Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * RapidIO interconnect services
   4 * (RapidIO Interconnect Specification, http://www.rapidio.org)
   5 *
   6 * Copyright 2005 MontaVista Software, Inc.
   7 * Matt Porter <mporter@kernel.crashing.org>
   8 *
   9 * Copyright 2009 - 2013 Integrated Device Technology, Inc.
  10 * Alex Bounine <alexandre.bounine@idt.com>
 
 
 
 
 
  11 */
  12
  13#include <linux/types.h>
  14#include <linux/kernel.h>
  15
  16#include <linux/delay.h>
  17#include <linux/init.h>
  18#include <linux/rio.h>
  19#include <linux/rio_drv.h>
  20#include <linux/rio_ids.h>
  21#include <linux/rio_regs.h>
  22#include <linux/module.h>
  23#include <linux/spinlock.h>
  24#include <linux/slab.h>
  25#include <linux/interrupt.h>
  26
  27#include "rio.h"
  28
  29/*
  30 * struct rio_pwrite - RIO portwrite event
  31 * @node:    Node in list of doorbell events
  32 * @pwcback: Doorbell event callback
  33 * @context: Handler specific context to pass on event
  34 */
  35struct rio_pwrite {
  36	struct list_head node;
  37
  38	int (*pwcback)(struct rio_mport *mport, void *context,
  39		       union rio_pw_msg *msg, int step);
  40	void *context;
  41};
  42
  43MODULE_DESCRIPTION("RapidIO Subsystem Core");
  44MODULE_AUTHOR("Matt Porter <mporter@kernel.crashing.org>");
  45MODULE_AUTHOR("Alexandre Bounine <alexandre.bounine@idt.com>");
  46MODULE_LICENSE("GPL");
  47
  48static int hdid[RIO_MAX_MPORTS];
  49static int ids_num;
  50module_param_array(hdid, int, &ids_num, 0);
  51MODULE_PARM_DESC(hdid,
  52	"Destination ID assignment to local RapidIO controllers");
  53
  54static LIST_HEAD(rio_devices);
  55static LIST_HEAD(rio_nets);
  56static DEFINE_SPINLOCK(rio_global_list_lock);
  57
  58static LIST_HEAD(rio_mports);
  59static LIST_HEAD(rio_scans);
  60static DEFINE_MUTEX(rio_mport_list_lock);
  61static unsigned char next_portid;
  62static DEFINE_SPINLOCK(rio_mmap_lock);
  63
  64/**
  65 * rio_local_get_device_id - Get the base/extended device id for a port
  66 * @port: RIO master port from which to get the deviceid
  67 *
  68 * Reads the base/extended device id from the local device
  69 * implementing the master port. Returns the 8/16-bit device
  70 * id.
  71 */
  72u16 rio_local_get_device_id(struct rio_mport *port)
  73{
  74	u32 result;
  75
  76	rio_local_read_config_32(port, RIO_DID_CSR, &result);
  77
  78	return (RIO_GET_DID(port->sys_size, result));
  79}
  80EXPORT_SYMBOL_GPL(rio_local_get_device_id);
  81
  82/**
  83 * rio_query_mport - Query mport device attributes
  84 * @port: mport device to query
  85 * @mport_attr: mport attributes data structure
  86 *
  87 * Returns attributes of specified mport through the
  88 * pointer to attributes data structure.
  89 */
  90int rio_query_mport(struct rio_mport *port,
  91		    struct rio_mport_attr *mport_attr)
  92{
  93	if (!port->ops->query_mport)
  94		return -ENODATA;
  95	return port->ops->query_mport(port, mport_attr);
  96}
  97EXPORT_SYMBOL(rio_query_mport);
  98
  99/**
 100 * rio_alloc_net- Allocate and initialize a new RIO network data structure
 101 * @mport: Master port associated with the RIO network
 102 *
 103 * Allocates a RIO network structure, initializes per-network
 104 * list heads, and adds the associated master port to the
 105 * network list of associated master ports. Returns a
 106 * RIO network pointer on success or %NULL on failure.
 107 */
 108struct rio_net *rio_alloc_net(struct rio_mport *mport)
 109{
 110	struct rio_net *net = kzalloc(sizeof(*net), GFP_KERNEL);
 111
 
 112	if (net) {
 113		INIT_LIST_HEAD(&net->node);
 114		INIT_LIST_HEAD(&net->devices);
 115		INIT_LIST_HEAD(&net->switches);
 116		INIT_LIST_HEAD(&net->mports);
 117		mport->net = net;
 118	}
 119	return net;
 120}
 121EXPORT_SYMBOL_GPL(rio_alloc_net);
 122
 123int rio_add_net(struct rio_net *net)
 124{
 125	int err;
 126
 127	err = device_register(&net->dev);
 128	if (err)
 129		return err;
 130	spin_lock(&rio_global_list_lock);
 131	list_add_tail(&net->node, &rio_nets);
 132	spin_unlock(&rio_global_list_lock);
 133
 134	return 0;
 135}
 136EXPORT_SYMBOL_GPL(rio_add_net);
 137
 138void rio_free_net(struct rio_net *net)
 139{
 140	spin_lock(&rio_global_list_lock);
 141	if (!list_empty(&net->node))
 142		list_del(&net->node);
 143	spin_unlock(&rio_global_list_lock);
 144	if (net->release)
 145		net->release(net);
 146	device_unregister(&net->dev);
 147}
 148EXPORT_SYMBOL_GPL(rio_free_net);
 149
 150/**
 151 * rio_local_set_device_id - Set the base/extended device id for a port
 152 * @port: RIO master port
 153 * @did: Device ID value to be written
 154 *
 155 * Writes the base/extended device id from a device.
 156 */
 157void rio_local_set_device_id(struct rio_mport *port, u16 did)
 158{
 159	rio_local_write_config_32(port, RIO_DID_CSR,
 160				  RIO_SET_DID(port->sys_size, did));
 161}
 162EXPORT_SYMBOL_GPL(rio_local_set_device_id);
 163
 164/**
 165 * rio_add_device- Adds a RIO device to the device model
 166 * @rdev: RIO device
 167 *
 168 * Adds the RIO device to the global device list and adds the RIO
 169 * device to the RIO device list.  Creates the generic sysfs nodes
 170 * for an RIO device.
 171 */
 172int rio_add_device(struct rio_dev *rdev)
 173{
 174	int err;
 175
 176	atomic_set(&rdev->state, RIO_DEVICE_RUNNING);
 177	err = device_register(&rdev->dev);
 178	if (err)
 179		return err;
 180
 181	spin_lock(&rio_global_list_lock);
 182	list_add_tail(&rdev->global_list, &rio_devices);
 183	if (rdev->net) {
 184		list_add_tail(&rdev->net_list, &rdev->net->devices);
 185		if (rdev->pef & RIO_PEF_SWITCH)
 186			list_add_tail(&rdev->rswitch->node,
 187				      &rdev->net->switches);
 188	}
 189	spin_unlock(&rio_global_list_lock);
 190
 
 
 191	return 0;
 192}
 193EXPORT_SYMBOL_GPL(rio_add_device);
 194
 195/*
 196 * rio_del_device - removes a RIO device from the device model
 197 * @rdev: RIO device
 198 * @state: device state to set during removal process
 199 *
 200 * Removes the RIO device to the kernel device list and subsystem's device list.
 201 * Clears sysfs entries for the removed device.
 202 */
 203void rio_del_device(struct rio_dev *rdev, enum rio_device_state state)
 204{
 205	pr_debug("RIO: %s: removing %s\n", __func__, rio_name(rdev));
 206	atomic_set(&rdev->state, state);
 207	spin_lock(&rio_global_list_lock);
 208	list_del(&rdev->global_list);
 209	if (rdev->net) {
 210		list_del(&rdev->net_list);
 211		if (rdev->pef & RIO_PEF_SWITCH) {
 212			list_del(&rdev->rswitch->node);
 213			kfree(rdev->rswitch->route_table);
 214		}
 215	}
 216	spin_unlock(&rio_global_list_lock);
 
 217	device_unregister(&rdev->dev);
 218}
 219EXPORT_SYMBOL_GPL(rio_del_device);
 220
 221/**
 222 * rio_request_inb_mbox - request inbound mailbox service
 223 * @mport: RIO master port from which to allocate the mailbox resource
 224 * @dev_id: Device specific pointer to pass on event
 225 * @mbox: Mailbox number to claim
 226 * @entries: Number of entries in inbound mailbox queue
 227 * @minb: Callback to execute when inbound message is received
 228 *
 229 * Requests ownership of an inbound mailbox resource and binds
 230 * a callback function to the resource. Returns %0 on success.
 231 */
 232int rio_request_inb_mbox(struct rio_mport *mport,
 233			 void *dev_id,
 234			 int mbox,
 235			 int entries,
 236			 void (*minb) (struct rio_mport * mport, void *dev_id, int mbox,
 237				       int slot))
 238{
 239	int rc = -ENOSYS;
 240	struct resource *res;
 241
 242	if (!mport->ops->open_inb_mbox)
 243		goto out;
 244
 245	res = kzalloc(sizeof(*res), GFP_KERNEL);
 
 246	if (res) {
 247		rio_init_mbox_res(res, mbox, mbox);
 248
 249		/* Make sure this mailbox isn't in use */
 250		rc = request_resource(&mport->riores[RIO_INB_MBOX_RESOURCE],
 251				      res);
 252		if (rc < 0) {
 253			kfree(res);
 254			goto out;
 255		}
 256
 257		mport->inb_msg[mbox].res = res;
 258
 259		/* Hook the inbound message callback */
 260		mport->inb_msg[mbox].mcback = minb;
 261
 262		rc = mport->ops->open_inb_mbox(mport, dev_id, mbox, entries);
 263		if (rc) {
 264			mport->inb_msg[mbox].mcback = NULL;
 265			mport->inb_msg[mbox].res = NULL;
 266			release_resource(res);
 267			kfree(res);
 268		}
 269	} else
 270		rc = -ENOMEM;
 271
 272      out:
 273	return rc;
 274}
 275EXPORT_SYMBOL_GPL(rio_request_inb_mbox);
 276
 277/**
 278 * rio_release_inb_mbox - release inbound mailbox message service
 279 * @mport: RIO master port from which to release the mailbox resource
 280 * @mbox: Mailbox number to release
 281 *
 282 * Releases ownership of an inbound mailbox resource. Returns 0
 283 * if the request has been satisfied.
 284 */
 285int rio_release_inb_mbox(struct rio_mport *mport, int mbox)
 286{
 287	int rc;
 288
 289	if (!mport->ops->close_inb_mbox || !mport->inb_msg[mbox].res)
 290		return -EINVAL;
 291
 292	mport->ops->close_inb_mbox(mport, mbox);
 293	mport->inb_msg[mbox].mcback = NULL;
 294
 295	rc = release_resource(mport->inb_msg[mbox].res);
 296	if (rc)
 297		return rc;
 298
 299	kfree(mport->inb_msg[mbox].res);
 300	mport->inb_msg[mbox].res = NULL;
 301
 302	return 0;
 303}
 304EXPORT_SYMBOL_GPL(rio_release_inb_mbox);
 305
 306/**
 307 * rio_request_outb_mbox - request outbound mailbox service
 308 * @mport: RIO master port from which to allocate the mailbox resource
 309 * @dev_id: Device specific pointer to pass on event
 310 * @mbox: Mailbox number to claim
 311 * @entries: Number of entries in outbound mailbox queue
 312 * @moutb: Callback to execute when outbound message is sent
 313 *
 314 * Requests ownership of an outbound mailbox resource and binds
 315 * a callback function to the resource. Returns 0 on success.
 316 */
 317int rio_request_outb_mbox(struct rio_mport *mport,
 318			  void *dev_id,
 319			  int mbox,
 320			  int entries,
 321			  void (*moutb) (struct rio_mport * mport, void *dev_id, int mbox, int slot))
 322{
 323	int rc = -ENOSYS;
 324	struct resource *res;
 325
 326	if (!mport->ops->open_outb_mbox)
 327		goto out;
 328
 329	res = kzalloc(sizeof(*res), GFP_KERNEL);
 
 330	if (res) {
 331		rio_init_mbox_res(res, mbox, mbox);
 332
 333		/* Make sure this outbound mailbox isn't in use */
 334		rc = request_resource(&mport->riores[RIO_OUTB_MBOX_RESOURCE],
 335				      res);
 336		if (rc < 0) {
 337			kfree(res);
 338			goto out;
 339		}
 340
 341		mport->outb_msg[mbox].res = res;
 342
 343		/* Hook the inbound message callback */
 344		mport->outb_msg[mbox].mcback = moutb;
 345
 346		rc = mport->ops->open_outb_mbox(mport, dev_id, mbox, entries);
 347		if (rc) {
 348			mport->outb_msg[mbox].mcback = NULL;
 349			mport->outb_msg[mbox].res = NULL;
 350			release_resource(res);
 351			kfree(res);
 352		}
 353	} else
 354		rc = -ENOMEM;
 355
 356      out:
 357	return rc;
 358}
 359EXPORT_SYMBOL_GPL(rio_request_outb_mbox);
 360
 361/**
 362 * rio_release_outb_mbox - release outbound mailbox message service
 363 * @mport: RIO master port from which to release the mailbox resource
 364 * @mbox: Mailbox number to release
 365 *
 366 * Releases ownership of an inbound mailbox resource. Returns 0
 367 * if the request has been satisfied.
 368 */
 369int rio_release_outb_mbox(struct rio_mport *mport, int mbox)
 370{
 371	int rc;
 372
 373	if (!mport->ops->close_outb_mbox || !mport->outb_msg[mbox].res)
 374		return -EINVAL;
 375
 376	mport->ops->close_outb_mbox(mport, mbox);
 377	mport->outb_msg[mbox].mcback = NULL;
 378
 379	rc = release_resource(mport->outb_msg[mbox].res);
 380	if (rc)
 381		return rc;
 382
 383	kfree(mport->outb_msg[mbox].res);
 384	mport->outb_msg[mbox].res = NULL;
 385
 386	return 0;
 387}
 388EXPORT_SYMBOL_GPL(rio_release_outb_mbox);
 389
 390/**
 391 * rio_setup_inb_dbell - bind inbound doorbell callback
 392 * @mport: RIO master port to bind the doorbell callback
 393 * @dev_id: Device specific pointer to pass on event
 394 * @res: Doorbell message resource
 395 * @dinb: Callback to execute when doorbell is received
 396 *
 397 * Adds a doorbell resource/callback pair into a port's
 398 * doorbell event list. Returns 0 if the request has been
 399 * satisfied.
 400 */
 401static int
 402rio_setup_inb_dbell(struct rio_mport *mport, void *dev_id, struct resource *res,
 403		    void (*dinb) (struct rio_mport * mport, void *dev_id, u16 src, u16 dst,
 404				  u16 info))
 405{
 406	struct rio_dbell *dbell = kmalloc(sizeof(*dbell), GFP_KERNEL);
 
 407
 408	if (!dbell)
 409		return -ENOMEM;
 
 
 410
 411	dbell->res = res;
 412	dbell->dinb = dinb;
 413	dbell->dev_id = dev_id;
 414
 415	mutex_lock(&mport->lock);
 416	list_add_tail(&dbell->node, &mport->dbells);
 417	mutex_unlock(&mport->lock);
 418	return 0;
 
 
 419}
 420
 421/**
 422 * rio_request_inb_dbell - request inbound doorbell message service
 423 * @mport: RIO master port from which to allocate the doorbell resource
 424 * @dev_id: Device specific pointer to pass on event
 425 * @start: Doorbell info range start
 426 * @end: Doorbell info range end
 427 * @dinb: Callback to execute when doorbell is received
 428 *
 429 * Requests ownership of an inbound doorbell resource and binds
 430 * a callback function to the resource. Returns 0 if the request
 431 * has been satisfied.
 432 */
 433int rio_request_inb_dbell(struct rio_mport *mport,
 434			  void *dev_id,
 435			  u16 start,
 436			  u16 end,
 437			  void (*dinb) (struct rio_mport * mport, void *dev_id, u16 src,
 438					u16 dst, u16 info))
 439{
 440	int rc;
 441	struct resource *res = kzalloc(sizeof(*res), GFP_KERNEL);
 
 442
 443	if (res) {
 444		rio_init_dbell_res(res, start, end);
 445
 446		/* Make sure these doorbells aren't in use */
 447		rc = request_resource(&mport->riores[RIO_DOORBELL_RESOURCE],
 448				      res);
 449		if (rc < 0) {
 450			kfree(res);
 451			goto out;
 452		}
 453
 454		/* Hook the doorbell callback */
 455		rc = rio_setup_inb_dbell(mport, dev_id, res, dinb);
 456	} else
 457		rc = -ENOMEM;
 458
 459      out:
 460	return rc;
 461}
 462EXPORT_SYMBOL_GPL(rio_request_inb_dbell);
 463
 464/**
 465 * rio_release_inb_dbell - release inbound doorbell message service
 466 * @mport: RIO master port from which to release the doorbell resource
 467 * @start: Doorbell info range start
 468 * @end: Doorbell info range end
 469 *
 470 * Releases ownership of an inbound doorbell resource and removes
 471 * callback from the doorbell event list. Returns 0 if the request
 472 * has been satisfied.
 473 */
 474int rio_release_inb_dbell(struct rio_mport *mport, u16 start, u16 end)
 475{
 476	int rc = 0, found = 0;
 477	struct rio_dbell *dbell;
 478
 479	mutex_lock(&mport->lock);
 480	list_for_each_entry(dbell, &mport->dbells, node) {
 481		if ((dbell->res->start == start) && (dbell->res->end == end)) {
 482			list_del(&dbell->node);
 483			found = 1;
 484			break;
 485		}
 486	}
 487	mutex_unlock(&mport->lock);
 488
 489	/* If we can't find an exact match, fail */
 490	if (!found) {
 491		rc = -EINVAL;
 492		goto out;
 493	}
 494
 495	/* Release the doorbell resource */
 496	rc = release_resource(dbell->res);
 497
 498	/* Free the doorbell event */
 499	kfree(dbell);
 500
 501      out:
 502	return rc;
 503}
 504EXPORT_SYMBOL_GPL(rio_release_inb_dbell);
 505
 506/**
 507 * rio_request_outb_dbell - request outbound doorbell message range
 508 * @rdev: RIO device from which to allocate the doorbell resource
 509 * @start: Doorbell message range start
 510 * @end: Doorbell message range end
 511 *
 512 * Requests ownership of a doorbell message range. Returns a resource
 513 * if the request has been satisfied or %NULL on failure.
 514 */
 515struct resource *rio_request_outb_dbell(struct rio_dev *rdev, u16 start,
 516					u16 end)
 517{
 518	struct resource *res = kzalloc(sizeof(struct resource), GFP_KERNEL);
 519
 520	if (res) {
 521		rio_init_dbell_res(res, start, end);
 522
 523		/* Make sure these doorbells aren't in use */
 524		if (request_resource(&rdev->riores[RIO_DOORBELL_RESOURCE], res)
 525		    < 0) {
 526			kfree(res);
 527			res = NULL;
 528		}
 529	}
 530
 531	return res;
 532}
 533EXPORT_SYMBOL_GPL(rio_request_outb_dbell);
 534
 535/**
 536 * rio_release_outb_dbell - release outbound doorbell message range
 537 * @rdev: RIO device from which to release the doorbell resource
 538 * @res: Doorbell resource to be freed
 539 *
 540 * Releases ownership of a doorbell message range. Returns 0 if the
 541 * request has been satisfied.
 542 */
 543int rio_release_outb_dbell(struct rio_dev *rdev, struct resource *res)
 544{
 545	int rc = release_resource(res);
 546
 547	kfree(res);
 548
 549	return rc;
 550}
 551EXPORT_SYMBOL_GPL(rio_release_outb_dbell);
 552
 553/**
 554 * rio_add_mport_pw_handler - add port-write message handler into the list
 555 *                            of mport specific pw handlers
 556 * @mport:   RIO master port to bind the portwrite callback
 557 * @context: Handler specific context to pass on event
 558 * @pwcback: Callback to execute when portwrite is received
 559 *
 560 * Returns 0 if the request has been satisfied.
 561 */
 562int rio_add_mport_pw_handler(struct rio_mport *mport, void *context,
 563			     int (*pwcback)(struct rio_mport *mport,
 564			     void *context, union rio_pw_msg *msg, int step))
 565{
 566	struct rio_pwrite *pwrite = kzalloc(sizeof(*pwrite), GFP_KERNEL);
 
 567
 568	if (!pwrite)
 569		return -ENOMEM;
 
 
 
 570
 571	pwrite->pwcback = pwcback;
 572	pwrite->context = context;
 573	mutex_lock(&mport->lock);
 574	list_add_tail(&pwrite->node, &mport->pwrites);
 575	mutex_unlock(&mport->lock);
 576	return 0;
 
