Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0
  2/* ePAPR hypervisor byte channel device driver
  3 *
  4 * Copyright 2009-2011 Freescale Semiconductor, Inc.
  5 *
  6 * Author: Timur Tabi <timur@freescale.com>
  7 *
 
 
 
 
  8 * This driver support three distinct interfaces, all of which are related to
  9 * ePAPR hypervisor byte channels.
 10 *
 11 * 1) An early-console (udbg) driver.  This provides early console output
 12 * through a byte channel.  The byte channel handle must be specified in a
 13 * Kconfig option.
 14 *
 15 * 2) A normal console driver.  Output is sent to the byte channel designated
 16 * for stdout in the device tree.  The console driver is for handling kernel
 17 * printk calls.
 18 *
 19 * 3) A tty driver, which is used to handle user-space input and output.  The
 20 * byte channel used for the console is designated as the default tty.
 21 */
 22
 23#include <linux/init.h>
 24#include <linux/slab.h>
 25#include <linux/err.h>
 26#include <linux/interrupt.h>
 27#include <linux/fs.h>
 28#include <linux/poll.h>
 29#include <asm/epapr_hcalls.h>
 30#include <linux/of.h>
 31#include <linux/of_irq.h>
 32#include <linux/platform_device.h>
 33#include <linux/cdev.h>
 34#include <linux/console.h>
 35#include <linux/tty.h>
 36#include <linux/tty_flip.h>
 37#include <linux/circ_buf.h>
 38#include <asm/udbg.h>
 39
 40/* The size of the transmit circular buffer.  This must be a power of two. */
 41#define BUF_SIZE	2048
 42
 43/* Per-byte channel private data */
 44struct ehv_bc_data {
 45	struct device *dev;
 46	struct tty_port port;
 47	uint32_t handle;
 48	unsigned int rx_irq;
 49	unsigned int tx_irq;
 50
 51	spinlock_t lock;	/* lock for transmit buffer */
 52	u8 buf[BUF_SIZE];	/* transmit circular buffer */
 53	unsigned int head;	/* circular buffer head */
 54	unsigned int tail;	/* circular buffer tail */
 55
 56	int tx_irq_enabled;	/* true == TX interrupt is enabled */
 57};
 58
 59/* Array of byte channel objects */
 60static struct ehv_bc_data *bcs;
 61
 62/* Byte channel handle for stdout (and stdin), taken from device tree */
 63static unsigned int stdout_bc;
 64
 65/* Virtual IRQ for the byte channel handle for stdin, taken from device tree */
 66static unsigned int stdout_irq;
 67
 68/**************************** SUPPORT FUNCTIONS ****************************/
 69
 70/*
 71 * Enable the transmit interrupt
 72 *
 73 * Unlike a serial device, byte channels have no mechanism for disabling their
 74 * own receive or transmit interrupts.  To emulate that feature, we toggle
 75 * the IRQ in the kernel.
 76 *
 77 * We cannot just blindly call enable_irq() or disable_irq(), because these
 78 * calls are reference counted.  This means that we cannot call enable_irq()
 79 * if interrupts are already enabled.  This can happen in two situations:
 80 *
 81 * 1. The tty layer makes two back-to-back calls to ehv_bc_tty_write()
 82 * 2. A transmit interrupt occurs while executing ehv_bc_tx_dequeue()
 83 *
 84 * To work around this, we keep a flag to tell us if the IRQ is enabled or not.
 85 */
 86static void enable_tx_interrupt(struct ehv_bc_data *bc)
 87{
 88	if (!bc->tx_irq_enabled) {
 89		enable_irq(bc->tx_irq);
 90		bc->tx_irq_enabled = 1;
 91	}
 92}
 93
 94static void disable_tx_interrupt(struct ehv_bc_data *bc)
 95{
 96	if (bc->tx_irq_enabled) {
 97		disable_irq_nosync(bc->tx_irq);
 98		bc->tx_irq_enabled = 0;
 99	}
100}
101
102/*
103 * find the byte channel handle to use for the console
104 *
105 * The byte channel to be used for the console is specified via a "stdout"
106 * property in the /chosen node.
107 */
108static int find_console_handle(void)
109{
110	struct device_node *np = of_stdout;
111	const uint32_t *iprop;
112
113	/* We don't care what the aliased node is actually called.  We only
114	 * care if it's compatible with "epapr,hv-byte-channel", because that
115	 * indicates that it's a byte channel node.
116	 */
117	if (!np || !of_device_is_compatible(np, "epapr,hv-byte-channel"))
118		return 0;
119
120	stdout_irq = irq_of_parse_and_map(np, 0);
121	if (!stdout_irq) {
122		pr_err("ehv-bc: no 'interrupts' property in %pOF node\n", np);
123		return 0;
124	}
125
126	/*
127	 * The 'hv-handle' property contains the handle for this byte channel.
128	 */
129	iprop = of_get_property(np, "hv-handle", NULL);
130	if (!iprop) {
131		pr_err("ehv-bc: no 'hv-handle' property in %pOFn node\n",
132		       np);
133		return 0;
134	}
135	stdout_bc = be32_to_cpu(*iprop);
136	return 1;
137}
138
139static unsigned int local_ev_byte_channel_send(unsigned int handle,
140					       unsigned int *count,
141					       const u8 *p)
142{
143	u8 buffer[EV_BYTE_CHANNEL_MAX_BYTES];
144	unsigned int c = *count;
145
146	/*
147	 * ev_byte_channel_send() expects at least EV_BYTE_CHANNEL_MAX_BYTES
148	 * (16 B) in the buffer. Fake it using a local buffer if needed.
149	 */
150	if (c < sizeof(buffer)) {
151		memcpy_and_pad(buffer, sizeof(buffer), p, c, 0);
152		p = buffer;
153	}
154	return ev_byte_channel_send(handle, count, p);
155}
156
157/*************************** EARLY CONSOLE DRIVER ***************************/
158
159#ifdef CONFIG_PPC_EARLY_DEBUG_EHV_BC
160
161/*
162 * send a byte to a byte channel, wait if necessary
163 *
164 * This function sends a byte to a byte channel, and it waits and
165 * retries if the byte channel is full.  It returns if the character
166 * has been sent, or if some error has occurred.
167 *
168 */
169static void byte_channel_spin_send(const u8 data)
170{
171	int ret, count;
172
173	do {
174		count = 1;
175		ret = local_ev_byte_channel_send(CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE,
176					   &count, &data);
177	} while (ret == EV_EAGAIN);
178}
179
180/*
181 * The udbg subsystem calls this function to display a single character.
182 * We convert CR to a CR/LF.
183 */
184static void ehv_bc_udbg_putc(char c)
185{
186	if (c == '\n')
187		byte_channel_spin_send('\r');
188
189	byte_channel_spin_send(c);
190}
191
192/*
193 * early console initialization
194 *
195 * PowerPC kernels support an early printk console, also known as udbg.
196 * This function must be called via the ppc_md.init_early function pointer.
197 * At this point, the device tree has been unflattened, so we can obtain the
198 * byte channel handle for stdout.
