Linux Audio

Check our new training course

Linux BSP upgrade and security maintenance

Need help to get security updates for your Linux BSP?
Loading...
Note: File does not exist in v4.6.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * ARM CoreSight Architecture PMU driver.
   4 *
   5 * This driver adds support for uncore PMU based on ARM CoreSight Performance
   6 * Monitoring Unit Architecture. The PMU is accessible via MMIO registers and
   7 * like other uncore PMUs, it does not support process specific events and
   8 * cannot be used in sampling mode.
   9 *
  10 * This code is based on other uncore PMUs like ARM DSU PMU. It provides a
  11 * generic implementation to operate the PMU according to CoreSight PMU
  12 * architecture and ACPI ARM PMU table (APMT) documents below:
  13 *   - ARM CoreSight PMU architecture document number: ARM IHI 0091 A.a-00bet0.
  14 *   - APMT document number: ARM DEN0117.
  15 *
  16 * The user should refer to the vendor technical documentation to get details
  17 * about the supported events.
  18 *
  19 * Copyright (c) 2022-2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
  20 *
  21 */
  22
  23#include <linux/acpi.h>
  24#include <linux/cacheinfo.h>
  25#include <linux/ctype.h>
  26#include <linux/interrupt.h>
  27#include <linux/io-64-nonatomic-lo-hi.h>
  28#include <linux/module.h>
  29#include <linux/mutex.h>
  30#include <linux/perf_event.h>
  31#include <linux/platform_device.h>
  32
  33#include "arm_cspmu.h"
  34
  35#define PMUNAME "arm_cspmu"
  36#define DRVNAME "arm-cs-arch-pmu"
  37
  38#define ARM_CSPMU_CPUMASK_ATTR(_name, _config)			\
  39	ARM_CSPMU_EXT_ATTR(_name, arm_cspmu_cpumask_show,	\
  40				(unsigned long)_config)
  41
  42/*
  43 * CoreSight PMU Arch register offsets.
  44 */
  45#define PMEVCNTR_LO					0x0
  46#define PMEVCNTR_HI					0x4
  47#define PMEVTYPER					0x400
  48#define PMCCFILTR					0x47C
  49#define PMEVFILTR					0xA00
  50#define PMCNTENSET					0xC00
  51#define PMCNTENCLR					0xC20
  52#define PMINTENSET					0xC40
  53#define PMINTENCLR					0xC60
  54#define PMOVSCLR					0xC80
  55#define PMOVSSET					0xCC0
  56#define PMCFGR						0xE00
  57#define PMCR						0xE04
  58#define PMIIDR						0xE08
  59
  60/* PMCFGR register field */
  61#define PMCFGR_NCG					GENMASK(31, 28)
  62#define PMCFGR_HDBG					BIT(24)
  63#define PMCFGR_TRO					BIT(23)
  64#define PMCFGR_SS					BIT(22)
  65#define PMCFGR_FZO					BIT(21)
  66#define PMCFGR_MSI					BIT(20)
  67#define PMCFGR_UEN					BIT(19)
  68#define PMCFGR_NA					BIT(17)
  69#define PMCFGR_EX					BIT(16)
  70#define PMCFGR_CCD					BIT(15)
  71#define PMCFGR_CC					BIT(14)
  72#define PMCFGR_SIZE					GENMASK(13, 8)
  73#define PMCFGR_N					GENMASK(7, 0)
  74
  75/* PMCR register field */
  76#define PMCR_TRO					BIT(11)
  77#define PMCR_HDBG					BIT(10)
  78#define PMCR_FZO					BIT(9)
  79#define PMCR_NA						BIT(8)
  80#define PMCR_DP						BIT(5)
  81#define PMCR_X						BIT(4)
  82#define PMCR_D						BIT(3)
  83#define PMCR_C						BIT(2)
  84#define PMCR_P						BIT(1)
  85#define PMCR_E						BIT(0)
  86
  87/* Each SET/CLR register supports up to 32 counters. */
  88#define ARM_CSPMU_SET_CLR_COUNTER_SHIFT		5
  89#define ARM_CSPMU_SET_CLR_COUNTER_NUM		\
  90	(1 << ARM_CSPMU_SET_CLR_COUNTER_SHIFT)
  91
  92/* Convert counter idx into SET/CLR register number. */
  93#define COUNTER_TO_SET_CLR_ID(idx)			\
  94	(idx >> ARM_CSPMU_SET_CLR_COUNTER_SHIFT)
  95
  96/* Convert counter idx into SET/CLR register bit. */
  97#define COUNTER_TO_SET_CLR_BIT(idx)			\
  98	(idx & (ARM_CSPMU_SET_CLR_COUNTER_NUM - 1))
  99
 100#define ARM_CSPMU_ACTIVE_CPU_MASK		0x0
 101#define ARM_CSPMU_ASSOCIATED_CPU_MASK		0x1
 102
 103/* Check and use default if implementer doesn't provide attribute callback */
 104#define CHECK_DEFAULT_IMPL_OPS(ops, callback)			\
 105	do {							\
 106		if (!ops->callback)				\
 107			ops->callback = arm_cspmu_ ## callback;	\
 108	} while (0)
 109
 110/*
 111 * Maximum poll count for reading counter value using high-low-high sequence.
 112 */
 113#define HILOHI_MAX_POLL	1000
 114
 115static unsigned long arm_cspmu_cpuhp_state;
 116
 117static DEFINE_MUTEX(arm_cspmu_lock);
 118
 119static void arm_cspmu_set_ev_filter(struct arm_cspmu *cspmu,
 120				    struct hw_perf_event *hwc, u32 filter);
 121
 122static struct acpi_apmt_node *arm_cspmu_apmt_node(struct device *dev)
 123{
 124	return *(struct acpi_apmt_node **)dev_get_platdata(dev);
 125}
 126
 127/*
 128 * In CoreSight PMU architecture, all of the MMIO registers are 32-bit except
 129 * counter register. The counter register can be implemented as 32-bit or 64-bit
 130 * register depending on the value of PMCFGR.SIZE field. For 64-bit access,
 131 * single-copy 64-bit atomic support is implementation defined. APMT node flag
 132 * is used to identify if the PMU supports 64-bit single copy atomic. If 64-bit
 133 * single copy atomic is not supported, the driver treats the register as a pair
 134 * of 32-bit register.
 135 */
 136
 137/*
 138 * Read 64-bit register as a pair of 32-bit registers using hi-lo-hi sequence.