 577}
 578EXPORT_SYMBOL_GPL(rio_add_mport_pw_handler);
 579
 580/**
 581 * rio_del_mport_pw_handler - remove port-write message handler from the list
 582 *                            of mport specific pw handlers
 583 * @mport:   RIO master port to bind the portwrite callback
 584 * @context: Registered handler specific context to pass on event
 585 * @pwcback: Registered callback function
 586 *
 587 * Returns 0 if the request has been satisfied.
 588 */
 589int rio_del_mport_pw_handler(struct rio_mport *mport, void *context,
 590			     int (*pwcback)(struct rio_mport *mport,
 591			     void *context, union rio_pw_msg *msg, int step))
 592{
 593	int rc = -EINVAL;
 594	struct rio_pwrite *pwrite;
 595
 596	mutex_lock(&mport->lock);
 597	list_for_each_entry(pwrite, &mport->pwrites, node) {
 598		if (pwrite->pwcback == pwcback && pwrite->context == context) {
 599			list_del(&pwrite->node);
 600			kfree(pwrite);
 601			rc = 0;
 602			break;
 603		}
 604	}
 605	mutex_unlock(&mport->lock);
 606
 607	return rc;
 608}
 609EXPORT_SYMBOL_GPL(rio_del_mport_pw_handler);
 610
 611/**
 612 * rio_request_inb_pwrite - request inbound port-write message service for
 613 *                          specific RapidIO device
 614 * @rdev: RIO device to which register inbound port-write callback routine
 615 * @pwcback: Callback routine to execute when port-write is received
 616 *
 617 * Binds a port-write callback function to the RapidIO device.
 618 * Returns 0 if the request has been satisfied.
 619 */
 620int rio_request_inb_pwrite(struct rio_dev *rdev,
 621	int (*pwcback)(struct rio_dev *rdev, union rio_pw_msg *msg, int step))
 622{
 623	int rc = 0;
 624
 625	spin_lock(&rio_global_list_lock);
 626	if (rdev->pwcback)
 627		rc = -ENOMEM;
 628	else
 629		rdev->pwcback = pwcback;
 630
 631	spin_unlock(&rio_global_list_lock);
 632	return rc;
 633}
 634EXPORT_SYMBOL_GPL(rio_request_inb_pwrite);
 635
 636/**
 637 * rio_release_inb_pwrite - release inbound port-write message service
 638 *                          associated with specific RapidIO device
 639 * @rdev: RIO device which registered for inbound port-write callback
 640 *
 641 * Removes callback from the rio_dev structure. Returns 0 if the request
 642 * has been satisfied.
 643 */
 644int rio_release_inb_pwrite(struct rio_dev *rdev)
 645{
 646	int rc = -ENOMEM;
 647
 648	spin_lock(&rio_global_list_lock);
 649	if (rdev->pwcback) {
 650		rdev->pwcback = NULL;
 651		rc = 0;
 652	}
 653
 654	spin_unlock(&rio_global_list_lock);
 655	return rc;
 656}
 657EXPORT_SYMBOL_GPL(rio_release_inb_pwrite);
 658
 659/**
 660 * rio_pw_enable - Enables/disables port-write handling by a master port
 661 * @mport: Master port associated with port-write handling
 662 * @enable:  1=enable,  0=disable
 663 */
 664void rio_pw_enable(struct rio_mport *mport, int enable)
 665{
 666	if (mport->ops->pwenable) {
 667		mutex_lock(&mport->lock);
 668
 669		if ((enable && ++mport->pwe_refcnt == 1) ||
 670		    (!enable && mport->pwe_refcnt && --mport->pwe_refcnt == 0))
 671			mport->ops->pwenable(mport, enable);
 672		mutex_unlock(&mport->lock);
 673	}
 674}
 675EXPORT_SYMBOL_GPL(rio_pw_enable);
 676
 677/**
 678 * rio_map_inb_region -- Map inbound memory region.
 679 * @mport: Master port.
 680 * @local: physical address of memory region to be mapped
 681 * @rbase: RIO base address assigned to this window
 682 * @size: Size of the memory region
 683 * @rflags: Flags for mapping.
 684 *
 685 * Return: 0 -- Success.
 686 *
 687 * This function will create the mapping from RIO space to local memory.
 688 */
 689int rio_map_inb_region(struct rio_mport *mport, dma_addr_t local,
 690			u64 rbase, u32 size, u32 rflags)
 691{
 692	int rc;
 693	unsigned long flags;
 694
 695	if (!mport->ops->map_inb)
 696		return -1;
 697	spin_lock_irqsave(&rio_mmap_lock, flags);
 698	rc = mport->ops->map_inb(mport, local, rbase, size, rflags);
 699	spin_unlock_irqrestore(&rio_mmap_lock, flags);
 700	return rc;
 701}
 702EXPORT_SYMBOL_GPL(rio_map_inb_region);
 703
 704/**
 705 * rio_unmap_inb_region -- Unmap the inbound memory region
 706 * @mport: Master port
 707 * @lstart: physical address of memory region to be unmapped
 708 */
 709void rio_unmap_inb_region(struct rio_mport *mport, dma_addr_t lstart)
 710{
 711	unsigned long flags;
 712	if (!mport->ops->unmap_inb)
 713		return;
 714	spin_lock_irqsave(&rio_mmap_lock, flags);
 715	mport->ops->unmap_inb(mport, lstart);
 716	spin_unlock_irqrestore(&rio_mmap_lock, flags);
 717}
 718EXPORT_SYMBOL_GPL(rio_unmap_inb_region);
 719
 720/**
 721 * rio_map_outb_region -- Map outbound memory region.
 722 * @mport: Master port.
 723 * @destid: destination id window points to
 724 * @rbase: RIO base address window translates to
 725 * @size: Size of the memory region
 726 * @rflags: Flags for mapping.
 727 * @local: physical address of memory region mapped
 728 *
 729 * Return: 0 -- Success.
 730 *
 731 * This function will create the mapping from RIO space to local memory.
 732 */
 733int rio_map_outb_region(struct rio_mport *mport, u16 destid, u64 rbase,
 734			u32 size, u32 rflags, dma_addr_t *local)
 735{
 736	int rc;
 737	unsigned long flags;
 738
 739	if (!mport->ops->map_outb)
 740		return -ENODEV;
 741
 742	spin_lock_irqsave(&rio_mmap_lock, flags);
 743	rc = mport->ops->map_outb(mport, destid, rbase, size,
 744		rflags, local);
 745	spin_unlock_irqrestore(&rio_mmap_lock, flags);
 746
 747	return rc;
 748}
 749EXPORT_SYMBOL_GPL(rio_map_outb_region);
 750
 751/**
 752 * rio_unmap_outb_region -- Unmap the inbound memory region
 753 * @mport: Master port
 754 * @destid: destination id mapping points to
 755 * @rstart: RIO base address window translates to
 756 */
 757void rio_unmap_outb_region(struct rio_mport *mport, u16 destid, u64 rstart)
 758{
 759	unsigned long flags;
 760
 761	if (!mport->ops->unmap_outb)
 762		return;
 763
 764	spin_lock_irqsave(&rio_mmap_lock, flags);
 765	mport->ops->unmap_outb(mport, destid, rstart);
 766	spin_unlock_irqrestore(&rio_mmap_lock, flags);
 767}
 768EXPORT_SYMBOL_GPL(rio_unmap_outb_region);
 769
 770/**
 771 * rio_mport_get_physefb - Helper function that returns register offset
 772 *                      for Physical Layer Extended Features Block.
 773 * @port: Master port to issue transaction
 774 * @local: Indicate a local master port or remote device access
 775 * @destid: Destination ID of the device
 776 * @hopcount: Number of switch hops to the device
 777 * @rmap: pointer to location to store register map type info
 778 */
 779u32
 780rio_mport_get_physefb(struct rio_mport *port, int local,
 781		      u16 destid, u8 hopcount, u32 *rmap)
 782{
 783	u32 ext_ftr_ptr;
 784	u32 ftr_header;
 785
 786	ext_ftr_ptr = rio_mport_get_efb(port, local, destid, hopcount, 0);
 787
 788	while (ext_ftr_ptr)  {
 789		if (local)
 790			rio_local_read_config_32(port, ext_ftr_ptr,
 791						 &ftr_header);
 792		else
 793			rio_mport_read_config_32(port, destid, hopcount,
 794						 ext_ftr_ptr, &ftr_header);
 795
 796		ftr_header = RIO_GET_BLOCK_ID(ftr_header);
 797		switch (ftr_header) {
 798
 
 
 
 799		case RIO_EFB_SER_EP_ID:
 800		case RIO_EFB_SER_EP_REC_ID:
 801		case RIO_EFB_SER_EP_FREE_ID:
 802		case RIO_EFB_SER_EP_M1_ID:
 803		case RIO_EFB_SER_EP_SW_M1_ID:
 804		case RIO_EFB_SER_EPF_M1_ID:
 805		case RIO_EFB_SER_EPF_SW_M1_ID:
 806			*rmap = 1;
 807			return ext_ftr_ptr;
 808
 809		case RIO_EFB_SER_EP_M2_ID:
 810		case RIO_EFB_SER_EP_SW_M2_ID:
 811		case RIO_EFB_SER_EPF_M2_ID:
 812		case RIO_EFB_SER_EPF_SW_M2_ID:
 813			*rmap = 2;
 814			return ext_ftr_ptr;
 815
 816		default:
 817			break;
 818		}
 819
 820		ext_ftr_ptr = rio_mport_get_efb(port, local, destid,
 821						hopcount, ext_ftr_ptr);
 822	}
 823
 824	return ext_ftr_ptr;
 825}
 826EXPORT_SYMBOL_GPL(rio_mport_get_physefb);
 827
 828/**
 829 * rio_get_comptag - Begin or continue searching for a RIO device by component tag
 830 * @comp_tag: RIO component tag to match
 831 * @from: Previous RIO device found in search, or %NULL for new search
 832 *
 833 * Iterates through the list of known RIO devices. If a RIO device is
 834 * found with a matching @comp_tag, a pointer to its device
 835 * structure is returned. Otherwise, %NULL is returned. A new search
 836 * is initiated by passing %NULL to the @from argument. Otherwise, if
 837 * @from is not %NULL, searches continue from next device on the global
 838 * list.
 839 */
 840struct rio_dev *rio_get_comptag(u32 comp_tag, struct rio_dev *from)
 841{
 842	struct list_head *n;
 843	struct rio_dev *rdev;
 844
 845	spin_lock(&rio_global_list_lock);
 846	n = from ? from->global_list.next : rio_devices.next;
 847
 848	while (n && (n != &rio_devices)) {
 849		rdev = rio_dev_g(n);
 850		if (rdev->comp_tag == comp_tag)
 851			goto exit;
 852		n = n->next;
 853	}
 854	rdev = NULL;
 855exit:
 856	spin_unlock(&rio_global_list_lock);
 857	return rdev;
 858}
 859EXPORT_SYMBOL_GPL(rio_get_comptag);
 860
 861/**
 862 * rio_set_port_lockout - Sets/clears LOCKOUT bit (RIO EM 1.3) for a switch port.
 863 * @rdev: Pointer to RIO device control structure
 864 * @pnum: Switch port number to set LOCKOUT bit
 865 * @lock: Operation : set (=1) or clear (=0)
 866 */
 867int rio_set_port_lockout(struct rio_dev *rdev, u32 pnum, int lock)
 868{
 869	u32 regval;
 870
 871	rio_read_config_32(rdev,
 872		RIO_DEV_PORT_N_CTL_CSR(rdev, pnum),
 873		&regval);
 874	if (lock)
 875		regval |= RIO_PORT_N_CTL_LOCKOUT;
 876	else
 877		regval &= ~RIO_PORT_N_CTL_LOCKOUT;
 878
 879	rio_write_config_32(rdev,
 880		RIO_DEV_PORT_N_CTL_CSR(rdev, pnum),
 881		regval);
 882	return 0;
 883}
 884EXPORT_SYMBOL_GPL(rio_set_port_lockout);
 885
 886/**
 887 * rio_enable_rx_tx_port - enable input receiver and output transmitter of
 888 * given port
 889 * @port: Master port associated with the RIO network
 890 * @local: local=1 select local port otherwise a far device is reached
 891 * @destid: Destination ID of the device to check host bit
 892 * @hopcount: Number of hops to reach the target
 893 * @port_num: Port (-number on switch) to enable on a far end device
 894 *
 895 * Returns 0 or 1 from on General Control Command and Status Register
 896 * (EXT_PTR+0x3C)
 897 */
 898int rio_enable_rx_tx_port(struct rio_mport *port,
 899			  int local, u16 destid,
 900			  u8 hopcount, u8 port_num)
 901{
 902#ifdef CONFIG_RAPIDIO_ENABLE_RX_TX_PORTS
 903	u32 regval;
 904	u32 ext_ftr_ptr;
 905	u32 rmap;
 906
 907	/*
 908	* enable rx input tx output port
 909	*/
 910	pr_debug("rio_enable_rx_tx_port(local = %d, destid = %d, hopcount = "
 911		 "%d, port_num = %d)\n", local, destid, hopcount, port_num);
 912
 913	ext_ftr_ptr = rio_mport_get_physefb(port, local, destid,
 914					    hopcount, &rmap);
 915
 916	if (local) {
 917		rio_local_read_config_32(port,
 918				ext_ftr_ptr + RIO_PORT_N_CTL_CSR(0, rmap),
 919				&regval);
 920	} else {
 921		if (rio_mport_read_config_32(port, destid, hopcount,
 922			ext_ftr_ptr + RIO_PORT_N_CTL_CSR(port_num, rmap),
 923				&regval) < 0)
 924			return -EIO;
 925	}
 926
 927	regval = regval | RIO_PORT_N_CTL_EN_RX | RIO_PORT_N_CTL_EN_TX;
 
 
 
 
 
 
 
 
 928
 929	if (local) {
 930		rio_local_write_config_32(port,
 931			ext_ftr_ptr + RIO_PORT_N_CTL_CSR(0, rmap), regval);
 932	} else {
 933		if (rio_mport_write_config_32(port, destid, hopcount,
 934			ext_ftr_ptr + RIO_PORT_N_CTL_CSR(port_num, rmap),
 935				regval) < 0)
 936			return -EIO;
 937	}
 938#endif
 939	return 0;
 940}
 941EXPORT_SYMBOL_GPL(rio_enable_rx_tx_port);
 942
 943
 944/**
 945 * rio_chk_dev_route - Validate route to the specified device.
 946 * @rdev:  RIO device failed to respond
 947 * @nrdev: Last active device on the route to rdev
 948 * @npnum: nrdev's port number on the route to rdev
 949 *
 950 * Follows a route to the specified RIO device to determine the last available
 951 * device (and corresponding RIO port) on the route.
 952 */
 953static int
 954rio_chk_dev_route(struct rio_dev *rdev, struct rio_dev **nrdev, int *npnum)
 955{
 956	u32 result;
 957	int p_port, rc = -EIO;
 958	struct rio_dev *prev = NULL;
 959
 960	/* Find switch with failed RIO link */
 961	while (rdev->prev && (rdev->prev->pef & RIO_PEF_SWITCH)) {
 962		if (!rio_read_config_32(rdev->prev, RIO_DEV_ID_CAR, &result)) {
 963			prev = rdev->prev;
 964			break;
 965		}
 966		rdev = rdev->prev;
 967	}
 968
 969	if (!prev)
 970		goto err_out;
 971
 972	p_port = prev->rswitch->route_table[rdev->destid];
 973
 974	if (p_port != RIO_INVALID_ROUTE) {
 975		pr_debug("RIO: link failed on [%s]-P%d\n",
 976			 rio_name(prev), p_port);
 977		*nrdev = prev;
 978		*npnum = p_port;
 979		rc = 0;
 980	} else
 981		pr_debug("RIO: failed to trace route to %s\n", rio_name(rdev));
 982err_out:
 983	return rc;
 984}
 985
 986/**
 987 * rio_mport_chk_dev_access - Validate access to the specified device.
 988 * @mport: Master port to send transactions
 989 * @destid: Device destination ID in network
 990 * @hopcount: Number of hops into the network
 991 */
 992int
 993rio_mport_chk_dev_access(struct rio_mport *mport, u16 destid, u8 hopcount)
 994{
 995	int i = 0;
 996	u32 tmp;
 997
 998	while (rio_mport_read_config_32(mport, destid, hopcount,
 999					RIO_DEV_ID_CAR, &tmp)) {
1000		i++;
1001		if (i == RIO_MAX_CHK_RETRY)
1002			return -EIO;
1003		mdelay(1);
1004	}
1005
1006	return 0;
1007}
1008EXPORT_SYMBOL_GPL(rio_mport_chk_dev_access);
1009
1010/**
1011 * rio_chk_dev_access - Validate access to the specified device.
1012 * @rdev: Pointer to RIO device control structure
1013 */
1014static int rio_chk_dev_access(struct rio_dev *rdev)
1015{
1016	return rio_mport_chk_dev_access(rdev->net->hport,
1017					rdev->destid, rdev->hopcount);
1018}
1019
1020/**
1021 * rio_get_input_status - Sends a Link-Request/Input-Status control symbol and
1022 *                        returns link-response (if requested).
1023 * @rdev: RIO devive to issue Input-status command
1024 * @pnum: Device port number to issue the command
1025 * @lnkresp: Response from a link partner
1026 */
1027static int
1028rio_get_input_status(struct rio_dev *rdev, int pnum, u32 *lnkresp)
1029{
1030	u32 regval;
1031	int checkcount;
1032
1033	if (lnkresp) {
1034		/* Read from link maintenance response register
1035		 * to clear valid bit */
1036		rio_read_config_32(rdev,
1037			RIO_DEV_PORT_N_MNT_RSP_CSR(rdev, pnum),
1038			&regval);
1039		udelay(50);
1040	}
1041
1042	/* Issue Input-status command */
1043	rio_write_config_32(rdev,
1044		RIO_DEV_PORT_N_MNT_REQ_CSR(rdev, pnum),
1045		RIO_MNT_REQ_CMD_IS);
1046
1047	/* Exit if the response is not expected */
1048	if (!lnkresp)
1049		return 0;
1050
1051	checkcount = 3;
1052	while (checkcount--) {
1053		udelay(50);
1054		rio_read_config_32(rdev,
1055			RIO_DEV_PORT_N_MNT_RSP_CSR(rdev, pnum),
1056			&regval);
1057		if (regval & RIO_PORT_N_MNT_RSP_RVAL) {
1058			*lnkresp = regval;
1059			return 0;
1060		}
1061	}
1062
1063	return -EIO;
1064}
1065
1066/**
1067 * rio_clr_err_stopped - Clears port Error-stopped states.
1068 * @rdev: Pointer to RIO device control structure
1069 * @pnum: Switch port number to clear errors
1070 * @err_status: port error status (if 0 reads register from device)
1071 *
1072 * TODO: Currently this routine is not compatible with recovery process
1073 * specified for idt_gen3 RapidIO switch devices. It has to be reviewed
1074 * to implement universal recovery process that is compatible full range
1075 * off available devices.
1076 * IDT gen3 switch driver now implements HW-specific error handler that
1077 * issues soft port reset to the port to reset ERR_STOP bits and ackIDs.
1078 */
1079static int rio_clr_err_stopped(struct rio_dev *rdev, u32 pnum, u32 err_status)
1080{
1081	struct rio_dev *nextdev = rdev->rswitch->nextdev[pnum];
1082	u32 regval;
1083	u32 far_ackid, far_linkstat, near_ackid;
1084
1085	if (err_status == 0)
1086		rio_read_config_32(rdev,
1087			RIO_DEV_PORT_N_ERR_STS_CSR(rdev, pnum),
1088			&err_status);
1089
1090	if (err_status & RIO_PORT_N_ERR_STS_OUT_ES) {
1091		pr_debug("RIO_EM: servicing Output Error-Stopped state\n");
1092		/*
1093		 * Send a Link-Request/Input-Status control symbol
1094		 */
1095		if (rio_get_input_status(rdev, pnum, &regval)) {
1096			pr_debug("RIO_EM: Input-status response timeout\n");
1097			goto rd_err;
1098		}
1099
1100		pr_debug("RIO_EM: SP%d Input-status response=0x%08x\n",
1101			 pnum, regval);
1102		far_ackid = (regval & RIO_PORT_N_MNT_RSP_ASTAT) >> 5;
1103		far_linkstat = regval & RIO_PORT_N_MNT_RSP_LSTAT;
1104		rio_read_config_32(rdev,
1105			RIO_DEV_PORT_N_ACK_STS_CSR(rdev, pnum),
1106			&regval);
1107		pr_debug("RIO_EM: SP%d_ACK_STS_CSR=0x%08x\n", pnum, regval);
1108		near_ackid = (regval & RIO_PORT_N_ACK_INBOUND) >> 24;
1109		pr_debug("RIO_EM: SP%d far_ackID=0x%02x far_linkstat=0x%02x" \
1110			 " near_ackID=0x%02x\n",
1111			pnum, far_ackid, far_linkstat, near_ackid);
1112
1113		/*
1114		 * If required, synchronize ackIDs of near and
1115		 * far sides.
1116		 */
1117		if ((far_ackid != ((regval & RIO_PORT_N_ACK_OUTSTAND) >> 8)) ||
1118		    (far_ackid != (regval & RIO_PORT_N_ACK_OUTBOUND))) {
1119			/* Align near outstanding/outbound ackIDs with
1120			 * far inbound.
1121			 */
1122			rio_write_config_32(rdev,
1123				RIO_DEV_PORT_N_ACK_STS_CSR(rdev, pnum),
1124				(near_ackid << 24) |
1125					(far_ackid << 8) | far_ackid);
1126			/* Align far outstanding/outbound ackIDs with
1127			 * near inbound.
1128			 */
1129			far_ackid++;
1130			if (!nextdev) {
1131				pr_debug("RIO_EM: nextdev pointer == NULL\n");
1132				goto rd_err;
1133			}
1134
1135			rio_write_config_32(nextdev,
1136				RIO_DEV_PORT_N_ACK_STS_CSR(nextdev,
1137					RIO_GET_PORT_NUM(nextdev->swpinfo)),
1138				(far_ackid << 24) |
1139				(near_ackid << 8) | near_ackid);
1140		}
1141rd_err:
1142		rio_read_config_32(rdev, RIO_DEV_PORT_N_ERR_STS_CSR(rdev, pnum),
1143				   &err_status);
 
1144		pr_debug("RIO_EM: SP%d_ERR_STS_CSR=0x%08x\n", pnum, err_status);
1145	}
1146
1147	if ((err_status & RIO_PORT_N_ERR_STS_INP_ES) && nextdev) {
1148		pr_debug("RIO_EM: servicing Input Error-Stopped state\n");
1149		rio_get_input_status(nextdev,
1150				     RIO_GET_PORT_NUM(nextdev->swpinfo), NULL);
1151		udelay(50);
1152
1153		rio_read_config_32(rdev, RIO_DEV_PORT_N_ERR_STS_CSR(rdev, pnum),
1154				   &err_status);
 