199 *
200 * We only support displaying of characters (putc).  We do not support
201 * keyboard input.
202 */
203void __init udbg_init_ehv_bc(void)
204{
205	unsigned int rx_count, tx_count;
206	unsigned int ret;
207
208	/* Verify the byte channel handle */
209	ret = ev_byte_channel_poll(CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE,
210				   &rx_count, &tx_count);
211	if (ret)
212		return;
213
214	udbg_putc = ehv_bc_udbg_putc;
215	register_early_udbg_console();
216
217	udbg_printf("ehv-bc: early console using byte channel handle %u\n",
218		    CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE);
219}
220
221#endif
222
223/****************************** CONSOLE DRIVER ******************************/
224
225static struct tty_driver *ehv_bc_driver;
226
227/*
228 * Byte channel console sending worker function.
229 *
230 * For consoles, if the output buffer is full, we should just spin until it
231 * clears.
232 */
233static int ehv_bc_console_byte_channel_send(unsigned int handle, const char *s,
234			     unsigned int count)
235{
236	unsigned int len;
237	int ret = 0;
238
239	while (count) {
240		len = min_t(unsigned int, count, EV_BYTE_CHANNEL_MAX_BYTES);
241		do {
242			ret = local_ev_byte_channel_send(handle, &len, s);
243		} while (ret == EV_EAGAIN);
244		count -= len;
245		s += len;
246	}
247
248	return ret;
249}
250
251/*
252 * write a string to the console
253 *
254 * This function gets called to write a string from the kernel, typically from
255 * a printk().  This function spins until all data is written.
256 *
257 * We copy the data to a temporary buffer because we need to insert a \r in
258 * front of every \n.  It's more efficient to copy the data to the buffer than
259 * it is to make multiple hcalls for each character or each newline.
260 */
261static void ehv_bc_console_write(struct console *co, const char *s,
262				 unsigned int count)
263{
264	char s2[EV_BYTE_CHANNEL_MAX_BYTES];
265	unsigned int i, j = 0;
266	char c;
267
268	for (i = 0; i < count; i++) {
269		c = *s++;
270
271		if (c == '\n')
272			s2[j++] = '\r';
273
274		s2[j++] = c;
275		if (j >= (EV_BYTE_CHANNEL_MAX_BYTES - 1)) {
276			if (ehv_bc_console_byte_channel_send(stdout_bc, s2, j))
277				return;
278			j = 0;
279		}
280	}
281
282	if (j)
283		ehv_bc_console_byte_channel_send(stdout_bc, s2, j);
284}
285
286/*
287 * When /dev/console is opened, the kernel iterates the console list looking
288 * for one with ->device and then calls that method. On success, it expects
289 * the passed-in int* to contain the minor number to use.
290 */
291static struct tty_driver *ehv_bc_console_device(struct console *co, int *index)
292{
293	*index = co->index;
294
295	return ehv_bc_driver;
296}
297
298static struct console ehv_bc_console = {
299	.name		= "ttyEHV",
300	.write		= ehv_bc_console_write,
301	.device		= ehv_bc_console_device,
302	.flags		= CON_PRINTBUFFER | CON_ENABLED,
303};
304
305/*
306 * Console initialization
307 *
308 * This is the first function that is called after the device tree is
309 * available, so here is where we determine the byte channel handle and IRQ for
310 * stdout/stdin, even though that information is used by the tty and character
311 * drivers.
312 */
313static int __init ehv_bc_console_init(void)
314{
315	if (!find_console_handle()) {
316		pr_debug("ehv-bc: stdout is not a byte channel\n");
317		return -ENODEV;
318	}
319
320#ifdef CONFIG_PPC_EARLY_DEBUG_EHV_BC
321	/* Print a friendly warning if the user chose the wrong byte channel
322	 * handle for udbg.
323	 */
324	if (stdout_bc != CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE)
325		pr_warn("ehv-bc: udbg handle %u is not the stdout handle\n",
326			CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE);
327#endif
328
329	/* add_preferred_console() must be called before register_console(),
330	   otherwise it won't work.  However, we don't want to enumerate all the
331	   byte channels here, either, since we only care about one. */
332
333	add_preferred_console(ehv_bc_console.name, ehv_bc_console.index, NULL);
334	register_console(&ehv_bc_console);
335
336	pr_info("ehv-bc: registered console driver for byte channel %u\n",
337		stdout_bc);
338
339	return 0;
340}
341console_initcall(ehv_bc_console_init);
342
343/******************************** TTY DRIVER ********************************/
344
345/*
346 * byte channel receive interrupt handler
347 *
348 * This ISR is called whenever data is available on a byte channel.
349 */
350static irqreturn_t ehv_bc_tty_rx_isr(int irq, void *data)
351{
352	struct ehv_bc_data *bc = data;
353	unsigned int rx_count, tx_count, len;
354	int count;
355	char buffer[EV_BYTE_CHANNEL_MAX_BYTES];
356	int ret;
357
358	/* Find out how much data needs to be read, and then ask the TTY layer
359	 * if it can handle that much.  We want to ensure that every byte we
360	 * read from the byte channel will be accepted by the TTY layer.
361	 */
362	ev_byte_channel_poll(bc->handle, &rx_count, &tx_count);
363	count = tty_buffer_request_room(&bc->port, rx_count);
364
365	/* 'count' is the maximum amount of data the TTY layer can accept at
366	 * this time.  However, during testing, I was never able to get 'count'
367	 * to be less than 'rx_count'.  I'm not sure whether I'm calling it
368	 * correctly.
369	 */
370
371	while (count > 0) {
372		len = min_t(unsigned int, count, sizeof(buffer));
373
374		/* Read some data from the byte channel.  This function will
375		 * never return more than EV_BYTE_CHANNEL_MAX_BYTES bytes.
376		 */
377		ev_byte_channel_receive(bc->handle, &len, buffer);
378
379		/* 'len' is now the amount of data that's been received. 'len'
380		 * can't be zero, and most likely it's equal to one.
381		 */
382
383		/* Pass the received data to the tty layer. */
384		ret = tty_insert_flip_string(&bc->port, buffer, len);
385
386		/* 'ret' is the number of bytes that the TTY layer accepted.
387		 * If it's not equal to 'len', then it means the buffer is
388		 * full, which should never happen.  If it does happen, we can
389		 * exit gracefully, but we drop the last 'len - ret' characters
390		 * that we read from the byte channel.
391		 */
392		if (ret != len)
393			break;
394
395		count -= len;
396	}
397
398	/* Tell the tty layer that we're done. */
399	tty_flip_buffer_push(&bc->port);
400
401	return IRQ_HANDLED;
402}
403
404/*
405 * dequeue the transmit buffer to the hypervisor
406 *
407 * This function, which can be called in interrupt context, dequeues as much
408 * data as possible from the transmit buffer to the byte channel.
