Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Xilinx XADC driver
   4 *
   5 * Copyright 2013-2014 Analog Devices Inc.
   6 *  Author: Lars-Peter Clausen <lars@metafoo.de>
 
 
   7 *
   8 * Documentation for the parts can be found at:
   9 *  - XADC hardmacro: Xilinx UG480
  10 *  - ZYNQ XADC interface: Xilinx UG585
  11 *  - AXI XADC interface: Xilinx PG019
  12 */
  13
  14#include <linux/clk.h>
  15#include <linux/device.h>
  16#include <linux/err.h>
  17#include <linux/interrupt.h>
  18#include <linux/io.h>
  19#include <linux/kernel.h>
  20#include <linux/mod_devicetable.h>
  21#include <linux/module.h>
  22#include <linux/overflow.h>
  23#include <linux/platform_device.h>
  24#include <linux/property.h>
  25#include <linux/slab.h>
  26#include <linux/sysfs.h>
  27
  28#include <linux/iio/buffer.h>
  29#include <linux/iio/events.h>
  30#include <linux/iio/iio.h>
  31#include <linux/iio/sysfs.h>
  32#include <linux/iio/trigger.h>
  33#include <linux/iio/trigger_consumer.h>
  34#include <linux/iio/triggered_buffer.h>
  35
  36#include "xilinx-xadc.h"
  37
  38static const unsigned int XADC_ZYNQ_UNMASK_TIMEOUT = 500;
  39
  40/* ZYNQ register definitions */
  41#define XADC_ZYNQ_REG_CFG	0x00
  42#define XADC_ZYNQ_REG_INTSTS	0x04
  43#define XADC_ZYNQ_REG_INTMSK	0x08
  44#define XADC_ZYNQ_REG_STATUS	0x0c
  45#define XADC_ZYNQ_REG_CFIFO	0x10
  46#define XADC_ZYNQ_REG_DFIFO	0x14
  47#define XADC_ZYNQ_REG_CTL		0x18
  48
  49#define XADC_ZYNQ_CFG_ENABLE		BIT(31)
  50#define XADC_ZYNQ_CFG_CFIFOTH_MASK	(0xf << 20)
  51#define XADC_ZYNQ_CFG_CFIFOTH_OFFSET	20
  52#define XADC_ZYNQ_CFG_DFIFOTH_MASK	(0xf << 16)
  53#define XADC_ZYNQ_CFG_DFIFOTH_OFFSET	16
  54#define XADC_ZYNQ_CFG_WEDGE		BIT(13)
  55#define XADC_ZYNQ_CFG_REDGE		BIT(12)
  56#define XADC_ZYNQ_CFG_TCKRATE_MASK	(0x3 << 8)
  57#define XADC_ZYNQ_CFG_TCKRATE_DIV2	(0x0 << 8)
  58#define XADC_ZYNQ_CFG_TCKRATE_DIV4	(0x1 << 8)
  59#define XADC_ZYNQ_CFG_TCKRATE_DIV8	(0x2 << 8)
  60#define XADC_ZYNQ_CFG_TCKRATE_DIV16	(0x3 << 8)
  61#define XADC_ZYNQ_CFG_IGAP_MASK		0x1f
  62#define XADC_ZYNQ_CFG_IGAP(x)		(x)
  63
  64#define XADC_ZYNQ_INT_CFIFO_LTH		BIT(9)
  65#define XADC_ZYNQ_INT_DFIFO_GTH		BIT(8)
  66#define XADC_ZYNQ_INT_ALARM_MASK	0xff
  67#define XADC_ZYNQ_INT_ALARM_OFFSET	0
  68
  69#define XADC_ZYNQ_STATUS_CFIFO_LVL_MASK	(0xf << 16)
  70#define XADC_ZYNQ_STATUS_CFIFO_LVL_OFFSET	16
  71#define XADC_ZYNQ_STATUS_DFIFO_LVL_MASK	(0xf << 12)
  72#define XADC_ZYNQ_STATUS_DFIFO_LVL_OFFSET	12
  73#define XADC_ZYNQ_STATUS_CFIFOF		BIT(11)
  74#define XADC_ZYNQ_STATUS_CFIFOE		BIT(10)
  75#define XADC_ZYNQ_STATUS_DFIFOF		BIT(9)
  76#define XADC_ZYNQ_STATUS_DFIFOE		BIT(8)
  77#define XADC_ZYNQ_STATUS_OT		BIT(7)
  78#define XADC_ZYNQ_STATUS_ALM(x)		BIT(x)
  79
  80#define XADC_ZYNQ_CTL_RESET		BIT(4)
  81
  82#define XADC_ZYNQ_CMD_NOP		0x00
  83#define XADC_ZYNQ_CMD_READ		0x01
  84#define XADC_ZYNQ_CMD_WRITE		0x02
  85
  86#define XADC_ZYNQ_CMD(cmd, addr, data) (((cmd) << 26) | ((addr) << 16) | (data))
  87
  88/* AXI register definitions */
  89#define XADC_AXI_REG_RESET		0x00
  90#define XADC_AXI_REG_STATUS		0x04
  91#define XADC_AXI_REG_ALARM_STATUS	0x08
  92#define XADC_AXI_REG_CONVST		0x0c
  93#define XADC_AXI_REG_XADC_RESET		0x10
  94#define XADC_AXI_REG_GIER		0x5c
  95#define XADC_AXI_REG_IPISR		0x60
  96#define XADC_AXI_REG_IPIER		0x68
  97
  98/* 7 Series */
  99#define XADC_7S_AXI_ADC_REG_OFFSET	0x200
 100
 101/* UltraScale */
 102#define XADC_US_AXI_ADC_REG_OFFSET	0x400
 103
 104#define XADC_AXI_RESET_MAGIC		0xa
 105#define XADC_AXI_GIER_ENABLE		BIT(31)
 106
 107#define XADC_AXI_INT_EOS		BIT(4)
 108#define XADC_AXI_INT_ALARM_MASK		0x3c0f
 109
 110#define XADC_FLAGS_BUFFERED BIT(0)
 111#define XADC_FLAGS_IRQ_OPTIONAL BIT(1)
 112
 113/*
 114 * The XADC hardware supports a samplerate of up to 1MSPS. Unfortunately it does
 115 * not have a hardware FIFO. Which means an interrupt is generated for each
 116 * conversion sequence. At 1MSPS sample rate the CPU in ZYNQ7000 is completely
 117 * overloaded by the interrupts that it soft-lockups. For this reason the driver
 118 * limits the maximum samplerate 150kSPS. At this rate the CPU is fairly busy,
 119 * but still responsive.
 120 */
 121#define XADC_MAX_SAMPLERATE 150000
 122
 123static void xadc_write_reg(struct xadc *xadc, unsigned int reg,
 124	uint32_t val)
 125{
 126	writel(val, xadc->base + reg);
 127}
 128
 129static void xadc_read_reg(struct xadc *xadc, unsigned int reg,
 130	uint32_t *val)
 131{
 132	*val = readl(xadc->base + reg);
 133}
 134
 135/*
 136 * The ZYNQ interface uses two asynchronous FIFOs for communication with the
 137 * XADC. Reads and writes to the XADC register are performed by submitting a
 138 * request to the command FIFO (CFIFO), once the request has been completed the
 139 * result can be read from the data FIFO (DFIFO). The method currently used in
 140 * this driver is to submit the request for a read/write operation, then go to
 141 * sleep and wait for an interrupt that signals that a response is available in
 142 * the data FIFO.
 143 */
 144
 145static void xadc_zynq_write_fifo(struct xadc *xadc, uint32_t *cmd,
 146	unsigned int n)
 147{
 148	unsigned int i;
 149
 150	for (i = 0; i < n; i++)
 151		xadc_write_reg(xadc, XADC_ZYNQ_REG_CFIFO, cmd[i]);
 152}
 153
 154static void xadc_zynq_drain_fifo(struct xadc *xadc)
 155{
 156	uint32_t status, tmp;
 157
 158	xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &status);
 159
 160	while (!(status & XADC_ZYNQ_STATUS_DFIFOE)) {
 161		xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &tmp);
 162		xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &status);
 163	}
 164}
 165
 166static void xadc_zynq_update_intmsk(struct xadc *xadc, unsigned int mask,
 167	unsigned int val)
 168{
 169	xadc->zynq_intmask &= ~mask;
 170	xadc->zynq_intmask |= val;
 171
 172	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTMSK,
 173		xadc->zynq_intmask | xadc->zynq_masked_alarm);
 174}
 175
 176static int xadc_zynq_write_adc_reg(struct xadc *xadc, unsigned int reg,
 177	uint16_t val)
 178{
 179	uint32_t cmd[1];
 180	uint32_t tmp;
 181	int ret;
 182
 183	spin_lock_irq(&xadc->lock);
 184	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
 185			XADC_ZYNQ_INT_DFIFO_GTH);
 186
 187	reinit_completion(&xadc->completion);
 188
 189	cmd[0] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_WRITE, reg, val);
 190	xadc_zynq_write_fifo(xadc, cmd, ARRAY_SIZE(cmd));
 191	xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &tmp);
 192	tmp &= ~XADC_ZYNQ_CFG_DFIFOTH_MASK;
 193	tmp |= 0 << XADC_ZYNQ_CFG_DFIFOTH_OFFSET;
 194	xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, tmp);
 195
 196	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 0);
 197	spin_unlock_irq(&xadc->lock);
 198
 199	ret = wait_for_completion_interruptible_timeout(&xadc->completion, HZ);
 200	if (ret == 0)
 201		ret = -EIO;
 202	else
 203		ret = 0;
 204
 205	xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &tmp);
 206
 207	return ret;
 208}
 209
 210static int xadc_zynq_read_adc_reg(struct xadc *xadc, unsigned int reg,
 211	uint16_t *val)
 212{
 213	uint32_t cmd[2];
 214	uint32_t resp, tmp;
 215	int ret;
 216
 217	cmd[0] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_READ, reg, 0);
 218	cmd[1] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_NOP, 0, 0);
 219
 220	spin_lock_irq(&xadc->lock);
 221	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
 222			XADC_ZYNQ_INT_DFIFO_GTH);
 223	xadc_zynq_drain_fifo(xadc);
 224	reinit_completion(&xadc->completion);
 225
 226	xadc_zynq_write_fifo(xadc, cmd, ARRAY_SIZE(cmd));
 227	xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &tmp);
 228	tmp &= ~XADC_ZYNQ_CFG_DFIFOTH_MASK;
 229	tmp |= 1 << XADC_ZYNQ_CFG_DFIFOTH_OFFSET;
 230	xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, tmp);
 231
 232	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 0);
 233	spin_unlock_irq(&xadc->lock);
 234	ret = wait_for_completion_interruptible_timeout(&xadc->completion, HZ);
 235	if (ret == 0)
 236		ret = -EIO;
 237	if (ret < 0)
 238		return ret;
 239
 240	xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &resp);
 241	xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &resp);
 242
 243	*val = resp & 0xffff;
 244
 245	return 0;
 246}
 247
 248static unsigned int xadc_zynq_transform_alarm(unsigned int alarm)
 249{
 250	return ((alarm & 0x80) >> 4) |
 251		((alarm & 0x78) << 1) |
 252		(alarm & 0x07);
 253}
 254
 255/*
 256 * The ZYNQ threshold interrupts are level sensitive. Since we can't make the
 257 * threshold condition go way from within the interrupt handler, this means as
 258 * soon as a threshold condition is present we would enter the interrupt handler
 259 * again and again. To work around this we mask all active thresholds interrupts
 260 * in the interrupt handler and start a timer. In this timer we poll the
 261 * interrupt status and only if the interrupt is inactive we unmask it again.
 262 */
 263static void xadc_zynq_unmask_worker(struct work_struct *work)
 264{
 265	struct xadc *xadc = container_of(work, struct xadc, zynq_unmask_work.work);
 266	unsigned int misc_sts, unmask;
 267
 268	xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &misc_sts);
 269
 270	misc_sts &= XADC_ZYNQ_INT_ALARM_MASK;
 271
 272	spin_lock_irq(&xadc->lock);
 273
 274	/* Clear those bits which are not active anymore */
 275	unmask = (xadc->zynq_masked_alarm ^ misc_sts) & xadc->zynq_masked_alarm;
 276	xadc->zynq_masked_alarm &= misc_sts;
 277
 278	/* Also clear those which are masked out anyway */
 279	xadc->zynq_masked_alarm &= ~xadc->zynq_intmask;
 280
 281	/* Clear the interrupts before we unmask them */
 282	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, unmask);
 283
 284	xadc_zynq_update_intmsk(xadc, 0, 0);
 285
 286	spin_unlock_irq(&xadc->lock);
 287
 288	/* if still pending some alarm re-trigger the timer */
 289	if (xadc->zynq_masked_alarm) {
 290		schedule_delayed_work(&xadc->zynq_unmask_work,
 291				msecs_to_jiffies(XADC_ZYNQ_UNMASK_TIMEOUT));
 292	}
 293
 294}
 295
 296static irqreturn_t xadc_zynq_interrupt_handler(int irq, void *devid)
 297{
 298	struct iio_dev *indio_dev = devid;
 299	struct xadc *xadc = iio_priv(indio_dev);
 300	uint32_t status;
 301
 302	xadc_read_reg(xadc, XADC_ZYNQ_REG_INTSTS, &status);
 303
 304	status &= ~(xadc->zynq_intmask | xadc->zynq_masked_alarm);
 305
 306	if (!status)
 307		return IRQ_NONE;
 308
 309	spin_lock(&xadc->lock);
 310
 311	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, status);
 312
 313	if (status & XADC_ZYNQ_INT_DFIFO_GTH) {
 314		xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
 315			XADC_ZYNQ_INT_DFIFO_GTH);
 316		complete(&xadc->completion);
 317	}
 318
 319	status &= XADC_ZYNQ_INT_ALARM_MASK;
 320	if (status) {
 321		xadc->zynq_masked_alarm |= status;
 322		/*
 323		 * mask the current event interrupt,
 324		 * unmask it when the interrupt is no more active.
 325		 */
 326		xadc_zynq_update_intmsk(xadc, 0, 0);
 327
 328		xadc_handle_events(indio_dev,
 329				xadc_zynq_transform_alarm(status));
 330
 331		/* unmask the required interrupts in timer. */
 332		schedule_delayed_work(&xadc->zynq_unmask_work,
 333				msecs_to_jiffies(XADC_ZYNQ_UNMASK_TIMEOUT));
 334	}
 335	spin_unlock(&xadc->lock);
 336
 337	return IRQ_HANDLED;
 338}
 339
 340#define XADC_ZYNQ_TCK_RATE_MAX 50000000
 341#define XADC_ZYNQ_IGAP_DEFAULT 20
 342#define XADC_ZYNQ_PCAP_RATE_MAX 200000000
 343
 344static int xadc_zynq_setup(struct platform_device *pdev,
 345	struct iio_dev *indio_dev, int irq)
 346{
 347	struct xadc *xadc = iio_priv(indio_dev);
 348	unsigned long pcap_rate;
 349	unsigned int tck_div;
 350	unsigned int div;
 351	unsigned int igap;
 352	unsigned int tck_rate;
 353	int ret;
 354
 355	/* TODO: Figure out how to make igap and tck_rate configurable */
 356	igap = XADC_ZYNQ_IGAP_DEFAULT;
 357	tck_rate = XADC_ZYNQ_TCK_RATE_MAX;
 358
 359	xadc->zynq_intmask = ~0;
 360
 361	pcap_rate = clk_get_rate(xadc->clk);
 362	if (!pcap_rate)
 363		return -EINVAL;
 364
 365	if (pcap_rate > XADC_ZYNQ_PCAP_RATE_MAX) {
 366		ret = clk_set_rate(xadc->clk,
 367				   (unsigned long)XADC_ZYNQ_PCAP_RATE_MAX);
 368		if (ret)
 369			return ret;
 370	}
 371
 