1155		pr_debug("RIO_EM: SP%d_ERR_STS_CSR=0x%08x\n", pnum, err_status);
1156	}
1157
1158	return (err_status & (RIO_PORT_N_ERR_STS_OUT_ES |
1159			      RIO_PORT_N_ERR_STS_INP_ES)) ? 1 : 0;
1160}
1161
1162/**
1163 * rio_inb_pwrite_handler - inbound port-write message handler
1164 * @mport:  mport device associated with port-write
1165 * @pw_msg: pointer to inbound port-write message
1166 *
1167 * Processes an inbound port-write message. Returns 0 if the request
1168 * has been satisfied.
1169 */
1170int rio_inb_pwrite_handler(struct rio_mport *mport, union rio_pw_msg *pw_msg)
1171{
1172	struct rio_dev *rdev;
1173	u32 err_status, em_perrdet, em_ltlerrdet;
1174	int rc, portnum;
1175	struct rio_pwrite *pwrite;
1176
1177#ifdef DEBUG_PW
1178	{
1179		u32 i;
1180
1181		pr_debug("%s: PW to mport_%d:\n", __func__, mport->id);
1182		for (i = 0; i < RIO_PW_MSG_SIZE / sizeof(u32); i = i + 4) {
1183			pr_debug("0x%02x: %08x %08x %08x %08x\n",
1184				i * 4, pw_msg->raw[i], pw_msg->raw[i + 1],
1185				pw_msg->raw[i + 2], pw_msg->raw[i + 3]);
1186		}
1187	}
1188#endif
1189
1190	rdev = rio_get_comptag((pw_msg->em.comptag & RIO_CTAG_UDEVID), NULL);
1191	if (rdev) {
1192		pr_debug("RIO: Port-Write message from %s\n", rio_name(rdev));
1193	} else {
1194		pr_debug("RIO: %s No matching device for CTag 0x%08x\n",
1195			__func__, pw_msg->em.comptag);
1196	}
1197
1198	/* Call a device-specific handler (if it is registered for the device).
1199	 * This may be the service for endpoints that send device-specific
1200	 * port-write messages. End-point messages expected to be handled
1201	 * completely by EP specific device driver.
1202	 * For switches rc==0 signals that no standard processing required.
1203	 */
1204	if (rdev && rdev->pwcback) {
1205		rc = rdev->pwcback(rdev, pw_msg, 0);
1206		if (rc == 0)
1207			return 0;
1208	}
1209
1210	mutex_lock(&mport->lock);
1211	list_for_each_entry(pwrite, &mport->pwrites, node)
1212		pwrite->pwcback(mport, pwrite->context, pw_msg, 0);
1213	mutex_unlock(&mport->lock);
1214
1215	if (!rdev)
1216		return 0;
1217
1218	/*
1219	 * FIXME: The code below stays as it was before for now until we decide
1220	 * how to do default PW handling in combination with per-mport callbacks
1221	 */
1222
1223	portnum = pw_msg->em.is_port & 0xFF;
1224
1225	/* Check if device and route to it are functional:
1226	 * Sometimes devices may send PW message(s) just before being
1227	 * powered down (or link being lost).
1228	 */
1229	if (rio_chk_dev_access(rdev)) {
1230		pr_debug("RIO: device access failed - get link partner\n");
1231		/* Scan route to the device and identify failed link.
1232		 * This will replace device and port reported in PW message.
1233		 * PW message should not be used after this point.
1234		 */
1235		if (rio_chk_dev_route(rdev, &rdev, &portnum)) {
1236			pr_err("RIO: Route trace for %s failed\n",
1237				rio_name(rdev));
1238			return -EIO;
1239		}
1240		pw_msg = NULL;
1241	}
1242
1243	/* For End-point devices processing stops here */
1244	if (!(rdev->pef & RIO_PEF_SWITCH))
1245		return 0;
1246
1247	if (rdev->phys_efptr == 0) {
1248		pr_err("RIO_PW: Bad switch initialization for %s\n",
1249			rio_name(rdev));
1250		return 0;
1251	}
1252
1253	/*
1254	 * Process the port-write notification from switch
1255	 */
1256	if (rdev->rswitch->ops && rdev->rswitch->ops->em_handle)
1257		rdev->rswitch->ops->em_handle(rdev, portnum);
1258
1259	rio_read_config_32(rdev, RIO_DEV_PORT_N_ERR_STS_CSR(rdev, portnum),
1260			   &err_status);
 
1261	pr_debug("RIO_PW: SP%d_ERR_STS_CSR=0x%08x\n", portnum, err_status);
1262
1263	if (err_status & RIO_PORT_N_ERR_STS_PORT_OK) {
1264
1265		if (!(rdev->rswitch->port_ok & (1 << portnum))) {
1266			rdev->rswitch->port_ok |= (1 << portnum);
1267			rio_set_port_lockout(rdev, portnum, 0);
1268			/* Schedule Insertion Service */
1269			pr_debug("RIO_PW: Device Insertion on [%s]-P%d\n",
1270			       rio_name(rdev), portnum);
1271		}
1272
1273		/* Clear error-stopped states (if reported).
1274		 * Depending on the link partner state, two attempts
1275		 * may be needed for successful recovery.
1276		 */
1277		if (err_status & (RIO_PORT_N_ERR_STS_OUT_ES |
1278				  RIO_PORT_N_ERR_STS_INP_ES)) {
1279			if (rio_clr_err_stopped(rdev, portnum, err_status))
1280				rio_clr_err_stopped(rdev, portnum, 0);
1281		}
1282	}  else { /* if (err_status & RIO_PORT_N_ERR_STS_PORT_UNINIT) */
1283
1284		if (rdev->rswitch->port_ok & (1 << portnum)) {
1285			rdev->rswitch->port_ok &= ~(1 << portnum);
1286			rio_set_port_lockout(rdev, portnum, 1);
1287
1288			if (rdev->phys_rmap == 1) {
1289			rio_write_config_32(rdev,
1290				RIO_DEV_PORT_N_ACK_STS_CSR(rdev, portnum),
 
1291				RIO_PORT_N_ACK_CLEAR);
1292			} else {
1293				rio_write_config_32(rdev,
1294					RIO_DEV_PORT_N_OB_ACK_CSR(rdev, portnum),
1295					RIO_PORT_N_OB_ACK_CLEAR);
1296				rio_write_config_32(rdev,
1297					RIO_DEV_PORT_N_IB_ACK_CSR(rdev, portnum),
1298					0);
1299			}
1300
1301			/* Schedule Extraction Service */
1302			pr_debug("RIO_PW: Device Extraction on [%s]-P%d\n",
1303			       rio_name(rdev), portnum);
1304		}
1305	}
1306
1307	rio_read_config_32(rdev,
1308		rdev->em_efptr + RIO_EM_PN_ERR_DETECT(portnum), &em_perrdet);
1309	if (em_perrdet) {
1310		pr_debug("RIO_PW: RIO_EM_P%d_ERR_DETECT=0x%08x\n",
1311			 portnum, em_perrdet);
1312		/* Clear EM Port N Error Detect CSR */
1313		rio_write_config_32(rdev,
1314			rdev->em_efptr + RIO_EM_PN_ERR_DETECT(portnum), 0);
1315	}
1316
1317	rio_read_config_32(rdev,
1318		rdev->em_efptr + RIO_EM_LTL_ERR_DETECT, &em_ltlerrdet);
1319	if (em_ltlerrdet) {
1320		pr_debug("RIO_PW: RIO_EM_LTL_ERR_DETECT=0x%08x\n",
1321			 em_ltlerrdet);
1322		/* Clear EM L/T Layer Error Detect CSR */
1323		rio_write_config_32(rdev,
1324			rdev->em_efptr + RIO_EM_LTL_ERR_DETECT, 0);
1325	}
1326
1327	/* Clear remaining error bits and Port-Write Pending bit */
1328	rio_write_config_32(rdev, RIO_DEV_PORT_N_ERR_STS_CSR(rdev, portnum),
1329			    err_status);
 
1330
1331	return 0;
1332}
1333EXPORT_SYMBOL_GPL(rio_inb_pwrite_handler);
1334
1335/**
1336 * rio_mport_get_efb - get pointer to next extended features block
1337 * @port: Master port to issue transaction
1338 * @local: Indicate a local master port or remote device access
1339 * @destid: Destination ID of the device
1340 * @hopcount: Number of switch hops to the device
1341 * @from: Offset of  current Extended Feature block header (if 0 starts
1342 * from	ExtFeaturePtr)
1343 */
1344u32
1345rio_mport_get_efb(struct rio_mport *port, int local, u16 destid,
1346		      u8 hopcount, u32 from)
1347{
1348	u32 reg_val;
1349
1350	if (from == 0) {
1351		if (local)
1352			rio_local_read_config_32(port, RIO_ASM_INFO_CAR,
1353						 &reg_val);
1354		else
1355			rio_mport_read_config_32(port, destid, hopcount,
1356						 RIO_ASM_INFO_CAR, &reg_val);
1357		return reg_val & RIO_EXT_FTR_PTR_MASK;
1358	} else {
1359		if (local)
1360			rio_local_read_config_32(port, from, &reg_val);
1361		else
1362			rio_mport_read_config_32(port, destid, hopcount,
1363						 from, &reg_val);
1364		return RIO_GET_BLOCK_ID(reg_val);
1365	}
1366}
1367EXPORT_SYMBOL_GPL(rio_mport_get_efb);
1368
1369/**
1370 * rio_mport_get_feature - query for devices' extended features
1371 * @port: Master port to issue transaction
1372 * @local: Indicate a local master port or remote device access
1373 * @destid: Destination ID of the device
1374 * @hopcount: Number of switch hops to the device
1375 * @ftr: Extended feature code
1376 *
1377 * Tell if a device supports a given RapidIO capability.
1378 * Returns the offset of the requested extended feature
1379 * block within the device's RIO configuration space or
1380 * 0 in case the device does not support it.
 
 
 
 
 
 
 
 
 
 
 
 
 