 139 */
 140static u64 read_reg64_hilohi(const void __iomem *addr, u32 max_poll_count)
 141{
 142	u32 val_lo, val_hi;
 143	u64 val;
 144
 145	/* Use high-low-high sequence to avoid tearing */
 146	do {
 147		if (max_poll_count-- == 0) {
 148			pr_err("ARM CSPMU: timeout hi-low-high sequence\n");
 149			return 0;
 150		}
 151
 152		val_hi = readl(addr + 4);
 153		val_lo = readl(addr);
 154	} while (val_hi != readl(addr + 4));
 155
 156	val = (((u64)val_hi << 32) | val_lo);
 157
 158	return val;
 159}
 160
 161/* Check if cycle counter is supported. */
 162static inline bool supports_cycle_counter(const struct arm_cspmu *cspmu)
 163{
 164	return (cspmu->pmcfgr & PMCFGR_CC);
 165}
 166
 167/* Get counter size, which is (PMCFGR_SIZE + 1). */
 168static inline u32 counter_size(const struct arm_cspmu *cspmu)
 169{
 170	return FIELD_GET(PMCFGR_SIZE, cspmu->pmcfgr) + 1;
 171}
 172
 173/* Get counter mask. */
 174static inline u64 counter_mask(const struct arm_cspmu *cspmu)
 175{
 176	return GENMASK_ULL(counter_size(cspmu) - 1, 0);
 177}
 178
 179/* Check if counter is implemented as 64-bit register. */
 180static inline bool use_64b_counter_reg(const struct arm_cspmu *cspmu)
 181{
 182	return (counter_size(cspmu) > 32);
 183}
 184
 185ssize_t arm_cspmu_sysfs_event_show(struct device *dev,
 186				struct device_attribute *attr, char *buf)
 187{
 188	struct perf_pmu_events_attr *pmu_attr;
 189
 190	pmu_attr = container_of(attr, typeof(*pmu_attr), attr);
 191	return sysfs_emit(buf, "event=0x%llx\n", pmu_attr->id);
 192}
 193EXPORT_SYMBOL_GPL(arm_cspmu_sysfs_event_show);
 194
 195/* Default event list. */
 196static struct attribute *arm_cspmu_event_attrs[] = {
 197	ARM_CSPMU_EVENT_ATTR(cycles, ARM_CSPMU_EVT_CYCLES_DEFAULT),
 198	NULL,
 199};
 200
 201static struct attribute **
 202arm_cspmu_get_event_attrs(const struct arm_cspmu *cspmu)
 203{
 204	struct attribute **attrs;
 205
 206	attrs = devm_kmemdup(cspmu->dev, arm_cspmu_event_attrs,
 207		sizeof(arm_cspmu_event_attrs), GFP_KERNEL);
 208
 209	return attrs;
 210}
 211
 212static umode_t
 213arm_cspmu_event_attr_is_visible(struct kobject *kobj,
 214				struct attribute *attr, int unused)
 215{
 216	struct device *dev = kobj_to_dev(kobj);
 217	struct arm_cspmu *cspmu = to_arm_cspmu(dev_get_drvdata(dev));
 218	struct perf_pmu_events_attr *eattr;
 219
 220	eattr = container_of(attr, typeof(*eattr), attr.attr);
 221
 222	/* Hide cycle event if not supported */
 223	if (!supports_cycle_counter(cspmu) &&
 224	    eattr->id == ARM_CSPMU_EVT_CYCLES_DEFAULT)
 225		return 0;
 226
 227	return attr->mode;
 228}
 229
 230ssize_t arm_cspmu_sysfs_format_show(struct device *dev,
 231				struct device_attribute *attr,
 232				char *buf)
 233{
 234	struct dev_ext_attribute *eattr =
 235		container_of(attr, struct dev_ext_attribute, attr);
 236	return sysfs_emit(buf, "%s\n", (char *)eattr->var);
 237}
 238EXPORT_SYMBOL_GPL(arm_cspmu_sysfs_format_show);
 239
 240static struct attribute *arm_cspmu_format_attrs[] = {
 241	ARM_CSPMU_FORMAT_EVENT_ATTR,
 242	ARM_CSPMU_FORMAT_FILTER_ATTR,
 243	NULL,
 244};
 245
 246static struct attribute **
 247arm_cspmu_get_format_attrs(const struct arm_cspmu *cspmu)
 248{
 249	struct attribute **attrs;
 250
 251	attrs = devm_kmemdup(cspmu->dev, arm_cspmu_format_attrs,
 252		sizeof(arm_cspmu_format_attrs), GFP_KERNEL);
 253
 254	return attrs;
 255}
 256
 257static u32 arm_cspmu_event_type(const struct perf_event *event)
 258{
 259	return event->attr.config & ARM_CSPMU_EVENT_MASK;
 260}
 261
 262static bool arm_cspmu_is_cycle_counter_event(const struct perf_event *event)
 263{
 264	return (event->attr.config == ARM_CSPMU_EVT_CYCLES_DEFAULT);
 265}
 266
 267static u32 arm_cspmu_event_filter(const struct perf_event *event)
 268{
 269	return event->attr.config1 & ARM_CSPMU_FILTER_MASK;
 270}
 271
 272static ssize_t arm_cspmu_identifier_show(struct device *dev,
 273					 struct device_attribute *attr,
 274					 char *page)
 275{
 276	struct arm_cspmu *cspmu = to_arm_cspmu(dev_get_drvdata(dev));
 277
 278	return sysfs_emit(page, "%s\n", cspmu->identifier);
 279}
 280
 281static struct device_attribute arm_cspmu_identifier_attr =
 282	__ATTR(identifier, 0444, arm_cspmu_identifier_show, NULL);
 283
 284static struct attribute *arm_cspmu_identifier_attrs[] = {
 285	&arm_cspmu_identifier_attr.attr,
 286	NULL,
 287};
 288
 289static struct attribute_group arm_cspmu_identifier_attr_group = {
 290	.attrs = arm_cspmu_identifier_attrs,
 291};
 292
 293static const char *arm_cspmu_get_identifier(const struct arm_cspmu *cspmu)
 294{
 295	const char *identifier =
 296		devm_kasprintf(cspmu->dev, GFP_KERNEL, "%x",
 297			       cspmu->impl.pmiidr);
 298	return identifier;
 299}
 300
 301static const char *arm_cspmu_type_str[ACPI_APMT_NODE_TYPE_COUNT] = {
 302	"mc",
 303	"smmu",
 304	"pcie",
 305	"acpi",
 306	"cache",
 307};
 308
 309static const char *arm_cspmu_get_name(const struct arm_cspmu *cspmu)
 310{
 311	struct device *dev;
 312	struct acpi_apmt_node *apmt_node;
 313	u8 pmu_type;
 314	char *name;
 315	char acpi_hid_string[ACPI_ID_LEN] = { 0 };
 316	static atomic_t pmu_idx[ACPI_APMT_NODE_TYPE_COUNT] = { 0 };
 317
 318	dev = cspmu->dev;
 319	apmt_node = arm_cspmu_apmt_node(dev);
 320	pmu_type = apmt_node->type;
 321
 322	if (pmu_type >= ACPI_APMT_NODE_TYPE_COUNT) {
