Linux Audio

Check our new training course

Loading...
v6.8
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/*------------------------------------------------------------------------
   3 . smc91x.h - macros for SMSC's 91C9x/91C1xx single-chip Ethernet device.
   4 .
   5 . Copyright (C) 1996 by Erik Stahlman
   6 . Copyright (C) 2001 Standard Microsystems Corporation
   7 .	Developed by Simple Network Magic Corporation
   8 . Copyright (C) 2003 Monta Vista Software, Inc.
   9 .	Unified SMC91x driver by Nicolas Pitre
  10 .
 
 
 
 
 
 
 
 
 
 
 
 
  11 .
  12 . Information contained in this file was obtained from the LAN91C111
  13 . manual from SMC.  To get a copy, if you really want one, you can find
  14 . information under www.smsc.com.
  15 .
  16 . Authors
  17 .	Erik Stahlman		<erik@vt.edu>
  18 .	Daris A Nevil		<dnevil@snmc.com>
  19 .	Nicolas Pitre 		<nico@fluxnic.net>
  20 .
  21 ---------------------------------------------------------------------------*/
  22#ifndef _SMC91X_H_
  23#define _SMC91X_H_
  24
  25#include <linux/dmaengine.h>
  26#include <linux/smc91x.h>
  27
  28/*
  29 * Any 16-bit access is performed with two 8-bit accesses if the hardware
  30 * can't do it directly. Most registers are 16-bit so those are mandatory.
  31 */
  32#define SMC_outw_b(x, a, r)						\
  33	do {								\
  34		unsigned int __val16 = (x);				\
  35		unsigned int __reg = (r);				\
  36		SMC_outb(__val16, a, __reg);				\
  37		SMC_outb(__val16 >> 8, a, __reg + (1 << SMC_IO_SHIFT));	\
  38	} while (0)
  39
  40#define SMC_inw_b(a, r)							\
  41	({								\
  42		unsigned int __val16;					\
  43		unsigned int __reg = r;					\
  44		__val16  = SMC_inb(a, __reg);				\
  45		__val16 |= SMC_inb(a, __reg + (1 << SMC_IO_SHIFT)) << 8; \
  46		__val16;						\
  47	})
  48
  49/*
  50 * Define your architecture specific bus configuration parameters here.
  51 */
  52
  53#if defined(CONFIG_ARM)
  54
  55#include <asm/mach-types.h>
  56
  57/* Now the bus width is specified in the platform data
  58 * pretend here to support all I/O access types
  59 */
  60#define SMC_CAN_USE_8BIT	1
  61#define SMC_CAN_USE_16BIT	1
  62#define SMC_CAN_USE_32BIT	1
  63#define SMC_NOWAIT		1
  64
  65#define SMC_IO_SHIFT		(lp->io_shift)
  66
  67#define SMC_inb(a, r)		readb((a) + (r))
  68#define SMC_inw(a, r)							\
  69	({								\
  70		unsigned int __smc_r = r;				\
  71		SMC_16BIT(lp) ? readw((a) + __smc_r) :			\
  72		SMC_8BIT(lp) ? SMC_inw_b(a, __smc_r) :			\
  73		({ BUG(); 0; });					\
  74	})
  75
  76#define SMC_inl(a, r)		readl((a) + (r))
  77#define SMC_outb(v, a, r)	writeb(v, (a) + (r))
  78#define SMC_outw(lp, v, a, r)						\
  79	do {								\
  80		unsigned int __v = v, __smc_r = r;			\
  81		if (SMC_16BIT(lp))					\
  82			__SMC_outw(lp, __v, a, __smc_r);		\
  83		else if (SMC_8BIT(lp))					\
  84			SMC_outw_b(__v, a, __smc_r);			\
  85		else							\
  86			BUG();						\
  87	} while (0)
  88
  89#define SMC_outl(v, a, r)	writel(v, (a) + (r))
  90#define SMC_insb(a, r, p, l)	readsb((a) + (r), p, l)
  91#define SMC_outsb(a, r, p, l)	writesb((a) + (r), p, l)
  92#define SMC_insw(a, r, p, l)	readsw((a) + (r), p, l)
  93#define SMC_outsw(a, r, p, l)	writesw((a) + (r), p, l)
  94#define SMC_insl(a, r, p, l)	readsl((a) + (r), p, l)
  95#define SMC_outsl(a, r, p, l)	writesl((a) + (r), p, l)
  96#define SMC_IRQ_FLAGS		(-1)	/* from resource */
  97
  98/* We actually can't write halfwords properly if not word aligned */
  99static inline void _SMC_outw_align4(u16 val, void __iomem *ioaddr, int reg,
 100				    bool use_align4_workaround)
 101{
 102	if (use_align4_workaround) {
 
 103		unsigned int v = val << 16;
 104		v |= readl(ioaddr + (reg & ~2)) & 0xffff;
 105		writel(v, ioaddr + (reg & ~2));
 106	} else {
 107		writew(val, ioaddr + reg);
 108	}
 109}
 110
 111#define __SMC_outw(lp, v, a, r)						\
 112	_SMC_outw_align4((v), (a), (r),					\
 113			 IS_BUILTIN(CONFIG_ARCH_PXA) && ((r) & 2) &&	\
 114			 (lp)->cfg.pxa_u16_align4)
 115
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 116
 117#elif defined(CONFIG_ATARI)
 118
 119#define SMC_CAN_USE_8BIT        1
 120#define SMC_CAN_USE_16BIT       1
 121#define SMC_CAN_USE_32BIT       1
 122#define SMC_NOWAIT              1
 123
 124#define SMC_inb(a, r)           readb((a) + (r))
 125#define SMC_inw(a, r)           readw((a) + (r))
 126#define SMC_inl(a, r)           readl((a) + (r))
 127#define SMC_outb(v, a, r)       writeb(v, (a) + (r))
 128#define SMC_outw(lp, v, a, r)   writew(v, (a) + (r))
 129#define SMC_outl(v, a, r)       writel(v, (a) + (r))
 130#define SMC_insw(a, r, p, l)    readsw((a) + (r), p, l)
 131#define SMC_outsw(a, r, p, l)   writesw((a) + (r), p, l)
 132#define SMC_insl(a, r, p, l)    readsl((a) + (r), p, l)
 133#define SMC_outsl(a, r, p, l)   writesl((a) + (r), p, l)
 134
 135#define RPC_LSA_DEFAULT         RPC_LED_100_10
 136#define RPC_LSB_DEFAULT         RPC_LED_TX_RX
 137
 138#elif defined(CONFIG_COLDFIRE)
 139
 140#define SMC_CAN_USE_8BIT	0
 141#define SMC_CAN_USE_16BIT	1
 142#define SMC_CAN_USE_32BIT	0
 143#define SMC_NOWAIT		1
 144
 145static inline void mcf_insw(void *a, unsigned char *p, int l)
 146{
 147	u16 *wp = (u16 *) p;
 148	while (l-- > 0)
 149		*wp++ = readw(a);
 150}
 151
 152static inline void mcf_outsw(void *a, unsigned char *p, int l)
 153{
 154	u16 *wp = (u16 *) p;
 155	while (l-- > 0)
 156		writew(*wp++, a);
 157}
 158
 159#define SMC_inw(a, r)		_swapw(readw((a) + (r)))
 160#define SMC_outw(lp, v, a, r)	writew(_swapw(v), (a) + (r))
 161#define SMC_insw(a, r, p, l)	mcf_insw(a + r, p, l)
 162#define SMC_outsw(a, r, p, l)	mcf_outsw(a + r, p, l)
 163
 164#define SMC_IRQ_FLAGS		0
 165
 
 
 
 
 
 
 
 
 
 
 
 166#else
 167
 168/*
 169 * Default configuration
 170 */
 171
 172#define SMC_CAN_USE_8BIT	1
 173#define SMC_CAN_USE_16BIT	1
 174#define SMC_CAN_USE_32BIT	1
 175#define SMC_NOWAIT		1
 176
 177#define SMC_IO_SHIFT		(lp->io_shift)
 178
 179#define SMC_inb(a, r)		ioread8((a) + (r))
 180#define SMC_inw(a, r)		ioread16((a) + (r))
 181#define SMC_inl(a, r)		ioread32((a) + (r))
 182#define SMC_outb(v, a, r)	iowrite8(v, (a) + (r))
 183#define SMC_outw(lp, v, a, r)	iowrite16(v, (a) + (r))
 184#define SMC_outl(v, a, r)	iowrite32(v, (a) + (r))
 185#define SMC_insw(a, r, p, l)	ioread16_rep((a) + (r), p, l)
 186#define SMC_outsw(a, r, p, l)	iowrite16_rep((a) + (r), p, l)
 187#define SMC_insl(a, r, p, l)	ioread32_rep((a) + (r), p, l)
 188#define SMC_outsl(a, r, p, l)	iowrite32_rep((a) + (r), p, l)
 189
 190#define RPC_LSA_DEFAULT		RPC_LED_100_10
 191#define RPC_LSB_DEFAULT		RPC_LED_TX_RX
 192
 193#endif
 194
 195
 196/* store this information for the driver.. */
 197struct smc_local {
 198	/*
 199	 * If I have to wait until memory is available to send a
 200	 * packet, I will store the skbuff here, until I get the
 201	 * desired memory.  Then, I'll send it out and free it.
 202	 */
 203	struct sk_buff *pending_tx_skb;
 204	struct tasklet_struct tx_task;
 205
 206	struct gpio_desc *power_gpio;
 207	struct gpio_desc *reset_gpio;
 208
 209	/* version/revision of the SMC91x chip */
 210	int	version;
 211
 212	/* Contains the current active transmission mode */
 213	int	tcr_cur_mode;
 214
 215	/* Contains the current active receive mode */
 216	int	rcr_cur_mode;
 217
 218	/* Contains the current active receive/phy mode */
 219	int	rpc_cur_mode;
 220	int	ctl_rfduplx;
 221	int	ctl_rspeed;
 222
 223	u32	msg_enable;
 224	u32	phy_type;
 225	struct mii_if_info mii;
 226
 227	/* work queue */
 228	struct work_struct phy_configure;
 229	struct net_device *dev;
 230	int	work_pending;
 231
 232	spinlock_t lock;
 233
 234#ifdef CONFIG_ARCH_PXA
 235	/* DMA needs the physical address of the chip */
 236	u_long physaddr;
 237	struct device *device;
 238#endif
 239	struct dma_chan *dma_chan;
 240	void __iomem *base;
 241	void __iomem *datacs;
 242
 243	/* the low address lines on some platforms aren't connected... */
 244	int	io_shift;
 245	/* on some platforms a u16 write must be 4-bytes aligned */
 246	bool	half_word_align4;
 247
 248	struct smc91x_platdata cfg;
 249};
 250
 251#define SMC_8BIT(p)	((p)->cfg.flags & SMC91X_USE_8BIT)
 252#define SMC_16BIT(p)	((p)->cfg.flags & SMC91X_USE_16BIT)
 253#define SMC_32BIT(p)	((p)->cfg.flags & SMC91X_USE_32BIT)
 254
 255#ifdef CONFIG_ARCH_PXA
 256/*
 257 * Let's use the DMA engine on the XScale PXA2xx for RX packets. This is
 258 * always happening in irq context so no need to worry about races.  TX is
 259 * different and probably not worth it for that reason, and not as critical
 260 * as RX which can overrun memory and lose packets.
 261 */
 262#include <linux/dma-mapping.h>
 
