Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  4 */
  5
  6#include <linux/bug.h>
  7#include <linux/completion.h>
  8#include <linux/crc-itu-t.h>
  9#include <linux/device.h>
 10#include <linux/errno.h>
 11#include <linux/firewire.h>
 12#include <linux/firewire-constants.h>
 13#include <linux/jiffies.h>
 14#include <linux/kernel.h>
 15#include <linux/kref.h>
 16#include <linux/list.h>
 17#include <linux/module.h>
 18#include <linux/mutex.h>
 19#include <linux/spinlock.h>
 20#include <linux/workqueue.h>
 21
 22#include <linux/atomic.h>
 23#include <asm/byteorder.h>
 24
 25#include "core.h"
 26
 27#define define_fw_printk_level(func, kern_level)		\
 28void func(const struct fw_card *card, const char *fmt, ...)	\
 29{								\
 30	struct va_format vaf;					\
 31	va_list args;						\
 32								\
 33	va_start(args, fmt);					\
 34	vaf.fmt = fmt;						\
 35	vaf.va = &args;						\
 36	printk(kern_level KBUILD_MODNAME " %s: %pV",		\
 37	       dev_name(card->device), &vaf);			\
 38	va_end(args);						\
 39}
 40define_fw_printk_level(fw_err, KERN_ERR);
 41define_fw_printk_level(fw_notice, KERN_NOTICE);
 42
 43int fw_compute_block_crc(__be32 *block)
 44{
 45	int length;
 46	u16 crc;
 47
 48	length = (be32_to_cpu(block[0]) >> 16) & 0xff;
 49	crc = crc_itu_t(0, (u8 *)&block[1], length * 4);
 50	*block |= cpu_to_be32(crc);
 51
 52	return length;
 53}
 54
 55static DEFINE_MUTEX(card_mutex);
 56static LIST_HEAD(card_list);
 57
 58static LIST_HEAD(descriptor_list);
 59static int descriptor_count;
 60
 61static __be32 tmp_config_rom[256];
 62/* ROM header, bus info block, root dir header, capabilities = 7 quadlets */
 63static size_t config_rom_length = 1 + 4 + 1 + 1;
 64
 65#define BIB_CRC(v)		((v) <<  0)
 66#define BIB_CRC_LENGTH(v)	((v) << 16)
 67#define BIB_INFO_LENGTH(v)	((v) << 24)
 68#define BIB_BUS_NAME		0x31333934 /* "1394" */
 69#define BIB_LINK_SPEED(v)	((v) <<  0)
 70#define BIB_GENERATION(v)	((v) <<  4)
 71#define BIB_MAX_ROM(v)		((v) <<  8)
 72#define BIB_MAX_RECEIVE(v)	((v) << 12)
 73#define BIB_CYC_CLK_ACC(v)	((v) << 16)
 74#define BIB_PMC			((1) << 27)
 75#define BIB_BMC			((1) << 28)
 76#define BIB_ISC			((1) << 29)
 77#define BIB_CMC			((1) << 30)
 78#define BIB_IRMC		((1) << 31)
 79#define NODE_CAPABILITIES	0x0c0083c0 /* per IEEE 1394 clause 8.3.2.6.5.2 */
 80
 81/*
 82 * IEEE-1394 specifies a default SPLIT_TIMEOUT value of 800 cycles (100 ms),
 83 * but we have to make it longer because there are many devices whose firmware
 84 * is just too slow for that.
 85 */
 86#define DEFAULT_SPLIT_TIMEOUT	(2 * 8000)
 87
 88#define CANON_OUI		0x000085
 89
 90static void generate_config_rom(struct fw_card *card, __be32 *config_rom)
 91{
 92	struct fw_descriptor *desc;
 93	int i, j, k, length;
 94
 95	/*
 96	 * Initialize contents of config rom buffer.  On the OHCI
 97	 * controller, block reads to the config rom accesses the host
 98	 * memory, but quadlet read access the hardware bus info block
 99	 * registers.  That's just crack, but it means we should make
100	 * sure the contents of bus info block in host memory matches
101	 * the version stored in the OHCI registers.
102	 */
103
104	config_rom[0] = cpu_to_be32(
105		BIB_CRC_LENGTH(4) | BIB_INFO_LENGTH(4) | BIB_CRC(0));
106	config_rom[1] = cpu_to_be32(BIB_BUS_NAME);
107	config_rom[2] = cpu_to_be32(
108		BIB_LINK_SPEED(card->link_speed) |
109		BIB_GENERATION(card->config_rom_generation++ % 14 + 2) |
110		BIB_MAX_ROM(2) |
111		BIB_MAX_RECEIVE(card->max_receive) |
112		BIB_BMC | BIB_ISC | BIB_CMC | BIB_IRMC);
113	config_rom[3] = cpu_to_be32(card->guid >> 32);
114	config_rom[4] = cpu_to_be32(card->guid);
115
116	/* Generate root directory. */
117	config_rom[6] = cpu_to_be32(NODE_CAPABILITIES);
118	i = 7;
119	j = 7 + descriptor_count;
120
121	/* Generate root directory entries for descriptors. */
122	list_for_each_entry (desc, &descriptor_list, link) {
123		if (desc->immediate > 0)
124			config_rom[i++] = cpu_to_be32(desc->immediate);
125		config_rom[i] = cpu_to_be32(desc->key | (j - i));
126		i++;
127		j += desc->length;
128	}
129
130	/* Update root directory length. */
131	config_rom[5] = cpu_to_be32((i - 5 - 1) << 16);
132
133	/* End of root directory, now copy in descriptors. */
134	list_for_each_entry (desc, &descriptor_list, link) {
135		for (k = 0; k < desc->length; k++)
136			config_rom[i + k] = cpu_to_be32(desc->data[k]);
137		i += desc->length;
138	}
139
140	/* Calculate CRCs for all blocks in the config rom.  This
141	 * assumes that CRC length and info length are identical for
142	 * the bus info block, which is always the case for this
143	 * implementation. */
144	for (i = 0; i < j; i += length + 1)
145		length = fw_compute_block_crc(config_rom + i);
146
147	WARN_ON(j != config_rom_length);
148}
149
150static void update_config_roms(void)
151{
152	struct fw_card *card;
153
154	list_for_each_entry (card, &card_list, link) {
155		generate_config_rom(card, tmp_config_rom);
156		card->driver->set_config_rom(card, tmp_config_rom,
157					     config_rom_length);
158	}
159}
160
161static size_t required_space(struct fw_descriptor *desc)
162{
163	/* descriptor + entry into root dir + optional immediate entry */
164	return desc->length + 1 + (desc->immediate > 0 ? 1 : 0);
165}
166
167int fw_core_add_descriptor(struct fw_descriptor *desc)
168{
169	size_t i;
170	int ret;
171
172	/*
173	 * Check descriptor is valid; the length of all blocks in the
174	 * descriptor has to add up to exactly the length of the
175	 * block.
176	 */
177	i = 0;
178	while (i < desc->length)
179		i += (desc->data[i] >> 16) + 1;
180
181	if (i != desc->length)
182		return -EINVAL;
183
184	mutex_lock(&card_mutex);
185
186	if (config_rom_length + required_space(desc) > 256) {
187		ret = -EBUSY;
188	} else {
189		list_add_tail(&desc->link, &descriptor_list);
190		config_rom_length += required_space(desc);
191		descriptor_count++;
192		if (desc->immediate > 0)
193			descriptor_count++;
194		update_config_roms();
195		ret = 0;
196	}
197
198	mutex_unlock(&card_mutex);
199
200	return ret;
201}