 323		dev_err(dev, "unsupported PMU type-%u\n", pmu_type);
 324		return NULL;
 325	}
 326
 327	if (pmu_type == ACPI_APMT_NODE_TYPE_ACPI) {
 328		memcpy(acpi_hid_string,
 329			&apmt_node->inst_primary,
 330			sizeof(apmt_node->inst_primary));
 331		name = devm_kasprintf(dev, GFP_KERNEL, "%s_%s_%s_%u", PMUNAME,
 332				      arm_cspmu_type_str[pmu_type],
 333				      acpi_hid_string,
 334				      apmt_node->inst_secondary);
 335	} else {
 336		name = devm_kasprintf(dev, GFP_KERNEL, "%s_%s_%d", PMUNAME,
 337				      arm_cspmu_type_str[pmu_type],
 338				      atomic_fetch_inc(&pmu_idx[pmu_type]));
 339	}
 340
 341	return name;
 342}
 343
 344static ssize_t arm_cspmu_cpumask_show(struct device *dev,
 345				      struct device_attribute *attr,
 346				      char *buf)
 347{
 348	struct pmu *pmu = dev_get_drvdata(dev);
 349	struct arm_cspmu *cspmu = to_arm_cspmu(pmu);
 350	struct dev_ext_attribute *eattr =
 351		container_of(attr, struct dev_ext_attribute, attr);
 352	unsigned long mask_id = (unsigned long)eattr->var;
 353	const cpumask_t *cpumask;
 354
 355	switch (mask_id) {
 356	case ARM_CSPMU_ACTIVE_CPU_MASK:
 357		cpumask = &cspmu->active_cpu;
 358		break;
 359	case ARM_CSPMU_ASSOCIATED_CPU_MASK:
 360		cpumask = &cspmu->associated_cpus;
 361		break;
 362	default:
 363		return 0;
 364	}
 365	return cpumap_print_to_pagebuf(true, buf, cpumask);
 366}
 367
 368static struct attribute *arm_cspmu_cpumask_attrs[] = {
 369	ARM_CSPMU_CPUMASK_ATTR(cpumask, ARM_CSPMU_ACTIVE_CPU_MASK),
 370	ARM_CSPMU_CPUMASK_ATTR(associated_cpus, ARM_CSPMU_ASSOCIATED_CPU_MASK),
 371	NULL,
 372};
 373
 374static struct attribute_group arm_cspmu_cpumask_attr_group = {
 375	.attrs = arm_cspmu_cpumask_attrs,
 376};
 377
 378static struct arm_cspmu_impl_match impl_match[] = {
 379	{
 380		.module_name	= "nvidia_cspmu",
 381		.pmiidr_val	= ARM_CSPMU_IMPL_ID_NVIDIA,
 382		.pmiidr_mask	= ARM_CSPMU_PMIIDR_IMPLEMENTER,
 383		.module		= NULL,
 384		.impl_init_ops	= NULL,
 385	},
 386	{
 387		.module_name	= "ampere_cspmu",
 388		.pmiidr_val	= ARM_CSPMU_IMPL_ID_AMPERE,
 389		.pmiidr_mask	= ARM_CSPMU_PMIIDR_IMPLEMENTER,
 390		.module		= NULL,
 391		.impl_init_ops	= NULL,
 392	},
 393
 394	{0}
 395};
 396
 397static struct arm_cspmu_impl_match *arm_cspmu_impl_match_get(u32 pmiidr)
 398{
 399	struct arm_cspmu_impl_match *match = impl_match;
 400
 401	for (; match->pmiidr_val; match++) {
 402		u32 mask = match->pmiidr_mask;
 403
 404		if ((match->pmiidr_val & mask) == (pmiidr & mask))
 405			return match;
 406	}
 407
 408	return NULL;
 409}
 410
 411static int arm_cspmu_init_impl_ops(struct arm_cspmu *cspmu)
 412{
 413	int ret = 0;
 414	struct arm_cspmu_impl_ops *impl_ops = &cspmu->impl.ops;
 415	struct acpi_apmt_node *apmt_node = arm_cspmu_apmt_node(cspmu->dev);
 416	struct arm_cspmu_impl_match *match;
 417
 418	/*
 419	 * Get PMU implementer and product id from APMT node.
 420	 * If APMT node doesn't have implementer/product id, try get it
 421	 * from PMIIDR.
 422	 */
 423	cspmu->impl.pmiidr =
 424		(apmt_node->impl_id) ? apmt_node->impl_id :
 425				       readl(cspmu->base0 + PMIIDR);
 426
 427	/* Find implementer specific attribute ops. */
 428	match = arm_cspmu_impl_match_get(cspmu->impl.pmiidr);
 429
 430	/* Load implementer module and initialize the callbacks. */
 431	if (match) {
 432		mutex_lock(&arm_cspmu_lock);
 433
 434		if (match->impl_init_ops) {
 435			/* Prevent unload until PMU registration is done. */
 436			if (try_module_get(match->module)) {
 437				cspmu->impl.module = match->module;
 438				cspmu->impl.match = match;
 439				ret = match->impl_init_ops(cspmu);
 440				if (ret)
 441					module_put(match->module);
 442			} else {
 443				WARN(1, "arm_cspmu failed to get module: %s\n",
 444					match->module_name);
 445				ret = -EINVAL;
 446			}
 447		} else {
 448			request_module_nowait(match->module_name);
 449			ret = -EPROBE_DEFER;
 450		}
 451
 452		mutex_unlock(&arm_cspmu_lock);
 453
 454		if (ret)
 455			return ret;
 456	} else
 457		cspmu->impl.module = THIS_MODULE;
 458
 459	/* Use default callbacks if implementer doesn't provide one. */
 460	CHECK_DEFAULT_IMPL_OPS(impl_ops, get_event_attrs);
 461	CHECK_DEFAULT_IMPL_OPS(impl_ops, get_format_attrs);
 462	CHECK_DEFAULT_IMPL_OPS(impl_ops, get_identifier);
 463	CHECK_DEFAULT_IMPL_OPS(impl_ops, get_name);
 464	CHECK_DEFAULT_IMPL_OPS(impl_ops, is_cycle_counter_event);
 465	CHECK_DEFAULT_IMPL_OPS(impl_ops, event_type);
 466	CHECK_DEFAULT_IMPL_OPS(impl_ops, event_filter);
 467	CHECK_DEFAULT_IMPL_OPS(impl_ops, event_attr_is_visible);
 468	CHECK_DEFAULT_IMPL_OPS(impl_ops, set_ev_filter);
 469
 470	return 0;
 471}
 472
 473static struct attribute_group *
 474arm_cspmu_alloc_event_attr_group(struct arm_cspmu *cspmu)
 475{
 476	struct attribute_group *event_group;
 477	struct device *dev = cspmu->dev;
 478	const struct arm_cspmu_impl_ops *impl_ops = &cspmu->impl.ops;
 479
 480	event_group =
 481		devm_kzalloc(dev, sizeof(struct attribute_group), GFP_KERNEL);
 482	if (!event_group)
 483		return NULL;
 484
 485	event_group->name = "events";
 486	event_group->is_visible = impl_ops->event_attr_is_visible;
 487	event_group->attrs = impl_ops->get_event_attrs(cspmu);
 488
 489	if (!event_group->attrs)
 490		return NULL;
 491
 492	return event_group;
 493}
 494
 495static struct attribute_group *
 496arm_cspmu_alloc_format_attr_group(struct arm_cspmu *cspmu)