1381 */
1382u32
1383rio_mport_get_feature(struct rio_mport * port, int local, u16 destid,
1384		      u8 hopcount, int ftr)
1385{
1386	u32 asm_info, ext_ftr_ptr, ftr_header;
1387
1388	if (local)
1389		rio_local_read_config_32(port, RIO_ASM_INFO_CAR, &asm_info);
1390	else
1391		rio_mport_read_config_32(port, destid, hopcount,
1392					 RIO_ASM_INFO_CAR, &asm_info);
1393
1394	ext_ftr_ptr = asm_info & RIO_EXT_FTR_PTR_MASK;
1395
1396	while (ext_ftr_ptr) {
1397		if (local)
1398			rio_local_read_config_32(port, ext_ftr_ptr,
1399						 &ftr_header);
1400		else
1401			rio_mport_read_config_32(port, destid, hopcount,
1402						 ext_ftr_ptr, &ftr_header);
1403		if (RIO_GET_BLOCK_ID(ftr_header) == ftr)
1404			return ext_ftr_ptr;
1405
1406		ext_ftr_ptr = RIO_GET_BLOCK_PTR(ftr_header);
1407		if (!ext_ftr_ptr)
1408			break;
1409	}
1410
1411	return 0;
1412}
1413EXPORT_SYMBOL_GPL(rio_mport_get_feature);
1414
1415/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1416 * rio_std_route_add_entry - Add switch route table entry using standard
1417 *   registers defined in RIO specification rev.1.3
1418 * @mport: Master port to issue transaction
1419 * @destid: Destination ID of the device
1420 * @hopcount: Number of switch hops to the device
1421 * @table: routing table ID (global or port-specific)
1422 * @route_destid: destID entry in the RT
1423 * @route_port: destination port for specified destID
1424 */
1425static int
1426rio_std_route_add_entry(struct rio_mport *mport, u16 destid, u8 hopcount,
1427			u16 table, u16 route_destid, u8 route_port)
1428{
1429	if (table == RIO_GLOBAL_TABLE) {
1430		rio_mport_write_config_32(mport, destid, hopcount,
1431				RIO_STD_RTE_CONF_DESTID_SEL_CSR,
1432				(u32)route_destid);
1433		rio_mport_write_config_32(mport, destid, hopcount,
1434				RIO_STD_RTE_CONF_PORT_SEL_CSR,
1435				(u32)route_port);
1436	}
1437
1438	udelay(10);
1439	return 0;
1440}
1441
1442/**
1443 * rio_std_route_get_entry - Read switch route table entry (port number)
1444 *   associated with specified destID using standard registers defined in RIO
1445 *   specification rev.1.3
1446 * @mport: Master port to issue transaction
1447 * @destid: Destination ID of the device
1448 * @hopcount: Number of switch hops to the device
1449 * @table: routing table ID (global or port-specific)
1450 * @route_destid: destID entry in the RT
1451 * @route_port: returned destination port for specified destID
1452 */
1453static int
1454rio_std_route_get_entry(struct rio_mport *mport, u16 destid, u8 hopcount,
1455			u16 table, u16 route_destid, u8 *route_port)
1456{
1457	u32 result;
1458
1459	if (table == RIO_GLOBAL_TABLE) {
1460		rio_mport_write_config_32(mport, destid, hopcount,
1461				RIO_STD_RTE_CONF_DESTID_SEL_CSR, route_destid);
1462		rio_mport_read_config_32(mport, destid, hopcount,
1463				RIO_STD_RTE_CONF_PORT_SEL_CSR, &result);
1464
1465		*route_port = (u8)result;
1466	}
1467
1468	return 0;
1469}
1470
1471/**
1472 * rio_std_route_clr_table - Clear swotch route table using standard registers
1473 *   defined in RIO specification rev.1.3.
1474 * @mport: Master port to issue transaction
1475 * @destid: Destination ID of the device
1476 * @hopcount: Number of switch hops to the device
1477 * @table: routing table ID (global or port-specific)
1478 */
1479static int
1480rio_std_route_clr_table(struct rio_mport *mport, u16 destid, u8 hopcount,
1481			u16 table)
1482{
1483	u32 max_destid = 0xff;
1484	u32 i, pef, id_inc = 1, ext_cfg = 0;
1485	u32 port_sel = RIO_INVALID_ROUTE;
1486
1487	if (table == RIO_GLOBAL_TABLE) {
1488		rio_mport_read_config_32(mport, destid, hopcount,
1489					 RIO_PEF_CAR, &pef);
1490
1491		if (mport->sys_size) {
1492			rio_mport_read_config_32(mport, destid, hopcount,
1493						 RIO_SWITCH_RT_LIMIT,
1494						 &max_destid);
1495			max_destid &= RIO_RT_MAX_DESTID;
1496		}
1497
1498		if (pef & RIO_PEF_EXT_RT) {
1499			ext_cfg = 0x80000000;
1500			id_inc = 4;
1501			port_sel = (RIO_INVALID_ROUTE << 24) |
1502				   (RIO_INVALID_ROUTE << 16) |
1503				   (RIO_INVALID_ROUTE << 8) |
1504				   RIO_INVALID_ROUTE;
1505		}
1506
1507		for (i = 0; i <= max_destid;) {
1508			rio_mport_write_config_32(mport, destid, hopcount,
1509					RIO_STD_RTE_CONF_DESTID_SEL_CSR,
1510					ext_cfg | i);
1511			rio_mport_write_config_32(mport, destid, hopcount,
1512					RIO_STD_RTE_CONF_PORT_SEL_CSR,
1513					port_sel);
1514			i += id_inc;
1515		}
1516	}
1517
1518	udelay(10);
1519	return 0;
1520}
1521
1522/**
1523 * rio_lock_device - Acquires host device lock for specified device
1524 * @port: Master port to send transaction
1525 * @destid: Destination ID for device/switch
1526 * @hopcount: Hopcount to reach switch
1527 * @wait_ms: Max wait time in msec (0 = no timeout)
1528 *
1529 * Attepts to acquire host device lock for specified device
1530 * Returns 0 if device lock acquired or EINVAL if timeout expires.
1531 */
1532int rio_lock_device(struct rio_mport *port, u16 destid,
1533		    u8 hopcount, int wait_ms)
1534{
1535	u32 result;
1536	int tcnt = 0;
1537
1538	/* Attempt to acquire device lock */
1539	rio_mport_write_config_32(port, destid, hopcount,
1540				  RIO_HOST_DID_LOCK_CSR, port->host_deviceid);
1541	rio_mport_read_config_32(port, destid, hopcount,
1542				 RIO_HOST_DID_LOCK_CSR, &result);
1543
1544	while (result != port->host_deviceid) {
1545		if (wait_ms != 0 && tcnt == wait_ms) {
1546			pr_debug("RIO: timeout when locking device %x:%x\n",
1547				destid, hopcount);
1548			return -EINVAL;
1549		}
1550
1551		/* Delay a bit */
1552		mdelay(1);
1553		tcnt++;
1554		/* Try to acquire device lock again */
1555		rio_mport_write_config_32(port, destid,
1556			hopcount,
1557			RIO_HOST_DID_LOCK_CSR,
1558			port->host_deviceid);
1559		rio_mport_read_config_32(port, destid,
1560			hopcount,
1561			RIO_HOST_DID_LOCK_CSR, &result);
1562	}
1563
1564	return 0;
1565}
1566EXPORT_SYMBOL_GPL(rio_lock_device);
1567
1568/**
1569 * rio_unlock_device - Releases host device lock for specified device
1570 * @port: Master port to send transaction
1571 * @destid: Destination ID for device/switch
1572 * @hopcount: Hopcount to reach switch
1573 *
1574 * Returns 0 if device lock released or EINVAL if fails.
1575 */
1576int rio_unlock_device(struct rio_mport *port, u16 destid, u8 hopcount)
1577{
1578	u32 result;
1579
1580	/* Release device lock */
1581	rio_mport_write_config_32(port, destid,
1582				  hopcount,
1583				  RIO_HOST_DID_LOCK_CSR,
1584				  port->host_deviceid);
1585	rio_mport_read_config_32(port, destid, hopcount,
1586		RIO_HOST_DID_LOCK_CSR, &result);
1587	if ((result & 0xffff) != 0xffff) {
1588		pr_debug("RIO: badness when releasing device lock %x:%x\n",
1589			 destid, hopcount);
1590		return -EINVAL;
1591	}
1592
1593	return 0;
1594}
1595EXPORT_SYMBOL_GPL(rio_unlock_device);
1596
1597/**
1598 * rio_route_add_entry- Add a route entry to a switch routing table
1599 * @rdev: RIO device
1600 * @table: Routing table ID
1601 * @route_destid: Destination ID to be routed
1602 * @route_port: Port number to be routed
1603 * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock)
1604 *
1605 * If available calls the switch specific add_entry() method to add a route
1606 * entry into a switch routing table. Otherwise uses standard RT update method
1607 * as defined by RapidIO specification. A specific routing table can be selected
1608 * using the @table argument if a switch has per port routing tables or
1609 * the standard (or global) table may be used by passing
1610 * %RIO_GLOBAL_TABLE in @table.
1611 *
1612 * Returns %0 on success or %-EINVAL on failure.
1613 */
1614int rio_route_add_entry(struct rio_dev *rdev,
1615			u16 table, u16 route_destid, u8 route_port, int lock)
1616{
1617	int rc = -EINVAL;
1618	struct rio_switch_ops *ops = rdev->rswitch->ops;
1619
1620	if (lock) {
1621		rc = rio_lock_device(rdev->net->hport, rdev->destid,
1622				     rdev->hopcount, 1000);
1623		if (rc)
1624			return rc;
1625	}
1626
1627	spin_lock(&rdev->rswitch->lock);
1628
1629	if (!ops || !ops->add_entry) {
1630		rc = rio_std_route_add_entry(rdev->net->hport, rdev->destid,
1631					     rdev->hopcount, table,
1632					     route_destid, route_port);
1633	} else if (try_module_get(ops->owner)) {
1634		rc = ops->add_entry(rdev->net->hport, rdev->destid,
1635				    rdev->hopcount, table, route_destid,
1636				    route_port);
1637		module_put(ops->owner);
1638	}
1639
1640	spin_unlock(&rdev->rswitch->lock);
1641
1642	if (lock)
1643		rio_unlock_device(rdev->net->hport, rdev->destid,
1644				  rdev->hopcount);
1645
1646	return rc;
1647}
1648EXPORT_SYMBOL_GPL(rio_route_add_entry);
1649
1650/**
1651 * rio_route_get_entry- Read an entry from a switch routing table
1652 * @rdev: RIO device
1653 * @table: Routing table ID
1654 * @route_destid: Destination ID to be routed
1655 * @route_port: Pointer to read port number into
1656 * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock)
1657 *
1658 * If available calls the switch specific get_entry() method to fetch a route
1659 * entry from a switch routing table. Otherwise uses standard RT read method
1660 * as defined by RapidIO specification. A specific routing table can be selected
1661 * using the @table argument if a switch has per port routing tables or
1662 * the standard (or global) table may be used by passing
1663 * %RIO_GLOBAL_TABLE in @table.
1664 *
1665 * Returns %0 on success or %-EINVAL on failure.
1666 */
1667int rio_route_get_entry(struct rio_dev *rdev, u16 table,
1668			u16 route_destid, u8 *route_port, int lock)
1669{
1670	int rc = -EINVAL;
1671	struct rio_switch_ops *ops = rdev->rswitch->ops;
1672
1673	if (lock) {
1674		rc = rio_lock_device(rdev->net->hport, rdev->destid,
1675				     rdev->hopcount, 1000);
1676		if (rc)
1677			return rc;
1678	}
1679
1680	spin_lock(&rdev->rswitch->lock);
1681
1682	if (!ops || !ops->get_entry) {
1683		rc = rio_std_route_get_entry(rdev->net->hport, rdev->destid,
1684					     rdev->hopcount, table,
1685					     route_destid, route_port);
1686	} else if (try_module_get(ops->owner)) {
1687		rc = ops->get_entry(rdev->net->hport, rdev->destid,
1688				    rdev->hopcount, table, route_destid,
1689				    route_port);
1690		module_put(ops->owner);
1691	}
1692
1693	spin_unlock(&rdev->rswitch->lock);
1694
1695	if (lock)
1696		rio_unlock_device(rdev->net->hport, rdev->destid,
1697				  rdev->hopcount);
1698	return rc;
1699}
1700EXPORT_SYMBOL_GPL(rio_route_get_entry);
1701
1702/**
1703 * rio_route_clr_table - Clear a switch routing table
1704 * @rdev: RIO device
1705 * @table: Routing table ID
1706 * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock)
1707 *
1708 * If available calls the switch specific clr_table() method to clear a switch
1709 * routing table. Otherwise uses standard RT write method as defined by RapidIO
1710 * specification. A specific routing table can be selected using the @table
1711 * argument if a switch has per port routing tables or the standard (or global)
1712 * table may be used by passing %RIO_GLOBAL_TABLE in @table.
1713 *
1714 * Returns %0 on success or %-EINVAL on failure.
1715 */
1716int rio_route_clr_table(struct rio_dev *rdev, u16 table, int lock)
1717{
1718	int rc = -EINVAL;
1719	struct rio_switch_ops *ops = rdev->rswitch->ops;
1720
1721	if (lock) {
1722		rc = rio_lock_device(rdev->net->hport, rdev->destid,
1723				     rdev->hopcount, 1000);
1724		if (rc)
1725			return rc;
1726	}
1727
1728	spin_lock(&rdev->rswitch->lock);
1729
1730	if (!ops || !ops->clr_table) {
1731		rc = rio_std_route_clr_table(rdev->net->hport, rdev->destid,
1732					     rdev->hopcount, table);
1733	} else if (try_module_get(ops->owner)) {
1734		rc = ops->clr_table(rdev->net->hport, rdev->destid,
1735				    rdev->hopcount, table);
1736
1737		module_put(ops->owner);
1738	}
1739
1740	spin_unlock(&rdev->rswitch->lock);
1741
1742	if (lock)
1743		rio_unlock_device(rdev->net->hport, rdev->destid,
1744				  rdev->hopcount);
1745
1746	return rc;
1747}
1748EXPORT_SYMBOL_GPL(rio_route_clr_table);
1749
1750#ifdef CONFIG_RAPIDIO_DMA_ENGINE
1751
1752static bool rio_chan_filter(struct dma_chan *chan, void *arg)
1753{
1754	struct rio_mport *mport = arg;
1755
1756	/* Check that DMA device belongs to the right MPORT */
1757	return mport == container_of(chan->device, struct rio_mport, dma);
1758}
1759
1760/**
1761 * rio_request_mport_dma - request RapidIO capable DMA channel associated
1762 *   with specified local RapidIO mport device.
1763 * @mport: RIO mport to perform DMA data transfers
1764 *
1765 * Returns pointer to allocated DMA channel or NULL if failed.
1766 */
1767struct dma_chan *rio_request_mport_dma(struct rio_mport *mport)
1768{
1769	dma_cap_mask_t mask;
1770
1771	dma_cap_zero(mask);
1772	dma_cap_set(DMA_SLAVE, mask);
1773	return dma_request_channel(mask, rio_chan_filter, mport);
1774}
1775EXPORT_SYMBOL_GPL(rio_request_mport_dma);
1776
1777/**
1778 * rio_request_dma - request RapidIO capable DMA channel that supports
1779 *   specified target RapidIO device.
1780 * @rdev: RIO device associated with DMA transfer
1781 *
1782 * Returns pointer to allocated DMA channel or NULL if failed.
1783 */
1784struct dma_chan *rio_request_dma(struct rio_dev *rdev)
1785{
1786	return rio_request_mport_dma(rdev->net->hport);
1787}
1788EXPORT_SYMBOL_GPL(rio_request_dma);
1789
1790/**
1791 * rio_release_dma - release specified DMA channel
1792 * @dchan: DMA channel to release
1793 */
1794void rio_release_dma(struct dma_chan *dchan)
1795{
1796	dma_release_channel(dchan);
1797}
1798EXPORT_SYMBOL_GPL(rio_release_dma);
1799
1800/**
1801 * rio_dma_prep_xfer - RapidIO specific wrapper
1802 *   for device_prep_slave_sg callback defined by DMAENGINE.
1803 * @dchan: DMA channel to configure
1804 * @destid: target RapidIO device destination ID
1805 * @data: RIO specific data descriptor
1806 * @direction: DMA data transfer direction (TO or FROM the device)
1807 * @flags: dmaengine defined flags
1808 *
1809 * Initializes RapidIO capable DMA channel for the specified data transfer.
1810 * Uses DMA channel private extension to pass information related to remote
1811 * target RIO device.
1812 *
1813 * Returns: pointer to DMA transaction descriptor if successful,
1814 *          error-valued pointer or NULL if failed.
1815 */
1816struct dma_async_tx_descriptor *rio_dma_prep_xfer(struct dma_chan *dchan,
1817	u16 destid, struct rio_dma_data *data,
1818	enum dma_transfer_direction direction, unsigned long flags)
1819{
1820	struct rio_dma_ext rio_ext;
1821
1822	if (!dchan->device->device_prep_slave_sg) {
1823		pr_err("%s: prep_rio_sg == NULL\n", __func__);
1824		return NULL;
1825	}
1826
1827	rio_ext.destid = destid;
1828	rio_ext.rio_addr_u = data->rio_addr_u;
1829	rio_ext.rio_addr = data->rio_addr;
1830	rio_ext.wr_type = data->wr_type;
1831
1832	return dmaengine_prep_rio_sg(dchan, data->sg, data->sg_len,
1833				     direction, flags, &rio_ext);
1834}
1835EXPORT_SYMBOL_GPL(rio_dma_prep_xfer);
1836
1837/**
1838 * rio_dma_prep_slave_sg - RapidIO specific wrapper
1839 *   for device_prep_slave_sg callback defined by DMAENGINE.
1840 * @rdev: RIO device control structure
1841 * @dchan: DMA channel to configure
1842 * @data: RIO specific data descriptor
1843 * @direction: DMA data transfer direction (TO or FROM the device)
1844 * @flags: dmaengine defined flags
1845 *
1846 * Initializes RapidIO capable DMA channel for the specified data transfer.
1847 * Uses DMA channel private extension to pass information related to remote
1848 * target RIO device.
1849 *
1850 * Returns: pointer to DMA transaction descriptor if successful,
1851 *          error-valued pointer or NULL if failed.
1852 */
1853struct dma_async_tx_descriptor *rio_dma_prep_slave_sg(struct rio_dev *rdev,
1854	struct dma_chan *dchan, struct rio_dma_data *data,
1855	enum dma_transfer_direction direction, unsigned long flags)
1856{
1857	return rio_dma_prep_xfer(dchan,	rdev->destid, data, direction, flags);
1858}
1859EXPORT_SYMBOL_GPL(rio_dma_prep_slave_sg);
1860
1861#endif /* CONFIG_RAPIDIO_DMA_ENGINE */
1862
1863/**
1864 * rio_find_mport - find RIO mport by its ID
1865 * @mport_id: number (ID) of mport device
1866 *
1867 * Given a RIO mport number, the desired mport is located
1868 * in the global list of mports. If the mport is found, a pointer to its
1869 * data structure is returned.  If no mport is found, %NULL is returned.
1870 */
1871struct rio_mport *rio_find_mport(int mport_id)
1872{
1873	struct rio_mport *port;
1874
1875	mutex_lock(&rio_mport_list_lock);
1876	list_for_each_entry(port, &rio_mports, node) {
1877		if (port->id == mport_id)
1878			goto found;
1879	}
1880	port = NULL;
1881found:
1882	mutex_unlock(&rio_mport_list_lock);
1883
1884	return port;
1885}
1886
1887/**
1888 * rio_register_scan - enumeration/discovery method registration interface
1889 * @mport_id: mport device ID for which fabric scan routine has to be set
1890 *            (RIO_MPORT_ANY = set for all available mports)
1891 * @scan_ops: enumeration/discovery operations structure
1892 *
1893 * Registers enumeration/discovery operations with RapidIO subsystem and
1894 * attaches it to the specified mport device (or all available mports
1895 * if RIO_MPORT_ANY is specified).
1896 *
1897 * Returns error if the mport already has an enumerator attached to it.
1898 * In case of RIO_MPORT_ANY skips mports with valid scan routines (no error).
1899 */
1900int rio_register_scan(int mport_id, struct rio_scan *scan_ops)
1901{
1902	struct rio_mport *port;
1903	struct rio_scan_node *scan;
1904	int rc = 0;
1905
1906	pr_debug("RIO: %s for mport_id=%d\n", __func__, mport_id);
1907
1908	if ((mport_id != RIO_MPORT_ANY && mport_id >= RIO_MAX_MPORTS) ||
1909	    !scan_ops)
1910		return -EINVAL;
1911
1912	mutex_lock(&rio_mport_list_lock);
1913
1914	/*
1915	 * Check if there is another enumerator already registered for
1916	 * the same mport ID (including RIO_MPORT_ANY). Multiple enumerators
1917	 * for the same mport ID are not supported.
1918	 */
1919	list_for_each_entry(scan, &rio_scans, node) {
1920		if (scan->mport_id == mport_id) {
1921			rc = -EBUSY;
1922			goto err_out;
1923		}
1924	}
1925
1926	/*
1927	 * Allocate and initialize new scan registration node.
1928	 */
1929	scan = kzalloc(sizeof(*scan), GFP_KERNEL);
1930	if (!scan) {
1931		rc = -ENOMEM;
1932		goto err_out;
1933	}
1934
1935	scan->mport_id = mport_id;
1936	scan->ops = scan_ops;
1937
1938	/*
1939	 * Traverse the list of registered mports to attach this new scan.
1940	 *
1941	 * The new scan with matching mport ID overrides any previously attached
1942	 * scan assuming that old scan (if any) is the default one (based on the
1943	 * enumerator registration check above).
1944	 * If the new scan is the global one, it will be attached only to mports
1945	 * that do not have their own individual operations already attached.
1946	 */
1947	list_for_each_entry(port, &rio_mports, node) {
1948		if (port->id == mport_id) {
1949			port->nscan = scan_ops;
1950			break;
1951		} else if (mport_id == RIO_MPORT_ANY && !port->nscan)
1952			port->nscan = scan_ops;
1953	}
1954
1955	list_add_tail(&scan->node, &rio_scans);
1956
1957err_out:
1958	mutex_unlock(&rio_mport_list_lock);
1959
1960	return rc;
1961}
1962EXPORT_SYMBOL_GPL(rio_register_scan);
1963
1964/**
1965 * rio_unregister_scan - removes enumeration/discovery method from mport
1966 * @mport_id: mport device ID for which fabric scan routine has to be
1967 *            unregistered (RIO_MPORT_ANY = apply to all mports that use
1968 *            the specified scan_ops)
1969 * @scan_ops: enumeration/discovery operations structure
1970 *
1971 * Removes enumeration or discovery method assigned to the specified mport
1972 * device. If RIO_MPORT_ANY is specified, removes the specified operations from
1973 * all mports that have them attached.
1974 */
1975int rio_unregister_scan(int mport_id, struct rio_scan *scan_ops)
1976{
1977	struct rio_mport *port;
1978	struct rio_scan_node *scan;
1979
1980	pr_debug("RIO: %s for mport_id=%d\n", __func__, mport_id);
1981
1982	if (mport_id != RIO_MPORT_ANY && mport_id >= RIO_MAX_MPORTS)
1983		return -EINVAL;
1984
1985	mutex_lock(&rio_mport_list_lock);
1986
1987	list_for_each_entry(port, &rio_mports, node)
1988		if (port->id == mport_id ||
1989		    (mport_id == RIO_MPORT_ANY && port->nscan == scan_ops))
1990			port->nscan = NULL;
1991
1992	list_for_each_entry(scan, &rio_scans, node) {
1993		if (scan->mport_id == mport_id) {
1994			list_del(&scan->node);
1995			kfree(scan);
1996			break;
1997		}
1998	}
1999
2000	mutex_unlock(&rio_mport_list_lock);
2001
2002	return 0;
2003}
2004EXPORT_SYMBOL_GPL(rio_unregister_scan);
2005
2006/**
2007 * rio_mport_scan - execute enumeration/discovery on the specified mport
2008 * @mport_id: number (ID) of mport device
2009 */
2010int rio_mport_scan(int mport_id)
2011{
2012	struct rio_mport *port = NULL;
2013	int rc;
2014
2015	mutex_lock(&rio_mport_list_lock);
2016	list_for_each_entry(port, &rio_mports, node) {
2017		if (port->id == mport_id)
2018			goto found;
2019	}
2020	mutex_unlock(&rio_mport_list_lock);
2021	return -ENODEV;
2022found:
2023	if (!port->nscan) {
2024		mutex_unlock(&rio_mport_list_lock);
2025		return -EINVAL;
2026	}
2027
2028	if (!try_module_get(port->nscan->owner)) {
2029		mutex_unlock(&rio_mport_list_lock);
2030		return -ENODEV;
2031	}
2032
2033	mutex_unlock(&rio_mport_list_lock);
2034
2035	if (port->host_deviceid >= 0)
2036		rc = port->nscan->enumerate(port, 0);
2037	else
2038		rc = port->nscan->discover(port, RIO_SCAN_ENUM_NO_WAIT);
2039
2040	module_put(port->nscan->owner);
2041	return rc;
2042}
2043
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2044static struct workqueue_struct *rio_wq;
2045
2046struct rio_disc_work {
2047	struct work_struct	work;
2048	struct rio_mport	*mport;
2049};
2050
2051static void disc_work_handler(struct work_struct *_work)
2052{
2053	struct rio_disc_work *work;
2054
2055	work = container_of(_work, struct rio_disc_work, work);
2056	pr_debug("RIO: discovery work for mport %d %s\n",
2057		 work->mport->id, work->mport->name);
2058	if (try_module_get(work->mport->nscan->owner)) {
2059		work->mport->nscan->discover(work->mport, 0);
2060		module_put(work->mport->nscan->owner);
2061	}
2062}
2063
2064int rio_init_mports(void)
2065{
2066	struct rio_mport *port;
2067	struct rio_disc_work *work;
2068	int n = 0;
2069
2070	if (!next_portid)
2071		return -ENODEV;
2072
2073	/*
2074	 * First, run enumerations and check if we need to perform discovery
2075	 * on any of the registered mports.
2076	 */
2077	mutex_lock(&rio_mport_list_lock);
2078	list_for_each_entry(port, &rio_mports, node) {
2079		if (port->host_deviceid >= 0) {
2080			if (port->nscan && try_module_get(port->nscan->owner)) {
2081				port->nscan->enumerate(port, 0);
2082				module_put(port->nscan->owner);
2083			}
2084		} else
2085			n++;
2086	}
2087	mutex_unlock(&rio_mport_list_lock);
2088
2089	if (!n)
2090		goto no_disc;
2091
2092	/*
2093	 * If we have mports that require discovery schedule a discovery work
2094	 * for each of them. If the code below fails to allocate needed
2095	 * resources, exit without error to keep results of enumeration
2096	 * process (if any).
2097	 * TODO: Implement restart of discovery process for all or
2098	 * individual discovering mports.
2099	 */
2100	rio_wq = alloc_workqueue("riodisc", 0, 0);
2101	if (!rio_wq) {
2102		pr_err("RIO: unable allocate rio_wq\n");
2103		goto no_disc;
2104	}
2105
2106	work = kcalloc(n, sizeof *work, GFP_KERNEL);
2107	if (!work) {
 
2108		destroy_workqueue(rio_wq);
2109		goto no_disc;
2110	}
2111
2112	n = 0;
2113	mutex_lock(&rio_mport_list_lock);
2114	list_for_each_entry(port, &rio_mports, node) {
2115		if (port->host_deviceid < 0 && port->nscan) {
2116			work[n].mport = port;
2117			INIT_WORK(&work[n].work, disc_work_handler);
2118			queue_work(rio_wq, &work[n].work);
2119			n++;
2120		}
2121	}
2122
2123	flush_workqueue(rio_wq);
2124	mutex_unlock(&rio_mport_list_lock);
2125	pr_debug("RIO: destroy discovery workqueue\n");
2126	destroy_workqueue(rio_wq);
2127	kfree(work);
2128
2129no_disc:
 
 
2130	return 0;
2131}
2132EXPORT_SYMBOL_GPL(rio_init_mports);
2133
2134static int rio_get_hdid(int index)
2135{
2136	if (ids_num == 0 || ids_num <= index || index >= RIO_MAX_MPORTS)
2137		return -1;
2138
2139	return hdid[index];
2140}
2141
2142int rio_mport_initialize(struct rio_mport *mport)
2143{
2144	if (next_portid >= RIO_MAX_MPORTS) {
2145		pr_err("RIO: reached specified max number of mports\n");
2146		return -ENODEV;
2147	}
2148
2149	atomic_set(&mport->state, RIO_DEVICE_INITIALIZING);
2150	mport->id = next_portid++;
2151	mport->host_deviceid = rio_get_hdid(mport->id);
2152	mport->nscan = NULL;
2153	mutex_init(&mport->lock);
2154	mport->pwe_refcnt = 0;
2155	INIT_LIST_HEAD(&mport->pwrites);
2156
2157	return 0;
2158}
2159EXPORT_SYMBOL_GPL(rio_mport_initialize);
2160
2161int rio_register_mport(struct rio_mport *port)
2162{
2163	struct rio_scan_node *scan = NULL;
2164	int res = 0;
2165
2166	mutex_lock(&rio_mport_list_lock);
2167
2168	/*
2169	 * Check if there are any registered enumeration/discovery operations
2170	 * that have to be attached to the added mport.
2171	 */
2172	list_for_each_entry(scan, &rio_scans, node) {
2173		if (port->id == scan->mport_id ||
2174		    scan->mport_id == RIO_MPORT_ANY) {
2175			port->nscan = scan->ops;
2176			if (port->id == scan->mport_id)
2177				break;
2178		}
2179	}
2180
2181	list_add_tail(&port->node, &rio_mports);
2182	mutex_unlock(&rio_mport_list_lock);
2183
2184	dev_set_name(&port->dev, "rapidio%d", port->id);
2185	port->dev.class = &rio_mport_class;
2186	atomic_set(&port->state, RIO_DEVICE_RUNNING);
2187
2188	res = device_register(&port->dev);
2189	if (res) {
2190		dev_err(&port->dev, "RIO: mport%d registration failed ERR=%d\n",
2191			port->id, res);
2192		mutex_lock(&rio_mport_list_lock);
2193		list_del(&port->node);
2194		mutex_unlock(&rio_mport_list_lock);
2195		put_device(&port->dev);
2196	} else {
2197		dev_dbg(&port->dev, "RIO: registered mport%d\n", port->id);
2198	}
2199
2200	return res;
2201}
2202EXPORT_SYMBOL_GPL(rio_register_mport);
2203
2204static int rio_mport_cleanup_callback(struct device *dev, void *data)
2205{
2206	struct rio_dev *rdev = to_rio_dev(dev);
2207
2208	if (dev->bus == &rio_bus_type)
2209		rio_del_device(rdev, RIO_DEVICE_SHUTDOWN);
2210	return 0;
2211}
2212
2213static int rio_net_remove_children(struct rio_net *net)
2214{
2215	/*
2216	 * Unregister all RapidIO devices residing on this net (this will
2217	 * invoke notification of registered subsystem interfaces as well).
2218	 */
2219	device_for_each_child(&net->dev, NULL, rio_mport_cleanup_callback);
2220	return 0;
2221}
2222
2223int rio_unregister_mport(struct rio_mport *port)
2224{
2225	pr_debug("RIO: %s %s id=%d\n", __func__, port->name, port->id);
2226
2227	/* Transition mport to the SHUTDOWN state */
2228	if (atomic_cmpxchg(&port->state,
2229			   RIO_DEVICE_RUNNING,
2230			   RIO_DEVICE_SHUTDOWN) != RIO_DEVICE_RUNNING) {
2231		pr_err("RIO: %s unexpected state transition for mport %s\n",
2232			__func__, port->name);
2233	}
2234
2235	if (port->net && port->net->hport == port) {
2236		rio_net_remove_children(port->net);
2237		rio_free_net(port->net);
2238	}
2239
2240	/*
2241	 * Unregister all RapidIO devices attached to this mport (this will
2242	 * invoke notification of registered subsystem interfaces as well).
2243	 */
2244	mutex_lock(&rio_mport_list_lock);
2245	list_del(&port->node);
2246	mutex_unlock(&rio_mport_list_lock);
2247	device_unregister(&port->dev);
2248
2249	return 0;
2250}
2251EXPORT_SYMBOL_GPL(rio_unregister_mport);
v4.6
 
   1/*
   2 * RapidIO interconnect services
   3 * (RapidIO Interconnect Specification, http://www.rapidio.org)
   4 *
   5 * Copyright 2005 MontaVista Software, Inc.
   6 * Matt Porter <mporter@kernel.crashing.org>
   7 *
   8 * Copyright 2009 - 2013 Integrated Device Technology, Inc.
   9 * Alex Bounine <alexandre.bounine@idt.com>
  10 *
  11 * This program is free software; you can redistribute  it and/or modify it
  12 * under  the terms of  the GNU General  Public License as published by the
  13 * Free Software Foundation;  either version 2 of the  License, or (at your
  14 * option) any later version.
  15 */
  16
  17#include <linux/types.h>
  18#include <linux/kernel.h>
  19
  20#include <linux/delay.h>
  21#include <linux/init.h>
  22#include <linux/rio.h>
  23#include <linux/rio_drv.h>
  24#include <linux/rio_ids.h>
  25#include <linux/rio_regs.h>
  26#include <linux/module.h>
  27#include <linux/spinlock.h>
  28#include <linux/slab.h>
  29#include <linux/interrupt.h>
  30
  31#include "rio.h"
  32
  33/*
  34 * struct rio_pwrite - RIO portwrite event
  35 * @node:    Node in list of doorbell events
  36 * @pwcback: Doorbell event callback
  37 * @context: Handler specific context to pass on event
  38 */
  39struct rio_pwrite {
  40	struct list_head node;
  41
  42	int (*pwcback)(struct rio_mport *mport, void *context,
  43		       union rio_pw_msg *msg, int step);
  44	void *context;
  45};
  46
  47MODULE_DESCRIPTION("RapidIO Subsystem Core");
  48MODULE_AUTHOR("Matt Porter <mporter@kernel.crashing.org>");
  49MODULE_AUTHOR("Alexandre Bounine <alexandre.bounine@idt.com>");
  50MODULE_LICENSE("GPL");
  51
  52static int hdid[RIO_MAX_MPORTS];
  53static int ids_num;
  54module_param_array(hdid, int, &ids_num, 0);
  55MODULE_PARM_DESC(hdid,
  56	"Destination ID assignment to local RapidIO controllers");
  57
  58static LIST_HEAD(rio_devices);
  59static LIST_HEAD(rio_nets);
  60static DEFINE_SPINLOCK(rio_global_list_lock);
  61
  62static LIST_HEAD(rio_mports);
  63static LIST_HEAD(rio_scans);
  64static DEFINE_MUTEX(rio_mport_list_lock);
  65static unsigned char next_portid;
  66static DEFINE_SPINLOCK(rio_mmap_lock);
  67
  68/**
  69 * rio_local_get_device_id - Get the base/extended device id for a port
  70 * @port: RIO master port from which to get the deviceid
  71 *
  72 * Reads the base/extended device id from the local device
  73 * implementing the master port. Returns the 8/16-bit device
  74 * id.
  75 */
  76u16 rio_local_get_device_id(struct rio_mport *port)
  77{
  78	u32 result;
  79
  80	rio_local_read_config_32(port, RIO_DID_CSR, &result);
  81
  82	return (RIO_GET_DID(port->sys_size, result));
  83}
 