202EXPORT_SYMBOL(fw_core_add_descriptor);
203
204void fw_core_remove_descriptor(struct fw_descriptor *desc)
205{
206	mutex_lock(&card_mutex);
207
208	list_del(&desc->link);
209	config_rom_length -= required_space(desc);
210	descriptor_count--;
211	if (desc->immediate > 0)
212		descriptor_count--;
213	update_config_roms();
214
215	mutex_unlock(&card_mutex);
216}
217EXPORT_SYMBOL(fw_core_remove_descriptor);
218
219static int reset_bus(struct fw_card *card, bool short_reset)
220{
221	int reg = short_reset ? 5 : 1;
222	int bit = short_reset ? PHY_BUS_SHORT_RESET : PHY_BUS_RESET;
223
224	return card->driver->update_phy_reg(card, reg, 0, bit);
225}
226
227void fw_schedule_bus_reset(struct fw_card *card, bool delayed, bool short_reset)
228{
229	/* We don't try hard to sort out requests of long vs. short resets. */
230	card->br_short = short_reset;
231
232	/* Use an arbitrary short delay to combine multiple reset requests. */
233	fw_card_get(card);
234	if (!queue_delayed_work(fw_workqueue, &card->br_work,
235				delayed ? DIV_ROUND_UP(HZ, 100) : 0))
236		fw_card_put(card);
237}
238EXPORT_SYMBOL(fw_schedule_bus_reset);
239
240static void br_work(struct work_struct *work)
241{
242	struct fw_card *card = container_of(work, struct fw_card, br_work.work);
243
244	/* Delay for 2s after last reset per IEEE 1394 clause 8.2.1. */
245	if (card->reset_jiffies != 0 &&
246	    time_before64(get_jiffies_64(), card->reset_jiffies + 2 * HZ)) {
247		if (!queue_delayed_work(fw_workqueue, &card->br_work, 2 * HZ))
248			fw_card_put(card);
249		return;
250	}
251
252	fw_send_phy_config(card, FW_PHY_CONFIG_NO_NODE_ID, card->generation,
253			   FW_PHY_CONFIG_CURRENT_GAP_COUNT);
254	reset_bus(card, card->br_short);
255	fw_card_put(card);
256}
257
258static void allocate_broadcast_channel(struct fw_card *card, int generation)
259{
260	int channel, bandwidth = 0;
261
262	if (!card->broadcast_channel_allocated) {
263		fw_iso_resource_manage(card, generation, 1ULL << 31,
264				       &channel, &bandwidth, true);
265		if (channel != 31) {
266			fw_notice(card, "failed to allocate broadcast channel\n");
267			return;
268		}
269		card->broadcast_channel_allocated = true;
270	}
271
272	device_for_each_child(card->device, (void *)(long)generation,
273			      fw_device_set_broadcast_channel);
274}
275
276static const char gap_count_table[] = {
277	63, 5, 7, 8, 10, 13, 16, 18, 21, 24, 26, 29, 32, 35, 37, 40
278};
279
280void fw_schedule_bm_work(struct fw_card *card, unsigned long delay)
281{
282	fw_card_get(card);
283	if (!schedule_delayed_work(&card->bm_work, delay))
284		fw_card_put(card);
285}
286
287static void bm_work(struct work_struct *work)
288{
289	struct fw_card *card = container_of(work, struct fw_card, bm_work.work);
290	struct fw_device *root_device, *irm_device;
291	struct fw_node *root_node;
292	int root_id, new_root_id, irm_id, bm_id, local_id;
293	int gap_count, generation, grace, rcode;
294	bool do_reset = false;
295	bool root_device_is_running;
296	bool root_device_is_cmc;
297	bool irm_is_1394_1995_only;
298	bool keep_this_irm;
299	__be32 transaction_data[2];
300
301	spin_lock_irq(&card->lock);
302
303	if (card->local_node == NULL) {
304		spin_unlock_irq(&card->lock);
305		goto out_put_card;
306	}
307
308	generation = card->generation;
309
310	root_node = card->root_node;
311	fw_node_get(root_node);
312	root_device = root_node->data;
313	root_device_is_running = root_device &&
314			atomic_read(&root_device->state) == FW_DEVICE_RUNNING;
315	root_device_is_cmc = root_device && root_device->cmc;
316
317	irm_device = card->irm_node->data;
318	irm_is_1394_1995_only = irm_device && irm_device->config_rom &&
319			(irm_device->config_rom[2] & 0x000000f0) == 0;
320
321	/* Canon MV5i works unreliably if it is not root node. */
322	keep_this_irm = irm_device && irm_device->config_rom &&
323			irm_device->config_rom[3] >> 8 == CANON_OUI;
324
325	root_id  = root_node->node_id;
326	irm_id   = card->irm_node->node_id;
327	local_id = card->local_node->node_id;
328
329	grace = time_after64(get_jiffies_64(),
330			     card->reset_jiffies + DIV_ROUND_UP(HZ, 8));
331
332	if ((is_next_generation(generation, card->bm_generation) &&
333	     !card->bm_abdicate) ||
334	    (card->bm_generation != generation && grace)) {
335		/*
336		 * This first step is to figure out who is IRM and
337		 * then try to become bus manager.  If the IRM is not
338		 * well defined (e.g. does not have an active link
339		 * layer or does not responds to our lock request, we
340		 * will have to do a little vigilante bus management.
341		 * In that case, we do a goto into the gap count logic
342		 * so that when we do the reset, we still optimize the
343		 * gap count.  That could well save a reset in the
344		 * next generation.
345		 */
346
347		if (!card->irm_node->link_on) {
348			new_root_id = local_id;
349			fw_notice(card, "%s, making local node (%02x) root\n",
350				  "IRM has link off", new_root_id);
351			goto pick_me;
352		}
353
354		if (irm_is_1394_1995_only && !keep_this_irm) {
355			new_root_id = local_id;
356			fw_notice(card, "%s, making local node (%02x) root\n",
357				  "IRM is not 1394a compliant", new_root_id);
358			goto pick_me;
359		}
360
361		transaction_data[0] = cpu_to_be32(0x3f);
362		transaction_data[1] = cpu_to_be32(local_id);
363
364		spin_unlock_irq(&card->lock);
365
366		rcode = fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
367				irm_id, generation, SCODE_100,
368				CSR_REGISTER_BASE + CSR_BUS_MANAGER_ID,
369				transaction_data, 8);
370
371		if (rcode == RCODE_GENERATION)
372			/* Another bus reset, BM work has been rescheduled. */
373			goto out;
374
375		bm_id = be32_to_cpu(transaction_data[0]);
376
377		spin_lock_irq(&card->lock);
378		if (rcode == RCODE_COMPLETE && generation == card->generation)
379			card->bm_node_id =
380			    bm_id == 0x3f ? local_id : 0xffc0 | bm_id;
381		spin_unlock_irq(&card->lock);
382
383		if (rcode == RCODE_COMPLETE && bm_id != 0x3f) {
384			/* Somebody else is BM.  Only act as IRM. */
385			if (local_id == irm_id)