 263
 264#ifdef SMC_insl
 265#undef SMC_insl
 266#define SMC_insl(a, r, p, l) \
 267	smc_pxa_dma_insl(a, lp, r, dev->dma, p, l)
 268static inline void
 269smc_pxa_dma_inpump(struct smc_local *lp, u_char *buf, int len)
 270{
 271	dma_addr_t dmabuf;
 272	struct dma_async_tx_descriptor *tx;
 273	dma_cookie_t cookie;
 274	enum dma_status status;
 275	struct dma_tx_state state;
 276
 277	dmabuf = dma_map_single(lp->device, buf, len, DMA_FROM_DEVICE);
 278	tx = dmaengine_prep_slave_single(lp->dma_chan, dmabuf, len,
 279					 DMA_DEV_TO_MEM, 0);
 280	if (tx) {
 281		cookie = dmaengine_submit(tx);
 282		dma_async_issue_pending(lp->dma_chan);
 283		do {
 284			status = dmaengine_tx_status(lp->dma_chan, cookie,
 285						     &state);
 286			cpu_relax();
 287		} while (status != DMA_COMPLETE && status != DMA_ERROR &&
 288			 state.residue);
 289		dmaengine_terminate_all(lp->dma_chan);
 290	}
 291	dma_unmap_single(lp->device, dmabuf, len, DMA_FROM_DEVICE);
 292}
 293
 294static inline void
 295smc_pxa_dma_insl(void __iomem *ioaddr, struct smc_local *lp, int reg, int dma,
 296		 u_char *buf, int len)
 297{
 298	struct dma_slave_config	config;
 299	int ret;
 300
 301	/* fallback if no DMA available */
 302	if (!lp->dma_chan) {
 303		readsl(ioaddr + reg, buf, len);
 304		return;
 305	}
 306
 307	/* 64 bit alignment is required for memory to memory DMA */
 308	if ((long)buf & 4) {
 309		*((u32 *)buf) = SMC_inl(ioaddr, reg);
 310		buf += 4;
 311		len--;
 312	}
 313
 314	memset(&config, 0, sizeof(config));
 315	config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 316	config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 317	config.src_addr = lp->physaddr + reg;
 318	config.dst_addr = lp->physaddr + reg;
 319	config.src_maxburst = 32;
 320	config.dst_maxburst = 32;
 321	ret = dmaengine_slave_config(lp->dma_chan, &config);
 322	if (ret) {
 323		dev_err(lp->device, "dma channel configuration failed: %d\n",
 324			ret);
 325		return;
 326	}
 327
 328	len *= 4;
 329	smc_pxa_dma_inpump(lp, buf, len);
 330}
 331#endif
 332
 333#ifdef SMC_insw
 334#undef SMC_insw
 335#define SMC_insw(a, r, p, l) \
 336	smc_pxa_dma_insw(a, lp, r, dev->dma, p, l)
 337static inline void
 338smc_pxa_dma_insw(void __iomem *ioaddr, struct smc_local *lp, int reg, int dma,
 339		 u_char *buf, int len)
 340{
 341	struct dma_slave_config	config;
 342	int ret;
 343
 344	/* fallback if no DMA available */
 345	if (!lp->dma_chan) {
 346		readsw(ioaddr + reg, buf, len);
 347		return;
 348	}
 349
 350	/* 64 bit alignment is required for memory to memory DMA */
 351	while ((long)buf & 6) {
 352		*((u16 *)buf) = SMC_inw(ioaddr, reg);
 353		buf += 2;
 354		len--;
 355	}
 356
 357	memset(&config, 0, sizeof(config));
 358	config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 359	config.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 360	config.src_addr = lp->physaddr + reg;
 361	config.dst_addr = lp->physaddr + reg;
 362	config.src_maxburst = 32;
 363	config.dst_maxburst = 32;
 364	ret = dmaengine_slave_config(lp->dma_chan, &config);
 365	if (ret) {
 366		dev_err(lp->device, "dma channel configuration failed: %d\n",
 367			ret);
 368		return;
 369	}
 370
 371	len *= 2;
 372	smc_pxa_dma_inpump(lp, buf, len);
 373}
 374#endif
 375
 376#endif  /* CONFIG_ARCH_PXA */
 377
 378
 379/*
 380 * Everything a particular hardware setup needs should have been defined
 381 * at this point.  Add stubs for the undefined cases, mainly to avoid
 382 * compilation warnings since they'll be optimized away, or to prevent buggy
 383 * use of them.
 384 */
 385
 386#if ! SMC_CAN_USE_32BIT
 387#define SMC_inl(ioaddr, reg)		({ BUG(); 0; })
 388#define SMC_outl(x, ioaddr, reg)	BUG()
 389#define SMC_insl(a, r, p, l)		BUG()
 390#define SMC_outsl(a, r, p, l)		BUG()
 391#endif
 392
 393#if !defined(SMC_insl) || !defined(SMC_outsl)
 394#define SMC_insl(a, r, p, l)		BUG()
 395#define SMC_outsl(a, r, p, l)		BUG()
 396#endif
 397
 398#if ! SMC_CAN_USE_16BIT
 399
 400#define SMC_outw(lp, x, ioaddr, reg)	SMC_outw_b(x, ioaddr, reg)
 401#define SMC_inw(ioaddr, reg)		SMC_inw_b(ioaddr, reg)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 402#define SMC_insw(a, r, p, l)		BUG()
 403#define SMC_outsw(a, r, p, l)		BUG()
 404
 405#endif
 406
 407#if !defined(SMC_insw) || !defined(SMC_outsw)
 408#define SMC_insw(a, r, p, l)		BUG()
 409#define SMC_outsw(a, r, p, l)		BUG()
 410#endif
 411
 412#if ! SMC_CAN_USE_8BIT
 413#undef SMC_inb
 414#define SMC_inb(ioaddr, reg)		({ BUG(); 0; })
 415#undef SMC_outb
 416#define SMC_outb(x, ioaddr, reg)	BUG()
 417#define SMC_insb(a, r, p, l)		BUG()
 418#define SMC_outsb(a, r, p, l)		BUG()
 419#endif
 420
 421#if !defined(SMC_insb) || !defined(SMC_outsb)
 422#define SMC_insb(a, r, p, l)		BUG()
 423#define SMC_outsb(a, r, p, l)		BUG()
 424#endif
 425
 426#ifndef SMC_CAN_USE_DATACS
 427#define SMC_CAN_USE_DATACS	0
 428#endif
 429
 430#ifndef SMC_IO_SHIFT
 431#define SMC_IO_SHIFT	0
 432#endif
 433
 434#ifndef	SMC_IRQ_FLAGS
 435#define	SMC_IRQ_FLAGS		IRQF_TRIGGER_RISING
 436#endif
 437
 438#ifndef SMC_INTERRUPT_PREAMBLE
 439#define SMC_INTERRUPT_PREAMBLE
 440#endif
 441
 442
 443/* Because of bank switching, the LAN91x uses only 16 I/O ports */
 444#define SMC_IO_EXTENT	(16 << SMC_IO_SHIFT)
 445#define SMC_DATA_EXTENT (4)
 446
 447/*
 448 . Bank Select Register:
 449 .
 450 .		yyyy yyyy 0000 00xx
 451 .		xx 		= bank number
 452 .		yyyy yyyy	= 0x33, for identification purposes.
 453*/
 454#define BANK_SELECT		(14 << SMC_IO_SHIFT)
 455
 456
 457// Transmit Control Register
 458/* BANK 0  */
 459#define TCR_REG(lp) 	SMC_REG(lp, 0x0000, 0)
 460#define TCR_ENABLE	0x0001	// When 1 we can transmit
 461#define TCR_LOOP	0x0002	// Controls output pin LBK
 462#define TCR_FORCOL	0x0004	// When 1 will force a collision
 463#define TCR_PAD_EN	0x0080	// When 1 will pad tx frames < 64 bytes w/0
 464#define TCR_NOCRC	0x0100	// When 1 will not append CRC to tx frames
 465#define TCR_MON_CSN	0x0400	// When 1 tx monitors carrier
 466#define TCR_FDUPLX    	0x0800  // When 1 enables full duplex operation
 467#define TCR_STP_SQET	0x1000	// When 1 stops tx if Signal Quality Error
 468#define TCR_EPH_LOOP	0x2000	// When 1 enables EPH block loopback
 469#define TCR_SWFDUP	0x8000	// When 1 enables Switched Full Duplex mode
 470
 471#define TCR_CLEAR	0	/* do NOTHING */
 472/* the default settings for the TCR register : */
 473#define TCR_DEFAULT	(TCR_ENABLE | TCR_PAD_EN)
 474
 475
 476// EPH Status Register
 477/* BANK 0  */
 478#define EPH_STATUS_REG(lp)	SMC_REG(lp, 0x0002, 0)
 479#define ES_TX_SUC	0x0001	// Last TX was successful
 480#define ES_SNGL_COL	0x0002	// Single collision detected for last tx
 481#define ES_MUL_COL	0x0004	// Multiple collisions detected for last tx
 482#define ES_LTX_MULT	0x0008	// Last tx was a multicast
 483#define ES_16COL	0x0010	// 16 Collisions Reached
 484#define ES_SQET		0x0020	// Signal Quality Error Test
 485#define ES_LTXBRD	0x0040	// Last tx was a broadcast
 486#define ES_TXDEFR	0x0080	// Transmit Deferred
 487#define ES_LATCOL	0x0200	// Late collision detected on last tx
 488#define ES_LOSTCARR	0x0400	// Lost Carrier Sense
 489#define ES_EXC_DEF	0x0800	// Excessive Deferral
 490#define ES_CTR_ROL	0x1000	// Counter Roll Over indication
 491#define ES_LINK_OK	0x4000	// Driven by inverted value of nLNK pin
 492#define ES_TXUNRN	0x8000	// Tx Underrun
 493
 494
 495// Receive Control Register
 496/* BANK 0  */
 497#define RCR_REG(lp)		SMC_REG(lp, 0x0004, 0)
 498#define RCR_RX_ABORT	0x0001	// Set if a rx frame was aborted
 499#define RCR_PRMS	0x0002	// Enable promiscuous mode
 500#define RCR_ALMUL	0x0004	// When set accepts all multicast frames
 501#define RCR_RXEN	0x0100	// IFF this is set, we can receive packets
 502#define RCR_STRIP_CRC	0x0200	// When set strips CRC from rx packets
 503#define RCR_ABORT_ENB	0x0200	// When set will abort rx on collision
 504#define RCR_FILT_CAR	0x0400	// When set filters leading 12 bit s of carrier
 505#define RCR_SOFTRST	0x8000 	// resets the chip
 506
 507/* the normal settings for the RCR register : */
 508#define RCR_DEFAULT	(RCR_STRIP_CRC | RCR_RXEN)
 509#define RCR_CLEAR	0x0	// set it to a base state
 510
 511
 512// Counter Register
 513/* BANK 0  */
 514#define COUNTER_REG(lp)	SMC_REG(lp, 0x0006, 0)
 515
 516
 517// Memory Information Register
 518/* BANK 0  */
 519#define MIR_REG(lp)		SMC_REG(lp, 0x0008, 0)
 520
 521
 522// Receive/Phy Control Register
 523/* BANK 0  */
 524#define RPC_REG(lp)		SMC_REG(lp, 0x000A, 0)
 525#define RPC_SPEED	0x2000	// When 1 PHY is in 100Mbps mode.
 526#define RPC_DPLX	0x1000	// When 1 PHY is in Full-Duplex Mode
 527#define RPC_ANEG	0x0800	// When 1 PHY is in Auto-Negotiate Mode
 528#define RPC_LSXA_SHFT	5	// Bits to shift LS2A,LS1A,LS0A to lsb
 529#define RPC_LSXB_SHFT	2	// Bits to get LS2B,LS1B,LS0B to lsb
 530
 531#ifndef RPC_LSA_DEFAULT
 532#define RPC_LSA_DEFAULT	RPC_LED_100
 533#endif
 534#ifndef RPC_LSB_DEFAULT
 535#define RPC_LSB_DEFAULT RPC_LED_FD
 536#endif
 537
 538#define RPC_DEFAULT (RPC_ANEG | RPC_SPEED | RPC_DPLX)
 539
 540
 541/* Bank 0 0x0C is reserved */
 542
 543// Bank Select Register
 544/* All Banks */
 545#define BSR_REG		0x000E
 546
 547
 548// Configuration Reg
 549/* BANK 1 */
 550#define CONFIG_REG(lp)	SMC_REG(lp, 0x0000,	1)
 551#define CONFIG_EXT_PHY	0x0200	// 1=external MII, 0=internal Phy
 552#define CONFIG_GPCNTRL	0x0400	// Inverse value drives pin nCNTRL
 553#define CONFIG_NO_WAIT	0x1000	// When 1 no extra wait states on ISA bus
 554#define CONFIG_EPH_POWER_EN 0x8000 // When 0 EPH is placed into low power mode.
 555
 556// Default is powered-up, Internal Phy, Wait States, and pin nCNTRL=low
 557#define CONFIG_DEFAULT	(CONFIG_EPH_POWER_EN)
 558
 559
 560// Base Address Register
 561/* BANK 1 */
 562#define BASE_REG(lp)	SMC_REG(lp, 0x0002, 1)
 563
 564
 565// Individual Address Registers
 566/* BANK 1 */
 567#define ADDR0_REG(lp)	SMC_REG(lp, 0x0004, 1)
 568#define ADDR1_REG(lp)	SMC_REG(lp, 0x0006, 1)
 569#define ADDR2_REG(lp)	SMC_REG(lp, 0x0008, 1)
 570
 571
 572// General Purpose Register
 573/* BANK 1 */
 574#define GP_REG(lp)		SMC_REG(lp, 0x000A, 1)
 575
 576
 577// Control Register
 578/* BANK 1 */
 579#define CTL_REG(lp)		SMC_REG(lp, 0x000C, 1)
 580#define CTL_RCV_BAD	0x4000 // When 1 bad CRC packets are received
 581#define CTL_AUTO_RELEASE 0x0800 // When 1 tx pages are released automatically
 582#define CTL_LE_ENABLE	0x0080 // When 1 enables Link Error interrupt
 583#define CTL_CR_ENABLE	0x0040 // When 1 enables Counter Rollover interrupt
 584#define CTL_TE_ENABLE	0x0020 // When 1 enables Transmit Error interrupt
 585#define CTL_EEPROM_SELECT 0x0004 // Controls EEPROM reload & store
 586#define CTL_RELOAD	0x0002 // When set reads EEPROM into registers
 587#define CTL_STORE	0x0001 // When set stores registers into EEPROM
 588
 589
 590// MMU Command Register
 591/* BANK 2 */
 592#define MMU_CMD_REG(lp)	SMC_REG(lp, 0x0000, 2)
 593#define MC_BUSY		1	// When 1 the last release has not completed
 594#define MC_NOP		(0<<5)	// No Op
 595#define MC_ALLOC	(1<<5) 	// OR with number of 256 byte packets
 596#define MC_RESET	(2<<5)	// Reset MMU to initial state
 597#define MC_REMOVE	(3<<5) 	// Remove the current rx packet
 598#define MC_RELEASE  	(4<<5) 	// Remove and release the current rx packet
 599#define MC_FREEPKT  	(5<<5) 	// Release packet in PNR register
 600#define MC_ENQUEUE	(6<<5)	// Enqueue the packet for transmit
 601#define MC_RSTTXFIFO	(7<<5)	// Reset the TX FIFOs
 602
 603
 604// Packet Number Register
 605/* BANK 2 */
 606#define PN_REG(lp)		SMC_REG(lp, 0x0002, 2)
 607
 608
 609// Allocation Result Register
 610/* BANK 2 */
 611#define AR_REG(lp)		SMC_REG(lp, 0x0003, 2)
 612#define AR_FAILED	0x80	// Alocation Failed
 613
 614
 615// TX FIFO Ports Register
 616/* BANK 2 */
 617#define TXFIFO_REG(lp)	SMC_REG(lp, 0x0004, 2)
 618#define TXFIFO_TEMPTY	0x80	// TX FIFO Empty
 619
 620// RX FIFO Ports Register
 621/* BANK 2 */
 622#define RXFIFO_REG(lp)	SMC_REG(lp, 0x0005, 2)
 623#define RXFIFO_REMPTY	0x80	// RX FIFO Empty
 624
 625#define FIFO_REG(lp)	SMC_REG(lp, 0x0004, 2)
 626
 627// Pointer Register
 628/* BANK 2 */
 629#define PTR_REG(lp)		SMC_REG(lp, 0x0006, 2)
 630#define PTR_RCV		0x8000 // 1=Receive area, 0=Transmit area
 631#define PTR_AUTOINC 	0x4000 // Auto increment the pointer on each access
 632#define PTR_READ	0x2000 // When 1 the operation is a read
 633
 634
 635// Data Register
 636/* BANK 2 */
 637#define DATA_REG(lp)	SMC_REG(lp, 0x0008, 2)
 638
 639
 640// Interrupt Status/Acknowledge Register
 641/* BANK 2 */
 642#define INT_REG(lp)		SMC_REG(lp, 0x000C, 2)
 643
 644
 645// Interrupt Mask Register
 646/* BANK 2 */
 647#define IM_REG(lp)		SMC_REG(lp, 0x000D, 2)
 648#define IM_MDINT	0x80 // PHY MI Register 18 Interrupt
 649#define IM_ERCV_INT	0x40 // Early Receive Interrupt
 650#define IM_EPH_INT	0x20 // Set by Ethernet Protocol Handler section
 651#define IM_RX_OVRN_INT	0x10 // Set by Receiver Overruns
 652#define IM_ALLOC_INT	0x08 // Set when allocation request is completed
 653#define IM_TX_EMPTY_INT	0x04 // Set if the TX FIFO goes empty
 654#define IM_TX_INT	0x02 // Transmit Interrupt
 655#define IM_RCV_INT	0x01 // Receive Interrupt
 656
 657
 658// Multicast Table Registers
 659/* BANK 3 */
 660#define MCAST_REG1(lp)	SMC_REG(lp, 0x0000, 3)
 661#define MCAST_REG2(lp)	SMC_REG(lp, 0x0002, 3)
 662#define MCAST_REG3(lp)	SMC_REG(lp, 0x0004, 3)
 663#define MCAST_REG4(lp)	SMC_REG(lp, 0x0006, 3)
 664
 665
 666// Management Interface Register (MII)
 667/* BANK 3 */
 668#define MII_REG(lp)		SMC_REG(lp, 0x0008, 3)
 669#define MII_MSK_CRS100	0x4000 // Disables CRS100 detection during tx half dup
 670#define MII_MDOE	0x0008 // MII Output Enable
 671#define MII_MCLK	0x0004 // MII Clock, pin MDCLK
 672#define MII_MDI		0x0002 // MII Input, pin MDI
 673#define MII_MDO		0x0001 // MII Output, pin MDO
 674
 675
 676// Revision Register
 677/* BANK 3 */
 678/* ( hi: chip id   low: rev # ) */
 679#define REV_REG(lp)		SMC_REG(lp, 0x000A, 3)
 680
 681
 682// Early RCV Register
 683/* BANK 3 */
 684/* this is NOT on SMC9192 */
 685#define ERCV_REG(lp)	SMC_REG(lp, 0x000C, 3)
