Linux Audio

Check our new training course

Yocto distribution development and maintenance

Need a Yocto distribution for your embedded project?
Loading...
Note: File does not exist in v6.8.
   1/*
   2 * DMA controller driver for CSR SiRFprimaII
   3 *
   4 * Copyright (c) 2011 Cambridge Silicon Radio Limited, a CSR plc group company.
   5 *
   6 * Licensed under GPLv2 or later.
   7 */
   8
   9#include <linux/module.h>
  10#include <linux/dmaengine.h>
  11#include <linux/dma-mapping.h>
  12#include <linux/pm_runtime.h>
  13#include <linux/interrupt.h>
  14#include <linux/io.h>
  15#include <linux/slab.h>
  16#include <linux/of_irq.h>
  17#include <linux/of_address.h>
  18#include <linux/of_device.h>
  19#include <linux/of_platform.h>
  20#include <linux/clk.h>
  21#include <linux/of_dma.h>
  22#include <linux/sirfsoc_dma.h>
  23
  24#include "dmaengine.h"
  25
  26#define SIRFSOC_DMA_VER_A7V1                    1
  27#define SIRFSOC_DMA_VER_A7V2                    2
  28#define SIRFSOC_DMA_VER_A6                      4
  29
  30#define SIRFSOC_DMA_DESCRIPTORS                 16
  31#define SIRFSOC_DMA_CHANNELS                    16
  32#define SIRFSOC_DMA_TABLE_NUM                   256
  33
  34#define SIRFSOC_DMA_CH_ADDR                     0x00
  35#define SIRFSOC_DMA_CH_XLEN                     0x04
  36#define SIRFSOC_DMA_CH_YLEN                     0x08
  37#define SIRFSOC_DMA_CH_CTRL                     0x0C
  38
  39#define SIRFSOC_DMA_WIDTH_0                     0x100
  40#define SIRFSOC_DMA_CH_VALID                    0x140
  41#define SIRFSOC_DMA_CH_INT                      0x144
  42#define SIRFSOC_DMA_INT_EN                      0x148
  43#define SIRFSOC_DMA_INT_EN_CLR                  0x14C
  44#define SIRFSOC_DMA_CH_LOOP_CTRL                0x150
  45#define SIRFSOC_DMA_CH_LOOP_CTRL_CLR            0x154
  46#define SIRFSOC_DMA_WIDTH_ATLAS7                0x10
  47#define SIRFSOC_DMA_VALID_ATLAS7                0x14
  48#define SIRFSOC_DMA_INT_ATLAS7                  0x18
  49#define SIRFSOC_DMA_INT_EN_ATLAS7               0x1c
  50#define SIRFSOC_DMA_LOOP_CTRL_ATLAS7            0x20
  51#define SIRFSOC_DMA_CUR_DATA_ADDR               0x34
  52#define SIRFSOC_DMA_MUL_ATLAS7                  0x38
  53#define SIRFSOC_DMA_CH_LOOP_CTRL_ATLAS7         0x158
  54#define SIRFSOC_DMA_CH_LOOP_CTRL_CLR_ATLAS7     0x15C
  55#define SIRFSOC_DMA_IOBG_SCMD_EN		0x800
  56#define SIRFSOC_DMA_EARLY_RESP_SET		0x818
  57#define SIRFSOC_DMA_EARLY_RESP_CLR		0x81C
  58
  59#define SIRFSOC_DMA_MODE_CTRL_BIT               4
  60#define SIRFSOC_DMA_DIR_CTRL_BIT                5
  61#define SIRFSOC_DMA_MODE_CTRL_BIT_ATLAS7        2
  62#define SIRFSOC_DMA_CHAIN_CTRL_BIT_ATLAS7       3
  63#define SIRFSOC_DMA_DIR_CTRL_BIT_ATLAS7         4
  64#define SIRFSOC_DMA_TAB_NUM_ATLAS7              7
  65#define SIRFSOC_DMA_CHAIN_INT_BIT_ATLAS7        5
  66#define SIRFSOC_DMA_CHAIN_FLAG_SHIFT_ATLAS7     25
  67#define SIRFSOC_DMA_CHAIN_ADDR_SHIFT            32
  68
  69#define SIRFSOC_DMA_INT_FINI_INT_ATLAS7         BIT(0)
  70#define SIRFSOC_DMA_INT_CNT_INT_ATLAS7          BIT(1)
  71#define SIRFSOC_DMA_INT_PAU_INT_ATLAS7          BIT(2)
  72#define SIRFSOC_DMA_INT_LOOP_INT_ATLAS7         BIT(3)
  73#define SIRFSOC_DMA_INT_INV_INT_ATLAS7          BIT(4)
  74#define SIRFSOC_DMA_INT_END_INT_ATLAS7          BIT(5)
  75#define SIRFSOC_DMA_INT_ALL_ATLAS7              0x3F
  76
  77/* xlen and dma_width register is in 4 bytes boundary */
  78#define SIRFSOC_DMA_WORD_LEN			4
  79#define SIRFSOC_DMA_XLEN_MAX_V1         0x800
  80#define SIRFSOC_DMA_XLEN_MAX_V2         0x1000
  81
  82struct sirfsoc_dma_desc {
  83	struct dma_async_tx_descriptor	desc;
  84	struct list_head		node;
  85
  86	/* SiRFprimaII 2D-DMA parameters */
  87
  88	int             xlen;           /* DMA xlen */
  89	int             ylen;           /* DMA ylen */
  90	int             width;          /* DMA width */
  91	int             dir;
  92	bool            cyclic;         /* is loop DMA? */
  93	bool            chain;          /* is chain DMA? */
  94	u32             addr;		/* DMA buffer address */
  95	u64 chain_table[SIRFSOC_DMA_TABLE_NUM]; /* chain tbl */
  96};
  97
  98struct sirfsoc_dma_chan {
  99	struct dma_chan			chan;
 100	struct list_head		free;
 101	struct list_head		prepared;
 102	struct list_head		queued;
 103	struct list_head		active;
 104	struct list_head		completed;