386				allocate_broadcast_channel(card, generation);
387
388			goto out;
389		}
390
391		if (rcode == RCODE_SEND_ERROR) {
392			/*
393			 * We have been unable to send the lock request due to
394			 * some local problem.  Let's try again later and hope
395			 * that the problem has gone away by then.
396			 */
397			fw_schedule_bm_work(card, DIV_ROUND_UP(HZ, 8));
398			goto out;
399		}
400
401		spin_lock_irq(&card->lock);
402
403		if (rcode != RCODE_COMPLETE && !keep_this_irm) {
404			/*
405			 * The lock request failed, maybe the IRM
406			 * isn't really IRM capable after all. Let's
407			 * do a bus reset and pick the local node as
408			 * root, and thus, IRM.
409			 */
410			new_root_id = local_id;
411			fw_notice(card, "BM lock failed (%s), making local node (%02x) root\n",
412				  fw_rcode_string(rcode), new_root_id);
413			goto pick_me;
414		}
415	} else if (card->bm_generation != generation) {
416		/*
417		 * We weren't BM in the last generation, and the last
418		 * bus reset is less than 125ms ago.  Reschedule this job.
419		 */
420		spin_unlock_irq(&card->lock);
421		fw_schedule_bm_work(card, DIV_ROUND_UP(HZ, 8));
422		goto out;
423	}
424
425	/*
426	 * We're bus manager for this generation, so next step is to
427	 * make sure we have an active cycle master and do gap count
428	 * optimization.
429	 */
430	card->bm_generation = generation;
431
432	if (card->gap_count == 0) {
433		/*
434		 * If self IDs have inconsistent gap counts, do a
435		 * bus reset ASAP. The config rom read might never
436		 * complete, so don't wait for it. However, still
437		 * send a PHY configuration packet prior to the
438		 * bus reset. The PHY configuration packet might
439		 * fail, but 1394-2008 8.4.5.2 explicitly permits
440		 * it in this case, so it should be safe to try.
441		 */
442		new_root_id = local_id;
443		/*
444		 * We must always send a bus reset if the gap count
445		 * is inconsistent, so bypass the 5-reset limit.
446		 */
447		card->bm_retries = 0;
448	} else if (root_device == NULL) {
449		/*
450		 * Either link_on is false, or we failed to read the
451		 * config rom.  In either case, pick another root.
452		 */
453		new_root_id = local_id;
454	} else if (!root_device_is_running) {
455		/*
456		 * If we haven't probed this device yet, bail out now
457		 * and let's try again once that's done.
458		 */
459		spin_unlock_irq(&card->lock);
460		goto out;
461	} else if (root_device_is_cmc) {
462		/*
463		 * We will send out a force root packet for this
464		 * node as part of the gap count optimization.
465		 */
466		new_root_id = root_id;
467	} else {
468		/*
469		 * Current root has an active link layer and we
470		 * successfully read the config rom, but it's not
471		 * cycle master capable.
472		 */
473		new_root_id = local_id;
474	}
475
476 pick_me:
477	/*
478	 * Pick a gap count from 1394a table E-1.  The table doesn't cover
479	 * the typically much larger 1394b beta repeater delays though.
480	 */
481	if (!card->beta_repeaters_present &&
482	    root_node->max_hops < ARRAY_SIZE(gap_count_table))
483		gap_count = gap_count_table[root_node->max_hops];
484	else
485		gap_count = 63;
486
487	/*
488	 * Finally, figure out if we should do a reset or not.  If we have
489	 * done less than 5 resets with the same physical topology and we
490	 * have either a new root or a new gap count setting, let's do it.
491	 */
492
493	if (card->bm_retries++ < 5 &&
494	    (card->gap_count != gap_count || new_root_id != root_id))
495		do_reset = true;
496
497	spin_unlock_irq(&card->lock);
498
499	if (do_reset) {
500		fw_notice(card, "phy config: new root=%x, gap_count=%d\n",
501			  new_root_id, gap_count);
502		fw_send_phy_config(card, new_root_id, generation, gap_count);
503		/*
504		 * Where possible, use a short bus reset to minimize
505		 * disruption to isochronous transfers. But in the event
506		 * of a gap count inconsistency, use a long bus reset.
507		 *
508		 * As noted in 1394a 8.4.6.2, nodes on a mixed 1394/1394a bus
509		 * may set different gap counts after a bus reset. On a mixed
510		 * 1394/1394a bus, a short bus reset can get doubled. Some
511		 * nodes may treat the double reset as one bus reset and others
512		 * may treat it as two, causing a gap count inconsistency
513		 * again. Using a long bus reset prevents this.
514		 */
515		reset_bus(card, card->gap_count != 0);
516		/* Will allocate broadcast channel after the reset. */
517		goto out;
518	}
519
520	if (root_device_is_cmc) {
521		/*
522		 * Make sure that the cycle master sends cycle start packets.
523		 */
524		transaction_data[0] = cpu_to_be32(CSR_STATE_BIT_CMSTR);
525		rcode = fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
526				root_id, generation, SCODE_100,
527				CSR_REGISTER_BASE + CSR_STATE_SET,
528				transaction_data, 4);
529		if (rcode == RCODE_GENERATION)
530			goto out;
531	}
532
533	if (local_id == irm_id)
534		allocate_broadcast_channel(card, generation);
535
536 out:
537	fw_node_put(root_node);
538 out_put_card:
539	fw_card_put(card);
540}
541
542void fw_card_initialize(struct fw_card *card,
543			const struct fw_card_driver *driver,
544			struct device *device)
545{
546	static atomic_t index = ATOMIC_INIT(-1);
547
548	card->index = atomic_inc_return(&index);
549	card->driver = driver;
550	card->device = device;
551	card->current_tlabel = 0;
552	card->tlabel_mask = 0;
553	card->split_timeout_hi = DEFAULT_SPLIT_TIMEOUT / 8000;
554	card->split_timeout_lo = (DEFAULT_SPLIT_TIMEOUT % 8000) << 19;
555	card->split_timeout_cycles = DEFAULT_SPLIT_TIMEOUT;
556	card->split_timeout_jiffies =
557			DIV_ROUND_UP(DEFAULT_SPLIT_TIMEOUT * HZ, 8000);
558	card->color = 0;
559	card->broadcast_channel = BROADCAST_CHANNEL_INITIAL;
560
561	kref_init(&card->kref);
562	init_completion(&card->done);
563	INIT_LIST_HEAD(&card->transaction_list);
564	INIT_LIST_HEAD(&card->phy_receiver_list);
565	spin_lock_init(&card->lock);
566
567	card->local_node = NULL;
568
569	INIT_DELAYED_WORK(&card->br_work, br_work);
570	INIT_DELAYED_WORK(&card->bm_work, bm_work);
571}
572EXPORT_SYMBOL(fw_card_initialize);