409 */
410static void ehv_bc_tx_dequeue(struct ehv_bc_data *bc)
411{
412	unsigned int count;
413	unsigned int len, ret;
414	unsigned long flags;
415
416	do {
417		spin_lock_irqsave(&bc->lock, flags);
418		len = min_t(unsigned int,
419			    CIRC_CNT_TO_END(bc->head, bc->tail, BUF_SIZE),
420			    EV_BYTE_CHANNEL_MAX_BYTES);
421
422		ret = local_ev_byte_channel_send(bc->handle, &len, bc->buf + bc->tail);
423
424		/* 'len' is valid only if the return code is 0 or EV_EAGAIN */
425		if (!ret || (ret == EV_EAGAIN))
426			bc->tail = (bc->tail + len) & (BUF_SIZE - 1);
427
428		count = CIRC_CNT(bc->head, bc->tail, BUF_SIZE);
429		spin_unlock_irqrestore(&bc->lock, flags);
430	} while (count && !ret);
431
432	spin_lock_irqsave(&bc->lock, flags);
433	if (CIRC_CNT(bc->head, bc->tail, BUF_SIZE))
434		/*
435		 * If we haven't emptied the buffer, then enable the TX IRQ.
436		 * We'll get an interrupt when there's more room in the
437		 * hypervisor's output buffer.
438		 */
439		enable_tx_interrupt(bc);
440	else
441		disable_tx_interrupt(bc);
442	spin_unlock_irqrestore(&bc->lock, flags);
443}
444
445/*
446 * byte channel transmit interrupt handler
447 *
448 * This ISR is called whenever space becomes available for transmitting
449 * characters on a byte channel.
450 */
451static irqreturn_t ehv_bc_tty_tx_isr(int irq, void *data)
452{
453	struct ehv_bc_data *bc = data;
454
455	ehv_bc_tx_dequeue(bc);
456	tty_port_tty_wakeup(&bc->port);
457
458	return IRQ_HANDLED;
459}
460
461/*
462 * This function is called when the tty layer has data for us send.  We store
463 * the data first in a circular buffer, and then dequeue as much of that data
464 * as possible.
465 *
466 * We don't need to worry about whether there is enough room in the buffer for
467 * all the data.  The purpose of ehv_bc_tty_write_room() is to tell the tty
468 * layer how much data it can safely send to us.  We guarantee that
469 * ehv_bc_tty_write_room() will never lie, so the tty layer will never send us
470 * too much data.
471 */
472static ssize_t ehv_bc_tty_write(struct tty_struct *ttys, const u8 *s,
473				size_t count)
474{
475	struct ehv_bc_data *bc = ttys->driver_data;
476	unsigned long flags;
477	size_t len, written = 0;
 
478
479	while (1) {
480		spin_lock_irqsave(&bc->lock, flags);
481		len = CIRC_SPACE_TO_END(bc->head, bc->tail, BUF_SIZE);
482		if (count < len)
483			len = count;
484		if (len) {
485			memcpy(bc->buf + bc->head, s, len);
486			bc->head = (bc->head + len) & (BUF_SIZE - 1);
487		}
488		spin_unlock_irqrestore(&bc->lock, flags);
489		if (!len)
490			break;
491
492		s += len;
493		count -= len;
494		written += len;
495	}
496
497	ehv_bc_tx_dequeue(bc);
498
499	return written;
500}
501
502/*
503 * This function can be called multiple times for a given tty_struct, which is
504 * why we initialize bc->ttys in ehv_bc_tty_port_activate() instead.
505 *
506 * The tty layer will still call this function even if the device was not
507 * registered (i.e. tty_register_device() was not called).  This happens
508 * because tty_register_device() is optional and some legacy drivers don't
509 * use it.  So we need to check for that.
510 */
511static int ehv_bc_tty_open(struct tty_struct *ttys, struct file *filp)
512{
513	struct ehv_bc_data *bc = &bcs[ttys->index];
514
515	if (!bc->dev)
516		return -ENODEV;
517
518	return tty_port_open(&bc->port, ttys, filp);
519}
520
521/*
522 * Amazingly, if ehv_bc_tty_open() returns an error code, the tty layer will
523 * still call this function to close the tty device.  So we can't assume that
524 * the tty port has been initialized.
525 */
526static void ehv_bc_tty_close(struct tty_struct *ttys, struct file *filp)
527{
528	struct ehv_bc_data *bc = &bcs[ttys->index];
529
530	if (bc->dev)
531		tty_port_close(&bc->port, ttys, filp);
532}
533
534/*
535 * Return the amount of space in the output buffer
536 *
537 * This is actually a contract between the driver and the tty layer outlining
538 * how much write room the driver can guarantee will be sent OR BUFFERED.  This
539 * driver MUST honor the return value.
540 */
541static unsigned int ehv_bc_tty_write_room(struct tty_struct *ttys)
542{
543	struct ehv_bc_data *bc = ttys->driver_data;
544	unsigned long flags;
545	unsigned int count;
546
547	spin_lock_irqsave(&bc->lock, flags);
548	count = CIRC_SPACE(bc->head, bc->tail, BUF_SIZE);
549	spin_unlock_irqrestore(&bc->lock, flags);
550
551	return count;
552}
553
554/*
555 * Stop sending data to the tty layer
556 *
557 * This function is called when the tty layer's input buffers are getting full,
558 * so the driver should stop sending it data.  The easiest way to do this is to
559 * disable the RX IRQ, which will prevent ehv_bc_tty_rx_isr() from being
560 * called.
561 *
562 * The hypervisor will continue to queue up any incoming data.  If there is any
563 * data in the queue when the RX interrupt is enabled, we'll immediately get an
564 * RX interrupt.
565 */
566static void ehv_bc_tty_throttle(struct tty_struct *ttys)
567{
568	struct ehv_bc_data *bc = ttys->driver_data;
569
570	disable_irq(bc->rx_irq);
571}
572
573/*
574 * Resume sending data to the tty layer
575 *
576 * This function is called after previously calling ehv_bc_tty_throttle().  The
577 * tty layer's input buffers now have more room, so the driver can resume
578 * sending it data.
579 */
580static void ehv_bc_tty_unthrottle(struct tty_struct *ttys)
581{
582	struct ehv_bc_data *bc = ttys->driver_data;
583
584	/* If there is any data in the queue when the RX interrupt is enabled,
585	 * we'll immediately get an RX interrupt.
586	 */
587	enable_irq(bc->rx_irq);
588}
589
590static void ehv_bc_tty_hangup(struct tty_struct *ttys)
591{
592	struct ehv_bc_data *bc = ttys->driver_data;
593
594	ehv_bc_tx_dequeue(bc);
595	tty_port_hangup(&bc->port);
596}
597
598/*
599 * TTY driver operations
600 *
601 * If we could ask the hypervisor how much data is still in the TX buffer, or
602 * at least how big the TX buffers are, then we could implement the
603 * .wait_until_sent and .chars_in_buffer functions.
604 */
605static const struct tty_operations ehv_bc_ops = {
606	.open		= ehv_bc_tty_open,
607	.close		= ehv_bc_tty_close,
608	.write		= ehv_bc_tty_write,
609	.write_room	= ehv_bc_tty_write_room,
610	.throttle	= ehv_bc_tty_throttle,
611	.unthrottle	= ehv_bc_tty_unthrottle,
612	.hangup		= ehv_bc_tty_hangup,
613};
614
615/*
616 * initialize the TTY port
617 *
618 * This function will only be called once, no matter how many times
619 * ehv_bc_tty_open() is called.  That's why we register the ISR here, and also
620 * why we initialize tty_struct-related variables here.