 686#define ERCV_RCV_DISCRD	0x0080 // When 1 discards a packet being received
 687#define ERCV_THRESHOLD	0x001F // ERCV Threshold Mask
 688
 689
 690// External Register
 691/* BANK 7 */
 692#define EXT_REG(lp)		SMC_REG(lp, 0x0000, 7)
 693
 694
 695#define CHIP_9192	3
 696#define CHIP_9194	4
 697#define CHIP_9195	5
 698#define CHIP_9196	6
 699#define CHIP_91100	7
 700#define CHIP_91100FD	8
 701#define CHIP_91111FD	9
 702
 703static const char * chip_ids[ 16 ] =  {
 704	NULL, NULL, NULL,
 705	/* 3 */ "SMC91C90/91C92",
 706	/* 4 */ "SMC91C94",
 707	/* 5 */ "SMC91C95",
 708	/* 6 */ "SMC91C96",
 709	/* 7 */ "SMC91C100",
 710	/* 8 */ "SMC91C100FD",
 711	/* 9 */ "SMC91C11xFD",
 712	NULL, NULL, NULL,
 713	NULL, NULL, NULL};
 714
 715
 716/*
 717 . Receive status bits
 718*/
 719#define RS_ALGNERR	0x8000
 720#define RS_BRODCAST	0x4000
 721#define RS_BADCRC	0x2000
 722#define RS_ODDFRAME	0x1000
 723#define RS_TOOLONG	0x0800
 724#define RS_TOOSHORT	0x0400
 725#define RS_MULTICAST	0x0001
 726#define RS_ERRORS	(RS_ALGNERR | RS_BADCRC | RS_TOOLONG | RS_TOOSHORT)
 727
 728
 729/*
 730 * PHY IDs
 731 *  LAN83C183 == LAN91C111 Internal PHY
 732 */
 733#define PHY_LAN83C183	0x0016f840
 734#define PHY_LAN83C180	0x02821c50
 735
 736/*
 737 * PHY Register Addresses (LAN91C111 Internal PHY)
 738 *
 739 * Generic PHY registers can be found in <linux/mii.h>
 740 *
 741 * These phy registers are specific to our on-board phy.
 742 */
 743
 744// PHY Configuration Register 1
 745#define PHY_CFG1_REG		0x10
 746#define PHY_CFG1_LNKDIS		0x8000	// 1=Rx Link Detect Function disabled
 747#define PHY_CFG1_XMTDIS		0x4000	// 1=TP Transmitter Disabled
 748#define PHY_CFG1_XMTPDN		0x2000	// 1=TP Transmitter Powered Down
 749#define PHY_CFG1_BYPSCR		0x0400	// 1=Bypass scrambler/descrambler
 750#define PHY_CFG1_UNSCDS		0x0200	// 1=Unscramble Idle Reception Disable
 751#define PHY_CFG1_EQLZR		0x0100	// 1=Rx Equalizer Disabled
 752#define PHY_CFG1_CABLE		0x0080	// 1=STP(150ohm), 0=UTP(100ohm)
 753#define PHY_CFG1_RLVL0		0x0040	// 1=Rx Squelch level reduced by 4.5db
 754#define PHY_CFG1_TLVL_SHIFT	2	// Transmit Output Level Adjust
 755#define PHY_CFG1_TLVL_MASK	0x003C
 756#define PHY_CFG1_TRF_MASK	0x0003	// Transmitter Rise/Fall time
 757
 758
 759// PHY Configuration Register 2
 760#define PHY_CFG2_REG		0x11
 761#define PHY_CFG2_APOLDIS	0x0020	// 1=Auto Polarity Correction disabled
 762#define PHY_CFG2_JABDIS		0x0010	// 1=Jabber disabled
 763#define PHY_CFG2_MREG		0x0008	// 1=Multiple register access (MII mgt)
 764#define PHY_CFG2_INTMDIO	0x0004	// 1=Interrupt signaled with MDIO pulseo
 765
 766// PHY Status Output (and Interrupt status) Register
 767#define PHY_INT_REG		0x12	// Status Output (Interrupt Status)
 768#define PHY_INT_INT		0x8000	// 1=bits have changed since last read
 769#define PHY_INT_LNKFAIL		0x4000	// 1=Link Not detected
 770#define PHY_INT_LOSSSYNC	0x2000	// 1=Descrambler has lost sync
 771#define PHY_INT_CWRD		0x1000	// 1=Invalid 4B5B code detected on rx
 772#define PHY_INT_SSD		0x0800	// 1=No Start Of Stream detected on rx
 773#define PHY_INT_ESD		0x0400	// 1=No End Of Stream detected on rx
 774#define PHY_INT_RPOL		0x0200	// 1=Reverse Polarity detected
 775#define PHY_INT_JAB		0x0100	// 1=Jabber detected
 776#define PHY_INT_SPDDET		0x0080	// 1=100Base-TX mode, 0=10Base-T mode
 777#define PHY_INT_DPLXDET		0x0040	// 1=Device in Full Duplex
 778
 779// PHY Interrupt/Status Mask Register
 780#define PHY_MASK_REG		0x13	// Interrupt Mask
 781// Uses the same bit definitions as PHY_INT_REG
 782
 783
 784/*
 785 * SMC91C96 ethernet config and status registers.
 786 * These are in the "attribute" space.
 787 */
 788#define ECOR			0x8000
 789#define ECOR_RESET		0x80
 790#define ECOR_LEVEL_IRQ		0x40
 791#define ECOR_WR_ATTRIB		0x04
 792#define ECOR_ENABLE		0x01
 793
 794#define ECSR			0x8002
 795#define ECSR_IOIS8		0x20
 796#define ECSR_PWRDWN		0x04
 797#define ECSR_INT		0x02
 798
 799#define ATTRIB_SIZE		((64*1024) << SMC_IO_SHIFT)
 800
 801
 802/*
 803 * Macros to abstract register access according to the data bus
 804 * capabilities.  Please use those and not the in/out primitives.
 805 * Note: the following macros do *not* select the bank -- this must
 806 * be done separately as needed in the main code.  The SMC_REG() macro
 807 * only uses the bank argument for debugging purposes (when enabled).
 808 *
 809 * Note: despite inline functions being safer, everything leading to this
 810 * should preferably be macros to let BUG() display the line number in
 811 * the core source code since we're interested in the top call site
 812 * not in any inline function location.
 813 */
 814
 815#if SMC_DEBUG > 0
 816#define SMC_REG(lp, reg, bank)					\
 817	({								\
 818		int __b = SMC_CURRENT_BANK(lp);			\
 819		if (unlikely((__b & ~0xf0) != (0x3300 | bank))) {	\
 820			pr_err("%s: bank reg screwed (0x%04x)\n",	\
 821			       CARDNAME, __b);				\
 822			BUG();						\
 823		}							\
 824		reg<<SMC_IO_SHIFT;					\
 825	})
 826#else
 827#define SMC_REG(lp, reg, bank)	(reg<<SMC_IO_SHIFT)
 828#endif
 829
 830/*
 831 * Hack Alert: Some setups just can't write 8 or 16 bits reliably when not
 832 * aligned to a 32 bit boundary.  I tell you that does exist!
 833 * Fortunately the affected register accesses can be easily worked around
 834 * since we can write zeroes to the preceding 16 bits without adverse
 835 * effects and use a 32-bit access.
 836 *
 837 * Enforce it on any 32-bit capable setup for now.
 838 */
 839#define SMC_MUST_ALIGN_WRITE(lp)	SMC_32BIT(lp)
 840
 841#define SMC_GET_PN(lp)						\
 842	(SMC_8BIT(lp)	? (SMC_inb(ioaddr, PN_REG(lp)))	\
 843				: (SMC_inw(ioaddr, PN_REG(lp)) & 0xFF))
 844
 845#define SMC_SET_PN(lp, x)						\
 846	do {								\
 847		if (SMC_MUST_ALIGN_WRITE(lp))				\
 848			SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 0, 2));	\
 849		else if (SMC_8BIT(lp))				\
 850			SMC_outb(x, ioaddr, PN_REG(lp));		\
 851		else							\
 852			SMC_outw(lp, x, ioaddr, PN_REG(lp));		\
 853	} while (0)
 854
 855#define SMC_GET_AR(lp)						\
 856	(SMC_8BIT(lp)	? (SMC_inb(ioaddr, AR_REG(lp)))	\
 857				: (SMC_inw(ioaddr, PN_REG(lp)) >> 8))
 858
 859#define SMC_GET_TXFIFO(lp)						\
 860	(SMC_8BIT(lp)	? (SMC_inb(ioaddr, TXFIFO_REG(lp)))	\
 861				: (SMC_inw(ioaddr, TXFIFO_REG(lp)) & 0xFF))
 862
 863#define SMC_GET_RXFIFO(lp)						\
 864	(SMC_8BIT(lp)	? (SMC_inb(ioaddr, RXFIFO_REG(lp)))	\
 865				: (SMC_inw(ioaddr, TXFIFO_REG(lp)) >> 8))
 866
 867#define SMC_GET_INT(lp)						\
 868	(SMC_8BIT(lp)	? (SMC_inb(ioaddr, INT_REG(lp)))	\
 869				: (SMC_inw(ioaddr, INT_REG(lp)) & 0xFF))
 870
 871#define SMC_ACK_INT(lp, x)						\
 872	do {								\
 873		if (SMC_8BIT(lp))					\
 874			SMC_outb(x, ioaddr, INT_REG(lp));		\
 875		else {							\
 876			unsigned long __flags;				\
 877			int __mask;					\
 878			local_irq_save(__flags);			\
 879			__mask = SMC_inw(ioaddr, INT_REG(lp)) & ~0xff; \
 880			SMC_outw(lp, __mask | (x), ioaddr, INT_REG(lp)); \
 881			local_irq_restore(__flags);			\
 882		}							\
 883	} while (0)
 884
 885#define SMC_GET_INT_MASK(lp)						\
 886	(SMC_8BIT(lp)	? (SMC_inb(ioaddr, IM_REG(lp)))	\
 887				: (SMC_inw(ioaddr, INT_REG(lp)) >> 8))
 888
 889#define SMC_SET_INT_MASK(lp, x)					\
 890	do {								\
 891		if (SMC_8BIT(lp))					\
 892			SMC_outb(x, ioaddr, IM_REG(lp));		\
 893		else							\
 894			SMC_outw(lp, (x) << 8, ioaddr, INT_REG(lp));	\
 895	} while (0)
 896
 897#define SMC_CURRENT_BANK(lp)	SMC_inw(ioaddr, BANK_SELECT)
 898
 899#define SMC_SELECT_BANK(lp, x)					\
 900	do {								\
 901		if (SMC_MUST_ALIGN_WRITE(lp))				\
 902			SMC_outl((x)<<16, ioaddr, 12<<SMC_IO_SHIFT);	\
 903		else							\
 904			SMC_outw(lp, x, ioaddr, BANK_SELECT);		\
 905	} while (0)
 906
 907#define SMC_GET_BASE(lp)		SMC_inw(ioaddr, BASE_REG(lp))
 908
 909#define SMC_SET_BASE(lp, x)	SMC_outw(lp, x, ioaddr, BASE_REG(lp))
 910
 911#define SMC_GET_CONFIG(lp)	SMC_inw(ioaddr, CONFIG_REG(lp))
 912
 913#define SMC_SET_CONFIG(lp, x)	SMC_outw(lp, x, ioaddr, CONFIG_REG(lp))
 914
 915#define SMC_GET_COUNTER(lp)	SMC_inw(ioaddr, COUNTER_REG(lp))
 916
 917#define SMC_GET_CTL(lp)		SMC_inw(ioaddr, CTL_REG(lp))
 918
 919#define SMC_SET_CTL(lp, x)	SMC_outw(lp, x, ioaddr, CTL_REG(lp))
 920
 921#define SMC_GET_MII(lp)		SMC_inw(ioaddr, MII_REG(lp))
 922
 923#define SMC_GET_GP(lp)		SMC_inw(ioaddr, GP_REG(lp))
 924
 925#define SMC_SET_GP(lp, x)						\
 926	do {								\
 927		if (SMC_MUST_ALIGN_WRITE(lp))				\
 928			SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 8, 1));	\
 929		else							\
 930			SMC_outw(lp, x, ioaddr, GP_REG(lp));		\
 931	} while (0)
 932
 933#define SMC_SET_MII(lp, x)	SMC_outw(lp, x, ioaddr, MII_REG(lp))
 934
 935#define SMC_GET_MIR(lp)		SMC_inw(ioaddr, MIR_REG(lp))
 936
 937#define SMC_SET_MIR(lp, x)	SMC_outw(lp, x, ioaddr, MIR_REG(lp))
 938
 939#define SMC_GET_MMU_CMD(lp)	SMC_inw(ioaddr, MMU_CMD_REG(lp))
 940
 941#define SMC_SET_MMU_CMD(lp, x)	SMC_outw(lp, x, ioaddr, MMU_CMD_REG(lp))
 942
 943#define SMC_GET_FIFO(lp)	SMC_inw(ioaddr, FIFO_REG(lp))
 944
 945#define SMC_GET_PTR(lp)		SMC_inw(ioaddr, PTR_REG(lp))
 946
 947#define SMC_SET_PTR(lp, x)						\
 948	do {								\
 949		if (SMC_MUST_ALIGN_WRITE(lp))				\
 950			SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 4, 2));	\
 951		else							\
 952			SMC_outw(lp, x, ioaddr, PTR_REG(lp));		\
 953	} while (0)
 954
 955#define SMC_GET_EPH_STATUS(lp)	SMC_inw(ioaddr, EPH_STATUS_REG(lp))
 956
 957#define SMC_GET_RCR(lp)		SMC_inw(ioaddr, RCR_REG(lp))
 958
 959#define SMC_SET_RCR(lp, x)		SMC_outw(lp, x, ioaddr, RCR_REG(lp))
 960
 961#define SMC_GET_REV(lp)		SMC_inw(ioaddr, REV_REG(lp))
 962
 963#define SMC_GET_RPC(lp)		SMC_inw(ioaddr, RPC_REG(lp))
 964
 965#define SMC_SET_RPC(lp, x)						\
 966	do {								\
 967		if (SMC_MUST_ALIGN_WRITE(lp))				\
 968			SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 8, 0));	\
 969		else							\
 970			SMC_outw(lp, x, ioaddr, RPC_REG(lp));		\
 971	} while (0)
 972
 973#define SMC_GET_TCR(lp)		SMC_inw(ioaddr, TCR_REG(lp))
 974
 975#define SMC_SET_TCR(lp, x)	SMC_outw(lp, x, ioaddr, TCR_REG(lp))
 976
 977#ifndef SMC_GET_MAC_ADDR
 978#define SMC_GET_MAC_ADDR(lp, addr)					\
 979	do {								\
 980		unsigned int __v;					\
 981		__v = SMC_inw(ioaddr, ADDR0_REG(lp));			\
 982		addr[0] = __v; addr[1] = __v >> 8;			\
 983		__v = SMC_inw(ioaddr, ADDR1_REG(lp));			\
 984		addr[2] = __v; addr[3] = __v >> 8;			\
 985		__v = SMC_inw(ioaddr, ADDR2_REG(lp));			\
 986		addr[4] = __v; addr[5] = __v >> 8;			\
 987	} while (0)
 988#endif
 989
 990#define SMC_SET_MAC_ADDR(lp, addr)					\
 991	do {								\
 992		SMC_outw(lp, addr[0] | (addr[1] << 8), ioaddr, ADDR0_REG(lp)); \
 993		SMC_outw(lp, addr[2] | (addr[3] << 8), ioaddr, ADDR1_REG(lp)); \
 994		SMC_outw(lp, addr[4] | (addr[5] << 8), ioaddr, ADDR2_REG(lp)); \
 995	} while (0)
 996
 997#define SMC_SET_MCAST(lp, x)						\
 998	do {								\
 999		const unsigned char *mt = (x);				\
1000		SMC_outw(lp, mt[0] | (mt[1] << 8), ioaddr, MCAST_REG1(lp)); \
1001		SMC_outw(lp, mt[2] | (mt[3] << 8), ioaddr, MCAST_REG2(lp)); \
1002		SMC_outw(lp, mt[4] | (mt[5] << 8), ioaddr, MCAST_REG3(lp)); \
1003		SMC_outw(lp, mt[6] | (mt[7] << 8), ioaddr, MCAST_REG4(lp)); \
1004	} while (0)
1005
1006#define SMC_PUT_PKT_HDR(lp, status, length)				\
1007	do {								\
1008		if (SMC_32BIT(lp))					\
1009			SMC_outl((status) | (length)<<16, ioaddr,	\
1010				 DATA_REG(lp));			\
1011		else {							\
1012			SMC_outw(lp, status, ioaddr, DATA_REG(lp));	\
1013			SMC_outw(lp, length, ioaddr, DATA_REG(lp));	\
1014		}							\
1015	} while (0)
1016
1017#define SMC_GET_PKT_HDR(lp, status, length)				\
1018	do {								\
1019		if (SMC_32BIT(lp)) {				\
1020			unsigned int __val = SMC_inl(ioaddr, DATA_REG(lp)); \
1021			(status) = __val & 0xffff;			\
1022			(length) = __val >> 16;				\
1023		} else {						\
1024			(status) = SMC_inw(ioaddr, DATA_REG(lp));	\
1025			(length) = SMC_inw(ioaddr, DATA_REG(lp));	\
1026		}							\
1027	} while (0)
1028
1029#define SMC_PUSH_DATA(lp, p, l)					\
1030	do {								\
1031		if (SMC_32BIT(lp)) {				\
1032			void *__ptr = (p);				\
1033			int __len = (l);				\
1034			void __iomem *__ioaddr = ioaddr;		\
1035			if (__len >= 2 && (unsigned long)__ptr & 2) {	\
1036				__len -= 2;				\
1037				SMC_outsw(ioaddr, DATA_REG(lp), __ptr, 1); \
1038				__ptr += 2;				\
1039			}						\
1040			if (SMC_CAN_USE_DATACS && lp->datacs)		\
1041				__ioaddr = lp->datacs;			\
1042			SMC_outsl(__ioaddr, DATA_REG(lp), __ptr, __len>>2); \
1043			if (__len & 2) {				\
1044				__ptr += (__len & ~3);			\
1045				SMC_outsw(ioaddr, DATA_REG(lp), __ptr, 1); \
1046			}						\
1047		} else if (SMC_16BIT(lp))				\
1048			SMC_outsw(ioaddr, DATA_REG(lp), p, (l) >> 1);	\
1049		else if (SMC_8BIT(lp))				\
1050			SMC_outsb(ioaddr, DATA_REG(lp), p, l);	\
1051	} while (0)
1052
1053#define SMC_PULL_DATA(lp, p, l)					\
1054	do {								\
1055		if (SMC_32BIT(lp)) {				\
1056			void *__ptr = (p);				\
1057			int __len = (l);				\
1058			void __iomem *__ioaddr = ioaddr;		\
1059			if ((unsigned long)__ptr & 2) {			\
1060				/*					\
1061				 * We want 32bit alignment here.	\
1062				 * Since some buses perform a full	\
1063				 * 32bit fetch even for 16bit data	\
1064				 * we can't use SMC_inw() here.		\
1065				 * Back both source (on-chip) and	\
1066				 * destination pointers of 2 bytes.	\
1067				 * This is possible since the call to	\
1068				 * SMC_GET_PKT_HDR() already advanced	\
1069				 * the source pointer of 4 bytes, and	\
1070				 * the skb_reserve(skb, 2) advanced	\
1071				 * the destination pointer of 2 bytes.	\
1072				 */					\
1073				__ptr -= 2;				\
1074				__len += 2;				\
1075				SMC_SET_PTR(lp,			\
1076					2|PTR_READ|PTR_RCV|PTR_AUTOINC); \
1077			}						\
1078			if (SMC_CAN_USE_DATACS && lp->datacs)		\
1079				__ioaddr = lp->datacs;			\
1080			__len += 2;					\
1081			SMC_insl(__ioaddr, DATA_REG(lp), __ptr, __len>>2); \
1082		} else if (SMC_16BIT(lp))				\
1083			SMC_insw(ioaddr, DATA_REG(lp), p, (l) >> 1);	\
1084		else if (SMC_8BIT(lp))				\
1085			SMC_insb(ioaddr, DATA_REG(lp), p, l);		\
1086	} while (0)
1087
1088#endif  /* _SMC91X_H_ */
v4.6
 