 
 372	if (tck_rate > pcap_rate / 2) {
 373		div = 2;
 374	} else {
 375		div = pcap_rate / tck_rate;
 376		if (pcap_rate / div > XADC_ZYNQ_TCK_RATE_MAX)
 377			div++;
 378	}
 379
 380	if (div <= 3)
 381		tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV2;
 382	else if (div <= 7)
 383		tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV4;
 384	else if (div <= 15)
 385		tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV8;
 386	else
 387		tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV16;
 388
 389	xadc_write_reg(xadc, XADC_ZYNQ_REG_CTL, XADC_ZYNQ_CTL_RESET);
 390	xadc_write_reg(xadc, XADC_ZYNQ_REG_CTL, 0);
 391	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, ~0);
 392	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTMSK, xadc->zynq_intmask);
 393	xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, XADC_ZYNQ_CFG_ENABLE |
 394			XADC_ZYNQ_CFG_REDGE | XADC_ZYNQ_CFG_WEDGE |
 395			tck_div | XADC_ZYNQ_CFG_IGAP(igap));
 396
 397	if (pcap_rate > XADC_ZYNQ_PCAP_RATE_MAX) {
 398		ret = clk_set_rate(xadc->clk, pcap_rate);
 399		if (ret)
 400			return ret;
 401	}
 402
 403	return 0;
 404}
 405
 406static unsigned long xadc_zynq_get_dclk_rate(struct xadc *xadc)
 407{
 408	unsigned int div;
 409	uint32_t val;
 410
 411	xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &val);
 412
 413	switch (val & XADC_ZYNQ_CFG_TCKRATE_MASK) {
 414	case XADC_ZYNQ_CFG_TCKRATE_DIV4:
 415		div = 4;
 416		break;
 417	case XADC_ZYNQ_CFG_TCKRATE_DIV8:
 418		div = 8;
 419		break;
 420	case XADC_ZYNQ_CFG_TCKRATE_DIV16:
 421		div = 16;
 422		break;
 423	default:
 424		div = 2;
 425		break;
 426	}
 427
 428	return clk_get_rate(xadc->clk) / div;
 429}
 430
 431static void xadc_zynq_update_alarm(struct xadc *xadc, unsigned int alarm)
 432{
 433	unsigned long flags;
 434	uint32_t status;
 435
 436	/* Move OT to bit 7 */
 437	alarm = ((alarm & 0x08) << 4) | ((alarm & 0xf0) >> 1) | (alarm & 0x07);
 438
 439	spin_lock_irqsave(&xadc->lock, flags);
 440
 441	/* Clear previous interrupts if any. */
 442	xadc_read_reg(xadc, XADC_ZYNQ_REG_INTSTS, &status);
 443	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, status & alarm);
 444
 445	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_ALARM_MASK,
 446		~alarm & XADC_ZYNQ_INT_ALARM_MASK);
 447
 448	spin_unlock_irqrestore(&xadc->lock, flags);
 449}
 450
 451static const struct xadc_ops xadc_zynq_ops = {
 452	.read = xadc_zynq_read_adc_reg,
 453	.write = xadc_zynq_write_adc_reg,
 454	.setup = xadc_zynq_setup,
 455	.get_dclk_rate = xadc_zynq_get_dclk_rate,
 456	.interrupt_handler = xadc_zynq_interrupt_handler,
 457	.update_alarm = xadc_zynq_update_alarm,
 458	.type = XADC_TYPE_S7,
 459	/* Temp in C = (val * 503.975) / 2**bits - 273.15 */
 460	.temp_scale = 503975,
 461	.temp_offset = 273150,
 462};
 463
 464static const unsigned int xadc_axi_reg_offsets[] = {
 465	[XADC_TYPE_S7] = XADC_7S_AXI_ADC_REG_OFFSET,
 466	[XADC_TYPE_US] = XADC_US_AXI_ADC_REG_OFFSET,
 467};
 468
 469static int xadc_axi_read_adc_reg(struct xadc *xadc, unsigned int reg,
 470	uint16_t *val)
 471{
 472	uint32_t val32;
 473
 474	xadc_read_reg(xadc, xadc_axi_reg_offsets[xadc->ops->type] + reg * 4,
 475		&val32);
 476	*val = val32 & 0xffff;
 477
 478	return 0;
 479}
 480
 481static int xadc_axi_write_adc_reg(struct xadc *xadc, unsigned int reg,
 482	uint16_t val)
 483{
 484	xadc_write_reg(xadc, xadc_axi_reg_offsets[xadc->ops->type] + reg * 4,
 485		val);
 486
 487	return 0;
 488}
 489
 490static int xadc_axi_setup(struct platform_device *pdev,
 491	struct iio_dev *indio_dev, int irq)
 492{
 493	struct xadc *xadc = iio_priv(indio_dev);
 494
 495	xadc_write_reg(xadc, XADC_AXI_REG_RESET, XADC_AXI_RESET_MAGIC);
 496	xadc_write_reg(xadc, XADC_AXI_REG_GIER, XADC_AXI_GIER_ENABLE);
 497
 498	return 0;
 499}
 500
 501static irqreturn_t xadc_axi_interrupt_handler(int irq, void *devid)
 502{
 503	struct iio_dev *indio_dev = devid;
 504	struct xadc *xadc = iio_priv(indio_dev);
 505	uint32_t status, mask;
 506	unsigned int events;
 507
 508	xadc_read_reg(xadc, XADC_AXI_REG_IPISR, &status);
 509	xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &mask);
 510	status &= mask;
 511
 512	if (!status)
 513		return IRQ_NONE;
 514
 515	if ((status & XADC_AXI_INT_EOS) && xadc->trigger)
 516		iio_trigger_poll(xadc->trigger);
 517
 518	if (status & XADC_AXI_INT_ALARM_MASK) {
 519		/*
 520		 * The order of the bits in the AXI-XADC status register does
 521		 * not match the order of the bits in the XADC alarm enable
 522		 * register. xadc_handle_events() expects the events to be in
 523		 * the same order as the XADC alarm enable register.
 524		 */
 525		events = (status & 0x000e) >> 1;
 526		events |= (status & 0x0001) << 3;
 527		events |= (status & 0x3c00) >> 6;
 528		xadc_handle_events(indio_dev, events);
 529	}
 530
 531	xadc_write_reg(xadc, XADC_AXI_REG_IPISR, status);
 532
 533	return IRQ_HANDLED;
 534}
 535
 536static void xadc_axi_update_alarm(struct xadc *xadc, unsigned int alarm)
 537{
 538	uint32_t val;
 539	unsigned long flags;
 540
 541	/*
 542	 * The order of the bits in the AXI-XADC status register does not match
 543	 * the order of the bits in the XADC alarm enable register. We get
 544	 * passed the alarm mask in the same order as in the XADC alarm enable
 545	 * register.
 546	 */
 547	alarm = ((alarm & 0x07) << 1) | ((alarm & 0x08) >> 3) |
 548			((alarm & 0xf0) << 6);
 549
 550	spin_lock_irqsave(&xadc->lock, flags);
 551	xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &val);
 552	val &= ~XADC_AXI_INT_ALARM_MASK;
 553	val |= alarm;
 554	xadc_write_reg(xadc, XADC_AXI_REG_IPIER, val);
 555	spin_unlock_irqrestore(&xadc->lock, flags);
 556}
 557
 558static unsigned long xadc_axi_get_dclk(struct xadc *xadc)
 559{
 560	return clk_get_rate(xadc->clk);
 561}
 562
 563static const struct xadc_ops xadc_7s_axi_ops = {
 564	.read = xadc_axi_read_adc_reg,
 565	.write = xadc_axi_write_adc_reg,
 566	.setup = xadc_axi_setup,
 567	.get_dclk_rate = xadc_axi_get_dclk,
 568	.update_alarm = xadc_axi_update_alarm,
 569	.interrupt_handler = xadc_axi_interrupt_handler,
 570	.flags = XADC_FLAGS_BUFFERED | XADC_FLAGS_IRQ_OPTIONAL,
 571	.type = XADC_TYPE_S7,
 572	/* Temp in C = (val * 503.975) / 2**bits - 273.15 */
 573	.temp_scale = 503975,
 574	.temp_offset = 273150,
 575};
 576
 577static const struct xadc_ops xadc_us_axi_ops = {
 578	.read = xadc_axi_read_adc_reg,
 579	.write = xadc_axi_write_adc_reg,
 580	.setup = xadc_axi_setup,
 581	.get_dclk_rate = xadc_axi_get_dclk,
 582	.update_alarm = xadc_axi_update_alarm,
 583	.interrupt_handler = xadc_axi_interrupt_handler,
 584	.flags = XADC_FLAGS_BUFFERED | XADC_FLAGS_IRQ_OPTIONAL,
 585	.type = XADC_TYPE_US,
 586	/**
 587	 * Values below are for UltraScale+ (SYSMONE4) using internal reference.
 588	 * See https://docs.xilinx.com/v/u/en-US/ug580-ultrascale-sysmon
 589	 */
 590	.temp_scale = 509314,
 591	.temp_offset = 280231,
 592};
 593
 594static int _xadc_update_adc_reg(struct xadc *xadc, unsigned int reg,
 595	uint16_t mask, uint16_t val)
 596{
 597	uint16_t tmp;
 598	int ret;
 599
 600	ret = _xadc_read_adc_reg(xadc, reg, &tmp);
 601	if (ret)
 602		return ret;
 603
 604	return _xadc_write_adc_reg(xadc, reg, (tmp & ~mask) | val);
 605}
 606
 607static int xadc_update_adc_reg(struct xadc *xadc, unsigned int reg,
 608	uint16_t mask, uint16_t val)
 609{
 610	int ret;
 611
 612	mutex_lock(&xadc->mutex);
 613	ret = _xadc_update_adc_reg(xadc, reg, mask, val);
 614	mutex_unlock(&xadc->mutex);
 615
 616	return ret;
 617}
 618
 619static unsigned long xadc_get_dclk_rate(struct xadc *xadc)
 620{
 621	return xadc->ops->get_dclk_rate(xadc);
 622}
 623
 624static int xadc_update_scan_mode(struct iio_dev *indio_dev,
 625	const unsigned long *mask)
 626{
 627	struct xadc *xadc = iio_priv(indio_dev);
 628	size_t n;
 629	void *data;
 630
 631	n = bitmap_weight(mask, indio_dev->masklength);
 632
 633	data = devm_krealloc_array(indio_dev->dev.parent, xadc->data,
 634				   n, sizeof(*xadc->data), GFP_KERNEL);
 635	if (!data)
 636		return -ENOMEM;
 637
 638	memset(data, 0, n * sizeof(*xadc->data));
 639	xadc->data = data;
 640
 641	return 0;
 642}
 643
 644static unsigned int xadc_scan_index_to_channel(unsigned int scan_index)
 645{
 646	switch (scan_index) {
 647	case 5:
 648		return XADC_REG_VCCPINT;
 649	case 6:
 650		return XADC_REG_VCCPAUX;
 651	case 7:
 652		return XADC_REG_VCCO_DDR;
 653	case 8:
 654		return XADC_REG_TEMP;
 655	case 9:
 656		return XADC_REG_VCCINT;
 657	case 10:
 658		return XADC_REG_VCCAUX;
 659	case 11:
 660		return XADC_REG_VPVN;
 661	case 12:
 662		return XADC_REG_VREFP;
 663	case 13:
 664		return XADC_REG_VREFN;
 665	case 14:
 666		return XADC_REG_VCCBRAM;
 667	default:
 668		return XADC_REG_VAUX(scan_index - 16);
 669	}
 670}
 671
 672static irqreturn_t xadc_trigger_handler(int irq, void *p)
 673{
 674	struct iio_poll_func *pf = p;
 675	struct iio_dev *indio_dev = pf->indio_dev;
 676	struct xadc *xadc = iio_priv(indio_dev);
 677	unsigned int chan;
 678	int i, j;
 679
 680	if (!xadc->data)
 681		goto out;
 682
 683	j = 0;
 684	for_each_set_bit(i, indio_dev->active_scan_mask,
 685		indio_dev->masklength) {
 686		chan = xadc_scan_index_to_channel(i);
 687		xadc_read_adc_reg(xadc, chan, &xadc->data[j]);
 688		j++;
 689	}
 690
 691	iio_push_to_buffers(indio_dev, xadc->data);
 692
 693out:
 694	iio_trigger_notify_done(indio_dev->trig);
 695
 696	return IRQ_HANDLED;
 697}
 698
 699static int xadc_trigger_set_state(struct iio_trigger *trigger, bool state)
 700{
 701	struct xadc *xadc = iio_trigger_get_drvdata(trigger);
 702	unsigned long flags;
 703	unsigned int convst;
 704	unsigned int val;
 705	int ret = 0;
 706
 707	mutex_lock(&xadc->mutex);
 708
 709	if (state) {
 710		/* Only one of the two triggers can be active at a time. */
 711		if (xadc->trigger != NULL) {
 712			ret = -EBUSY;
 713			goto err_out;
 714		} else {
 715			xadc->trigger = trigger;
 716			if (trigger == xadc->convst_trigger)
 717				convst = XADC_CONF0_EC;
 718			else
 719				convst = 0;
 720		}
 721		ret = _xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF0_EC,
 722					convst);
 723		if (ret)
 724			goto err_out;
 725	} else {
 726		xadc->trigger = NULL;
 727	}
 728
 729	spin_lock_irqsave(&xadc->lock, flags);
 730	xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &val);
 731	xadc_write_reg(xadc, XADC_AXI_REG_IPISR, XADC_AXI_INT_EOS);
 732	if (state)
 733		val |= XADC_AXI_INT_EOS;
 734	else
 735		val &= ~XADC_AXI_INT_EOS;
 736	xadc_write_reg(xadc, XADC_AXI_REG_IPIER, val);
 737	spin_unlock_irqrestore(&xadc->lock, flags);
 738
 739err_out:
 740	mutex_unlock(&xadc->mutex);
 741
 742	return ret;
 743}
 744
 745static const struct iio_trigger_ops xadc_trigger_ops = {
 