 105	unsigned long			happened_cyclic;
 106	unsigned long			completed_cyclic;
 107
 108	/* Lock for this structure */
 109	spinlock_t			lock;
 110
 111	int				mode;
 112};
 113
 114struct sirfsoc_dma_regs {
 115	u32				ctrl[SIRFSOC_DMA_CHANNELS];
 116	u32				interrupt_en;
 117};
 118
 119struct sirfsoc_dma {
 120	struct dma_device		dma;
 121	struct tasklet_struct		tasklet;
 122	struct sirfsoc_dma_chan		channels[SIRFSOC_DMA_CHANNELS];
 123	void __iomem			*base;
 124	int				irq;
 125	struct clk			*clk;
 126	int				type;
 127	void (*exec_desc)(struct sirfsoc_dma_desc *sdesc,
 128		int cid, int burst_mode, void __iomem *base);
 129	struct sirfsoc_dma_regs		regs_save;
 130};
 131
 132struct sirfsoc_dmadata {
 133	void (*exec)(struct sirfsoc_dma_desc *sdesc,
 134		int cid, int burst_mode, void __iomem *base);
 135	int type;
 136};
 137
 138enum sirfsoc_dma_chain_flag {
 139	SIRFSOC_DMA_CHAIN_NORMAL = 0x01,
 140	SIRFSOC_DMA_CHAIN_PAUSE = 0x02,
 141	SIRFSOC_DMA_CHAIN_LOOP = 0x03,
 142	SIRFSOC_DMA_CHAIN_END = 0x04
 143};
 144
 145#define DRV_NAME	"sirfsoc_dma"
 146
 147static int sirfsoc_dma_runtime_suspend(struct device *dev);
 148
 149/* Convert struct dma_chan to struct sirfsoc_dma_chan */
 150static inline
 151struct sirfsoc_dma_chan *dma_chan_to_sirfsoc_dma_chan(struct dma_chan *c)
 152{
 153	return container_of(c, struct sirfsoc_dma_chan, chan);
 154}
 155
 156/* Convert struct dma_chan to struct sirfsoc_dma */
 157static inline struct sirfsoc_dma *dma_chan_to_sirfsoc_dma(struct dma_chan *c)
 158{
 159	struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(c);
 160	return container_of(schan, struct sirfsoc_dma, channels[c->chan_id]);
 161}
 162
 163static void sirfsoc_dma_execute_hw_a7v2(struct sirfsoc_dma_desc *sdesc,
 164		int cid, int burst_mode, void __iomem *base)
 165{
 166	if (sdesc->chain) {
 167		/* DMA v2 HW chain mode */
 168		writel_relaxed((sdesc->dir << SIRFSOC_DMA_DIR_CTRL_BIT_ATLAS7) |
 169			       (sdesc->chain <<
 170				SIRFSOC_DMA_CHAIN_CTRL_BIT_ATLAS7) |
 171			       (0x8 << SIRFSOC_DMA_TAB_NUM_ATLAS7) | 0x3,
 172			       base + SIRFSOC_DMA_CH_CTRL);
 173	} else {
 174		/* DMA v2 legacy mode */
 175		writel_relaxed(sdesc->xlen, base + SIRFSOC_DMA_CH_XLEN);
 176		writel_relaxed(sdesc->ylen, base + SIRFSOC_DMA_CH_YLEN);
 177		writel_relaxed(sdesc->width, base + SIRFSOC_DMA_WIDTH_ATLAS7);
 178		writel_relaxed((sdesc->width*((sdesc->ylen+1)>>1)),
 179				base + SIRFSOC_DMA_MUL_ATLAS7);
 180		writel_relaxed((sdesc->dir << SIRFSOC_DMA_DIR_CTRL_BIT_ATLAS7) |
 181			       (sdesc->chain <<
 182				SIRFSOC_DMA_CHAIN_CTRL_BIT_ATLAS7) |
 183			       0x3, base + SIRFSOC_DMA_CH_CTRL);
 184	}
 185	writel_relaxed(sdesc->chain ? SIRFSOC_DMA_INT_END_INT_ATLAS7 :
 186		       (SIRFSOC_DMA_INT_FINI_INT_ATLAS7 |
 187			SIRFSOC_DMA_INT_LOOP_INT_ATLAS7),
 188		       base + SIRFSOC_DMA_INT_EN_ATLAS7);
 189	writel(sdesc->addr, base + SIRFSOC_DMA_CH_ADDR);
 190	if (sdesc->cyclic)
 191		writel(0x10001, base + SIRFSOC_DMA_LOOP_CTRL_ATLAS7);
 192}
 193
 194static void sirfsoc_dma_execute_hw_a7v1(struct sirfsoc_dma_desc *sdesc,
 195		int cid, int burst_mode, void __iomem *base)
 196{
 197	writel_relaxed(1, base + SIRFSOC_DMA_IOBG_SCMD_EN);
 198	writel_relaxed((1 << cid), base + SIRFSOC_DMA_EARLY_RESP_SET);
 199	writel_relaxed(sdesc->width, base + SIRFSOC_DMA_WIDTH_0 + cid * 4);
 200	writel_relaxed(cid | (burst_mode << SIRFSOC_DMA_MODE_CTRL_BIT) |
 201		       (sdesc->dir << SIRFSOC_DMA_DIR_CTRL_BIT),
 202		       base + cid * 0x10 + SIRFSOC_DMA_CH_CTRL);
 203	writel_relaxed(sdesc->xlen, base + cid * 0x10 + SIRFSOC_DMA_CH_XLEN);
 204	writel_relaxed(sdesc->ylen, base + cid * 0x10 + SIRFSOC_DMA_CH_YLEN);
 205	writel_relaxed(readl_relaxed(base + SIRFSOC_DMA_INT_EN) |
 206		       (1 << cid), base + SIRFSOC_DMA_INT_EN);
 207	writel(sdesc->addr >> 2, base + cid * 0x10 + SIRFSOC_DMA_CH_ADDR);
 208	if (sdesc->cyclic) {
 209		writel((1 << cid) | 1 << (cid + 16) |
 210		       readl_relaxed(base + SIRFSOC_DMA_CH_LOOP_CTRL_ATLAS7),
 211		       base + SIRFSOC_DMA_CH_LOOP_CTRL_ATLAS7);
 212	}
 213
 214}
 215
 216static void sirfsoc_dma_execute_hw_a6(struct sirfsoc_dma_desc *sdesc,
 217		int cid, int burst_mode, void __iomem *base)
 218{
 219	writel_relaxed(sdesc->width, base + SIRFSOC_DMA_WIDTH_0 + cid * 4);
 220	writel_relaxed(cid | (burst_mode << SIRFSOC_DMA_MODE_CTRL_BIT) |
 221		       (sdesc->dir << SIRFSOC_DMA_DIR_CTRL_BIT),