 497{
 498	struct attribute_group *format_group;
 499	struct device *dev = cspmu->dev;
 500
 501	format_group =
 502		devm_kzalloc(dev, sizeof(struct attribute_group), GFP_KERNEL);
 503	if (!format_group)
 504		return NULL;
 505
 506	format_group->name = "format";
 507	format_group->attrs = cspmu->impl.ops.get_format_attrs(cspmu);
 508
 509	if (!format_group->attrs)
 510		return NULL;
 511
 512	return format_group;
 513}
 514
 515static struct attribute_group **
 516arm_cspmu_alloc_attr_group(struct arm_cspmu *cspmu)
 517{
 518	struct attribute_group **attr_groups = NULL;
 519	struct device *dev = cspmu->dev;
 520	const struct arm_cspmu_impl_ops *impl_ops = &cspmu->impl.ops;
 521
 522	cspmu->identifier = impl_ops->get_identifier(cspmu);
 523	cspmu->name = impl_ops->get_name(cspmu);
 524
 525	if (!cspmu->identifier || !cspmu->name)
 526		return NULL;
 527
 528	attr_groups = devm_kcalloc(dev, 5, sizeof(struct attribute_group *),
 529				   GFP_KERNEL);
 530	if (!attr_groups)
 531		return NULL;
 532
 533	attr_groups[0] = arm_cspmu_alloc_event_attr_group(cspmu);
 534	attr_groups[1] = arm_cspmu_alloc_format_attr_group(cspmu);
 535	attr_groups[2] = &arm_cspmu_identifier_attr_group;
 536	attr_groups[3] = &arm_cspmu_cpumask_attr_group;
 537
 538	if (!attr_groups[0] || !attr_groups[1])
 539		return NULL;
 540
 541	return attr_groups;
 542}
 543
 544static inline void arm_cspmu_reset_counters(struct arm_cspmu *cspmu)
 545{
 546	u32 pmcr = 0;
 547
 548	pmcr |= PMCR_P;
 549	pmcr |= PMCR_C;
 550	writel(pmcr, cspmu->base0 + PMCR);
 551}
 552
 553static inline void arm_cspmu_start_counters(struct arm_cspmu *cspmu)
 554{
 555	writel(PMCR_E, cspmu->base0 + PMCR);
 556}
 557
 558static inline void arm_cspmu_stop_counters(struct arm_cspmu *cspmu)
 559{
 560	writel(0, cspmu->base0 + PMCR);
 561}
 562
 563static void arm_cspmu_enable(struct pmu *pmu)
 564{
 565	bool disabled;
 566	struct arm_cspmu *cspmu = to_arm_cspmu(pmu);
 567
 568	disabled = bitmap_empty(cspmu->hw_events.used_ctrs,
 569				cspmu->num_logical_ctrs);
 570
 571	if (disabled)
 572		return;
 573
 574	arm_cspmu_start_counters(cspmu);
 575}
 576
 577static void arm_cspmu_disable(struct pmu *pmu)
 578{
 579	struct arm_cspmu *cspmu = to_arm_cspmu(pmu);
 580
 581	arm_cspmu_stop_counters(cspmu);
 582}
 583
 584static int arm_cspmu_get_event_idx(struct arm_cspmu_hw_events *hw_events,
 585				struct perf_event *event)
 586{
 587	int idx, ret;
 588	struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
 589
 590	if (supports_cycle_counter(cspmu)) {
 591		if (cspmu->impl.ops.is_cycle_counter_event(event)) {
 592			/* Search for available cycle counter. */
 593			if (test_and_set_bit(cspmu->cycle_counter_logical_idx,
 594					     hw_events->used_ctrs))
 595				return -EAGAIN;
 596
 597			return cspmu->cycle_counter_logical_idx;
 598		}
 599
 600		/*
 601		 * Search a regular counter from the used counter bitmap.
 602		 * The cycle counter divides the bitmap into two parts. Search
 603		 * the first then second half to exclude the cycle counter bit.
 604		 */
 605		idx = find_first_zero_bit(hw_events->used_ctrs,
 606					  cspmu->cycle_counter_logical_idx);
 607		if (idx >= cspmu->cycle_counter_logical_idx) {
 608			idx = find_next_zero_bit(
 609				hw_events->used_ctrs,
 610				cspmu->num_logical_ctrs,
 611				cspmu->cycle_counter_logical_idx + 1);
 612		}
 613	} else {
 614		idx = find_first_zero_bit(hw_events->used_ctrs,
 615					  cspmu->num_logical_ctrs);
 616	}
 617
 618	if (idx >= cspmu->num_logical_ctrs)
 619		return -EAGAIN;
 620
 621	if (cspmu->impl.ops.validate_event) {
 622		ret = cspmu->impl.ops.validate_event(cspmu, event);
 623		if (ret)
 624			return ret;
 625	}
 626
 627	set_bit(idx, hw_events->used_ctrs);
 628
 629	return idx;
 630}
 631
 632static bool arm_cspmu_validate_event(struct pmu *pmu,
 633				 struct arm_cspmu_hw_events *hw_events,
 634				 struct perf_event *event)
 635{
 636	if (is_software_event(event))
 637		return true;
 638
 639	/* Reject groups spanning multiple HW PMUs. */
 640	if (event->pmu != pmu)
 641		return false;
 642
 643	return (arm_cspmu_get_event_idx(hw_events, event) >= 0);
 644}
 645
 646/*
 647 * Make sure the group of events can be scheduled at once
 648 * on the PMU.
 649 */
 650static bool arm_cspmu_validate_group(struct perf_event *event)
 651{
 652	struct perf_event *sibling, *leader = event->group_leader;
 653	struct arm_cspmu_hw_events fake_hw_events;
 654
 655	if (event->group_leader == event)
 656		return true;
 657
 658	memset(&fake_hw_events, 0, sizeof(fake_hw_events));
 659
 660	if (!arm_cspmu_validate_event(event->pmu, &fake_hw_events, leader))
 661		return false;
 662
 663	for_each_sibling_event(sibling, leader) {
 664		if (!arm_cspmu_validate_event(event->pmu, &fake_hw_events,
 665						  sibling))
 666			return false;
 667	}
 668
 669	return arm_cspmu_validate_event(event->pmu, &fake_hw_events, event);
 670}
 671
 672static int arm_cspmu_event_init(struct perf_event *event)
 673{
 674	struct arm_cspmu *cspmu;
 675	struct hw_perf_event *hwc = &event->hw;
 676
 677	cspmu = to_arm_cspmu(event->pmu);
 678
 679	if (event->attr.type != event->pmu->type)
 680		return -ENOENT;
 681
 682	/*
 683	 * Following other "uncore" PMUs, we do not support sampling mode or
 684	 * attach to a task (per-process mode).