  84
  85/**
  86 * rio_query_mport - Query mport device attributes
  87 * @port: mport device to query
  88 * @mport_attr: mport attributes data structure
  89 *
  90 * Returns attributes of specified mport through the
  91 * pointer to attributes data structure.
  92 */
  93int rio_query_mport(struct rio_mport *port,
  94		    struct rio_mport_attr *mport_attr)
  95{
  96	if (!port->ops->query_mport)
  97		return -ENODATA;
  98	return port->ops->query_mport(port, mport_attr);
  99}
 100EXPORT_SYMBOL(rio_query_mport);
 101
 102/**
 103 * rio_alloc_net- Allocate and initialize a new RIO network data structure
 104 * @mport: Master port associated with the RIO network
 105 *
 106 * Allocates a RIO network structure, initializes per-network
 107 * list heads, and adds the associated master port to the
 108 * network list of associated master ports. Returns a
 109 * RIO network pointer on success or %NULL on failure.
 110 */
 111struct rio_net *rio_alloc_net(struct rio_mport *mport)
 112{
 113	struct rio_net *net;
 114
 115	net = kzalloc(sizeof(struct rio_net), GFP_KERNEL);
 116	if (net) {
 117		INIT_LIST_HEAD(&net->node);
 118		INIT_LIST_HEAD(&net->devices);
 119		INIT_LIST_HEAD(&net->switches);
 120		INIT_LIST_HEAD(&net->mports);
 121		mport->net = net;
 122	}
 123	return net;
 124}
 125EXPORT_SYMBOL_GPL(rio_alloc_net);
 126
 127int rio_add_net(struct rio_net *net)
 128{
 129	int err;
 130
 131	err = device_register(&net->dev);
 132	if (err)
 133		return err;
 134	spin_lock(&rio_global_list_lock);
 135	list_add_tail(&net->node, &rio_nets);
 136	spin_unlock(&rio_global_list_lock);
 137
 138	return 0;
 139}
 140EXPORT_SYMBOL_GPL(rio_add_net);
 141
 142void rio_free_net(struct rio_net *net)
 143{
 144	spin_lock(&rio_global_list_lock);
 145	if (!list_empty(&net->node))
 146		list_del(&net->node);
 147	spin_unlock(&rio_global_list_lock);
 148	if (net->release)
 149		net->release(net);
 150	device_unregister(&net->dev);
 151}
 152EXPORT_SYMBOL_GPL(rio_free_net);
 153
 154/**
 155 * rio_local_set_device_id - Set the base/extended device id for a port
 156 * @port: RIO master port
 157 * @did: Device ID value to be written
 158 *
 159 * Writes the base/extended device id from a device.
 160 */
 161void rio_local_set_device_id(struct rio_mport *port, u16 did)
 162{
 163	rio_local_write_config_32(port, RIO_DID_CSR,
 164				  RIO_SET_DID(port->sys_size, did));
 165}
 166EXPORT_SYMBOL_GPL(rio_local_set_device_id);
 167
 168/**
 169 * rio_add_device- Adds a RIO device to the device model
 170 * @rdev: RIO device
 171 *
 172 * Adds the RIO device to the global device list and adds the RIO
 173 * device to the RIO device list.  Creates the generic sysfs nodes
 174 * for an RIO device.
 175 */
 176int rio_add_device(struct rio_dev *rdev)
 177{
 178	int err;
 179
 180	atomic_set(&rdev->state, RIO_DEVICE_RUNNING);
 181	err = device_register(&rdev->dev);
 182	if (err)
 183		return err;
 184
 185	spin_lock(&rio_global_list_lock);
 186	list_add_tail(&rdev->global_list, &rio_devices);
 187	if (rdev->net) {
 188		list_add_tail(&rdev->net_list, &rdev->net->devices);
 189		if (rdev->pef & RIO_PEF_SWITCH)
 190			list_add_tail(&rdev->rswitch->node,
 191				      &rdev->net->switches);
 192	}
 193	spin_unlock(&rio_global_list_lock);
 194
 195	rio_create_sysfs_dev_files(rdev);
 196
 197	return 0;
 198}
 199EXPORT_SYMBOL_GPL(rio_add_device);
 200
 201/*
 202 * rio_del_device - removes a RIO device from the device model
 203 * @rdev: RIO device
 204 * @state: device state to set during removal process
 205 *
 206 * Removes the RIO device to the kernel device list and subsystem's device list.
 207 * Clears sysfs entries for the removed device.
 208 */
 209void rio_del_device(struct rio_dev *rdev, enum rio_device_state state)
 210{
 211	pr_debug("RIO: %s: removing %s\n", __func__, rio_name(rdev));
 212	atomic_set(&rdev->state, state);
 213	spin_lock(&rio_global_list_lock);
 214	list_del(&rdev->global_list);
 215	if (rdev->net) {
 216		list_del(&rdev->net_list);
 217		if (rdev->pef & RIO_PEF_SWITCH) {
 218			list_del(&rdev->rswitch->node);
 219			kfree(rdev->rswitch->route_table);
 220		}
 221	}
 222	spin_unlock(&rio_global_list_lock);
 223	rio_remove_sysfs_dev_files(rdev);
 224	device_unregister(&rdev->dev);
 225}
 226EXPORT_SYMBOL_GPL(rio_del_device);
 227
 228/**
 229 * rio_request_inb_mbox - request inbound mailbox service
 230 * @mport: RIO master port from which to allocate the mailbox resource
 231 * @dev_id: Device specific pointer to pass on event
 232 * @mbox: Mailbox number to claim
 233 * @entries: Number of entries in inbound mailbox queue
 234 * @minb: Callback to execute when inbound message is received
 235 *
 236 * Requests ownership of an inbound mailbox resource and binds
 237 * a callback function to the resource. Returns %0 on success.
 238 */
 239int rio_request_inb_mbox(struct rio_mport *mport,
 240			 void *dev_id,
 241			 int mbox,
 242			 int entries,
 243			 void (*minb) (struct rio_mport * mport, void *dev_id, int mbox,
 244				       int slot))
 245{
 246	int rc = -ENOSYS;
 247	struct resource *res;
 248
 249	if (mport->ops->open_inb_mbox == NULL)
 250		goto out;
 251
 252	res = kzalloc(sizeof(struct resource), GFP_KERNEL);
 253
 254	if (res) {
 255		rio_init_mbox_res(res, mbox, mbox);
 256
 257		/* Make sure this mailbox isn't in use */
 258		if ((rc =
 259		     request_resource(&mport->riores[RIO_INB_MBOX_RESOURCE],
 260				      res)) < 0) {
 261			kfree(res);
 262			goto out;
 263		}
 264
 265		mport->inb_msg[mbox].res = res;
 266
 267		/* Hook the inbound message callback */
 268		mport->inb_msg[mbox].mcback = minb;
 269
 270		rc = mport->ops->open_inb_mbox(mport, dev_id, mbox, entries);
 
 
 
 
 
 
 271	} else
 272		rc = -ENOMEM;
 273
 274      out:
 275	return rc;
 276}
 
 277
 278/**
 279 * rio_release_inb_mbox - release inbound mailbox message service
 280 * @mport: RIO master port from which to release the mailbox resource
 281 * @mbox: Mailbox number to release
 282 *
 283 * Releases ownership of an inbound mailbox resource. Returns 0
 284 * if the request has been satisfied.
 285 */
 286int rio_release_inb_mbox(struct rio_mport *mport, int mbox)
 287{
 288	if (mport->ops->close_inb_mbox) {
 289		mport->ops->close_inb_mbox(mport, mbox);
 
 
 
 
 
 
 
 
 
 290
 291		/* Release the mailbox resource */
 292		return release_resource(mport->inb_msg[mbox].res);
 293	} else
 294		return -ENOSYS;
 295}
 
 296
 297/**
 298 * rio_request_outb_mbox - request outbound mailbox service
 299 * @mport: RIO master port from which to allocate the mailbox resource
 300 * @dev_id: Device specific pointer to pass on event
 301 * @mbox: Mailbox number to claim
 302 * @entries: Number of entries in outbound mailbox queue
 303 * @moutb: Callback to execute when outbound message is sent
 304 *
 305 * Requests ownership of an outbound mailbox resource and binds
 306 * a callback function to the resource. Returns 0 on success.
 307 */
 308int rio_request_outb_mbox(struct rio_mport *mport,
 309			  void *dev_id,
 310			  int mbox,
 311			  int entries,
 312			  void (*moutb) (struct rio_mport * mport, void *dev_id, int mbox, int slot))
 313{
 314	int rc = -ENOSYS;
 315	struct resource *res;
 316
 317	if (mport->ops->open_outb_mbox == NULL)
 318		goto out;
 319
 320	res = kzalloc(sizeof(struct resource), GFP_KERNEL);
 321
 322	if (res) {
 323		rio_init_mbox_res(res, mbox, mbox);
 324
 325		/* Make sure this outbound mailbox isn't in use */
 326		if ((rc =
 327		     request_resource(&mport->riores[RIO_OUTB_MBOX_RESOURCE],
 328				      res)) < 0) {
 329			kfree(res);
 330			goto out;
 331		}
 332
 333		mport->outb_msg[mbox].res = res;
 334
 335		/* Hook the inbound message callback */
 336		mport->outb_msg[mbox].mcback = moutb;
 337
 338		rc = mport->ops->open_outb_mbox(mport, dev_id, mbox, entries);
 
 
 
 
 
 
 339	} else
 340		rc = -ENOMEM;
 341
 342      out:
 343	return rc;
 344}
 
 345
 346/**
 347 * rio_release_outb_mbox - release outbound mailbox message service
 348 * @mport: RIO master port from which to release the mailbox resource
 349 * @mbox: Mailbox number to release
 350 *
 351 * Releases ownership of an inbound mailbox resource. Returns 0
 352 * if the request has been satisfied.
 353 */
 354int rio_release_outb_mbox(struct rio_mport *mport, int mbox)
 355{
 356	if (mport->ops->close_outb_mbox) {
 357		mport->ops->close_outb_mbox(mport, mbox);
 
 
 358
 359		/* Release the mailbox resource */
 360		return release_resource(mport->outb_msg[mbox].res);
 361	} else
 362		return -ENOSYS;
 
 
 
 
 
 
 
 363}
 
 364
 365/**
 366 * rio_setup_inb_dbell - bind inbound doorbell callback
 367 * @mport: RIO master port to bind the doorbell callback
 368 * @dev_id: Device specific pointer to pass on event
 369 * @res: Doorbell message resource
 370 * @dinb: Callback to execute when doorbell is received
 371 *
 372 * Adds a doorbell resource/callback pair into a port's
 373 * doorbell event list. Returns 0 if the request has been
 374 * satisfied.
 375 */
 376static int
 377rio_setup_inb_dbell(struct rio_mport *mport, void *dev_id, struct resource *res,
 378		    void (*dinb) (struct rio_mport * mport, void *dev_id, u16 src, u16 dst,
 379				  u16 info))
 380{
 381	int rc = 0;
 382	struct rio_dbell *dbell;
 383
 384	if (!(dbell = kmalloc(sizeof(struct rio_dbell), GFP_KERNEL))) {
 385		rc = -ENOMEM;
 386		goto out;
 387	}
 388
 389	dbell->res = res;
 390	dbell->dinb = dinb;
 391	dbell->dev_id = dev_id;
 392
 393	mutex_lock(&mport->lock);
 394	list_add_tail(&dbell->node, &mport->dbells);
 395	mutex_unlock(&mport->lock);
 396
 397      out:
 398	return rc;
 399}
 400
 401/**
 402 * rio_request_inb_dbell - request inbound doorbell message service
 403 * @mport: RIO master port from which to allocate the doorbell resource
 404 * @dev_id: Device specific pointer to pass on event
 405 * @start: Doorbell info range start
 406 * @end: Doorbell info range end
 407 * @dinb: Callback to execute when doorbell is received
 408 *
 409 * Requests ownership of an inbound doorbell resource and binds
 410 * a callback function to the resource. Returns 0 if the request
 411 * has been satisfied.
 412 */
 413int rio_request_inb_dbell(struct rio_mport *mport,
 414			  void *dev_id,
 415			  u16 start,
 416			  u16 end,
 417			  void (*dinb) (struct rio_mport * mport, void *dev_id, u16 src,
 418					u16 dst, u16 info))
 419{
 420	int rc = 0;
 421
 422	struct resource *res = kzalloc(sizeof(struct resource), GFP_KERNEL);
 423
 424	if (res) {
 425		rio_init_dbell_res(res, start, end);
 426
 427		/* Make sure these doorbells aren't in use */
 428		if ((rc =
 429		     request_resource(&mport->riores[RIO_DOORBELL_RESOURCE],
 430				      res)) < 0) {
 431			kfree(res);
 432			goto out;
 433		}
 434
 435		/* Hook the doorbell callback */
 436		rc = rio_setup_inb_dbell(mport, dev_id, res, dinb);
 437	} else
 438		rc = -ENOMEM;
 439
 440      out:
 441	return rc;
 442}
 
 443
 444/**
 445 * rio_release_inb_dbell - release inbound doorbell message service
 446 * @mport: RIO master port from which to release the doorbell resource
 447 * @start: Doorbell info range start
 448 * @end: Doorbell info range end
 449 *
 450 * Releases ownership of an inbound doorbell resource and removes
 451 * callback from the doorbell event list. Returns 0 if the request
 452 * has been satisfied.
 453 */
 454int rio_release_inb_dbell(struct rio_mport *mport, u16 start, u16 end)
 455{
 456	int rc = 0, found = 0;
 457	struct rio_dbell *dbell;
 458
 459	mutex_lock(&mport->lock);
 460	list_for_each_entry(dbell, &mport->dbells, node) {
 461		if ((dbell->res->start == start) && (dbell->res->end == end)) {
 462			list_del(&dbell->node);
 463			found = 1;
 464			break;
 465		}
 466	}
 467	mutex_unlock(&mport->lock);
 468
 469	/* If we can't find an exact match, fail */
 470	if (!found) {
 471		rc = -EINVAL;
 472		goto out;
 473	}
 474
 475	/* Release the doorbell resource */
 476	rc = release_resource(dbell->res);
 477
 478	/* Free the doorbell event */
 479	kfree(dbell);
 480
 481      out:
 482	return rc;
 483}
 
 484
 485/**
 486 * rio_request_outb_dbell - request outbound doorbell message range
 487 * @rdev: RIO device from which to allocate the doorbell resource
 488 * @start: Doorbell message range start
 489 * @end: Doorbell message range end
 490 *
 491 * Requests ownership of a doorbell message range. Returns a resource
 492 * if the request has been satisfied or %NULL on failure.
 493 */
 494struct resource *rio_request_outb_dbell(struct rio_dev *rdev, u16 start,
 495					u16 end)
 496{
 497	struct resource *res = kzalloc(sizeof(struct resource), GFP_KERNEL);
 498
 499	if (res) {
 500		rio_init_dbell_res(res, start, end);
 501
 502		/* Make sure these doorbells aren't in use */
 503		if (request_resource(&rdev->riores[RIO_DOORBELL_RESOURCE], res)
 504		    < 0) {
 505			kfree(res);
 506			res = NULL;
 507		}
 508	}
 509
 510	return res;
 511}
 
 512
 513/**
 514 * rio_release_outb_dbell - release outbound doorbell message range
 515 * @rdev: RIO device from which to release the doorbell resource
 516 * @res: Doorbell resource to be freed
 517 *
 518 * Releases ownership of a doorbell message range. Returns 0 if the
 519 * request has been satisfied.
 520 */
 521int rio_release_outb_dbell(struct rio_dev *rdev, struct resource *res)
 522{
 523	int rc = release_resource(res);
 524
 525	kfree(res);
 526
 527	return rc;
 528}
 
 529
 530/**
 531 * rio_add_mport_pw_handler - add port-write message handler into the list
 532 *                            of mport specific pw handlers
 533 * @mport:   RIO master port to bind the portwrite callback
 534 * @context: Handler specific context to pass on event
 535 * @pwcback: Callback to execute when portwrite is received
 536 *
 537 * Returns 0 if the request has been satisfied.
 538 */
 539int rio_add_mport_pw_handler(struct rio_mport *mport, void *context,
 540			     int (*pwcback)(struct rio_mport *mport,
 541			     void *context, union rio_pw_msg *msg, int step))
 542{
 543	int rc = 0;
 544	struct rio_pwrite *pwrite;
 545
 546	pwrite = kzalloc(sizeof(struct rio_pwrite), GFP_KERNEL);
 547	if (!pwrite) {
 548		rc = -ENOMEM;
 549		goto out;
 550	}
 551
 552	pwrite->pwcback = pwcback;
 553	pwrite->context = context;
 554	mutex_lock(&mport->lock);
 555	list_add_tail(&pwrite->node, &mport->pwrites);
 556	mutex_unlock(&mport->lock);
 557out:
 558	return rc;
 559}
 560EXPORT_SYMBOL_GPL(rio_add_mport_pw_handler);
 561
 562/**
 563 * rio_del_mport_pw_handler - remove port-write message handler from the list
 564 *                            of mport specific pw handlers
 565 * @mport:   RIO master port to bind the portwrite callback
 566 * @context: Registered handler specific context to pass on event
 567 * @pwcback: Registered callback function
 568 *
 569 * Returns 0 if the request has been satisfied.
 570 */
 571int rio_del_mport_pw_handler(struct rio_mport *mport, void *context,
 572			     int (*pwcback)(struct rio_mport *mport,
 573			     void *context, union rio_pw_msg *msg, int step))
 574{
 575	int rc = -EINVAL;
 576	struct rio_pwrite *pwrite;
 577
 578	mutex_lock(&mport->lock);
 579	list_for_each_entry(pwrite, &mport->pwrites, node) {
 580		if (pwrite->pwcback == pwcback && pwrite->context == context) {
 581			list_del(&pwrite->node);
 582			kfree(pwrite);
 583			rc = 0;
 584			break;
 585		}
 586	}
 587	mutex_unlock(&mport->lock);
 588
 589	return rc;
 590}
 591EXPORT_SYMBOL_GPL(rio_del_mport_pw_handler);
 592
 593/**
 594 * rio_request_inb_pwrite - request inbound port-write message service for
 595 *                          specific RapidIO device
 596 * @rdev: RIO device to which register inbound port-write callback routine
 597 * @pwcback: Callback routine to execute when port-write is received
 598 *
 599 * Binds a port-write callback function to the RapidIO device.
 600 * Returns 0 if the request has been satisfied.
 601 */
 602int rio_request_inb_pwrite(struct rio_dev *rdev,
 603	int (*pwcback)(struct rio_dev *rdev, union rio_pw_msg *msg, int step))
 604{
 605	int rc = 0;
 606
 607	spin_lock(&rio_global_list_lock);
 608	if (rdev->pwcback != NULL)
 609		rc = -ENOMEM;
 610	else
 611		rdev->pwcback = pwcback;
 612
 613	spin_unlock(&rio_global_list_lock);
 614	return rc;
 615}
 616EXPORT_SYMBOL_GPL(rio_request_inb_pwrite);
 617
 618/**
 619 * rio_release_inb_pwrite - release inbound port-write message service
 620 *                          associated with specific RapidIO device
 621 * @rdev: RIO device which registered for inbound port-write callback
 622 *
 623 * Removes callback from the rio_dev structure. Returns 0 if the request
 624 * has been satisfied.
 625 */
 626int rio_release_inb_pwrite(struct rio_dev *rdev)
 627{
 628	int rc = -ENOMEM;
 629
 630	spin_lock(&rio_global_list_lock);
 631	if (rdev->pwcback) {
 632		rdev->pwcback = NULL;
 633		rc = 0;
 634	}
 635
 636	spin_unlock(&rio_global_list_lock);
 637	return rc;
 638}
 639EXPORT_SYMBOL_GPL(rio_release_inb_pwrite);
 640
 641/**
 642 * rio_pw_enable - Enables/disables port-write handling by a master port
 643 * @mport: Master port associated with port-write handling
 644 * @enable:  1=enable,  0=disable
 645 */
 646void rio_pw_enable(struct rio_mport *mport, int enable)
 647{
 648	if (mport->ops->pwenable) {
 649		mutex_lock(&mport->lock);
 650
 651		if ((enable && ++mport->pwe_refcnt == 1) ||
 652		    (!enable && mport->pwe_refcnt && --mport->pwe_refcnt == 0))
 653			mport->ops->pwenable(mport, enable);
 654		mutex_unlock(&mport->lock);
 655	}
 656}
 657EXPORT_SYMBOL_GPL(rio_pw_enable);
 658
 659/**
 660 * rio_map_inb_region -- Map inbound memory region.
 661 * @mport: Master port.
 662 * @local: physical address of memory region to be mapped
 663 * @rbase: RIO base address assigned to this window
 664 * @size: Size of the memory region
 665 * @rflags: Flags for mapping.
 666 *
 667 * Return: 0 -- Success.
 668 *
 669 * This function will create the mapping from RIO space to local memory.
 670 */
 671int rio_map_inb_region(struct rio_mport *mport, dma_addr_t local,
 672			u64 rbase, u32 size, u32 rflags)
 673{
 674	int rc = 0;
 675	unsigned long flags;
 676
 677	if (!mport->ops->map_inb)
 678		return -1;
 679	spin_lock_irqsave(&rio_mmap_lock, flags);
 680	rc = mport->ops->map_inb(mport, local, rbase, size, rflags);
 681	spin_unlock_irqrestore(&rio_mmap_lock, flags);
 682	return rc;
 683}
 684EXPORT_SYMBOL_GPL(rio_map_inb_region);
 685
 686/**
 687 * rio_unmap_inb_region -- Unmap the inbound memory region
 688 * @mport: Master port
 689 * @lstart: physical address of memory region to be unmapped
 690 */
 691void rio_unmap_inb_region(struct rio_mport *mport, dma_addr_t lstart)
 692{
 693	unsigned long flags;
 694	if (!mport->ops->unmap_inb)
 695		return;
 696	spin_lock_irqsave(&rio_mmap_lock, flags);
 697	mport->ops->unmap_inb(mport, lstart);
 698	spin_unlock_irqrestore(&rio_mmap_lock, flags);
 699}
 700EXPORT_SYMBOL_GPL(rio_unmap_inb_region);
 701
 702/**
 703 * rio_map_outb_region -- Map outbound memory region.
 704 * @mport: Master port.
 705 * @destid: destination id window points to
 706 * @rbase: RIO base address window translates to
 707 * @size: Size of the memory region
 708 * @rflags: Flags for mapping.
 709 * @local: physical address of memory region mapped
 710 *
 711 * Return: 0 -- Success.
 712 *
 713 * This function will create the mapping from RIO space to local memory.
 714 */
 715int rio_map_outb_region(struct rio_mport *mport, u16 destid, u64 rbase,
 716			u32 size, u32 rflags, dma_addr_t *local)
 717{
 718	int rc = 0;
 719	unsigned long flags;
 720
 721	if (!mport->ops->map_outb)
 722		return -ENODEV;
 723
 724	spin_lock_irqsave(&rio_mmap_lock, flags);
 725	rc = mport->ops->map_outb(mport, destid, rbase, size,
 726		rflags, local);
 727	spin_unlock_irqrestore(&rio_mmap_lock, flags);
 728
 729	return rc;
 730}
 731EXPORT_SYMBOL_GPL(rio_map_outb_region);
 732
 733/**
 734 * rio_unmap_inb_region -- Unmap the inbound memory region
 735 * @mport: Master port
 736 * @destid: destination id mapping points to
 737 * @rstart: RIO base address window translates to
 738 */
 739void rio_unmap_outb_region(struct rio_mport *mport, u16 destid, u64 rstart)
 740{
 741	unsigned long flags;
 742
 743	if (!mport->ops->unmap_outb)
 744		return;
 745
 746	spin_lock_irqsave(&rio_mmap_lock, flags);
 747	mport->ops->unmap_outb(mport, destid, rstart);
 748	spin_unlock_irqrestore(&rio_mmap_lock, flags);
 749}
 750EXPORT_SYMBOL_GPL(rio_unmap_outb_region);
 751
 752/**
 753 * rio_mport_get_physefb - Helper function that returns register offset
 754 *                      for Physical Layer Extended Features Block.
 755 * @port: Master port to issue transaction
 756 * @local: Indicate a local master port or remote device access
 757 * @destid: Destination ID of the device
 758 * @hopcount: Number of switch hops to the device
 