 222		       base + cid * 0x10 + SIRFSOC_DMA_CH_CTRL);
 223	writel_relaxed(sdesc->xlen, base + cid * 0x10 + SIRFSOC_DMA_CH_XLEN);
 224	writel_relaxed(sdesc->ylen, base + cid * 0x10 + SIRFSOC_DMA_CH_YLEN);
 225	writel_relaxed(readl_relaxed(base + SIRFSOC_DMA_INT_EN) |
 226		       (1 << cid), base + SIRFSOC_DMA_INT_EN);
 227	writel(sdesc->addr >> 2, base + cid * 0x10 + SIRFSOC_DMA_CH_ADDR);
 228	if (sdesc->cyclic) {
 229		writel((1 << cid) | 1 << (cid + 16) |
 230		       readl_relaxed(base + SIRFSOC_DMA_CH_LOOP_CTRL),
 231		       base + SIRFSOC_DMA_CH_LOOP_CTRL);
 232	}
 233
 234}
 235
 236/* Execute all queued DMA descriptors */
 237static void sirfsoc_dma_execute(struct sirfsoc_dma_chan *schan)
 238{
 239	struct sirfsoc_dma *sdma = dma_chan_to_sirfsoc_dma(&schan->chan);
 240	int cid = schan->chan.chan_id;
 241	struct sirfsoc_dma_desc *sdesc = NULL;
 242	void __iomem *base;
 243
 244	/*
 245	 * lock has been held by functions calling this, so we don't hold
 246	 * lock again
 247	 */
 248	base = sdma->base;
 249	sdesc = list_first_entry(&schan->queued, struct sirfsoc_dma_desc,
 250				 node);
 251	/* Move the first queued descriptor to active list */
 252	list_move_tail(&sdesc->node, &schan->active);
 253
 254	if (sdma->type == SIRFSOC_DMA_VER_A7V2)
 255		cid = 0;
 256
 257	/* Start the DMA transfer */
 258	sdma->exec_desc(sdesc, cid, schan->mode, base);
 259
 260	if (sdesc->cyclic)
 261		schan->happened_cyclic = schan->completed_cyclic = 0;
 262}
 263
 264/* Interrupt handler */
 265static irqreturn_t sirfsoc_dma_irq(int irq, void *data)
 266{
 267	struct sirfsoc_dma *sdma = data;
 268	struct sirfsoc_dma_chan *schan;
 269	struct sirfsoc_dma_desc *sdesc = NULL;
 270	u32 is;
 271	bool chain;
 272	int ch;
 273	void __iomem *reg;
 274
 275	switch (sdma->type) {
 276	case SIRFSOC_DMA_VER_A6:
 277	case SIRFSOC_DMA_VER_A7V1:
 278		is = readl(sdma->base + SIRFSOC_DMA_CH_INT);
 279		reg = sdma->base + SIRFSOC_DMA_CH_INT;
 280		while ((ch = fls(is) - 1) >= 0) {
 281			is &= ~(1 << ch);
 282			writel_relaxed(1 << ch, reg);
 283			schan = &sdma->channels[ch];
 284			spin_lock(&schan->lock);
 285			sdesc = list_first_entry(&schan->active,
 286						 struct sirfsoc_dma_desc, node);
 287			if (!sdesc->cyclic) {
 288				/* Execute queued descriptors */
 289				list_splice_tail_init(&schan->active,
 290						      &schan->completed);
 291				dma_cookie_complete(&sdesc->desc);
 292				if (!list_empty(&schan->queued))
 293					sirfsoc_dma_execute(schan);
 294			} else
 295				schan->happened_cyclic++;
 296			spin_unlock(&schan->lock);
 297		}
 298		break;
 299
 300	case SIRFSOC_DMA_VER_A7V2:
 301		is = readl(sdma->base + SIRFSOC_DMA_INT_ATLAS7);
 302
 303		reg = sdma->base + SIRFSOC_DMA_INT_ATLAS7;
 304		writel_relaxed(SIRFSOC_DMA_INT_ALL_ATLAS7, reg);
 305		schan = &sdma->channels[0];
 306		spin_lock(&schan->lock);
 307		sdesc = list_first_entry(&schan->active,
 308					 struct sirfsoc_dma_desc, node);
 309		if (!sdesc->cyclic) {
 310			chain = sdesc->chain;
 311			if ((chain && (is & SIRFSOC_DMA_INT_END_INT_ATLAS7)) ||
 312				(!chain &&
 313				(is & SIRFSOC_DMA_INT_FINI_INT_ATLAS7))) {
 314				/* Execute queued descriptors */
 315				list_splice_tail_init(&schan->active,
 316						      &schan->completed);
 317				dma_cookie_complete(&sdesc->desc);
 318				if (!list_empty(&schan->queued))
 319					sirfsoc_dma_execute(schan);
 320			}
 321		} else if (sdesc->cyclic && (is &
 322					SIRFSOC_DMA_INT_LOOP_INT_ATLAS7))
 323			schan->happened_cyclic++;
 324
 325		spin_unlock(&schan->lock);
 326		break;
 327
 328	default:
 329		break;
 330	}
 331
 332	/* Schedule tasklet */
 333	tasklet_schedule(&sdma->tasklet);
 334
 335	return IRQ_HANDLED;
 336}
 337
 338/* process completed descriptors */
 339static void sirfsoc_dma_process_completed(struct sirfsoc_dma *sdma)
 340{
 341	dma_cookie_t last_cookie = 0;
 342	struct sirfsoc_dma_chan *schan;
 343	struct sirfsoc_dma_desc *sdesc;
 344	struct dma_async_tx_descriptor *desc;
 345	unsigned long flags;
 346	unsigned long happened_cyclic;
 347	LIST_HEAD(list);
 348	int i;
 349
 350	for (i = 0; i < sdma->dma.chancnt; i++) {
 351		schan = &sdma->channels[i];
 352
 353		/* Get all completed descriptors */
 354		spin_lock_irqsave(&schan->lock, flags);
 355		if (!list_empty(&schan->completed)) {
 356			list_splice_tail_init(&schan->completed, &list);
 357			spin_unlock_irqrestore(&schan->lock, flags);
