2345	struct btrfs_block_rsv *rsv;
2346	unsigned int rsv_count;
2347	u64 cur_offset;
2348	u64 len = end - start;
2349	int ret = 0;
2350
2351	if (end <= start)
2352		return -EINVAL;
2353
2354	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2355	if (!rsv) {
2356		ret = -ENOMEM;
2357		goto out;
2358	}
2359	rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2360	rsv->failfast = true;
2361
2362	/*
2363	 * 1 - update the inode
2364	 * 1 - removing the extents in the range
2365	 * 1 - adding the hole extent if no_holes isn't set or if we are
2366	 *     replacing the range with a new extent
2367	 */
2368	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info)
2369		rsv_count = 3;
2370	else
2371		rsv_count = 2;
2372
2373	trans = btrfs_start_transaction(root, rsv_count);
2374	if (IS_ERR(trans)) {
2375		ret = PTR_ERR(trans);
2376		trans = NULL;
2377		goto out_free;
2378	}
2379
2380	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2381				      min_size, false);
2382	if (WARN_ON(ret))
2383		goto out_trans;
2384	trans->block_rsv = rsv;
2385
2386	cur_offset = start;
2387	drop_args.path = path;
2388	drop_args.end = end + 1;
2389	drop_args.drop_cache = true;
2390	while (cur_offset < end) {
2391		drop_args.start = cur_offset;
2392		ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2393		/* If we are punching a hole decrement the inode's byte count */
2394		if (!extent_info)
2395			btrfs_update_inode_bytes(inode, 0,
2396						 drop_args.bytes_found);
2397		if (ret != -ENOSPC) {
2398			/*
2399			 * The only time we don't want to abort is if we are
2400			 * attempting to clone a partial inline extent, in which
2401			 * case we'll get EOPNOTSUPP.  However if we aren't
2402			 * clone we need to abort no matter what, because if we
2403			 * got EOPNOTSUPP via prealloc then we messed up and
2404			 * need to abort.
2405			 */
2406			if (ret &&
2407			    (ret != -EOPNOTSUPP ||
2408			     (extent_info && extent_info->is_new_extent)))
2409				btrfs_abort_transaction(trans, ret);
2410			break;
2411		}
2412
2413		trans->block_rsv = &fs_info->trans_block_rsv;
2414
2415		if (!extent_info && cur_offset < drop_args.drop_end &&
2416		    cur_offset < ino_size) {
2417			ret = fill_holes(trans, inode, path, cur_offset,
2418					 drop_args.drop_end);
2419			if (ret) {
2420				/*
2421				 * If we failed then we didn't insert our hole
2422				 * entries for the area we dropped, so now the
2423				 * fs is corrupted, so we must abort the
2424				 * transaction.
2425				 */
2426				btrfs_abort_transaction(trans, ret);
2427				break;
2428			}
2429		} else if (!extent_info && cur_offset < drop_args.drop_end) {
2430			/*
2431			 * We are past the i_size here, but since we didn't
2432			 * insert holes we need to clear the mapped area so we
2433			 * know to not set disk_i_size in this area until a new
2434			 * file extent is inserted here.
2435			 */
2436			ret = btrfs_inode_clear_file_extent_range(inode,
2437					cur_offset,
2438					drop_args.drop_end - cur_offset);
2439			if (ret) {
2440				/*
2441				 * We couldn't clear our area, so we could
2442				 * presumably adjust up and corrupt the fs, so
2443				 * we need to abort.
2444				 */
2445				btrfs_abort_transaction(trans, ret);
2446				break;
2447			}
2448		}
2449
2450		if (extent_info &&
2451		    drop_args.drop_end > extent_info->file_offset) {
2452			u64 replace_len = drop_args.drop_end -
2453					  extent_info->file_offset;
2454
2455			ret = btrfs_insert_replace_extent(trans, inode,	path,
2456					extent_info, replace_len,
2457					drop_args.bytes_found);
2458			if (ret) {
2459				btrfs_abort_transaction(trans, ret);
2460				break;
2461			}
2462			extent_info->data_len -= replace_len;
2463			extent_info->data_offset += replace_len;
2464			extent_info->file_offset += replace_len;
2465		}
2466
2467		/*
2468		 * We are releasing our handle on the transaction, balance the
2469		 * dirty pages of the btree inode and flush delayed items, and
2470		 * then get a new transaction handle, which may now point to a
2471		 * new transaction in case someone else may have committed the
2472		 * transaction we used to replace/drop file extent items. So
2473		 * bump the inode's iversion and update mtime and ctime except
2474		 * if we are called from a dedupe context. This is because a
2475		 * power failure/crash may happen after the transaction is
2476		 * committed and before we finish replacing/dropping all the
2477		 * file extent items we need.
2478		 */
2479		inode_inc_iversion(&inode->vfs_inode);
2480
2481		if (!extent_info || extent_info->update_times)
2482			inode_set_mtime_to_ts(&inode->vfs_inode,
2483					      inode_set_ctime_current(&inode->vfs_inode));
2484
2485		ret = btrfs_update_inode(trans, inode);
2486		if (ret)
2487			break;
2488
2489		btrfs_end_transaction(trans);
2490		btrfs_btree_balance_dirty(fs_info);
2491
2492		trans = btrfs_start_transaction(root, rsv_count);
2493		if (IS_ERR(trans)) {
2494			ret = PTR_ERR(trans);
2495			trans = NULL;
2496			break;
2497		}
2498
2499		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2500					      rsv, min_size, false);
2501		if (WARN_ON(ret))
2502			break;
2503		trans->block_rsv = rsv;
2504
2505		cur_offset = drop_args.drop_end;
2506		len = end - cur_offset;
2507		if (!extent_info && len) {
2508			ret = find_first_non_hole(inode, &cur_offset, &len);
2509			if (unlikely(ret < 0))
2510				break;
2511			if (ret && !len) {
2512				ret = 0;
2513				break;
2514			}
2515		}
2516	}
2517
2518	/*
2519	 * If we were cloning, force the next fsync to be a full one since we
2520	 * we replaced (or just dropped in the case of cloning holes when
2521	 * NO_HOLES is enabled) file extent items and did not setup new extent
2522	 * maps for the replacement extents (or holes).
2523	 */
2524	if (extent_info && !extent_info->is_new_extent)
2525		btrfs_set_inode_full_sync(inode);
2526
2527	if (ret)
2528		goto out_trans;
2529
2530	trans->block_rsv = &fs_info->trans_block_rsv;
2531	/*
2532	 * If we are using the NO_HOLES feature we might have had already an
2533	 * hole that overlaps a part of the region [lockstart, lockend] and
2534	 * ends at (or beyond) lockend. Since we have no file extent items to
2535	 * represent holes, drop_end can be less than lockend and so we must
2536	 * make sure we have an extent map representing the existing hole (the
2537	 * call to __btrfs_drop_extents() might have dropped the existing extent
2538	 * map representing the existing hole), otherwise the fast fsync path
2539	 * will not record the existence of the hole region
2540	 * [existing_hole_start, lockend].
2541	 */
2542	if (drop_args.drop_end <= end)
2543		drop_args.drop_end = end + 1;
2544	/*
2545	 * Don't insert file hole extent item if it's for a range beyond eof
2546	 * (because it's useless) or if it represents a 0 bytes range (when
2547	 * cur_offset == drop_end).
2548	 */
2549	if (!extent_info && cur_offset < ino_size &&
2550	    cur_offset < drop_args.drop_end) {
2551		ret = fill_holes(trans, inode, path, cur_offset,
2552				 drop_args.drop_end);
2553		if (ret) {
2554			/* Same comment as above. */
2555			btrfs_abort_transaction(trans, ret);
2556			goto out_trans;
2557		}
2558	} else if (!extent_info && cur_offset < drop_args.drop_end) {
2559		/* See the comment in the loop above for the reasoning here. */
2560		ret = btrfs_inode_clear_file_extent_range(inode, cur_offset,
2561					drop_args.drop_end - cur_offset);
2562		if (ret) {
2563			btrfs_abort_transaction(trans, ret);
2564			goto out_trans;
2565		}
2566
2567	}
2568	if (extent_info) {
2569		ret = btrfs_insert_replace_extent(trans, inode, path,
2570				extent_info, extent_info->data_len,
2571				drop_args.bytes_found);
2572		if (ret) {
2573			btrfs_abort_transaction(trans, ret);
2574			goto out_trans;
2575		}
2576	}
2577
2578out_trans:
2579	if (!trans)
2580		goto out_free;
2581
2582	trans->block_rsv = &fs_info->trans_block_rsv;
2583	if (ret)
2584		btrfs_end_transaction(trans);
2585	else
2586		*trans_out = trans;
2587out_free:
2588	btrfs_free_block_rsv(fs_info, rsv);
2589out:
2590	return ret;
2591}
2592
2593static int btrfs_punch_hole(struct file *file, loff_t offset, loff_t len)
2594{
2595	struct inode *inode = file_inode(file);
2596	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2597	struct btrfs_root *root = BTRFS_I(inode)->root;
2598	struct extent_state *cached_state = NULL;
2599	struct btrfs_path *path;
2600	struct btrfs_trans_handle *trans = NULL;
 
2601	u64 lockstart;
2602	u64 lockend;
2603	u64 tail_start;
2604	u64 tail_len;
2605	u64 orig_start = offset;
 
 
 
2606	int ret = 0;
 
 
2607	bool same_block;
 
2608	u64 ino_size;
2609	bool truncated_block = false;
2610	bool updated_inode = false;
2611
2612	btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2613
2614	ret = btrfs_wait_ordered_range(inode, offset, len);
2615	if (ret)
2616		goto out_only_mutex;
2617
2618	ino_size = round_up(inode->i_size, fs_info->sectorsize);
2619	ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
 
2620	if (ret < 0)
2621		goto out_only_mutex;
2622	if (ret && !len) {
2623		/* Already in a large hole */
2624		ret = 0;
2625		goto out_only_mutex;
2626	}
2627
2628	ret = file_modified(file);
2629	if (ret)
2630		goto out_only_mutex;
2631
2632	lockstart = round_up(offset, fs_info->sectorsize);
2633	lockend = round_down(offset + len, fs_info->sectorsize) - 1;
2634	same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2635		== (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2636	/*
2637	 * We needn't truncate any block which is beyond the end of the file
2638	 * because we are sure there is no data there.
2639	 */
2640	/*
2641	 * Only do this if we are in the same block and we aren't doing the
2642	 * entire block.
2643	 */
2644	if (same_block && len < fs_info->sectorsize) {
2645		if (offset < ino_size) {
2646			truncated_block = true;
2647			ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2648						   0);
2649		} else {
2650			ret = 0;
2651		}
2652		goto out_only_mutex;
2653	}
2654
2655	/* zero back part of the first block */
2656	if (offset < ino_size) {
2657		truncated_block = true;
2658		ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
2659		if (ret) {
2660			btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2661			return ret;
2662		}
2663	}
2664
2665	/* Check the aligned pages after the first unaligned page,
2666	 * if offset != orig_start, which means the first unaligned page
2667	 * including several following pages are already in holes,
2668	 * the extra check can be skipped */
2669	if (offset == orig_start) {
2670		/* after truncate page, check hole again */
2671		len = offset + len - lockstart;
2672		offset = lockstart;
2673		ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2674		if (ret < 0)
2675			goto out_only_mutex;
2676		if (ret && !len) {
2677			ret = 0;
2678			goto out_only_mutex;
2679		}
2680		lockstart = offset;
2681	}
2682
2683	/* Check the tail unaligned part is in a hole */
2684	tail_start = lockend + 1;
2685	tail_len = offset + len - tail_start;
2686	if (tail_len) {
2687		ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len);
2688		if (unlikely(ret < 0))
2689			goto out_only_mutex;
2690		if (!ret) {
2691			/* zero the front end of the last page */
2692			if (tail_start + tail_len < ino_size) {
2693				truncated_block = true;
2694				ret = btrfs_truncate_block(BTRFS_I(inode),
2695							tail_start + tail_len,
2696							0, 1);
2697				if (ret)
2698					goto out_only_mutex;
2699			}
2700		}
2701	}
2702
2703	if (lockend < lockstart) {
2704		ret = 0;
2705		goto out_only_mutex;
2706	}
2707
2708	btrfs_punch_hole_lock_range(inode, lockstart, lockend, &cached_state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2709
2710	path = btrfs_alloc_path();
2711	if (!path) {
2712		ret = -ENOMEM;
2713		goto out;
2714	}
2715
2716	ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart,
2717					 lockend, NULL, &trans);
2718	btrfs_free_path(path);
2719	if (ret)
2720		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2721
2722	ASSERT(trans != NULL);
2723	inode_inc_iversion(inode);
2724	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
2725	ret = btrfs_update_inode(trans, BTRFS_I(inode));
 
 
2726	updated_inode = true;
2727	btrfs_end_transaction(trans);
2728	btrfs_btree_balance_dirty(fs_info);
 
 
 
2729out:
2730	unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2731		      &cached_state);
2732out_only_mutex:
2733	if (!updated_inode && truncated_block && !ret) {
2734		/*
2735		 * If we only end up zeroing part of a page, we still need to
2736		 * update the inode item, so that all the time fields are
2737		 * updated as well as the necessary btrfs inode in memory fields
2738		 * for detecting, at fsync time, if the inode isn't yet in the
2739		 * log tree or it's there but not up to date.
2740		 */
2741		struct timespec64 now = inode_set_ctime_current(inode);
2742
2743		inode_inc_iversion(inode);
2744		inode_set_mtime_to_ts(inode, now);
2745		trans = btrfs_start_transaction(root, 1);
2746		if (IS_ERR(trans)) {
2747			ret = PTR_ERR(trans);
2748		} else {
2749			int ret2;
2750
2751			ret = btrfs_update_inode(trans, BTRFS_I(inode));
2752			ret2 = btrfs_end_transaction(trans);
2753			if (!ret)
2754				ret = ret2;
2755		}
2756	}
2757	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2758	return ret;
 
 
2759}
2760
2761/* Helper structure to record which range is already reserved */
2762struct falloc_range {
2763	struct list_head list;
2764	u64 start;
2765	u64 len;
2766};
2767
2768/*
2769 * Helper function to add falloc range
2770 *
2771 * Caller should have locked the larger range of extent containing
2772 * [start, len)
2773 */
2774static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2775{
 
2776	struct falloc_range *range = NULL;
2777
2778	if (!list_empty(head)) {
2779		/*
2780		 * As fallocate iterates by bytenr order, we only need to check
2781		 * the last range.
2782		 */
2783		range = list_last_entry(head, struct falloc_range, list);
2784		if (range->start + range->len == start) {
2785			range->len += len;
2786			return 0;
2787		}
2788	}
2789
 
 
 
 
 
 
 
 
 