 685	 */
 686	if (is_sampling_event(event)) {
 687		dev_dbg(cspmu->pmu.dev,
 688			"Can't support sampling events\n");
 689		return -EOPNOTSUPP;
 690	}
 691
 692	if (event->cpu < 0 || event->attach_state & PERF_ATTACH_TASK) {
 693		dev_dbg(cspmu->pmu.dev,
 694			"Can't support per-task counters\n");
 695		return -EINVAL;
 696	}
 697
 698	/*
 699	 * Make sure the CPU assignment is on one of the CPUs associated with
 700	 * this PMU.
 701	 */
 702	if (!cpumask_test_cpu(event->cpu, &cspmu->associated_cpus)) {
 703		dev_dbg(cspmu->pmu.dev,
 704			"Requested cpu is not associated with the PMU\n");
 705		return -EINVAL;
 706	}
 707
 708	/* Enforce the current active CPU to handle the events in this PMU. */
 709	event->cpu = cpumask_first(&cspmu->active_cpu);
 710	if (event->cpu >= nr_cpu_ids)
 711		return -EINVAL;
 712
 713	if (!arm_cspmu_validate_group(event))
 714		return -EINVAL;
 715
 716	/*
 717	 * The logical counter id is tracked with hw_perf_event.extra_reg.idx.
 718	 * The physical counter id is tracked with hw_perf_event.idx.
 719	 * We don't assign an index until we actually place the event onto
 720	 * hardware. Use -1 to signify that we haven't decided where to put it
 721	 * yet.
 722	 */
 723	hwc->idx = -1;
 724	hwc->extra_reg.idx = -1;
 725	hwc->config = cspmu->impl.ops.event_type(event);
 726
 727	return 0;
 728}
 729
 730static inline u32 counter_offset(u32 reg_sz, u32 ctr_idx)
 731{
 732	return (PMEVCNTR_LO + (reg_sz * ctr_idx));
 733}
 734
 735static void arm_cspmu_write_counter(struct perf_event *event, u64 val)
 736{
 737	u32 offset;
 738	struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
 739
 740	if (use_64b_counter_reg(cspmu)) {
 741		offset = counter_offset(sizeof(u64), event->hw.idx);
 742
 743		if (cspmu->has_atomic_dword)
 744			writeq(val, cspmu->base1 + offset);
 745		else
 746			lo_hi_writeq(val, cspmu->base1 + offset);
 747	} else {
 748		offset = counter_offset(sizeof(u32), event->hw.idx);
 749
 750		writel(lower_32_bits(val), cspmu->base1 + offset);
 751	}
 752}
 753
 754static u64 arm_cspmu_read_counter(struct perf_event *event)
 755{
 756	u32 offset;
 757	const void __iomem *counter_addr;
 758	struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
 759
 760	if (use_64b_counter_reg(cspmu)) {
 761		offset = counter_offset(sizeof(u64), event->hw.idx);
 762		counter_addr = cspmu->base1 + offset;
 763
 764		return cspmu->has_atomic_dword ?
 765			       readq(counter_addr) :
 766			       read_reg64_hilohi(counter_addr, HILOHI_MAX_POLL);
 767	}
 768
 769	offset = counter_offset(sizeof(u32), event->hw.idx);
 770	return readl(cspmu->base1 + offset);
 771}
 772
 773/*
 774 * arm_cspmu_set_event_period: Set the period for the counter.
 775 *
 776 * To handle cases of extreme interrupt latency, we program
 777 * the counter with half of the max count for the counters.
 778 */
 779static void arm_cspmu_set_event_period(struct perf_event *event)
 780{
 781	struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
 782	u64 val = counter_mask(cspmu) >> 1ULL;
 783
 784	local64_set(&event->hw.prev_count, val);
 785	arm_cspmu_write_counter(event, val);
 786}
 787
 788static void arm_cspmu_enable_counter(struct arm_cspmu *cspmu, int idx)
 789{
 790	u32 reg_id, reg_bit, inten_off, cnten_off;
 791
 792	reg_id = COUNTER_TO_SET_CLR_ID(idx);
 793	reg_bit = COUNTER_TO_SET_CLR_BIT(idx);
 794
 795	inten_off = PMINTENSET + (4 * reg_id);
 796	cnten_off = PMCNTENSET + (4 * reg_id);
 797
 798	writel(BIT(reg_bit), cspmu->base0 + inten_off);
 799	writel(BIT(reg_bit), cspmu->base0 + cnten_off);
 800}
 801
 802static void arm_cspmu_disable_counter(struct arm_cspmu *cspmu, int idx)
 803{
 804	u32 reg_id, reg_bit, inten_off, cnten_off;
 805
 806	reg_id = COUNTER_TO_SET_CLR_ID(idx);
 807	reg_bit = COUNTER_TO_SET_CLR_BIT(idx);
 808
 809	inten_off = PMINTENCLR + (4 * reg_id);
 810	cnten_off = PMCNTENCLR + (4 * reg_id);
 811
 812	writel(BIT(reg_bit), cspmu->base0 + cnten_off);
 813	writel(BIT(reg_bit), cspmu->base0 + inten_off);
 814}
 815
 816static void arm_cspmu_event_update(struct perf_event *event)
 817{
 818	struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
 819	struct hw_perf_event *hwc = &event->hw;
 820	u64 delta, prev, now;
 821
 822	do {
 823		prev = local64_read(&hwc->prev_count);
 824		now = arm_cspmu_read_counter(event);
 825	} while (local64_cmpxchg(&hwc->prev_count, prev, now) != prev);
 826
 827	delta = (now - prev) & counter_mask(cspmu);
 828	local64_add(delta, &event->count);
 829}
 830
 831static inline void arm_cspmu_set_event(struct arm_cspmu *cspmu,
 832					struct hw_perf_event *hwc)
 833{
 834	u32 offset = PMEVTYPER + (4 * hwc->idx);
 835
 836	writel(hwc->config, cspmu->base0 + offset);
 837}
 838
 839static void arm_cspmu_set_ev_filter(struct arm_cspmu *cspmu,
 840					struct hw_perf_event *hwc,
 841					u32 filter)
 842{
 843	u32 offset = PMEVFILTR + (4 * hwc->idx);
 844
 845	writel(filter, cspmu->base0 + offset);
 846}
 847
 848static inline void arm_cspmu_set_cc_filter(struct arm_cspmu *cspmu, u32 filter)
 849{
 850	u32 offset = PMCCFILTR;
 851
 852	writel(filter, cspmu->base0 + offset);
 853}
 854
 855static void arm_cspmu_start(struct perf_event *event, int pmu_flags)
 856{
 857	struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
 858	struct hw_perf_event *hwc = &event->hw;
 859	u32 filter;
 860
 861	/* We always reprogram the counter */
 862	if (pmu_flags & PERF_EF_RELOAD)
 863		WARN_ON(!(hwc->state & PERF_HES_UPTODATE));
 864
 865	arm_cspmu_set_event_period(event);
 866
 867	filter = cspmu->impl.ops.event_filter(event);
 868
 869	if (event->hw.extra_reg.idx == cspmu->cycle_counter_logical_idx) {
 870		arm_cspmu_set_cc_filter(cspmu, filter);
 871	} else {
 872		arm_cspmu_set_event(cspmu, hwc);
 873		cspmu->impl.ops.set_ev_filter(cspmu, hwc, filter);
 874	}
 875
 876	hwc->state = 0;
 877
 878	arm_cspmu_enable_counter(cspmu, hwc->idx);
 879}
 880
 881static void arm_cspmu_stop(struct perf_event *event, int pmu_flags)
 882{
 883	struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
 884	struct hw_perf_event *hwc = &event->hw;
 885
 886	if (hwc->state & PERF_HES_STOPPED)
 887		return;
 888
 889	arm_cspmu_disable_counter(cspmu, hwc->idx);
 890	arm_cspmu_event_update(event);
 891
 892	hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
 893}
 894
 895static inline u32 to_phys_idx(struct arm_cspmu *cspmu, u32 idx)
 896{
 897	return (idx == cspmu->cycle_counter_logical_idx) ?