 358
 359			/* Execute callbacks and run dependencies */
 360			list_for_each_entry(sdesc, &list, node) {
 361				desc = &sdesc->desc;
 362
 363				if (desc->callback)
 364					desc->callback(desc->callback_param);
 365
 366				last_cookie = desc->cookie;
 367				dma_run_dependencies(desc);
 368			}
 369
 370			/* Free descriptors */
 371			spin_lock_irqsave(&schan->lock, flags);
 372			list_splice_tail_init(&list, &schan->free);
 373			schan->chan.completed_cookie = last_cookie;
 374			spin_unlock_irqrestore(&schan->lock, flags);
 375		} else {
 376			if (list_empty(&schan->active)) {
 377				spin_unlock_irqrestore(&schan->lock, flags);
 378				continue;
 379			}
 380
 381			/* for cyclic channel, desc is always in active list */
 382			sdesc = list_first_entry(&schan->active,
 383				struct sirfsoc_dma_desc, node);
 384
 385			/* cyclic DMA */
 386			happened_cyclic = schan->happened_cyclic;
 387			spin_unlock_irqrestore(&schan->lock, flags);
 388
 389			desc = &sdesc->desc;
 390			while (happened_cyclic != schan->completed_cyclic) {
 391				if (desc->callback)
 392					desc->callback(desc->callback_param);
 393				schan->completed_cyclic++;
 394			}
 395		}
 396	}
 397}
 398
 399/* DMA Tasklet */
 400static void sirfsoc_dma_tasklet(unsigned long data)
 401{
 402	struct sirfsoc_dma *sdma = (void *)data;
 403
 404	sirfsoc_dma_process_completed(sdma);
 405}
 406
 407/* Submit descriptor to hardware */
 408static dma_cookie_t sirfsoc_dma_tx_submit(struct dma_async_tx_descriptor *txd)
 409{
 410	struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(txd->chan);
 411	struct sirfsoc_dma_desc *sdesc;
 412	unsigned long flags;
 413	dma_cookie_t cookie;
 414
 415	sdesc = container_of(txd, struct sirfsoc_dma_desc, desc);
 416
 417	spin_lock_irqsave(&schan->lock, flags);
 418
 419	/* Move descriptor to queue */
 420	list_move_tail(&sdesc->node, &schan->queued);
 421
 422	cookie = dma_cookie_assign(txd);
 423
 424	spin_unlock_irqrestore(&schan->lock, flags);
 425
 426	return cookie;
 427}
 428
 429static int sirfsoc_dma_slave_config(struct dma_chan *chan,
 430				    struct dma_slave_config *config)
 431{
 432	struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(chan);
 433	unsigned long flags;
 434
 435	if ((config->src_addr_width != DMA_SLAVE_BUSWIDTH_4_BYTES) ||
 436		(config->dst_addr_width != DMA_SLAVE_BUSWIDTH_4_BYTES))
 437		return -EINVAL;
 438
 439	spin_lock_irqsave(&schan->lock, flags);
 440	schan->mode = (config->src_maxburst == 4 ? 1 : 0);
 441	spin_unlock_irqrestore(&schan->lock, flags);
 442
 443	return 0;
 444}
 445
 446static int sirfsoc_dma_terminate_all(struct dma_chan *chan)
 447{
 448	struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(chan);
 449	struct sirfsoc_dma *sdma = dma_chan_to_sirfsoc_dma(&schan->chan);
 450	int cid = schan->chan.chan_id;
 451	unsigned long flags;
 452
 453	spin_lock_irqsave(&schan->lock, flags);
 454
 455	switch (sdma->type) {
 456	case SIRFSOC_DMA_VER_A7V1:
 457		writel_relaxed(1 << cid, sdma->base + SIRFSOC_DMA_INT_EN_CLR);
 458		writel_relaxed(1 << cid, sdma->base + SIRFSOC_DMA_CH_INT);
 459		writel_relaxed((1 << cid) | 1 << (cid + 16),
 460			       sdma->base +
 461			       SIRFSOC_DMA_CH_LOOP_CTRL_CLR_ATLAS7);
 462		writel_relaxed(1 << cid, sdma->base + SIRFSOC_DMA_CH_VALID);
 463		break;
 464	case SIRFSOC_DMA_VER_A7V2:
 465		writel_relaxed(0, sdma->base + SIRFSOC_DMA_INT_EN_ATLAS7);
 466		writel_relaxed(SIRFSOC_DMA_INT_ALL_ATLAS7,
 467			       sdma->base + SIRFSOC_DMA_INT_ATLAS7);
 468		writel_relaxed(0, sdma->base + SIRFSOC_DMA_LOOP_CTRL_ATLAS7);
 469		writel_relaxed(0, sdma->base + SIRFSOC_DMA_VALID_ATLAS7);
 470		break;
 471	case SIRFSOC_DMA_VER_A6:
 472		writel_relaxed(readl_relaxed(sdma->base + SIRFSOC_DMA_INT_EN) &
 473			       ~(1 << cid), sdma->base + SIRFSOC_DMA_INT_EN);
 474		writel_relaxed(readl_relaxed(sdma->base +
 475					     SIRFSOC_DMA_CH_LOOP_CTRL) &
 476			       ~((1 << cid) | 1 << (cid + 16)),
 477			       sdma->base + SIRFSOC_DMA_CH_LOOP_CTRL);
 478		writel_relaxed(1 << cid, sdma->base + SIRFSOC_DMA_CH_VALID);
 479		break;
 480	default:
 481		break;
 482	}
 483
 484	list_splice_tail_init(&schan->active, &schan->free);
 485	list_splice_tail_init(&schan->queued, &schan->free);
 486
 487	spin_unlock_irqrestore(&schan->lock, flags);
 488
 489	return 0;
 490}
 491
 492static int sirfsoc_dma_pause_chan(struct dma_chan *chan)