 
2790	range = kmalloc(sizeof(*range), GFP_KERNEL);
2791	if (!range)
2792		return -ENOMEM;
2793	range->start = start;
2794	range->len = len;
2795	list_add_tail(&range->list, head);
2796	return 0;
2797}
2798
2799static int btrfs_fallocate_update_isize(struct inode *inode,
2800					const u64 end,
2801					const int mode)
2802{
2803	struct btrfs_trans_handle *trans;
2804	struct btrfs_root *root = BTRFS_I(inode)->root;
2805	int ret;
2806	int ret2;
2807
2808	if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
2809		return 0;
2810
2811	trans = btrfs_start_transaction(root, 1);
2812	if (IS_ERR(trans))
2813		return PTR_ERR(trans);
2814
2815	inode_set_ctime_current(inode);
2816	i_size_write(inode, end);
2817	btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
2818	ret = btrfs_update_inode(trans, BTRFS_I(inode));
2819	ret2 = btrfs_end_transaction(trans);
2820
2821	return ret ? ret : ret2;
2822}
2823
2824enum {
2825	RANGE_BOUNDARY_WRITTEN_EXTENT,
2826	RANGE_BOUNDARY_PREALLOC_EXTENT,
2827	RANGE_BOUNDARY_HOLE,
2828};
2829
2830static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode,
2831						 u64 offset)
2832{
2833	const u64 sectorsize = inode->root->fs_info->sectorsize;
2834	struct extent_map *em;
2835	int ret;
2836
2837	offset = round_down(offset, sectorsize);
2838	em = btrfs_get_extent(inode, NULL, 0, offset, sectorsize);
2839	if (IS_ERR(em))
2840		return PTR_ERR(em);
2841
2842	if (em->block_start == EXTENT_MAP_HOLE)
2843		ret = RANGE_BOUNDARY_HOLE;
2844	else if (em->flags & EXTENT_FLAG_PREALLOC)
2845		ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
2846	else
2847		ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
2848
2849	free_extent_map(em);
2850	return ret;
2851}
2852
2853static int btrfs_zero_range(struct inode *inode,
2854			    loff_t offset,
2855			    loff_t len,
2856			    const int mode)
2857{
2858	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2859	struct extent_map *em;
2860	struct extent_changeset *data_reserved = NULL;
2861	int ret;
2862	u64 alloc_hint = 0;
2863	const u64 sectorsize = fs_info->sectorsize;
2864	u64 alloc_start = round_down(offset, sectorsize);
2865	u64 alloc_end = round_up(offset + len, sectorsize);
2866	u64 bytes_to_reserve = 0;
2867	bool space_reserved = false;
2868
2869	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
2870			      alloc_end - alloc_start);
2871	if (IS_ERR(em)) {
2872		ret = PTR_ERR(em);
2873		goto out;
2874	}
2875
2876	/*
2877	 * Avoid hole punching and extent allocation for some cases. More cases
2878	 * could be considered, but these are unlikely common and we keep things
2879	 * as simple as possible for now. Also, intentionally, if the target
2880	 * range contains one or more prealloc extents together with regular
2881	 * extents and holes, we drop all the existing extents and allocate a
2882	 * new prealloc extent, so that we get a larger contiguous disk extent.
2883	 */
2884	if (em->start <= alloc_start && (em->flags & EXTENT_FLAG_PREALLOC)) {
2885		const u64 em_end = em->start + em->len;
2886
2887		if (em_end >= offset + len) {
2888			/*
2889			 * The whole range is already a prealloc extent,
2890			 * do nothing except updating the inode's i_size if
2891			 * needed.
2892			 */
2893			free_extent_map(em);
2894			ret = btrfs_fallocate_update_isize(inode, offset + len,
2895							   mode);
2896			goto out;
2897		}
2898		/*
2899		 * Part of the range is already a prealloc extent, so operate
2900		 * only on the remaining part of the range.
2901		 */
2902		alloc_start = em_end;
2903		ASSERT(IS_ALIGNED(alloc_start, sectorsize));
2904		len = offset + len - alloc_start;
2905		offset = alloc_start;
2906		alloc_hint = em->block_start + em->len;
2907	}
2908	free_extent_map(em);
2909
2910	if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
2911	    BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
2912		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
2913				      sectorsize);
2914		if (IS_ERR(em)) {
2915			ret = PTR_ERR(em);
2916			goto out;
2917		}
2918
2919		if (em->flags & EXTENT_FLAG_PREALLOC) {
2920			free_extent_map(em);
2921			ret = btrfs_fallocate_update_isize(inode, offset + len,
2922							   mode);
2923			goto out;
2924		}
2925		if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
2926			free_extent_map(em);
2927			ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2928						   0);
2929			if (!ret)
2930				ret = btrfs_fallocate_update_isize(inode,
2931								   offset + len,
2932								   mode);
2933			return ret;
2934		}
2935		free_extent_map(em);
2936		alloc_start = round_down(offset, sectorsize);
2937		alloc_end = alloc_start + sectorsize;
2938		goto reserve_space;
2939	}
2940
2941	alloc_start = round_up(offset, sectorsize);
2942	alloc_end = round_down(offset + len, sectorsize);
2943
2944	/*
2945	 * For unaligned ranges, check the pages at the boundaries, they might
2946	 * map to an extent, in which case we need to partially zero them, or
2947	 * they might map to a hole, in which case we need our allocation range
2948	 * to cover them.
2949	 */
2950	if (!IS_ALIGNED(offset, sectorsize)) {
2951		ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
2952							    offset);
2953		if (ret < 0)
2954			goto out;
2955		if (ret == RANGE_BOUNDARY_HOLE) {
2956			alloc_start = round_down(offset, sectorsize);
2957			ret = 0;
2958		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
2959			ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
2960			if (ret)
2961				goto out;
2962		} else {
2963			ret = 0;
2964		}
2965	}
2966
2967	if (!IS_ALIGNED(offset + len, sectorsize)) {
2968		ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
2969							    offset + len);
2970		if (ret < 0)
2971			goto out;
2972		if (ret == RANGE_BOUNDARY_HOLE) {
2973			alloc_end = round_up(offset + len, sectorsize);
2974			ret = 0;
2975		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
2976			ret = btrfs_truncate_block(BTRFS_I(inode), offset + len,
2977						   0, 1);
2978			if (ret)
2979				goto out;
2980		} else {
2981			ret = 0;
2982		}
2983	}
2984
2985reserve_space:
2986	if (alloc_start < alloc_end) {
2987		struct extent_state *cached_state = NULL;
2988		const u64 lockstart = alloc_start;
2989		const u64 lockend = alloc_end - 1;
2990
2991		bytes_to_reserve = alloc_end - alloc_start;
2992		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
2993						      bytes_to_reserve);
2994		if (ret < 0)
2995			goto out;
2996		space_reserved = true;
2997		btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2998					    &cached_state);
2999		ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
3000						alloc_start, bytes_to_reserve);
3001		if (ret) {
3002			unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
3003				      lockend, &cached_state);
3004			goto out;
3005		}
3006		ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3007						alloc_end - alloc_start,
3008						i_blocksize(inode),
3009						offset + len, &alloc_hint);
3010		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3011			      &cached_state);
3012		/* btrfs_prealloc_file_range releases reserved space on error */
3013		if (ret) {
3014			space_reserved = false;
3015			goto out;
3016		}
3017	}
3018	ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3019 out:
3020	if (ret && space_reserved)
3021		btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3022					       alloc_start, bytes_to_reserve);
3023	extent_changeset_free(data_reserved);
3024
3025	return ret;
3026}
3027
3028static long btrfs_fallocate(struct file *file, int mode,
3029			    loff_t offset, loff_t len)
3030{
3031	struct inode *inode = file_inode(file);
3032	struct extent_state *cached_state = NULL;
3033	struct extent_changeset *data_reserved = NULL;
3034	struct falloc_range *range;
3035	struct falloc_range *tmp;
3036	LIST_HEAD(reserve_list);
3037	u64 cur_offset;
3038	u64 last_byte;
3039	u64 alloc_start;
3040	u64 alloc_end;
3041	u64 alloc_hint = 0;
3042	u64 locked_end;
3043	u64 actual_end = 0;
3044	u64 data_space_needed = 0;
3045	u64 data_space_reserved = 0;
3046	u64 qgroup_reserved = 0;
3047	struct extent_map *em;
3048	int blocksize = BTRFS_I(inode)->root->fs_info->sectorsize;
3049	int ret;
3050
3051	/* Do not allow fallocate in ZONED mode */
3052	if (btrfs_is_zoned(btrfs_sb(inode->i_sb)))
3053		return -EOPNOTSUPP;
3054
3055	alloc_start = round_down(offset, blocksize);
3056	alloc_end = round_up(offset + len, blocksize);
3057	cur_offset = alloc_start;
3058
3059	/* Make sure we aren't being give some crap mode */
3060	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3061		     FALLOC_FL_ZERO_RANGE))
3062		return -EOPNOTSUPP;
3063
3064	if (mode & FALLOC_FL_PUNCH_HOLE)
3065		return btrfs_punch_hole(file, offset, len);
 
 
 
 
 
 
 
 
 
3066
3067	btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3068
3069	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3070		ret = inode_newsize_ok(inode, offset + len);
3071		if (ret)
3072			goto out;
3073	}
3074
3075	ret = file_modified(file);
3076	if (ret)
3077		goto out;
3078
3079	/*
3080	 * TODO: Move these two operations after we have checked
3081	 * accurate reserved space, or fallocate can still fail but
3082	 * with page truncated or size expanded.
3083	 *
3084	 * But that's a minor problem and won't do much harm BTW.
3085	 */
3086	if (alloc_start > inode->i_size) {
3087		ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode),
3088					alloc_start);
3089		if (ret)
3090			goto out;
3091	} else if (offset + len > inode->i_size) {
3092		/*
3093		 * If we are fallocating from the end of the file onward we
3094		 * need to zero out the end of the block if i_size lands in the
3095		 * middle of a block.
3096		 */
3097		ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
3098		if (ret)
3099			goto out;
3100	}
3101
3102	/*
3103	 * We have locked the inode at the VFS level (in exclusive mode) and we
3104	 * have locked the i_mmap_lock lock (in exclusive mode). Now before
3105	 * locking the file range, flush all dealloc in the range and wait for
3106	 * all ordered extents in the range to complete. After this we can lock
3107	 * the file range and, due to the previous locking we did, we know there
3108	 * can't be more delalloc or ordered extents in the range.
3109	 */
3110	ret = btrfs_wait_ordered_range(inode, alloc_start,
3111				       alloc_end - alloc_start);
3112	if (ret)
3113		goto out;
3114
3115	if (mode & FALLOC_FL_ZERO_RANGE) {
3116		ret = btrfs_zero_range(inode, offset, len, mode);
3117		btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3118		return ret;
3119	}
3120
3121	locked_end = alloc_end - 1;
3122	lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3123		    &cached_state);
3124
3125	btrfs_assert_inode_range_clean(BTRFS_I(inode), alloc_start, locked_end);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3126
3127	/* First, check if we exceed the qgroup limit */
3128	while (cur_offset < alloc_end) {
3129		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
3130				      alloc_end - cur_offset);
3131		if (IS_ERR(em)) {
3132			ret = PTR_ERR(em);
 
 
 
 
 
3133			break;
3134		}
3135		last_byte = min(extent_map_end(em), alloc_end);
3136		actual_end = min_t(u64, extent_map_end(em), offset + len);
3137		last_byte = ALIGN(last_byte, blocksize);
3138		if (em->block_start == EXTENT_MAP_HOLE ||
3139		    (cur_offset >= inode->i_size &&
3140		     !(em->flags & EXTENT_FLAG_PREALLOC))) {
3141			const u64 range_len = last_byte - cur_offset;
3142
3143			ret = add_falloc_range(&reserve_list, cur_offset, range_len);
3144			if (ret < 0) {
3145				free_extent_map(em);
3146				break;
3147			}
3148			ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
3149					&data_reserved, cur_offset, range_len);
3150			if (ret < 0) {
3151				free_extent_map(em);
3152				break;
3153			}
3154			qgroup_reserved += range_len;
3155			data_space_needed += range_len;
3156		}
3157		free_extent_map(em);
3158		cur_offset = last_byte;
3159	}
3160
3161	if (!ret && data_space_needed > 0) {
3162		/*
3163		 * We are safe to reserve space here as we can't have delalloc
3164		 * in the range, see above.
3165		 */
3166		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3167						      data_space_needed);
3168		if (!ret)
3169			data_space_reserved = data_space_needed;
3170	}
3171
3172	/*
3173	 * If ret is still 0, means we're OK to fallocate.
3174	 * Or just cleanup the list and exit.
3175	 */
3176	list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3177		if (!ret) {
3178			ret = btrfs_prealloc_file_range(inode, mode,
3179					range->start,
3180					range->len, i_blocksize(inode),
3181					offset + len, &alloc_hint);
3182			/*
3183			 * btrfs_prealloc_file_range() releases space even
3184			 * if it returns an error.
3185			 */
3186			data_space_reserved -= range->len;
3187			qgroup_reserved -= range->len;
3188		} else if (data_space_reserved > 0) {
3189			btrfs_free_reserved_data_space(BTRFS_I(inode),
3190					       data_reserved, range->start,
3191					       range->len);
3192			data_space_reserved -= range->len;
3193			qgroup_reserved -= range->len;
3194		} else if (qgroup_reserved > 0) {
3195			btrfs_qgroup_free_data(BTRFS_I(inode), data_reserved,
3196					       range->start, range->len, NULL);
3197			qgroup_reserved -= range->len;
3198		}
3199		list_del(&range->list);
3200		kfree(range);
3201	}
3202	if (ret < 0)
3203		goto out_unlock;
3204
3205	/*
3206	 * We didn't need to allocate any more space, but we still extended the
3207	 * size of the file so we need to update i_size and the inode item.
3208	 */
3209	ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3210out_unlock:
3211	unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3212		      &cached_state);
3213out:
3214	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3215	extent_changeset_free(data_reserved);
3216	return ret;
3217}
3218
3219/*
3220 * Helper for btrfs_find_delalloc_in_range(). Find a subrange in a given range
3221 * that has unflushed and/or flushing delalloc. There might be other adjacent
3222 * subranges after the one it found, so btrfs_find_delalloc_in_range() keeps
3223 * looping while it gets adjacent subranges, and merging them together.
3224 */
3225static bool find_delalloc_subrange(struct btrfs_inode *inode, u64 start, u64 end,
3226				   struct extent_state **cached_state,
3227				   bool *search_io_tree,
3228				   u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3229{
3230	u64 len = end + 1 - start;
3231	u64 delalloc_len = 0;
3232	struct btrfs_ordered_extent *oe;
3233	u64 oe_start;
3234	u64 oe_end;
3235
3236	/*
3237	 * Search the io tree first for EXTENT_DELALLOC. If we find any, it
3238	 * means we have delalloc (dirty pages) for which writeback has not
3239	 * started yet.
3240	 */
3241	if (*search_io_tree) {
3242		spin_lock(&inode->lock);
3243		if (inode->delalloc_bytes > 0) {
3244			spin_unlock(&inode->lock);
3245			*delalloc_start_ret = start;
3246			delalloc_len = count_range_bits(&inode->io_tree,
3247							delalloc_start_ret, end,
3248							len, EXTENT_DELALLOC, 1,
3249							cached_state);
3250		} else {
3251			spin_unlock(&inode->lock);
3252		}
3253	}
3254
3255	if (delalloc_len > 0) {
3256		/*
3257		 * If delalloc was found then *delalloc_start_ret has a sector size
3258		 * aligned value (rounded down).
 
3259		 */
3260		*delalloc_end_ret = *delalloc_start_ret + delalloc_len - 1;
3261
3262		if (*delalloc_start_ret == start) {
3263			/* Delalloc for the whole range, nothing more to do. */
3264			if (*delalloc_end_ret == end)
3265				return true;
3266			/* Else trim our search range for ordered extents. */
3267			start = *delalloc_end_ret + 1;
3268			len = end + 1 - start;
3269		}
3270	} else {
3271		/* No delalloc, future calls don't need to search again. */
3272		*search_io_tree = false;
3273	}
3274
3275	/*
3276	 * Now also check if there's any ordered extent in the range.
3277	 * We do this because:
3278	 *
3279	 * 1) When delalloc is flushed, the file range is locked, we clear the
3280	 *    EXTENT_DELALLOC bit from the io tree and create an extent map and
3281	 *    an ordered extent for the write. So we might just have been called
3282	 *    after delalloc is flushed and before the ordered extent completes
3283	 *    and inserts the new file extent item in the subvolume's btree;
3284	 *
3285	 * 2) We may have an ordered extent created by flushing delalloc for a
3286	 *    subrange that starts before the subrange we found marked with
3287	 *    EXTENT_DELALLOC in the io tree.
3288	 *
3289	 * We could also use the extent map tree to find such delalloc that is
3290	 * being flushed, but using the ordered extents tree is more efficient
3291	 * because it's usually much smaller as ordered extents are removed from
3292	 * the tree once they complete. With the extent maps, we mau have them
3293	 * in the extent map tree for a very long time, and they were either
3294	 * created by previous writes or loaded by read operations.
3295	 */
3296	oe = btrfs_lookup_first_ordered_range(inode, start, len);
3297	if (!oe)
3298		return (delalloc_len > 0);
3299
3300	/* The ordered extent may span beyond our search range. */
3301	oe_start = max(oe->file_offset, start);
3302	oe_end = min(oe->file_offset + oe->num_bytes - 1, end);
3303
3304	btrfs_put_ordered_extent(oe);
3305
3306	/* Don't have unflushed delalloc, return the ordered extent range. */
3307	if (delalloc_len == 0) {
3308		*delalloc_start_ret = oe_start;
3309		*delalloc_end_ret = oe_end;
3310		return true;
3311	}
3312
3313	/*
3314	 * We have both unflushed delalloc (io_tree) and an ordered extent.
3315	 * If the ranges are adjacent returned a combined range, otherwise
3316	 * return the leftmost range.
3317	 */
3318	if (oe_start < *delalloc_start_ret) {
3319		if (oe_end < *delalloc_start_ret)
3320			*delalloc_end_ret = oe_end;
3321		*delalloc_start_ret = oe_start;
3322	} else if (*delalloc_end_ret + 1 == oe_start) {
3323		*delalloc_end_ret = oe_end;
3324	}
3325
3326	return true;
3327}
3328
3329/*
3330 * Check if there's delalloc in a given range.
3331 *
3332 * @inode:               The inode.
3333 * @start:               The start offset of the range. It does not need to be
3334 *                       sector size aligned.
3335 * @end:                 The end offset (inclusive value) of the search range.
3336 *                       It does not need to be sector size aligned.
3337 * @cached_state:        Extent state record used for speeding up delalloc
3338 *                       searches in the inode's io_tree. Can be NULL.
3339 * @delalloc_start_ret:  Output argument, set to the start offset of the
3340 *                       subrange found with delalloc (may not be sector size
3341 *                       aligned).
3342 * @delalloc_end_ret:    Output argument, set to he end offset (inclusive value)
3343 *                       of the subrange found with delalloc.
3344 *
3345 * Returns true if a subrange with delalloc is found within the given range, and
3346 * if so it sets @delalloc_start_ret and @delalloc_end_ret with the start and
3347 * end offsets of the subrange.
3348 */
3349bool btrfs_find_delalloc_in_range(struct btrfs_inode *inode, u64 start, u64 end,
3350				  struct extent_state **cached_state,
3351				  u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3352{
3353	u64 cur_offset = round_down(start, inode->root->fs_info->sectorsize);
3354	u64 prev_delalloc_end = 0;
3355	bool search_io_tree = true;
3356	bool ret = false;
3357
3358	while (cur_offset <= end) {
3359		u64 delalloc_start;
3360		u64 delalloc_end;
3361		bool delalloc;
3362
3363		delalloc = find_delalloc_subrange(inode, cur_offset, end,
3364						  cached_state, &search_io_tree,
3365						  &delalloc_start,
3366						  &delalloc_end);
3367		if (!delalloc)
3368			break;
3369
3370		if (prev_delalloc_end == 0) {
3371			/* First subrange found. */
3372			*delalloc_start_ret = max(delalloc_start, start);
3373			*delalloc_end_ret = delalloc_end;
3374			ret = true;
3375		} else if (delalloc_start == prev_delalloc_end + 1) {
3376			/* Subrange adjacent to the previous one, merge them. */
3377			*delalloc_end_ret = delalloc_end;
3378		} else {
3379			/* Subrange not adjacent to the previous one, exit. */
3380			break;
3381		}
3382
3383		prev_delalloc_end = delalloc_end;
3384		cur_offset = delalloc_end + 1;
3385		cond_resched();
3386	}
3387
3388	return ret;
3389}
3390
3391/*
3392 * Check if there's a hole or delalloc range in a range representing a hole (or
3393 * prealloc extent) found in the inode's subvolume btree.
3394 *
3395 * @inode:      The inode.
3396 * @whence:     Seek mode (SEEK_DATA or SEEK_HOLE).
3397 * @start:      Start offset of the hole region. It does not need to be sector
3398 *              size aligned.
3399 * @end:        End offset (inclusive value) of the hole region. It does not
3400 *              need to be sector size aligned.
3401 * @start_ret:  Return parameter, used to set the start of the subrange in the
3402 *              hole that matches the search criteria (seek mode), if such
3403 *              subrange is found (return value of the function is true).
3404 *              The value returned here may not be sector size aligned.
3405 *
3406 * Returns true if a subrange matching the given seek mode is found, and if one
3407 * is found, it updates @start_ret with the start of the subrange.
3408 */
3409static bool find_desired_extent_in_hole(struct btrfs_inode *inode, int whence,
3410					struct extent_state **cached_state,
3411					u64 start, u64 end, u64 *start_ret)
3412{
3413	u64 delalloc_start;
3414	u64 delalloc_end;
3415	bool delalloc;
3416
3417	delalloc = btrfs_find_delalloc_in_range(inode, start, end, cached_state,
3418						&delalloc_start, &delalloc_end);
3419	if (delalloc && whence == SEEK_DATA) {
3420		*start_ret = delalloc_start;
3421		return true;
3422	}
3423
3424	if (delalloc && whence == SEEK_HOLE) {
3425		/*
3426		 * We found delalloc but it starts after out start offset. So we
3427		 * have a hole between our start offset and the delalloc start.
3428		 */
3429		if (start < delalloc_start) {
3430			*start_ret = start;
3431			return true;
3432		}
3433		/*
3434		 * Delalloc range starts at our start offset.
3435		 * If the delalloc range's length is smaller than our range,
3436		 * then it means we have a hole that starts where the delalloc
3437		 * subrange ends.
3438		 */
3439		if (delalloc_end < end) {
3440			*start_ret = delalloc_end + 1;
3441			return true;
3442		}
3443
3444		/* There's delalloc for the whole range. */
3445		return false;
3446	}
3447
3448	if (!delalloc && whence == SEEK_HOLE) {
3449		*start_ret = start;
3450		return true;
3451	}
3452
 
 
 