573
574int fw_card_add(struct fw_card *card,
575		u32 max_receive, u32 link_speed, u64 guid)
576{
577	int ret;
578
579	card->max_receive = max_receive;
580	card->link_speed = link_speed;
581	card->guid = guid;
582
583	mutex_lock(&card_mutex);
584
585	generate_config_rom(card, tmp_config_rom);
586	ret = card->driver->enable(card, tmp_config_rom, config_rom_length);
587	if (ret == 0)
588		list_add_tail(&card->link, &card_list);
589
590	mutex_unlock(&card_mutex);
591
592	return ret;
593}
594EXPORT_SYMBOL(fw_card_add);
595
596/*
597 * The next few functions implement a dummy driver that is used once a card
598 * driver shuts down an fw_card.  This allows the driver to cleanly unload,
599 * as all IO to the card will be handled (and failed) by the dummy driver
600 * instead of calling into the module.  Only functions for iso context
601 * shutdown still need to be provided by the card driver.
602 *
603 * .read/write_csr() should never be called anymore after the dummy driver
604 * was bound since they are only used within request handler context.
605 * .set_config_rom() is never called since the card is taken out of card_list
606 * before switching to the dummy driver.
607 */
608
609static int dummy_read_phy_reg(struct fw_card *card, int address)
610{
611	return -ENODEV;
612}
613
614static int dummy_update_phy_reg(struct fw_card *card, int address,
615				int clear_bits, int set_bits)
616{
617	return -ENODEV;
618}
619
620static void dummy_send_request(struct fw_card *card, struct fw_packet *packet)
621{
622	packet->callback(packet, card, RCODE_CANCELLED);
623}
624
625static void dummy_send_response(struct fw_card *card, struct fw_packet *packet)
626{
627	packet->callback(packet, card, RCODE_CANCELLED);
628}
629
630static int dummy_cancel_packet(struct fw_card *card, struct fw_packet *packet)
631{
632	return -ENOENT;
633}
634
635static int dummy_enable_phys_dma(struct fw_card *card,
636				 int node_id, int generation)
637{
638	return -ENODEV;
639}
640
641static struct fw_iso_context *dummy_allocate_iso_context(struct fw_card *card,
642				int type, int channel, size_t header_size)
643{
644	return ERR_PTR(-ENODEV);
645}
646
647static u32 dummy_read_csr(struct fw_card *card, int csr_offset)
648{
649	return 0;
650}
651
652static void dummy_write_csr(struct fw_card *card, int csr_offset, u32 value)
653{
654}
655
656static int dummy_start_iso(struct fw_iso_context *ctx,
657			   s32 cycle, u32 sync, u32 tags)
658{
659	return -ENODEV;
660}
661
662static int dummy_set_iso_channels(struct fw_iso_context *ctx, u64 *channels)
663{
664	return -ENODEV;
665}
666
667static int dummy_queue_iso(struct fw_iso_context *ctx, struct fw_iso_packet *p,
668			   struct fw_iso_buffer *buffer, unsigned long payload)
669{
670	return -ENODEV;
671}
672
673static void dummy_flush_queue_iso(struct fw_iso_context *ctx)
674{
675}
676
677static int dummy_flush_iso_completions(struct fw_iso_context *ctx)
678{
679	return -ENODEV;
680}
681
682static const struct fw_card_driver dummy_driver_template = {
683	.read_phy_reg		= dummy_read_phy_reg,
684	.update_phy_reg		= dummy_update_phy_reg,
685	.send_request		= dummy_send_request,
686	.send_response		= dummy_send_response,
687	.cancel_packet		= dummy_cancel_packet,
688	.enable_phys_dma	= dummy_enable_phys_dma,
689	.read_csr		= dummy_read_csr,
690	.write_csr		= dummy_write_csr,
691	.allocate_iso_context	= dummy_allocate_iso_context,
692	.start_iso		= dummy_start_iso,
693	.set_iso_channels	= dummy_set_iso_channels,
694	.queue_iso		= dummy_queue_iso,
695	.flush_queue_iso	= dummy_flush_queue_iso,
696	.flush_iso_completions	= dummy_flush_iso_completions,
697};
698
699void fw_card_release(struct kref *kref)
700{
701	struct fw_card *card = container_of(kref, struct fw_card, kref);
702
703	complete(&card->done);
704}
705EXPORT_SYMBOL_GPL(fw_card_release);
706
707void fw_core_remove_card(struct fw_card *card)
708{
709	struct fw_card_driver dummy_driver = dummy_driver_template;
710	unsigned long flags;
711
712	card->driver->update_phy_reg(card, 4,
713				     PHY_LINK_ACTIVE | PHY_CONTENDER, 0);
714	fw_schedule_bus_reset(card, false, true);
715
716	mutex_lock(&card_mutex);
717	list_del_init(&card->link);
718	mutex_unlock(&card_mutex);
719
720	/* Switch off most of the card driver interface. */
721	dummy_driver.free_iso_context	= card->driver->free_iso_context;
722	dummy_driver.stop_iso		= card->driver->stop_iso;
723	card->driver = &dummy_driver;
724
725	spin_lock_irqsave(&card->lock, flags);
726	fw_destroy_nodes(card);
727	spin_unlock_irqrestore(&card->lock, flags);
728
729	/* Wait for all users, especially device workqueue jobs, to finish. */
730	fw_card_put(card);
731	wait_for_completion(&card->done);
732
733	WARN_ON(!list_empty(&card->transaction_list));
734}
735EXPORT_SYMBOL(fw_core_remove_card);
736
737/**
738 * fw_card_read_cycle_time: read from Isochronous Cycle Timer Register of 1394 OHCI in MMIO region
739 *			    for controller card.
740 * @card: The instance of card for 1394 OHCI controller.
741 * @cycle_time: The mutual reference to value of cycle time for the read operation.
742 *
743 * Read value from Isochronous Cycle Timer Register of 1394 OHCI in MMIO region for the given
744 * controller card. This function accesses the region without any lock primitives or IRQ mask.
745 * When returning successfully, the content of @value argument has value aligned to host endianness,
746 * formetted by CYCLE_TIME CSR Register of IEEE 1394 std.
747 *
748 * Context: Any context.
749 * Return:
750 * * 0 - Read successfully.
751 * * -ENODEV - The controller is unavailable due to being removed or unbound.
752 */
753int fw_card_read_cycle_time(struct fw_card *card, u32 *cycle_time)
754{
755	if (card->driver->read_csr == dummy_read_csr)
756		return -ENODEV;
757
758	// It's possible to switch to dummy driver between the above and the below. This is the best
759	// effort to return -ENODEV.
760	*cycle_time = card->driver->read_csr(card, CSR_CYCLE_TIME);
761	return 0;
762}
763EXPORT_SYMBOL_GPL(fw_card_read_cycle_time);
v4.6
 