   1/*------------------------------------------------------------------------
   2 . smc91x.h - macros for SMSC's 91C9x/91C1xx single-chip Ethernet device.
   3 .
   4 . Copyright (C) 1996 by Erik Stahlman
   5 . Copyright (C) 2001 Standard Microsystems Corporation
   6 .	Developed by Simple Network Magic Corporation
   7 . Copyright (C) 2003 Monta Vista Software, Inc.
   8 .	Unified SMC91x driver by Nicolas Pitre
   9 .
  10 . This program is free software; you can redistribute it and/or modify
  11 . it under the terms of the GNU General Public License as published by
  12 . the Free Software Foundation; either version 2 of the License, or
  13 . (at your option) any later version.
  14 .
  15 . This program is distributed in the hope that it will be useful,
  16 . but WITHOUT ANY WARRANTY; without even the implied warranty of
  17 . MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  18 . GNU General Public License for more details.
  19 .
  20 . You should have received a copy of the GNU General Public License
  21 . along with this program; if not, see <http://www.gnu.org/licenses/>.
  22 .
  23 . Information contained in this file was obtained from the LAN91C111
  24 . manual from SMC.  To get a copy, if you really want one, you can find
  25 . information under www.smsc.com.
  26 .
  27 . Authors
  28 .	Erik Stahlman		<erik@vt.edu>
  29 .	Daris A Nevil		<dnevil@snmc.com>
  30 .	Nicolas Pitre 		<nico@fluxnic.net>
  31 .
  32 ---------------------------------------------------------------------------*/
  33#ifndef _SMC91X_H_
  34#define _SMC91X_H_
  35
  36#include <linux/dmaengine.h>
  37#include <linux/smc91x.h>
  38
  39/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  40 * Define your architecture specific bus configuration parameters here.
  41 */
  42
  43#if defined(CONFIG_ARM)
  44
  45#include <asm/mach-types.h>
  46
  47/* Now the bus width is specified in the platform data
  48 * pretend here to support all I/O access types
  49 */
  50#define SMC_CAN_USE_8BIT	1
  51#define SMC_CAN_USE_16BIT	1
  52#define SMC_CAN_USE_32BIT	1
  53#define SMC_NOWAIT		1
  54
  55#define SMC_IO_SHIFT		(lp->io_shift)
  56
  57#define SMC_inb(a, r)		readb((a) + (r))
  58#define SMC_inw(a, r)		readw((a) + (r))
 