621 */
622static int ehv_bc_tty_port_activate(struct tty_port *port,
623				    struct tty_struct *ttys)
624{
625	struct ehv_bc_data *bc = container_of(port, struct ehv_bc_data, port);
626	int ret;
627
628	ttys->driver_data = bc;
629
630	ret = request_irq(bc->rx_irq, ehv_bc_tty_rx_isr, 0, "ehv-bc", bc);
631	if (ret < 0) {
632		dev_err(bc->dev, "could not request rx irq %u (ret=%i)\n",
633		       bc->rx_irq, ret);
634		return ret;
635	}
636
637	/* request_irq also enables the IRQ */
638	bc->tx_irq_enabled = 1;
639
640	ret = request_irq(bc->tx_irq, ehv_bc_tty_tx_isr, 0, "ehv-bc", bc);
641	if (ret < 0) {
642		dev_err(bc->dev, "could not request tx irq %u (ret=%i)\n",
643		       bc->tx_irq, ret);
644		free_irq(bc->rx_irq, bc);
645		return ret;
646	}
647
648	/* The TX IRQ is enabled only when we can't write all the data to the
649	 * byte channel at once, so by default it's disabled.
650	 */
651	disable_tx_interrupt(bc);
652
653	return 0;
654}
655
656static void ehv_bc_tty_port_shutdown(struct tty_port *port)
657{
658	struct ehv_bc_data *bc = container_of(port, struct ehv_bc_data, port);
659
660	free_irq(bc->tx_irq, bc);
661	free_irq(bc->rx_irq, bc);
662}
663
664static const struct tty_port_operations ehv_bc_tty_port_ops = {
665	.activate = ehv_bc_tty_port_activate,
666	.shutdown = ehv_bc_tty_port_shutdown,
667};
668
669static int ehv_bc_tty_probe(struct platform_device *pdev)
670{
671	struct device_node *np = pdev->dev.of_node;
672	struct ehv_bc_data *bc;
673	const uint32_t *iprop;
674	unsigned int handle;
675	int ret;
676	static unsigned int index = 1;
677	unsigned int i;
678
679	iprop = of_get_property(np, "hv-handle", NULL);
680	if (!iprop) {
681		dev_err(&pdev->dev, "no 'hv-handle' property in %pOFn node\n",
682			np);
683		return -ENODEV;
684	}
685
686	/* We already told the console layer that the index for the console
687	 * device is zero, so we need to make sure that we use that index when
688	 * we probe the console byte channel node.
689	 */
690	handle = be32_to_cpu(*iprop);
691	i = (handle == stdout_bc) ? 0 : index++;
692	bc = &bcs[i];
693
694	bc->handle = handle;
695	bc->head = 0;
696	bc->tail = 0;
697	spin_lock_init(&bc->lock);
698
699	bc->rx_irq = irq_of_parse_and_map(np, 0);
700	bc->tx_irq = irq_of_parse_and_map(np, 1);
701	if (!bc->rx_irq || !bc->tx_irq) {
702		dev_err(&pdev->dev, "no 'interrupts' property in %pOFn node\n",
703			np);
704		ret = -ENODEV;
705		goto error;
706	}
707
708	tty_port_init(&bc->port);
709	bc->port.ops = &ehv_bc_tty_port_ops;
710
711	bc->dev = tty_port_register_device(&bc->port, ehv_bc_driver, i,
712			&pdev->dev);
713	if (IS_ERR(bc->dev)) {
714		ret = PTR_ERR(bc->dev);
715		dev_err(&pdev->dev, "could not register tty (ret=%i)\n", ret);
716		goto error;
717	}
718
719	dev_set_drvdata(&pdev->dev, bc);
720
721	dev_info(&pdev->dev, "registered /dev/%s%u for byte channel %u\n",
722		ehv_bc_driver->name, i, bc->handle);
723
724	return 0;
725
726error:
727	tty_port_destroy(&bc->port);
728	irq_dispose_mapping(bc->tx_irq);
729	irq_dispose_mapping(bc->rx_irq);
730
731	memset(bc, 0, sizeof(struct ehv_bc_data));
732	return ret;
733}
734
735static const struct of_device_id ehv_bc_tty_of_ids[] = {
736	{ .compatible = "epapr,hv-byte-channel" },
737	{}
738};
739
740static struct platform_driver ehv_bc_tty_driver = {
741	.driver = {
742		.name = "ehv-bc",
743		.of_match_table = ehv_bc_tty_of_ids,
744		.suppress_bind_attrs = true,
745	},
746	.probe		= ehv_bc_tty_probe,
747};
748
749/**
750 * ehv_bc_init - ePAPR hypervisor byte channel driver initialization
751 *
752 * This function is called when this driver is loaded.
753 */
754static int __init ehv_bc_init(void)
755{
756	struct tty_driver *driver;
757	struct device_node *np;
758	unsigned int count = 0; /* Number of elements in bcs[] */
759	int ret;
760
761	pr_info("ePAPR hypervisor byte channel driver\n");
762
763	/* Count the number of byte channels */
764	for_each_compatible_node(np, NULL, "epapr,hv-byte-channel")
765		count++;
766
767	if (!count)
768		return -ENODEV;
769
770	/* The array index of an element in bcs[] is the same as the tty index
771	 * for that element.  If you know the address of an element in the
772	 * array, then you can use pointer math (e.g. "bc - bcs") to get its
773	 * tty index.
774	 */
775	bcs = kcalloc(count, sizeof(struct ehv_bc_data), GFP_KERNEL);
776	if (!bcs)
777		return -ENOMEM;
778
779	driver = tty_alloc_driver(count, TTY_DRIVER_REAL_RAW |
780			TTY_DRIVER_DYNAMIC_DEV);
781	if (IS_ERR(driver)) {
782		ret = PTR_ERR(driver);
783		goto err_free_bcs;
784	}
785
786	driver->driver_name = "ehv-bc";
787	driver->name = ehv_bc_console.name;
788	driver->type = TTY_DRIVER_TYPE_CONSOLE;
789	driver->subtype = SYSTEM_TYPE_CONSOLE;
790	driver->init_termios = tty_std_termios;
791	tty_set_operations(driver, &ehv_bc_ops);
 
792
793	ret = tty_register_driver(driver);
794	if (ret) {
795		pr_err("ehv-bc: could not register tty driver (ret=%i)\n", ret);
796		goto err_tty_driver_kref_put;
797	}
798
799	ehv_bc_driver = driver;
800
801	ret = platform_driver_register(&ehv_bc_tty_driver);
802	if (ret) {
803		pr_err("ehv-bc: could not register platform driver (ret=%i)\n",
804		       ret);
805		goto err_deregister_tty_driver;
806	}
807
808	return 0;
809
810err_deregister_tty_driver:
811	ehv_bc_driver = NULL;
812	tty_unregister_driver(driver);
813err_tty_driver_kref_put:
814	tty_driver_kref_put(driver);
815err_free_bcs:
816	kfree(bcs);
817
818	return ret;
819}
820device_initcall(ehv_bc_init);
v4.6
 
  1/* ePAPR hypervisor byte channel device driver
  2 *
  3 * Copyright 2009-2011 Freescale Semiconductor, Inc.