  1/*
  2 * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
  3 *
  4 * This program is free software; you can redistribute it and/or modify
  5 * it under the terms of the GNU General Public License as published by
  6 * the Free Software Foundation; either version 2 of the License, or
  7 * (at your option) any later version.
  8 *
  9 * This program is distributed in the hope that it will be useful,
 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 *
 14 * You should have received a copy of the GNU General Public License
 15 * along with this program; if not, write to the Free Software Foundation,
 16 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 17 */
 18
 19#include <linux/bug.h>
 20#include <linux/completion.h>
 21#include <linux/crc-itu-t.h>
 22#include <linux/device.h>
 23#include <linux/errno.h>
 24#include <linux/firewire.h>
 25#include <linux/firewire-constants.h>
 26#include <linux/jiffies.h>
 27#include <linux/kernel.h>
 28#include <linux/kref.h>
 29#include <linux/list.h>
 30#include <linux/module.h>
 31#include <linux/mutex.h>
 32#include <linux/spinlock.h>
 33#include <linux/workqueue.h>
 34
 35#include <linux/atomic.h>
 36#include <asm/byteorder.h>
 37
 38#include "core.h"
 39
 40#define define_fw_printk_level(func, kern_level)		\
 41void func(const struct fw_card *card, const char *fmt, ...)	\
 42{								\
 43	struct va_format vaf;					\
 44	va_list args;						\
 45								\
 46	va_start(args, fmt);					\
 47	vaf.fmt = fmt;						\
 48	vaf.va = &args;						\
 49	printk(kern_level KBUILD_MODNAME " %s: %pV",		\
 50	       dev_name(card->device), &vaf);			\
 51	va_end(args);						\
 52}
 53define_fw_printk_level(fw_err, KERN_ERR);
 54define_fw_printk_level(fw_notice, KERN_NOTICE);
 55
 56int fw_compute_block_crc(__be32 *block)
 57{
 58	int length;
 59	u16 crc;
 60
 61	length = (be32_to_cpu(block[0]) >> 16) & 0xff;
 62	crc = crc_itu_t(0, (u8 *)&block[1], length * 4);
 63	*block |= cpu_to_be32(crc);
 64
 65	return length;
 66}
 67
 68static DEFINE_MUTEX(card_mutex);
 69static LIST_HEAD(card_list);
 70
 71static LIST_HEAD(descriptor_list);
 72static int descriptor_count;
 73
 74static __be32 tmp_config_rom[256];
 75/* ROM header, bus info block, root dir header, capabilities = 7 quadlets */
 76static size_t config_rom_length = 1 + 4 + 1 + 1;
 77
 78#define BIB_CRC(v)		((v) <<  0)
 79#define BIB_CRC_LENGTH(v)	((v) << 16)
 80#define BIB_INFO_LENGTH(v)	((v) << 24)
 81#define BIB_BUS_NAME		0x31333934 /* "1394" */
 82#define BIB_LINK_SPEED(v)	((v) <<  0)
 83#define BIB_GENERATION(v)	((v) <<  4)
 84#define BIB_MAX_ROM(v)		((v) <<  8)
 85#define BIB_MAX_RECEIVE(v)	((v) << 12)
 86#define BIB_CYC_CLK_ACC(v)	((v) << 16)
 87#define BIB_PMC			((1) << 27)
 88#define BIB_BMC			((1) << 28)
 89#define BIB_ISC			((1) << 29)
 90#define BIB_CMC			((1) << 30)
 91#define BIB_IRMC		((1) << 31)
 92#define NODE_CAPABILITIES	0x0c0083c0 /* per IEEE 1394 clause 8.3.2.6.5.2 */
 93
 94/*
 95 * IEEE-1394 specifies a default SPLIT_TIMEOUT value of 800 cycles (100 ms),
 96 * but we have to make it longer because there are many devices whose firmware
 97 * is just too slow for that.
 98 */
 99#define DEFAULT_SPLIT_TIMEOUT	(2 * 8000)
100
101#define CANON_OUI		0x000085
102
103static void generate_config_rom(struct fw_card *card, __be32 *config_rom)
104{
105	struct fw_descriptor *desc;
106	int i, j, k, length;
107
108	/*
109	 * Initialize contents of config rom buffer.  On the OHCI
110	 * controller, block reads to the config rom accesses the host
111	 * memory, but quadlet read access the hardware bus info block
112	 * registers.  That's just crack, but it means we should make
113	 * sure the contents of bus info block in host memory matches
114	 * the version stored in the OHCI registers.
115	 */
116
117	config_rom[0] = cpu_to_be32(
118		BIB_CRC_LENGTH(4) | BIB_INFO_LENGTH(4) | BIB_CRC(0));
119	config_rom[1] = cpu_to_be32(BIB_BUS_NAME);
120	config_rom[2] = cpu_to_be32(
121		BIB_LINK_SPEED(card->link_speed) |
122		BIB_GENERATION(card->config_rom_generation++ % 14 + 2) |
123		BIB_MAX_ROM(2) |
124		BIB_MAX_RECEIVE(card->max_receive) |
125		BIB_BMC | BIB_ISC | BIB_CMC | BIB_IRMC);
126	config_rom[3] = cpu_to_be32(card->guid >> 32);
127	config_rom[4] = cpu_to_be32(card->guid);
128
129	/* Generate root directory. */
130	config_rom[6] = cpu_to_be32(NODE_CAPABILITIES);
131	i = 7;
132	j = 7 + descriptor_count;
133
134	/* Generate root directory entries for descriptors. */
135	list_for_each_entry (desc, &descriptor_list, link) {
136		if (desc->immediate > 0)
137			config_rom[i++] = cpu_to_be32(desc->immediate);
138		config_rom[i] = cpu_to_be32(desc->key | (j - i));
139		i++;
140		j += desc->length;
141	}
142
143	/* Update root directory length. */
144	config_rom[5] = cpu_to_be32((i - 5 - 1) << 16);
145
146	/* End of root directory, now copy in descriptors. */
147	list_for_each_entry (desc, &descriptor_list, link) {
148		for (k = 0; k < desc->length; k++)
149			config_rom[i + k] = cpu_to_be32(desc->data[k]);
150		i += desc->length;
151	}
152
153	/* Calculate CRCs for all blocks in the config rom.  This
154	 * assumes that CRC length and info length are identical for
155	 * the bus info block, which is always the case for this
156	 * implementation. */
157	for (i = 0; i < j; i += length + 1)