 898		ARM_CSPMU_CYCLE_CNTR_IDX : idx;
 899}
 900
 901static int arm_cspmu_add(struct perf_event *event, int flags)
 902{
 903	struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
 904	struct arm_cspmu_hw_events *hw_events = &cspmu->hw_events;
 905	struct hw_perf_event *hwc = &event->hw;
 906	int idx;
 907
 908	if (WARN_ON_ONCE(!cpumask_test_cpu(smp_processor_id(),
 909					   &cspmu->associated_cpus)))
 910		return -ENOENT;
 911
 912	idx = arm_cspmu_get_event_idx(hw_events, event);
 913	if (idx < 0)
 914		return idx;
 915
 916	hw_events->events[idx] = event;
 917	hwc->idx = to_phys_idx(cspmu, idx);
 918	hwc->extra_reg.idx = idx;
 919	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
 920
 921	if (flags & PERF_EF_START)
 922		arm_cspmu_start(event, PERF_EF_RELOAD);
 923
 924	/* Propagate changes to the userspace mapping. */
 925	perf_event_update_userpage(event);
 926
 927	return 0;
 928}
 929
 930static void arm_cspmu_del(struct perf_event *event, int flags)
 931{
 932	struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
 933	struct arm_cspmu_hw_events *hw_events = &cspmu->hw_events;
 934	struct hw_perf_event *hwc = &event->hw;
 935	int idx = hwc->extra_reg.idx;
 936
 937	arm_cspmu_stop(event, PERF_EF_UPDATE);
 938
 939	hw_events->events[idx] = NULL;
 940
 941	clear_bit(idx, hw_events->used_ctrs);
 942
 943	perf_event_update_userpage(event);
 944}
 945
 946static void arm_cspmu_read(struct perf_event *event)
 947{
 948	arm_cspmu_event_update(event);
 949}
 950
 951static struct arm_cspmu *arm_cspmu_alloc(struct platform_device *pdev)
 952{
 953	struct acpi_apmt_node *apmt_node;
 954	struct arm_cspmu *cspmu;
 955	struct device *dev = &pdev->dev;
 956
 957	cspmu = devm_kzalloc(dev, sizeof(*cspmu), GFP_KERNEL);
 958	if (!cspmu)
 959		return NULL;
 960
 961	cspmu->dev = dev;
 962	platform_set_drvdata(pdev, cspmu);
 963
 964	apmt_node = arm_cspmu_apmt_node(dev);
 965	cspmu->has_atomic_dword = apmt_node->flags & ACPI_APMT_FLAGS_ATOMIC;
 966
 967	return cspmu;
 968}
 969
 970static int arm_cspmu_init_mmio(struct arm_cspmu *cspmu)
 971{
 972	struct device *dev;
 973	struct platform_device *pdev;
 974
 975	dev = cspmu->dev;
 976	pdev = to_platform_device(dev);
 977
 978	/* Base address for page 0. */
 979	cspmu->base0 = devm_platform_ioremap_resource(pdev, 0);
 980	if (IS_ERR(cspmu->base0)) {
 981		dev_err(dev, "ioremap failed for page-0 resource\n");
 982		return PTR_ERR(cspmu->base0);
 983	}
 984
 985	/* Base address for page 1 if supported. Otherwise point to page 0. */
 986	cspmu->base1 = cspmu->base0;
 987	if (platform_get_resource(pdev, IORESOURCE_MEM, 1)) {
 988		cspmu->base1 = devm_platform_ioremap_resource(pdev, 1);
 989		if (IS_ERR(cspmu->base1)) {
 990			dev_err(dev, "ioremap failed for page-1 resource\n");
 991			return PTR_ERR(cspmu->base1);
 992		}
 993	}
 994
 995	cspmu->pmcfgr = readl(cspmu->base0 + PMCFGR);
 996
 997	cspmu->num_logical_ctrs = FIELD_GET(PMCFGR_N, cspmu->pmcfgr) + 1;
 998
 999	cspmu->cycle_counter_logical_idx = ARM_CSPMU_MAX_HW_CNTRS;
1000
1001	if (supports_cycle_counter(cspmu)) {
1002		/*
1003		 * The last logical counter is mapped to cycle counter if
1004		 * there is a gap between regular and cycle counter. Otherwise,
1005		 * logical and physical have 1-to-1 mapping.
1006		 */
1007		cspmu->cycle_counter_logical_idx =
1008			(cspmu->num_logical_ctrs <= ARM_CSPMU_CYCLE_CNTR_IDX) ?