 493{
 494	struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(chan);
 495	struct sirfsoc_dma *sdma = dma_chan_to_sirfsoc_dma(&schan->chan);
 496	int cid = schan->chan.chan_id;
 497	unsigned long flags;
 498
 499	spin_lock_irqsave(&schan->lock, flags);
 500
 501	switch (sdma->type) {
 502	case SIRFSOC_DMA_VER_A7V1:
 503		writel_relaxed((1 << cid) | 1 << (cid + 16),
 504			       sdma->base +
 505			       SIRFSOC_DMA_CH_LOOP_CTRL_CLR_ATLAS7);
 506		break;
 507	case SIRFSOC_DMA_VER_A7V2:
 508		writel_relaxed(0, sdma->base + SIRFSOC_DMA_LOOP_CTRL_ATLAS7);
 509		break;
 510	case SIRFSOC_DMA_VER_A6:
 511		writel_relaxed(readl_relaxed(sdma->base +
 512					     SIRFSOC_DMA_CH_LOOP_CTRL) &
 513			       ~((1 << cid) | 1 << (cid + 16)),
 514			       sdma->base + SIRFSOC_DMA_CH_LOOP_CTRL);
 515		break;
 516
 517	default:
 518		break;
 519	}
 520
 521	spin_unlock_irqrestore(&schan->lock, flags);
 522
 523	return 0;
 524}
 525
 526static int sirfsoc_dma_resume_chan(struct dma_chan *chan)
 527{
 528	struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(chan);
 529	struct sirfsoc_dma *sdma = dma_chan_to_sirfsoc_dma(&schan->chan);
 530	int cid = schan->chan.chan_id;
 531	unsigned long flags;
 532
 533	spin_lock_irqsave(&schan->lock, flags);
 534	switch (sdma->type) {
 535	case SIRFSOC_DMA_VER_A7V1:
 536		writel_relaxed((1 << cid) | 1 << (cid + 16),
 537			       sdma->base + SIRFSOC_DMA_CH_LOOP_CTRL_ATLAS7);
 538		break;
 539	case SIRFSOC_DMA_VER_A7V2:
 540		writel_relaxed(0x10001,
 541			       sdma->base + SIRFSOC_DMA_LOOP_CTRL_ATLAS7);
 542		break;
 543	case SIRFSOC_DMA_VER_A6:
 544		writel_relaxed(readl_relaxed(sdma->base +
 545					     SIRFSOC_DMA_CH_LOOP_CTRL) |
 546			       ((1 << cid) | 1 << (cid + 16)),
 547			       sdma->base + SIRFSOC_DMA_CH_LOOP_CTRL);
 548		break;
 549
 550	default:
 551		break;
 552	}
 553
 554	spin_unlock_irqrestore(&schan->lock, flags);
 555
 556	return 0;
 557}
 558
 559/* Alloc channel resources */
 560static int sirfsoc_dma_alloc_chan_resources(struct dma_chan *chan)
 561{
 562	struct sirfsoc_dma *sdma = dma_chan_to_sirfsoc_dma(chan);
 563	struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(chan);
 564	struct sirfsoc_dma_desc *sdesc;
 565	unsigned long flags;
 566	LIST_HEAD(descs);
 567	int i;
 568
 569	pm_runtime_get_sync(sdma->dma.dev);
 570
 571	/* Alloc descriptors for this channel */
 572	for (i = 0; i < SIRFSOC_DMA_DESCRIPTORS; i++) {
 573		sdesc = kzalloc(sizeof(*sdesc), GFP_KERNEL);
 574		if (!sdesc) {
 575			dev_notice(sdma->dma.dev, "Memory allocation error. "
 576				"Allocated only %u descriptors\n", i);
 577			break;
 578		}
 579
 580		dma_async_tx_descriptor_init(&sdesc->desc, chan);
 581		sdesc->desc.flags = DMA_CTRL_ACK;
 582		sdesc->desc.tx_submit = sirfsoc_dma_tx_submit;
 583
 584		list_add_tail(&sdesc->node, &descs);
 585	}
 586
 587	/* Return error only if no descriptors were allocated */
 588	if (i == 0)
 589		return -ENOMEM;
 590
 591	spin_lock_irqsave(&schan->lock, flags);
 592
 593	list_splice_tail_init(&descs, &schan->free);
 594	spin_unlock_irqrestore(&schan->lock, flags);
 595
 596	return i;
 597}
 598
 599/* Free channel resources */
 600static void sirfsoc_dma_free_chan_resources(struct dma_chan *chan)
 601{
 602	struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(chan);
 603	struct sirfsoc_dma *sdma = dma_chan_to_sirfsoc_dma(chan);
 604	struct sirfsoc_dma_desc *sdesc, *tmp;
 605	unsigned long flags;
 606	LIST_HEAD(descs);
 607
 608	spin_lock_irqsave(&schan->lock, flags);
 609
 610	/* Channel must be idle */
 611	BUG_ON(!list_empty(&schan->prepared));
 612	BUG_ON(!list_empty(&schan->queued));
 613	BUG_ON(!list_empty(&schan->active));
 614	BUG_ON(!list_empty(&schan->completed));
 615
 616	/* Move data */
 617	list_splice_tail_init(&schan->free, &descs);
 618
 619	spin_unlock_irqrestore(&schan->lock, flags);
 620
 621	/* Free descriptors */
 622	list_for_each_entry_safe(sdesc, tmp, &descs, node)
 623		kfree(sdesc);
 624
 625	pm_runtime_put(sdma->dma.dev);
 626}
 627
 628/* Send pending descriptor to hardware */
 629static void sirfsoc_dma_issue_pending(struct dma_chan *chan)
 630{
 631	struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(chan);
 632	unsigned long flags;
 633
 634	spin_lock_irqsave(&schan->lock, flags);
 635
 636	if (list_empty(&schan->active) && !list_empty(&schan->queued))
 637		sirfsoc_dma_execute(schan);
 638