3453	/*
3454	 * No delalloc in the range and we are seeking for data. The caller has
3455	 * to iterate to the next extent item in the subvolume btree.
3456	 */
3457	return false;
 
 
 
 
 
 
 
 
3458}
3459
3460static loff_t find_desired_extent(struct file *file, loff_t offset, int whence)
3461{
3462	struct btrfs_inode *inode = BTRFS_I(file->f_mapping->host);
3463	struct btrfs_file_private *private = file->private_data;
3464	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3465	struct extent_state *cached_state = NULL;
3466	struct extent_state **delalloc_cached_state;
3467	const loff_t i_size = i_size_read(&inode->vfs_inode);
3468	const u64 ino = btrfs_ino(inode);
3469	struct btrfs_root *root = inode->root;
3470	struct btrfs_path *path;
3471	struct btrfs_key key;
3472	u64 last_extent_end;
3473	u64 lockstart;
3474	u64 lockend;
3475	u64 start;
3476	int ret;
3477	bool found = false;
3478
3479	if (i_size == 0 || offset >= i_size)
3480		return -ENXIO;
3481
3482	/*
3483	 * Quick path. If the inode has no prealloc extents and its number of
3484	 * bytes used matches its i_size, then it can not have holes.
3485	 */
3486	if (whence == SEEK_HOLE &&
3487	    !(inode->flags & BTRFS_INODE_PREALLOC) &&
3488	    inode_get_bytes(&inode->vfs_inode) == i_size)
3489		return i_size;
3490
3491	if (!private) {
3492		private = kzalloc(sizeof(*private), GFP_KERNEL);
3493		/*
3494		 * No worries if memory allocation failed.
3495		 * The private structure is used only for speeding up multiple
3496		 * lseek SEEK_HOLE/DATA calls to a file when there's delalloc,
3497		 * so everything will still be correct.
3498		 */
3499		file->private_data = private;
3500	}
3501
3502	if (private)
3503		delalloc_cached_state = &private->llseek_cached_state;
3504	else
3505		delalloc_cached_state = NULL;
3506
3507	/*
3508	 * offset can be negative, in this case we start finding DATA/HOLE from
3509	 * the very start of the file.
3510	 */
3511	start = max_t(loff_t, 0, offset);
3512
3513	lockstart = round_down(start, fs_info->sectorsize);
3514	lockend = round_up(i_size, fs_info->sectorsize);
3515	if (lockend <= lockstart)
3516		lockend = lockstart + fs_info->sectorsize;
3517	lockend--;
 
3518
3519	path = btrfs_alloc_path();
3520	if (!path)
3521		return -ENOMEM;
3522	path->reada = READA_FORWARD;
3523
3524	key.objectid = ino;
3525	key.type = BTRFS_EXTENT_DATA_KEY;
3526	key.offset = start;
3527
3528	last_extent_end = lockstart;
3529
3530	lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3531
3532	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3533	if (ret < 0) {
3534		goto out;
3535	} else if (ret > 0 && path->slots[0] > 0) {
3536		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
3537		if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
3538			path->slots[0]--;
3539	}
3540
3541	while (start < i_size) {
3542		struct extent_buffer *leaf = path->nodes[0];
3543		struct btrfs_file_extent_item *extent;
3544		u64 extent_end;
3545		u8 type;
3546
3547		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3548			ret = btrfs_next_leaf(root, path);
3549			if (ret < 0)
3550				goto out;
3551			else if (ret > 0)
3552				break;
3553
3554			leaf = path->nodes[0];
3555		}
3556
3557		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3558		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
3559			break;
3560
3561		extent_end = btrfs_file_extent_end(path);
3562
3563		/*
3564		 * In the first iteration we may have a slot that points to an
3565		 * extent that ends before our start offset, so skip it.
3566		 */
3567		if (extent_end <= start) {
3568			path->slots[0]++;
3569			continue;
3570		}
3571
3572		/* We have an implicit hole, NO_HOLES feature is likely set. */
3573		if (last_extent_end < key.offset) {
3574			u64 search_start = last_extent_end;
3575			u64 found_start;
3576
3577			/*
3578			 * First iteration, @start matches @offset and it's
3579			 * within the hole.
3580			 */
3581			if (start == offset)
3582				search_start = offset;
3583
3584			found = find_desired_extent_in_hole(inode, whence,
3585							    delalloc_cached_state,
3586							    search_start,
3587							    key.offset - 1,
3588							    &found_start);
3589			if (found) {
3590				start = found_start;
3591				break;
3592			}
3593			/*
3594			 * Didn't find data or a hole (due to delalloc) in the
3595			 * implicit hole range, so need to analyze the extent.
3596			 */
3597		}
3598
3599		extent = btrfs_item_ptr(leaf, path->slots[0],
3600					struct btrfs_file_extent_item);
3601		type = btrfs_file_extent_type(leaf, extent);
3602
3603		/*
3604		 * Can't access the extent's disk_bytenr field if this is an
3605		 * inline extent, since at that offset, it's where the extent
3606		 * data starts.
3607		 */
3608		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
3609		    (type == BTRFS_FILE_EXTENT_REG &&
3610		     btrfs_file_extent_disk_bytenr(leaf, extent) == 0)) {
3611			/*
3612			 * Explicit hole or prealloc extent, search for delalloc.
3613			 * A prealloc extent is treated like a hole.
3614			 */
3615			u64 search_start = key.offset;
3616			u64 found_start;
3617
3618			/*
3619			 * First iteration, @start matches @offset and it's
3620			 * within the hole.
3621			 */
3622			if (start == offset)
3623				search_start = offset;
3624
3625			found = find_desired_extent_in_hole(inode, whence,
3626							    delalloc_cached_state,
3627							    search_start,
3628							    extent_end - 1,
3629							    &found_start);
3630			if (found) {
3631				start = found_start;
3632				break;
3633			}
3634			/*
3635			 * Didn't find data or a hole (due to delalloc) in the
3636			 * implicit hole range, so need to analyze the next
3637			 * extent item.
3638			 */
3639		} else {
3640			/*
3641			 * Found a regular or inline extent.
3642			 * If we are seeking for data, adjust the start offset
3643			 * and stop, we're done.
3644			 */
3645			if (whence == SEEK_DATA) {
3646				start = max_t(u64, key.offset, offset);
3647				found = true;
3648				break;
3649			}
3650			/*
3651			 * Else, we are seeking for a hole, check the next file
3652			 * extent item.
3653			 */
3654		}
3655
3656		start = extent_end;
3657		last_extent_end = extent_end;
3658		path->slots[0]++;
3659		if (fatal_signal_pending(current)) {
3660			ret = -EINTR;
3661			goto out;
3662		}
3663		cond_resched();
3664	}
3665
3666	/* We have an implicit hole from the last extent found up to i_size. */
3667	if (!found && start < i_size) {
3668		found = find_desired_extent_in_hole(inode, whence,
3669						    delalloc_cached_state, start,
3670						    i_size - 1, &start);
3671		if (!found)
3672			start = i_size;
3673	}
3674
3675out:
3676	unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3677	btrfs_free_path(path);
3678
3679	if (ret < 0)
3680		return ret;
3681
3682	if (whence == SEEK_DATA && start >= i_size)
3683		return -ENXIO;
3684
3685	return min_t(loff_t, start, i_size);
3686}
3687
3688static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3689{
3690	struct inode *inode = file->f_mapping->host;
 
3691
 
3692	switch (whence) {
3693	default:
3694		return generic_file_llseek(file, offset, whence);
 
 
3695	case SEEK_DATA:
3696	case SEEK_HOLE:
3697		btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3698		offset = find_desired_extent(file, offset, whence);
3699		btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3700		break;
3701	}
3702
3703	if (offset < 0)
3704		return offset;
3705
3706	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3707}
3708
3709static int btrfs_file_open(struct inode *inode, struct file *filp)
3710{
3711	int ret;
3712
3713	filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC | FMODE_BUF_WASYNC |
3714		        FMODE_CAN_ODIRECT;
3715
3716	ret = fsverity_file_open(inode, filp);
3717	if (ret)
3718		return ret;
3719	return generic_file_open(inode, filp);
3720}
3721
3722static int check_direct_read(struct btrfs_fs_info *fs_info,
3723			     const struct iov_iter *iter, loff_t offset)
3724{
3725	int ret;
3726	int i, seg;
3727
3728	ret = check_direct_IO(fs_info, iter, offset);
3729	if (ret < 0)
3730		return ret;
3731
3732	if (!iter_is_iovec(iter))
3733		return 0;
3734
3735	for (seg = 0; seg < iter->nr_segs; seg++) {
3736		for (i = seg + 1; i < iter->nr_segs; i++) {
3737			const struct iovec *iov1 = iter_iov(iter) + seg;
3738			const struct iovec *iov2 = iter_iov(iter) + i;
3739
3740			if (iov1->iov_base == iov2->iov_base)
3741				return -EINVAL;
3742		}
3743	}
3744	return 0;
3745}
3746
3747static ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to)
3748{
3749	struct inode *inode = file_inode(iocb->ki_filp);
3750	size_t prev_left = 0;
3751	ssize_t read = 0;
3752	ssize_t ret;
3753
3754	if (fsverity_active(inode))
3755		return 0;
3756
3757	if (check_direct_read(btrfs_sb(inode->i_sb), to, iocb->ki_pos))
3758		return 0;
3759
3760	btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3761again:
3762	/*
3763	 * This is similar to what we do for direct IO writes, see the comment
3764	 * at btrfs_direct_write(), but we also disable page faults in addition
3765	 * to disabling them only at the iov_iter level. This is because when
3766	 * reading from a hole or prealloc extent, iomap calls iov_iter_zero(),
3767	 * which can still trigger page fault ins despite having set ->nofault
3768	 * to true of our 'to' iov_iter.
3769	 *
3770	 * The difference to direct IO writes is that we deadlock when trying
3771	 * to lock the extent range in the inode's tree during he page reads
3772	 * triggered by the fault in (while for writes it is due to waiting for
3773	 * our own ordered extent). This is because for direct IO reads,
3774	 * btrfs_dio_iomap_begin() returns with the extent range locked, which
3775	 * is only unlocked in the endio callback (end_bio_extent_readpage()).
3776	 */
3777	pagefault_disable();
3778	to->nofault = true;
3779	ret = btrfs_dio_read(iocb, to, read);
3780	to->nofault = false;
3781	pagefault_enable();
3782
3783	/* No increment (+=) because iomap returns a cumulative value. */
3784	if (ret > 0)
3785		read = ret;
3786
3787	if (iov_iter_count(to) > 0 && (ret == -EFAULT || ret > 0)) {
3788		const size_t left = iov_iter_count(to);
3789
3790		if (left == prev_left) {
3791			/*
3792			 * We didn't make any progress since the last attempt,
3793			 * fallback to a buffered read for the remainder of the
3794			 * range. This is just to avoid any possibility of looping
3795			 * for too long.
3796			 */
3797			ret = read;
3798		} else {
3799			/*
3800			 * We made some progress since the last retry or this is
3801			 * the first time we are retrying. Fault in as many pages
3802			 * as possible and retry.
3803			 */
3804			fault_in_iov_iter_writeable(to, left);
3805			prev_left = left;
3806			goto again;
3807		}
3808	}
3809	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3810	return ret < 0 ? ret : read;
3811}
3812
3813static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3814{
3815	ssize_t ret = 0;
3816
3817	if (iocb->ki_flags & IOCB_DIRECT) {
3818		ret = btrfs_direct_read(iocb, to);
3819		if (ret < 0 || !iov_iter_count(to) ||
3820		    iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp)))
3821			return ret;
 
3822	}
3823
3824	return filemap_read(iocb, to, ret);
 
 
 
3825}
3826
3827const struct file_operations btrfs_file_operations = {
3828	.llseek		= btrfs_file_llseek,
3829	.read_iter      = btrfs_file_read_iter,
3830	.splice_read	= filemap_splice_read,
3831	.write_iter	= btrfs_file_write_iter,
3832	.splice_write	= iter_file_splice_write,
3833	.mmap		= btrfs_file_mmap,
3834	.open		= btrfs_file_open,
3835	.release	= btrfs_release_file,
3836	.get_unmapped_area = thp_get_unmapped_area,
3837	.fsync		= btrfs_sync_file,
3838	.fallocate	= btrfs_fallocate,
3839	.unlocked_ioctl	= btrfs_ioctl,
3840#ifdef CONFIG_COMPAT
3841	.compat_ioctl	= btrfs_compat_ioctl,
3842#endif
3843	.remap_file_range = btrfs_remap_file_range,
 
 
3844};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3845
3846int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3847{
3848	int ret;
3849
3850	/*
3851	 * So with compression we will find and lock a dirty page and clear the
3852	 * first one as dirty, setup an async extent, and immediately return
3853	 * with the entire range locked but with nobody actually marked with
3854	 * writeback.  So we can't just filemap_write_and_wait_range() and
3855	 * expect it to work since it will just kick off a thread to do the
3856	 * actual work.  So we need to call filemap_fdatawrite_range _again_
3857	 * since it will wait on the page lock, which won't be unlocked until
3858	 * after the pages have been marked as writeback and so we're good to go
3859	 * from there.  We have to do this otherwise we'll miss the ordered
3860	 * extents and that results in badness.  Please Josef, do not think you
3861	 * know better and pull this out at some point in the future, it is
3862	 * right and you are wrong.
3863	 */
3864	ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3865	if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3866			     &BTRFS_I(inode)->runtime_flags))
3867		ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3868
3869	return ret;
3870}
v4.6
 
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/fs.h>
  20#include <linux/pagemap.h>
  21#include <linux/highmem.h>
  22#include <linux/time.h>
  23#include <linux/init.h>
  24#include <linux/string.h>
  25#include <linux/backing-dev.h>
  26#include <linux/mpage.h>
  27#include <linux/falloc.h>
  28#include <linux/swap.h>
  29#include <linux/writeback.h>
  30#include <linux/statfs.h>
  31#include <linux/compat.h>
  32#include <linux/slab.h>
  33#include <linux/btrfs.h>
  34#include <linux/uio.h>
 
 
 