  4 *
  5 * Author: Timur Tabi <timur@freescale.com>
  6 *
  7 * This file is licensed under the terms of the GNU General Public License
  8 * version 2.  This program is licensed "as is" without any warranty of any
  9 * kind, whether express or implied.
 10 *
 11 * This driver support three distinct interfaces, all of which are related to
 12 * ePAPR hypervisor byte channels.
 13 *
 14 * 1) An early-console (udbg) driver.  This provides early console output
 15 * through a byte channel.  The byte channel handle must be specified in a
 16 * Kconfig option.
 17 *
 18 * 2) A normal console driver.  Output is sent to the byte channel designated
 19 * for stdout in the device tree.  The console driver is for handling kernel
 20 * printk calls.
 21 *
 22 * 3) A tty driver, which is used to handle user-space input and output.  The
 23 * byte channel used for the console is designated as the default tty.
 24 */
 25
 26#include <linux/init.h>
 27#include <linux/slab.h>
 28#include <linux/err.h>
 29#include <linux/interrupt.h>
 30#include <linux/fs.h>
 31#include <linux/poll.h>
 32#include <asm/epapr_hcalls.h>
 33#include <linux/of.h>
 34#include <linux/of_irq.h>
 35#include <linux/platform_device.h>
 36#include <linux/cdev.h>
 37#include <linux/console.h>
 38#include <linux/tty.h>
 39#include <linux/tty_flip.h>
 40#include <linux/circ_buf.h>
 41#include <asm/udbg.h>
 42
 43/* The size of the transmit circular buffer.  This must be a power of two. */
 44#define BUF_SIZE	2048
 45
 46/* Per-byte channel private data */
 47struct ehv_bc_data {
 48	struct device *dev;
 49	struct tty_port port;
 50	uint32_t handle;
 51	unsigned int rx_irq;
 52	unsigned int tx_irq;
 53
 54	spinlock_t lock;	/* lock for transmit buffer */
 55	unsigned char buf[BUF_SIZE];	/* transmit circular buffer */
 56	unsigned int head;	/* circular buffer head */
 57	unsigned int tail;	/* circular buffer tail */
 58
 59	int tx_irq_enabled;	/* true == TX interrupt is enabled */
 60};
 61
 62/* Array of byte channel objects */
 63static struct ehv_bc_data *bcs;
 64
 65/* Byte channel handle for stdout (and stdin), taken from device tree */
 66static unsigned int stdout_bc;
 67
 68/* Virtual IRQ for the byte channel handle for stdin, taken from device tree */
 69static unsigned int stdout_irq;
 70
 71/**************************** SUPPORT FUNCTIONS ****************************/
 72
 73/*
 74 * Enable the transmit interrupt
 75 *
 76 * Unlike a serial device, byte channels have no mechanism for disabling their
 77 * own receive or transmit interrupts.  To emulate that feature, we toggle
 78 * the IRQ in the kernel.
 79 *
 80 * We cannot just blindly call enable_irq() or disable_irq(), because these
 81 * calls are reference counted.  This means that we cannot call enable_irq()
 82 * if interrupts are already enabled.  This can happen in two situations:
 83 *
 84 * 1. The tty layer makes two back-to-back calls to ehv_bc_tty_write()
 85 * 2. A transmit interrupt occurs while executing ehv_bc_tx_dequeue()
 86 *
 87 * To work around this, we keep a flag to tell us if the IRQ is enabled or not.
 88 */
 89static void enable_tx_interrupt(struct ehv_bc_data *bc)
 90{
 91	if (!bc->tx_irq_enabled) {
 92		enable_irq(bc->tx_irq);
 93		bc->tx_irq_enabled = 1;
 94	}
 95}
 96
 97static void disable_tx_interrupt(struct ehv_bc_data *bc)
 98{
 99	if (bc->tx_irq_enabled) {
100		disable_irq_nosync(bc->tx_irq);
101		bc->tx_irq_enabled = 0;
102	}
103}
104
105/*
106 * find the byte channel handle to use for the console
107 *
108 * The byte channel to be used for the console is specified via a "stdout"
109 * property in the /chosen node.
110 */
111static int find_console_handle(void)
112{
113	struct device_node *np = of_stdout;
114	const uint32_t *iprop;
115
116	/* We don't care what the aliased node is actually called.  We only
117	 * care if it's compatible with "epapr,hv-byte-channel", because that
118	 * indicates that it's a byte channel node.
119	 */
120	if (!np || !of_device_is_compatible(np, "epapr,hv-byte-channel"))
121		return 0;
122
123	stdout_irq = irq_of_parse_and_map(np, 0);
124	if (stdout_irq == NO_IRQ) {
125		pr_err("ehv-bc: no 'interrupts' property in %s node\n", np->full_name);
126		return 0;
127	}
128
129	/*
130	 * The 'hv-handle' property contains the handle for this byte channel.
131	 */
132	iprop = of_get_property(np, "hv-handle", NULL);
133	if (!iprop) {
134		pr_err("ehv-bc: no 'hv-handle' property in %s node\n",
135		       np->name);
136		return 0;
137	}
138	stdout_bc = be32_to_cpu(*iprop);
139	return 1;
140}
141
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
142/*************************** EARLY CONSOLE DRIVER ***************************/
143
144#ifdef CONFIG_PPC_EARLY_DEBUG_EHV_BC
145
146/*
147 * send a byte to a byte channel, wait if necessary
148 *
149 * This function sends a byte to a byte channel, and it waits and
150 * retries if the byte channel is full.  It returns if the character
151 * has been sent, or if some error has occurred.
152 *
153 */
154static void byte_channel_spin_send(const char data)
155{
156	int ret, count;
157
158	do {
159		count = 1;
160		ret = ev_byte_channel_send(CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE,
161					   &count, &data);
162	} while (ret == EV_EAGAIN);
163}
164
165/*
166 * The udbg subsystem calls this function to display a single character.
167 * We convert CR to a CR/LF.
168 */
169static void ehv_bc_udbg_putc(char c)
170{
171	if (c == '\n')
172		byte_channel_spin_send('\r');
173
174	byte_channel_spin_send(c);
175}
176
177/*
178 * early console initialization
179 *
180 * PowerPC kernels support an early printk console, also known as udbg.
181 * This function must be called via the ppc_md.init_early function pointer.
182 * At this point, the device tree has been unflattened, so we can obtain the
183 * byte channel handle for stdout.
184 *
185 * We only support displaying of characters (putc).  We do not support
186 * keyboard input.