 639	spin_unlock_irqrestore(&schan->lock, flags);
 640}
 641
 642/* Check request completion status */
 643static enum dma_status
 644sirfsoc_dma_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
 645	struct dma_tx_state *txstate)
 646{
 647	struct sirfsoc_dma *sdma = dma_chan_to_sirfsoc_dma(chan);
 648	struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(chan);
 649	unsigned long flags;
 650	enum dma_status ret;
 651	struct sirfsoc_dma_desc *sdesc;
 652	int cid = schan->chan.chan_id;
 653	unsigned long dma_pos;
 654	unsigned long dma_request_bytes;
 655	unsigned long residue;
 656
 657	spin_lock_irqsave(&schan->lock, flags);
 658
 659	if (list_empty(&schan->active)) {
 660		ret = dma_cookie_status(chan, cookie, txstate);
 661		dma_set_residue(txstate, 0);
 662		spin_unlock_irqrestore(&schan->lock, flags);
 663		return ret;
 664	}
 665	sdesc = list_first_entry(&schan->active, struct sirfsoc_dma_desc, node);
 666	if (sdesc->cyclic)
 667		dma_request_bytes = (sdesc->xlen + 1) * (sdesc->ylen + 1) *
 668			(sdesc->width * SIRFSOC_DMA_WORD_LEN);
 669	else
 670		dma_request_bytes = sdesc->xlen * SIRFSOC_DMA_WORD_LEN;
 671
 672	ret = dma_cookie_status(chan, cookie, txstate);
 673
 674	if (sdma->type == SIRFSOC_DMA_VER_A7V2)
 675		cid = 0;
 676
 677	if (sdma->type == SIRFSOC_DMA_VER_A7V2) {
 678		dma_pos = readl_relaxed(sdma->base + SIRFSOC_DMA_CUR_DATA_ADDR);
 679	} else {
 680		dma_pos = readl_relaxed(
 681			sdma->base + cid * 0x10 + SIRFSOC_DMA_CH_ADDR) << 2;
 682	}
 683
 684	residue = dma_request_bytes - (dma_pos - sdesc->addr);
 685	dma_set_residue(txstate, residue);
 686
 687	spin_unlock_irqrestore(&schan->lock, flags);
 688
 689	return ret;
 690}
 691
 692static struct dma_async_tx_descriptor *sirfsoc_dma_prep_interleaved(
 693	struct dma_chan *chan, struct dma_interleaved_template *xt,
 694	unsigned long flags)
 695{
 696	struct sirfsoc_dma *sdma = dma_chan_to_sirfsoc_dma(chan);
 697	struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(chan);
 698	struct sirfsoc_dma_desc *sdesc = NULL;
 699	unsigned long iflags;
 700	int ret;
 701
 702	if ((xt->dir != DMA_MEM_TO_DEV) && (xt->dir != DMA_DEV_TO_MEM)) {
 703		ret = -EINVAL;
 704		goto err_dir;
 705	}
 706
 707	/* Get free descriptor */
 708	spin_lock_irqsave(&schan->lock, iflags);
 709	if (!list_empty(&schan->free)) {
 710		sdesc = list_first_entry(&schan->free, struct sirfsoc_dma_desc,
 711			node);
 712		list_del(&sdesc->node);
 713	}
 714	spin_unlock_irqrestore(&schan->lock, iflags);
 715
 716	if (!sdesc) {
 717		/* try to free completed descriptors */
 718		sirfsoc_dma_process_completed(sdma);
 719		ret = 0;
 720		goto no_desc;
 721	}
 722
 723	/* Place descriptor in prepared list */
 724	spin_lock_irqsave(&schan->lock, iflags);
 725
 726	/*
 727	 * Number of chunks in a frame can only be 1 for prima2
 728	 * and ylen (number of frame - 1) must be at least 0
 729	 */
 730	if ((xt->frame_size == 1) && (xt->numf > 0)) {
 731		sdesc->cyclic = 0;
 732		sdesc->xlen = xt->sgl[0].size / SIRFSOC_DMA_WORD_LEN;
 733		sdesc->width = (xt->sgl[0].size + xt->sgl[0].icg) /
 734				SIRFSOC_DMA_WORD_LEN;
 735		sdesc->ylen = xt->numf - 1;
 736		if (xt->dir == DMA_MEM_TO_DEV) {
 737			sdesc->addr = xt->src_start;
 738			sdesc->dir = 1;
 739		} else {
 740			sdesc->addr = xt->dst_start;
 741			sdesc->dir = 0;
 742		}
 743
 744		list_add_tail(&sdesc->node, &schan->prepared);
 745	} else {
 746		pr_err("sirfsoc DMA Invalid xfer\n");
 747		ret = -EINVAL;
 748		goto err_xfer;
 749	}
 750	spin_unlock_irqrestore(&schan->lock, iflags);
 751
 752	return &sdesc->desc;
 753err_xfer:
 754	spin_unlock_irqrestore(&schan->lock, iflags);
 755no_desc:
 756err_dir:
 757	return ERR_PTR(ret);
 758}
 759
 760static struct dma_async_tx_descriptor *
 761sirfsoc_dma_prep_cyclic(struct dma_chan *chan, dma_addr_t addr,
 762	size_t buf_len, size_t period_len,
 763	enum dma_transfer_direction direction, unsigned long flags)
 764{
 765	struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(chan);
 766	struct sirfsoc_dma_desc *sdesc = NULL;
 767	unsigned long iflags;
 768
 769	/*
 770	 * we only support cycle transfer with 2 period
 771	 * If the X-length is set to 0, it would be the loop mode.
 772	 * The DMA address keeps increasing until reaching the end of a loop
 773	 * area whose size is defined by (DMA_WIDTH x (Y_LENGTH + 1)). Then
 774	 * the DMA address goes back to the beginning of this area.