 
 
 
 
 
 
  59#define SMC_inl(a, r)		readl((a) + (r))
  60#define SMC_outb(v, a, r)	writeb(v, (a) + (r))
 
 
 
 
 
 
 
 
 
 
 
  61#define SMC_outl(v, a, r)	writel(v, (a) + (r))
 
 
  62#define SMC_insw(a, r, p, l)	readsw((a) + (r), p, l)
  63#define SMC_outsw(a, r, p, l)	writesw((a) + (r), p, l)
  64#define SMC_insl(a, r, p, l)	readsl((a) + (r), p, l)
  65#define SMC_outsl(a, r, p, l)	writesl((a) + (r), p, l)
  66#define SMC_IRQ_FLAGS		(-1)	/* from resource */
  67
  68/* We actually can't write halfwords properly if not word aligned */
  69static inline void SMC_outw(u16 val, void __iomem *ioaddr, int reg)
 
  70{
  71	if ((machine_is_mainstone() || machine_is_stargate2() ||
  72	     machine_is_pxa_idp()) && reg & 2) {
  73		unsigned int v = val << 16;
  74		v |= readl(ioaddr + (reg & ~2)) & 0xffff;
  75		writel(v, ioaddr + (reg & ~2));
  76	} else {
  77		writew(val, ioaddr + reg);
  78	}
  79}
  80
  81#elif	defined(CONFIG_SH_SH4202_MICRODEV)
 
 
 
  82
  83#define SMC_CAN_USE_8BIT	0
  84#define SMC_CAN_USE_16BIT	1
  85#define SMC_CAN_USE_32BIT	0
  86
  87#define SMC_inb(a, r)		inb((a) + (r) - 0xa0000000)
  88#define SMC_inw(a, r)		inw((a) + (r) - 0xa0000000)
  89#define SMC_inl(a, r)		inl((a) + (r) - 0xa0000000)
  90#define SMC_outb(v, a, r)	outb(v, (a) + (r) - 0xa0000000)
  91#define SMC_outw(v, a, r)	outw(v, (a) + (r) - 0xa0000000)
  92#define SMC_outl(v, a, r)	outl(v, (a) + (r) - 0xa0000000)
  93#define SMC_insl(a, r, p, l)	insl((a) + (r) - 0xa0000000, p, l)
  94#define SMC_outsl(a, r, p, l)	outsl((a) + (r) - 0xa0000000, p, l)
  95#define SMC_insw(a, r, p, l)	insw((a) + (r) - 0xa0000000, p, l)
  96#define SMC_outsw(a, r, p, l)	outsw((a) + (r) - 0xa0000000, p, l)
  97
  98#define SMC_IRQ_FLAGS		(0)
  99
 100#elif   defined(CONFIG_M32R)
 101
 102#define SMC_CAN_USE_8BIT	0
 103#define SMC_CAN_USE_16BIT	1
 104#define SMC_CAN_USE_32BIT	0
 105
 106#define SMC_inb(a, r)		inb(((u32)a) + (r))
 107#define SMC_inw(a, r)		inw(((u32)a) + (r))
 108#define SMC_outb(v, a, r)	outb(v, ((u32)a) + (r))
 109#define SMC_outw(v, a, r)	outw(v, ((u32)a) + (r))
 110#define SMC_insw(a, r, p, l)	insw(((u32)a) + (r), p, l)
 111#define SMC_outsw(a, r, p, l)	outsw(((u32)a) + (r), p, l)
 112
 113#define SMC_IRQ_FLAGS		(0)
 114
 115#define RPC_LSA_DEFAULT		RPC_LED_TX_RX
 116#define RPC_LSB_DEFAULT		RPC_LED_100_10
 117
 118#elif defined(CONFIG_MN10300)
 119
 120/*
 121 * MN10300/AM33 configuration
 122 */
 123
 124#include <unit/smc91111.h>
 125
 126#elif defined(CONFIG_ATARI)
 127
 128#define SMC_CAN_USE_8BIT        1
 129#define SMC_CAN_USE_16BIT       1
 130#define SMC_CAN_USE_32BIT       1
 131#define SMC_NOWAIT              1
 132
 133#define SMC_inb(a, r)           readb((a) + (r))
 134#define SMC_inw(a, r)           readw((a) + (r))
 135#define SMC_inl(a, r)           readl((a) + (r))
 136#define SMC_outb(v, a, r)       writeb(v, (a) + (r))
 137#define SMC_outw(v, a, r)       writew(v, (a) + (r))
 138#define SMC_outl(v, a, r)       writel(v, (a) + (r))
 139#define SMC_insw(a, r, p, l)    readsw((a) + (r), p, l)
 140#define SMC_outsw(a, r, p, l)   writesw((a) + (r), p, l)
 141#define SMC_insl(a, r, p, l)    readsl((a) + (r), p, l)
 142#define SMC_outsl(a, r, p, l)   writesl((a) + (r), p, l)
 143
 144#define RPC_LSA_DEFAULT         RPC_LED_100_10
 145#define RPC_LSB_DEFAULT         RPC_LED_TX_RX
 146
 147#elif defined(CONFIG_COLDFIRE)
 148
 149#define SMC_CAN_USE_8BIT	0
 150#define SMC_CAN_USE_16BIT	1
 151#define SMC_CAN_USE_32BIT	0
 152#define SMC_NOWAIT		1
 153
 154static inline void mcf_insw(void *a, unsigned char *p, int l)
 155{
 156	u16 *wp = (u16 *) p;
 157	while (l-- > 0)
 158		*wp++ = readw(a);
 159}
 160
 161static inline void mcf_outsw(void *a, unsigned char *p, int l)
 162{
 163	u16 *wp = (u16 *) p;
 164	while (l-- > 0)
 165		writew(*wp++, a);
 166}
 167
 168#define SMC_inw(a, r)		_swapw(readw((a) + (r)))
 169#define SMC_outw(v, a, r)	writew(_swapw(v), (a) + (r))
 170#define SMC_insw(a, r, p, l)	mcf_insw(a + r, p, l)
 171#define SMC_outsw(a, r, p, l)	mcf_outsw(a + r, p, l)
 172
 173#define SMC_IRQ_FLAGS		0
 174
 175#elif defined(CONFIG_H8300)
 176#define SMC_CAN_USE_8BIT	1
 177#define SMC_CAN_USE_16BIT	0
 178#define SMC_CAN_USE_32BIT	0
 179#define SMC_NOWAIT		0
 180
 181#define SMC_inb(a, r)		ioread8((a) + (r))
 182#define SMC_outb(v, a, r)	iowrite8(v, (a) + (r))
 183#define SMC_insb(a, r, p, l)	ioread8_rep((a) + (r), p, l)
 184#define SMC_outsb(a, r, p, l)	iowrite8_rep((a) + (r), p, l)
 185
 186#else
 187
 188/*
 189 * Default configuration
 190 */
 191
 192#define SMC_CAN_USE_8BIT	1
 193#define SMC_CAN_USE_16BIT	1
 194#define SMC_CAN_USE_32BIT	1
 195#define SMC_NOWAIT		1
 196
 197#define SMC_IO_SHIFT		(lp->io_shift)
 198
 199#define SMC_inb(a, r)		ioread8((a) + (r))
 200#define SMC_inw(a, r)		ioread16((a) + (r))
 201#define SMC_inl(a, r)		ioread32((a) + (r))
 202#define SMC_outb(v, a, r)	iowrite8(v, (a) + (r))
 203#define SMC_outw(v, a, r)	iowrite16(v, (a) + (r))
 204#define SMC_outl(v, a, r)	iowrite32(v, (a) + (r))
 205#define SMC_insw(a, r, p, l)	ioread16_rep((a) + (r), p, l)
 206#define SMC_outsw(a, r, p, l)	iowrite16_rep((a) + (r), p, l)
 207#define SMC_insl(a, r, p, l)	ioread32_rep((a) + (r), p, l)
 208#define SMC_outsl(a, r, p, l)	iowrite32_rep((a) + (r), p, l)
 209
 210#define RPC_LSA_DEFAULT		RPC_LED_100_10
 211#define RPC_LSB_DEFAULT		RPC_LED_TX_RX
 212
 213#endif
 214
 215
 216/* store this information for the driver.. */
 217struct smc_local {
 218	/*
 219	 * If I have to wait until memory is available to send a
 220	 * packet, I will store the skbuff here, until I get the
 221	 * desired memory.  Then, I'll send it out and free it.
 222	 */
 223	struct sk_buff *pending_tx_skb;
 224	struct tasklet_struct tx_task;
 225
 226	struct gpio_desc *power_gpio;
 227	struct gpio_desc *reset_gpio;
 228
 229	/* version/revision of the SMC91x chip */
 230	int	version;
 231
 232	/* Contains the current active transmission mode */
 233	int	tcr_cur_mode;
 234
 235	/* Contains the current active receive mode */
 236	int	rcr_cur_mode;
 237
 238	/* Contains the current active receive/phy mode */
 239	int	rpc_cur_mode;
 240	int	ctl_rfduplx;
 241	int	ctl_rspeed;
 242
 243	u32	msg_enable;
 244	u32	phy_type;
 245	struct mii_if_info mii;
 246
 247	/* work queue */
 248	struct work_struct phy_configure;
 249	struct net_device *dev;
 250	int	work_pending;
 251
 252	spinlock_t lock;
 253
 254#ifdef CONFIG_ARCH_PXA
 255	/* DMA needs the physical address of the chip */
 256	u_long physaddr;
 257	struct device *device;
 258#endif
 259	struct dma_chan *dma_chan;
 260	void __iomem *base;
 261	void __iomem *datacs;
 262
 263	/* the low address lines on some platforms aren't connected... */
 264	int	io_shift;
 