 746	.set_trigger_state = &xadc_trigger_set_state,
 747};
 748
 749static struct iio_trigger *xadc_alloc_trigger(struct iio_dev *indio_dev,
 750	const char *name)
 751{
 752	struct device *dev = indio_dev->dev.parent;
 753	struct iio_trigger *trig;
 754	int ret;
 755
 756	trig = devm_iio_trigger_alloc(dev, "%s%d-%s", indio_dev->name,
 757				      iio_device_id(indio_dev), name);
 758	if (trig == NULL)
 759		return ERR_PTR(-ENOMEM);
 760
 
 761	trig->ops = &xadc_trigger_ops;
 762	iio_trigger_set_drvdata(trig, iio_priv(indio_dev));
 763
 764	ret = devm_iio_trigger_register(dev, trig);
 765	if (ret)
 766		return ERR_PTR(ret);
 767
 768	return trig;
 
 
 
 
 769}
 770
 771static int xadc_power_adc_b(struct xadc *xadc, unsigned int seq_mode)
 772{
 773	uint16_t val;
 774
 775	/*
 776	 * As per datasheet the power-down bits are don't care in the
 777	 * UltraScale, but as per reality setting the power-down bit for the
 778	 * non-existing ADC-B powers down the main ADC, so just return and don't
 779	 * do anything.
 780	 */
 781	if (xadc->ops->type == XADC_TYPE_US)
 782		return 0;
 783
 784	/* Powerdown the ADC-B when it is not needed. */
 785	switch (seq_mode) {
 786	case XADC_CONF1_SEQ_SIMULTANEOUS:
 787	case XADC_CONF1_SEQ_INDEPENDENT:
 788		val = 0;
 789		break;
 790	default:
 791		val = XADC_CONF2_PD_ADC_B;
 792		break;
 793	}
 794
 795	return xadc_update_adc_reg(xadc, XADC_REG_CONF2, XADC_CONF2_PD_MASK,
 796		val);
 797}
 798
 799static int xadc_get_seq_mode(struct xadc *xadc, unsigned long scan_mode)
 800{
 801	unsigned int aux_scan_mode = scan_mode >> 16;
 802
 803	/* UltraScale has only one ADC and supports only continuous mode */
 804	if (xadc->ops->type == XADC_TYPE_US)
 805		return XADC_CONF1_SEQ_CONTINUOUS;
 806
 807	if (xadc->external_mux_mode == XADC_EXTERNAL_MUX_DUAL)
 808		return XADC_CONF1_SEQ_SIMULTANEOUS;
 809
 810	if ((aux_scan_mode & 0xff00) == 0 ||
 811		(aux_scan_mode & 0x00ff) == 0)
 812		return XADC_CONF1_SEQ_CONTINUOUS;
 813
 814	return XADC_CONF1_SEQ_SIMULTANEOUS;
 815}
 816
 817static int xadc_postdisable(struct iio_dev *indio_dev)
 818{
 819	struct xadc *xadc = iio_priv(indio_dev);
 820	unsigned long scan_mask;
 821	int ret;
 822	int i;
 823
 824	scan_mask = 1; /* Run calibration as part of the sequence */
 825	for (i = 0; i < indio_dev->num_channels; i++)
 826		scan_mask |= BIT(indio_dev->channels[i].scan_index);
 827
 828	/* Enable all channels and calibration */
 829	ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(0), scan_mask & 0xffff);
 830	if (ret)
 831		return ret;
 832
 833	ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(1), scan_mask >> 16);
 834	if (ret)
 835		return ret;
 836
 837	ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
 838		XADC_CONF1_SEQ_CONTINUOUS);
 839	if (ret)
 840		return ret;
 841
 842	return xadc_power_adc_b(xadc, XADC_CONF1_SEQ_CONTINUOUS);
 843}
 844
 845static int xadc_preenable(struct iio_dev *indio_dev)
 846{
 847	struct xadc *xadc = iio_priv(indio_dev);
 848	unsigned long scan_mask;
 849	int seq_mode;
 850	int ret;
 851
 852	ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
 853		XADC_CONF1_SEQ_DEFAULT);
 854	if (ret)
 855		goto err;
 856
 857	scan_mask = *indio_dev->active_scan_mask;
 858	seq_mode = xadc_get_seq_mode(xadc, scan_mask);
 859
 860	ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(0), scan_mask & 0xffff);
 861	if (ret)
 862		goto err;
 863
 864	/*
 865	 * In simultaneous mode the upper and lower aux channels are samples at
 866	 * the same time. In this mode the upper 8 bits in the sequencer
 867	 * register are don't care and the lower 8 bits control two channels
 868	 * each. As such we must set the bit if either the channel in the lower
 869	 * group or the upper group is enabled.
 870	 */
 871	if (seq_mode == XADC_CONF1_SEQ_SIMULTANEOUS)
 872		scan_mask = ((scan_mask >> 8) | scan_mask) & 0xff0000;
 873
 874	ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(1), scan_mask >> 16);
 875	if (ret)
 876		goto err;
 877
 878	ret = xadc_power_adc_b(xadc, seq_mode);
 879	if (ret)
 880		goto err;
 881
 882	ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
 883		seq_mode);
 884	if (ret)
 885		goto err;
 886
 887	return 0;
 888err:
 889	xadc_postdisable(indio_dev);
 890	return ret;
 891}
 892
 893static const struct iio_buffer_setup_ops xadc_buffer_ops = {
 894	.preenable = &xadc_preenable,
 
 
 895	.postdisable = &xadc_postdisable,
 896};
 897
 898static int xadc_read_samplerate(struct xadc *xadc)
 899{
 900	unsigned int div;
 901	uint16_t val16;
 902	int ret;
 903
 904	ret = xadc_read_adc_reg(xadc, XADC_REG_CONF2, &val16);
 905	if (ret)
 906		return ret;
 907
 908	div = (val16 & XADC_CONF2_DIV_MASK) >> XADC_CONF2_DIV_OFFSET;
 909	if (div < 2)
 910		div = 2;
 911
 912	return xadc_get_dclk_rate(xadc) / div / 26;
 913}
 914
 915static int xadc_read_raw(struct iio_dev *indio_dev,
 916	struct iio_chan_spec const *chan, int *val, int *val2, long info)
 917{
 918	struct xadc *xadc = iio_priv(indio_dev);
 919	unsigned int bits = chan->scan_type.realbits;
 920	uint16_t val16;
 921	int ret;
 922
 923	switch (info) {
 924	case IIO_CHAN_INFO_RAW:
 925		if (iio_buffer_enabled(indio_dev))
 926			return -EBUSY;
 927		ret = xadc_read_adc_reg(xadc, chan->address, &val16);
 928		if (ret < 0)
 929			return ret;
 930
 931		val16 >>= chan->scan_type.shift;
 932		if (chan->scan_type.sign == 'u')
 933			*val = val16;
 934		else
 935			*val = sign_extend32(val16, bits - 1);
 936
 937		return IIO_VAL_INT;
 938	case IIO_CHAN_INFO_SCALE:
 939		switch (chan->type) {
 940		case IIO_VOLTAGE:
 941			/* V = (val * 3.0) / 2**bits */
 942			switch (chan->address) {
 943			case XADC_REG_VCCINT:
 944			case XADC_REG_VCCAUX:
 945			case XADC_REG_VREFP:
 946			case XADC_REG_VREFN:
 947			case XADC_REG_VCCBRAM:
 948			case XADC_REG_VCCPINT:
 949			case XADC_REG_VCCPAUX:
 950			case XADC_REG_VCCO_DDR:
 951				*val = 3000;
 952				break;
 953			default:
 954				*val = 1000;
 955				break;
 956			}
 957			*val2 = bits;
 958			return IIO_VAL_FRACTIONAL_LOG2;
 959		case IIO_TEMP:
 960			*val = xadc->ops->temp_scale;
 961			*val2 = bits;
 
 962			return IIO_VAL_FRACTIONAL_LOG2;
 963		default:
 964			return -EINVAL;
 965		}
 966	case IIO_CHAN_INFO_OFFSET:
 967		/* Only the temperature channel has an offset */
 968		*val = -((xadc->ops->temp_offset << bits) / xadc->ops->temp_scale);
 969		return IIO_VAL_INT;
 970	case IIO_CHAN_INFO_SAMP_FREQ:
 971		ret = xadc_read_samplerate(xadc);
 972		if (ret < 0)
 973			return ret;
 974
 975		*val = ret;
 
 
 
 
 
 976		return IIO_VAL_INT;
 977	default:
 978		return -EINVAL;
 979	}
 980}
 981
 982static int xadc_write_samplerate(struct xadc *xadc, int val)
 