187 */
188void __init udbg_init_ehv_bc(void)
189{
190	unsigned int rx_count, tx_count;
191	unsigned int ret;
192
193	/* Verify the byte channel handle */
194	ret = ev_byte_channel_poll(CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE,
195				   &rx_count, &tx_count);
196	if (ret)
197		return;
198
199	udbg_putc = ehv_bc_udbg_putc;
200	register_early_udbg_console();
201
202	udbg_printf("ehv-bc: early console using byte channel handle %u\n",
203		    CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE);
204}
205
206#endif
207
208/****************************** CONSOLE DRIVER ******************************/
209
210static struct tty_driver *ehv_bc_driver;
211
212/*
213 * Byte channel console sending worker function.
214 *
215 * For consoles, if the output buffer is full, we should just spin until it
216 * clears.
217 */
218static int ehv_bc_console_byte_channel_send(unsigned int handle, const char *s,
219			     unsigned int count)
220{
221	unsigned int len;
222	int ret = 0;
223
224	while (count) {
225		len = min_t(unsigned int, count, EV_BYTE_CHANNEL_MAX_BYTES);
226		do {
227			ret = ev_byte_channel_send(handle, &len, s);
228		} while (ret == EV_EAGAIN);
229		count -= len;
230		s += len;
231	}
232
233	return ret;
234}
235
236/*
237 * write a string to the console
238 *
239 * This function gets called to write a string from the kernel, typically from
240 * a printk().  This function spins until all data is written.
241 *
242 * We copy the data to a temporary buffer because we need to insert a \r in
243 * front of every \n.  It's more efficient to copy the data to the buffer than
244 * it is to make multiple hcalls for each character or each newline.
245 */
246static void ehv_bc_console_write(struct console *co, const char *s,
247				 unsigned int count)
248{
249	char s2[EV_BYTE_CHANNEL_MAX_BYTES];
250	unsigned int i, j = 0;
251	char c;
252
253	for (i = 0; i < count; i++) {
254		c = *s++;
255
256		if (c == '\n')
257			s2[j++] = '\r';
258
259		s2[j++] = c;
260		if (j >= (EV_BYTE_CHANNEL_MAX_BYTES - 1)) {
261			if (ehv_bc_console_byte_channel_send(stdout_bc, s2, j))
262				return;
263			j = 0;
264		}
265	}
266
267	if (j)
268		ehv_bc_console_byte_channel_send(stdout_bc, s2, j);
269}
270
271/*
272 * When /dev/console is opened, the kernel iterates the console list looking
273 * for one with ->device and then calls that method. On success, it expects
274 * the passed-in int* to contain the minor number to use.
275 */
276static struct tty_driver *ehv_bc_console_device(struct console *co, int *index)
277{
278	*index = co->index;
279
280	return ehv_bc_driver;
281}
282
283static struct console ehv_bc_console = {
284	.name		= "ttyEHV",
285	.write		= ehv_bc_console_write,
286	.device		= ehv_bc_console_device,
287	.flags		= CON_PRINTBUFFER | CON_ENABLED,
288};
289
290/*
291 * Console initialization
292 *
293 * This is the first function that is called after the device tree is
294 * available, so here is where we determine the byte channel handle and IRQ for
295 * stdout/stdin, even though that information is used by the tty and character
296 * drivers.
297 */
298static int __init ehv_bc_console_init(void)
299{
300	if (!find_console_handle()) {
301		pr_debug("ehv-bc: stdout is not a byte channel\n");
302		return -ENODEV;
303	}
304
305#ifdef CONFIG_PPC_EARLY_DEBUG_EHV_BC
306	/* Print a friendly warning if the user chose the wrong byte channel
307	 * handle for udbg.
308	 */
309	if (stdout_bc != CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE)
310		pr_warn("ehv-bc: udbg handle %u is not the stdout handle\n",
311			CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE);
312#endif
313
314	/* add_preferred_console() must be called before register_console(),
315	   otherwise it won't work.  However, we don't want to enumerate all the
316	   byte channels here, either, since we only care about one. */
317
318	add_preferred_console(ehv_bc_console.name, ehv_bc_console.index, NULL);
319	register_console(&ehv_bc_console);
320
321	pr_info("ehv-bc: registered console driver for byte channel %u\n",
322		stdout_bc);
323
324	return 0;
325}
326console_initcall(ehv_bc_console_init);
327
328/******************************** TTY DRIVER ********************************/
329
330/*
331 * byte channel receive interupt handler
332 *
333 * This ISR is called whenever data is available on a byte channel.
334 */
335static irqreturn_t ehv_bc_tty_rx_isr(int irq, void *data)
336{
337	struct ehv_bc_data *bc = data;
338	unsigned int rx_count, tx_count, len;
339	int count;
340	char buffer[EV_BYTE_CHANNEL_MAX_BYTES];
341	int ret;
342
343	/* Find out how much data needs to be read, and then ask the TTY layer
344	 * if it can handle that much.  We want to ensure that every byte we
345	 * read from the byte channel will be accepted by the TTY layer.
346	 */
347	ev_byte_channel_poll(bc->handle, &rx_count, &tx_count);
348	count = tty_buffer_request_room(&bc->port, rx_count);
349
350	/* 'count' is the maximum amount of data the TTY layer can accept at
351	 * this time.  However, during testing, I was never able to get 'count'
352	 * to be less than 'rx_count'.  I'm not sure whether I'm calling it
353	 * correctly.
354	 */
355
356	while (count > 0) {
357		len = min_t(unsigned int, count, sizeof(buffer));
358
359		/* Read some data from the byte channel.  This function will
360		 * never return more than EV_BYTE_CHANNEL_MAX_BYTES bytes.
361		 */
362		ev_byte_channel_receive(bc->handle, &len, buffer);
363
364		/* 'len' is now the amount of data that's been received. 'len'
365		 * can't be zero, and most likely it's equal to one.
366		 */
367
368		/* Pass the received data to the tty layer. */
369		ret = tty_insert_flip_string(&bc->port, buffer, len);
370
371		/* 'ret' is the number of bytes that the TTY layer accepted.
372		 * If it's not equal to 'len', then it means the buffer is
373		 * full, which should never happen.  If it does happen, we can
374		 * exit gracefully, but we drop the last 'len - ret' characters
375		 * that we read from the byte channel.
376		 */
377		if (ret != len)
378			break;
379
380		count -= len;
381	}
382
383	/* Tell the tty layer that we're done. */
384	tty_flip_buffer_push(&bc->port);
385
386	return IRQ_HANDLED;
387}
388
389/*
390 * dequeue the transmit buffer to the hypervisor
391 *
392 * This function, which can be called in interrupt context, dequeues as much
393 * data as possible from the transmit buffer to the byte channel.