 
 265
 266	struct smc91x_platdata cfg;
 267};
 268
 269#define SMC_8BIT(p)	((p)->cfg.flags & SMC91X_USE_8BIT)
 270#define SMC_16BIT(p)	((p)->cfg.flags & SMC91X_USE_16BIT)
 271#define SMC_32BIT(p)	((p)->cfg.flags & SMC91X_USE_32BIT)
 272
 273#ifdef CONFIG_ARCH_PXA
 274/*
 275 * Let's use the DMA engine on the XScale PXA2xx for RX packets. This is
 276 * always happening in irq context so no need to worry about races.  TX is
 277 * different and probably not worth it for that reason, and not as critical
 278 * as RX which can overrun memory and lose packets.
 279 */
 280#include <linux/dma-mapping.h>
 281#include <linux/dma/pxa-dma.h>
 282
 283#ifdef SMC_insl
 284#undef SMC_insl
 285#define SMC_insl(a, r, p, l) \
 286	smc_pxa_dma_insl(a, lp, r, dev->dma, p, l)
 287static inline void
 288smc_pxa_dma_inpump(struct smc_local *lp, u_char *buf, int len)
 289{
 290	dma_addr_t dmabuf;
 291	struct dma_async_tx_descriptor *tx;
 292	dma_cookie_t cookie;
 293	enum dma_status status;
 294	struct dma_tx_state state;
 295
 296	dmabuf = dma_map_single(lp->device, buf, len, DMA_FROM_DEVICE);
 297	tx = dmaengine_prep_slave_single(lp->dma_chan, dmabuf, len,
 298					 DMA_DEV_TO_MEM, 0);
 299	if (tx) {
 300		cookie = dmaengine_submit(tx);
 301		dma_async_issue_pending(lp->dma_chan);
 302		do {
 303			status = dmaengine_tx_status(lp->dma_chan, cookie,
 304						     &state);
 305			cpu_relax();
 306		} while (status != DMA_COMPLETE && status != DMA_ERROR &&
 307			 state.residue);
 308		dmaengine_terminate_all(lp->dma_chan);
 309	}
 310	dma_unmap_single(lp->device, dmabuf, len, DMA_FROM_DEVICE);
 311}
 312
 313static inline void
 314smc_pxa_dma_insl(void __iomem *ioaddr, struct smc_local *lp, int reg, int dma,
 315		 u_char *buf, int len)
 316{
 317	struct dma_slave_config	config;
 318	int ret;
 319
 320	/* fallback if no DMA available */
 321	if (!lp->dma_chan) {
 322		readsl(ioaddr + reg, buf, len);
 323		return;
 324	}
 325
 326	/* 64 bit alignment is required for memory to memory DMA */
 327	if ((long)buf & 4) {
 328		*((u32 *)buf) = SMC_inl(ioaddr, reg);
 329		buf += 4;
 330		len--;
 331	}
 332
 333	memset(&config, 0, sizeof(config));
 334	config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 335	config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 336	config.src_addr = lp->physaddr + reg;
 337	config.dst_addr = lp->physaddr + reg;
 338	config.src_maxburst = 32;
 339	config.dst_maxburst = 32;
 340	ret = dmaengine_slave_config(lp->dma_chan, &config);
 341	if (ret) {
 342		dev_err(lp->device, "dma channel configuration failed: %d\n",
 343			ret);
 344		return;
 345	}
 346
 347	len *= 4;
 348	smc_pxa_dma_inpump(lp, buf, len);
 349}
 350#endif
 351
 352#ifdef SMC_insw
 353#undef SMC_insw
 354#define SMC_insw(a, r, p, l) \
 355	smc_pxa_dma_insw(a, lp, r, dev->dma, p, l)
 356static inline void
 357smc_pxa_dma_insw(void __iomem *ioaddr, struct smc_local *lp, int reg, int dma,
 358		 u_char *buf, int len)
 359{
 360	struct dma_slave_config	config;
 361	int ret;
 362
 363	/* fallback if no DMA available */
 364	if (!lp->dma_chan) {
 365		readsw(ioaddr + reg, buf, len);
 366		return;
 367	}
 368
 369	/* 64 bit alignment is required for memory to memory DMA */
 370	while ((long)buf & 6) {
 371		*((u16 *)buf) = SMC_inw(ioaddr, reg);
 372		buf += 2;
 373		len--;
 374	}
 375
 376	memset(&config, 0, sizeof(config));
 377	config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 378	config.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 379	config.src_addr = lp->physaddr + reg;
 380	config.dst_addr = lp->physaddr + reg;
 381	config.src_maxburst = 32;
 382	config.dst_maxburst = 32;
 383	ret = dmaengine_slave_config(lp->dma_chan, &config);
 384	if (ret) {
 385		dev_err(lp->device, "dma channel configuration failed: %d\n",
 386			ret);
 387		return;
 388	}
 389
 390	len *= 2;
 391	smc_pxa_dma_inpump(lp, buf, len);
 392}
 393#endif
 394
 395#endif  /* CONFIG_ARCH_PXA */
 396
 397
 398/*
 399 * Everything a particular hardware setup needs should have been defined
 400 * at this point.  Add stubs for the undefined cases, mainly to avoid
 401 * compilation warnings since they'll be optimized away, or to prevent buggy
 402 * use of them.
 403 */
 404
 405#if ! SMC_CAN_USE_32BIT
 406#define SMC_inl(ioaddr, reg)		({ BUG(); 0; })
 407#define SMC_outl(x, ioaddr, reg)	BUG()
 408#define SMC_insl(a, r, p, l)		BUG()
 409#define SMC_outsl(a, r, p, l)		BUG()
 410#endif
 411
 412#if !defined(SMC_insl) || !defined(SMC_outsl)
 413#define SMC_insl(a, r, p, l)		BUG()
 414#define SMC_outsl(a, r, p, l)		BUG()
 415#endif
 416
 417#if ! SMC_CAN_USE_16BIT
 418
 419/*
 420 * Any 16-bit access is performed with two 8-bit accesses if the hardware
 421 * can't do it directly. Most registers are 16-bit so those are mandatory.
 422 */
 423#define SMC_outw(x, ioaddr, reg)					\
 424	do {								\
 425		unsigned int __val16 = (x);				\
 426		SMC_outb( __val16, ioaddr, reg );			\
 427		SMC_outb( __val16 >> 8, ioaddr, reg + (1 << SMC_IO_SHIFT));\
 428	} while (0)
 429#define SMC_inw(ioaddr, reg)						\
 430	({								\
 431		unsigned int __val16;					\
 432		__val16 =  SMC_inb( ioaddr, reg );			\
 433		__val16 |= SMC_inb( ioaddr, reg + (1 << SMC_IO_SHIFT)) << 8; \
 434		__val16;						\
 435	})
 436
 437#define SMC_insw(a, r, p, l)		BUG()
 438#define SMC_outsw(a, r, p, l)		BUG()
 439
 440#endif
 441
 442#if !defined(SMC_insw) || !defined(SMC_outsw)
 443#define SMC_insw(a, r, p, l)		BUG()
 444#define SMC_outsw(a, r, p, l)		BUG()
 445#endif
 446
 447#if ! SMC_CAN_USE_8BIT
 
 448#define SMC_inb(ioaddr, reg)		({ BUG(); 0; })
 