  35#include "ctree.h"
  36#include "disk-io.h"
  37#include "transaction.h"
  38#include "btrfs_inode.h"
  39#include "print-tree.h"
  40#include "tree-log.h"
  41#include "locking.h"
  42#include "volumes.h"
  43#include "qgroup.h"
  44#include "compression.h"
  45
  46static struct kmem_cache *btrfs_inode_defrag_cachep;
  47/*
  48 * when auto defrag is enabled we
  49 * queue up these defrag structs to remember which
  50 * inodes need defragging passes
  51 */
  52struct inode_defrag {
  53	struct rb_node rb_node;
  54	/* objectid */
  55	u64 ino;
  56	/*
  57	 * transid where the defrag was added, we search for
  58	 * extents newer than this
  59	 */
  60	u64 transid;
  61
  62	/* root objectid */
  63	u64 root;
  64
  65	/* last offset we were able to defrag */
  66	u64 last_offset;
  67
  68	/* if we've wrapped around back to zero once already */
  69	int cycled;
  70};
  71
  72static int __compare_inode_defrag(struct inode_defrag *defrag1,
  73				  struct inode_defrag *defrag2)
  74{
  75	if (defrag1->root > defrag2->root)
  76		return 1;
  77	else if (defrag1->root < defrag2->root)
  78		return -1;
  79	else if (defrag1->ino > defrag2->ino)
  80		return 1;
  81	else if (defrag1->ino < defrag2->ino)
  82		return -1;
  83	else
  84		return 0;
  85}
  86
  87/* pop a record for an inode into the defrag tree.  The lock
  88 * must be held already
  89 *
  90 * If you're inserting a record for an older transid than an
  91 * existing record, the transid already in the tree is lowered
  92 *
  93 * If an existing record is found the defrag item you
  94 * pass in is freed
  95 */
  96static int __btrfs_add_inode_defrag(struct inode *inode,
  97				    struct inode_defrag *defrag)
  98{
  99	struct btrfs_root *root = BTRFS_I(inode)->root;
 100	struct inode_defrag *entry;
 101	struct rb_node **p;
 102	struct rb_node *parent = NULL;
 103	int ret;
 104
 105	p = &root->fs_info->defrag_inodes.rb_node;
 106	while (*p) {
 107		parent = *p;
 108		entry = rb_entry(parent, struct inode_defrag, rb_node);
 109
 110		ret = __compare_inode_defrag(defrag, entry);
 111		if (ret < 0)
 112			p = &parent->rb_left;
 113		else if (ret > 0)
 114			p = &parent->rb_right;
 115		else {
 116			/* if we're reinserting an entry for
 117			 * an old defrag run, make sure to
 118			 * lower the transid of our existing record
 119			 */
 120			if (defrag->transid < entry->transid)
 121				entry->transid = defrag->transid;
 122			if (defrag->last_offset > entry->last_offset)
 123				entry->last_offset = defrag->last_offset;
 124			return -EEXIST;
 125		}
 126	}
 127	set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
 128	rb_link_node(&defrag->rb_node, parent, p);
 129	rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
 130	return 0;
 131}
 132
 133static inline int __need_auto_defrag(struct btrfs_root *root)
 134{
 135	if (!btrfs_test_opt(root, AUTO_DEFRAG))
 136		return 0;
 137
 138	if (btrfs_fs_closing(root->fs_info))
 139		return 0;
 140
 141	return 1;
 142}
 143
 144/*
 145 * insert a defrag record for this inode if auto defrag is
 146 * enabled
 147 */
 148int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
 149			   struct inode *inode)
 150{
 151	struct btrfs_root *root = BTRFS_I(inode)->root;
 152	struct inode_defrag *defrag;
 153	u64 transid;
 154	int ret;
 155
 156	if (!__need_auto_defrag(root))
 157		return 0;
 158
 159	if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
 160		return 0;
 161
 162	if (trans)
 163		transid = trans->transid;
 164	else
 165		transid = BTRFS_I(inode)->root->last_trans;
 166
 167	defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
 168	if (!defrag)
 169		return -ENOMEM;
 170
 171	defrag->ino = btrfs_ino(inode);
 172	defrag->transid = transid;
 173	defrag->root = root->root_key.objectid;
 174
 175	spin_lock(&root->fs_info->defrag_inodes_lock);
 176	if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
 177		/*
 178		 * If we set IN_DEFRAG flag and evict the inode from memory,
 179		 * and then re-read this inode, this new inode doesn't have
 180		 * IN_DEFRAG flag. At the case, we may find the existed defrag.
 181		 */
 182		ret = __btrfs_add_inode_defrag(inode, defrag);
 183		if (ret)
 184			kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 185	} else {
 186		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 187	}
 188	spin_unlock(&root->fs_info->defrag_inodes_lock);
 189	return 0;
 190}
 191
 192/*
 193 * Requeue the defrag object. If there is a defrag object that points to
 194 * the same inode in the tree, we will merge them together (by
 195 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
 196 */
 197static void btrfs_requeue_inode_defrag(struct inode *inode,
 198				       struct inode_defrag *defrag)
 199{
 200	struct btrfs_root *root = BTRFS_I(inode)->root;
 201	int ret;
 202
 203	if (!__need_auto_defrag(root))
 204		goto out;
 205
 206	/*
 207	 * Here we don't check the IN_DEFRAG flag, because we need merge
 208	 * them together.
 209	 */
 210	spin_lock(&root->fs_info->defrag_inodes_lock);
 211	ret = __btrfs_add_inode_defrag(inode, defrag);
 212	spin_unlock(&root->fs_info->defrag_inodes_lock);
 213	if (ret)
 214		goto out;
 215	return;
 216out:
 217	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 218}
 219
 220/*
 221 * pick the defragable inode that we want, if it doesn't exist, we will get
 222 * the next one.
 223 */
 224static struct inode_defrag *
 225btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
 226{
 227	struct inode_defrag *entry = NULL;
 228	struct inode_defrag tmp;
 229	struct rb_node *p;
 230	struct rb_node *parent = NULL;
 231	int ret;
 232
 233	tmp.ino = ino;
 234	tmp.root = root;
 235
 236	spin_lock(&fs_info->defrag_inodes_lock);
 237	p = fs_info->defrag_inodes.rb_node;
 238	while (p) {
 239		parent = p;
 240		entry = rb_entry(parent, struct inode_defrag, rb_node);
 241
 242		ret = __compare_inode_defrag(&tmp, entry);
 243		if (ret < 0)
 244			p = parent->rb_left;
 245		else if (ret > 0)
 246			p = parent->rb_right;
 247		else
 248			goto out;
 249	}
 250
 251	if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
 252		parent = rb_next(parent);
 253		if (parent)
 254			entry = rb_entry(parent, struct inode_defrag, rb_node);
 255		else
 256			entry = NULL;
 257	}
 258out:
 259	if (entry)
 260		rb_erase(parent, &fs_info->defrag_inodes);
 261	spin_unlock(&fs_info->defrag_inodes_lock);
 262	return entry;
 263}
 264
 265void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
 266{
 267	struct inode_defrag *defrag;
 268	struct rb_node *node;
 269
 270	spin_lock(&fs_info->defrag_inodes_lock);
 271	node = rb_first(&fs_info->defrag_inodes);
 272	while (node) {
 273		rb_erase(node, &fs_info->defrag_inodes);
 274		defrag = rb_entry(node, struct inode_defrag, rb_node);
 275		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 276
 277		cond_resched_lock(&fs_info->defrag_inodes_lock);
 278
 279		node = rb_first(&fs_info->defrag_inodes);
 280	}
 281	spin_unlock(&fs_info->defrag_inodes_lock);
 282}
 283
 284#define BTRFS_DEFRAG_BATCH	1024
 285
 286static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
 287				    struct inode_defrag *defrag)
 288{
 289	struct btrfs_root *inode_root;
 290	struct inode *inode;
 291	struct btrfs_key key;
 292	struct btrfs_ioctl_defrag_range_args range;
 293	int num_defrag;
 294	int index;
 295	int ret;
 296
 297	/* get the inode */
 298	key.objectid = defrag->root;
 299	key.type = BTRFS_ROOT_ITEM_KEY;
 300	key.offset = (u64)-1;
 301
 302	index = srcu_read_lock(&fs_info->subvol_srcu);
 303
 304	inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
 305	if (IS_ERR(inode_root)) {
 306		ret = PTR_ERR(inode_root);
 307		goto cleanup;
 308	}
 309
 310	key.objectid = defrag->ino;
 311	key.type = BTRFS_INODE_ITEM_KEY;
 312	key.offset = 0;
 313	inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
 314	if (IS_ERR(inode)) {
 315		ret = PTR_ERR(inode);
 316		goto cleanup;
 317	}
 318	srcu_read_unlock(&fs_info->subvol_srcu, index);
 319
 320	/* do a chunk of defrag */
 321	clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
 322	memset(&range, 0, sizeof(range));
 323	range.len = (u64)-1;
 324	range.start = defrag->last_offset;
 325
 326	sb_start_write(fs_info->sb);
 327	num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
 328				       BTRFS_DEFRAG_BATCH);
 329	sb_end_write(fs_info->sb);
 330	/*
 331	 * if we filled the whole defrag batch, there
 332	 * must be more work to do.  Queue this defrag
 333	 * again
 334	 */
 335	if (num_defrag == BTRFS_DEFRAG_BATCH) {
 336		defrag->last_offset = range.start;
 337		btrfs_requeue_inode_defrag(inode, defrag);
 338	} else if (defrag->last_offset && !defrag->cycled) {
 339		/*
 340		 * we didn't fill our defrag batch, but
 341		 * we didn't start at zero.  Make sure we loop
 342		 * around to the start of the file.
 343		 */
 344		defrag->last_offset = 0;
 345		defrag->cycled = 1;
 346		btrfs_requeue_inode_defrag(inode, defrag);
 347	} else {
 348		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 349	}
 350
 351	iput(inode);
 352	return 0;
 353cleanup:
 354	srcu_read_unlock(&fs_info->subvol_srcu, index);
 355	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 356	return ret;
 357}
 358
 359/*
 360 * run through the list of inodes in the FS that need
 361 * defragging
 362 */
 363int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
 364{
 365	struct inode_defrag *defrag;
 366	u64 first_ino = 0;
 367	u64 root_objectid = 0;
 368
 369	atomic_inc(&fs_info->defrag_running);
 370	while (1) {
 371		/* Pause the auto defragger. */
 372		if (test_bit(BTRFS_FS_STATE_REMOUNTING,
 373			     &fs_info->fs_state))
 374			break;
 375
 376		if (!__need_auto_defrag(fs_info->tree_root))
 377			break;
 378
 379		/* find an inode to defrag */
 380		defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
 381						 first_ino);
 382		if (!defrag) {
 383			if (root_objectid || first_ino) {
 384				root_objectid = 0;
 385				first_ino = 0;
 386				continue;
 387			} else {
 388				break;
 389			}
 390		}
 391
 392		first_ino = defrag->ino + 1;
 393		root_objectid = defrag->root;
 394
 395		__btrfs_run_defrag_inode(fs_info, defrag);
 396	}
 397	atomic_dec(&fs_info->defrag_running);
 398
 399	/*
 400	 * during unmount, we use the transaction_wait queue to
 401	 * wait for the defragger to stop
 402	 */
 403	wake_up(&fs_info->transaction_wait);
 404	return 0;
 405}
 406
 407/* simple helper to fault in pages and copy.  This should go away
 408 * and be replaced with calls into generic code.
 409 */
 410static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
 411					 struct page **prepared_pages,
 412					 struct iov_iter *i)
 413{
 414	size_t copied = 0;
 415	size_t total_copied = 0;
 416	int pg = 0;
 417	int offset = pos & (PAGE_SIZE - 1);
 418
 419	while (write_bytes > 0) {
 420		size_t count = min_t(size_t,
 421				     PAGE_SIZE - offset, write_bytes);
 422		struct page *page = prepared_pages[pg];
 423		/*
 424		 * Copy data from userspace to the current page
 425		 */
 426		copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
 427
 428		/* Flush processor's dcache for this page */
 429		flush_dcache_page(page);
 430
 431		/*
 432		 * if we get a partial write, we can end up with
 433		 * partially up to date pages.  These add
 434		 * a lot of complexity, so make sure they don't
 435		 * happen by forcing this copy to be retried.
 436		 *
 437		 * The rest of the btrfs_file_write code will fall
 438		 * back to page at a time copies after we return 0.
 439		 */
 440		if (!PageUptodate(page) && copied < count)
 441			copied = 0;
 
 
 
 
 
 
 442
 443		iov_iter_advance(i, copied);
 444		write_bytes -= copied;
 445		total_copied += copied;
 446
 447		/* Return to btrfs_file_write_iter to fault page */
 448		if (unlikely(copied == 0))
 449			break;
 450
 451		if (copied < PAGE_SIZE - offset) {
 452			offset += copied;
 453		} else {
 454			pg++;
 455			offset = 0;
 456		}
 457	}
 458	return total_copied;
 459}
 460
 461/*
 462 * unlocks pages after btrfs_file_write is done with them
 463 */
 464static void btrfs_drop_pages(struct page **pages, size_t num_pages)
 
 
 465{
 466	size_t i;
 
 
 
 
 467	for (i = 0; i < num_pages; i++) {
 468		/* page checked is some magic around finding pages that
 469		 * have been modified without going through btrfs_set_page_dirty
 470		 * clear it here. There should be no need to mark the pages
 471		 * accessed as prepare_pages should have marked them accessed
 472		 * in prepare_pages via find_or_create_page()
 473		 */
 474		ClearPageChecked(pages[i]);
 
 475		unlock_page(pages[i]);
 476		put_page(pages[i]);
 477	}
 478}
 479
 480/*
 481 * after copy_from_user, pages need to be dirtied and we need to make
 482 * sure holes are created between the current EOF and the start of
 483 * any next extents (if required).
 484 *
 485 * this also makes the decision about creating an inline extent vs
 486 * doing real data extents, marking pages dirty and delalloc as required.
 487 */
 488int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
 489			     struct page **pages, size_t num_pages,
 490			     loff_t pos, size_t write_bytes,
 491			     struct extent_state **cached)
 492{
 
 493	int err = 0;
 494	int i;
 495	u64 num_bytes;
 496	u64 start_pos;
 497	u64 end_of_last_block;
 498	u64 end_pos = pos + write_bytes;
 499	loff_t isize = i_size_read(inode);
 
 
 
 
 
 
 
 500
 501	start_pos = pos & ~((u64)root->sectorsize - 1);
 502	num_bytes = round_up(write_bytes + pos - start_pos, root->sectorsize);
 
 
 503
 504	end_of_last_block = start_pos + num_bytes - 1;
 
 
 
 
 
 
 
 
 
 505	err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
 506					cached);
 507	if (err)
 508		return err;
 509
 510	for (i = 0; i < num_pages; i++) {
 511		struct page *p = pages[i];
 512		SetPageUptodate(p);
 513		ClearPageChecked(p);
 514		set_page_dirty(p);
 
 
 
 
 515	}
 516
 517	/*
 518	 * we've only changed i_size in ram, and we haven't updated
 519	 * the disk i_size.  There is no need to log the inode
 520	 * at this time.
 521	 */
 522	if (end_pos > isize)
 523		i_size_write(inode, end_pos);
 524	return 0;
 525}
 526
 527/*
 528 * this drops all the extents in the cache that intersect the range
 529 * [start, end].  Existing extents are split as required.
 530 */
 531void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
 532			     int skip_pinned)
 533{
 534	struct extent_map *em;
 535	struct extent_map *split = NULL;
 536	struct extent_map *split2 = NULL;
 537	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 538	u64 len = end - start + 1;
 539	u64 gen;
 540	int ret;
 541	int testend = 1;
 542	unsigned long flags;
 543	int compressed = 0;
 544	bool modified;
 545
 546	WARN_ON(end < start);
 547	if (end == (u64)-1) {
 548		len = (u64)-1;
 549		testend = 0;
 550	}
 551	while (1) {
 552		int no_splits = 0;
 553
 554		modified = false;
 555		if (!split)
 556			split = alloc_extent_map();
 557		if (!split2)
 558			split2 = alloc_extent_map();
 559		if (!split || !split2)
 560			no_splits = 1;
 561
 562		write_lock(&em_tree->lock);
 563		em = lookup_extent_mapping(em_tree, start, len);
 564		if (!em) {
 565			write_unlock(&em_tree->lock);
 566			break;
 567		}
 568		flags = em->flags;
 569		gen = em->generation;
 570		if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
 571			if (testend && em->start + em->len >= start + len) {
 572				free_extent_map(em);
 573				write_unlock(&em_tree->lock);
 574				break;
 575			}
 576			start = em->start + em->len;
 577			if (testend)
 578				len = start + len - (em->start + em->len);
 579			free_extent_map(em);
 580			write_unlock(&em_tree->lock);
 581			continue;
 582		}
 583		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
 584		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
 585		clear_bit(EXTENT_FLAG_LOGGING, &flags);
 586		modified = !list_empty(&em->list);
 587		if (no_splits)
 588			goto next;
 589
 590		if (em->start < start) {
 591			split->start = em->start;
 592			split->len = start - em->start;
 593
 594			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
 595				split->orig_start = em->orig_start;
 596				split->block_start = em->block_start;
 597
 598				if (compressed)
 599					split->block_len = em->block_len;
 600				else
 601					split->block_len = split->len;
 602				split->orig_block_len = max(split->block_len,
 603						em->orig_block_len);
 604				split->ram_bytes = em->ram_bytes;
 605			} else {
 606				split->orig_start = split->start;
 607				split->block_len = 0;
 608				split->block_start = em->block_start;
 609				split->orig_block_len = 0;
 610				split->ram_bytes = split->len;
 611			}
 612
 613			split->generation = gen;
 614			split->bdev = em->bdev;
 615			split->flags = flags;
 616			split->compress_type = em->compress_type;
 617			replace_extent_mapping(em_tree, em, split, modified);
 618			free_extent_map(split);
 619			split = split2;
 620			split2 = NULL;
 621		}
 622		if (testend && em->start + em->len > start + len) {
 623			u64 diff = start + len - em->start;
 624
 625			split->start = start + len;
 626			split->len = em->start + em->len - (start + len);
 627			split->bdev = em->bdev;
 628			split->flags = flags;
 629			split->compress_type = em->compress_type;
 630			split->generation = gen;
 631
 632			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
 633				split->orig_block_len = max(em->block_len,
 634						    em->orig_block_len);
 635
 636				split->ram_bytes = em->ram_bytes;
 637				if (compressed) {
 638					split->block_len = em->block_len;
 639					split->block_start = em->block_start;
 640					split->orig_start = em->orig_start;
 641				} else {
 642					split->block_len = split->len;
 643					split->block_start = em->block_start
 644						+ diff;
 645					split->orig_start = em->orig_start;
 646				}
 647			} else {
 648				split->ram_bytes = split->len;
 649				split->orig_start = split->start;
 650				split->block_len = 0;
 651				split->block_start = em->block_start;
 652				split->orig_block_len = 0;
 653			}
 654
 655			if (extent_map_in_tree(em)) {
 656				replace_extent_mapping(em_tree, em, split,
 657						       modified);
 658			} else {
 659				ret = add_extent_mapping(em_tree, split,
 660							 modified);
 661				ASSERT(ret == 0); /* Logic error */
 662			}
 663			free_extent_map(split);
 664			split = NULL;
 665		}
 666next:
 667		if (extent_map_in_tree(em))
 668			remove_extent_mapping(em_tree, em);
 669		write_unlock(&em_tree->lock);
 670
 671		/* once for us */
 672		free_extent_map(em);
 673		/* once for the tree*/
 674		free_extent_map(em);
 675	}
 676	if (split)
 677		free_extent_map(split);
 678	if (split2)
 679		free_extent_map(split2);
 680}
 681
 682/*
 683 * this is very complex, but the basic idea is to drop all extents
 684 * in the range start - end.  hint_block is filled in with a block number
 685 * that would be a good hint to the block allocator for this file.
 686 *
 687 * If an extent intersects the range but is not entirely inside the range
 688 * it is either truncated or split.  Anything entirely inside the range
 689 * is deleted from the tree.
 
 
 
 
 
 
 690 */
 691int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
 692			 struct btrfs_root *root, struct inode *inode,
 693			 struct btrfs_path *path, u64 start, u64 end,
 694			 u64 *drop_end, int drop_cache,
 695			 int replace_extent,
 696			 u32 extent_item_size,
 697			 int *key_inserted)
 698{
 
 699	struct extent_buffer *leaf;
 700	struct btrfs_file_extent_item *fi;
 
 701	struct btrfs_key key;
 702	struct btrfs_key new_key;
 703	u64 ino = btrfs_ino(inode);
 704	u64 search_start = start;
 705	u64 disk_bytenr = 0;
 706	u64 num_bytes = 0;
 707	u64 extent_offset = 0;
 708	u64 extent_end = 0;
 
 709	int del_nr = 0;
 710	int del_slot = 0;
 711	int extent_type;
 712	int recow;
 713	int ret;
 714	int modify_tree = -1;
 715	int update_refs;
 716	int found = 0;
 717	int leafs_visited = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 718
 719	if (drop_cache)
 720		btrfs_drop_extent_cache(inode, start, end - 1, 0);
 721
 722	if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
 723		modify_tree = 0;
 724
 725	update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
 726		       root == root->fs_info->tree_root);
 727	while (1) {
 728		recow = 0;
 729		ret = btrfs_lookup_file_extent(trans, root, path, ino,
 730					       search_start, modify_tree);
 731		if (ret < 0)
 732			break;
 733		if (ret > 0 && path->slots[0] > 0 && search_start == start) {
 734			leaf = path->nodes[0];
 735			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
 736			if (key.objectid == ino &&
 737			    key.type == BTRFS_EXTENT_DATA_KEY)
 738				path->slots[0]--;
 739		}
 740		ret = 0;
 741		leafs_visited++;
 742next_slot:
 743		leaf = path->nodes[0];
 744		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
 745			BUG_ON(del_nr > 0);
 746			ret = btrfs_next_leaf(root, path);
 747			if (ret < 0)
 748				break;
 749			if (ret > 0) {
 750				ret = 0;
 751				break;
 752			}
 753			leafs_visited++;
 754			leaf = path->nodes[0];
 755			recow = 1;
 756		}
 757
 758		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 759
 760		if (key.objectid > ino)
 761			break;
 762		if (WARN_ON_ONCE(key.objectid < ino) ||
 763		    key.type < BTRFS_EXTENT_DATA_KEY) {
 764			ASSERT(del_nr == 0);
 765			path->slots[0]++;
 766			goto next_slot;
 767		}
 768		if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
 769			break;
 770
 771		fi = btrfs_item_ptr(leaf, path->slots[0],
 772				    struct btrfs_file_extent_item);
 773		extent_type = btrfs_file_extent_type(leaf, fi);
 774
 775		if (extent_type == BTRFS_FILE_EXTENT_REG ||
 776		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
 777			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
 778			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
 779			extent_offset = btrfs_file_extent_offset(leaf, fi);
 780			extent_end = key.offset +
 781				btrfs_file_extent_num_bytes(leaf, fi);
 782		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 783			extent_end = key.offset +
 784				btrfs_file_extent_inline_len(leaf,
 785						     path->slots[0], fi);
 786		} else {
 787			/* can't happen */
 788			BUG();
 789		}
 790
 791		/*
 792		 * Don't skip extent items representing 0 byte lengths. They
 793		 * used to be created (bug) if while punching holes we hit
 794		 * -ENOSPC condition. So if we find one here, just ensure we
 795		 * delete it, otherwise we would insert a new file extent item
 796		 * with the same key (offset) as that 0 bytes length file
 797		 * extent item in the call to setup_items_for_insert() later
 798		 * in this function.
 799		 */
 800		if (extent_end == key.offset && extent_end >= search_start)
 