1009				cspmu->num_logical_ctrs - 1 :
1010				ARM_CSPMU_CYCLE_CNTR_IDX;
1011	}
1012
1013	cspmu->num_set_clr_reg =
1014		DIV_ROUND_UP(cspmu->num_logical_ctrs,
1015				ARM_CSPMU_SET_CLR_COUNTER_NUM);
1016
1017	cspmu->hw_events.events =
1018		devm_kcalloc(dev, cspmu->num_logical_ctrs,
1019			     sizeof(*cspmu->hw_events.events), GFP_KERNEL);
1020
1021	if (!cspmu->hw_events.events)
1022		return -ENOMEM;
1023
1024	return 0;
1025}
1026
1027static inline int arm_cspmu_get_reset_overflow(struct arm_cspmu *cspmu,
1028					       u32 *pmovs)
1029{
1030	int i;
1031	u32 pmovclr_offset = PMOVSCLR;
1032	u32 has_overflowed = 0;
1033
1034	for (i = 0; i < cspmu->num_set_clr_reg; ++i) {
1035		pmovs[i] = readl(cspmu->base1 + pmovclr_offset);
1036		has_overflowed |= pmovs[i];
1037		writel(pmovs[i], cspmu->base1 + pmovclr_offset);
1038		pmovclr_offset += sizeof(u32);
1039	}
1040
1041	return has_overflowed != 0;
1042}
1043
1044static irqreturn_t arm_cspmu_handle_irq(int irq_num, void *dev)
1045{
1046	int idx, has_overflowed;
1047	struct perf_event *event;
1048	struct arm_cspmu *cspmu = dev;
1049	DECLARE_BITMAP(pmovs, ARM_CSPMU_MAX_HW_CNTRS);
1050	bool handled = false;
1051
1052	arm_cspmu_stop_counters(cspmu);
1053
1054	has_overflowed = arm_cspmu_get_reset_overflow(cspmu, (u32 *)pmovs);
1055	if (!has_overflowed)
1056		goto done;
1057
1058	for_each_set_bit(idx, cspmu->hw_events.used_ctrs,
1059			cspmu->num_logical_ctrs) {
1060		event = cspmu->hw_events.events[idx];
1061
1062		if (!event)
1063			continue;
1064
1065		if (!test_bit(event->hw.idx, pmovs))
1066			continue;
1067
1068		arm_cspmu_event_update(event);
1069		arm_cspmu_set_event_period(event);
1070
1071		handled = true;
1072	}
1073
1074done:
1075	arm_cspmu_start_counters(cspmu);
1076	return IRQ_RETVAL(handled);
1077}
1078
1079static int arm_cspmu_request_irq(struct arm_cspmu *cspmu)
1080{
1081	int irq, ret;
1082	struct device *dev;
1083	struct platform_device *pdev;
1084
1085	dev = cspmu->dev;
1086	pdev = to_platform_device(dev);
1087
1088	/* Skip IRQ request if the PMU does not support overflow interrupt. */
1089	irq = platform_get_irq_optional(pdev, 0);
1090	if (irq < 0)
1091		return irq == -ENXIO ? 0 : irq;
1092
1093	ret = devm_request_irq(dev, irq, arm_cspmu_handle_irq,
1094			       IRQF_NOBALANCING | IRQF_NO_THREAD, dev_name(dev),
1095			       cspmu);
1096	if (ret) {
1097		dev_err(dev, "Could not request IRQ %d\n", irq);
1098		return ret;
1099	}
1100
1101	cspmu->irq = irq;
1102
1103	return 0;
1104}
1105
1106#if defined(CONFIG_ACPI) && defined(CONFIG_ARM64)
1107#include <acpi/processor.h>
1108
1109static inline int arm_cspmu_find_cpu_container(int cpu, u32 container_uid)
1110{
1111	struct device *cpu_dev;
1112	struct acpi_device *acpi_dev;
1113
1114	cpu_dev = get_cpu_device(cpu);
1115	if (!cpu_dev)
1116		return -ENODEV;
1117
1118	acpi_dev = ACPI_COMPANION(cpu_dev);
1119	while (acpi_dev) {
1120		if (acpi_dev_hid_uid_match(acpi_dev, ACPI_PROCESSOR_CONTAINER_HID, container_uid))
1121			return 0;
1122
1123		acpi_dev = acpi_dev_parent(acpi_dev);
1124	}
1125
1126	return -ENODEV;
1127}
1128
1129static int arm_cspmu_acpi_get_cpus(struct arm_cspmu *cspmu)
1130{
1131	struct acpi_apmt_node *apmt_node;
1132	int affinity_flag;
1133	int cpu;
1134
1135	apmt_node = arm_cspmu_apmt_node(cspmu->dev);
1136	affinity_flag = apmt_node->flags & ACPI_APMT_FLAGS_AFFINITY;
1137
1138	if (affinity_flag == ACPI_APMT_FLAGS_AFFINITY_PROC) {
1139		for_each_possible_cpu(cpu) {
1140			if (apmt_node->proc_affinity ==
1141			    get_acpi_id_for_cpu(cpu)) {
1142				cpumask_set_cpu(cpu, &cspmu->associated_cpus);
1143				break;
1144			}
1145		}
1146	} else {
1147		for_each_possible_cpu(cpu) {
1148			if (arm_cspmu_find_cpu_container(
1149				    cpu, apmt_node->proc_affinity))
1150				continue;
1151
1152			cpumask_set_cpu(cpu, &cspmu->associated_cpus);
1153		}
1154	}
1155
1156	if (cpumask_empty(&cspmu->associated_cpus)) {
1157		dev_dbg(cspmu->dev, "No cpu associated with the PMU\n");
1158		return -ENODEV;
1159	}
1160
1161	return 0;
1162}
1163#else
1164static int arm_cspmu_acpi_get_cpus(struct arm_cspmu *cspmu)
1165{
1166	return -ENODEV;
1167}
1168#endif
1169
1170static int arm_cspmu_get_cpus(struct arm_cspmu *cspmu)
1171{
1172	return arm_cspmu_acpi_get_cpus(cspmu);
1173}
1174
1175static int arm_cspmu_register_pmu(struct arm_cspmu *cspmu)
1176{
1177	int ret, capabilities;
1178	struct attribute_group **attr_groups;
1179
1180	attr_groups = arm_cspmu_alloc_attr_group(cspmu);
1181	if (!attr_groups)
1182		return -ENOMEM;
1183
1184	ret = cpuhp_state_add_instance(arm_cspmu_cpuhp_state,
1185				       &cspmu->cpuhp_node);
1186	if (ret)
1187		return ret;
1188
1189	capabilities = PERF_PMU_CAP_NO_EXCLUDE;
1190	if (cspmu->irq == 0)
1191		capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1192
1193	cspmu->pmu = (struct pmu){
1194		.task_ctx_nr	= perf_invalid_context,
1195		.module		= cspmu->impl.module,
1196		.pmu_enable	= arm_cspmu_enable,
1197		.pmu_disable	= arm_cspmu_disable,
1198		.event_init	= arm_cspmu_event_init,
1199		.add		= arm_cspmu_add,
1200		.del		= arm_cspmu_del,
1201		.start		= arm_cspmu_start,
1202		.stop		= arm_cspmu_stop,
1203		.read		= arm_cspmu_read,
1204		.attr_groups	= (const struct attribute_group **)attr_groups,
1205		.capabilities	= capabilities,
1206	};
1207
1208	/* Hardware counter init */
1209	arm_cspmu_stop_counters(cspmu);
1210	arm_cspmu_reset_counters(cspmu);
1211
1212	ret = perf_pmu_register(&cspmu->pmu, cspmu->name, -1);
1213	if (ret) {
1214		cpuhp_state_remove_instance(arm_cspmu_cpuhp_state,
1215					    &cspmu->cpuhp_node);
1216	}
1217
1218	return ret;
1219}