 759 */
 760u32
 761rio_mport_get_physefb(struct rio_mport *port, int local,
 762		      u16 destid, u8 hopcount)
 763{
 764	u32 ext_ftr_ptr;
 765	u32 ftr_header;
 766
 767	ext_ftr_ptr = rio_mport_get_efb(port, local, destid, hopcount, 0);
 768
 769	while (ext_ftr_ptr)  {
 770		if (local)
 771			rio_local_read_config_32(port, ext_ftr_ptr,
 772						 &ftr_header);
 773		else
 774			rio_mport_read_config_32(port, destid, hopcount,
 775						 ext_ftr_ptr, &ftr_header);
 776
 777		ftr_header = RIO_GET_BLOCK_ID(ftr_header);
 778		switch (ftr_header) {
 779
 780		case RIO_EFB_SER_EP_ID_V13P:
 781		case RIO_EFB_SER_EP_REC_ID_V13P:
 782		case RIO_EFB_SER_EP_FREE_ID_V13P:
 783		case RIO_EFB_SER_EP_ID:
 784		case RIO_EFB_SER_EP_REC_ID:
 785		case RIO_EFB_SER_EP_FREE_ID:
 786		case RIO_EFB_SER_EP_FREC_ID:
 
 
 
 
 
 787
 
 
 
 
 
 788			return ext_ftr_ptr;
 789
 790		default:
 791			break;
 792		}
 793
 794		ext_ftr_ptr = rio_mport_get_efb(port, local, destid,
 795						hopcount, ext_ftr_ptr);
 796	}
 797
 798	return ext_ftr_ptr;
 799}
 800EXPORT_SYMBOL_GPL(rio_mport_get_physefb);
 801
 802/**
 803 * rio_get_comptag - Begin or continue searching for a RIO device by component tag
 804 * @comp_tag: RIO component tag to match
 805 * @from: Previous RIO device found in search, or %NULL for new search
 806 *
 807 * Iterates through the list of known RIO devices. If a RIO device is
 808 * found with a matching @comp_tag, a pointer to its device
 809 * structure is returned. Otherwise, %NULL is returned. A new search
 810 * is initiated by passing %NULL to the @from argument. Otherwise, if
 811 * @from is not %NULL, searches continue from next device on the global
 812 * list.
 813 */
 814struct rio_dev *rio_get_comptag(u32 comp_tag, struct rio_dev *from)
 815{
 816	struct list_head *n;
 817	struct rio_dev *rdev;
 818
 819	spin_lock(&rio_global_list_lock);
 820	n = from ? from->global_list.next : rio_devices.next;
 821
 822	while (n && (n != &rio_devices)) {
 823		rdev = rio_dev_g(n);
 824		if (rdev->comp_tag == comp_tag)
 825			goto exit;
 826		n = n->next;
 827	}
 828	rdev = NULL;
 829exit:
 830	spin_unlock(&rio_global_list_lock);
 831	return rdev;
 832}
 833EXPORT_SYMBOL_GPL(rio_get_comptag);
 834
 835/**
 836 * rio_set_port_lockout - Sets/clears LOCKOUT bit (RIO EM 1.3) for a switch port.
 837 * @rdev: Pointer to RIO device control structure
 838 * @pnum: Switch port number to set LOCKOUT bit
 839 * @lock: Operation : set (=1) or clear (=0)
 840 */
 841int rio_set_port_lockout(struct rio_dev *rdev, u32 pnum, int lock)
 842{
 843	u32 regval;
 844
 845	rio_read_config_32(rdev,
 846				 rdev->phys_efptr + RIO_PORT_N_CTL_CSR(pnum),
 847				 &regval);
 848	if (lock)
 849		regval |= RIO_PORT_N_CTL_LOCKOUT;
 850	else
 851		regval &= ~RIO_PORT_N_CTL_LOCKOUT;
 852
 853	rio_write_config_32(rdev,
 854				  rdev->phys_efptr + RIO_PORT_N_CTL_CSR(pnum),
 855				  regval);
 856	return 0;
 857}
 858EXPORT_SYMBOL_GPL(rio_set_port_lockout);
 859
 860/**
 861 * rio_enable_rx_tx_port - enable input receiver and output transmitter of
 862 * given port
 863 * @port: Master port associated with the RIO network
 864 * @local: local=1 select local port otherwise a far device is reached
 865 * @destid: Destination ID of the device to check host bit
 866 * @hopcount: Number of hops to reach the target
 867 * @port_num: Port (-number on switch) to enable on a far end device
 868 *
 869 * Returns 0 or 1 from on General Control Command and Status Register
 870 * (EXT_PTR+0x3C)
 871 */
 872int rio_enable_rx_tx_port(struct rio_mport *port,
 873			  int local, u16 destid,
 874			  u8 hopcount, u8 port_num)
 875{
 876#ifdef CONFIG_RAPIDIO_ENABLE_RX_TX_PORTS
 877	u32 regval;
 878	u32 ext_ftr_ptr;
 
 879
 880	/*
 881	* enable rx input tx output port
 882	*/
 883	pr_debug("rio_enable_rx_tx_port(local = %d, destid = %d, hopcount = "
 884		 "%d, port_num = %d)\n", local, destid, hopcount, port_num);
 885
 886	ext_ftr_ptr = rio_mport_get_physefb(port, local, destid, hopcount);
 
 887
 888	if (local) {
 889		rio_local_read_config_32(port, ext_ftr_ptr +
 890				RIO_PORT_N_CTL_CSR(0),
 891				&regval);
 892	} else {
 893		if (rio_mport_read_config_32(port, destid, hopcount,
 894		ext_ftr_ptr + RIO_PORT_N_CTL_CSR(port_num), &regval) < 0)
 
 895			return -EIO;
 896	}
 897
 898	if (regval & RIO_PORT_N_CTL_P_TYP_SER) {
 899		/* serial */
 900		regval = regval | RIO_PORT_N_CTL_EN_RX_SER
 901				| RIO_PORT_N_CTL_EN_TX_SER;
 902	} else {
 903		/* parallel */
 904		regval = regval | RIO_PORT_N_CTL_EN_RX_PAR
 905				| RIO_PORT_N_CTL_EN_TX_PAR;
 906	}
 907
 908	if (local) {
 909		rio_local_write_config_32(port, ext_ftr_ptr +
 910					  RIO_PORT_N_CTL_CSR(0), regval);
 911	} else {
 912		if (rio_mport_write_config_32(port, destid, hopcount,
 913		    ext_ftr_ptr + RIO_PORT_N_CTL_CSR(port_num), regval) < 0)
 
 914			return -EIO;
 915	}
 916#endif
 917	return 0;
 918}
 919EXPORT_SYMBOL_GPL(rio_enable_rx_tx_port);
 920
 921
 922/**
 923 * rio_chk_dev_route - Validate route to the specified device.
 924 * @rdev:  RIO device failed to respond
 925 * @nrdev: Last active device on the route to rdev
 926 * @npnum: nrdev's port number on the route to rdev
 927 *
 928 * Follows a route to the specified RIO device to determine the last available
 929 * device (and corresponding RIO port) on the route.
 930 */
 931static int
 932rio_chk_dev_route(struct rio_dev *rdev, struct rio_dev **nrdev, int *npnum)
 933{
 934	u32 result;
 935	int p_port, rc = -EIO;
 936	struct rio_dev *prev = NULL;
 937
 938	/* Find switch with failed RIO link */
 939	while (rdev->prev && (rdev->prev->pef & RIO_PEF_SWITCH)) {
 940		if (!rio_read_config_32(rdev->prev, RIO_DEV_ID_CAR, &result)) {
 941			prev = rdev->prev;
 942			break;
 943		}
 944		rdev = rdev->prev;
 945	}
 946
 947	if (prev == NULL)
 948		goto err_out;
 949
 950	p_port = prev->rswitch->route_table[rdev->destid];
 951
 952	if (p_port != RIO_INVALID_ROUTE) {
 953		pr_debug("RIO: link failed on [%s]-P%d\n",
 954			 rio_name(prev), p_port);
 955		*nrdev = prev;
 956		*npnum = p_port;
 957		rc = 0;
 958	} else
 959		pr_debug("RIO: failed to trace route to %s\n", rio_name(rdev));
 960err_out:
 961	return rc;
 962}
 963
 964/**
 965 * rio_mport_chk_dev_access - Validate access to the specified device.
 966 * @mport: Master port to send transactions
 967 * @destid: Device destination ID in network
 968 * @hopcount: Number of hops into the network
 969 */
 970int
 971rio_mport_chk_dev_access(struct rio_mport *mport, u16 destid, u8 hopcount)
 972{
 973	int i = 0;
 974	u32 tmp;
 975
 976	while (rio_mport_read_config_32(mport, destid, hopcount,
 977					RIO_DEV_ID_CAR, &tmp)) {
 978		i++;
 979		if (i == RIO_MAX_CHK_RETRY)
 980			return -EIO;
 981		mdelay(1);
 982	}
 983
 984	return 0;
 985}
 986EXPORT_SYMBOL_GPL(rio_mport_chk_dev_access);
 987
 988/**
 989 * rio_chk_dev_access - Validate access to the specified device.
 990 * @rdev: Pointer to RIO device control structure
 991 */
 992static int rio_chk_dev_access(struct rio_dev *rdev)
 993{
 994	return rio_mport_chk_dev_access(rdev->net->hport,
 995					rdev->destid, rdev->hopcount);
 996}
 997
 998/**
 999 * rio_get_input_status - Sends a Link-Request/Input-Status control symbol and
1000 *                        returns link-response (if requested).
1001 * @rdev: RIO devive to issue Input-status command
1002 * @pnum: Device port number to issue the command
1003 * @lnkresp: Response from a link partner
1004 */
1005static int
1006rio_get_input_status(struct rio_dev *rdev, int pnum, u32 *lnkresp)
1007{
1008	u32 regval;
1009	int checkcount;
1010
1011	if (lnkresp) {
1012		/* Read from link maintenance response register
1013		 * to clear valid bit */
1014		rio_read_config_32(rdev,
1015			rdev->phys_efptr + RIO_PORT_N_MNT_RSP_CSR(pnum),
1016			&regval);
1017		udelay(50);
1018	}
1019
1020	/* Issue Input-status command */
1021	rio_write_config_32(rdev,
1022		rdev->phys_efptr + RIO_PORT_N_MNT_REQ_CSR(pnum),
1023		RIO_MNT_REQ_CMD_IS);
1024
1025	/* Exit if the response is not expected */
1026	if (lnkresp == NULL)
1027		return 0;
1028
1029	checkcount = 3;
1030	while (checkcount--) {
1031		udelay(50);
1032		rio_read_config_32(rdev,
1033			rdev->phys_efptr + RIO_PORT_N_MNT_RSP_CSR(pnum),
1034			&regval);
1035		if (regval & RIO_PORT_N_MNT_RSP_RVAL) {
1036			*lnkresp = regval;
1037			return 0;
1038		}
1039	}
1040
1041	return -EIO;
1042}
1043
1044/**
1045 * rio_clr_err_stopped - Clears port Error-stopped states.
1046 * @rdev: Pointer to RIO device control structure
1047 * @pnum: Switch port number to clear errors
1048 * @err_status: port error status (if 0 reads register from device)
 
 
 
 
 
 
 
1049 */
1050static int rio_clr_err_stopped(struct rio_dev *rdev, u32 pnum, u32 err_status)
1051{
1052	struct rio_dev *nextdev = rdev->rswitch->nextdev[pnum];
1053	u32 regval;
1054	u32 far_ackid, far_linkstat, near_ackid;
1055
1056	if (err_status == 0)
1057		rio_read_config_32(rdev,
1058			rdev->phys_efptr + RIO_PORT_N_ERR_STS_CSR(pnum),
1059			&err_status);
1060
1061	if (err_status & RIO_PORT_N_ERR_STS_PW_OUT_ES) {
1062		pr_debug("RIO_EM: servicing Output Error-Stopped state\n");
1063		/*
1064		 * Send a Link-Request/Input-Status control symbol
1065		 */
1066		if (rio_get_input_status(rdev, pnum, &regval)) {
1067			pr_debug("RIO_EM: Input-status response timeout\n");
1068			goto rd_err;
1069		}
1070
1071		pr_debug("RIO_EM: SP%d Input-status response=0x%08x\n",
1072			 pnum, regval);
1073		far_ackid = (regval & RIO_PORT_N_MNT_RSP_ASTAT) >> 5;
1074		far_linkstat = regval & RIO_PORT_N_MNT_RSP_LSTAT;
1075		rio_read_config_32(rdev,
1076			rdev->phys_efptr + RIO_PORT_N_ACK_STS_CSR(pnum),
1077			&regval);
1078		pr_debug("RIO_EM: SP%d_ACK_STS_CSR=0x%08x\n", pnum, regval);
1079		near_ackid = (regval & RIO_PORT_N_ACK_INBOUND) >> 24;
1080		pr_debug("RIO_EM: SP%d far_ackID=0x%02x far_linkstat=0x%02x" \
1081			 " near_ackID=0x%02x\n",
1082			pnum, far_ackid, far_linkstat, near_ackid);
1083
1084		/*
1085		 * If required, synchronize ackIDs of near and
1086		 * far sides.
1087		 */
1088		if ((far_ackid != ((regval & RIO_PORT_N_ACK_OUTSTAND) >> 8)) ||
1089		    (far_ackid != (regval & RIO_PORT_N_ACK_OUTBOUND))) {
1090			/* Align near outstanding/outbound ackIDs with
1091			 * far inbound.
1092			 */
1093			rio_write_config_32(rdev,
1094				rdev->phys_efptr + RIO_PORT_N_ACK_STS_CSR(pnum),
1095				(near_ackid << 24) |
1096					(far_ackid << 8) | far_ackid);
1097			/* Align far outstanding/outbound ackIDs with
1098			 * near inbound.
1099			 */
1100			far_ackid++;
1101			if (nextdev)
1102				rio_write_config_32(nextdev,
1103					nextdev->phys_efptr +
1104					RIO_PORT_N_ACK_STS_CSR(RIO_GET_PORT_NUM(nextdev->swpinfo)),
1105					(far_ackid << 24) |
1106					(near_ackid << 8) | near_ackid);
1107			else
1108				pr_debug("RIO_EM: Invalid nextdev pointer (NULL)\n");
 
 
1109		}
1110rd_err:
1111		rio_read_config_32(rdev,
1112			rdev->phys_efptr + RIO_PORT_N_ERR_STS_CSR(pnum),
1113			&err_status);
1114		pr_debug("RIO_EM: SP%d_ERR_STS_CSR=0x%08x\n", pnum, err_status);
1115	}
1116
1117	if ((err_status & RIO_PORT_N_ERR_STS_PW_INP_ES) && nextdev) {
1118		pr_debug("RIO_EM: servicing Input Error-Stopped state\n");
1119		rio_get_input_status(nextdev,
1120				     RIO_GET_PORT_NUM(nextdev->swpinfo), NULL);
1121		udelay(50);
1122
1123		rio_read_config_32(rdev,
1124			rdev->phys_efptr + RIO_PORT_N_ERR_STS_CSR(pnum),
1125			&err_status);
1126		pr_debug("RIO_EM: SP%d_ERR_STS_CSR=0x%08x\n", pnum, err_status);
1127	}
1128
1129	return (err_status & (RIO_PORT_N_ERR_STS_PW_OUT_ES |
1130			      RIO_PORT_N_ERR_STS_PW_INP_ES)) ? 1 : 0;
1131}
1132
1133/**
1134 * rio_inb_pwrite_handler - inbound port-write message handler
1135 * @mport:  mport device associated with port-write
1136 * @pw_msg: pointer to inbound port-write message
1137 *
1138 * Processes an inbound port-write message. Returns 0 if the request
1139 * has been satisfied.
1140 */
1141int rio_inb_pwrite_handler(struct rio_mport *mport, union rio_pw_msg *pw_msg)
1142{
1143	struct rio_dev *rdev;
1144	u32 err_status, em_perrdet, em_ltlerrdet;
1145	int rc, portnum;
1146	struct rio_pwrite *pwrite;
1147
1148#ifdef DEBUG_PW
1149	{
1150		u32 i;
1151
1152		pr_debug("%s: PW to mport_%d:\n", __func__, mport->id);
1153		for (i = 0; i < RIO_PW_MSG_SIZE / sizeof(u32); i = i + 4) {
1154			pr_debug("0x%02x: %08x %08x %08x %08x\n",
1155				i * 4, pw_msg->raw[i], pw_msg->raw[i + 1],
1156				pw_msg->raw[i + 2], pw_msg->raw[i + 3]);
1157		}
1158	}
1159#endif
1160
1161	rdev = rio_get_comptag((pw_msg->em.comptag & RIO_CTAG_UDEVID), NULL);
1162	if (rdev) {
1163		pr_debug("RIO: Port-Write message from %s\n", rio_name(rdev));
1164	} else {
1165		pr_debug("RIO: %s No matching device for CTag 0x%08x\n",
1166			__func__, pw_msg->em.comptag);
1167	}
1168
1169	/* Call a device-specific handler (if it is registered for the device).
1170	 * This may be the service for endpoints that send device-specific
1171	 * port-write messages. End-point messages expected to be handled
1172	 * completely by EP specific device driver.
1173	 * For switches rc==0 signals that no standard processing required.
1174	 */
1175	if (rdev && rdev->pwcback) {
1176		rc = rdev->pwcback(rdev, pw_msg, 0);
1177		if (rc == 0)
1178			return 0;
1179	}
1180
1181	mutex_lock(&mport->lock);
1182	list_for_each_entry(pwrite, &mport->pwrites, node)
1183		pwrite->pwcback(mport, pwrite->context, pw_msg, 0);
1184	mutex_unlock(&mport->lock);
1185
1186	if (!rdev)
1187		return 0;
1188
1189	/*
1190	 * FIXME: The code below stays as it was before for now until we decide
1191	 * how to do default PW handling in combination with per-mport callbacks
1192	 */
1193
1194	portnum = pw_msg->em.is_port & 0xFF;
1195
1196	/* Check if device and route to it are functional:
1197	 * Sometimes devices may send PW message(s) just before being
1198	 * powered down (or link being lost).
1199	 */
1200	if (rio_chk_dev_access(rdev)) {
1201		pr_debug("RIO: device access failed - get link partner\n");
1202		/* Scan route to the device and identify failed link.
1203		 * This will replace device and port reported in PW message.
1204		 * PW message should not be used after this point.
1205		 */
1206		if (rio_chk_dev_route(rdev, &rdev, &portnum)) {
1207			pr_err("RIO: Route trace for %s failed\n",
1208				rio_name(rdev));
1209			return -EIO;
1210		}
1211		pw_msg = NULL;
1212	}
1213
1214	/* For End-point devices processing stops here */
1215	if (!(rdev->pef & RIO_PEF_SWITCH))
1216		return 0;
1217
1218	if (rdev->phys_efptr == 0) {
1219		pr_err("RIO_PW: Bad switch initialization for %s\n",
1220			rio_name(rdev));
1221		return 0;
1222	}
1223
1224	/*
1225	 * Process the port-write notification from switch
1226	 */
1227	if (rdev->rswitch->ops && rdev->rswitch->ops->em_handle)
1228		rdev->rswitch->ops->em_handle(rdev, portnum);
1229
1230	rio_read_config_32(rdev,
1231			rdev->phys_efptr + RIO_PORT_N_ERR_STS_CSR(portnum),
1232			&err_status);
1233	pr_debug("RIO_PW: SP%d_ERR_STS_CSR=0x%08x\n", portnum, err_status);
1234
1235	if (err_status & RIO_PORT_N_ERR_STS_PORT_OK) {
1236
1237		if (!(rdev->rswitch->port_ok & (1 << portnum))) {
1238			rdev->rswitch->port_ok |= (1 << portnum);
1239			rio_set_port_lockout(rdev, portnum, 0);
1240			/* Schedule Insertion Service */
1241			pr_debug("RIO_PW: Device Insertion on [%s]-P%d\n",
1242			       rio_name(rdev), portnum);
1243		}
1244
1245		/* Clear error-stopped states (if reported).
1246		 * Depending on the link partner state, two attempts
1247		 * may be needed for successful recovery.
1248		 */
1249		if (err_status & (RIO_PORT_N_ERR_STS_PW_OUT_ES |
1250				  RIO_PORT_N_ERR_STS_PW_INP_ES)) {
1251			if (rio_clr_err_stopped(rdev, portnum, err_status))
1252				rio_clr_err_stopped(rdev, portnum, 0);
1253		}
1254	}  else { /* if (err_status & RIO_PORT_N_ERR_STS_PORT_UNINIT) */
1255
1256		if (rdev->rswitch->port_ok & (1 << portnum)) {
1257			rdev->rswitch->port_ok &= ~(1 << portnum);
1258			rio_set_port_lockout(rdev, portnum, 1);
1259
 