158		length = fw_compute_block_crc(config_rom + i);
159
160	WARN_ON(j != config_rom_length);
161}
162
163static void update_config_roms(void)
164{
165	struct fw_card *card;
166
167	list_for_each_entry (card, &card_list, link) {
168		generate_config_rom(card, tmp_config_rom);
169		card->driver->set_config_rom(card, tmp_config_rom,
170					     config_rom_length);
171	}
172}
173
174static size_t required_space(struct fw_descriptor *desc)
175{
176	/* descriptor + entry into root dir + optional immediate entry */
177	return desc->length + 1 + (desc->immediate > 0 ? 1 : 0);
178}
179
180int fw_core_add_descriptor(struct fw_descriptor *desc)
181{
182	size_t i;
183	int ret;
184
185	/*
186	 * Check descriptor is valid; the length of all blocks in the
187	 * descriptor has to add up to exactly the length of the
188	 * block.
189	 */
190	i = 0;
191	while (i < desc->length)
192		i += (desc->data[i] >> 16) + 1;
193
194	if (i != desc->length)
195		return -EINVAL;
196
197	mutex_lock(&card_mutex);
198
199	if (config_rom_length + required_space(desc) > 256) {
200		ret = -EBUSY;
201	} else {
202		list_add_tail(&desc->link, &descriptor_list);
203		config_rom_length += required_space(desc);
204		descriptor_count++;
205		if (desc->immediate > 0)
206			descriptor_count++;
207		update_config_roms();
208		ret = 0;
209	}
210
211	mutex_unlock(&card_mutex);
212
213	return ret;
214}
215EXPORT_SYMBOL(fw_core_add_descriptor);
216
217void fw_core_remove_descriptor(struct fw_descriptor *desc)
218{
219	mutex_lock(&card_mutex);
220
221	list_del(&desc->link);
222	config_rom_length -= required_space(desc);
223	descriptor_count--;
224	if (desc->immediate > 0)
225		descriptor_count--;
226	update_config_roms();
227
228	mutex_unlock(&card_mutex);
229}
230EXPORT_SYMBOL(fw_core_remove_descriptor);
231
232static int reset_bus(struct fw_card *card, bool short_reset)
233{
234	int reg = short_reset ? 5 : 1;
235	int bit = short_reset ? PHY_BUS_SHORT_RESET : PHY_BUS_RESET;
236
237	return card->driver->update_phy_reg(card, reg, 0, bit);
238}
239
240void fw_schedule_bus_reset(struct fw_card *card, bool delayed, bool short_reset)
241{
242	/* We don't try hard to sort out requests of long vs. short resets. */
243	card->br_short = short_reset;
244
245	/* Use an arbitrary short delay to combine multiple reset requests. */
246	fw_card_get(card);
247	if (!queue_delayed_work(fw_workqueue, &card->br_work,
248				delayed ? DIV_ROUND_UP(HZ, 100) : 0))
249		fw_card_put(card);
250}
251EXPORT_SYMBOL(fw_schedule_bus_reset);
252
253static void br_work(struct work_struct *work)
254{
255	struct fw_card *card = container_of(work, struct fw_card, br_work.work);
256
257	/* Delay for 2s after last reset per IEEE 1394 clause 8.2.1. */
258	if (card->reset_jiffies != 0 &&
259	    time_before64(get_jiffies_64(), card->reset_jiffies + 2 * HZ)) {
260		if (!queue_delayed_work(fw_workqueue, &card->br_work, 2 * HZ))
261			fw_card_put(card);
262		return;
263	}
264
265	fw_send_phy_config(card, FW_PHY_CONFIG_NO_NODE_ID, card->generation,
266			   FW_PHY_CONFIG_CURRENT_GAP_COUNT);
267	reset_bus(card, card->br_short);
268	fw_card_put(card);
269}
270
271static void allocate_broadcast_channel(struct fw_card *card, int generation)
272{
273	int channel, bandwidth = 0;
274
275	if (!card->broadcast_channel_allocated) {
276		fw_iso_resource_manage(card, generation, 1ULL << 31,
277				       &channel, &bandwidth, true);
278		if (channel != 31) {
279			fw_notice(card, "failed to allocate broadcast channel\n");
280			return;
281		}
282		card->broadcast_channel_allocated = true;
283	}
284
285	device_for_each_child(card->device, (void *)(long)generation,
286			      fw_device_set_broadcast_channel);
287}
288
289static const char gap_count_table[] = {
290	63, 5, 7, 8, 10, 13, 16, 18, 21, 24, 26, 29, 32, 35, 37, 40
291};
292
293void fw_schedule_bm_work(struct fw_card *card, unsigned long delay)
294{
295	fw_card_get(card);
296	if (!schedule_delayed_work(&card->bm_work, delay))
297		fw_card_put(card);
298}
299
300static void bm_work(struct work_struct *work)
301{
302	struct fw_card *card = container_of(work, struct fw_card, bm_work.work);
303	struct fw_device *root_device, *irm_device;
304	struct fw_node *root_node;
305	int root_id, new_root_id, irm_id, bm_id, local_id;
306	int gap_count, generation, grace, rcode;
307	bool do_reset = false;
308	bool root_device_is_running;
309	bool root_device_is_cmc;
310	bool irm_is_1394_1995_only;
311	bool keep_this_irm;
312	__be32 transaction_data[2];
313
314	spin_lock_irq(&card->lock);
315
316	if (card->local_node == NULL) {
317		spin_unlock_irq(&card->lock);
318		goto out_put_card;
319	}
320
321	generation = card->generation;
322
323	root_node = card->root_node;
324	fw_node_get(root_node);
325	root_device = root_node->data;
326	root_device_is_running = root_device &&
327			atomic_read(&root_device->state) == FW_DEVICE_RUNNING;
328	root_device_is_cmc = root_device && root_device->cmc;
329
330	irm_device = card->irm_node->data;
331	irm_is_1394_1995_only = irm_device && irm_device->config_rom &&
332			(irm_device->config_rom[2] & 0x000000f0) == 0;
333
334	/* Canon MV5i works unreliably if it is not root node. */
335	keep_this_irm = irm_device && irm_device->config_rom &&
336			irm_device->config_rom[3] >> 8 == CANON_OUI;
337
338	root_id  = root_node->node_id;
339	irm_id   = card->irm_node->node_id;