 449#define SMC_outb(x, ioaddr, reg)	BUG()
 450#define SMC_insb(a, r, p, l)		BUG()
 451#define SMC_outsb(a, r, p, l)		BUG()
 452#endif
 453
 454#if !defined(SMC_insb) || !defined(SMC_outsb)
 455#define SMC_insb(a, r, p, l)		BUG()
 456#define SMC_outsb(a, r, p, l)		BUG()
 457#endif
 458
 459#ifndef SMC_CAN_USE_DATACS
 460#define SMC_CAN_USE_DATACS	0
 461#endif
 462
 463#ifndef SMC_IO_SHIFT
 464#define SMC_IO_SHIFT	0
 465#endif
 466
 467#ifndef	SMC_IRQ_FLAGS
 468#define	SMC_IRQ_FLAGS		IRQF_TRIGGER_RISING
 469#endif
 470
 471#ifndef SMC_INTERRUPT_PREAMBLE
 472#define SMC_INTERRUPT_PREAMBLE
 473#endif
 474
 475
 476/* Because of bank switching, the LAN91x uses only 16 I/O ports */
 477#define SMC_IO_EXTENT	(16 << SMC_IO_SHIFT)
 478#define SMC_DATA_EXTENT (4)
 479
 480/*
 481 . Bank Select Register:
 482 .
 483 .		yyyy yyyy 0000 00xx
 484 .		xx 		= bank number
 485 .		yyyy yyyy	= 0x33, for identification purposes.
 486*/
 487#define BANK_SELECT		(14 << SMC_IO_SHIFT)
 488
 489
 490// Transmit Control Register
 491/* BANK 0  */
 492#define TCR_REG(lp) 	SMC_REG(lp, 0x0000, 0)
 493#define TCR_ENABLE	0x0001	// When 1 we can transmit
 494#define TCR_LOOP	0x0002	// Controls output pin LBK
 495#define TCR_FORCOL	0x0004	// When 1 will force a collision
 496#define TCR_PAD_EN	0x0080	// When 1 will pad tx frames < 64 bytes w/0
 497#define TCR_NOCRC	0x0100	// When 1 will not append CRC to tx frames
 498#define TCR_MON_CSN	0x0400	// When 1 tx monitors carrier
 499#define TCR_FDUPLX    	0x0800  // When 1 enables full duplex operation
 500#define TCR_STP_SQET	0x1000	// When 1 stops tx if Signal Quality Error
 501#define TCR_EPH_LOOP	0x2000	// When 1 enables EPH block loopback
 502#define TCR_SWFDUP	0x8000	// When 1 enables Switched Full Duplex mode
 503
 504#define TCR_CLEAR	0	/* do NOTHING */
 505/* the default settings for the TCR register : */
 506#define TCR_DEFAULT	(TCR_ENABLE | TCR_PAD_EN)
 507
 508
 509// EPH Status Register
 510/* BANK 0  */
 511#define EPH_STATUS_REG(lp)	SMC_REG(lp, 0x0002, 0)
 512#define ES_TX_SUC	0x0001	// Last TX was successful
 513#define ES_SNGL_COL	0x0002	// Single collision detected for last tx
 514#define ES_MUL_COL	0x0004	// Multiple collisions detected for last tx
 515#define ES_LTX_MULT	0x0008	// Last tx was a multicast
 516#define ES_16COL	0x0010	// 16 Collisions Reached
 517#define ES_SQET		0x0020	// Signal Quality Error Test
 518#define ES_LTXBRD	0x0040	// Last tx was a broadcast
 519#define ES_TXDEFR	0x0080	// Transmit Deferred
 520#define ES_LATCOL	0x0200	// Late collision detected on last tx
 521#define ES_LOSTCARR	0x0400	// Lost Carrier Sense
 522#define ES_EXC_DEF	0x0800	// Excessive Deferral
 523#define ES_CTR_ROL	0x1000	// Counter Roll Over indication
 524#define ES_LINK_OK	0x4000	// Driven by inverted value of nLNK pin
 525#define ES_TXUNRN	0x8000	// Tx Underrun
 526
 527
 528// Receive Control Register
 529/* BANK 0  */
 530#define RCR_REG(lp)		SMC_REG(lp, 0x0004, 0)
 531#define RCR_RX_ABORT	0x0001	// Set if a rx frame was aborted
 532#define RCR_PRMS	0x0002	// Enable promiscuous mode
 533#define RCR_ALMUL	0x0004	// When set accepts all multicast frames
 534#define RCR_RXEN	0x0100	// IFF this is set, we can receive packets
 535#define RCR_STRIP_CRC	0x0200	// When set strips CRC from rx packets
 536#define RCR_ABORT_ENB	0x0200	// When set will abort rx on collision
 537#define RCR_FILT_CAR	0x0400	// When set filters leading 12 bit s of carrier
 538#define RCR_SOFTRST	0x8000 	// resets the chip
 539
 540/* the normal settings for the RCR register : */
 541#define RCR_DEFAULT	(RCR_STRIP_CRC | RCR_RXEN)
 542#define RCR_CLEAR	0x0	// set it to a base state
 543
 544
 545// Counter Register
 546/* BANK 0  */
 547#define COUNTER_REG(lp)	SMC_REG(lp, 0x0006, 0)
 548
 549
 550// Memory Information Register
 551/* BANK 0  */
 552#define MIR_REG(lp)		SMC_REG(lp, 0x0008, 0)
 553
 554
 555// Receive/Phy Control Register
 556/* BANK 0  */
 557#define RPC_REG(lp)		SMC_REG(lp, 0x000A, 0)
 558#define RPC_SPEED	0x2000	// When 1 PHY is in 100Mbps mode.
 559#define RPC_DPLX	0x1000	// When 1 PHY is in Full-Duplex Mode
 560#define RPC_ANEG	0x0800	// When 1 PHY is in Auto-Negotiate Mode
 561#define RPC_LSXA_SHFT	5	// Bits to shift LS2A,LS1A,LS0A to lsb
 562#define RPC_LSXB_SHFT	2	// Bits to get LS2B,LS1B,LS0B to lsb
 563
 564#ifndef RPC_LSA_DEFAULT
 565#define RPC_LSA_DEFAULT	RPC_LED_100
 566#endif
 567#ifndef RPC_LSB_DEFAULT
 568#define RPC_LSB_DEFAULT RPC_LED_FD
 569#endif
 570
 571#define RPC_DEFAULT (RPC_ANEG | RPC_SPEED | RPC_DPLX)
 572
 573
 574/* Bank 0 0x0C is reserved */
 575
 576// Bank Select Register
 577/* All Banks */
 578#define BSR_REG		0x000E
 579
 580
 581// Configuration Reg
 582/* BANK 1 */
 583#define CONFIG_REG(lp)	SMC_REG(lp, 0x0000,	1)
 584#define CONFIG_EXT_PHY	0x0200	// 1=external MII, 0=internal Phy
 585#define CONFIG_GPCNTRL	0x0400	// Inverse value drives pin nCNTRL
 586#define CONFIG_NO_WAIT	0x1000	// When 1 no extra wait states on ISA bus
 587#define CONFIG_EPH_POWER_EN 0x8000 // When 0 EPH is placed into low power mode.
 588
 589// Default is powered-up, Internal Phy, Wait States, and pin nCNTRL=low
 590#define CONFIG_DEFAULT	(CONFIG_EPH_POWER_EN)
 591
 592
 593// Base Address Register
 594/* BANK 1 */
 595#define BASE_REG(lp)	SMC_REG(lp, 0x0002, 1)
 596
 597
 598// Individual Address Registers
 599/* BANK 1 */
 600#define ADDR0_REG(lp)	SMC_REG(lp, 0x0004, 1)
 601#define ADDR1_REG(lp)	SMC_REG(lp, 0x0006, 1)
 602#define ADDR2_REG(lp)	SMC_REG(lp, 0x0008, 1)
 603
 604
 605// General Purpose Register
 606/* BANK 1 */
 607#define GP_REG(lp)		SMC_REG(lp, 0x000A, 1)
 608
 609
 610// Control Register
 611/* BANK 1 */
 612#define CTL_REG(lp)		SMC_REG(lp, 0x000C, 1)
 613#define CTL_RCV_BAD	0x4000 // When 1 bad CRC packets are received
 614#define CTL_AUTO_RELEASE 0x0800 // When 1 tx pages are released automatically
 615#define CTL_LE_ENABLE	0x0080 // When 1 enables Link Error interrupt
 616#define CTL_CR_ENABLE	0x0040 // When 1 enables Counter Rollover interrupt
 617#define CTL_TE_ENABLE	0x0020 // When 1 enables Transmit Error interrupt
 618#define CTL_EEPROM_SELECT 0x0004 // Controls EEPROM reload & store
 619#define CTL_RELOAD	0x0002 // When set reads EEPROM into registers
 620#define CTL_STORE	0x0001 // When set stores registers into EEPROM
 621
 622
 623// MMU Command Register
 624/* BANK 2 */
 625#define MMU_CMD_REG(lp)	SMC_REG(lp, 0x0000, 2)
 626#define MC_BUSY		1	// When 1 the last release has not completed
 627#define MC_NOP		(0<<5)	// No Op
 628#define MC_ALLOC	(1<<5) 	// OR with number of 256 byte packets
 629#define MC_RESET	(2<<5)	// Reset MMU to initial state
 630#define MC_REMOVE	(3<<5) 	// Remove the current rx packet
 631#define MC_RELEASE  	(4<<5) 	// Remove and release the current rx packet
 632#define MC_FREEPKT  	(5<<5) 	// Release packet in PNR register
 633#define MC_ENQUEUE	(6<<5)	// Enqueue the packet for transmit
 634#define MC_RSTTXFIFO	(7<<5)	// Reset the TX FIFOs
 635
 636
 637// Packet Number Register
 638/* BANK 2 */
 639#define PN_REG(lp)		SMC_REG(lp, 0x0002, 2)
 640
 641
 642// Allocation Result Register
 643/* BANK 2 */
 644#define AR_REG(lp)		SMC_REG(lp, 0x0003, 2)
 645#define AR_FAILED	0x80	// Alocation Failed
 646
 647
 648// TX FIFO Ports Register
 649/* BANK 2 */
 650#define TXFIFO_REG(lp)	SMC_REG(lp, 0x0004, 2)
 651#define TXFIFO_TEMPTY	0x80	// TX FIFO Empty
 652
 653// RX FIFO Ports Register
 654/* BANK 2 */
 655#define RXFIFO_REG(lp)	SMC_REG(lp, 0x0005, 2)
 656#define RXFIFO_REMPTY	0x80	// RX FIFO Empty
 657
 658#define FIFO_REG(lp)	SMC_REG(lp, 0x0004, 2)
 659
 660// Pointer Register
 661/* BANK 2 */
 662#define PTR_REG(lp)		SMC_REG(lp, 0x0006, 2)
 663#define PTR_RCV		0x8000 // 1=Receive area, 0=Transmit area
 664#define PTR_AUTOINC 	0x4000 // Auto increment the pointer on each access
 665#define PTR_READ	0x2000 // When 1 the operation is a read
 666
 667
 668// Data Register
 669/* BANK 2 */
 670#define DATA_REG(lp)	SMC_REG(lp, 0x0008, 2)
 671
 672
 673// Interrupt Status/Acknowledge Register
 674/* BANK 2 */
 675#define INT_REG(lp)		SMC_REG(lp, 0x000C, 2)
 676
 677
 678// Interrupt Mask Register
 679/* BANK 2 */
 680#define IM_REG(lp)		SMC_REG(lp, 0x000D, 2)
 681#define IM_MDINT	0x80 // PHY MI Register 18 Interrupt
 682#define IM_ERCV_INT	0x40 // Early Receive Interrupt
 683#define IM_EPH_INT	0x20 // Set by Ethernet Protocol Handler section
 684#define IM_RX_OVRN_INT	0x10 // Set by Receiver Overruns
 685#define IM_ALLOC_INT	0x08 // Set when allocation request is completed
 686#define IM_TX_EMPTY_INT	0x04 // Set if the TX FIFO goes empty
 687#define IM_TX_INT	0x02 // Transmit Interrupt
 688#define IM_RCV_INT	0x01 // Receive Interrupt
 689
 690
 691// Multicast Table Registers
 692/* BANK 3 */
 693#define MCAST_REG1(lp)	SMC_REG(lp, 0x0000, 3)
 694#define MCAST_REG2(lp)	SMC_REG(lp, 0x0002, 3)
 695#define MCAST_REG3(lp)	SMC_REG(lp, 0x0004, 3)
 696#define MCAST_REG4(lp)	SMC_REG(lp, 0x0006, 3)
 697
 698
 699// Management Interface Register (MII)
 700/* BANK 3 */
 701#define MII_REG(lp)		SMC_REG(lp, 0x0008, 3)
 702#define MII_MSK_CRS100	0x4000 // Disables CRS100 detection during tx half dup
 703#define MII_MDOE	0x0008 // MII Output Enable
 704#define MII_MCLK	0x0004 // MII Clock, pin MDCLK
 705#define MII_MDI		0x0002 // MII Input, pin MDI
 706#define MII_MDO		0x0001 // MII Output, pin MDO
 707
 708
 709// Revision Register
 710/* BANK 3 */
 711/* ( hi: chip id   low: rev # ) */
 712#define REV_REG(lp)		SMC_REG(lp, 0x000A, 3)
 713
 714
 715// Early RCV Register
 716/* BANK 3 */
 717/* this is NOT on SMC9192 */
 718#define ERCV_REG(lp)	SMC_REG(lp, 0x000C, 3)
 719#define ERCV_RCV_DISCRD	0x0080 // When 1 discards a packet being received
 720#define ERCV_THRESHOLD	0x001F // ERCV Threshold Mask
 721
 722
 723// External Register
 724/* BANK 7 */
 725#define EXT_REG(lp)		SMC_REG(lp, 0x0000, 7)
 726
 727
 728#define CHIP_9192	3
 729#define CHIP_9194	4
 730#define CHIP_9195	5
 731#define CHIP_9196	6
 732#define CHIP_91100	7
 733#define CHIP_91100FD	8
 734#define CHIP_91111FD	9
 735
 736static const char * chip_ids[ 16 ] =  {
 737	NULL, NULL, NULL,
 738	/* 3 */ "SMC91C90/91C92",
 739	/* 4 */ "SMC91C94",
 740	/* 5 */ "SMC91C95",
 741	/* 6 */ "SMC91C96",
 742	/* 7 */ "SMC91C100",
 743	/* 8 */ "SMC91C100FD",
 744	/* 9 */ "SMC91C11xFD",
 745	NULL, NULL, NULL,
 746	NULL, NULL, NULL};
 747
 748
 749/*
 750 . Receive status bits
 751*/
 752#define RS_ALGNERR	0x8000
 753#define RS_BRODCAST	0x4000
 754#define RS_BADCRC	0x2000
 755#define RS_ODDFRAME	0x1000
 756#define RS_TOOLONG	0x0800
 757#define RS_TOOSHORT	0x0400
 758#define RS_MULTICAST	0x0001
 759#define RS_ERRORS	(RS_ALGNERR | RS_BADCRC | RS_TOOLONG | RS_TOOSHORT)
 760
 761
 762/*
 763 * PHY IDs
 764 *  LAN83C183 == LAN91C111 Internal PHY
 765 */
 766#define PHY_LAN83C183	0x0016f840
 767#define PHY_LAN83C180	0x02821c50
 768
 769/*
 770 * PHY Register Addresses (LAN91C111 Internal PHY)
 771 *
 772 * Generic PHY registers can be found in <linux/mii.h>
 773 *
 774 * These phy registers are specific to our on-board phy.
 775 */
 776
 777// PHY Configuration Register 1
 778#define PHY_CFG1_REG		0x10
 779#define PHY_CFG1_LNKDIS		0x8000	// 1=Rx Link Detect Function disabled
 780#define PHY_CFG1_XMTDIS		0x4000	// 1=TP Transmitter Disabled
 781#define PHY_CFG1_XMTPDN		0x2000	// 1=TP Transmitter Powered Down
 782#define PHY_CFG1_BYPSCR		0x0400	// 1=Bypass scrambler/descrambler
 783#define PHY_CFG1_UNSCDS		0x0200	// 1=Unscramble Idle Reception Disable
 784#define PHY_CFG1_EQLZR		0x0100	// 1=Rx Equalizer Disabled
 785#define PHY_CFG1_CABLE		0x0080	// 1=STP(150ohm), 0=UTP(100ohm)
 786#define PHY_CFG1_RLVL0		0x0040	// 1=Rx Squelch level reduced by 4.5db
 787#define PHY_CFG1_TLVL_SHIFT	2	// Transmit Output Level Adjust
 788#define PHY_CFG1_TLVL_MASK	0x003C
 789#define PHY_CFG1_TRF_MASK	0x0003	// Transmitter Rise/Fall time