 983{
 
 984	unsigned long clk_rate = xadc_get_dclk_rate(xadc);
 985	unsigned int div;
 986
 987	if (!clk_rate)
 988		return -EINVAL;
 989
 990	if (val <= 0)
 991		return -EINVAL;
 992
 993	/* Max. 150 kSPS */
 994	if (val > XADC_MAX_SAMPLERATE)
 995		val = XADC_MAX_SAMPLERATE;
 996
 997	val *= 26;
 998
 999	/* Min 1MHz */
1000	if (val < 1000000)
1001		val = 1000000;
1002
1003	/*
1004	 * We want to round down, but only if we do not exceed the 150 kSPS
1005	 * limit.
1006	 */
1007	div = clk_rate / val;
1008	if (clk_rate / div / 26 > XADC_MAX_SAMPLERATE)
1009		div++;
1010	if (div < 2)
1011		div = 2;
1012	else if (div > 0xff)
1013		div = 0xff;
1014
1015	return xadc_update_adc_reg(xadc, XADC_REG_CONF2, XADC_CONF2_DIV_MASK,
1016		div << XADC_CONF2_DIV_OFFSET);
1017}
1018
1019static int xadc_write_raw(struct iio_dev *indio_dev,
1020	struct iio_chan_spec const *chan, int val, int val2, long info)
1021{
1022	struct xadc *xadc = iio_priv(indio_dev);
1023
1024	if (info != IIO_CHAN_INFO_SAMP_FREQ)
1025		return -EINVAL;
1026
1027	return xadc_write_samplerate(xadc, val);
1028}
1029
1030static const struct iio_event_spec xadc_temp_events[] = {
1031	{
1032		.type = IIO_EV_TYPE_THRESH,
1033		.dir = IIO_EV_DIR_RISING,
1034		.mask_separate = BIT(IIO_EV_INFO_ENABLE) |
1035				BIT(IIO_EV_INFO_VALUE) |
1036				BIT(IIO_EV_INFO_HYSTERESIS),
1037	},
1038};
1039
1040/* Separate values for upper and lower thresholds, but only a shared enabled */
1041static const struct iio_event_spec xadc_voltage_events[] = {
1042	{
1043		.type = IIO_EV_TYPE_THRESH,
1044		.dir = IIO_EV_DIR_RISING,
1045		.mask_separate = BIT(IIO_EV_INFO_VALUE),
1046	}, {
1047		.type = IIO_EV_TYPE_THRESH,
1048		.dir = IIO_EV_DIR_FALLING,
1049		.mask_separate = BIT(IIO_EV_INFO_VALUE),
1050	}, {
1051		.type = IIO_EV_TYPE_THRESH,
1052		.dir = IIO_EV_DIR_EITHER,
1053		.mask_separate = BIT(IIO_EV_INFO_ENABLE),
1054	},
1055};
1056
1057#define XADC_CHAN_TEMP(_chan, _scan_index, _addr, _bits) { \
1058	.type = IIO_TEMP, \
1059	.indexed = 1, \
1060	.channel = (_chan), \
1061	.address = (_addr), \
1062	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
1063		BIT(IIO_CHAN_INFO_SCALE) | \
1064		BIT(IIO_CHAN_INFO_OFFSET), \
1065	.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
1066	.event_spec = xadc_temp_events, \
1067	.num_event_specs = ARRAY_SIZE(xadc_temp_events), \
1068	.scan_index = (_scan_index), \
1069	.scan_type = { \
1070		.sign = 'u', \
1071		.realbits = (_bits), \
1072		.storagebits = 16, \
1073		.shift = 16 - (_bits), \
1074		.endianness = IIO_CPU, \
1075	}, \
1076}
1077
1078#define XADC_CHAN_VOLTAGE(_chan, _scan_index, _addr, _bits, _ext, _alarm) { \
1079	.type = IIO_VOLTAGE, \
1080	.indexed = 1, \
1081	.channel = (_chan), \
1082	.address = (_addr), \
1083	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
1084		BIT(IIO_CHAN_INFO_SCALE), \
1085	.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
1086	.event_spec = (_alarm) ? xadc_voltage_events : NULL, \
1087	.num_event_specs = (_alarm) ? ARRAY_SIZE(xadc_voltage_events) : 0, \
1088	.scan_index = (_scan_index), \
1089	.scan_type = { \
1090		.sign = ((_addr) == XADC_REG_VREFN) ? 's' : 'u', \
1091		.realbits = (_bits), \
1092		.storagebits = 16, \
1093		.shift = 16 - (_bits), \
1094		.endianness = IIO_CPU, \
1095	}, \
1096	.extend_name = _ext, \
1097}
1098
1099/* 7 Series */
1100#define XADC_7S_CHAN_TEMP(_chan, _scan_index, _addr) \
1101	XADC_CHAN_TEMP(_chan, _scan_index, _addr, 12)
1102#define XADC_7S_CHAN_VOLTAGE(_chan, _scan_index, _addr, _ext, _alarm) \
1103	XADC_CHAN_VOLTAGE(_chan, _scan_index, _addr, 12, _ext, _alarm)
1104
1105static const struct iio_chan_spec xadc_7s_channels[] = {
1106	XADC_7S_CHAN_TEMP(0, 8, XADC_REG_TEMP),
1107	XADC_7S_CHAN_VOLTAGE(0, 9, XADC_REG_VCCINT, "vccint", true),
1108	XADC_7S_CHAN_VOLTAGE(1, 10, XADC_REG_VCCAUX, "vccaux", true),
1109	XADC_7S_CHAN_VOLTAGE(2, 14, XADC_REG_VCCBRAM, "vccbram", true),
1110	XADC_7S_CHAN_VOLTAGE(3, 5, XADC_REG_VCCPINT, "vccpint", true),
1111	XADC_7S_CHAN_VOLTAGE(4, 6, XADC_REG_VCCPAUX, "vccpaux", true),
1112	XADC_7S_CHAN_VOLTAGE(5, 7, XADC_REG_VCCO_DDR, "vccoddr", true),
1113	XADC_7S_CHAN_VOLTAGE(6, 12, XADC_REG_VREFP, "vrefp", false),
1114	XADC_7S_CHAN_VOLTAGE(7, 13, XADC_REG_VREFN, "vrefn", false),
1115	XADC_7S_CHAN_VOLTAGE(8, 11, XADC_REG_VPVN, NULL, false),
1116	XADC_7S_CHAN_VOLTAGE(9, 16, XADC_REG_VAUX(0), NULL, false),
1117	XADC_7S_CHAN_VOLTAGE(10, 17, XADC_REG_VAUX(1), NULL, false),
1118	XADC_7S_CHAN_VOLTAGE(11, 18, XADC_REG_VAUX(2), NULL, false),
1119	XADC_7S_CHAN_VOLTAGE(12, 19, XADC_REG_VAUX(3), NULL, false),
1120	XADC_7S_CHAN_VOLTAGE(13, 20, XADC_REG_VAUX(4), NULL, false),
1121	XADC_7S_CHAN_VOLTAGE(14, 21, XADC_REG_VAUX(5), NULL, false),
1122	XADC_7S_CHAN_VOLTAGE(15, 22, XADC_REG_VAUX(6), NULL, false),
1123	XADC_7S_CHAN_VOLTAGE(16, 23, XADC_REG_VAUX(7), NULL, false),
1124	XADC_7S_CHAN_VOLTAGE(17, 24, XADC_REG_VAUX(8), NULL, false),
1125	XADC_7S_CHAN_VOLTAGE(18, 25, XADC_REG_VAUX(9), NULL, false),
1126	XADC_7S_CHAN_VOLTAGE(19, 26, XADC_REG_VAUX(10), NULL, false),
1127	XADC_7S_CHAN_VOLTAGE(20, 27, XADC_REG_VAUX(11), NULL, false),
1128	XADC_7S_CHAN_VOLTAGE(21, 28, XADC_REG_VAUX(12), NULL, false),
1129	XADC_7S_CHAN_VOLTAGE(22, 29, XADC_REG_VAUX(13), NULL, false),
1130	XADC_7S_CHAN_VOLTAGE(23, 30, XADC_REG_VAUX(14), NULL, false),
1131	XADC_7S_CHAN_VOLTAGE(24, 31, XADC_REG_VAUX(15), NULL, false),
1132};
1133
1134/* UltraScale */
1135#define XADC_US_CHAN_TEMP(_chan, _scan_index, _addr) \
1136	XADC_CHAN_TEMP(_chan, _scan_index, _addr, 10)
1137#define XADC_US_CHAN_VOLTAGE(_chan, _scan_index, _addr, _ext, _alarm) \
1138	XADC_CHAN_VOLTAGE(_chan, _scan_index, _addr, 10, _ext, _alarm)
1139
1140static const struct iio_chan_spec xadc_us_channels[] = {
1141	XADC_US_CHAN_TEMP(0, 8, XADC_REG_TEMP),
1142	XADC_US_CHAN_VOLTAGE(0, 9, XADC_REG_VCCINT, "vccint", true),
1143	XADC_US_CHAN_VOLTAGE(1, 10, XADC_REG_VCCAUX, "vccaux", true),
1144	XADC_US_CHAN_VOLTAGE(2, 14, XADC_REG_VCCBRAM, "vccbram", true),
1145	XADC_US_CHAN_VOLTAGE(3, 5, XADC_REG_VCCPINT, "vccpsintlp", true),
1146	XADC_US_CHAN_VOLTAGE(4, 6, XADC_REG_VCCPAUX, "vccpsintfp", true),
1147	XADC_US_CHAN_VOLTAGE(5, 7, XADC_REG_VCCO_DDR, "vccpsaux", true),
1148	XADC_US_CHAN_VOLTAGE(6, 12, XADC_REG_VREFP, "vrefp", false),
1149	XADC_US_CHAN_VOLTAGE(7, 13, XADC_REG_VREFN, "vrefn", false),
1150	XADC_US_CHAN_VOLTAGE(8, 11, XADC_REG_VPVN, NULL, false),
1151	XADC_US_CHAN_VOLTAGE(9, 16, XADC_REG_VAUX(0), NULL, false),
1152	XADC_US_CHAN_VOLTAGE(10, 17, XADC_REG_VAUX(1), NULL, false),
1153	XADC_US_CHAN_VOLTAGE(11, 18, XADC_REG_VAUX(2), NULL, false),
1154	XADC_US_CHAN_VOLTAGE(12, 19, XADC_REG_VAUX(3), NULL, false),
1155	XADC_US_CHAN_VOLTAGE(13, 20, XADC_REG_VAUX(4), NULL, false),
1156	XADC_US_CHAN_VOLTAGE(14, 21, XADC_REG_VAUX(5), NULL, false),
1157	XADC_US_CHAN_VOLTAGE(15, 22, XADC_REG_VAUX(6), NULL, false),
1158	XADC_US_CHAN_VOLTAGE(16, 23, XADC_REG_VAUX(7), NULL, false),
1159	XADC_US_CHAN_VOLTAGE(17, 24, XADC_REG_VAUX(8), NULL, false),
1160	XADC_US_CHAN_VOLTAGE(18, 25, XADC_REG_VAUX(9), NULL, false),
1161	XADC_US_CHAN_VOLTAGE(19, 26, XADC_REG_VAUX(10), NULL, false),
1162	XADC_US_CHAN_VOLTAGE(20, 27, XADC_REG_VAUX(11), NULL, false),
1163	XADC_US_CHAN_VOLTAGE(21, 28, XADC_REG_VAUX(12), NULL, false),
1164	XADC_US_CHAN_VOLTAGE(22, 29, XADC_REG_VAUX(13), NULL, false),
1165	XADC_US_CHAN_VOLTAGE(23, 30, XADC_REG_VAUX(14), NULL, false),
1166	XADC_US_CHAN_VOLTAGE(24, 31, XADC_REG_VAUX(15), NULL, false),
1167};
1168
1169static const struct iio_info xadc_info = {
1170	.read_raw = &xadc_read_raw,
1171	.write_raw = &xadc_write_raw,
1172	.read_event_config = &xadc_read_event_config,
1173	.write_event_config = &xadc_write_event_config,
1174	.read_event_value = &xadc_read_event_value,
1175	.write_event_value = &xadc_write_event_value,
1176	.update_scan_mode = &xadc_update_scan_mode,
 
1177};
1178
1179static const struct of_device_id xadc_of_match_table[] = {
1180	{
1181		.compatible = "xlnx,zynq-xadc-1.00.a",
1182		.data = &xadc_zynq_ops
1183	}, {
1184		.compatible = "xlnx,axi-xadc-1.00.a",
1185		.data = &xadc_7s_axi_ops
1186	}, {
1187		.compatible = "xlnx,system-management-wiz-1.3",
1188		.data = &xadc_us_axi_ops
1189	},
1190	{ },
1191};
1192MODULE_DEVICE_TABLE(of, xadc_of_match_table);
1193
1194static int xadc_parse_dt(struct iio_dev *indio_dev, unsigned int *conf, int irq)
 
1195{
1196	struct device *dev = indio_dev->dev.parent;
1197	struct xadc *xadc = iio_priv(indio_dev);
1198	const struct iio_chan_spec *channel_templates;
1199	struct iio_chan_spec *channels, *chan;
1200	struct fwnode_handle *chan_node, *child;
1201	unsigned int max_channels;
1202	unsigned int num_channels;
1203	const char *external_mux;
1204	u32 ext_mux_chan;
1205	u32 reg;
1206	int ret;
1207	int i;
1208
1209	*conf = 0;
1210
1211	ret = device_property_read_string(dev, "xlnx,external-mux", &external_mux);
1212	if (ret < 0 || strcasecmp(external_mux, "none") == 0)
1213		xadc->external_mux_mode = XADC_EXTERNAL_MUX_NONE;
1214	else if (strcasecmp(external_mux, "single") == 0)
1215		xadc->external_mux_mode = XADC_EXTERNAL_MUX_SINGLE;
1216	else if (strcasecmp(external_mux, "dual") == 0)
1217		xadc->external_mux_mode = XADC_EXTERNAL_MUX_DUAL;
1218	else
1219		return -EINVAL;
1220
1221	if (xadc->external_mux_mode != XADC_EXTERNAL_MUX_NONE) {
1222		ret = device_property_read_u32(dev, "xlnx,external-mux-channel", &ext_mux_chan);
 
1223		if (ret < 0)
1224			return ret;
1225
1226		if (xadc->external_mux_mode == XADC_EXTERNAL_MUX_SINGLE) {
1227			if (ext_mux_chan == 0)
1228				ext_mux_chan = XADC_REG_VPVN;
1229			else if (ext_mux_chan <= 16)
1230				ext_mux_chan = XADC_REG_VAUX(ext_mux_chan - 1);
1231			else
1232				return -EINVAL;
1233		} else {
1234			if (ext_mux_chan > 0 && ext_mux_chan <= 8)
1235				ext_mux_chan = XADC_REG_VAUX(ext_mux_chan - 1);
1236			else
1237				return -EINVAL;
1238		}
1239
1240		*conf |= XADC_CONF0_MUX | XADC_CONF0_CHAN(ext_mux_chan);
1241	}
1242	if (xadc->ops->type == XADC_TYPE_S7) {
1243		channel_templates = xadc_7s_channels;
1244		max_channels = ARRAY_SIZE(xadc_7s_channels);
1245	} else {
1246		channel_templates = xadc_us_channels;
1247		max_channels = ARRAY_SIZE(xadc_us_channels);
1248	}
1249	channels = devm_kmemdup(dev, channel_templates,
1250				sizeof(channels[0]) * max_channels, GFP_KERNEL);
1251	if (!channels)
1252		return -ENOMEM;
1253
1254	num_channels = 9;
1255	chan = &channels[9];
1256
1257	chan_node = device_get_named_child_node(dev, "xlnx,channels");
1258	fwnode_for_each_child_node(chan_node, child) {
1259		if (num_channels >= max_channels) {
1260			fwnode_handle_put(child);
1261			break;
1262		}
1263
1264		ret = fwnode_property_read_u32(child, "reg", &reg);
1265		if (ret || reg > 16)
1266			continue;
1267
1268		if (fwnode_property_read_bool(child, "xlnx,bipolar"))
1269			chan->scan_type.sign = 's';
1270
1271		if (reg == 0) {
1272			chan->scan_index = 11;
1273			chan->address = XADC_REG_VPVN;
1274		} else {
1275			chan->scan_index = 15 + reg;
1276			chan->address = XADC_REG_VAUX(reg - 1);
1277		}
1278		num_channels++;
1279		chan++;
1280	}
1281	fwnode_handle_put(chan_node);
1282
1283	/* No IRQ => no events */
1284	if (irq <= 0) {
1285		for (i = 0; i < num_channels; i++) {
1286			channels[i].event_spec = NULL;
1287			channels[i].num_event_specs = 0;
 
 
 
 
 
 
 
 
 
 
 
1288		}
1289	}
 
1290
1291	indio_dev->num_channels = num_channels;
1292	indio_dev->channels = devm_krealloc_array(dev, channels,
1293						  num_channels, sizeof(*channels),
1294						  GFP_KERNEL);
1295	/* If we can't resize the channels array, just use the original */
1296	if (!indio_dev->channels)
1297		indio_dev->channels = channels;
1298
1299	return 0;
1300}
1301
1302static const char * const xadc_type_names[] = {
1303	[XADC_TYPE_S7] = "xadc",
1304	[XADC_TYPE_US] = "xilinx-system-monitor",
1305};
1306
1307static void xadc_cancel_delayed_work(void *data)
1308{
1309	struct delayed_work *work = data;
1310
1311	cancel_delayed_work_sync(work);
1312}
1313
1314static int xadc_probe(struct platform_device *pdev)
1315{
1316	struct device *dev = &pdev->dev;
1317	const struct xadc_ops *ops;
1318	struct iio_dev *indio_dev;
1319	unsigned int bipolar_mask;
 
1320	unsigned int conf0;
1321	struct xadc *xadc;
1322	int ret;
1323	int irq;
1324	int i;
1325
1326	ops = device_get_match_data(dev);
1327	if (!ops)
 
 
 
1328		return -EINVAL;
1329
1330	irq = platform_get_irq_optional(pdev, 0);
1331	if (irq < 0 &&
1332	    (irq != -ENXIO || !(ops->flags & XADC_FLAGS_IRQ_OPTIONAL)))
1333		return irq;
1334
1335	indio_dev = devm_iio_device_alloc(dev, sizeof(*xadc));
1336	if (!indio_dev)
1337		return -ENOMEM;
1338
1339	xadc = iio_priv(indio_dev);
1340	xadc->ops = ops;
1341	init_completion(&xadc->completion);
1342	mutex_init(&xadc->mutex);
1343	spin_lock_init(&xadc->lock);
1344	INIT_DELAYED_WORK(&xadc->zynq_unmask_work, xadc_zynq_unmask_worker);
1345
1346	xadc->base = devm_platform_ioremap_resource(pdev, 0);
 
1347	if (IS_ERR(xadc->base))
1348		return PTR_ERR(xadc->base);
1349
1350	indio_dev->name = xadc_type_names[xadc->ops->type];
 