 801			goto delete_extent_item;
 
 802
 803		if (extent_end <= search_start) {
 804			path->slots[0]++;
 805			goto next_slot;
 806		}
 807
 808		found = 1;
 809		search_start = max(key.offset, start);
 810		if (recow || !modify_tree) {
 811			modify_tree = -1;
 812			btrfs_release_path(path);
 813			continue;
 814		}
 815
 816		/*
 817		 *     | - range to drop - |
 818		 *  | -------- extent -------- |
 819		 */
 820		if (start > key.offset && end < extent_end) {
 821			BUG_ON(del_nr > 0);
 822			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 823				ret = -EOPNOTSUPP;
 824				break;
 825			}
 826
 827			memcpy(&new_key, &key, sizeof(new_key));
 828			new_key.offset = start;
 829			ret = btrfs_duplicate_item(trans, root, path,
 830						   &new_key);
 831			if (ret == -EAGAIN) {
 832				btrfs_release_path(path);
 833				continue;
 834			}
 835			if (ret < 0)
 836				break;
 837
 838			leaf = path->nodes[0];
 839			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
 840					    struct btrfs_file_extent_item);
 841			btrfs_set_file_extent_num_bytes(leaf, fi,
 842							start - key.offset);
 843
 844			fi = btrfs_item_ptr(leaf, path->slots[0],
 845					    struct btrfs_file_extent_item);
 846
 847			extent_offset += start - key.offset;
 848			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
 849			btrfs_set_file_extent_num_bytes(leaf, fi,
 850							extent_end - start);
 851			btrfs_mark_buffer_dirty(leaf);
 852
 853			if (update_refs && disk_bytenr > 0) {
 854				ret = btrfs_inc_extent_ref(trans, root,
 
 855						disk_bytenr, num_bytes, 0,
 
 
 856						root->root_key.objectid,
 857						new_key.objectid,
 858						start - extent_offset);
 859				BUG_ON(ret); /* -ENOMEM */
 
 
 
 
 
 860			}
 861			key.offset = start;
 862		}
 863		/*
 
 
 
 
 
 
 864		 *  | ---- range to drop ----- |
 865		 *      | -------- extent -------- |
 866		 */
 867		if (start <= key.offset && end < extent_end) {
 868			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 869				ret = -EOPNOTSUPP;
 870				break;
 871			}
 872
 873			memcpy(&new_key, &key, sizeof(new_key));
 874			new_key.offset = end;
 875			btrfs_set_item_key_safe(root->fs_info, path, &new_key);
 876
 877			extent_offset += end - key.offset;
 878			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
 879			btrfs_set_file_extent_num_bytes(leaf, fi,
 880							extent_end - end);
 881			btrfs_mark_buffer_dirty(leaf);
 882			if (update_refs && disk_bytenr > 0)
 883				inode_sub_bytes(inode, end - key.offset);
 884			break;
 885		}
 886
 887		search_start = extent_end;
 888		/*
 889		 *       | ---- range to drop ----- |
 890		 *  | -------- extent -------- |
 891		 */
 892		if (start > key.offset && end >= extent_end) {
 893			BUG_ON(del_nr > 0);
 894			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 895				ret = -EOPNOTSUPP;
 896				break;
 897			}
 898
 899			btrfs_set_file_extent_num_bytes(leaf, fi,
 900							start - key.offset);
 901			btrfs_mark_buffer_dirty(leaf);
 902			if (update_refs && disk_bytenr > 0)
 903				inode_sub_bytes(inode, extent_end - start);
 904			if (end == extent_end)
 905				break;
 906
 907			path->slots[0]++;
 908			goto next_slot;
 909		}
 910
 911		/*
 912		 *  | ---- range to drop ----- |
 913		 *    | ------ extent ------ |
 914		 */
 915		if (start <= key.offset && end >= extent_end) {
 916delete_extent_item:
 917			if (del_nr == 0) {
 918				del_slot = path->slots[0];
 919				del_nr = 1;
 920			} else {
 921				BUG_ON(del_slot + del_nr != path->slots[0]);
 922				del_nr++;
 923			}
 924
 925			if (update_refs &&
 926			    extent_type == BTRFS_FILE_EXTENT_INLINE) {
 927				inode_sub_bytes(inode,
 928						extent_end - key.offset);
 929				extent_end = ALIGN(extent_end,
 930						   root->sectorsize);
 931			} else if (update_refs && disk_bytenr > 0) {
 932				ret = btrfs_free_extent(trans, root,
 
 933						disk_bytenr, num_bytes, 0,
 
 
 934						root->root_key.objectid,
 935						key.objectid, key.offset -
 936						extent_offset);
 937				BUG_ON(ret); /* -ENOMEM */
 938				inode_sub_bytes(inode,
 939						extent_end - key.offset);
 
 
 
 
 940			}
 941
 942			if (end == extent_end)
 943				break;
 944
 945			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
 946				path->slots[0]++;
 947				goto next_slot;
 948			}
 949
 950			ret = btrfs_del_items(trans, root, path, del_slot,
 951					      del_nr);
 952			if (ret) {
 953				btrfs_abort_transaction(trans, root, ret);
 954				break;
 955			}
 956
 957			del_nr = 0;
 958			del_slot = 0;
 959
 960			btrfs_release_path(path);
 961			continue;
 962		}
 963
 964		BUG_ON(1);
 965	}
 966
 967	if (!ret && del_nr > 0) {
 968		/*
 969		 * Set path->slots[0] to first slot, so that after the delete
 970		 * if items are move off from our leaf to its immediate left or
 971		 * right neighbor leafs, we end up with a correct and adjusted
 972		 * path->slots[0] for our insertion (if replace_extent != 0).
 973		 */
 974		path->slots[0] = del_slot;
 975		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
 976		if (ret)
 977			btrfs_abort_transaction(trans, root, ret);
 978	}
 979
 980	leaf = path->nodes[0];
 981	/*
 982	 * If btrfs_del_items() was called, it might have deleted a leaf, in
 983	 * which case it unlocked our path, so check path->locks[0] matches a
 984	 * write lock.
 985	 */
 986	if (!ret && replace_extent && leafs_visited == 1 &&
 987	    (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
 988	     path->locks[0] == BTRFS_WRITE_LOCK) &&
 989	    btrfs_leaf_free_space(root, leaf) >=
 990	    sizeof(struct btrfs_item) + extent_item_size) {
 991
 992		key.objectid = ino;
 993		key.type = BTRFS_EXTENT_DATA_KEY;
 994		key.offset = start;
 995		if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
 996			struct btrfs_key slot_key;
 997
 998			btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
 999			if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1000				path->slots[0]++;
1001		}
1002		setup_items_for_insert(root, path, &key,
1003				       &extent_item_size,
1004				       extent_item_size,
1005				       sizeof(struct btrfs_item) +
1006				       extent_item_size, 1);
1007		*key_inserted = 1;
1008	}
1009
1010	if (!replace_extent || !(*key_inserted))
 
 
1011		btrfs_release_path(path);
1012	if (drop_end)
1013		*drop_end = found ? min(end, extent_end) : end;
1014	return ret;
1015}
1016
1017int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1018		       struct btrfs_root *root, struct inode *inode, u64 start,
1019		       u64 end, int drop_cache)
1020{
1021	struct btrfs_path *path;
1022	int ret;
1023
1024	path = btrfs_alloc_path();
1025	if (!path)
1026		return -ENOMEM;
1027	ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1028				   drop_cache, 0, 0, NULL);
1029	btrfs_free_path(path);
1030	return ret;
1031}
1032
1033static int extent_mergeable(struct extent_buffer *leaf, int slot,
1034			    u64 objectid, u64 bytenr, u64 orig_offset,
1035			    u64 *start, u64 *end)
1036{
1037	struct btrfs_file_extent_item *fi;
1038	struct btrfs_key key;
1039	u64 extent_end;
1040
1041	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1042		return 0;
1043
1044	btrfs_item_key_to_cpu(leaf, &key, slot);
1045	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1046		return 0;
1047
1048	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1049	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1050	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1051	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1052	    btrfs_file_extent_compression(leaf, fi) ||
1053	    btrfs_file_extent_encryption(leaf, fi) ||
1054	    btrfs_file_extent_other_encoding(leaf, fi))
1055		return 0;
1056
1057	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1058	if ((*start && *start != key.offset) || (*end && *end != extent_end))
1059		return 0;
1060
1061	*start = key.offset;
1062	*end = extent_end;
1063	return 1;
1064}
1065
1066/*
1067 * Mark extent in the range start - end as written.
1068 *
1069 * This changes extent type from 'pre-allocated' to 'regular'. If only
1070 * part of extent is marked as written, the extent will be split into
1071 * two or three.
1072 */
1073int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1074			      struct inode *inode, u64 start, u64 end)
1075{
1076	struct btrfs_root *root = BTRFS_I(inode)->root;
1077	struct extent_buffer *leaf;
1078	struct btrfs_path *path;
1079	struct btrfs_file_extent_item *fi;
 
1080	struct btrfs_key key;
1081	struct btrfs_key new_key;
1082	u64 bytenr;
1083	u64 num_bytes;
1084	u64 extent_end;
1085	u64 orig_offset;
1086	u64 other_start;
1087	u64 other_end;
1088	u64 split;
1089	int del_nr = 0;
1090	int del_slot = 0;
1091	int recow;
1092	int ret;
1093	u64 ino = btrfs_ino(inode);
1094
1095	path = btrfs_alloc_path();
1096	if (!path)
1097		return -ENOMEM;
1098again:
1099	recow = 0;
1100	split = start;
1101	key.objectid = ino;
1102	key.type = BTRFS_EXTENT_DATA_KEY;
1103	key.offset = split;
1104
1105	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1106	if (ret < 0)
1107		goto out;
1108	if (ret > 0 && path->slots[0] > 0)
1109		path->slots[0]--;
1110
1111	leaf = path->nodes[0];
1112	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1113	BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
 
 
 
 
 
1114	fi = btrfs_item_ptr(leaf, path->slots[0],
1115			    struct btrfs_file_extent_item);
1116	BUG_ON(btrfs_file_extent_type(leaf, fi) !=
1117	       BTRFS_FILE_EXTENT_PREALLOC);
 
 
 
1118	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1119	BUG_ON(key.offset > start || extent_end < end);
 
 
 
 
1120
1121	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1122	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1123	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1124	memcpy(&new_key, &key, sizeof(new_key));
1125
1126	if (start == key.offset && end < extent_end) {
1127		other_start = 0;
1128		other_end = start;
1129		if (extent_mergeable(leaf, path->slots[0] - 1,
1130				     ino, bytenr, orig_offset,
1131				     &other_start, &other_end)) {
1132			new_key.offset = end;
1133			btrfs_set_item_key_safe(root->fs_info, path, &new_key);
1134			fi = btrfs_item_ptr(leaf, path->slots[0],
1135					    struct btrfs_file_extent_item);
1136			btrfs_set_file_extent_generation(leaf, fi,
1137							 trans->transid);
1138			btrfs_set_file_extent_num_bytes(leaf, fi,
1139							extent_end - end);
1140			btrfs_set_file_extent_offset(leaf, fi,
1141						     end - orig_offset);
1142			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1143					    struct btrfs_file_extent_item);
1144			btrfs_set_file_extent_generation(leaf, fi,
1145							 trans->transid);
1146			btrfs_set_file_extent_num_bytes(leaf, fi,
1147							end - other_start);
1148			btrfs_mark_buffer_dirty(leaf);
1149			goto out;
1150		}
1151	}
1152
1153	if (start > key.offset && end == extent_end) {
1154		other_start = end;
1155		other_end = 0;
1156		if (extent_mergeable(leaf, path->slots[0] + 1,
1157				     ino, bytenr, orig_offset,
1158				     &other_start, &other_end)) {
1159			fi = btrfs_item_ptr(leaf, path->slots[0],
1160					    struct btrfs_file_extent_item);
1161			btrfs_set_file_extent_num_bytes(leaf, fi,
1162							start - key.offset);
1163			btrfs_set_file_extent_generation(leaf, fi,
1164							 trans->transid);
1165			path->slots[0]++;
1166			new_key.offset = start;
1167			btrfs_set_item_key_safe(root->fs_info, path, &new_key);
1168
1169			fi = btrfs_item_ptr(leaf, path->slots[0],
1170					    struct btrfs_file_extent_item);
1171			btrfs_set_file_extent_generation(leaf, fi,
1172							 trans->transid);
1173			btrfs_set_file_extent_num_bytes(leaf, fi,
1174							other_end - start);
1175			btrfs_set_file_extent_offset(leaf, fi,
1176						     start - orig_offset);
1177			btrfs_mark_buffer_dirty(leaf);
1178			goto out;
1179		}
1180	}
1181
1182	while (start > key.offset || end < extent_end) {
1183		if (key.offset == start)
1184			split = end;
1185
1186		new_key.offset = split;
1187		ret = btrfs_duplicate_item(trans, root, path, &new_key);
1188		if (ret == -EAGAIN) {
1189			btrfs_release_path(path);
1190			goto again;
1191		}
1192		if (ret < 0) {
1193			btrfs_abort_transaction(trans, root, ret);
1194			goto out;
1195		}
1196
1197		leaf = path->nodes[0];
1198		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1199				    struct btrfs_file_extent_item);
1200		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1201		btrfs_set_file_extent_num_bytes(leaf, fi,
1202						split - key.offset);
1203
1204		fi = btrfs_item_ptr(leaf, path->slots[0],
1205				    struct btrfs_file_extent_item);
1206
1207		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1208		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1209		btrfs_set_file_extent_num_bytes(leaf, fi,
1210						extent_end - split);
1211		btrfs_mark_buffer_dirty(leaf);
1212
1213		ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
1214					   root->root_key.objectid,
1215					   ino, orig_offset);
1216		BUG_ON(ret); /* -ENOMEM */
 
 
 
 
 
1217
1218		if (split == start) {
1219			key.offset = start;
1220		} else {
1221			BUG_ON(start != key.offset);
 
 
 
 
1222			path->slots[0]--;
1223			extent_end = end;
1224		}
1225		recow = 1;
1226	}
1227
1228	other_start = end;
1229	other_end = 0;
 
 
 
 
1230	if (extent_mergeable(leaf, path->slots[0] + 1,
1231			     ino, bytenr, orig_offset,
1232			     &other_start, &other_end)) {
1233		if (recow) {
1234			btrfs_release_path(path);
1235			goto again;
1236		}
1237		extent_end = other_end;
1238		del_slot = path->slots[0] + 1;
1239		del_nr++;
1240		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1241					0, root->root_key.objectid,
1242					ino, orig_offset);
1243		BUG_ON(ret); /* -ENOMEM */
 
1244	}
1245	other_start = 0;
1246	other_end = start;
1247	if (extent_mergeable(leaf, path->slots[0] - 1,
1248			     ino, bytenr, orig_offset,
1249			     &other_start, &other_end)) {
1250		if (recow) {
1251			btrfs_release_path(path);
1252			goto again;
1253		}
1254		key.offset = other_start;
1255		del_slot = path->slots[0];
1256		del_nr++;
1257		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1258					0, root->root_key.objectid,
1259					ino, orig_offset);
1260		BUG_ON(ret); /* -ENOMEM */
 
1261	}
1262	if (del_nr == 0) {
1263		fi = btrfs_item_ptr(leaf, path->slots[0],
1264			   struct btrfs_file_extent_item);
1265		btrfs_set_file_extent_type(leaf, fi,
1266					   BTRFS_FILE_EXTENT_REG);
1267		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1268		btrfs_mark_buffer_dirty(leaf);
1269	} else {
1270		fi = btrfs_item_ptr(leaf, del_slot - 1,
1271			   struct btrfs_file_extent_item);
1272		btrfs_set_file_extent_type(leaf, fi,
1273					   BTRFS_FILE_EXTENT_REG);
1274		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1275		btrfs_set_file_extent_num_bytes(leaf, fi,
1276						extent_end - key.offset);
1277		btrfs_mark_buffer_dirty(leaf);
1278
1279		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1280		if (ret < 0) {
1281			btrfs_abort_transaction(trans, root, ret);
1282			goto out;
1283		}
1284	}
1285out:
1286	btrfs_free_path(path);
1287	return 0;
1288}
1289
1290/*
1291 * on error we return an unlocked page and the error value
1292 * on success we return a locked page and 0
1293 */
1294static int prepare_uptodate_page(struct inode *inode,
1295				 struct page *page, u64 pos,
1296				 bool force_uptodate)
1297{
 
1298	int ret = 0;
1299
1300	if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1301	    !PageUptodate(page)) {
1302		ret = btrfs_readpage(NULL, page);
1303		if (ret)
1304			return ret;
1305		lock_page(page);
1306		if (!PageUptodate(page)) {
1307			unlock_page(page);
1308			return -EIO;
1309		}
1310		if (page->mapping != inode->i_mapping) {
 
 
 
 
 
 
 
 
 
 
 
1311			unlock_page(page);
1312			return -EAGAIN;
1313		}
1314	}
1315	return 0;
1316}
1317
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1318/*
1319 * this just gets pages into the page cache and locks them down.
1320 */
1321static noinline int prepare_pages(struct inode *inode, struct page **pages,
1322				  size_t num_pages, loff_t pos,
1323				  size_t write_bytes, bool force_uptodate)
 
1324{
1325	int i;
1326	unsigned long index = pos >> PAGE_SHIFT;
1327	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
 
1328	int err = 0;
1329	int faili;
1330
1331	for (i = 0; i < num_pages; i++) {
1332again:
1333		pages[i] = find_or_create_page(inode->i_mapping, index + i,
1334					       mask | __GFP_WRITE);
1335		if (!pages[i]) {
1336			faili = i - 1;
1337			err = -ENOMEM;
 
 
 
 
 
 
 
 
 