 775	 * In loop mode, the DMA data region is divided into two parts, BUFA
 776	 * and BUFB. DMA controller generates interrupts twice in each loop:
 777	 * when the DMA address reaches the end of BUFA or the end of the
 778	 * BUFB
 779	 */
 780	if (buf_len !=  2 * period_len)
 781		return ERR_PTR(-EINVAL);
 782
 783	/* Get free descriptor */
 784	spin_lock_irqsave(&schan->lock, iflags);
 785	if (!list_empty(&schan->free)) {
 786		sdesc = list_first_entry(&schan->free, struct sirfsoc_dma_desc,
 787			node);
 788		list_del(&sdesc->node);
 789	}
 790	spin_unlock_irqrestore(&schan->lock, iflags);
 791
 792	if (!sdesc)
 793		return NULL;
 794
 795	/* Place descriptor in prepared list */
 796	spin_lock_irqsave(&schan->lock, iflags);
 797	sdesc->addr = addr;
 798	sdesc->cyclic = 1;
 799	sdesc->xlen = 0;
 800	sdesc->ylen = buf_len / SIRFSOC_DMA_WORD_LEN - 1;
 801	sdesc->width = 1;
 802	list_add_tail(&sdesc->node, &schan->prepared);
 803	spin_unlock_irqrestore(&schan->lock, iflags);
 804
 805	return &sdesc->desc;
 806}
 807
 808/*
 809 * The DMA controller consists of 16 independent DMA channels.
 810 * Each channel is allocated to a different function
 811 */
 812bool sirfsoc_dma_filter_id(struct dma_chan *chan, void *chan_id)
 813{
 814	unsigned int ch_nr = (unsigned int) chan_id;
 815
 816	if (ch_nr == chan->chan_id +
 817		chan->device->dev_id * SIRFSOC_DMA_CHANNELS)
 818		return true;
 819
 820	return false;
 821}
 822EXPORT_SYMBOL(sirfsoc_dma_filter_id);
 823
 824#define SIRFSOC_DMA_BUSWIDTHS \
 825	(BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
 826	BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
 827	BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
 828	BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
 829	BIT(DMA_SLAVE_BUSWIDTH_8_BYTES))
 830
 831static struct dma_chan *of_dma_sirfsoc_xlate(struct of_phandle_args *dma_spec,
 832	struct of_dma *ofdma)
 833{
 834	struct sirfsoc_dma *sdma = ofdma->of_dma_data;
 835	unsigned int request = dma_spec->args[0];
 836
 837	if (request >= SIRFSOC_DMA_CHANNELS)
 838		return NULL;
 839
 840	return dma_get_slave_channel(&sdma->channels[request].chan);
 841}
 842
 843static int sirfsoc_dma_probe(struct platform_device *op)
 844{
 845	struct device_node *dn = op->dev.of_node;
 846	struct device *dev = &op->dev;
 847	struct dma_device *dma;
 848	struct sirfsoc_dma *sdma;
 849	struct sirfsoc_dma_chan *schan;
 850	struct sirfsoc_dmadata *data;
 851	struct resource res;
 852	ulong regs_start, regs_size;
 853	u32 id;
 854	int ret, i;
 855
 856	sdma = devm_kzalloc(dev, sizeof(*sdma), GFP_KERNEL);
 857	if (!sdma) {
 858		dev_err(dev, "Memory exhausted!\n");
 859		return -ENOMEM;
 860	}
 861	data = (struct sirfsoc_dmadata *)
 862		(of_match_device(op->dev.driver->of_match_table,
 863				 &op->dev)->data);
 864	sdma->exec_desc = data->exec;
 865	sdma->type = data->type;
 866
 867	if (of_property_read_u32(dn, "cell-index", &id)) {
 868		dev_err(dev, "Fail to get DMAC index\n");
 869		return -ENODEV;
 870	}
 871
 872	sdma->irq = irq_of_parse_and_map(dn, 0);
 873	if (sdma->irq == NO_IRQ) {
 874		dev_err(dev, "Error mapping IRQ!\n");
 875		return -EINVAL;
 876	}
 877
 878	sdma->clk = devm_clk_get(dev, NULL);
 879	if (IS_ERR(sdma->clk)) {
 880		dev_err(dev, "failed to get a clock.\n");
 881		return PTR_ERR(sdma->clk);
 882	}
 883
 884	ret = of_address_to_resource(dn, 0, &res);
 885	if (ret) {
 886		dev_err(dev, "Error parsing memory region!\n");
 887		goto irq_dispose;
 888	}
 889
 890	regs_start = res.start;
 891	regs_size = resource_size(&res);
 892
 893	sdma->base = devm_ioremap(dev, regs_start, regs_size);
 894	if (!sdma->base) {
 895		dev_err(dev, "Error mapping memory region!\n");
 896		ret = -ENOMEM;
 897		goto irq_dispose;
 898	}
 899
 900	ret = request_irq(sdma->irq, &sirfsoc_dma_irq, 0, DRV_NAME, sdma);
 901	if (ret) {
 902		dev_err(dev, "Error requesting IRQ!\n");
 903		ret = -EINVAL;
 904		goto irq_dispose;
 905	}
 906
 907	dma = &sdma->dma;
 908	dma->dev = dev;
 909
 910	dma->device_alloc_chan_resources = sirfsoc_dma_alloc_chan_resources;
 911	dma->device_free_chan_resources = sirfsoc_dma_free_chan_resources;
 912	dma->device_issue_pending = sirfsoc_dma_issue_pending;
 913	dma->device_config = sirfsoc_dma_slave_config;
 914	dma->device_pause = sirfsoc_dma_pause_chan;
 915	dma->device_resume = sirfsoc_dma_resume_chan;
 916	dma->device_terminate_all = sirfsoc_dma_terminate_all;
 917	dma->device_tx_status = sirfsoc_dma_tx_status;
 918	dma->device_prep_interleaved_dma = sirfsoc_dma_prep_interleaved;
 919	dma->device_prep_dma_cyclic = sirfsoc_dma_prep_cyclic;
 920	dma->src_addr_widths = SIRFSOC_DMA_BUSWIDTHS;
 921	dma->dst_addr_widths = SIRFSOC_DMA_BUSWIDTHS;
 922	dma->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
 923
 924	INIT_LIST_HEAD(&dma->channels);
 925	dma_cap_set(DMA_SLAVE, dma->cap_mask);