394 */
395static void ehv_bc_tx_dequeue(struct ehv_bc_data *bc)
396{
397	unsigned int count;
398	unsigned int len, ret;
399	unsigned long flags;
400
401	do {
402		spin_lock_irqsave(&bc->lock, flags);
403		len = min_t(unsigned int,
404			    CIRC_CNT_TO_END(bc->head, bc->tail, BUF_SIZE),
405			    EV_BYTE_CHANNEL_MAX_BYTES);
406
407		ret = ev_byte_channel_send(bc->handle, &len, bc->buf + bc->tail);
408
409		/* 'len' is valid only if the return code is 0 or EV_EAGAIN */
410		if (!ret || (ret == EV_EAGAIN))
411			bc->tail = (bc->tail + len) & (BUF_SIZE - 1);
412
413		count = CIRC_CNT(bc->head, bc->tail, BUF_SIZE);
414		spin_unlock_irqrestore(&bc->lock, flags);
415	} while (count && !ret);
416
417	spin_lock_irqsave(&bc->lock, flags);
418	if (CIRC_CNT(bc->head, bc->tail, BUF_SIZE))
419		/*
420		 * If we haven't emptied the buffer, then enable the TX IRQ.
421		 * We'll get an interrupt when there's more room in the
422		 * hypervisor's output buffer.
423		 */
424		enable_tx_interrupt(bc);
425	else
426		disable_tx_interrupt(bc);
427	spin_unlock_irqrestore(&bc->lock, flags);
428}
429
430/*
431 * byte channel transmit interupt handler
432 *
433 * This ISR is called whenever space becomes available for transmitting
434 * characters on a byte channel.
435 */
436static irqreturn_t ehv_bc_tty_tx_isr(int irq, void *data)
437{
438	struct ehv_bc_data *bc = data;
439
440	ehv_bc_tx_dequeue(bc);
441	tty_port_tty_wakeup(&bc->port);
442
443	return IRQ_HANDLED;
444}
445
446/*
447 * This function is called when the tty layer has data for us send.  We store
448 * the data first in a circular buffer, and then dequeue as much of that data
449 * as possible.
450 *
451 * We don't need to worry about whether there is enough room in the buffer for
452 * all the data.  The purpose of ehv_bc_tty_write_room() is to tell the tty
453 * layer how much data it can safely send to us.  We guarantee that
454 * ehv_bc_tty_write_room() will never lie, so the tty layer will never send us
455 * too much data.
456 */
457static int ehv_bc_tty_write(struct tty_struct *ttys, const unsigned char *s,
458			    int count)
459{
460	struct ehv_bc_data *bc = ttys->driver_data;
461	unsigned long flags;
462	unsigned int len;
463	unsigned int written = 0;
464
465	while (1) {
466		spin_lock_irqsave(&bc->lock, flags);
467		len = CIRC_SPACE_TO_END(bc->head, bc->tail, BUF_SIZE);
468		if (count < len)
469			len = count;
470		if (len) {
471			memcpy(bc->buf + bc->head, s, len);
472			bc->head = (bc->head + len) & (BUF_SIZE - 1);
473		}
474		spin_unlock_irqrestore(&bc->lock, flags);
475		if (!len)
476			break;
477
478		s += len;
479		count -= len;
480		written += len;
481	}
482
483	ehv_bc_tx_dequeue(bc);
484
485	return written;
486}
487
488/*
489 * This function can be called multiple times for a given tty_struct, which is
490 * why we initialize bc->ttys in ehv_bc_tty_port_activate() instead.
491 *
492 * The tty layer will still call this function even if the device was not
493 * registered (i.e. tty_register_device() was not called).  This happens
494 * because tty_register_device() is optional and some legacy drivers don't
495 * use it.  So we need to check for that.
496 */
497static int ehv_bc_tty_open(struct tty_struct *ttys, struct file *filp)
498{
499	struct ehv_bc_data *bc = &bcs[ttys->index];
500
501	if (!bc->dev)
502		return -ENODEV;
503
504	return tty_port_open(&bc->port, ttys, filp);
505}
506
507/*
508 * Amazingly, if ehv_bc_tty_open() returns an error code, the tty layer will
509 * still call this function to close the tty device.  So we can't assume that
510 * the tty port has been initialized.
511 */
512static void ehv_bc_tty_close(struct tty_struct *ttys, struct file *filp)
513{
514	struct ehv_bc_data *bc = &bcs[ttys->index];
515
516	if (bc->dev)
517		tty_port_close(&bc->port, ttys, filp);
518}
519
520/*
521 * Return the amount of space in the output buffer
522 *
523 * This is actually a contract between the driver and the tty layer outlining
524 * how much write room the driver can guarantee will be sent OR BUFFERED.  This
525 * driver MUST honor the return value.
526 */
527static int ehv_bc_tty_write_room(struct tty_struct *ttys)
528{
529	struct ehv_bc_data *bc = ttys->driver_data;
530	unsigned long flags;
531	int count;
532
533	spin_lock_irqsave(&bc->lock, flags);
534	count = CIRC_SPACE(bc->head, bc->tail, BUF_SIZE);
535	spin_unlock_irqrestore(&bc->lock, flags);
536
537	return count;
538}
539
540/*
541 * Stop sending data to the tty layer
542 *
543 * This function is called when the tty layer's input buffers are getting full,
544 * so the driver should stop sending it data.  The easiest way to do this is to
545 * disable the RX IRQ, which will prevent ehv_bc_tty_rx_isr() from being
546 * called.
547 *
548 * The hypervisor will continue to queue up any incoming data.  If there is any
549 * data in the queue when the RX interrupt is enabled, we'll immediately get an
550 * RX interrupt.
551 */
552static void ehv_bc_tty_throttle(struct tty_struct *ttys)
553{
554	struct ehv_bc_data *bc = ttys->driver_data;
555
556	disable_irq(bc->rx_irq);
557}
558
559/*
560 * Resume sending data to the tty layer
561 *
562 * This function is called after previously calling ehv_bc_tty_throttle().  The
563 * tty layer's input buffers now have more room, so the driver can resume
564 * sending it data.
565 */
566static void ehv_bc_tty_unthrottle(struct tty_struct *ttys)
567{
568	struct ehv_bc_data *bc = ttys->driver_data;
569
570	/* If there is any data in the queue when the RX interrupt is enabled,
571	 * we'll immediately get an RX interrupt.
572	 */
573	enable_irq(bc->rx_irq);
574}
575
576static void ehv_bc_tty_hangup(struct tty_struct *ttys)
577{
578	struct ehv_bc_data *bc = ttys->driver_data;
579
580	ehv_bc_tx_dequeue(bc);
581	tty_port_hangup(&bc->port);
582}
583
584/*
585 * TTY driver operations
586 *
587 * If we could ask the hypervisor how much data is still in the TX buffer, or
588 * at least how big the TX buffers are, then we could implement the
589 * .wait_until_sent and .chars_in_buffer functions.
590 */
591static const struct tty_operations ehv_bc_ops = {
592	.open		= ehv_bc_tty_open,
593	.close		= ehv_bc_tty_close,
594	.write		= ehv_bc_tty_write,
595	.write_room	= ehv_bc_tty_write_room,
596	.throttle	= ehv_bc_tty_throttle,
597	.unthrottle	= ehv_bc_tty_unthrottle,
598	.hangup		= ehv_bc_tty_hangup,
599};
600
601/*
602 * initialize the TTY port
603 *
604 * This function will only be called once, no matter how many times
605 * ehv_bc_tty_open() is called.  That's why we register the ISR here, and also
606 * why we initialize tty_struct-related variables here.