1338			goto fail;
1339		}
1340
1341		if (i == 0)
1342			err = prepare_uptodate_page(inode, pages[i], pos,
1343						    force_uptodate);
1344		if (!err && i == num_pages - 1)
1345			err = prepare_uptodate_page(inode, pages[i],
1346						    pos + write_bytes, false);
1347		if (err) {
1348			put_page(pages[i]);
1349			if (err == -EAGAIN) {
1350				err = 0;
1351				goto again;
1352			}
1353			faili = i - 1;
1354			goto fail;
1355		}
1356		wait_on_page_writeback(pages[i]);
1357	}
1358
1359	return 0;
1360fail:
1361	while (faili >= 0) {
1362		unlock_page(pages[faili]);
1363		put_page(pages[faili]);
1364		faili--;
1365	}
1366	return err;
1367
1368}
1369
1370/*
1371 * This function locks the extent and properly waits for data=ordered extents
1372 * to finish before allowing the pages to be modified if need.
1373 *
1374 * The return value:
1375 * 1 - the extent is locked
1376 * 0 - the extent is not locked, and everything is OK
1377 * -EAGAIN - need re-prepare the pages
1378 * the other < 0 number - Something wrong happens
1379 */
1380static noinline int
1381lock_and_cleanup_extent_if_need(struct inode *inode, struct page **pages,
1382				size_t num_pages, loff_t pos,
1383				size_t write_bytes,
1384				u64 *lockstart, u64 *lockend,
1385				struct extent_state **cached_state)
1386{
1387	struct btrfs_root *root = BTRFS_I(inode)->root;
1388	u64 start_pos;
1389	u64 last_pos;
1390	int i;
1391	int ret = 0;
1392
1393	start_pos = round_down(pos, root->sectorsize);
1394	last_pos = start_pos
1395		+ round_up(pos + write_bytes - start_pos, root->sectorsize) - 1;
1396
1397	if (start_pos < inode->i_size) {
1398		struct btrfs_ordered_extent *ordered;
1399		lock_extent_bits(&BTRFS_I(inode)->io_tree,
1400				 start_pos, last_pos, cached_state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1401		ordered = btrfs_lookup_ordered_range(inode, start_pos,
1402						     last_pos - start_pos + 1);
1403		if (ordered &&
1404		    ordered->file_offset + ordered->len > start_pos &&
1405		    ordered->file_offset <= last_pos) {
1406			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1407					     start_pos, last_pos,
1408					     cached_state, GFP_NOFS);
1409			for (i = 0; i < num_pages; i++) {
1410				unlock_page(pages[i]);
1411				put_page(pages[i]);
1412			}
1413			btrfs_start_ordered_extent(inode, ordered, 1);
1414			btrfs_put_ordered_extent(ordered);
1415			return -EAGAIN;
1416		}
1417		if (ordered)
1418			btrfs_put_ordered_extent(ordered);
1419
1420		clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
1421				  last_pos, EXTENT_DIRTY | EXTENT_DELALLOC |
1422				  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
1423				  0, 0, cached_state, GFP_NOFS);
1424		*lockstart = start_pos;
1425		*lockend = last_pos;
1426		ret = 1;
1427	}
1428
1429	for (i = 0; i < num_pages; i++) {
1430		if (clear_page_dirty_for_io(pages[i]))
1431			account_page_redirty(pages[i]);
1432		set_page_extent_mapped(pages[i]);
 
1433		WARN_ON(!PageLocked(pages[i]));
1434	}
1435
1436	return ret;
1437}
1438
1439static noinline int check_can_nocow(struct inode *inode, loff_t pos,
1440				    size_t *write_bytes)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1441{
1442	struct btrfs_root *root = BTRFS_I(inode)->root;
1443	struct btrfs_ordered_extent *ordered;
 
1444	u64 lockstart, lockend;
1445	u64 num_bytes;
1446	int ret;
1447
1448	ret = btrfs_start_write_no_snapshoting(root);
1449	if (!ret)
1450		return -ENOSPC;
1451
1452	lockstart = round_down(pos, root->sectorsize);
1453	lockend = round_up(pos + *write_bytes, root->sectorsize) - 1;
1454
1455	while (1) {
1456		lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1457		ordered = btrfs_lookup_ordered_range(inode, lockstart,
1458						     lockend - lockstart + 1);
1459		if (!ordered) {
1460			break;
 
 
 
 
1461		}
1462		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1463		btrfs_start_ordered_extent(inode, ordered, 1);
1464		btrfs_put_ordered_extent(ordered);
1465	}
1466
1467	num_bytes = lockend - lockstart + 1;
1468	ret = can_nocow_extent(inode, lockstart, &num_bytes, NULL, NULL, NULL);
1469	if (ret <= 0) {
1470		ret = 0;
1471		btrfs_end_write_no_snapshoting(root);
1472	} else {
1473		*write_bytes = min_t(size_t, *write_bytes ,
1474				     num_bytes - pos + lockstart);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1475	}
1476
1477	unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1478
1479	return ret;
1480}
1481
1482static noinline ssize_t __btrfs_buffered_write(struct file *file,
1483					       struct iov_iter *i,
1484					       loff_t pos)
1485{
 
 
1486	struct inode *inode = file_inode(file);
1487	struct btrfs_root *root = BTRFS_I(inode)->root;
1488	struct page **pages = NULL;
1489	struct extent_state *cached_state = NULL;
1490	u64 release_bytes = 0;
1491	u64 lockstart;
1492	u64 lockend;
1493	size_t num_written = 0;
1494	int nrptrs;
1495	int ret = 0;
1496	bool only_release_metadata = false;
1497	bool force_page_uptodate = false;
1498	bool need_unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1499
 
 
 
 
 
1500	nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1501			PAGE_SIZE / (sizeof(struct page *)));
1502	nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1503	nrptrs = max(nrptrs, 8);
1504	pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1505	if (!pages)
1506		return -ENOMEM;
 
 
1507
1508	while (iov_iter_count(i) > 0) {
1509		size_t offset = pos & (PAGE_SIZE - 1);
 
1510		size_t sector_offset;
1511		size_t write_bytes = min(iov_iter_count(i),
1512					 nrptrs * (size_t)PAGE_SIZE -
1513					 offset);
1514		size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
1515						PAGE_SIZE);
1516		size_t reserve_bytes;
1517		size_t dirty_pages;
1518		size_t copied;
1519		size_t dirty_sectors;
1520		size_t num_sectors;
1521
1522		WARN_ON(num_pages > nrptrs);
1523
1524		/*
1525		 * Fault pages before locking them in prepare_pages
1526		 * to avoid recursive lock
1527		 */
1528		if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1529			ret = -EFAULT;
1530			break;
1531		}
1532
1533		sector_offset = pos & (root->sectorsize - 1);
1534		reserve_bytes = round_up(write_bytes + sector_offset,
1535				root->sectorsize);
 
 
 
 
 
 
 
 
 
 
 
1536
1537		if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1538					      BTRFS_INODE_PREALLOC)) &&
1539		    check_can_nocow(inode, pos, &write_bytes) > 0) {
1540			/*
1541			 * For nodata cow case, no need to reserve
1542			 * data space.
 
1543			 */
 
 
 
 
 
 
 
 
1544			only_release_metadata = true;
1545			/*
1546			 * our prealloc extent may be smaller than
1547			 * write_bytes, so scale down.
1548			 */
1549			num_pages = DIV_ROUND_UP(write_bytes + offset,
1550						 PAGE_SIZE);
1551			reserve_bytes = round_up(write_bytes + sector_offset,
1552					root->sectorsize);
1553			goto reserve_metadata;
1554		}
1555
1556		ret = btrfs_check_data_free_space(inode, pos, write_bytes);
1557		if (ret < 0)
1558			break;
1559
1560reserve_metadata:
1561		ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes);
 
 
1562		if (ret) {
1563			if (!only_release_metadata)
1564				btrfs_free_reserved_data_space(inode, pos,
1565							       write_bytes);
 
1566			else
1567				btrfs_end_write_no_snapshoting(root);
 
 
 
1568			break;
1569		}
1570
1571		release_bytes = reserve_bytes;
1572		need_unlock = false;
1573again:
 
 
 
 
 
 
1574		/*
1575		 * This is going to setup the pages array with the number of
1576		 * pages we want, so we don't really need to worry about the
1577		 * contents of pages from loop to loop
1578		 */
1579		ret = prepare_pages(inode, pages, num_pages,
1580				    pos, write_bytes,
1581				    force_page_uptodate);
1582		if (ret)
 
1583			break;
 
1584
1585		ret = lock_and_cleanup_extent_if_need(inode, pages, num_pages,
1586						pos, write_bytes, &lockstart,
1587						&lockend, &cached_state);
1588		if (ret < 0) {
1589			if (ret == -EAGAIN)
 
1590				goto again;
 
 
 
 
1591			break;
1592		} else if (ret > 0) {
1593			need_unlock = true;
1594			ret = 0;
1595		}
1596
1597		copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1598
 
 
 
 
 
1599		/*
1600		 * if we have trouble faulting in the pages, fall
1601		 * back to one page at a time
1602		 */
1603		if (copied < write_bytes)
1604			nrptrs = 1;
1605
1606		if (copied == 0) {
1607			force_page_uptodate = true;
 
1608			dirty_pages = 0;
1609		} else {
1610			force_page_uptodate = false;
1611			dirty_pages = DIV_ROUND_UP(copied + offset,
1612						   PAGE_SIZE);
1613		}
1614
1615		/*
1616		 * If we had a short copy we need to release the excess delaloc
1617		 * bytes we reserved.  We need to increment outstanding_extents
1618		 * because btrfs_delalloc_release_space will decrement it, but
1619		 * we still have an outstanding extent for the chunk we actually
1620		 * managed to copy.
1621		 */
1622		num_sectors = BTRFS_BYTES_TO_BLKS(root->fs_info,
1623						reserve_bytes);
1624		dirty_sectors = round_up(copied + sector_offset,
1625					root->sectorsize);
1626		dirty_sectors = BTRFS_BYTES_TO_BLKS(root->fs_info,
1627						dirty_sectors);
1628
1629		if (num_sectors > dirty_sectors) {
1630			release_bytes = (write_bytes - copied)
1631				& ~((u64)root->sectorsize - 1);
1632			if (copied > 0) {
1633				spin_lock(&BTRFS_I(inode)->lock);
1634				BTRFS_I(inode)->outstanding_extents++;
1635				spin_unlock(&BTRFS_I(inode)->lock);
1636			}
1637			if (only_release_metadata) {
1638				btrfs_delalloc_release_metadata(inode,
1639								release_bytes);
1640			} else {
1641				u64 __pos;
1642
1643				__pos = round_down(pos, root->sectorsize) +
 
1644					(dirty_pages << PAGE_SHIFT);
1645				btrfs_delalloc_release_space(inode, __pos,
1646							     release_bytes);
 
1647			}
1648		}
1649
1650		release_bytes = round_up(copied + sector_offset,
1651					root->sectorsize);
1652
1653		if (copied > 0)
1654			ret = btrfs_dirty_pages(root, inode, pages,
1655						dirty_pages, pos, copied,
1656						NULL);
1657		if (need_unlock)
1658			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1659					     lockstart, lockend, &cached_state,
1660					     GFP_NOFS);
 
 
 
 
 
 
 
 
 
 
1661		if (ret) {
1662			btrfs_drop_pages(pages, num_pages);
1663			break;
1664		}
1665
1666		release_bytes = 0;
1667		if (only_release_metadata)
1668			btrfs_end_write_no_snapshoting(root);
1669
1670		if (only_release_metadata && copied > 0) {
1671			lockstart = round_down(pos, root->sectorsize);
1672			lockend = round_up(pos + copied, root->sectorsize) - 1;
1673
1674			set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1675				       lockend, EXTENT_NORESERVE, NULL,
1676				       NULL, GFP_NOFS);
1677			only_release_metadata = false;
1678		}
1679
1680		btrfs_drop_pages(pages, num_pages);
1681
1682		cond_resched();
1683
1684		balance_dirty_pages_ratelimited(inode->i_mapping);
1685		if (dirty_pages < (root->nodesize >> PAGE_SHIFT) + 1)
1686			btrfs_btree_balance_dirty(root);
1687
1688		pos += copied;
1689		num_written += copied;
1690	}
1691
1692	kfree(pages);
1693
1694	if (release_bytes) {
1695		if (only_release_metadata) {
1696			btrfs_end_write_no_snapshoting(root);
1697			btrfs_delalloc_release_metadata(inode, release_bytes);
 
1698		} else {
1699			btrfs_delalloc_release_space(inode, pos, release_bytes);
 
 
 
1700		}
1701	}
1702
 
 
 
 
 
 
 
1703	return num_written ? num_written : ret;
1704}
1705
1706static ssize_t __btrfs_direct_write(struct kiocb *iocb,
1707				    struct iov_iter *from,
1708				    loff_t pos)
 
 
 
 
 
 
 
 
 
 
 
 
1709{
1710	struct file *file = iocb->ki_filp;
1711	struct inode *inode = file_inode(file);
1712	ssize_t written;
 
 
1713	ssize_t written_buffered;
 
1714	loff_t endbyte;
1715	int err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1716
1717	written = generic_file_direct_write(iocb, from, pos);
 
 
 
 
 
1718
1719	if (written < 0 || !iov_iter_count(from))
1720		return written;
 
 
 
 
 
 
 
 
 
1721
1722	pos += written;
1723	written_buffered = __btrfs_buffered_write(file, from, pos);
1724	if (written_buffered < 0) {
1725		err = written_buffered;
1726		goto out;
1727	}
1728	/*
1729	 * Ensure all data is persisted. We want the next direct IO read to be
1730	 * able to read what was just written.
1731	 */
1732	endbyte = pos + written_buffered - 1;
1733	err = btrfs_fdatawrite_range(inode, pos, endbyte);
1734	if (err)
1735		goto out;
1736	err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1737	if (err)
1738		goto out;
1739	written += written_buffered;
1740	iocb->ki_pos = pos + written_buffered;
1741	invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1742				 endbyte >> PAGE_SHIFT);
1743out:
1744	return written ? written : err;
1745}
1746
1747static void update_time_for_write(struct inode *inode)
 
1748{
1749	struct timespec now;
 
 
 
1750
1751	if (IS_NOCMTIME(inode))
1752		return;
 
 
 
 
 
 
 
 
 
 
1753
1754	now = current_fs_time(inode->i_sb);
1755	if (!timespec_equal(&inode->i_mtime, &now))
1756		inode->i_mtime = now;
1757
1758	if (!timespec_equal(&inode->i_ctime, &now))
1759		inode->i_ctime = now;
1760
1761	if (IS_I_VERSION(inode))
1762		inode_inc_iversion(inode);
1763}
1764
1765static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1766				    struct iov_iter *from)
1767{
1768	struct file *file = iocb->ki_filp;
1769	struct inode *inode = file_inode(file);
1770	struct btrfs_root *root = BTRFS_I(inode)->root;
1771	u64 start_pos;
1772	u64 end_pos;
1773	ssize_t num_written = 0;
1774	bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1775	ssize_t err;
1776	loff_t pos;
1777	size_t count;
1778	loff_t oldsize;
1779	int clean_page = 0;
1780
1781	inode_lock(inode);
1782	err = generic_write_checks(iocb, from);
1783	if (err <= 0) {
1784		inode_unlock(inode);
1785		return err;
1786	}
1787
1788	current->backing_dev_info = inode_to_bdi(inode);
1789	err = file_remove_privs(file);
1790	if (err) {
1791		inode_unlock(inode);
1792		goto out;
1793	}
1794
1795	/*
1796	 * If BTRFS flips readonly due to some impossible error
1797	 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1798	 * although we have opened a file as writable, we have
1799	 * to stop this write operation to ensure FS consistency.
1800	 */
1801	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1802		inode_unlock(inode);
1803		err = -EROFS;
1804		goto out;
1805	}
1806
1807	/*
1808	 * We reserve space for updating the inode when we reserve space for the
1809	 * extent we are going to write, so we will enospc out there.  We don't
1810	 * need to start yet another transaction to update the inode as we will
1811	 * update the inode when we finish writing whatever data we write.
1812	 */
1813	update_time_for_write(inode);
1814
1815	pos = iocb->ki_pos;
1816	count = iov_iter_count(from);
1817	start_pos = round_down(pos, root->sectorsize);
1818	oldsize = i_size_read(inode);
1819	if (start_pos > oldsize) {
1820		/* Expand hole size to cover write data, preventing empty gap */
1821		end_pos = round_up(pos + count, root->sectorsize);
1822		err = btrfs_cont_expand(inode, oldsize, end_pos);
1823		if (err) {
1824			inode_unlock(inode);
1825			goto out;
1826		}
1827		if (start_pos > round_up(oldsize, root->sectorsize))
1828			clean_page = 1;
1829	}
1830
1831	if (sync)
1832		atomic_inc(&BTRFS_I(inode)->sync_writers);
1833
1834	if (iocb->ki_flags & IOCB_DIRECT) {
1835		num_written = __btrfs_direct_write(iocb, from, pos);
1836	} else {
1837		num_written = __btrfs_buffered_write(file, from, pos);
1838		if (num_written > 0)
1839			iocb->ki_pos = pos + num_written;
1840		if (clean_page)
1841			pagecache_isize_extended(inode, oldsize,
1842						i_size_read(inode));
1843	}
1844
1845	inode_unlock(inode);
 
1846
1847	/*
1848	 * We also have to set last_sub_trans to the current log transid,
1849	 * otherwise subsequent syncs to a file that's been synced in this
1850	 * transaction will appear to have already occurred.
1851	 */
1852	spin_lock(&BTRFS_I(inode)->lock);
1853	BTRFS_I(inode)->last_sub_trans = root->log_transid;
1854	spin_unlock(&BTRFS_I(inode)->lock);
1855	if (num_written > 0) {
1856		err = generic_write_sync(file, pos, num_written);
1857		if (err < 0)
1858			num_written = err;
1859	}
1860
1861	if (sync)
1862		atomic_dec(&BTRFS_I(inode)->sync_writers);
1863out:
1864	current->backing_dev_info = NULL;
1865	return num_written ? num_written : err;
1866}
1867
1868int btrfs_release_file(struct inode *inode, struct file *filp)
1869{
1870	if (filp->private_data)
1871		btrfs_ioctl_trans_end(filp);
 
 
 
 
 
 
 
1872	/*
1873	 * ordered_data_close is set by settattr when we are about to truncate
1874	 * a file from a non-zero size to a zero size.  This tries to
1875	 * flush down new bytes that may have been written if the
1876	 * application were using truncate to replace a file in place.
1877	 */
1878	if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
1879			       &BTRFS_I(inode)->runtime_flags))
1880			filemap_flush(inode->i_mapping);
1881	return 0;
1882}
1883
1884static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
1885{
1886	int ret;
 
1887
1888	atomic_inc(&BTRFS_I(inode)->sync_writers);
 
 
 
 
 
 
1889	ret = btrfs_fdatawrite_range(inode, start, end);
1890	atomic_dec(&BTRFS_I(inode)->sync_writers);
1891
1892	return ret;
1893}
1894
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1895/*
1896 * fsync call for both files and directories.  This logs the inode into
1897 * the tree log instead of forcing full commits whenever possible.
1898 *
1899 * It needs to call filemap_fdatawait so that all ordered extent updates are
1900 * in the metadata btree are up to date for copying to the log.
1901 *
1902 * It drops the inode mutex before doing the tree log commit.  This is an
1903 * important optimization for directories because holding the mutex prevents
1904 * new operations on the dir while we write to disk.
1905 */
1906int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1907{
1908	struct dentry *dentry = file_dentry(file);
1909	struct inode *inode = d_inode(dentry);
 
1910	struct btrfs_root *root = BTRFS_I(inode)->root;
1911	struct btrfs_trans_handle *trans;
1912	struct btrfs_log_ctx ctx;
1913	int ret = 0;
1914	bool full_sync = 0;
1915	u64 len;
 
 
 
 
 
1916
1917	/*
1918	 * The range length can be represented by u64, we have to do the typecasts
1919	 * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync()
1920	 */
1921	len = (u64)end - (u64)start + 1;
1922	trace_btrfs_sync_file(file, datasync);
 
 
 
 
 
1923
1924	/*
1925	 * We write the dirty pages in the range and wait until they complete
1926	 * out of the ->i_mutex. If so, we can flush the dirty pages by
1927	 * multi-task, and make the performance up.  See
1928	 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1929	 */
1930	ret = start_ordered_ops(inode, start, end);
1931	if (ret)
1932		return ret;
 
 
1933
1934	inode_lock(inode);
1935	atomic_inc(&root->log_batch);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1936	full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1937			     &BTRFS_I(inode)->runtime_flags);
 
1938	/*
1939	 * We might have have had more pages made dirty after calling
1940	 * start_ordered_ops and before acquiring the inode's i_mutex.
 