 
1351	indio_dev->modes = INDIO_DIRECT_MODE;
1352	indio_dev->info = &xadc_info;
1353
1354	ret = xadc_parse_dt(indio_dev, &conf0, irq);
1355	if (ret)
1356		return ret;
1357
1358	if (xadc->ops->flags & XADC_FLAGS_BUFFERED) {
1359		ret = devm_iio_triggered_buffer_setup(dev, indio_dev,
1360						      &iio_pollfunc_store_time,
1361						      &xadc_trigger_handler,
1362						      &xadc_buffer_ops);
1363		if (ret)
1364			return ret;
1365
1366		if (irq > 0) {
1367			xadc->convst_trigger = xadc_alloc_trigger(indio_dev, "convst");
1368			if (IS_ERR(xadc->convst_trigger))
1369				return PTR_ERR(xadc->convst_trigger);
1370
1371			xadc->samplerate_trigger = xadc_alloc_trigger(indio_dev,
1372				"samplerate");
1373			if (IS_ERR(xadc->samplerate_trigger))
1374				return PTR_ERR(xadc->samplerate_trigger);
1375		}
1376	}
1377
1378	xadc->clk = devm_clk_get_enabled(dev, NULL);
1379	if (IS_ERR(xadc->clk))
1380		return PTR_ERR(xadc->clk);
1381
1382	/*
1383	 * Make sure not to exceed the maximum samplerate since otherwise the
1384	 * resulting interrupt storm will soft-lock the system.
1385	 */
1386	if (xadc->ops->flags & XADC_FLAGS_BUFFERED) {
1387		ret = xadc_read_samplerate(xadc);
1388		if (ret < 0)
1389			return ret;
1390
1391		if (ret > XADC_MAX_SAMPLERATE) {
1392			ret = xadc_write_samplerate(xadc, XADC_MAX_SAMPLERATE);
1393			if (ret < 0)
1394				return ret;
1395		}
1396	}
1397
1398	if (irq > 0) {
1399		ret = devm_request_irq(dev, irq, xadc->ops->interrupt_handler,
1400				       0, dev_name(dev), indio_dev);
1401		if (ret)
1402			return ret;
1403
1404		ret = devm_add_action_or_reset(dev, xadc_cancel_delayed_work,
1405					       &xadc->zynq_unmask_work);
1406		if (ret)
1407			return ret;
1408	}
 
1409
1410	ret = xadc->ops->setup(pdev, indio_dev, irq);
1411	if (ret)
1412		return ret;
 
 
 
 
 
1413
1414	for (i = 0; i < 16; i++)
1415		xadc_read_adc_reg(xadc, XADC_REG_THRESHOLD(i),
1416			&xadc->threshold[i]);
1417
1418	ret = xadc_write_adc_reg(xadc, XADC_REG_CONF0, conf0);
1419	if (ret)
1420		return ret;
1421
1422	bipolar_mask = 0;
1423	for (i = 0; i < indio_dev->num_channels; i++) {
1424		if (indio_dev->channels[i].scan_type.sign == 's')
1425			bipolar_mask |= BIT(indio_dev->channels[i].scan_index);
1426	}
1427
1428	ret = xadc_write_adc_reg(xadc, XADC_REG_INPUT_MODE(0), bipolar_mask);
1429	if (ret)
1430		return ret;
1431
1432	ret = xadc_write_adc_reg(xadc, XADC_REG_INPUT_MODE(1),
1433		bipolar_mask >> 16);
1434	if (ret)
1435		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1436
1437	/* Go to non-buffered mode */
1438	xadc_postdisable(indio_dev);
1439
1440	return devm_iio_device_register(dev, indio_dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1441}
1442
1443static struct platform_driver xadc_driver = {
1444	.probe = xadc_probe,
 
1445	.driver = {
1446		.name = "xadc",
1447		.of_match_table = xadc_of_match_table,
1448	},
1449};
1450module_platform_driver(xadc_driver);
1451
1452MODULE_LICENSE("GPL v2");
1453MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
1454MODULE_DESCRIPTION("Xilinx XADC IIO driver");
v4.6
 
   1/*
   2 * Xilinx XADC driver
   3 *
   4 * Copyright 2013-2014 Analog Devices Inc.
   5 *  Author: Lars-Peter Clauen <lars@metafoo.de>
   6 *
   7 * Licensed under the GPL-2.
   8 *
   9 * Documentation for the parts can be found at:
  10 *  - XADC hardmacro: Xilinx UG480
  11 *  - ZYNQ XADC interface: Xilinx UG585
  12 *  - AXI XADC interface: Xilinx PG019
  13 */
  14
  15#include <linux/clk.h>
  16#include <linux/device.h>
  17#include <linux/err.h>
  18#include <linux/interrupt.h>
  19#include <linux/io.h>
  20#include <linux/kernel.h>
 
  21#include <linux/module.h>
  22#include <linux/of.h>
  23#include <linux/platform_device.h>
 
  24#include <linux/slab.h>
  25#include <linux/sysfs.h>
  26
  27#include <linux/iio/buffer.h>
  28#include <linux/iio/events.h>
  29#include <linux/iio/iio.h>
  30#include <linux/iio/sysfs.h>
  31#include <linux/iio/trigger.h>
  32#include <linux/iio/trigger_consumer.h>
  33#include <linux/iio/triggered_buffer.h>
  34
  35#include "xilinx-xadc.h"
  36
  37static const unsigned int XADC_ZYNQ_UNMASK_TIMEOUT = 500;
  38
  39/* ZYNQ register definitions */
  40#define XADC_ZYNQ_REG_CFG	0x00
  41#define XADC_ZYNQ_REG_INTSTS	0x04
  42#define XADC_ZYNQ_REG_INTMSK	0x08
  43#define XADC_ZYNQ_REG_STATUS	0x0c
  44#define XADC_ZYNQ_REG_CFIFO	0x10
  45#define XADC_ZYNQ_REG_DFIFO	0x14
  46#define XADC_ZYNQ_REG_CTL		0x18
  47
  48#define XADC_ZYNQ_CFG_ENABLE		BIT(31)
  49#define XADC_ZYNQ_CFG_CFIFOTH_MASK	(0xf << 20)
  50#define XADC_ZYNQ_CFG_CFIFOTH_OFFSET	20
  51#define XADC_ZYNQ_CFG_DFIFOTH_MASK	(0xf << 16)
  52#define XADC_ZYNQ_CFG_DFIFOTH_OFFSET	16
  53#define XADC_ZYNQ_CFG_WEDGE		BIT(13)
  54#define XADC_ZYNQ_CFG_REDGE		BIT(12)
  55#define XADC_ZYNQ_CFG_TCKRATE_MASK	(0x3 << 8)
  56#define XADC_ZYNQ_CFG_TCKRATE_DIV2	(0x0 << 8)
  57#define XADC_ZYNQ_CFG_TCKRATE_DIV4	(0x1 << 8)
  58#define XADC_ZYNQ_CFG_TCKRATE_DIV8	(0x2 << 8)
  59#define XADC_ZYNQ_CFG_TCKRATE_DIV16	(0x3 << 8)
  60#define XADC_ZYNQ_CFG_IGAP_MASK		0x1f
  61#define XADC_ZYNQ_CFG_IGAP(x)		(x)
  62
  63#define XADC_ZYNQ_INT_CFIFO_LTH		BIT(9)
  64#define XADC_ZYNQ_INT_DFIFO_GTH		BIT(8)
  65#define XADC_ZYNQ_INT_ALARM_MASK	0xff
  66#define XADC_ZYNQ_INT_ALARM_OFFSET	0
  67
  68#define XADC_ZYNQ_STATUS_CFIFO_LVL_MASK	(0xf << 16)
  69#define XADC_ZYNQ_STATUS_CFIFO_LVL_OFFSET	16
  70#define XADC_ZYNQ_STATUS_DFIFO_LVL_MASK	(0xf << 12)
  71#define XADC_ZYNQ_STATUS_DFIFO_LVL_OFFSET	12
  72#define XADC_ZYNQ_STATUS_CFIFOF		BIT(11)
  73#define XADC_ZYNQ_STATUS_CFIFOE		BIT(10)
  74#define XADC_ZYNQ_STATUS_DFIFOF		BIT(9)
  75#define XADC_ZYNQ_STATUS_DFIFOE		BIT(8)
  76#define XADC_ZYNQ_STATUS_OT		BIT(7)
  77#define XADC_ZYNQ_STATUS_ALM(x)		BIT(x)
  78
  79#define XADC_ZYNQ_CTL_RESET		BIT(4)
  80
  81#define XADC_ZYNQ_CMD_NOP		0x00
  82#define XADC_ZYNQ_CMD_READ		0x01
  83#define XADC_ZYNQ_CMD_WRITE		0x02
  84
  85#define XADC_ZYNQ_CMD(cmd, addr, data) (((cmd) << 26) | ((addr) << 16) | (data))
  86
  87/* AXI register definitions */
  88#define XADC_AXI_REG_RESET		0x00
  89#define XADC_AXI_REG_STATUS		0x04
  90#define XADC_AXI_REG_ALARM_STATUS	0x08
  91#define XADC_AXI_REG_CONVST		0x0c
  92#define XADC_AXI_REG_XADC_RESET		0x10
  93#define XADC_AXI_REG_GIER		0x5c
  94#define XADC_AXI_REG_IPISR		0x60
  95#define XADC_AXI_REG_IPIER		0x68
  96#define XADC_AXI_ADC_REG_OFFSET		0x200
 
 
 
 
 
  97
  98#define XADC_AXI_RESET_MAGIC		0xa
  99#define XADC_AXI_GIER_ENABLE		BIT(31)
 100
 101#define XADC_AXI_INT_EOS		BIT(4)
 102#define XADC_AXI_INT_ALARM_MASK		0x3c0f
 103
 104#define XADC_FLAGS_BUFFERED BIT(0)
 
 
 
 
 
 
 
 
 
 
 
 105
 106static void xadc_write_reg(struct xadc *xadc, unsigned int reg,
 107	uint32_t val)
 108{
 109	writel(val, xadc->base + reg);
 110}
 111
 112static void xadc_read_reg(struct xadc *xadc, unsigned int reg,
 113	uint32_t *val)
 114{
 115	*val = readl(xadc->base + reg);
 116}
 117
 118/*
 119 * The ZYNQ interface uses two asynchronous FIFOs for communication with the
 120 * XADC. Reads and writes to the XADC register are performed by submitting a
 121 * request to the command FIFO (CFIFO), once the request has been completed the
 122 * result can be read from the data FIFO (DFIFO). The method currently used in
 123 * this driver is to submit the request for a read/write operation, then go to
 124 * sleep and wait for an interrupt that signals that a response is available in
 125 * the data FIFO.
 126 */
 127
 128static void xadc_zynq_write_fifo(struct xadc *xadc, uint32_t *cmd,
 129	unsigned int n)
 130{
 131	unsigned int i;
 132
 133	for (i = 0; i < n; i++)
 134		xadc_write_reg(xadc, XADC_ZYNQ_REG_CFIFO, cmd[i]);
 135}
 136
 137static void xadc_zynq_drain_fifo(struct xadc *xadc)
 138{
 139	uint32_t status, tmp;
 140
 141	xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &status);
 142
 143	while (!(status & XADC_ZYNQ_STATUS_DFIFOE)) {
 144		xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &tmp);
 145		xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &status);
 146	}
 147}
 148
 149static void xadc_zynq_update_intmsk(struct xadc *xadc, unsigned int mask,
 150	unsigned int val)
 151{
 152	xadc->zynq_intmask &= ~mask;
 153	xadc->zynq_intmask |= val;
 154
 155	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTMSK,
 156		xadc->zynq_intmask | xadc->zynq_masked_alarm);
 157}
 158
 159static int xadc_zynq_write_adc_reg(struct xadc *xadc, unsigned int reg,
 160	uint16_t val)
 161{
 162	uint32_t cmd[1];
 163	uint32_t tmp;
 164	int ret;
 165
 166	spin_lock_irq(&xadc->lock);
 167	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
 168			XADC_ZYNQ_INT_DFIFO_GTH);
 169
 170	reinit_completion(&xadc->completion);
 171
 172	cmd[0] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_WRITE, reg, val);
 173	xadc_zynq_write_fifo(xadc, cmd, ARRAY_SIZE(cmd));
 174	xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &tmp);
 175	tmp &= ~XADC_ZYNQ_CFG_DFIFOTH_MASK;
 176	tmp |= 0 << XADC_ZYNQ_CFG_DFIFOTH_OFFSET;
 177	xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, tmp);
 178
 179	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 0);
 180	spin_unlock_irq(&xadc->lock);
 181
 182	ret = wait_for_completion_interruptible_timeout(&xadc->completion, HZ);
 183	if (ret == 0)
 184		ret = -EIO;
 185	else
 186		ret = 0;
 187
 188	xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &tmp);
 189
 190	return ret;
 191}
 192
 193static int xadc_zynq_read_adc_reg(struct xadc *xadc, unsigned int reg,
 194	uint16_t *val)
 195{
 196	uint32_t cmd[2];
 197	uint32_t resp, tmp;
 198	int ret;
 199
 200	cmd[0] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_READ, reg, 0);
 201	cmd[1] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_NOP, 0, 0);
 202
 203	spin_lock_irq(&xadc->lock);
 204	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
 205			XADC_ZYNQ_INT_DFIFO_GTH);
 206	xadc_zynq_drain_fifo(xadc);
 207	reinit_completion(&xadc->completion);
 208
 209	xadc_zynq_write_fifo(xadc, cmd, ARRAY_SIZE(cmd));
 210	xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &tmp);
 211	tmp &= ~XADC_ZYNQ_CFG_DFIFOTH_MASK;
 212	tmp |= 1 << XADC_ZYNQ_CFG_DFIFOTH_OFFSET;
 213	xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, tmp);
 214
 215	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 0);
 216	spin_unlock_irq(&xadc->lock);
 217	ret = wait_for_completion_interruptible_timeout(&xadc->completion, HZ);
 218	if (ret == 0)
 219		ret = -EIO;
 220	if (ret < 0)
 221		return ret;
 222
 223	xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &resp);
 224	xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &resp);
 225
 226	*val = resp & 0xffff;
 227
 228	return 0;
 229}
 230
 231static unsigned int xadc_zynq_transform_alarm(unsigned int alarm)
 232{
 233	return ((alarm & 0x80) >> 4) |
 234		((alarm & 0x78) << 1) |
 235		(alarm & 0x07);
 236}
 237
 238/*
 239 * The ZYNQ threshold interrupts are level sensitive. Since we can't make the
 240 * threshold condition go way from within the interrupt handler, this means as
 241 * soon as a threshold condition is present we would enter the interrupt handler
 242 * again and again. To work around this we mask all active thresholds interrupts
 243 * in the interrupt handler and start a timer. In this timer we poll the
 244 * interrupt status and only if the interrupt is inactive we unmask it again.
 245 */
 246static void xadc_zynq_unmask_worker(struct work_struct *work)
 247{
 248	struct xadc *xadc = container_of(work, struct xadc, zynq_unmask_work.work);
 249	unsigned int misc_sts, unmask;
 250
 251	xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &misc_sts);
 252
 253	misc_sts &= XADC_ZYNQ_INT_ALARM_MASK;
 254
 255	spin_lock_irq(&xadc->lock);
 256
 257	/* Clear those bits which are not active anymore */
 258	unmask = (xadc->zynq_masked_alarm ^ misc_sts) & xadc->zynq_masked_alarm;
 259	xadc->zynq_masked_alarm &= misc_sts;
 260
 261	/* Also clear those which are masked out anyway */
 262	xadc->zynq_masked_alarm &= ~xadc->zynq_intmask;
 263
 264	/* Clear the interrupts before we unmask them */
 265	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, unmask);
 266
 267	xadc_zynq_update_intmsk(xadc, 0, 0);
 268
 269	spin_unlock_irq(&xadc->lock);
 270
 271	/* if still pending some alarm re-trigger the timer */
 272	if (xadc->zynq_masked_alarm) {
 273		schedule_delayed_work(&xadc->zynq_unmask_work,
 274				msecs_to_jiffies(XADC_ZYNQ_UNMASK_TIMEOUT));
 275	}
 276
 277}
 278
 279static irqreturn_t xadc_zynq_interrupt_handler(int irq, void *devid)
 280{
 281	struct iio_dev *indio_dev = devid;
 282	struct xadc *xadc = iio_priv(indio_dev);
 283	uint32_t status;
 284
 285	xadc_read_reg(xadc, XADC_ZYNQ_REG_INTSTS, &status);
 286
 287	status &= ~(xadc->zynq_intmask | xadc->zynq_masked_alarm);
 288
 289	if (!status)
 290		return IRQ_NONE;
 291
 292	spin_lock(&xadc->lock);
 293
 294	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, status);
 295
 296	if (status & XADC_ZYNQ_INT_DFIFO_GTH) {
 297		xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
 298			XADC_ZYNQ_INT_DFIFO_GTH);
 299		complete(&xadc->completion);
 300	}
 301
 302	status &= XADC_ZYNQ_INT_ALARM_MASK;
 303	if (status) {
 304		xadc->zynq_masked_alarm |= status;
 305		/*
 306		 * mask the current event interrupt,
 307		 * unmask it when the interrupt is no more active.
 308		 */
 309		xadc_zynq_update_intmsk(xadc, 0, 0);
 310
 311		xadc_handle_events(indio_dev,
 312				xadc_zynq_transform_alarm(status));
 313
 314		/* unmask the required interrupts in timer. */
 315		schedule_delayed_work(&xadc->zynq_unmask_work,
 316				msecs_to_jiffies(XADC_ZYNQ_UNMASK_TIMEOUT));
 317	}
 318	spin_unlock(&xadc->lock);
 319
 320	return IRQ_HANDLED;
 321}
 322
 323#define XADC_ZYNQ_TCK_RATE_MAX 50000000
 324#define XADC_ZYNQ_IGAP_DEFAULT 20
 