1260			rio_write_config_32(rdev,
1261				rdev->phys_efptr +
1262					RIO_PORT_N_ACK_STS_CSR(portnum),
1263				RIO_PORT_N_ACK_CLEAR);
 
 
 
 
 
 
 
 
1264
1265			/* Schedule Extraction Service */
1266			pr_debug("RIO_PW: Device Extraction on [%s]-P%d\n",
1267			       rio_name(rdev), portnum);
1268		}
1269	}
1270
1271	rio_read_config_32(rdev,
1272		rdev->em_efptr + RIO_EM_PN_ERR_DETECT(portnum), &em_perrdet);
1273	if (em_perrdet) {
1274		pr_debug("RIO_PW: RIO_EM_P%d_ERR_DETECT=0x%08x\n",
1275			 portnum, em_perrdet);
1276		/* Clear EM Port N Error Detect CSR */
1277		rio_write_config_32(rdev,
1278			rdev->em_efptr + RIO_EM_PN_ERR_DETECT(portnum), 0);
1279	}
1280
1281	rio_read_config_32(rdev,
1282		rdev->em_efptr + RIO_EM_LTL_ERR_DETECT, &em_ltlerrdet);
1283	if (em_ltlerrdet) {
1284		pr_debug("RIO_PW: RIO_EM_LTL_ERR_DETECT=0x%08x\n",
1285			 em_ltlerrdet);
1286		/* Clear EM L/T Layer Error Detect CSR */
1287		rio_write_config_32(rdev,
1288			rdev->em_efptr + RIO_EM_LTL_ERR_DETECT, 0);
1289	}
1290
1291	/* Clear remaining error bits and Port-Write Pending bit */
1292	rio_write_config_32(rdev,
1293			rdev->phys_efptr + RIO_PORT_N_ERR_STS_CSR(portnum),
1294			err_status);
1295
1296	return 0;
1297}
1298EXPORT_SYMBOL_GPL(rio_inb_pwrite_handler);
1299
1300/**
1301 * rio_mport_get_efb - get pointer to next extended features block
1302 * @port: Master port to issue transaction
1303 * @local: Indicate a local master port or remote device access
1304 * @destid: Destination ID of the device
1305 * @hopcount: Number of switch hops to the device
1306 * @from: Offset of  current Extended Feature block header (if 0 starts
1307 * from	ExtFeaturePtr)
1308 */
1309u32
1310rio_mport_get_efb(struct rio_mport *port, int local, u16 destid,
1311		      u8 hopcount, u32 from)
1312{
1313	u32 reg_val;
1314
1315	if (from == 0) {
1316		if (local)
1317			rio_local_read_config_32(port, RIO_ASM_INFO_CAR,
1318						 &reg_val);
1319		else
1320			rio_mport_read_config_32(port, destid, hopcount,
1321						 RIO_ASM_INFO_CAR, &reg_val);
1322		return reg_val & RIO_EXT_FTR_PTR_MASK;
1323	} else {
1324		if (local)
1325			rio_local_read_config_32(port, from, &reg_val);
1326		else
1327			rio_mport_read_config_32(port, destid, hopcount,
1328						 from, &reg_val);
1329		return RIO_GET_BLOCK_ID(reg_val);
1330	}
1331}
1332EXPORT_SYMBOL_GPL(rio_mport_get_efb);
1333
1334/**
1335 * rio_mport_get_feature - query for devices' extended features
1336 * @port: Master port to issue transaction
1337 * @local: Indicate a local master port or remote device access
1338 * @destid: Destination ID of the device
1339 * @hopcount: Number of switch hops to the device
1340 * @ftr: Extended feature code
1341 *
1342 * Tell if a device supports a given RapidIO capability.
1343 * Returns the offset of the requested extended feature
1344 * block within the device's RIO configuration space or
1345 * 0 in case the device does not support it.  Possible
1346 * values for @ftr:
1347 *
1348 * %RIO_EFB_PAR_EP_ID		LP/LVDS EP Devices
1349 *
1350 * %RIO_EFB_PAR_EP_REC_ID	LP/LVDS EP Recovery Devices
1351 *
1352 * %RIO_EFB_PAR_EP_FREE_ID	LP/LVDS EP Free Devices
1353 *
1354 * %RIO_EFB_SER_EP_ID		LP/Serial EP Devices
1355 *
1356 * %RIO_EFB_SER_EP_REC_ID	LP/Serial EP Recovery Devices
1357 *
1358 * %RIO_EFB_SER_EP_FREE_ID	LP/Serial EP Free Devices
1359 */
1360u32
1361rio_mport_get_feature(struct rio_mport * port, int local, u16 destid,
1362		      u8 hopcount, int ftr)
1363{
1364	u32 asm_info, ext_ftr_ptr, ftr_header;
1365
1366	if (local)
1367		rio_local_read_config_32(port, RIO_ASM_INFO_CAR, &asm_info);
1368	else
1369		rio_mport_read_config_32(port, destid, hopcount,
1370					 RIO_ASM_INFO_CAR, &asm_info);
1371
1372	ext_ftr_ptr = asm_info & RIO_EXT_FTR_PTR_MASK;
1373
1374	while (ext_ftr_ptr) {
1375		if (local)
1376			rio_local_read_config_32(port, ext_ftr_ptr,
1377						 &ftr_header);
1378		else
1379			rio_mport_read_config_32(port, destid, hopcount,
1380						 ext_ftr_ptr, &ftr_header);
1381		if (RIO_GET_BLOCK_ID(ftr_header) == ftr)
1382			return ext_ftr_ptr;
1383		if (!(ext_ftr_ptr = RIO_GET_BLOCK_PTR(ftr_header)))
 
 
1384			break;
1385	}
1386
1387	return 0;
1388}
1389EXPORT_SYMBOL_GPL(rio_mport_get_feature);
1390
1391/**
1392 * rio_get_asm - Begin or continue searching for a RIO device by vid/did/asm_vid/asm_did
1393 * @vid: RIO vid to match or %RIO_ANY_ID to match all vids
1394 * @did: RIO did to match or %RIO_ANY_ID to match all dids
1395 * @asm_vid: RIO asm_vid to match or %RIO_ANY_ID to match all asm_vids
1396 * @asm_did: RIO asm_did to match or %RIO_ANY_ID to match all asm_dids
1397 * @from: Previous RIO device found in search, or %NULL for new search
1398 *
1399 * Iterates through the list of known RIO devices. If a RIO device is
1400 * found with a matching @vid, @did, @asm_vid, @asm_did, the reference
1401 * count to the device is incrememted and a pointer to its device
1402 * structure is returned. Otherwise, %NULL is returned. A new search
1403 * is initiated by passing %NULL to the @from argument. Otherwise, if
1404 * @from is not %NULL, searches continue from next device on the global
1405 * list. The reference count for @from is always decremented if it is
1406 * not %NULL.
1407 */
1408struct rio_dev *rio_get_asm(u16 vid, u16 did,
1409			    u16 asm_vid, u16 asm_did, struct rio_dev *from)
1410{
1411	struct list_head *n;
1412	struct rio_dev *rdev;
1413
1414	WARN_ON(in_interrupt());
1415	spin_lock(&rio_global_list_lock);
1416	n = from ? from->global_list.next : rio_devices.next;
1417
1418	while (n && (n != &rio_devices)) {
1419		rdev = rio_dev_g(n);
1420		if ((vid == RIO_ANY_ID || rdev->vid == vid) &&
1421		    (did == RIO_ANY_ID || rdev->did == did) &&
1422		    (asm_vid == RIO_ANY_ID || rdev->asm_vid == asm_vid) &&
1423		    (asm_did == RIO_ANY_ID || rdev->asm_did == asm_did))
1424			goto exit;
1425		n = n->next;
1426	}
1427	rdev = NULL;
1428      exit:
1429	rio_dev_put(from);
1430	rdev = rio_dev_get(rdev);
1431	spin_unlock(&rio_global_list_lock);
1432	return rdev;
1433}
1434
1435/**
1436 * rio_get_device - Begin or continue searching for a RIO device by vid/did
1437 * @vid: RIO vid to match or %RIO_ANY_ID to match all vids
1438 * @did: RIO did to match or %RIO_ANY_ID to match all dids
1439 * @from: Previous RIO device found in search, or %NULL for new search
1440 *
1441 * Iterates through the list of known RIO devices. If a RIO device is
1442 * found with a matching @vid and @did, the reference count to the
1443 * device is incrememted and a pointer to its device structure is returned.
1444 * Otherwise, %NULL is returned. A new search is initiated by passing %NULL
1445 * to the @from argument. Otherwise, if @from is not %NULL, searches
1446 * continue from next device on the global list. The reference count for
1447 * @from is always decremented if it is not %NULL.
1448 */
1449struct rio_dev *rio_get_device(u16 vid, u16 did, struct rio_dev *from)
1450{
1451	return rio_get_asm(vid, did, RIO_ANY_ID, RIO_ANY_ID, from);
1452}
1453
1454/**
1455 * rio_std_route_add_entry - Add switch route table entry using standard
1456 *   registers defined in RIO specification rev.1.3
1457 * @mport: Master port to issue transaction
1458 * @destid: Destination ID of the device
1459 * @hopcount: Number of switch hops to the device
1460 * @table: routing table ID (global or port-specific)
1461 * @route_destid: destID entry in the RT
1462 * @route_port: destination port for specified destID
1463 */
1464static int
1465rio_std_route_add_entry(struct rio_mport *mport, u16 destid, u8 hopcount,
1466			u16 table, u16 route_destid, u8 route_port)
1467{
1468	if (table == RIO_GLOBAL_TABLE) {
1469		rio_mport_write_config_32(mport, destid, hopcount,
1470				RIO_STD_RTE_CONF_DESTID_SEL_CSR,
1471				(u32)route_destid);
1472		rio_mport_write_config_32(mport, destid, hopcount,
1473				RIO_STD_RTE_CONF_PORT_SEL_CSR,
1474				(u32)route_port);
1475	}
1476
1477	udelay(10);
1478	return 0;
1479}
1480
1481/**
1482 * rio_std_route_get_entry - Read switch route table entry (port number)
1483 *   associated with specified destID using standard registers defined in RIO
1484 *   specification rev.1.3
1485 * @mport: Master port to issue transaction
1486 * @destid: Destination ID of the device
1487 * @hopcount: Number of switch hops to the device
1488 * @table: routing table ID (global or port-specific)
1489 * @route_destid: destID entry in the RT
1490 * @route_port: returned destination port for specified destID
1491 */
1492static int
1493rio_std_route_get_entry(struct rio_mport *mport, u16 destid, u8 hopcount,
1494			u16 table, u16 route_destid, u8 *route_port)
1495{
1496	u32 result;
1497
1498	if (table == RIO_GLOBAL_TABLE) {
1499		rio_mport_write_config_32(mport, destid, hopcount,
1500				RIO_STD_RTE_CONF_DESTID_SEL_CSR, route_destid);
1501		rio_mport_read_config_32(mport, destid, hopcount,
1502				RIO_STD_RTE_CONF_PORT_SEL_CSR, &result);
1503
1504		*route_port = (u8)result;
1505	}
1506
1507	return 0;
1508}
1509
1510/**
1511 * rio_std_route_clr_table - Clear swotch route table using standard registers
1512 *   defined in RIO specification rev.1.3.
1513 * @mport: Master port to issue transaction
1514 * @destid: Destination ID of the device
1515 * @hopcount: Number of switch hops to the device
1516 * @table: routing table ID (global or port-specific)
1517 */
1518static int
1519rio_std_route_clr_table(struct rio_mport *mport, u16 destid, u8 hopcount,
1520			u16 table)
1521{
1522	u32 max_destid = 0xff;
1523	u32 i, pef, id_inc = 1, ext_cfg = 0;
1524	u32 port_sel = RIO_INVALID_ROUTE;
1525
1526	if (table == RIO_GLOBAL_TABLE) {
1527		rio_mport_read_config_32(mport, destid, hopcount,
1528					 RIO_PEF_CAR, &pef);
1529
1530		if (mport->sys_size) {
1531			rio_mport_read_config_32(mport, destid, hopcount,
1532						 RIO_SWITCH_RT_LIMIT,
1533						 &max_destid);
1534			max_destid &= RIO_RT_MAX_DESTID;
1535		}
1536
1537		if (pef & RIO_PEF_EXT_RT) {
1538			ext_cfg = 0x80000000;
1539			id_inc = 4;
1540			port_sel = (RIO_INVALID_ROUTE << 24) |
1541				   (RIO_INVALID_ROUTE << 16) |
1542				   (RIO_INVALID_ROUTE << 8) |
1543				   RIO_INVALID_ROUTE;
1544		}
1545
1546		for (i = 0; i <= max_destid;) {
1547			rio_mport_write_config_32(mport, destid, hopcount,
1548					RIO_STD_RTE_CONF_DESTID_SEL_CSR,
1549					ext_cfg | i);
1550			rio_mport_write_config_32(mport, destid, hopcount,
1551					RIO_STD_RTE_CONF_PORT_SEL_CSR,
1552					port_sel);
1553			i += id_inc;
1554		}
1555	}
1556
1557	udelay(10);
1558	return 0;
1559}
1560
1561/**
1562 * rio_lock_device - Acquires host device lock for specified device
1563 * @port: Master port to send transaction
1564 * @destid: Destination ID for device/switch
1565 * @hopcount: Hopcount to reach switch
1566 * @wait_ms: Max wait time in msec (0 = no timeout)
1567 *
1568 * Attepts to acquire host device lock for specified device
1569 * Returns 0 if device lock acquired or EINVAL if timeout expires.
1570 */
1571int rio_lock_device(struct rio_mport *port, u16 destid,
1572		    u8 hopcount, int wait_ms)
1573{
1574	u32 result;
1575	int tcnt = 0;
1576
1577	/* Attempt to acquire device lock */
1578	rio_mport_write_config_32(port, destid, hopcount,
1579				  RIO_HOST_DID_LOCK_CSR, port->host_deviceid);
1580	rio_mport_read_config_32(port, destid, hopcount,
1581				 RIO_HOST_DID_LOCK_CSR, &result);
1582
1583	while (result != port->host_deviceid) {
1584		if (wait_ms != 0 && tcnt == wait_ms) {
1585			pr_debug("RIO: timeout when locking device %x:%x\n",
1586				destid, hopcount);
1587			return -EINVAL;
1588		}
1589
1590		/* Delay a bit */
1591		mdelay(1);
1592		tcnt++;
1593		/* Try to acquire device lock again */
1594		rio_mport_write_config_32(port, destid,
1595			hopcount,
1596			RIO_HOST_DID_LOCK_CSR,
1597			port->host_deviceid);
1598		rio_mport_read_config_32(port, destid,
1599			hopcount,
1600			RIO_HOST_DID_LOCK_CSR, &result);
1601	}
1602
1603	return 0;
1604}
1605EXPORT_SYMBOL_GPL(rio_lock_device);
1606
1607/**
1608 * rio_unlock_device - Releases host device lock for specified device
1609 * @port: Master port to send transaction
1610 * @destid: Destination ID for device/switch
1611 * @hopcount: Hopcount to reach switch
1612 *
1613 * Returns 0 if device lock released or EINVAL if fails.
1614 */
1615int rio_unlock_device(struct rio_mport *port, u16 destid, u8 hopcount)
1616{
1617	u32 result;
1618
1619	/* Release device lock */
1620	rio_mport_write_config_32(port, destid,
1621				  hopcount,
1622				  RIO_HOST_DID_LOCK_CSR,
1623				  port->host_deviceid);
1624	rio_mport_read_config_32(port, destid, hopcount,
1625		RIO_HOST_DID_LOCK_CSR, &result);
1626	if ((result & 0xffff) != 0xffff) {
1627		pr_debug("RIO: badness when releasing device lock %x:%x\n",
1628			 destid, hopcount);
1629		return -EINVAL;
1630	}
1631
1632	return 0;
1633}
1634EXPORT_SYMBOL_GPL(rio_unlock_device);
1635
1636/**
1637 * rio_route_add_entry- Add a route entry to a switch routing table
1638 * @rdev: RIO device
1639 * @table: Routing table ID
1640 * @route_destid: Destination ID to be routed
1641 * @route_port: Port number to be routed
1642 * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock)
1643 *
1644 * If available calls the switch specific add_entry() method to add a route
1645 * entry into a switch routing table. Otherwise uses standard RT update method
1646 * as defined by RapidIO specification. A specific routing table can be selected
1647 * using the @table argument if a switch has per port routing tables or
1648 * the standard (or global) table may be used by passing
1649 * %RIO_GLOBAL_TABLE in @table.
1650 *
1651 * Returns %0 on success or %-EINVAL on failure.
1652 */
1653int rio_route_add_entry(struct rio_dev *rdev,
1654			u16 table, u16 route_destid, u8 route_port, int lock)
1655{
1656	int rc = -EINVAL;
1657	struct rio_switch_ops *ops = rdev->rswitch->ops;
1658
1659	if (lock) {
1660		rc = rio_lock_device(rdev->net->hport, rdev->destid,
1661				     rdev->hopcount, 1000);
1662		if (rc)
1663			return rc;
1664	}
1665
1666	spin_lock(&rdev->rswitch->lock);
1667
1668	if (ops == NULL || ops->add_entry == NULL) {
1669		rc = rio_std_route_add_entry(rdev->net->hport, rdev->destid,
1670					     rdev->hopcount, table,
1671					     route_destid, route_port);
1672	} else if (try_module_get(ops->owner)) {
1673		rc = ops->add_entry(rdev->net->hport, rdev->destid,
1674				    rdev->hopcount, table, route_destid,
1675				    route_port);
1676		module_put(ops->owner);
1677	}
1678
1679	spin_unlock(&rdev->rswitch->lock);
1680
1681	if (lock)
1682		rio_unlock_device(rdev->net->hport, rdev->destid,
1683				  rdev->hopcount);
1684
1685	return rc;
1686}
1687EXPORT_SYMBOL_GPL(rio_route_add_entry);
1688
1689/**
1690 * rio_route_get_entry- Read an entry from a switch routing table
1691 * @rdev: RIO device
1692 * @table: Routing table ID
1693 * @route_destid: Destination ID to be routed
1694 * @route_port: Pointer to read port number into
1695 * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock)
1696 *
1697 * If available calls the switch specific get_entry() method to fetch a route
1698 * entry from a switch routing table. Otherwise uses standard RT read method
1699 * as defined by RapidIO specification. A specific routing table can be selected
1700 * using the @table argument if a switch has per port routing tables or
1701 * the standard (or global) table may be used by passing
1702 * %RIO_GLOBAL_TABLE in @table.
1703 *
1704 * Returns %0 on success or %-EINVAL on failure.
1705 */
1706int rio_route_get_entry(struct rio_dev *rdev, u16 table,
1707			u16 route_destid, u8 *route_port, int lock)
1708{
1709	int rc = -EINVAL;
1710	struct rio_switch_ops *ops = rdev->rswitch->ops;
1711
1712	if (lock) {
1713		rc = rio_lock_device(rdev->net->hport, rdev->destid,
1714				     rdev->hopcount, 1000);
1715		if (rc)
1716			return rc;
1717	}
1718
1719	spin_lock(&rdev->rswitch->lock);
1720
1721	if (ops == NULL || ops->get_entry == NULL) {
1722		rc = rio_std_route_get_entry(rdev->net->hport, rdev->destid,
1723					     rdev->hopcount, table,
1724					     route_destid, route_port);
1725	} else if (try_module_get(ops->owner)) {
1726		rc = ops->get_entry(rdev->net->hport, rdev->destid,
1727				    rdev->hopcount, table, route_destid,
1728				    route_port);
1729		module_put(ops->owner);
1730	}
1731
1732	spin_unlock(&rdev->rswitch->lock);
1733
1734	if (lock)
1735		rio_unlock_device(rdev->net->hport, rdev->destid,
1736				  rdev->hopcount);
1737	return rc;
1738}
1739EXPORT_SYMBOL_GPL(rio_route_get_entry);
1740
1741/**
1742 * rio_route_clr_table - Clear a switch routing table
1743 * @rdev: RIO device
1744 * @table: Routing table ID
1745 * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock)
1746 *
1747 * If available calls the switch specific clr_table() method to clear a switch
1748 * routing table. Otherwise uses standard RT write method as defined by RapidIO
1749 * specification. A specific routing table can be selected using the @table
1750 * argument if a switch has per port routing tables or the standard (or global)
1751 * table may be used by passing %RIO_GLOBAL_TABLE in @table.
1752 *
1753 * Returns %0 on success or %-EINVAL on failure.
1754 */
1755int rio_route_clr_table(struct rio_dev *rdev, u16 table, int lock)
1756{
1757	int rc = -EINVAL;
1758	struct rio_switch_ops *ops = rdev->rswitch->ops;
1759
1760	if (lock) {
1761		rc = rio_lock_device(rdev->net->hport, rdev->destid,
1762				     rdev->hopcount, 1000);
1763		if (rc)
1764			return rc;
1765	}
1766
1767	spin_lock(&rdev->rswitch->lock);
1768
1769	if (ops == NULL || ops->clr_table == NULL) {
1770		rc = rio_std_route_clr_table(rdev->net->hport, rdev->destid,
1771					     rdev->hopcount, table);
1772	} else if (try_module_get(ops->owner)) {
1773		rc = ops->clr_table(rdev->net->hport, rdev->destid,
1774				    rdev->hopcount, table);
1775
1776		module_put(ops->owner);
1777	}
1778
1779	spin_unlock(&rdev->rswitch->lock);
1780
1781	if (lock)
1782		rio_unlock_device(rdev->net->hport, rdev->destid,
1783				  rdev->hopcount);
1784
1785	return rc;
1786}
1787EXPORT_SYMBOL_GPL(rio_route_clr_table);
1788
1789#ifdef CONFIG_RAPIDIO_DMA_ENGINE
1790
1791static bool rio_chan_filter(struct dma_chan *chan, void *arg)
1792{
1793	struct rio_mport *mport = arg;
1794
1795	/* Check that DMA device belongs to the right MPORT */
1796	return mport == container_of(chan->device, struct rio_mport, dma);
1797}
1798
1799/**
1800 * rio_request_mport_dma - request RapidIO capable DMA channel associated
1801 *   with specified local RapidIO mport device.
1802 * @mport: RIO mport to perform DMA data transfers
1803 *
1804 * Returns pointer to allocated DMA channel or NULL if failed.
1805 */
1806struct dma_chan *rio_request_mport_dma(struct rio_mport *mport)
1807{
1808	dma_cap_mask_t mask;
1809
1810	dma_cap_zero(mask);
1811	dma_cap_set(DMA_SLAVE, mask);
1812	return dma_request_channel(mask, rio_chan_filter, mport);
1813}
1814EXPORT_SYMBOL_GPL(rio_request_mport_dma);
1815
1816/**
1817 * rio_request_dma - request RapidIO capable DMA channel that supports
1818 *   specified target RapidIO device.
1819 * @rdev: RIO device associated with DMA transfer
1820 *
1821 * Returns pointer to allocated DMA channel or NULL if failed.
1822 */
1823struct dma_chan *rio_request_dma(struct rio_dev *rdev)
1824{
1825	return rio_request_mport_dma(rdev->net->hport);
1826}
1827EXPORT_SYMBOL_GPL(rio_request_dma);
1828
1829/**
1830 * rio_release_dma - release specified DMA channel
1831 * @dchan: DMA channel to release
1832 */
1833void rio_release_dma(struct dma_chan *dchan)
1834{
1835	dma_release_channel(dchan);
1836}
1837EXPORT_SYMBOL_GPL(rio_release_dma);
1838
1839/**
1840 * rio_dma_prep_xfer - RapidIO specific wrapper
1841 *   for device_prep_slave_sg callback defined by DMAENGINE.
1842 * @dchan: DMA channel to configure
1843 * @destid: target RapidIO device destination ID
1844 * @data: RIO specific data descriptor
1845 * @direction: DMA data transfer direction (TO or FROM the device)
1846 * @flags: dmaengine defined flags
1847 *
1848 * Initializes RapidIO capable DMA channel for the specified data transfer.
1849 * Uses DMA channel private extension to pass information related to remote
1850 * target RIO device.
1851 * Returns pointer to DMA transaction descriptor or NULL if failed.
 