340	local_id = card->local_node->node_id;
341
342	grace = time_after64(get_jiffies_64(),
343			     card->reset_jiffies + DIV_ROUND_UP(HZ, 8));
344
345	if ((is_next_generation(generation, card->bm_generation) &&
346	     !card->bm_abdicate) ||
347	    (card->bm_generation != generation && grace)) {
348		/*
349		 * This first step is to figure out who is IRM and
350		 * then try to become bus manager.  If the IRM is not
351		 * well defined (e.g. does not have an active link
352		 * layer or does not responds to our lock request, we
353		 * will have to do a little vigilante bus management.
354		 * In that case, we do a goto into the gap count logic
355		 * so that when we do the reset, we still optimize the
356		 * gap count.  That could well save a reset in the
357		 * next generation.
358		 */
359
360		if (!card->irm_node->link_on) {
361			new_root_id = local_id;
362			fw_notice(card, "%s, making local node (%02x) root\n",
363				  "IRM has link off", new_root_id);
364			goto pick_me;
365		}
366
367		if (irm_is_1394_1995_only && !keep_this_irm) {
368			new_root_id = local_id;
369			fw_notice(card, "%s, making local node (%02x) root\n",
370				  "IRM is not 1394a compliant", new_root_id);
371			goto pick_me;
372		}
373
374		transaction_data[0] = cpu_to_be32(0x3f);
375		transaction_data[1] = cpu_to_be32(local_id);
376
377		spin_unlock_irq(&card->lock);
378
379		rcode = fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
380				irm_id, generation, SCODE_100,
381				CSR_REGISTER_BASE + CSR_BUS_MANAGER_ID,
382				transaction_data, 8);
383
384		if (rcode == RCODE_GENERATION)
385			/* Another bus reset, BM work has been rescheduled. */
386			goto out;
387
388		bm_id = be32_to_cpu(transaction_data[0]);
389
390		spin_lock_irq(&card->lock);
391		if (rcode == RCODE_COMPLETE && generation == card->generation)
392			card->bm_node_id =
393			    bm_id == 0x3f ? local_id : 0xffc0 | bm_id;
394		spin_unlock_irq(&card->lock);
395
396		if (rcode == RCODE_COMPLETE && bm_id != 0x3f) {
397			/* Somebody else is BM.  Only act as IRM. */
398			if (local_id == irm_id)
399				allocate_broadcast_channel(card, generation);
400
401			goto out;
402		}
403
404		if (rcode == RCODE_SEND_ERROR) {
405			/*
406			 * We have been unable to send the lock request due to
407			 * some local problem.  Let's try again later and hope
408			 * that the problem has gone away by then.
409			 */
410			fw_schedule_bm_work(card, DIV_ROUND_UP(HZ, 8));
411			goto out;
412		}
413
414		spin_lock_irq(&card->lock);
415
416		if (rcode != RCODE_COMPLETE && !keep_this_irm) {
417			/*
418			 * The lock request failed, maybe the IRM
419			 * isn't really IRM capable after all. Let's
420			 * do a bus reset and pick the local node as
421			 * root, and thus, IRM.
422			 */
423			new_root_id = local_id;
424			fw_notice(card, "BM lock failed (%s), making local node (%02x) root\n",
425				  fw_rcode_string(rcode), new_root_id);
426			goto pick_me;
427		}
428	} else if (card->bm_generation != generation) {
429		/*
430		 * We weren't BM in the last generation, and the last
431		 * bus reset is less than 125ms ago.  Reschedule this job.
432		 */
433		spin_unlock_irq(&card->lock);
434		fw_schedule_bm_work(card, DIV_ROUND_UP(HZ, 8));
435		goto out;
436	}
437
438	/*
439	 * We're bus manager for this generation, so next step is to
440	 * make sure we have an active cycle master and do gap count
441	 * optimization.
442	 */
443	card->bm_generation = generation;
444
445	if (root_device == NULL) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
446		/*
447		 * Either link_on is false, or we failed to read the
448		 * config rom.  In either case, pick another root.
449		 */
450		new_root_id = local_id;
451	} else if (!root_device_is_running) {
452		/*
453		 * If we haven't probed this device yet, bail out now
454		 * and let's try again once that's done.
455		 */
456		spin_unlock_irq(&card->lock);
457		goto out;
458	} else if (root_device_is_cmc) {
459		/*
460		 * We will send out a force root packet for this
461		 * node as part of the gap count optimization.
462		 */
463		new_root_id = root_id;
464	} else {
465		/*
466		 * Current root has an active link layer and we
467		 * successfully read the config rom, but it's not
468		 * cycle master capable.
469		 */
470		new_root_id = local_id;
471	}
472
473 pick_me:
474	/*
475	 * Pick a gap count from 1394a table E-1.  The table doesn't cover
476	 * the typically much larger 1394b beta repeater delays though.
477	 */
478	if (!card->beta_repeaters_present &&
479	    root_node->max_hops < ARRAY_SIZE(gap_count_table))
480		gap_count = gap_count_table[root_node->max_hops];
481	else
482		gap_count = 63;
483
484	/*
485	 * Finally, figure out if we should do a reset or not.  If we have
486	 * done less than 5 resets with the same physical topology and we
487	 * have either a new root or a new gap count setting, let's do it.
488	 */
489
490	if (card->bm_retries++ < 5 &&
491	    (card->gap_count != gap_count || new_root_id != root_id))
492		do_reset = true;
493
494	spin_unlock_irq(&card->lock);
495
496	if (do_reset) {
497		fw_notice(card, "phy config: new root=%x, gap_count=%d\n",
498			  new_root_id, gap_count);
499		fw_send_phy_config(card, new_root_id, generation, gap_count);
500		reset_bus(card, true);
 