 
 
 
 
 
 
 
 
 
 
1941	 */
1942	if (full_sync) {
1943		/*
1944		 * For a full sync, we need to make sure any ordered operations
1945		 * start and finish before we start logging the inode, so that
1946		 * all extents are persisted and the respective file extent
1947		 * items are in the fs/subvol btree.
1948		 */
1949		ret = btrfs_wait_ordered_range(inode, start, len);
1950	} else {
1951		/*
1952		 * Start any new ordered operations before starting to log the
1953		 * inode. We will wait for them to finish in btrfs_sync_log().
1954		 *
1955		 * Right before acquiring the inode's mutex, we might have new
1956		 * writes dirtying pages, which won't immediately start the
1957		 * respective ordered operations - that is done through the
1958		 * fill_delalloc callbacks invoked from the writepage and
1959		 * writepages address space operations. So make sure we start
1960		 * all ordered operations before starting to log our inode. Not
1961		 * doing this means that while logging the inode, writeback
1962		 * could start and invoke writepage/writepages, which would call
1963		 * the fill_delalloc callbacks (cow_file_range,
1964		 * submit_compressed_extents). These callbacks add first an
1965		 * extent map to the modified list of extents and then create
1966		 * the respective ordered operation, which means in
1967		 * tree-log.c:btrfs_log_inode() we might capture all existing
1968		 * ordered operations (with btrfs_get_logged_extents()) before
1969		 * the fill_delalloc callback adds its ordered operation, and by
1970		 * the time we visit the modified list of extent maps (with
1971		 * btrfs_log_changed_extents()), we see and process the extent
1972		 * map they created. We then use the extent map to construct a
1973		 * file extent item for logging without waiting for the
1974		 * respective ordered operation to finish - this file extent
1975		 * item points to a disk location that might not have yet been
1976		 * written to, containing random data - so after a crash a log
1977		 * replay will make our inode have file extent items that point
1978		 * to disk locations containing invalid data, as we returned
1979		 * success to userspace without waiting for the respective
1980		 * ordered operation to finish, because it wasn't captured by
1981		 * btrfs_get_logged_extents().
1982		 */
1983		ret = start_ordered_ops(inode, start, end);
1984	}
1985	if (ret) {
1986		inode_unlock(inode);
1987		goto out;
1988	}
 
 
 
 
1989	atomic_inc(&root->log_batch);
1990
1991	/*
1992	 * If the last transaction that changed this file was before the current
1993	 * transaction and we have the full sync flag set in our inode, we can
1994	 * bail out now without any syncing.
1995	 *
1996	 * Note that we can't bail out if the full sync flag isn't set. This is
1997	 * because when the full sync flag is set we start all ordered extents
1998	 * and wait for them to fully complete - when they complete they update
1999	 * the inode's last_trans field through:
2000	 *
2001	 *     btrfs_finish_ordered_io() ->
2002	 *         btrfs_update_inode_fallback() ->
2003	 *             btrfs_update_inode() ->
2004	 *                 btrfs_set_inode_last_trans()
2005	 *
2006	 * So we are sure that last_trans is up to date and can do this check to
2007	 * bail out safely. For the fast path, when the full sync flag is not
2008	 * set in our inode, we can not do it because we start only our ordered
2009	 * extents and don't wait for them to complete (that is when
2010	 * btrfs_finish_ordered_io runs), so here at this point their last_trans
2011	 * value might be less than or equals to fs_info->last_trans_committed,
2012	 * and setting a speculative last_trans for an inode when a buffered
2013	 * write is made (such as fs_info->generation + 1 for example) would not
2014	 * be reliable since after setting the value and before fsync is called
2015	 * any number of transactions can start and commit (transaction kthread
2016	 * commits the current transaction periodically), and a transaction
2017	 * commit does not start nor waits for ordered extents to complete.
2018	 */
2019	smp_mb();
2020	if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
2021	    (full_sync && BTRFS_I(inode)->last_trans <=
2022	     root->fs_info->last_trans_committed) ||
2023	    (!btrfs_have_ordered_extents_in_range(inode, start, len) &&
2024	     BTRFS_I(inode)->last_trans
2025	     <= root->fs_info->last_trans_committed)) {
2026		/*
2027		 * We'v had everything committed since the last time we were
2028		 * modified so clear this flag in case it was set for whatever
2029		 * reason, it's no longer relevant.
2030		 */
2031		clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2032			  &BTRFS_I(inode)->runtime_flags);
2033		inode_unlock(inode);
2034		goto out;
 
 
 
 
 
 
 
2035	}
2036
2037	/*
2038	 * ok we haven't committed the transaction yet, lets do a commit
2039	 */
2040	if (file->private_data)
2041		btrfs_ioctl_trans_end(file);
2042
2043	/*
2044	 * We use start here because we will need to wait on the IO to complete
2045	 * in btrfs_sync_log, which could require joining a transaction (for
2046	 * example checking cross references in the nocow path).  If we use join
2047	 * here we could get into a situation where we're waiting on IO to
2048	 * happen that is blocked on a transaction trying to commit.  With start
2049	 * we inc the extwriter counter, so we wait for all extwriters to exit
2050	 * before we start blocking join'ers.  This comment is to keep somebody
2051	 * from thinking they are super smart and changing this to
2052	 * btrfs_join_transaction *cough*Josef*cough*.
2053	 */
2054	trans = btrfs_start_transaction(root, 0);
2055	if (IS_ERR(trans)) {
2056		ret = PTR_ERR(trans);
2057		inode_unlock(inode);
2058		goto out;
2059	}
2060	trans->sync = true;
2061
2062	btrfs_init_log_ctx(&ctx);
2063
2064	ret = btrfs_log_dentry_safe(trans, root, dentry, start, end, &ctx);
 
2065	if (ret < 0) {
2066		/* Fallthrough and commit/free transaction. */
2067		ret = 1;
2068	}
2069
2070	/* we've logged all the items and now have a consistent
2071	 * version of the file in the log.  It is possible that
2072	 * someone will come in and modify the file, but that's
2073	 * fine because the log is consistent on disk, and we
2074	 * have references to all of the file's extents
2075	 *
2076	 * It is possible that someone will come in and log the
2077	 * file again, but that will end up using the synchronization
2078	 * inside btrfs_sync_log to keep things safe.
2079	 */
2080	inode_unlock(inode);
2081
2082	/*
2083	 * If any of the ordered extents had an error, just return it to user
2084	 * space, so that the application knows some writes didn't succeed and
2085	 * can take proper action (retry for e.g.). Blindly committing the
2086	 * transaction in this case, would fool userspace that everything was
2087	 * successful. And we also want to make sure our log doesn't contain
2088	 * file extent items pointing to extents that weren't fully written to -
2089	 * just like in the non fast fsync path, where we check for the ordered
2090	 * operation's error flag before writing to the log tree and return -EIO
2091	 * if any of them had this flag set (btrfs_wait_ordered_range) -
2092	 * therefore we need to check for errors in the ordered operations,
2093	 * which are indicated by ctx.io_err.
2094	 */
2095	if (ctx.io_err) {
2096		btrfs_end_transaction(trans, root);
2097		ret = ctx.io_err;
2098		goto out;
2099	}
2100
2101	if (ret != BTRFS_NO_LOG_SYNC) {
 
 
2102		if (!ret) {
2103			ret = btrfs_sync_log(trans, root, &ctx);
2104			if (!ret) {
2105				ret = btrfs_end_transaction(trans, root);
2106				goto out;
2107			}
2108		}
2109		if (!full_sync) {
2110			ret = btrfs_wait_ordered_range(inode, start, len);
2111			if (ret) {
2112				btrfs_end_transaction(trans, root);
2113				goto out;
2114			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2115		}
2116		ret = btrfs_commit_transaction(trans, root);
2117	} else {
2118		ret = btrfs_end_transaction(trans, root);
2119	}
 
 
2120out:
 
 
 
 
 
2121	return ret > 0 ? -EIO : ret;
 
 
 
 
 
2122}
2123
2124static const struct vm_operations_struct btrfs_file_vm_ops = {
2125	.fault		= filemap_fault,
2126	.map_pages	= filemap_map_pages,
2127	.page_mkwrite	= btrfs_page_mkwrite,
2128};
2129
2130static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
2131{
2132	struct address_space *mapping = filp->f_mapping;
2133
2134	if (!mapping->a_ops->readpage)
2135		return -ENOEXEC;
2136
2137	file_accessed(filp);
2138	vma->vm_ops = &btrfs_file_vm_ops;
2139
2140	return 0;
2141}
2142
2143static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
2144			  int slot, u64 start, u64 end)
2145{
2146	struct btrfs_file_extent_item *fi;
2147	struct btrfs_key key;
2148
2149	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2150		return 0;
2151
2152	btrfs_item_key_to_cpu(leaf, &key, slot);
2153	if (key.objectid != btrfs_ino(inode) ||
2154	    key.type != BTRFS_EXTENT_DATA_KEY)
2155		return 0;
2156
2157	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2158
2159	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2160		return 0;
2161
2162	if (btrfs_file_extent_disk_bytenr(leaf, fi))
2163		return 0;
2164
2165	if (key.offset == end)
2166		return 1;
2167	if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2168		return 1;
2169	return 0;
2170}
2171
2172static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
2173		      struct btrfs_path *path, u64 offset, u64 end)
 
2174{
2175	struct btrfs_root *root = BTRFS_I(inode)->root;
 
2176	struct extent_buffer *leaf;
2177	struct btrfs_file_extent_item *fi;
2178	struct extent_map *hole_em;
2179	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2180	struct btrfs_key key;
2181	int ret;
2182
2183	if (btrfs_fs_incompat(root->fs_info, NO_HOLES))
2184		goto out;
2185
2186	key.objectid = btrfs_ino(inode);
2187	key.type = BTRFS_EXTENT_DATA_KEY;
2188	key.offset = offset;
2189
2190	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2191	if (ret < 0)
 
 
 
 
 
 
2192		return ret;
2193	BUG_ON(!ret);
2194
2195	leaf = path->nodes[0];
2196	if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
2197		u64 num_bytes;
2198
2199		path->slots[0]--;
2200		fi = btrfs_item_ptr(leaf, path->slots[0],
2201				    struct btrfs_file_extent_item);
2202		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2203			end - offset;
2204		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2205		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2206		btrfs_set_file_extent_offset(leaf, fi, 0);
2207		btrfs_mark_buffer_dirty(leaf);
 
2208		goto out;
2209	}
2210
2211	if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2212		u64 num_bytes;
2213
2214		key.offset = offset;
2215		btrfs_set_item_key_safe(root->fs_info, path, &key);
2216		fi = btrfs_item_ptr(leaf, path->slots[0],
2217				    struct btrfs_file_extent_item);
2218		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2219			offset;
2220		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2221		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2222		btrfs_set_file_extent_offset(leaf, fi, 0);
2223		btrfs_mark_buffer_dirty(leaf);
 
2224		goto out;
2225	}
2226	btrfs_release_path(path);
2227
2228	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
2229				       0, 0, end - offset, 0, end - offset,
2230				       0, 0, 0);
2231	if (ret)
2232		return ret;
2233
2234out:
2235	btrfs_release_path(path);
2236
2237	hole_em = alloc_extent_map();
2238	if (!hole_em) {
2239		btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2240		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2241			&BTRFS_I(inode)->runtime_flags);
2242	} else {
2243		hole_em->start = offset;
2244		hole_em->len = end - offset;
2245		hole_em->ram_bytes = hole_em->len;
2246		hole_em->orig_start = offset;
2247
2248		hole_em->block_start = EXTENT_MAP_HOLE;
2249		hole_em->block_len = 0;
2250		hole_em->orig_block_len = 0;
2251		hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
2252		hole_em->compress_type = BTRFS_COMPRESS_NONE;
2253		hole_em->generation = trans->transid;
2254
2255		do {
2256			btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2257			write_lock(&em_tree->lock);
2258			ret = add_extent_mapping(em_tree, hole_em, 1);
2259			write_unlock(&em_tree->lock);
2260		} while (ret == -EEXIST);
2261		free_extent_map(hole_em);
2262		if (ret)
2263			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2264				&BTRFS_I(inode)->runtime_flags);
2265	}
2266
2267	return 0;
2268}
2269
2270/*
2271 * Find a hole extent on given inode and change start/len to the end of hole
2272 * extent.(hole/vacuum extent whose em->start <= start &&
2273 *	   em->start + em->len > start)
2274 * When a hole extent is found, return 1 and modify start/len.
2275 */
2276static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2277{
 
2278	struct extent_map *em;
2279	int ret = 0;
2280
2281	em = btrfs_get_extent(inode, NULL, 0, *start, *len, 0);
2282	if (IS_ERR_OR_NULL(em)) {
2283		if (!em)
2284			ret = -ENOMEM;
2285		else
2286			ret = PTR_ERR(em);
2287		return ret;
2288	}
2289
2290	/* Hole or vacuum extent(only exists in no-hole mode) */
2291	if (em->block_start == EXTENT_MAP_HOLE) {
2292		ret = 1;
2293		*len = em->start + em->len > *start + *len ?
2294		       0 : *start + *len - em->start - em->len;
2295		*start = em->start + em->len;
2296	}
2297	free_extent_map(em);
2298	return ret;
2299}
2300
2301static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2302{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2303	struct btrfs_root *root = BTRFS_I(inode)->root;
2304	struct extent_state *cached_state = NULL;
2305	struct btrfs_path *path;
2306	struct btrfs_block_rsv *rsv;
2307	struct btrfs_trans_handle *trans;
2308	u64 lockstart;
2309	u64 lockend;
2310	u64 tail_start;
2311	u64 tail_len;
2312	u64 orig_start = offset;
2313	u64 cur_offset;
2314	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
2315	u64 drop_end;
2316	int ret = 0;
2317	int err = 0;
2318	unsigned int rsv_count;
2319	bool same_block;
2320	bool no_holes = btrfs_fs_incompat(root->fs_info, NO_HOLES);
2321	u64 ino_size;
2322	bool truncated_block = false;
2323	bool updated_inode = false;
2324
 
 
2325	ret = btrfs_wait_ordered_range(inode, offset, len);
2326	if (ret)
2327		return ret;
2328
2329	inode_lock(inode);
2330	ino_size = round_up(inode->i_size, root->sectorsize);
2331	ret = find_first_non_hole(inode, &offset, &len);
2332	if (ret < 0)
2333		goto out_only_mutex;
2334	if (ret && !len) {
2335		/* Already in a large hole */
2336		ret = 0;
2337		goto out_only_mutex;
2338	}
2339
2340	lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize);
2341	lockend = round_down(offset + len,
2342			     BTRFS_I(inode)->root->sectorsize) - 1;
2343	same_block = (BTRFS_BYTES_TO_BLKS(root->fs_info, offset))
2344		== (BTRFS_BYTES_TO_BLKS(root->fs_info, offset + len - 1));
 
 
 
2345	/*
2346	 * We needn't truncate any block which is beyond the end of the file
2347	 * because we are sure there is no data there.
2348	 */
2349	/*
2350	 * Only do this if we are in the same block and we aren't doing the
2351	 * entire block.
2352	 */
2353	if (same_block && len < root->sectorsize) {
2354		if (offset < ino_size) {
2355			truncated_block = true;
2356			ret = btrfs_truncate_block(inode, offset, len, 0);
 