 790
 791
 792// PHY Configuration Register 2
 793#define PHY_CFG2_REG		0x11
 794#define PHY_CFG2_APOLDIS	0x0020	// 1=Auto Polarity Correction disabled
 795#define PHY_CFG2_JABDIS		0x0010	// 1=Jabber disabled
 796#define PHY_CFG2_MREG		0x0008	// 1=Multiple register access (MII mgt)
 797#define PHY_CFG2_INTMDIO	0x0004	// 1=Interrupt signaled with MDIO pulseo
 798
 799// PHY Status Output (and Interrupt status) Register
 800#define PHY_INT_REG		0x12	// Status Output (Interrupt Status)
 801#define PHY_INT_INT		0x8000	// 1=bits have changed since last read
 802#define PHY_INT_LNKFAIL		0x4000	// 1=Link Not detected
 803#define PHY_INT_LOSSSYNC	0x2000	// 1=Descrambler has lost sync
 804#define PHY_INT_CWRD		0x1000	// 1=Invalid 4B5B code detected on rx
 805#define PHY_INT_SSD		0x0800	// 1=No Start Of Stream detected on rx
 806#define PHY_INT_ESD		0x0400	// 1=No End Of Stream detected on rx
 807#define PHY_INT_RPOL		0x0200	// 1=Reverse Polarity detected
 808#define PHY_INT_JAB		0x0100	// 1=Jabber detected
 809#define PHY_INT_SPDDET		0x0080	// 1=100Base-TX mode, 0=10Base-T mode
 810#define PHY_INT_DPLXDET		0x0040	// 1=Device in Full Duplex
 811
 812// PHY Interrupt/Status Mask Register
 813#define PHY_MASK_REG		0x13	// Interrupt Mask
 814// Uses the same bit definitions as PHY_INT_REG
 815
 816
 817/*
 818 * SMC91C96 ethernet config and status registers.
 819 * These are in the "attribute" space.
 820 */
 821#define ECOR			0x8000
 822#define ECOR_RESET		0x80
 823#define ECOR_LEVEL_IRQ		0x40
 824#define ECOR_WR_ATTRIB		0x04
 825#define ECOR_ENABLE		0x01
 826
 827#define ECSR			0x8002
 828#define ECSR_IOIS8		0x20
 829#define ECSR_PWRDWN		0x04
 830#define ECSR_INT		0x02
 831
 832#define ATTRIB_SIZE		((64*1024) << SMC_IO_SHIFT)
 833
 834
 835/*
 836 * Macros to abstract register access according to the data bus
 837 * capabilities.  Please use those and not the in/out primitives.
 838 * Note: the following macros do *not* select the bank -- this must
 839 * be done separately as needed in the main code.  The SMC_REG() macro
 840 * only uses the bank argument for debugging purposes (when enabled).
 841 *
 842 * Note: despite inline functions being safer, everything leading to this
 843 * should preferably be macros to let BUG() display the line number in
 844 * the core source code since we're interested in the top call site
 845 * not in any inline function location.
 846 */
 847
 848#if SMC_DEBUG > 0
 849#define SMC_REG(lp, reg, bank)					\
 850	({								\
 851		int __b = SMC_CURRENT_BANK(lp);			\
 852		if (unlikely((__b & ~0xf0) != (0x3300 | bank))) {	\
 853			pr_err("%s: bank reg screwed (0x%04x)\n",	\
 854			       CARDNAME, __b);				\
 855			BUG();						\
 856		}							\
 857		reg<<SMC_IO_SHIFT;					\
 858	})
 859#else
 860#define SMC_REG(lp, reg, bank)	(reg<<SMC_IO_SHIFT)
 861#endif
 862
 863/*
 864 * Hack Alert: Some setups just can't write 8 or 16 bits reliably when not
 865 * aligned to a 32 bit boundary.  I tell you that does exist!
 866 * Fortunately the affected register accesses can be easily worked around
 867 * since we can write zeroes to the preceding 16 bits without adverse
 868 * effects and use a 32-bit access.
 869 *
 870 * Enforce it on any 32-bit capable setup for now.
 871 */
 872#define SMC_MUST_ALIGN_WRITE(lp)	SMC_32BIT(lp)
 873
 874#define SMC_GET_PN(lp)						\
 875	(SMC_8BIT(lp)	? (SMC_inb(ioaddr, PN_REG(lp)))	\
 876				: (SMC_inw(ioaddr, PN_REG(lp)) & 0xFF))
 877
 878#define SMC_SET_PN(lp, x)						\
 879	do {								\
 880		if (SMC_MUST_ALIGN_WRITE(lp))				\
 881			SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 0, 2));	\
 882		else if (SMC_8BIT(lp))				\
 883			SMC_outb(x, ioaddr, PN_REG(lp));		\
 884		else							\
 885			SMC_outw(x, ioaddr, PN_REG(lp));		\
 886	} while (0)
 887
 888#define SMC_GET_AR(lp)						\
 889	(SMC_8BIT(lp)	? (SMC_inb(ioaddr, AR_REG(lp)))	\
 890				: (SMC_inw(ioaddr, PN_REG(lp)) >> 8))
 891
 892#define SMC_GET_TXFIFO(lp)						\
 893	(SMC_8BIT(lp)	? (SMC_inb(ioaddr, TXFIFO_REG(lp)))	\
 894				: (SMC_inw(ioaddr, TXFIFO_REG(lp)) & 0xFF))
 895
 896#define SMC_GET_RXFIFO(lp)						\
 897	(SMC_8BIT(lp)	? (SMC_inb(ioaddr, RXFIFO_REG(lp)))	\
 898				: (SMC_inw(ioaddr, TXFIFO_REG(lp)) >> 8))
 899
 900#define SMC_GET_INT(lp)						\
 901	(SMC_8BIT(lp)	? (SMC_inb(ioaddr, INT_REG(lp)))	\
 902				: (SMC_inw(ioaddr, INT_REG(lp)) & 0xFF))
 903
 904#define SMC_ACK_INT(lp, x)						\
 905	do {								\
 906		if (SMC_8BIT(lp))					\
 907			SMC_outb(x, ioaddr, INT_REG(lp));		\
 908		else {							\
 909			unsigned long __flags;				\
 910			int __mask;					\
 911			local_irq_save(__flags);			\
 912			__mask = SMC_inw(ioaddr, INT_REG(lp)) & ~0xff; \
 913			SMC_outw(__mask | (x), ioaddr, INT_REG(lp));	\
 914			local_irq_restore(__flags);			\
 915		}							\
 916	} while (0)
 917
 918#define SMC_GET_INT_MASK(lp)						\
 919	(SMC_8BIT(lp)	? (SMC_inb(ioaddr, IM_REG(lp)))	\
 920				: (SMC_inw(ioaddr, INT_REG(lp)) >> 8))
 921
 922#define SMC_SET_INT_MASK(lp, x)					\
 923	do {								\
 924		if (SMC_8BIT(lp))					\
 925			SMC_outb(x, ioaddr, IM_REG(lp));		\
 926		else							\
 927			SMC_outw((x) << 8, ioaddr, INT_REG(lp));	\
 928	} while (0)
 929
 930#define SMC_CURRENT_BANK(lp)	SMC_inw(ioaddr, BANK_SELECT)
 931
 932#define SMC_SELECT_BANK(lp, x)					\
 933	do {								\
 934		if (SMC_MUST_ALIGN_WRITE(lp))				\
 935			SMC_outl((x)<<16, ioaddr, 12<<SMC_IO_SHIFT);	\
 936		else							\
 937			SMC_outw(x, ioaddr, BANK_SELECT);		\
 938	} while (0)
 939
 940#define SMC_GET_BASE(lp)		SMC_inw(ioaddr, BASE_REG(lp))
 941
 942#define SMC_SET_BASE(lp, x)		SMC_outw(x, ioaddr, BASE_REG(lp))
 943
 944#define SMC_GET_CONFIG(lp)	SMC_inw(ioaddr, CONFIG_REG(lp))
 945
 946#define SMC_SET_CONFIG(lp, x)	SMC_outw(x, ioaddr, CONFIG_REG(lp))
 947
 948#define SMC_GET_COUNTER(lp)	SMC_inw(ioaddr, COUNTER_REG(lp))
 949
 950#define SMC_GET_CTL(lp)		SMC_inw(ioaddr, CTL_REG(lp))
 951
 952#define SMC_SET_CTL(lp, x)		SMC_outw(x, ioaddr, CTL_REG(lp))
 953
 954#define SMC_GET_MII(lp)		SMC_inw(ioaddr, MII_REG(lp))
 955
 956#define SMC_GET_GP(lp)		SMC_inw(ioaddr, GP_REG(lp))
 957
 958#define SMC_SET_GP(lp, x)						\
 959	do {								\
 960		if (SMC_MUST_ALIGN_WRITE(lp))				\
 961			SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 8, 1));	\
 962		else							\
 963			SMC_outw(x, ioaddr, GP_REG(lp));		\
 964	} while (0)
 965
 966#define SMC_SET_MII(lp, x)		SMC_outw(x, ioaddr, MII_REG(lp))
 967
 968#define SMC_GET_MIR(lp)		SMC_inw(ioaddr, MIR_REG(lp))
 969
 970#define SMC_SET_MIR(lp, x)		SMC_outw(x, ioaddr, MIR_REG(lp))
 971
 972#define SMC_GET_MMU_CMD(lp)	SMC_inw(ioaddr, MMU_CMD_REG(lp))
 973
 974#define SMC_SET_MMU_CMD(lp, x)	SMC_outw(x, ioaddr, MMU_CMD_REG(lp))
 975
 976#define SMC_GET_FIFO(lp)		SMC_inw(ioaddr, FIFO_REG(lp))
 977
 978#define SMC_GET_PTR(lp)		SMC_inw(ioaddr, PTR_REG(lp))
 979
 980#define SMC_SET_PTR(lp, x)						\
 981	do {								\
 982		if (SMC_MUST_ALIGN_WRITE(lp))				\
 983			SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 4, 2));	\
 984		else							\
 985			SMC_outw(x, ioaddr, PTR_REG(lp));		\
 986	} while (0)
 987
 988#define SMC_GET_EPH_STATUS(lp)	SMC_inw(ioaddr, EPH_STATUS_REG(lp))
 989
 990#define SMC_GET_RCR(lp)		SMC_inw(ioaddr, RCR_REG(lp))
 991
 992#define SMC_SET_RCR(lp, x)		SMC_outw(x, ioaddr, RCR_REG(lp))
 993
 994#define SMC_GET_REV(lp)		SMC_inw(ioaddr, REV_REG(lp))
 995
 996#define SMC_GET_RPC(lp)		SMC_inw(ioaddr, RPC_REG(lp))
 997
 998#define SMC_SET_RPC(lp, x)						\
 999	do {								\
1000		if (SMC_MUST_ALIGN_WRITE(lp))				\
1001			SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 8, 0));	\
1002		else							\
1003			SMC_outw(x, ioaddr, RPC_REG(lp));		\
1004	} while (0)
1005
1006#define SMC_GET_TCR(lp)		SMC_inw(ioaddr, TCR_REG(lp))
1007
1008#define SMC_SET_TCR(lp, x)		SMC_outw(x, ioaddr, TCR_REG(lp))
1009
1010#ifndef SMC_GET_MAC_ADDR
1011#define SMC_GET_MAC_ADDR(lp, addr)					\
1012	do {								\
1013		unsigned int __v;					\
1014		__v = SMC_inw(ioaddr, ADDR0_REG(lp));			\
1015		addr[0] = __v; addr[1] = __v >> 8;			\
1016		__v = SMC_inw(ioaddr, ADDR1_REG(lp));			\
1017		addr[2] = __v; addr[3] = __v >> 8;			\
1018		__v = SMC_inw(ioaddr, ADDR2_REG(lp));			\
1019		addr[4] = __v; addr[5] = __v >> 8;			\
1020	} while (0)
1021#endif
1022
1023#define SMC_SET_MAC_ADDR(lp, addr)					\
1024	do {								\
1025		SMC_outw(addr[0]|(addr[1] << 8), ioaddr, ADDR0_REG(lp)); \
1026		SMC_outw(addr[2]|(addr[3] << 8), ioaddr, ADDR1_REG(lp)); \
1027		SMC_outw(addr[4]|(addr[5] << 8), ioaddr, ADDR2_REG(lp)); \
1028	} while (0)
1029
1030#define SMC_SET_MCAST(lp, x)						\
1031	do {								\
1032		const unsigned char *mt = (x);				\
1033		SMC_outw(mt[0] | (mt[1] << 8), ioaddr, MCAST_REG1(lp)); \
1034		SMC_outw(mt[2] | (mt[3] << 8), ioaddr, MCAST_REG2(lp)); \
1035		SMC_outw(mt[4] | (mt[5] << 8), ioaddr, MCAST_REG3(lp)); \
1036		SMC_outw(mt[6] | (mt[7] << 8), ioaddr, MCAST_REG4(lp)); \
1037	} while (0)
1038
1039#define SMC_PUT_PKT_HDR(lp, status, length)				\
1040	do {								\
1041		if (SMC_32BIT(lp))					\
1042			SMC_outl((status) | (length)<<16, ioaddr,	\
1043				 DATA_REG(lp));			\
1044		else {							\
1045			SMC_outw(status, ioaddr, DATA_REG(lp));	\
1046			SMC_outw(length, ioaddr, DATA_REG(lp));	\
1047		}							\
1048	} while (0)
1049
1050#define SMC_GET_PKT_HDR(lp, status, length)				\
1051	do {								\
1052		if (SMC_32BIT(lp)) {				\
1053			unsigned int __val = SMC_inl(ioaddr, DATA_REG(lp)); \
1054			(status) = __val & 0xffff;			\
1055			(length) = __val >> 16;				\
1056		} else {						\
1057			(status) = SMC_inw(ioaddr, DATA_REG(lp));	\
1058			(length) = SMC_inw(ioaddr, DATA_REG(lp));	\
1059		}							\
1060	} while (0)
1061
1062#define SMC_PUSH_DATA(lp, p, l)					\
1063	do {								\
1064		if (SMC_32BIT(lp)) {				\
1065			void *__ptr = (p);				\
1066			int __len = (l);				\
1067			void __iomem *__ioaddr = ioaddr;		\
1068			if (__len >= 2 && (unsigned long)__ptr & 2) {	\
1069				__len -= 2;				\
1070				SMC_outsw(ioaddr, DATA_REG(lp), __ptr, 1); \
1071				__ptr += 2;				\
1072			}						\
1073			if (SMC_CAN_USE_DATACS && lp->datacs)		\
1074				__ioaddr = lp->datacs;			\
1075			SMC_outsl(__ioaddr, DATA_REG(lp), __ptr, __len>>2); \
1076			if (__len & 2) {				\
1077				__ptr += (__len & ~3);			\
1078				SMC_outsw(ioaddr, DATA_REG(lp), __ptr, 1); \
1079			}						\
1080		} else if (SMC_16BIT(lp))				\
1081			SMC_outsw(ioaddr, DATA_REG(lp), p, (l) >> 1);	\
1082		else if (SMC_8BIT(lp))				\
1083			SMC_outsb(ioaddr, DATA_REG(lp), p, l);	\
1084	} while (0)
1085
1086#define SMC_PULL_DATA(lp, p, l)					\
1087	do {								\
1088		if (SMC_32BIT(lp)) {				\
1089			void *__ptr = (p);				\
1090			int __len = (l);				\
1091			void __iomem *__ioaddr = ioaddr;		\
1092			if ((unsigned long)__ptr & 2) {			\
1093				/*					\
1094				 * We want 32bit alignment here.	\
1095				 * Since some buses perform a full	\
1096				 * 32bit fetch even for 16bit data	\
1097				 * we can't use SMC_inw() here.		\
1098				 * Back both source (on-chip) and	\
1099				 * destination pointers of 2 bytes.	\
1100				 * This is possible since the call to	\
1101				 * SMC_GET_PKT_HDR() already advanced	\
1102				 * the source pointer of 4 bytes, and	\
1103				 * the skb_reserve(skb, 2) advanced	\
1104				 * the destination pointer of 2 bytes.	\
1105				 */					\
1106				__ptr -= 2;				\
1107				__len += 2;				\
1108				SMC_SET_PTR(lp,			\
1109					2|PTR_READ|PTR_RCV|PTR_AUTOINC); \
1110			}						\
1111			if (SMC_CAN_USE_DATACS && lp->datacs)		\
1112				__ioaddr = lp->datacs;			\
1113			__len += 2;					\
1114			SMC_insl(__ioaddr, DATA_REG(lp), __ptr, __len>>2); \
1115		} else if (SMC_16BIT(lp))				\
1116			SMC_insw(ioaddr, DATA_REG(lp), p, (l) >> 1);	\
1117		else if (SMC_8BIT(lp))				\
1118			SMC_insb(ioaddr, DATA_REG(lp), p, l);		\
1119	} while (0)
1120
1121#endif  /* _SMC91X_H_ */