 
1852 */
1853struct dma_async_tx_descriptor *rio_dma_prep_xfer(struct dma_chan *dchan,
1854	u16 destid, struct rio_dma_data *data,
1855	enum dma_transfer_direction direction, unsigned long flags)
1856{
1857	struct rio_dma_ext rio_ext;
1858
1859	if (dchan->device->device_prep_slave_sg == NULL) {
1860		pr_err("%s: prep_rio_sg == NULL\n", __func__);
1861		return NULL;
1862	}
1863
1864	rio_ext.destid = destid;
1865	rio_ext.rio_addr_u = data->rio_addr_u;
1866	rio_ext.rio_addr = data->rio_addr;
1867	rio_ext.wr_type = data->wr_type;
1868
1869	return dmaengine_prep_rio_sg(dchan, data->sg, data->sg_len,
1870				     direction, flags, &rio_ext);
1871}
1872EXPORT_SYMBOL_GPL(rio_dma_prep_xfer);
1873
1874/**
1875 * rio_dma_prep_slave_sg - RapidIO specific wrapper
1876 *   for device_prep_slave_sg callback defined by DMAENGINE.
1877 * @rdev: RIO device control structure
1878 * @dchan: DMA channel to configure
1879 * @data: RIO specific data descriptor
1880 * @direction: DMA data transfer direction (TO or FROM the device)
1881 * @flags: dmaengine defined flags
1882 *
1883 * Initializes RapidIO capable DMA channel for the specified data transfer.
1884 * Uses DMA channel private extension to pass information related to remote
1885 * target RIO device.
1886 * Returns pointer to DMA transaction descriptor or NULL if failed.
 
 
1887 */
1888struct dma_async_tx_descriptor *rio_dma_prep_slave_sg(struct rio_dev *rdev,
1889	struct dma_chan *dchan, struct rio_dma_data *data,
1890	enum dma_transfer_direction direction, unsigned long flags)
1891{
1892	return rio_dma_prep_xfer(dchan,	rdev->destid, data, direction, flags);
1893}
1894EXPORT_SYMBOL_GPL(rio_dma_prep_slave_sg);
1895
1896#endif /* CONFIG_RAPIDIO_DMA_ENGINE */
1897
1898/**
1899 * rio_find_mport - find RIO mport by its ID
1900 * @mport_id: number (ID) of mport device
1901 *
1902 * Given a RIO mport number, the desired mport is located
1903 * in the global list of mports. If the mport is found, a pointer to its
1904 * data structure is returned.  If no mport is found, %NULL is returned.
1905 */
1906struct rio_mport *rio_find_mport(int mport_id)
1907{
1908	struct rio_mport *port;
1909
1910	mutex_lock(&rio_mport_list_lock);
1911	list_for_each_entry(port, &rio_mports, node) {
1912		if (port->id == mport_id)
1913			goto found;
1914	}
1915	port = NULL;
1916found:
1917	mutex_unlock(&rio_mport_list_lock);
1918
1919	return port;
1920}
1921
1922/**
1923 * rio_register_scan - enumeration/discovery method registration interface
1924 * @mport_id: mport device ID for which fabric scan routine has to be set
1925 *            (RIO_MPORT_ANY = set for all available mports)
1926 * @scan_ops: enumeration/discovery operations structure
1927 *
1928 * Registers enumeration/discovery operations with RapidIO subsystem and
1929 * attaches it to the specified mport device (or all available mports
1930 * if RIO_MPORT_ANY is specified).
1931 *
1932 * Returns error if the mport already has an enumerator attached to it.
1933 * In case of RIO_MPORT_ANY skips mports with valid scan routines (no error).
1934 */
1935int rio_register_scan(int mport_id, struct rio_scan *scan_ops)
1936{
1937	struct rio_mport *port;
1938	struct rio_scan_node *scan;
1939	int rc = 0;
1940
1941	pr_debug("RIO: %s for mport_id=%d\n", __func__, mport_id);
1942
1943	if ((mport_id != RIO_MPORT_ANY && mport_id >= RIO_MAX_MPORTS) ||
1944	    !scan_ops)
1945		return -EINVAL;
1946
1947	mutex_lock(&rio_mport_list_lock);
1948
1949	/*
1950	 * Check if there is another enumerator already registered for
1951	 * the same mport ID (including RIO_MPORT_ANY). Multiple enumerators
1952	 * for the same mport ID are not supported.
1953	 */
1954	list_for_each_entry(scan, &rio_scans, node) {
1955		if (scan->mport_id == mport_id) {
1956			rc = -EBUSY;
1957			goto err_out;
1958		}
1959	}
1960
1961	/*
1962	 * Allocate and initialize new scan registration node.
1963	 */
1964	scan = kzalloc(sizeof(*scan), GFP_KERNEL);
1965	if (!scan) {
1966		rc = -ENOMEM;
1967		goto err_out;
1968	}
1969
1970	scan->mport_id = mport_id;
1971	scan->ops = scan_ops;
1972
1973	/*
1974	 * Traverse the list of registered mports to attach this new scan.
1975	 *
1976	 * The new scan with matching mport ID overrides any previously attached
1977	 * scan assuming that old scan (if any) is the default one (based on the
1978	 * enumerator registration check above).
1979	 * If the new scan is the global one, it will be attached only to mports
1980	 * that do not have their own individual operations already attached.
1981	 */
1982	list_for_each_entry(port, &rio_mports, node) {
1983		if (port->id == mport_id) {
1984			port->nscan = scan_ops;
1985			break;
1986		} else if (mport_id == RIO_MPORT_ANY && !port->nscan)
1987			port->nscan = scan_ops;
1988	}
1989
1990	list_add_tail(&scan->node, &rio_scans);
1991
1992err_out:
1993	mutex_unlock(&rio_mport_list_lock);
1994
1995	return rc;
1996}
1997EXPORT_SYMBOL_GPL(rio_register_scan);
1998
1999/**
2000 * rio_unregister_scan - removes enumeration/discovery method from mport
2001 * @mport_id: mport device ID for which fabric scan routine has to be
2002 *            unregistered (RIO_MPORT_ANY = apply to all mports that use
2003 *            the specified scan_ops)
2004 * @scan_ops: enumeration/discovery operations structure
2005 *
2006 * Removes enumeration or discovery method assigned to the specified mport
2007 * device. If RIO_MPORT_ANY is specified, removes the specified operations from
2008 * all mports that have them attached.
2009 */
2010int rio_unregister_scan(int mport_id, struct rio_scan *scan_ops)
2011{
2012	struct rio_mport *port;
2013	struct rio_scan_node *scan;
2014
2015	pr_debug("RIO: %s for mport_id=%d\n", __func__, mport_id);
2016
2017	if (mport_id != RIO_MPORT_ANY && mport_id >= RIO_MAX_MPORTS)
2018		return -EINVAL;
2019
2020	mutex_lock(&rio_mport_list_lock);
2021
2022	list_for_each_entry(port, &rio_mports, node)
2023		if (port->id == mport_id ||
2024		    (mport_id == RIO_MPORT_ANY && port->nscan == scan_ops))
2025			port->nscan = NULL;
2026
2027	list_for_each_entry(scan, &rio_scans, node) {
2028		if (scan->mport_id == mport_id) {
2029			list_del(&scan->node);
2030			kfree(scan);
2031			break;
2032		}
2033	}
2034
2035	mutex_unlock(&rio_mport_list_lock);
2036
2037	return 0;
2038}
2039EXPORT_SYMBOL_GPL(rio_unregister_scan);
2040
2041/**
2042 * rio_mport_scan - execute enumeration/discovery on the specified mport
2043 * @mport_id: number (ID) of mport device
2044 */
2045int rio_mport_scan(int mport_id)
2046{
2047	struct rio_mport *port = NULL;
2048	int rc;
2049
2050	mutex_lock(&rio_mport_list_lock);
2051	list_for_each_entry(port, &rio_mports, node) {
2052		if (port->id == mport_id)
2053			goto found;
2054	}
2055	mutex_unlock(&rio_mport_list_lock);
2056	return -ENODEV;
2057found:
2058	if (!port->nscan) {
2059		mutex_unlock(&rio_mport_list_lock);
2060		return -EINVAL;
2061	}
2062
2063	if (!try_module_get(port->nscan->owner)) {
2064		mutex_unlock(&rio_mport_list_lock);
2065		return -ENODEV;
2066	}
2067
2068	mutex_unlock(&rio_mport_list_lock);
2069
2070	if (port->host_deviceid >= 0)
2071		rc = port->nscan->enumerate(port, 0);
2072	else
2073		rc = port->nscan->discover(port, RIO_SCAN_ENUM_NO_WAIT);
2074
2075	module_put(port->nscan->owner);
2076	return rc;
2077}
2078
2079static void rio_fixup_device(struct rio_dev *dev)
2080{
2081}
2082
2083static int rio_init(void)
2084{
2085	struct rio_dev *dev = NULL;
2086
2087	while ((dev = rio_get_device(RIO_ANY_ID, RIO_ANY_ID, dev)) != NULL) {
2088		rio_fixup_device(dev);
2089	}
2090	return 0;
2091}
2092
2093static struct workqueue_struct *rio_wq;
2094
2095struct rio_disc_work {
2096	struct work_struct	work;
2097	struct rio_mport	*mport;
2098};
2099
2100static void disc_work_handler(struct work_struct *_work)
2101{
2102	struct rio_disc_work *work;
2103
2104	work = container_of(_work, struct rio_disc_work, work);
2105	pr_debug("RIO: discovery work for mport %d %s\n",
2106		 work->mport->id, work->mport->name);
2107	if (try_module_get(work->mport->nscan->owner)) {
2108		work->mport->nscan->discover(work->mport, 0);
2109		module_put(work->mport->nscan->owner);
2110	}
2111}
2112
2113int rio_init_mports(void)
2114{
2115	struct rio_mport *port;
2116	struct rio_disc_work *work;
2117	int n = 0;
2118
2119	if (!next_portid)
2120		return -ENODEV;
2121
2122	/*
2123	 * First, run enumerations and check if we need to perform discovery
2124	 * on any of the registered mports.
2125	 */
2126	mutex_lock(&rio_mport_list_lock);
2127	list_for_each_entry(port, &rio_mports, node) {
2128		if (port->host_deviceid >= 0) {
2129			if (port->nscan && try_module_get(port->nscan->owner)) {
2130				port->nscan->enumerate(port, 0);
2131				module_put(port->nscan->owner);
2132			}
2133		} else
2134			n++;
2135	}
2136	mutex_unlock(&rio_mport_list_lock);
2137
2138	if (!n)
2139		goto no_disc;
2140
2141	/*
2142	 * If we have mports that require discovery schedule a discovery work
2143	 * for each of them. If the code below fails to allocate needed
2144	 * resources, exit without error to keep results of enumeration
2145	 * process (if any).
2146	 * TODO: Implement restart of discovery process for all or
2147	 * individual discovering mports.
2148	 */
2149	rio_wq = alloc_workqueue("riodisc", 0, 0);
2150	if (!rio_wq) {
2151		pr_err("RIO: unable allocate rio_wq\n");
2152		goto no_disc;
2153	}
2154
2155	work = kcalloc(n, sizeof *work, GFP_KERNEL);
2156	if (!work) {
2157		pr_err("RIO: no memory for work struct\n");
2158		destroy_workqueue(rio_wq);
2159		goto no_disc;
2160	}
2161
2162	n = 0;
2163	mutex_lock(&rio_mport_list_lock);
2164	list_for_each_entry(port, &rio_mports, node) {
2165		if (port->host_deviceid < 0 && port->nscan) {
2166			work[n].mport = port;
2167			INIT_WORK(&work[n].work, disc_work_handler);
2168			queue_work(rio_wq, &work[n].work);
2169			n++;
2170		}
2171	}
2172
2173	flush_workqueue(rio_wq);
2174	mutex_unlock(&rio_mport_list_lock);
2175	pr_debug("RIO: destroy discovery workqueue\n");
2176	destroy_workqueue(rio_wq);
2177	kfree(work);
2178
2179no_disc:
2180	rio_init();
2181
2182	return 0;
2183}
 
2184
2185static int rio_get_hdid(int index)
2186{
2187	if (ids_num == 0 || ids_num <= index || index >= RIO_MAX_MPORTS)
2188		return -1;
2189
2190	return hdid[index];
2191}
2192
2193int rio_mport_initialize(struct rio_mport *mport)
2194{
2195	if (next_portid >= RIO_MAX_MPORTS) {
2196		pr_err("RIO: reached specified max number of mports\n");
2197		return -ENODEV;
2198	}
2199
2200	atomic_set(&mport->state, RIO_DEVICE_INITIALIZING);
2201	mport->id = next_portid++;
2202	mport->host_deviceid = rio_get_hdid(mport->id);
2203	mport->nscan = NULL;
2204	mutex_init(&mport->lock);
2205	mport->pwe_refcnt = 0;
2206	INIT_LIST_HEAD(&mport->pwrites);
2207
2208	return 0;
2209}
2210EXPORT_SYMBOL_GPL(rio_mport_initialize);
2211
2212int rio_register_mport(struct rio_mport *port)
2213{
2214	struct rio_scan_node *scan = NULL;
2215	int res = 0;
2216
2217	mutex_lock(&rio_mport_list_lock);
2218
2219	/*
2220	 * Check if there are any registered enumeration/discovery operations
2221	 * that have to be attached to the added mport.
2222	 */
2223	list_for_each_entry(scan, &rio_scans, node) {
2224		if (port->id == scan->mport_id ||
2225		    scan->mport_id == RIO_MPORT_ANY) {
2226			port->nscan = scan->ops;
2227			if (port->id == scan->mport_id)
2228				break;
2229		}
2230	}
2231
2232	list_add_tail(&port->node, &rio_mports);
2233	mutex_unlock(&rio_mport_list_lock);
2234
2235	dev_set_name(&port->dev, "rapidio%d", port->id);
2236	port->dev.class = &rio_mport_class;
2237	atomic_set(&port->state, RIO_DEVICE_RUNNING);
2238
2239	res = device_register(&port->dev);
2240	if (res)
2241		dev_err(&port->dev, "RIO: mport%d registration failed ERR=%d\n",
2242			port->id, res);
2243	else
 
 
 
 
2244		dev_dbg(&port->dev, "RIO: registered mport%d\n", port->id);
 
2245
2246	return res;
2247}
2248EXPORT_SYMBOL_GPL(rio_register_mport);
2249
2250static int rio_mport_cleanup_callback(struct device *dev, void *data)
2251{
2252	struct rio_dev *rdev = to_rio_dev(dev);
2253
2254	if (dev->bus == &rio_bus_type)
2255		rio_del_device(rdev, RIO_DEVICE_SHUTDOWN);
2256	return 0;
2257}
2258
2259static int rio_net_remove_children(struct rio_net *net)
2260{
2261	/*
2262	 * Unregister all RapidIO devices residing on this net (this will
2263	 * invoke notification of registered subsystem interfaces as well).
2264	 */
2265	device_for_each_child(&net->dev, NULL, rio_mport_cleanup_callback);
2266	return 0;
2267}
2268
2269int rio_unregister_mport(struct rio_mport *port)
2270{
2271	pr_debug("RIO: %s %s id=%d\n", __func__, port->name, port->id);
2272
2273	/* Transition mport to the SHUTDOWN state */
2274	if (atomic_cmpxchg(&port->state,
2275			   RIO_DEVICE_RUNNING,
2276			   RIO_DEVICE_SHUTDOWN) != RIO_DEVICE_RUNNING) {
2277		pr_err("RIO: %s unexpected state transition for mport %s\n",
2278			__func__, port->name);
2279	}
2280
2281	if (port->net && port->net->hport == port) {
2282		rio_net_remove_children(port->net);
2283		rio_free_net(port->net);
2284	}
2285
2286	/*
2287	 * Unregister all RapidIO devices attached to this mport (this will
2288	 * invoke notification of registered subsystem interfaces as well).
2289	 */
2290	mutex_lock(&rio_mport_list_lock);
2291	list_del(&port->node);
2292	mutex_unlock(&rio_mport_list_lock);
2293	device_unregister(&port->dev);
2294
2295	return 0;
2296}
2297EXPORT_SYMBOL_GPL(rio_unregister_mport);
2298
2299EXPORT_SYMBOL_GPL(rio_local_get_device_id);
2300EXPORT_SYMBOL_GPL(rio_get_device);
2301EXPORT_SYMBOL_GPL(rio_get_asm);
2302EXPORT_SYMBOL_GPL(rio_request_inb_dbell);
2303EXPORT_SYMBOL_GPL(rio_release_inb_dbell);
2304EXPORT_SYMBOL_GPL(rio_request_outb_dbell);
2305EXPORT_SYMBOL_GPL(rio_release_outb_dbell);
2306EXPORT_SYMBOL_GPL(rio_request_inb_mbox);
2307EXPORT_SYMBOL_GPL(rio_release_inb_mbox);
2308EXPORT_SYMBOL_GPL(rio_request_outb_mbox);
2309EXPORT_SYMBOL_GPL(rio_release_outb_mbox);
2310EXPORT_SYMBOL_GPL(rio_init_mports);