 325
 326static int xadc_zynq_setup(struct platform_device *pdev,
 327	struct iio_dev *indio_dev, int irq)
 328{
 329	struct xadc *xadc = iio_priv(indio_dev);
 330	unsigned long pcap_rate;
 331	unsigned int tck_div;
 332	unsigned int div;
 333	unsigned int igap;
 334	unsigned int tck_rate;
 
 335
 336	/* TODO: Figure out how to make igap and tck_rate configurable */
 337	igap = XADC_ZYNQ_IGAP_DEFAULT;
 338	tck_rate = XADC_ZYNQ_TCK_RATE_MAX;
 339
 340	xadc->zynq_intmask = ~0;
 341
 342	pcap_rate = clk_get_rate(xadc->clk);
 
 
 
 
 
 
 
 
 
 343
 344	if (tck_rate > XADC_ZYNQ_TCK_RATE_MAX)
 345		tck_rate = XADC_ZYNQ_TCK_RATE_MAX;
 346	if (tck_rate > pcap_rate / 2) {
 347		div = 2;
 348	} else {
 349		div = pcap_rate / tck_rate;
 350		if (pcap_rate / div > XADC_ZYNQ_TCK_RATE_MAX)
 351			div++;
 352	}
 353
 354	if (div <= 3)
 355		tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV2;
 356	else if (div <= 7)
 357		tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV4;
 358	else if (div <= 15)
 359		tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV8;
 360	else
 361		tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV16;
 362
 363	xadc_write_reg(xadc, XADC_ZYNQ_REG_CTL, XADC_ZYNQ_CTL_RESET);
 364	xadc_write_reg(xadc, XADC_ZYNQ_REG_CTL, 0);
 365	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, ~0);
 366	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTMSK, xadc->zynq_intmask);
 367	xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, XADC_ZYNQ_CFG_ENABLE |
 368			XADC_ZYNQ_CFG_REDGE | XADC_ZYNQ_CFG_WEDGE |
 369			tck_div | XADC_ZYNQ_CFG_IGAP(igap));
 370
 
 
 
 
 
 
 371	return 0;
 372}
 373
 374static unsigned long xadc_zynq_get_dclk_rate(struct xadc *xadc)
 375{
 376	unsigned int div;
 377	uint32_t val;
 378
 379	xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &val);
 380
 381	switch (val & XADC_ZYNQ_CFG_TCKRATE_MASK) {
 382	case XADC_ZYNQ_CFG_TCKRATE_DIV4:
 383		div = 4;
 384		break;
 385	case XADC_ZYNQ_CFG_TCKRATE_DIV8:
 386		div = 8;
 387		break;
 388	case XADC_ZYNQ_CFG_TCKRATE_DIV16:
 389		div = 16;
 390		break;
 391	default:
 392		div = 2;
 393		break;
 394	}
 395
 396	return clk_get_rate(xadc->clk) / div;
 397}
 398
 399static void xadc_zynq_update_alarm(struct xadc *xadc, unsigned int alarm)
 400{
 401	unsigned long flags;
 402	uint32_t status;
 403
 404	/* Move OT to bit 7 */
 405	alarm = ((alarm & 0x08) << 4) | ((alarm & 0xf0) >> 1) | (alarm & 0x07);
 406
 407	spin_lock_irqsave(&xadc->lock, flags);
 408
 409	/* Clear previous interrupts if any. */
 410	xadc_read_reg(xadc, XADC_ZYNQ_REG_INTSTS, &status);
 411	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, status & alarm);
 412
 413	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_ALARM_MASK,
 414		~alarm & XADC_ZYNQ_INT_ALARM_MASK);
 415
 416	spin_unlock_irqrestore(&xadc->lock, flags);
 417}
 418
 419static const struct xadc_ops xadc_zynq_ops = {
 420	.read = xadc_zynq_read_adc_reg,
 421	.write = xadc_zynq_write_adc_reg,
 422	.setup = xadc_zynq_setup,
 423	.get_dclk_rate = xadc_zynq_get_dclk_rate,
 424	.interrupt_handler = xadc_zynq_interrupt_handler,
 425	.update_alarm = xadc_zynq_update_alarm,
 
 
 
 
 
 
 
 
 
 426};
 427
 428static int xadc_axi_read_adc_reg(struct xadc *xadc, unsigned int reg,
 429	uint16_t *val)
 430{
 431	uint32_t val32;
 432
 433	xadc_read_reg(xadc, XADC_AXI_ADC_REG_OFFSET + reg * 4, &val32);
 
 434	*val = val32 & 0xffff;
 435
 436	return 0;
 437}
 438
 439static int xadc_axi_write_adc_reg(struct xadc *xadc, unsigned int reg,
 440	uint16_t val)
 441{
 442	xadc_write_reg(xadc, XADC_AXI_ADC_REG_OFFSET + reg * 4, val);
 
 443
 444	return 0;
 445}
 446
 447static int xadc_axi_setup(struct platform_device *pdev,
 448	struct iio_dev *indio_dev, int irq)
 449{
 450	struct xadc *xadc = iio_priv(indio_dev);
 451
 452	xadc_write_reg(xadc, XADC_AXI_REG_RESET, XADC_AXI_RESET_MAGIC);
 453	xadc_write_reg(xadc, XADC_AXI_REG_GIER, XADC_AXI_GIER_ENABLE);
 454
 455	return 0;
 456}
 457
 458static irqreturn_t xadc_axi_interrupt_handler(int irq, void *devid)
 459{
 460	struct iio_dev *indio_dev = devid;
 461	struct xadc *xadc = iio_priv(indio_dev);
 462	uint32_t status, mask;
 463	unsigned int events;
 464
 465	xadc_read_reg(xadc, XADC_AXI_REG_IPISR, &status);
 466	xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &mask);
 467	status &= mask;
 468
 469	if (!status)
 470		return IRQ_NONE;
 471
 472	if ((status & XADC_AXI_INT_EOS) && xadc->trigger)
 473		iio_trigger_poll(xadc->trigger);
 474
 475	if (status & XADC_AXI_INT_ALARM_MASK) {
 476		/*
 477		 * The order of the bits in the AXI-XADC status register does
 478		 * not match the order of the bits in the XADC alarm enable
 479		 * register. xadc_handle_events() expects the events to be in
 480		 * the same order as the XADC alarm enable register.
 481		 */
 482		events = (status & 0x000e) >> 1;
 483		events |= (status & 0x0001) << 3;
 484		events |= (status & 0x3c00) >> 6;
 485		xadc_handle_events(indio_dev, events);
 486	}
 487
 488	xadc_write_reg(xadc, XADC_AXI_REG_IPISR, status);
 489
 490	return IRQ_HANDLED;
 491}
 492
 493static void xadc_axi_update_alarm(struct xadc *xadc, unsigned int alarm)
 494{
 495	uint32_t val;
 496	unsigned long flags;
 497
 498	/*
 499	 * The order of the bits in the AXI-XADC status register does not match
 500	 * the order of the bits in the XADC alarm enable register. We get
 501	 * passed the alarm mask in the same order as in the XADC alarm enable
 502	 * register.
 503	 */
 504	alarm = ((alarm & 0x07) << 1) | ((alarm & 0x08) >> 3) |
 505			((alarm & 0xf0) << 6);
 506
 507	spin_lock_irqsave(&xadc->lock, flags);
 508	xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &val);
 509	val &= ~XADC_AXI_INT_ALARM_MASK;
 510	val |= alarm;
 511	xadc_write_reg(xadc, XADC_AXI_REG_IPIER, val);
 512	spin_unlock_irqrestore(&xadc->lock, flags);
 513}
 514
 515static unsigned long xadc_axi_get_dclk(struct xadc *xadc)
 516{
 517	return clk_get_rate(xadc->clk);
 518}
 519
 520static const struct xadc_ops xadc_axi_ops = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 521	.read = xadc_axi_read_adc_reg,
 522	.write = xadc_axi_write_adc_reg,
 523	.setup = xadc_axi_setup,
 524	.get_dclk_rate = xadc_axi_get_dclk,
 525	.update_alarm = xadc_axi_update_alarm,
 526	.interrupt_handler = xadc_axi_interrupt_handler,
 527	.flags = XADC_FLAGS_BUFFERED,
 
 
 
 
 
 
 
 528};
 529
 530static int _xadc_update_adc_reg(struct xadc *xadc, unsigned int reg,
 531	uint16_t mask, uint16_t val)
 532{
 533	uint16_t tmp;
 534	int ret;
 535
 536	ret = _xadc_read_adc_reg(xadc, reg, &tmp);
 537	if (ret)
 538		return ret;
 539
 540	return _xadc_write_adc_reg(xadc, reg, (tmp & ~mask) | val);
 541}
 542
 543static int xadc_update_adc_reg(struct xadc *xadc, unsigned int reg,
 544	uint16_t mask, uint16_t val)
 545{
 546	int ret;
 547
 548	mutex_lock(&xadc->mutex);
 549	ret = _xadc_update_adc_reg(xadc, reg, mask, val);
 550	mutex_unlock(&xadc->mutex);
 551
 552	return ret;
 553}
 554
 555static unsigned long xadc_get_dclk_rate(struct xadc *xadc)
 556{
 557	return xadc->ops->get_dclk_rate(xadc);
 558}
 559
 560static int xadc_update_scan_mode(struct iio_dev *indio_dev,
 561	const unsigned long *mask)
 562{
 563	struct xadc *xadc = iio_priv(indio_dev);
 564	unsigned int n;
 
 565
 566	n = bitmap_weight(mask, indio_dev->masklength);
 567
 568	kfree(xadc->data);
 569	xadc->data = kcalloc(n, sizeof(*xadc->data), GFP_KERNEL);
 570	if (!xadc->data)
 571		return -ENOMEM;
 572
 
 
 