2357		} else {
2358			ret = 0;
2359		}
2360		goto out_only_mutex;
2361	}
2362
2363	/* zero back part of the first block */
2364	if (offset < ino_size) {
2365		truncated_block = true;
2366		ret = btrfs_truncate_block(inode, offset, 0, 0);
2367		if (ret) {
2368			inode_unlock(inode);
2369			return ret;
2370		}
2371	}
2372
2373	/* Check the aligned pages after the first unaligned page,
2374	 * if offset != orig_start, which means the first unaligned page
2375	 * including serveral following pages are already in holes,
2376	 * the extra check can be skipped */
2377	if (offset == orig_start) {
2378		/* after truncate page, check hole again */
2379		len = offset + len - lockstart;
2380		offset = lockstart;
2381		ret = find_first_non_hole(inode, &offset, &len);
2382		if (ret < 0)
2383			goto out_only_mutex;
2384		if (ret && !len) {
2385			ret = 0;
2386			goto out_only_mutex;
2387		}
2388		lockstart = offset;
2389	}
2390
2391	/* Check the tail unaligned part is in a hole */
2392	tail_start = lockend + 1;
2393	tail_len = offset + len - tail_start;
2394	if (tail_len) {
2395		ret = find_first_non_hole(inode, &tail_start, &tail_len);
2396		if (unlikely(ret < 0))
2397			goto out_only_mutex;
2398		if (!ret) {
2399			/* zero the front end of the last page */
2400			if (tail_start + tail_len < ino_size) {
2401				truncated_block = true;
2402				ret = btrfs_truncate_block(inode,
2403							tail_start + tail_len,
2404							0, 1);
2405				if (ret)
2406					goto out_only_mutex;
2407			}
2408		}
2409	}
2410
2411	if (lockend < lockstart) {
2412		ret = 0;
2413		goto out_only_mutex;
2414	}
2415
2416	while (1) {
2417		struct btrfs_ordered_extent *ordered;
2418
2419		truncate_pagecache_range(inode, lockstart, lockend);
2420
2421		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2422				 &cached_state);
2423		ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2424
2425		/*
2426		 * We need to make sure we have no ordered extents in this range
2427		 * and nobody raced in and read a page in this range, if we did
2428		 * we need to try again.
2429		 */
2430		if ((!ordered ||
2431		    (ordered->file_offset + ordered->len <= lockstart ||
2432		     ordered->file_offset > lockend)) &&
2433		     !btrfs_page_exists_in_range(inode, lockstart, lockend)) {
2434			if (ordered)
2435				btrfs_put_ordered_extent(ordered);
2436			break;
2437		}
2438		if (ordered)
2439			btrfs_put_ordered_extent(ordered);
2440		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2441				     lockend, &cached_state, GFP_NOFS);
2442		ret = btrfs_wait_ordered_range(inode, lockstart,
2443					       lockend - lockstart + 1);
2444		if (ret) {
2445			inode_unlock(inode);
2446			return ret;
2447		}
2448	}
2449
2450	path = btrfs_alloc_path();
2451	if (!path) {
2452		ret = -ENOMEM;
2453		goto out;
2454	}
2455
2456	rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2457	if (!rsv) {
2458		ret = -ENOMEM;
2459		goto out_free;
2460	}
2461	rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
2462	rsv->failfast = 1;
2463
2464	/*
2465	 * 1 - update the inode
2466	 * 1 - removing the extents in the range
2467	 * 1 - adding the hole extent if no_holes isn't set
2468	 */
2469	rsv_count = no_holes ? 2 : 3;
2470	trans = btrfs_start_transaction(root, rsv_count);
2471	if (IS_ERR(trans)) {
2472		err = PTR_ERR(trans);
2473		goto out_free;
2474	}
2475
2476	ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
2477				      min_size);
2478	BUG_ON(ret);
2479	trans->block_rsv = rsv;
2480
2481	cur_offset = lockstart;
2482	len = lockend - cur_offset;
2483	while (cur_offset < lockend) {
2484		ret = __btrfs_drop_extents(trans, root, inode, path,
2485					   cur_offset, lockend + 1,
2486					   &drop_end, 1, 0, 0, NULL);
2487		if (ret != -ENOSPC)
2488			break;
2489
2490		trans->block_rsv = &root->fs_info->trans_block_rsv;
2491
2492		if (cur_offset < ino_size) {
2493			ret = fill_holes(trans, inode, path, cur_offset,
2494					 drop_end);
2495			if (ret) {
2496				err = ret;
2497				break;
2498			}
2499		}
2500
2501		cur_offset = drop_end;
2502
2503		ret = btrfs_update_inode(trans, root, inode);
2504		if (ret) {
2505			err = ret;
2506			break;
2507		}
2508
2509		btrfs_end_transaction(trans, root);
2510		btrfs_btree_balance_dirty(root);
2511
2512		trans = btrfs_start_transaction(root, rsv_count);
2513		if (IS_ERR(trans)) {
2514			ret = PTR_ERR(trans);
2515			trans = NULL;
2516			break;
2517		}
2518
2519		ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
2520					      rsv, min_size);
2521		BUG_ON(ret);	/* shouldn't happen */
2522		trans->block_rsv = rsv;
2523
2524		ret = find_first_non_hole(inode, &cur_offset, &len);
2525		if (unlikely(ret < 0))
2526			break;
2527		if (ret && !len) {
2528			ret = 0;
2529			break;
2530		}
2531	}
2532
2533	if (ret) {
2534		err = ret;
2535		goto out_trans;
2536	}
2537
2538	trans->block_rsv = &root->fs_info->trans_block_rsv;
2539	/*
2540	 * If we are using the NO_HOLES feature we might have had already an
2541	 * hole that overlaps a part of the region [lockstart, lockend] and
2542	 * ends at (or beyond) lockend. Since we have no file extent items to
2543	 * represent holes, drop_end can be less than lockend and so we must
2544	 * make sure we have an extent map representing the existing hole (the
2545	 * call to __btrfs_drop_extents() might have dropped the existing extent
2546	 * map representing the existing hole), otherwise the fast fsync path
2547	 * will not record the existence of the hole region
2548	 * [existing_hole_start, lockend].
2549	 */
2550	if (drop_end <= lockend)
2551		drop_end = lockend + 1;
2552	/*
2553	 * Don't insert file hole extent item if it's for a range beyond eof
2554	 * (because it's useless) or if it represents a 0 bytes range (when
2555	 * cur_offset == drop_end).
2556	 */
2557	if (cur_offset < ino_size && cur_offset < drop_end) {
2558		ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2559		if (ret) {
2560			err = ret;
2561			goto out_trans;
2562		}
2563	}
2564
2565out_trans:
2566	if (!trans)
2567		goto out_free;
2568
 
2569	inode_inc_iversion(inode);
2570	inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb);
2571
2572	trans->block_rsv = &root->fs_info->trans_block_rsv;
2573	ret = btrfs_update_inode(trans, root, inode);
2574	updated_inode = true;
2575	btrfs_end_transaction(trans, root);
2576	btrfs_btree_balance_dirty(root);
2577out_free:
2578	btrfs_free_path(path);
2579	btrfs_free_block_rsv(root, rsv);
2580out:
2581	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2582			     &cached_state, GFP_NOFS);
2583out_only_mutex:
2584	if (!updated_inode && truncated_block && !ret && !err) {
2585		/*
2586		 * If we only end up zeroing part of a page, we still need to
2587		 * update the inode item, so that all the time fields are
2588		 * updated as well as the necessary btrfs inode in memory fields
2589		 * for detecting, at fsync time, if the inode isn't yet in the
2590		 * log tree or it's there but not up to date.
2591		 */
 
 
 
 
2592		trans = btrfs_start_transaction(root, 1);
2593		if (IS_ERR(trans)) {
2594			err = PTR_ERR(trans);
2595		} else {
2596			err = btrfs_update_inode(trans, root, inode);
2597			ret = btrfs_end_transaction(trans, root);
 
 
 
 
2598		}
2599	}
2600	inode_unlock(inode);
2601	if (ret && !err)
2602		err = ret;
2603	return err;
2604}
2605
2606/* Helper structure to record which range is already reserved */
2607struct falloc_range {
2608	struct list_head list;
2609	u64 start;
2610	u64 len;
2611};
2612
2613/*
2614 * Helper function to add falloc range
2615 *
2616 * Caller should have locked the larger range of extent containing
2617 * [start, len)
2618 */
2619static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2620{
2621	struct falloc_range *prev = NULL;
2622	struct falloc_range *range = NULL;
2623
2624	if (list_empty(head))
2625		goto insert;
 
 
 
 
 
 
 
 
 
2626
2627	/*
2628	 * As fallocate iterate by bytenr order, we only need to check
2629	 * the last range.
2630	 */
2631	prev = list_entry(head->prev, struct falloc_range, list);
2632	if (prev->start + prev->len == start) {
2633		prev->len += len;
2634		return 0;
2635	}
2636insert:
2637	range = kmalloc(sizeof(*range), GFP_KERNEL);
2638	if (!range)
2639		return -ENOMEM;
2640	range->start = start;
2641	range->len = len;
2642	list_add_tail(&range->list, head);
2643	return 0;
2644}
2645
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2646static long btrfs_fallocate(struct file *file, int mode,
2647			    loff_t offset, loff_t len)
2648{
2649	struct inode *inode = file_inode(file);
2650	struct extent_state *cached_state = NULL;
 
2651	struct falloc_range *range;
2652	struct falloc_range *tmp;
2653	struct list_head reserve_list;
2654	u64 cur_offset;
2655	u64 last_byte;
2656	u64 alloc_start;
2657	u64 alloc_end;
2658	u64 alloc_hint = 0;
2659	u64 locked_end;
2660	u64 actual_end = 0;
 
 
 
2661	struct extent_map *em;
2662	int blocksize = BTRFS_I(inode)->root->sectorsize;
2663	int ret;
2664
 
 
 
 
2665	alloc_start = round_down(offset, blocksize);
2666	alloc_end = round_up(offset + len, blocksize);
 
2667
2668	/* Make sure we aren't being give some crap mode */
2669	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
 
2670		return -EOPNOTSUPP;
2671
2672	if (mode & FALLOC_FL_PUNCH_HOLE)
2673		return btrfs_punch_hole(inode, offset, len);
2674
2675	/*
2676	 * Only trigger disk allocation, don't trigger qgroup reserve
2677	 *
2678	 * For qgroup space, it will be checked later.
2679	 */
2680	ret = btrfs_alloc_data_chunk_ondemand(inode, alloc_end - alloc_start);
2681	if (ret < 0)
2682		return ret;
2683
2684	inode_lock(inode);
2685
2686	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
2687		ret = inode_newsize_ok(inode, offset + len);
2688		if (ret)
2689			goto out;
2690	}
2691
 
 
 
 
2692	/*
2693	 * TODO: Move these two operations after we have checked
2694	 * accurate reserved space, or fallocate can still fail but
2695	 * with page truncated or size expanded.
2696	 *
2697	 * But that's a minor problem and won't do much harm BTW.
2698	 */
2699	if (alloc_start > inode->i_size) {
2700		ret = btrfs_cont_expand(inode, i_size_read(inode),
2701					alloc_start);
2702		if (ret)
2703			goto out;
2704	} else if (offset + len > inode->i_size) {
2705		/*
2706		 * If we are fallocating from the end of the file onward we
2707		 * need to zero out the end of the block if i_size lands in the
2708		 * middle of a block.
2709		 */
2710		ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
2711		if (ret)
2712			goto out;
2713	}
2714
2715	/*
2716	 * wait for ordered IO before we have any locks.  We'll loop again
2717	 * below with the locks held.
 
 
 
 
2718	 */
2719	ret = btrfs_wait_ordered_range(inode, alloc_start,
2720				       alloc_end - alloc_start);
2721	if (ret)
2722		goto out;
2723
 
 
 
 
 
 
2724	locked_end = alloc_end - 1;
2725	while (1) {
2726		struct btrfs_ordered_extent *ordered;
2727
2728		/* the extent lock is ordered inside the running
2729		 * transaction
2730		 */
2731		lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
2732				 locked_end, &cached_state);
2733		ordered = btrfs_lookup_first_ordered_extent(inode,
2734							    alloc_end - 1);
2735		if (ordered &&
2736		    ordered->file_offset + ordered->len > alloc_start &&
2737		    ordered->file_offset < alloc_end) {
2738			btrfs_put_ordered_extent(ordered);
2739			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2740					     alloc_start, locked_end,
2741					     &cached_state, GFP_KERNEL);
2742			/*
2743			 * we can't wait on the range with the transaction
2744			 * running or with the extent lock held
2745			 */
2746			ret = btrfs_wait_ordered_range(inode, alloc_start,
2747						       alloc_end - alloc_start);
2748			if (ret)
2749				goto out;
2750		} else {
2751			if (ordered)
2752				btrfs_put_ordered_extent(ordered);
2753			break;
2754		}
2755	}
2756
2757	/* First, check if we exceed the qgroup limit */
2758	INIT_LIST_HEAD(&reserve_list);
2759	cur_offset = alloc_start;
2760	while (1) {
2761		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2762				      alloc_end - cur_offset, 0);
2763		if (IS_ERR_OR_NULL(em)) {
2764			if (!em)
2765				ret = -ENOMEM;
2766			else
2767				ret = PTR_ERR(em);
2768			break;
2769		}
2770		last_byte = min(extent_map_end(em), alloc_end);
2771		actual_end = min_t(u64, extent_map_end(em), offset + len);
2772		last_byte = ALIGN(last_byte, blocksize);
2773		if (em->block_start == EXTENT_MAP_HOLE ||
2774		    (cur_offset >= inode->i_size &&
2775		     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
2776			ret = add_falloc_range(&reserve_list, cur_offset,
2777					       last_byte - cur_offset);
 
2778			if (ret < 0) {
2779				free_extent_map(em);
2780				break;
2781			}
2782			ret = btrfs_qgroup_reserve_data(inode, cur_offset,
2783					last_byte - cur_offset);
2784			if (ret < 0)
 
2785				break;
 
 
 
2786		}
2787		free_extent_map(em);
2788		cur_offset = last_byte;
2789		if (cur_offset >= alloc_end)
2790			break;
 
 
 
 
 
 
 
 
 
2791	}
2792
2793	/*
2794	 * If ret is still 0, means we're OK to fallocate.
2795	 * Or just cleanup the list and exit.
2796	 */
2797	list_for_each_entry_safe(range, tmp, &reserve_list, list) {
2798		if (!ret)
2799			ret = btrfs_prealloc_file_range(inode, mode,
2800					range->start,
2801					range->len, 1 << inode->i_blkbits,
2802					offset + len, &alloc_hint);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2803		list_del(&range->list);
2804		kfree(range);
2805	}
2806	if (ret < 0)
2807		goto out_unlock;
2808
2809	if (actual_end > inode->i_size &&
2810	    !(mode & FALLOC_FL_KEEP_SIZE)) {
2811		struct btrfs_trans_handle *trans;
2812		struct btrfs_root *root = BTRFS_I(inode)->root;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2813
 
2814		/*
2815		 * We didn't need to allocate any more space, but we
2816		 * still extended the size of the file so we need to
2817		 * update i_size and the inode item.
2818		 */
2819		trans = btrfs_start_transaction(root, 1);
2820		if (IS_ERR(trans)) {
2821			ret = PTR_ERR(trans);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2822		} else {
2823			inode->i_ctime = current_fs_time(inode->i_sb);
2824			i_size_write(inode, actual_end);
2825			btrfs_ordered_update_i_size(inode, actual_end, NULL);
2826			ret = btrfs_update_inode(trans, root, inode);
2827			if (ret)
2828				btrfs_end_transaction(trans, root);
2829			else
2830				ret = btrfs_end_transaction(trans, root);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2831		}
 
 
 
 
 
 
 
 
2832	}
2833out_unlock:
2834	unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
2835			     &cached_state, GFP_KERNEL);
2836out:
2837	/*
2838	 * As we waited the extent range, the data_rsv_map must be empty
2839	 * in the range, as written data range will be released from it.
2840	 * And for prealloacted extent, it will also be released when
2841	 * its metadata is written.
2842	 * So this is completely used as cleanup.
2843	 */
2844	btrfs_qgroup_free_data(inode, alloc_start, alloc_end - alloc_start);
2845	inode_unlock(inode);
2846	/* Let go of our reservation. */
2847	btrfs_free_reserved_data_space(inode, alloc_start,
2848				       alloc_end - alloc_start);
2849	return ret;
2850}
2851
2852static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
2853{
2854	struct btrfs_root *root = BTRFS_I(inode)->root;
2855	struct extent_map *em = NULL;
 
2856	struct extent_state *cached_state = NULL;
 
 
 
 
 
 
 
2857	u64 lockstart;
2858	u64 lockend;
2859	u64 start;
2860	u64 len;
2861	int ret = 0;
2862
2863	if (inode->i_size == 0)
2864		return -ENXIO;
2865
2866	/*
2867	 * *offset can be negative, in this case we start finding DATA/HOLE from
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2868	 * the very start of the file.
2869	 */
2870	start = max_t(loff_t, 0, *offset);
2871
2872	lockstart = round_down(start, root->sectorsize);
2873	lockend = round_up(i_size_read(inode), root->sectorsize);
2874	if (lockend <= lockstart)
2875		lockend = lockstart + root->sectorsize;
2876	lockend--;
2877	len = lockend - lockstart + 1;
2878
2879	lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2880			 &cached_state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2881
2882	while (start < inode->i_size) {
2883		em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
2884		if (IS_ERR(em)) {
2885			ret = PTR_ERR(em);
2886			em = NULL;
 
 
 
 
 
 
 
2887			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2888		}
2889
2890		if (whence == SEEK_HOLE &&
2891		    (em->block_start == EXTENT_MAP_HOLE ||
2892		     test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2893			break;
2894		else if (whence == SEEK_DATA &&
2895			   (em->block_start != EXTENT_MAP_HOLE &&
2896			    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2897			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2898
2899		start = em->start + em->len;
2900		free_extent_map(em);
2901		em = NULL;
 
 
 
 
2902		cond_resched();
2903	}
2904	free_extent_map(em);
2905	if (!ret) {
2906		if (whence == SEEK_DATA && start >= inode->i_size)
2907			ret = -ENXIO;
2908		else
2909			*offset = min_t(loff_t, start, inode->i_size);
 
 
2910	}
2911	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2912			     &cached_state, GFP_NOFS);
2913	return ret;
 
 
 
 
 
 
 
 
 
2914}
2915
2916static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
2917{
2918	struct inode *inode = file->f_mapping->host;
2919	int ret;
2920
2921	inode_lock(inode);
2922	switch (whence) {
2923	case SEEK_END:
2924	case SEEK_CUR:
2925		offset = generic_file_llseek(file, offset, whence);
2926		goto out;
2927	case SEEK_DATA:
2928	case SEEK_HOLE:
2929		if (offset >= i_size_read(inode)) {
2930			inode_unlock(inode);
2931			return -ENXIO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2932		}
 
 
 
 
2933
2934		ret = find_desired_extent(inode, &offset, whence);
2935		if (ret) {
2936			inode_unlock(inode);
 
 
 
 
 
2937			return ret;
2938		}
2939	}
2940
2941	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2942out:
2943	inode_unlock(inode);
2944	return offset;
2945}
2946
2947const struct file_operations btrfs_file_operations = {
2948	.llseek		= btrfs_file_llseek,
2949	.read_iter      = generic_file_read_iter,
2950	.splice_read	= generic_file_splice_read,
2951	.write_iter	= btrfs_file_write_iter,
 
2952	.mmap		= btrfs_file_mmap,
2953	.open		= generic_file_open,
2954	.release	= btrfs_release_file,
 
2955	.fsync		= btrfs_sync_file,
2956	.fallocate	= btrfs_fallocate,
2957	.unlocked_ioctl	= btrfs_ioctl,
2958#ifdef CONFIG_COMPAT
2959	.compat_ioctl	= btrfs_ioctl,
2960#endif
2961	.copy_file_range = btrfs_copy_file_range,
2962	.clone_file_range = btrfs_clone_file_range,
2963	.dedupe_file_range = btrfs_dedupe_file_range,
2964};
2965
2966void btrfs_auto_defrag_exit(void)
2967{
2968	kmem_cache_destroy(btrfs_inode_defrag_cachep);
2969}
2970
2971int btrfs_auto_defrag_init(void)
2972{
2973	btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
2974					sizeof(struct inode_defrag), 0,
2975					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
2976					NULL);
2977	if (!btrfs_inode_defrag_cachep)
2978		return -ENOMEM;
2979
2980	return 0;
2981}
2982
2983int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
2984{
2985	int ret;
2986
2987	/*
2988	 * So with compression we will find and lock a dirty page and clear the
2989	 * first one as dirty, setup an async extent, and immediately return
2990	 * with the entire range locked but with nobody actually marked with
2991	 * writeback.  So we can't just filemap_write_and_wait_range() and
2992	 * expect it to work since it will just kick off a thread to do the
2993	 * actual work.  So we need to call filemap_fdatawrite_range _again_
2994	 * since it will wait on the page lock, which won't be unlocked until
2995	 * after the pages have been marked as writeback and so we're good to go
2996	 * from there.  We have to do this otherwise we'll miss the ordered
2997	 * extents and that results in badness.  Please Josef, do not think you
2998	 * know better and pull this out at some point in the future, it is
2999	 * right and you are wrong.
3000	 */
3001	ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3002	if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3003			     &BTRFS_I(inode)->runtime_flags))
3004		ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3005
3006	return ret;
3007}