607 */
608static int ehv_bc_tty_port_activate(struct tty_port *port,
609				    struct tty_struct *ttys)
610{
611	struct ehv_bc_data *bc = container_of(port, struct ehv_bc_data, port);
612	int ret;
613
614	ttys->driver_data = bc;
615
616	ret = request_irq(bc->rx_irq, ehv_bc_tty_rx_isr, 0, "ehv-bc", bc);
617	if (ret < 0) {
618		dev_err(bc->dev, "could not request rx irq %u (ret=%i)\n",
619		       bc->rx_irq, ret);
620		return ret;
621	}
622
623	/* request_irq also enables the IRQ */
624	bc->tx_irq_enabled = 1;
625
626	ret = request_irq(bc->tx_irq, ehv_bc_tty_tx_isr, 0, "ehv-bc", bc);
627	if (ret < 0) {
628		dev_err(bc->dev, "could not request tx irq %u (ret=%i)\n",
629		       bc->tx_irq, ret);
630		free_irq(bc->rx_irq, bc);
631		return ret;
632	}
633
634	/* The TX IRQ is enabled only when we can't write all the data to the
635	 * byte channel at once, so by default it's disabled.
636	 */
637	disable_tx_interrupt(bc);
638
639	return 0;
640}
641
642static void ehv_bc_tty_port_shutdown(struct tty_port *port)
643{
644	struct ehv_bc_data *bc = container_of(port, struct ehv_bc_data, port);
645
646	free_irq(bc->tx_irq, bc);
647	free_irq(bc->rx_irq, bc);
648}
649
650static const struct tty_port_operations ehv_bc_tty_port_ops = {
651	.activate = ehv_bc_tty_port_activate,
652	.shutdown = ehv_bc_tty_port_shutdown,
653};
654
655static int ehv_bc_tty_probe(struct platform_device *pdev)
656{
657	struct device_node *np = pdev->dev.of_node;
658	struct ehv_bc_data *bc;
659	const uint32_t *iprop;
660	unsigned int handle;
661	int ret;
662	static unsigned int index = 1;
663	unsigned int i;
664
665	iprop = of_get_property(np, "hv-handle", NULL);
666	if (!iprop) {
667		dev_err(&pdev->dev, "no 'hv-handle' property in %s node\n",
668			np->name);
669		return -ENODEV;
670	}
671
672	/* We already told the console layer that the index for the console
673	 * device is zero, so we need to make sure that we use that index when
674	 * we probe the console byte channel node.
675	 */
676	handle = be32_to_cpu(*iprop);
677	i = (handle == stdout_bc) ? 0 : index++;
678	bc = &bcs[i];
679
680	bc->handle = handle;
681	bc->head = 0;
682	bc->tail = 0;
683	spin_lock_init(&bc->lock);
684
685	bc->rx_irq = irq_of_parse_and_map(np, 0);
686	bc->tx_irq = irq_of_parse_and_map(np, 1);
687	if ((bc->rx_irq == NO_IRQ) || (bc->tx_irq == NO_IRQ)) {
688		dev_err(&pdev->dev, "no 'interrupts' property in %s node\n",
689			np->name);
690		ret = -ENODEV;
691		goto error;
692	}
693
694	tty_port_init(&bc->port);
695	bc->port.ops = &ehv_bc_tty_port_ops;
696
697	bc->dev = tty_port_register_device(&bc->port, ehv_bc_driver, i,
698			&pdev->dev);
699	if (IS_ERR(bc->dev)) {
700		ret = PTR_ERR(bc->dev);
701		dev_err(&pdev->dev, "could not register tty (ret=%i)\n", ret);
702		goto error;
703	}
704
705	dev_set_drvdata(&pdev->dev, bc);
706
707	dev_info(&pdev->dev, "registered /dev/%s%u for byte channel %u\n",
708		ehv_bc_driver->name, i, bc->handle);
709
710	return 0;
711
712error:
713	tty_port_destroy(&bc->port);
714	irq_dispose_mapping(bc->tx_irq);
715	irq_dispose_mapping(bc->rx_irq);
716
717	memset(bc, 0, sizeof(struct ehv_bc_data));
718	return ret;
719}
720
721static const struct of_device_id ehv_bc_tty_of_ids[] = {
722	{ .compatible = "epapr,hv-byte-channel" },
723	{}
724};
725
726static struct platform_driver ehv_bc_tty_driver = {
727	.driver = {
728		.name = "ehv-bc",
729		.of_match_table = ehv_bc_tty_of_ids,
730		.suppress_bind_attrs = true,
731	},
732	.probe		= ehv_bc_tty_probe,
733};
734
735/**
736 * ehv_bc_init - ePAPR hypervisor byte channel driver initialization
737 *
738 * This function is called when this driver is loaded.
739 */
740static int __init ehv_bc_init(void)
741{
 
742	struct device_node *np;
743	unsigned int count = 0; /* Number of elements in bcs[] */
744	int ret;
745
746	pr_info("ePAPR hypervisor byte channel driver\n");
747
748	/* Count the number of byte channels */
749	for_each_compatible_node(np, NULL, "epapr,hv-byte-channel")
750		count++;
751
752	if (!count)
753		return -ENODEV;
754
755	/* The array index of an element in bcs[] is the same as the tty index
756	 * for that element.  If you know the address of an element in the
757	 * array, then you can use pointer math (e.g. "bc - bcs") to get its
758	 * tty index.
759	 */
760	bcs = kzalloc(count * sizeof(struct ehv_bc_data), GFP_KERNEL);
761	if (!bcs)
762		return -ENOMEM;
763
764	ehv_bc_driver = alloc_tty_driver(count);
765	if (!ehv_bc_driver) {
766		ret = -ENOMEM;
767		goto error;
 
768	}
769
770	ehv_bc_driver->driver_name = "ehv-bc";
771	ehv_bc_driver->name = ehv_bc_console.name;
772	ehv_bc_driver->type = TTY_DRIVER_TYPE_CONSOLE;
773	ehv_bc_driver->subtype = SYSTEM_TYPE_CONSOLE;
774	ehv_bc_driver->init_termios = tty_std_termios;
775	ehv_bc_driver->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
776	tty_set_operations(ehv_bc_driver, &ehv_bc_ops);
777
778	ret = tty_register_driver(ehv_bc_driver);
779	if (ret) {
780		pr_err("ehv-bc: could not register tty driver (ret=%i)\n", ret);
781		goto error;
782	}
783
 
 
784	ret = platform_driver_register(&ehv_bc_tty_driver);
785	if (ret) {
786		pr_err("ehv-bc: could not register platform driver (ret=%i)\n",
787		       ret);
788		goto error;
789	}
790
791	return 0;
792
793error:
794	if (ehv_bc_driver) {
795		tty_unregister_driver(ehv_bc_driver);
796		put_tty_driver(ehv_bc_driver);
797	}
798
799	kfree(bcs);
800
801	return ret;
802}
803device_initcall(ehv_bc_init);