1220
1221static int arm_cspmu_device_probe(struct platform_device *pdev)
1222{
1223	int ret;
1224	struct arm_cspmu *cspmu;
1225
1226	cspmu = arm_cspmu_alloc(pdev);
1227	if (!cspmu)
1228		return -ENOMEM;
1229
1230	ret = arm_cspmu_init_mmio(cspmu);
1231	if (ret)
1232		return ret;
1233
1234	ret = arm_cspmu_request_irq(cspmu);
1235	if (ret)
1236		return ret;
1237
1238	ret = arm_cspmu_get_cpus(cspmu);
1239	if (ret)
1240		return ret;
1241
1242	ret = arm_cspmu_init_impl_ops(cspmu);
1243	if (ret)
1244		return ret;
1245
1246	ret = arm_cspmu_register_pmu(cspmu);
1247
1248	/* Matches arm_cspmu_init_impl_ops() above. */
1249	if (cspmu->impl.module != THIS_MODULE)
1250		module_put(cspmu->impl.module);
1251
1252	return ret;
1253}
1254
1255static int arm_cspmu_device_remove(struct platform_device *pdev)
1256{
1257	struct arm_cspmu *cspmu = platform_get_drvdata(pdev);
1258
1259	perf_pmu_unregister(&cspmu->pmu);
1260	cpuhp_state_remove_instance(arm_cspmu_cpuhp_state, &cspmu->cpuhp_node);
1261
1262	return 0;
1263}
1264
1265static const struct platform_device_id arm_cspmu_id[] = {
1266	{DRVNAME, 0},
1267	{ },
1268};
1269MODULE_DEVICE_TABLE(platform, arm_cspmu_id);
1270
1271static struct platform_driver arm_cspmu_driver = {
1272	.driver = {
1273			.name = DRVNAME,
1274			.suppress_bind_attrs = true,
1275		},
1276	.probe = arm_cspmu_device_probe,
1277	.remove = arm_cspmu_device_remove,
1278	.id_table = arm_cspmu_id,
1279};
1280
1281static void arm_cspmu_set_active_cpu(int cpu, struct arm_cspmu *cspmu)
1282{
1283	cpumask_set_cpu(cpu, &cspmu->active_cpu);
1284	if (cspmu->irq)
1285		WARN_ON(irq_set_affinity(cspmu->irq, &cspmu->active_cpu));
1286}
1287
1288static int arm_cspmu_cpu_online(unsigned int cpu, struct hlist_node *node)
1289{
1290	struct arm_cspmu *cspmu =
1291		hlist_entry_safe(node, struct arm_cspmu, cpuhp_node);
1292
1293	if (!cpumask_test_cpu(cpu, &cspmu->associated_cpus))
1294		return 0;
1295
1296	/* If the PMU is already managed, there is nothing to do */
1297	if (!cpumask_empty(&cspmu->active_cpu))
1298		return 0;
1299
1300	/* Use this CPU for event counting */
1301	arm_cspmu_set_active_cpu(cpu, cspmu);
1302
1303	return 0;
1304}
1305
1306static int arm_cspmu_cpu_teardown(unsigned int cpu, struct hlist_node *node)
1307{
1308	int dst;
1309	struct cpumask online_supported;
1310
1311	struct arm_cspmu *cspmu =
1312		hlist_entry_safe(node, struct arm_cspmu, cpuhp_node);
1313
1314	/* Nothing to do if this CPU doesn't own the PMU */
1315	if (!cpumask_test_and_clear_cpu(cpu, &cspmu->active_cpu))
1316		return 0;
1317
1318	/* Choose a new CPU to migrate ownership of the PMU to */
1319	cpumask_and(&online_supported, &cspmu->associated_cpus,
1320		    cpu_online_mask);
1321	dst = cpumask_any_but(&online_supported, cpu);
1322	if (dst >= nr_cpu_ids)
1323		return 0;
1324
1325	/* Use this CPU for event counting */
1326	perf_pmu_migrate_context(&cspmu->pmu, cpu, dst);
1327	arm_cspmu_set_active_cpu(dst, cspmu);
1328
1329	return 0;
1330}
1331
1332static int __init arm_cspmu_init(void)
1333{
1334	int ret;
1335
1336	ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN,
1337					"perf/arm/cspmu:online",
1338					arm_cspmu_cpu_online,
1339					arm_cspmu_cpu_teardown);
1340	if (ret < 0)
1341		return ret;
1342	arm_cspmu_cpuhp_state = ret;
1343	return platform_driver_register(&arm_cspmu_driver);
1344}
1345
1346static void __exit arm_cspmu_exit(void)
1347{
1348	platform_driver_unregister(&arm_cspmu_driver);
1349	cpuhp_remove_multi_state(arm_cspmu_cpuhp_state);
1350}
1351
1352int arm_cspmu_impl_register(const struct arm_cspmu_impl_match *impl_match)
1353{
1354	struct arm_cspmu_impl_match *match;
1355	int ret = 0;
1356
1357	match = arm_cspmu_impl_match_get(impl_match->pmiidr_val);
1358
1359	if (match) {
1360		mutex_lock(&arm_cspmu_lock);
1361
1362		if (!match->impl_init_ops) {
1363			match->module = impl_match->module;
1364			match->impl_init_ops = impl_match->impl_init_ops;
1365		} else {
1366			/* Broken match table may contain non-unique entries */
1367			WARN(1, "arm_cspmu backend already registered for module: %s, pmiidr: 0x%x, mask: 0x%x\n",
1368				match->module_name,
1369				match->pmiidr_val,
1370				match->pmiidr_mask);
1371
1372			ret = -EINVAL;
1373		}
1374
1375		mutex_unlock(&arm_cspmu_lock);
1376
1377		if (!ret)
1378			ret = driver_attach(&arm_cspmu_driver.driver);
1379	} else {
1380		pr_err("arm_cspmu reg failed, unable to find a match for pmiidr: 0x%x\n",
1381			impl_match->pmiidr_val);
1382
1383		ret = -EINVAL;
1384	}
1385
1386	return ret;
1387}
1388EXPORT_SYMBOL_GPL(arm_cspmu_impl_register);
1389
1390static int arm_cspmu_match_device(struct device *dev, const void *match)
1391{
1392	struct arm_cspmu *cspmu = platform_get_drvdata(to_platform_device(dev));
1393
1394	return (cspmu && cspmu->impl.match == match) ? 1 : 0;
1395}
1396
1397void arm_cspmu_impl_unregister(const struct arm_cspmu_impl_match *impl_match)
1398{
1399	struct device *dev;
1400	struct arm_cspmu_impl_match *match;
1401
1402	match = arm_cspmu_impl_match_get(impl_match->pmiidr_val);
1403
1404	if (WARN_ON(!match))
1405		return;
1406
1407	/* Unbind the driver from all matching backend devices. */
1408	while ((dev = driver_find_device(&arm_cspmu_driver.driver, NULL,
1409			match, arm_cspmu_match_device)))
1410		device_release_driver(dev);
1411
1412	mutex_lock(&arm_cspmu_lock);
1413
1414	match->module = NULL;
1415	match->impl_init_ops = NULL;
1416
1417	mutex_unlock(&arm_cspmu_lock);
1418}
1419EXPORT_SYMBOL_GPL(arm_cspmu_impl_unregister);
1420
1421module_init(arm_cspmu_init);
1422module_exit(arm_cspmu_exit);
1423
1424MODULE_LICENSE("GPL v2");