 573	return 0;
 574}
 575
 576static unsigned int xadc_scan_index_to_channel(unsigned int scan_index)
 577{
 578	switch (scan_index) {
 579	case 5:
 580		return XADC_REG_VCCPINT;
 581	case 6:
 582		return XADC_REG_VCCPAUX;
 583	case 7:
 584		return XADC_REG_VCCO_DDR;
 585	case 8:
 586		return XADC_REG_TEMP;
 587	case 9:
 588		return XADC_REG_VCCINT;
 589	case 10:
 590		return XADC_REG_VCCAUX;
 591	case 11:
 592		return XADC_REG_VPVN;
 593	case 12:
 594		return XADC_REG_VREFP;
 595	case 13:
 596		return XADC_REG_VREFN;
 597	case 14:
 598		return XADC_REG_VCCBRAM;
 599	default:
 600		return XADC_REG_VAUX(scan_index - 16);
 601	}
 602}
 603
 604static irqreturn_t xadc_trigger_handler(int irq, void *p)
 605{
 606	struct iio_poll_func *pf = p;
 607	struct iio_dev *indio_dev = pf->indio_dev;
 608	struct xadc *xadc = iio_priv(indio_dev);
 609	unsigned int chan;
 610	int i, j;
 611
 612	if (!xadc->data)
 613		goto out;
 614
 615	j = 0;
 616	for_each_set_bit(i, indio_dev->active_scan_mask,
 617		indio_dev->masklength) {
 618		chan = xadc_scan_index_to_channel(i);
 619		xadc_read_adc_reg(xadc, chan, &xadc->data[j]);
 620		j++;
 621	}
 622
 623	iio_push_to_buffers(indio_dev, xadc->data);
 624
 625out:
 626	iio_trigger_notify_done(indio_dev->trig);
 627
 628	return IRQ_HANDLED;
 629}
 630
 631static int xadc_trigger_set_state(struct iio_trigger *trigger, bool state)
 632{
 633	struct xadc *xadc = iio_trigger_get_drvdata(trigger);
 634	unsigned long flags;
 635	unsigned int convst;
 636	unsigned int val;
 637	int ret = 0;
 638
 639	mutex_lock(&xadc->mutex);
 640
 641	if (state) {
 642		/* Only one of the two triggers can be active at the a time. */
 643		if (xadc->trigger != NULL) {
 644			ret = -EBUSY;
 645			goto err_out;
 646		} else {
 647			xadc->trigger = trigger;
 648			if (trigger == xadc->convst_trigger)
 649				convst = XADC_CONF0_EC;
 650			else
 651				convst = 0;
 652		}
 653		ret = _xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF0_EC,
 654					convst);
 655		if (ret)
 656			goto err_out;
 657	} else {
 658		xadc->trigger = NULL;
 659	}
 660
 661	spin_lock_irqsave(&xadc->lock, flags);
 662	xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &val);
 663	xadc_write_reg(xadc, XADC_AXI_REG_IPISR, val & XADC_AXI_INT_EOS);
 664	if (state)
 665		val |= XADC_AXI_INT_EOS;
 666	else
 667		val &= ~XADC_AXI_INT_EOS;
 668	xadc_write_reg(xadc, XADC_AXI_REG_IPIER, val);
 669	spin_unlock_irqrestore(&xadc->lock, flags);
 670
 671err_out:
 672	mutex_unlock(&xadc->mutex);
 673
 674	return ret;
 675}
 676
 677static const struct iio_trigger_ops xadc_trigger_ops = {
 678	.owner = THIS_MODULE,
 679	.set_trigger_state = &xadc_trigger_set_state,
 680};
 681
 682static struct iio_trigger *xadc_alloc_trigger(struct iio_dev *indio_dev,
 683	const char *name)
 684{
 
 685	struct iio_trigger *trig;
 686	int ret;
 687
 688	trig = iio_trigger_alloc("%s%d-%s", indio_dev->name,
 689				indio_dev->id, name);
 690	if (trig == NULL)
 691		return ERR_PTR(-ENOMEM);
 692
 693	trig->dev.parent = indio_dev->dev.parent;
 694	trig->ops = &xadc_trigger_ops;
 695	iio_trigger_set_drvdata(trig, iio_priv(indio_dev));
 696
 697	ret = iio_trigger_register(trig);
 698	if (ret)
 699		goto error_free_trig;
 700
 701	return trig;
 702
 703error_free_trig:
 704	iio_trigger_free(trig);
 705	return ERR_PTR(ret);
 706}
 707
 708static int xadc_power_adc_b(struct xadc *xadc, unsigned int seq_mode)
 709{
 710	uint16_t val;
 711
 
 
 
 
 
 
 
 
 
 
 712	switch (seq_mode) {
 713	case XADC_CONF1_SEQ_SIMULTANEOUS:
 714	case XADC_CONF1_SEQ_INDEPENDENT:
 715		val = XADC_CONF2_PD_ADC_B;
 716		break;
 717	default:
 718		val = 0;
 719		break;
 720	}
 721
 722	return xadc_update_adc_reg(xadc, XADC_REG_CONF2, XADC_CONF2_PD_MASK,
 723		val);
 724}
 725
 726static int xadc_get_seq_mode(struct xadc *xadc, unsigned long scan_mode)
 727{
 728	unsigned int aux_scan_mode = scan_mode >> 16;
 729
 
 
 
 
 730	if (xadc->external_mux_mode == XADC_EXTERNAL_MUX_DUAL)
 731		return XADC_CONF1_SEQ_SIMULTANEOUS;
 732
 733	if ((aux_scan_mode & 0xff00) == 0 ||
 734		(aux_scan_mode & 0x00ff) == 0)
 735		return XADC_CONF1_SEQ_CONTINUOUS;
 736
 737	return XADC_CONF1_SEQ_SIMULTANEOUS;
 738}
 739
 740static int xadc_postdisable(struct iio_dev *indio_dev)
 741{
 742	struct xadc *xadc = iio_priv(indio_dev);
 743	unsigned long scan_mask;
 744	int ret;
 745	int i;
 746
 747	scan_mask = 1; /* Run calibration as part of the sequence */
 748	for (i = 0; i < indio_dev->num_channels; i++)
 749		scan_mask |= BIT(indio_dev->channels[i].scan_index);
 750
 751	/* Enable all channels and calibration */
 752	ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(0), scan_mask & 0xffff);
 753	if (ret)
 754		return ret;
 755
 756	ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(1), scan_mask >> 16);
 757	if (ret)
 758		return ret;
 759
 760	ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
 761		XADC_CONF1_SEQ_CONTINUOUS);
 762	if (ret)
 763		return ret;
 764
 765	return xadc_power_adc_b(xadc, XADC_CONF1_SEQ_CONTINUOUS);
 766}
 767
 768static int xadc_preenable(struct iio_dev *indio_dev)
 769{
 770	struct xadc *xadc = iio_priv(indio_dev);
 771	unsigned long scan_mask;
 772	int seq_mode;
 773	int ret;
 774
 775	ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
 776		XADC_CONF1_SEQ_DEFAULT);
 777	if (ret)
 778		goto err;
 779
 780	scan_mask = *indio_dev->active_scan_mask;
 781	seq_mode = xadc_get_seq_mode(xadc, scan_mask);
 782
 783	ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(0), scan_mask & 0xffff);
 784	if (ret)
 785		goto err;
 786
 
 
 
 
 
 
 
 
 
 
 787	ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(1), scan_mask >> 16);
 788	if (ret)
 789		goto err;
 790
 791	ret = xadc_power_adc_b(xadc, seq_mode);
 792	if (ret)
 793		goto err;
 794
 795	ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
 796		seq_mode);
 797	if (ret)
 798		goto err;
 799
 800	return 0;
 801err:
 802	xadc_postdisable(indio_dev);
 803	return ret;
 804}
 805
 806static const struct iio_buffer_setup_ops xadc_buffer_ops = {
 807	.preenable = &xadc_preenable,
 808	.postenable = &iio_triggered_buffer_postenable,
 809	.predisable = &iio_triggered_buffer_predisable,
 810	.postdisable = &xadc_postdisable,
 811};
 812
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 813static int xadc_read_raw(struct iio_dev *indio_dev,
 814	struct iio_chan_spec const *chan, int *val, int *val2, long info)
 815{
 816	struct xadc *xadc = iio_priv(indio_dev);
 817	unsigned int div;
 818	uint16_t val16;
 819	int ret;
 820
 821	switch (info) {
 822	case IIO_CHAN_INFO_RAW:
 823		if (iio_buffer_enabled(indio_dev))
 824			return -EBUSY;
 825		ret = xadc_read_adc_reg(xadc, chan->address, &val16);
 826		if (ret < 0)
 827			return ret;
 828
 829		val16 >>= 4;
 830		if (chan->scan_type.sign == 'u')
 831			*val = val16;
 832		else
 833			*val = sign_extend32(val16, 11);
 834
 835		return IIO_VAL_INT;
 836	case IIO_CHAN_INFO_SCALE:
 837		switch (chan->type) {
 838		case IIO_VOLTAGE:
 839			/* V = (val * 3.0) / 4096 */
 840			switch (chan->address) {
 841			case XADC_REG_VCCINT:
 842			case XADC_REG_VCCAUX:
 843			case XADC_REG_VREFP:
 844			case XADC_REG_VREFN:
 845			case XADC_REG_VCCBRAM:
 846			case XADC_REG_VCCPINT:
 847			case XADC_REG_VCCPAUX:
 848			case XADC_REG_VCCO_DDR:
 849				*val = 3000;
 850				break;
 851			default:
 852				*val = 1000;
 853				break;
 854			}
 855			*val2 = 12;
 856			return IIO_VAL_FRACTIONAL_LOG2;
 857		case IIO_TEMP:
 858			/* Temp in C = (val * 503.975) / 4096 - 273.15 */
 859			*val = 503975;
 860			*val2 = 12;
 861			return IIO_VAL_FRACTIONAL_LOG2;
 862		default:
 863			return -EINVAL;
 864		}
 865	case IIO_CHAN_INFO_OFFSET:
 866		/* Only the temperature channel has an offset */
 867		*val = -((273150 << 12) / 503975);
 868		return IIO_VAL_INT;
 869	case IIO_CHAN_INFO_SAMP_FREQ:
 870		ret = xadc_read_adc_reg(xadc, XADC_REG_CONF2, &val16);
 871		if (ret)
 872			return ret;
 873
 874		div = (val16 & XADC_CONF2_DIV_MASK) >> XADC_CONF2_DIV_OFFSET;
 875		if (div < 2)
 876			div = 2;
 877
 878		*val = xadc_get_dclk_rate(xadc) / div / 26;
 879
 880		return IIO_VAL_INT;
 881	default:
 882		return -EINVAL;
 883	}
 884}
 885
 886static int xadc_write_raw(struct iio_dev *indio_dev,
 887	struct iio_chan_spec const *chan, int val, int val2, long info)
 888{
 889	struct xadc *xadc = iio_priv(indio_dev);
 890	unsigned long clk_rate = xadc_get_dclk_rate(xadc);
 891	unsigned int div;
 892
 893	if (info != IIO_CHAN_INFO_SAMP_FREQ)
 894		return -EINVAL;
 895
 896	if (val <= 0)
 897		return -EINVAL;
 898
 899	/* Max. 150 kSPS */
 900	if (val > 150000)
 901		val = 150000;
 902
 903	val *= 26;
 904
 905	/* Min 1MHz */
 906	if (val < 1000000)
 907		val = 1000000;
 908
 909	/*
 910	 * We want to round down, but only if we do not exceed the 150 kSPS
 911	 * limit.
 912	 */
 913	div = clk_rate / val;
 914	if (clk_rate / div / 26 > 150000)
 915		div++;
 916	if (div < 2)
 917		div = 2;
 918	else if (div > 0xff)
 919		div = 0xff;
 920
 921	return xadc_update_adc_reg(xadc, XADC_REG_CONF2, XADC_CONF2_DIV_MASK,
 922		div << XADC_CONF2_DIV_OFFSET);
 923}
 924
 
 
 
 
 
 
 
 
 
 
 
 925static const struct iio_event_spec xadc_temp_events[] = {
 926	{
 927		.type = IIO_EV_TYPE_THRESH,
 928		.dir = IIO_EV_DIR_RISING,
 929		.mask_separate = BIT(IIO_EV_INFO_ENABLE) |
 930				BIT(IIO_EV_INFO_VALUE) |
 931				BIT(IIO_EV_INFO_HYSTERESIS),
 932	},
 933};
 934
 935/* Separate values for upper and lower thresholds, but only a shared enabled */
 936static const struct iio_event_spec xadc_voltage_events[] = {
 937	{
 938		.type = IIO_EV_TYPE_THRESH,
 939		.dir = IIO_EV_DIR_RISING,
 940		.mask_separate = BIT(IIO_EV_INFO_VALUE),
 941	}, {
 942		.type = IIO_EV_TYPE_THRESH,
 943		.dir = IIO_EV_DIR_FALLING,
 944		.mask_separate = BIT(IIO_EV_INFO_VALUE),
 945	}, {
 946		.type = IIO_EV_TYPE_THRESH,
 947		.dir = IIO_EV_DIR_EITHER,
 948		.mask_separate = BIT(IIO_EV_INFO_ENABLE),
 949	},
 950};
 951
 952#define XADC_CHAN_TEMP(_chan, _scan_index, _addr) { \
 953	.type = IIO_TEMP, \
 954	.indexed = 1, \
 955	.channel = (_chan), \
 956	.address = (_addr), \
 957	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
 958		BIT(IIO_CHAN_INFO_SCALE) | \
 959		BIT(IIO_CHAN_INFO_OFFSET), \
 960	.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
 961	.event_spec = xadc_temp_events, \
 962	.num_event_specs = ARRAY_SIZE(xadc_temp_events), \
 963	.scan_index = (_scan_index), \
 964	.scan_type = { \
 965		.sign = 'u', \
 966		.realbits = 12, \
 967		.storagebits = 16, \
 968		.shift = 4, \
 969		.endianness = IIO_CPU, \
 970	}, \
 971}
 972
 973#define XADC_CHAN_VOLTAGE(_chan, _scan_index, _addr, _ext, _alarm) { \
 974	.type = IIO_VOLTAGE, \
 975	.indexed = 1, \
 976	.channel = (_chan), \
 977	.address = (_addr), \
 978	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
 979		BIT(IIO_CHAN_INFO_SCALE), \
 980	.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
 981	.event_spec = (_alarm) ? xadc_voltage_events : NULL, \
 982	.num_event_specs = (_alarm) ? ARRAY_SIZE(xadc_voltage_events) : 0, \
 983	.scan_index = (_scan_index), \
 984	.scan_type = { \
 985		.sign = ((_addr) == XADC_REG_VREFN) ? 's' : 'u', \
 986		.realbits = 12, \
 987		.storagebits = 16, \
 988		.shift = 4, \
 989		.endianness = IIO_CPU, \
 990	}, \
 991	.extend_name = _ext, \
 992}
 993
 994static const struct iio_chan_spec xadc_channels[] = {
 995	XADC_CHAN_TEMP(0, 8, XADC_REG_TEMP),
 996	XADC_CHAN_VOLTAGE(0, 9, XADC_REG_VCCINT, "vccint", true),
 997	XADC_CHAN_VOLTAGE(1, 10, XADC_REG_VCCAUX, "vccaux", true),
 998	XADC_CHAN_VOLTAGE(2, 14, XADC_REG_VCCBRAM, "vccbram", true),
 999	XADC_CHAN_VOLTAGE(3, 5, XADC_REG_VCCPINT, "vccpint", true),
1000	XADC_CHAN_VOLTAGE(4, 6, XADC_REG_VCCPAUX, "vccpaux", true),
1001	XADC_CHAN_VOLTAGE(5, 7, XADC_REG_VCCO_DDR, "vccoddr", true),
1002	XADC_CHAN_VOLTAGE(6, 12, XADC_REG_VREFP, "vrefp", false),
1003	XADC_CHAN_VOLTAGE(7, 13, XADC_REG_VREFN, "vrefn", false),
1004	XADC_CHAN_VOLTAGE(8, 11, XADC_REG_VPVN, NULL, false),
1005	XADC_CHAN_VOLTAGE(9, 16, XADC_REG_VAUX(0), NULL, false),
1006	XADC_CHAN_VOLTAGE(10, 17, XADC_REG_VAUX(1), NULL, false),
1007	XADC_CHAN_VOLTAGE(11, 18, XADC_REG_VAUX(2), NULL, false),
1008	XADC_CHAN_VOLTAGE(12, 19, XADC_REG_VAUX(3), NULL, false),
1009	XADC_CHAN_VOLTAGE(13, 20, XADC_REG_VAUX(4), NULL, false),
1010	XADC_CHAN_VOLTAGE(14, 21, XADC_REG_VAUX(5), NULL, false),
1011	XADC_CHAN_VOLTAGE(15, 22, XADC_REG_VAUX(6), NULL, false),
1012	XADC_CHAN_VOLTAGE(16, 23, XADC_REG_VAUX(7), NULL, false),
1013	XADC_CHAN_VOLTAGE(17, 24, XADC_REG_VAUX(8), NULL, false),
1014	XADC_CHAN_VOLTAGE(18, 25, XADC_REG_VAUX(9), NULL, false),
1015	XADC_CHAN_VOLTAGE(19, 26, XADC_REG_VAUX(10), NULL, false),
1016	XADC_CHAN_VOLTAGE(20, 27, XADC_REG_VAUX(11), NULL, false),
1017	XADC_CHAN_VOLTAGE(21, 28, XADC_REG_VAUX(12), NULL, false),
1018	XADC_CHAN_VOLTAGE(22, 29, XADC_REG_VAUX(13), NULL, false),
1019	XADC_CHAN_VOLTAGE(23, 30, XADC_REG_VAUX(14), NULL, false),
1020	XADC_CHAN_VOLTAGE(24, 31, XADC_REG_VAUX(15), NULL, false),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1021};
1022
1023static const struct iio_info xadc_info = {
1024	.read_raw = &xadc_read_raw,
1025	.write_raw = &xadc_write_raw,
1026	.read_event_config = &xadc_read_event_config,
1027	.write_event_config = &xadc_write_event_config,
1028	.read_event_value = &xadc_read_event_value,
1029	.write_event_value = &xadc_write_event_value,
1030	.update_scan_mode = &xadc_update_scan_mode,
1031	.driver_module = THIS_MODULE,
1032};
1033
1034static const struct of_device_id xadc_of_match_table[] = {
1035	{ .compatible = "xlnx,zynq-xadc-1.00.a", (void *)&xadc_zynq_ops },
1036	{ .compatible = "xlnx,axi-xadc-1.00.a", (void *)&xadc_axi_ops },
 