 
 
 
 
 
 
 
 
 
 
 
501		/* Will allocate broadcast channel after the reset. */
502		goto out;
503	}
504
505	if (root_device_is_cmc) {
506		/*
507		 * Make sure that the cycle master sends cycle start packets.
508		 */
509		transaction_data[0] = cpu_to_be32(CSR_STATE_BIT_CMSTR);
510		rcode = fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
511				root_id, generation, SCODE_100,
512				CSR_REGISTER_BASE + CSR_STATE_SET,
513				transaction_data, 4);
514		if (rcode == RCODE_GENERATION)
515			goto out;
516	}
517
518	if (local_id == irm_id)
519		allocate_broadcast_channel(card, generation);
520
521 out:
522	fw_node_put(root_node);
523 out_put_card:
524	fw_card_put(card);
525}
526
527void fw_card_initialize(struct fw_card *card,
528			const struct fw_card_driver *driver,
529			struct device *device)
530{
531	static atomic_t index = ATOMIC_INIT(-1);
532
533	card->index = atomic_inc_return(&index);
534	card->driver = driver;
535	card->device = device;
536	card->current_tlabel = 0;
537	card->tlabel_mask = 0;
538	card->split_timeout_hi = DEFAULT_SPLIT_TIMEOUT / 8000;
539	card->split_timeout_lo = (DEFAULT_SPLIT_TIMEOUT % 8000) << 19;
540	card->split_timeout_cycles = DEFAULT_SPLIT_TIMEOUT;
541	card->split_timeout_jiffies =
542			DIV_ROUND_UP(DEFAULT_SPLIT_TIMEOUT * HZ, 8000);
543	card->color = 0;
544	card->broadcast_channel = BROADCAST_CHANNEL_INITIAL;
545
546	kref_init(&card->kref);
547	init_completion(&card->done);
548	INIT_LIST_HEAD(&card->transaction_list);
549	INIT_LIST_HEAD(&card->phy_receiver_list);
550	spin_lock_init(&card->lock);
551
552	card->local_node = NULL;
553
554	INIT_DELAYED_WORK(&card->br_work, br_work);
555	INIT_DELAYED_WORK(&card->bm_work, bm_work);
556}
557EXPORT_SYMBOL(fw_card_initialize);
558
559int fw_card_add(struct fw_card *card,
560		u32 max_receive, u32 link_speed, u64 guid)
561{
562	int ret;
563
564	card->max_receive = max_receive;
565	card->link_speed = link_speed;
566	card->guid = guid;
567
568	mutex_lock(&card_mutex);
569
570	generate_config_rom(card, tmp_config_rom);
571	ret = card->driver->enable(card, tmp_config_rom, config_rom_length);
572	if (ret == 0)
573		list_add_tail(&card->link, &card_list);
574
575	mutex_unlock(&card_mutex);
576
577	return ret;
578}
579EXPORT_SYMBOL(fw_card_add);
580
581/*
582 * The next few functions implement a dummy driver that is used once a card
583 * driver shuts down an fw_card.  This allows the driver to cleanly unload,
584 * as all IO to the card will be handled (and failed) by the dummy driver
585 * instead of calling into the module.  Only functions for iso context
586 * shutdown still need to be provided by the card driver.
587 *
588 * .read/write_csr() should never be called anymore after the dummy driver
589 * was bound since they are only used within request handler context.
590 * .set_config_rom() is never called since the card is taken out of card_list
591 * before switching to the dummy driver.
592 */
593
594static int dummy_read_phy_reg(struct fw_card *card, int address)
595{
596	return -ENODEV;
597}
598
599static int dummy_update_phy_reg(struct fw_card *card, int address,
600				int clear_bits, int set_bits)
601{
602	return -ENODEV;
603}
604
605static void dummy_send_request(struct fw_card *card, struct fw_packet *packet)
606{
607	packet->callback(packet, card, RCODE_CANCELLED);
608}
609
610static void dummy_send_response(struct fw_card *card, struct fw_packet *packet)
611{
612	packet->callback(packet, card, RCODE_CANCELLED);
613}
614
615static int dummy_cancel_packet(struct fw_card *card, struct fw_packet *packet)
616{
617	return -ENOENT;
618}
619
620static int dummy_enable_phys_dma(struct fw_card *card,
621				 int node_id, int generation)
622{
623	return -ENODEV;
624}
625
626static struct fw_iso_context *dummy_allocate_iso_context(struct fw_card *card,
627				int type, int channel, size_t header_size)
628{
629	return ERR_PTR(-ENODEV);
630}
631
 
 
 
 
 
 
 
 
 
632static int dummy_start_iso(struct fw_iso_context *ctx,
633			   s32 cycle, u32 sync, u32 tags)
634{
635	return -ENODEV;
636}
637
638static int dummy_set_iso_channels(struct fw_iso_context *ctx, u64 *channels)
639{
640	return -ENODEV;
641}
642
643static int dummy_queue_iso(struct fw_iso_context *ctx, struct fw_iso_packet *p,
644			   struct fw_iso_buffer *buffer, unsigned long payload)
645{
646	return -ENODEV;
647}
648
649static void dummy_flush_queue_iso(struct fw_iso_context *ctx)
650{
651}
652
653static int dummy_flush_iso_completions(struct fw_iso_context *ctx)
654{
655	return -ENODEV;
656}
657
658static const struct fw_card_driver dummy_driver_template = {
659	.read_phy_reg		= dummy_read_phy_reg,
660	.update_phy_reg		= dummy_update_phy_reg,
661	.send_request		= dummy_send_request,
662	.send_response		= dummy_send_response,
663	.cancel_packet		= dummy_cancel_packet,
664	.enable_phys_dma	= dummy_enable_phys_dma,
 
 
665	.allocate_iso_context	= dummy_allocate_iso_context,
666	.start_iso		= dummy_start_iso,
667	.set_iso_channels	= dummy_set_iso_channels,
668	.queue_iso		= dummy_queue_iso,
669	.flush_queue_iso	= dummy_flush_queue_iso,
670	.flush_iso_completions	= dummy_flush_iso_completions,
671};
672
673void fw_card_release(struct kref *kref)
674{
675	struct fw_card *card = container_of(kref, struct fw_card, kref);
676
677	complete(&card->done);
678}
679EXPORT_SYMBOL_GPL(fw_card_release);
680
681void fw_core_remove_card(struct fw_card *card)
682{
683	struct fw_card_driver dummy_driver = dummy_driver_template;
 
684
685	card->driver->update_phy_reg(card, 4,
686				     PHY_LINK_ACTIVE | PHY_CONTENDER, 0);
687	fw_schedule_bus_reset(card, false, true);
688
689	mutex_lock(&card_mutex);
690	list_del_init(&card->link);
691	mutex_unlock(&card_mutex);
692
693	/* Switch off most of the card driver interface. */
694	dummy_driver.free_iso_context	= card->driver->free_iso_context;
695	dummy_driver.stop_iso		= card->driver->stop_iso;
696	card->driver = &dummy_driver;
697
 
698	fw_destroy_nodes(card);
 
699
700	/* Wait for all users, especially device workqueue jobs, to finish. */
701	fw_card_put(card);
702	wait_for_completion(&card->done);
703
704	WARN_ON(!list_empty(&card->transaction_list));
705}
706EXPORT_SYMBOL(fw_core_remove_card);