 
 
 
 
 
 
 
1037	{ },
1038};
1039MODULE_DEVICE_TABLE(of, xadc_of_match_table);
1040
1041static int xadc_parse_dt(struct iio_dev *indio_dev, struct device_node *np,
1042	unsigned int *conf)
1043{
 
1044	struct xadc *xadc = iio_priv(indio_dev);
 
1045	struct iio_chan_spec *channels, *chan;
1046	struct device_node *chan_node, *child;
 
1047	unsigned int num_channels;
1048	const char *external_mux;
1049	u32 ext_mux_chan;
1050	int reg;
1051	int ret;
 
1052
1053	*conf = 0;
1054
1055	ret = of_property_read_string(np, "xlnx,external-mux", &external_mux);
1056	if (ret < 0 || strcasecmp(external_mux, "none") == 0)
1057		xadc->external_mux_mode = XADC_EXTERNAL_MUX_NONE;
1058	else if (strcasecmp(external_mux, "single") == 0)
1059		xadc->external_mux_mode = XADC_EXTERNAL_MUX_SINGLE;
1060	else if (strcasecmp(external_mux, "dual") == 0)
1061		xadc->external_mux_mode = XADC_EXTERNAL_MUX_DUAL;
1062	else
1063		return -EINVAL;
1064
1065	if (xadc->external_mux_mode != XADC_EXTERNAL_MUX_NONE) {
1066		ret = of_property_read_u32(np, "xlnx,external-mux-channel",
1067					&ext_mux_chan);
1068		if (ret < 0)
1069			return ret;
1070
1071		if (xadc->external_mux_mode == XADC_EXTERNAL_MUX_SINGLE) {
1072			if (ext_mux_chan == 0)
1073				ext_mux_chan = XADC_REG_VPVN;
1074			else if (ext_mux_chan <= 16)
1075				ext_mux_chan = XADC_REG_VAUX(ext_mux_chan - 1);
1076			else
1077				return -EINVAL;
1078		} else {
1079			if (ext_mux_chan > 0 && ext_mux_chan <= 8)
1080				ext_mux_chan = XADC_REG_VAUX(ext_mux_chan - 1);
1081			else
1082				return -EINVAL;
1083		}
1084
1085		*conf |= XADC_CONF0_MUX | XADC_CONF0_CHAN(ext_mux_chan);
1086	}
1087
1088	channels = kmemdup(xadc_channels, sizeof(xadc_channels), GFP_KERNEL);
 
 
 
 
 
 
 
1089	if (!channels)
1090		return -ENOMEM;
1091
1092	num_channels = 9;
1093	chan = &channels[9];
1094
1095	chan_node = of_get_child_by_name(np, "xlnx,channels");
1096	if (chan_node) {
1097		for_each_child_of_node(chan_node, child) {
1098			if (num_channels >= ARRAY_SIZE(xadc_channels)) {
1099				of_node_put(child);
1100				break;
1101			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1102
1103			ret = of_property_read_u32(child, "reg", &reg);
1104			if (ret || reg > 16)
1105				continue;
1106
1107			if (of_property_read_bool(child, "xlnx,bipolar"))
1108				chan->scan_type.sign = 's';
1109
1110			if (reg == 0) {
1111				chan->scan_index = 11;
1112				chan->address = XADC_REG_VPVN;
1113			} else {
1114				chan->scan_index = 15 + reg;
1115				chan->address = XADC_REG_VAUX(reg - 1);
1116			}
1117			num_channels++;
1118			chan++;
1119		}
1120	}
1121	of_node_put(chan_node);
1122
1123	indio_dev->num_channels = num_channels;
1124	indio_dev->channels = krealloc(channels, sizeof(*channels) *
1125					num_channels, GFP_KERNEL);
 
1126	/* If we can't resize the channels array, just use the original */
1127	if (!indio_dev->channels)
1128		indio_dev->channels = channels;
1129
1130	return 0;
1131}
1132
 
 
 
 
 
 
 
 
 
 
 
 
1133static int xadc_probe(struct platform_device *pdev)
1134{
1135	const struct of_device_id *id;
 
1136	struct iio_dev *indio_dev;
1137	unsigned int bipolar_mask;
1138	struct resource *mem;
1139	unsigned int conf0;
1140	struct xadc *xadc;
1141	int ret;
1142	int irq;
1143	int i;
1144
1145	if (!pdev->dev.of_node)
1146		return -ENODEV;
1147
1148	id = of_match_node(xadc_of_match_table, pdev->dev.of_node);
1149	if (!id)
1150		return -EINVAL;
1151
1152	irq = platform_get_irq(pdev, 0);
1153	if (irq <= 0)
1154		return -ENXIO;
 
1155
1156	indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*xadc));
1157	if (!indio_dev)
1158		return -ENOMEM;
1159
1160	xadc = iio_priv(indio_dev);
1161	xadc->ops = id->data;
1162	init_completion(&xadc->completion);
1163	mutex_init(&xadc->mutex);
1164	spin_lock_init(&xadc->lock);
1165	INIT_DELAYED_WORK(&xadc->zynq_unmask_work, xadc_zynq_unmask_worker);
1166
1167	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1168	xadc->base = devm_ioremap_resource(&pdev->dev, mem);
1169	if (IS_ERR(xadc->base))
1170		return PTR_ERR(xadc->base);
1171
1172	indio_dev->dev.parent = &pdev->dev;
1173	indio_dev->dev.of_node = pdev->dev.of_node;
1174	indio_dev->name = "xadc";
1175	indio_dev->modes = INDIO_DIRECT_MODE;
1176	indio_dev->info = &xadc_info;
1177
1178	ret = xadc_parse_dt(indio_dev, pdev->dev.of_node, &conf0);
1179	if (ret)
1180		goto err_device_free;
1181
1182	if (xadc->ops->flags & XADC_FLAGS_BUFFERED) {
1183		ret = iio_triggered_buffer_setup(indio_dev,
1184			&iio_pollfunc_store_time, &xadc_trigger_handler,
1185			&xadc_buffer_ops);
 
1186		if (ret)
1187			goto err_device_free;
1188
1189		xadc->convst_trigger = xadc_alloc_trigger(indio_dev, "convst");
1190		if (IS_ERR(xadc->convst_trigger)) {
1191			ret = PTR_ERR(xadc->convst_trigger);
1192			goto err_triggered_buffer_cleanup;
 
 
 
 
 
1193		}
1194		xadc->samplerate_trigger = xadc_alloc_trigger(indio_dev,
1195			"samplerate");
1196		if (IS_ERR(xadc->samplerate_trigger)) {
1197			ret = PTR_ERR(xadc->samplerate_trigger);
1198			goto err_free_convst_trigger;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1199		}
1200	}
1201
1202	xadc->clk = devm_clk_get(&pdev->dev, NULL);
1203	if (IS_ERR(xadc->clk)) {
1204		ret = PTR_ERR(xadc->clk);
1205		goto err_free_samplerate_trigger;
 
 
 
 
 
 
1206	}
1207	clk_prepare_enable(xadc->clk);
1208
1209	ret = xadc->ops->setup(pdev, indio_dev, irq);
1210	if (ret)
1211		goto err_free_samplerate_trigger;
1212
1213	ret = request_irq(irq, xadc->ops->interrupt_handler, 0,
1214			dev_name(&pdev->dev), indio_dev);
1215	if (ret)
1216		goto err_clk_disable_unprepare;
1217
1218	for (i = 0; i < 16; i++)
1219		xadc_read_adc_reg(xadc, XADC_REG_THRESHOLD(i),
1220			&xadc->threshold[i]);
1221
1222	ret = xadc_write_adc_reg(xadc, XADC_REG_CONF0, conf0);
1223	if (ret)
1224		goto err_free_irq;
1225
1226	bipolar_mask = 0;
1227	for (i = 0; i < indio_dev->num_channels; i++) {
1228		if (indio_dev->channels[i].scan_type.sign == 's')
1229			bipolar_mask |= BIT(indio_dev->channels[i].scan_index);
1230	}
1231
1232	ret = xadc_write_adc_reg(xadc, XADC_REG_INPUT_MODE(0), bipolar_mask);
1233	if (ret)
1234		goto err_free_irq;
 
1235	ret = xadc_write_adc_reg(xadc, XADC_REG_INPUT_MODE(1),
1236		bipolar_mask >> 16);
1237	if (ret)
1238		goto err_free_irq;
1239
1240	/* Disable all alarms */
1241	xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_ALARM_MASK,
1242		XADC_CONF1_ALARM_MASK);
1243
1244	/* Set thresholds to min/max */
1245	for (i = 0; i < 16; i++) {
1246		/*
1247		 * Set max voltage threshold and both temperature thresholds to
1248		 * 0xffff, min voltage threshold to 0.
1249		 */
1250		if (i % 8 < 4 || i == 7)
1251			xadc->threshold[i] = 0xffff;
1252		else
1253			xadc->threshold[i] = 0;
1254		xadc_write_adc_reg(xadc, XADC_REG_THRESHOLD(i),
1255			xadc->threshold[i]);
1256	}
1257
1258	/* Go to non-buffered mode */
1259	xadc_postdisable(indio_dev);
1260
1261	ret = iio_device_register(indio_dev);
1262	if (ret)
1263		goto err_free_irq;
1264
1265	platform_set_drvdata(pdev, indio_dev);
1266
1267	return 0;
1268
1269err_free_irq:
1270	free_irq(irq, indio_dev);
1271err_free_samplerate_trigger:
1272	if (xadc->ops->flags & XADC_FLAGS_BUFFERED)
1273		iio_trigger_free(xadc->samplerate_trigger);
1274err_free_convst_trigger:
1275	if (xadc->ops->flags & XADC_FLAGS_BUFFERED)
1276		iio_trigger_free(xadc->convst_trigger);
1277err_triggered_buffer_cleanup:
1278	if (xadc->ops->flags & XADC_FLAGS_BUFFERED)
1279		iio_triggered_buffer_cleanup(indio_dev);
1280err_clk_disable_unprepare:
1281	clk_disable_unprepare(xadc->clk);
1282err_device_free:
1283	kfree(indio_dev->channels);
1284
1285	return ret;
1286}
1287
1288static int xadc_remove(struct platform_device *pdev)
1289{
1290	struct iio_dev *indio_dev = platform_get_drvdata(pdev);
1291	struct xadc *xadc = iio_priv(indio_dev);
1292	int irq = platform_get_irq(pdev, 0);
1293
1294	iio_device_unregister(indio_dev);
1295	if (xadc->ops->flags & XADC_FLAGS_BUFFERED) {
1296		iio_trigger_free(xadc->samplerate_trigger);
1297		iio_trigger_free(xadc->convst_trigger);
1298		iio_triggered_buffer_cleanup(indio_dev);
1299	}
1300	free_irq(irq, indio_dev);
1301	clk_disable_unprepare(xadc->clk);
1302	cancel_delayed_work(&xadc->zynq_unmask_work);
1303	kfree(xadc->data);
1304	kfree(indio_dev->channels);
1305
1306	return 0;
1307}
1308
1309static struct platform_driver xadc_driver = {
1310	.probe = xadc_probe,
1311	.remove = xadc_remove,
1312	.driver = {
1313		.name = "xadc",
1314		.of_match_table = xadc_of_match_table,
1315	},
1316};
1317module_platform_driver(xadc_driver);
1318
1319MODULE_LICENSE("GPL v2");
1320MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
1321MODULE_DESCRIPTION("Xilinx XADC IIO driver");