 926	dma_cap_set(DMA_CYCLIC, dma->cap_mask);
 927	dma_cap_set(DMA_INTERLEAVE, dma->cap_mask);
 928	dma_cap_set(DMA_PRIVATE, dma->cap_mask);
 929
 930	for (i = 0; i < SIRFSOC_DMA_CHANNELS; i++) {
 931		schan = &sdma->channels[i];
 932
 933		schan->chan.device = dma;
 934		dma_cookie_init(&schan->chan);
 935
 936		INIT_LIST_HEAD(&schan->free);
 937		INIT_LIST_HEAD(&schan->prepared);
 938		INIT_LIST_HEAD(&schan->queued);
 939		INIT_LIST_HEAD(&schan->active);
 940		INIT_LIST_HEAD(&schan->completed);
 941
 942		spin_lock_init(&schan->lock);
 943		list_add_tail(&schan->chan.device_node, &dma->channels);
 944	}
 945
 946	tasklet_init(&sdma->tasklet, sirfsoc_dma_tasklet, (unsigned long)sdma);
 947
 948	/* Register DMA engine */
 949	dev_set_drvdata(dev, sdma);
 950
 951	ret = dma_async_device_register(dma);
 952	if (ret)
 953		goto free_irq;
 954
 955	/* Device-tree DMA controller registration */
 956	ret = of_dma_controller_register(dn, of_dma_sirfsoc_xlate, sdma);
 957	if (ret) {
 958		dev_err(dev, "failed to register DMA controller\n");
 959		goto unreg_dma_dev;
 960	}
 961
 962	pm_runtime_enable(&op->dev);
 963	dev_info(dev, "initialized SIRFSOC DMAC driver\n");
 964
 965	return 0;
 966
 967unreg_dma_dev:
 968	dma_async_device_unregister(dma);
 969free_irq:
 970	free_irq(sdma->irq, sdma);
 971irq_dispose:
 972	irq_dispose_mapping(sdma->irq);
 973	return ret;
 974}
 975
 976static int sirfsoc_dma_remove(struct platform_device *op)
 977{
 978	struct device *dev = &op->dev;
 979	struct sirfsoc_dma *sdma = dev_get_drvdata(dev);
 980
 981	of_dma_controller_free(op->dev.of_node);
 982	dma_async_device_unregister(&sdma->dma);
 983	free_irq(sdma->irq, sdma);
 984	irq_dispose_mapping(sdma->irq);
 985	pm_runtime_disable(&op->dev);
 986	if (!pm_runtime_status_suspended(&op->dev))
 987		sirfsoc_dma_runtime_suspend(&op->dev);
 988
 989	return 0;
 990}
 991
 992static int __maybe_unused sirfsoc_dma_runtime_suspend(struct device *dev)
 993{
 994	struct sirfsoc_dma *sdma = dev_get_drvdata(dev);
 995
 996	clk_disable_unprepare(sdma->clk);
 997	return 0;
 998}
 999
1000static int __maybe_unused sirfsoc_dma_runtime_resume(struct device *dev)
1001{
1002	struct sirfsoc_dma *sdma = dev_get_drvdata(dev);
1003	int ret;
1004
1005	ret = clk_prepare_enable(sdma->clk);
1006	if (ret < 0) {
1007		dev_err(dev, "clk_enable failed: %d\n", ret);
1008		return ret;
1009	}
1010	return 0;
1011}
1012
1013static int __maybe_unused sirfsoc_dma_pm_suspend(struct device *dev)
1014{
1015	struct sirfsoc_dma *sdma = dev_get_drvdata(dev);
1016	struct sirfsoc_dma_regs *save = &sdma->regs_save;
1017	struct sirfsoc_dma_desc *sdesc;
1018	struct sirfsoc_dma_chan *schan;
1019	int ch;
1020	int ret;
1021	int count;
1022	u32 int_offset;
1023
1024	/*
1025	 * if we were runtime-suspended before, resume to enable clock
1026	 * before accessing register
1027	 */
1028	if (pm_runtime_status_suspended(dev)) {
1029		ret = sirfsoc_dma_runtime_resume(dev);
1030		if (ret < 0)
1031			return ret;
1032	}
1033
1034	if (sdma->type == SIRFSOC_DMA_VER_A7V2) {
1035		count = 1;
1036		int_offset = SIRFSOC_DMA_INT_EN_ATLAS7;
1037	} else {
1038		count = SIRFSOC_DMA_CHANNELS;
1039		int_offset = SIRFSOC_DMA_INT_EN;
1040	}
1041
1042	/*
1043	 * DMA controller will lose all registers while suspending
1044	 * so we need to save registers for active channels
1045	 */
1046	for (ch = 0; ch < count; ch++) {
1047		schan = &sdma->channels[ch];
1048		if (list_empty(&schan->active))
1049			continue;
1050		sdesc = list_first_entry(&schan->active,
1051			struct sirfsoc_dma_desc,
1052			node);
1053		save->ctrl[ch] = readl_relaxed(sdma->base +
1054			ch * 0x10 + SIRFSOC_DMA_CH_CTRL);
1055	}
1056	save->interrupt_en = readl_relaxed(sdma->base + int_offset);
1057
1058	/* Disable clock */
1059	sirfsoc_dma_runtime_suspend(dev);
1060
1061	return 0;
1062}
1063
1064static int __maybe_unused sirfsoc_dma_pm_resume(struct device *dev)
1065{
1066	struct sirfsoc_dma *sdma = dev_get_drvdata(dev);
1067	struct sirfsoc_dma_regs *save = &sdma->regs_save;
1068	struct sirfsoc_dma_desc *sdesc;
1069	struct sirfsoc_dma_chan *schan;
1070	int ch;
1071	int ret;
1072	int count;
1073	u32 int_offset;
1074	u32 width_offset;
1075
1076	/* Enable clock before accessing register */
1077	ret = sirfsoc_dma_runtime_resume(dev);
1078	if (ret < 0)
1079		return ret;
1080
1081	if (sdma->type == SIRFSOC_DMA_VER_A7V2) {
1082		count = 1;
1083		int_offset = SIRFSOC_DMA_INT_EN_ATLAS7;
1084		width_offset = SIRFSOC_DMA_WIDTH_ATLAS7;
1085	} else {
1086		count = SIRFSOC_DMA_CHANNELS;
1087		int_offset = SIRFSOC_DMA_INT_EN;
1088		width_offset = SIRFSOC_DMA_WIDTH_0;
1089	}
1090
1091	writel_relaxed(save->interrupt_en, sdma->base + int_offset);
1092	for (ch = 0; ch < count; ch++) {
1093		schan = &sdma->channels[ch];
1094		if (list_empty(&schan->active))
1095			continue;
1096		sdesc = list_first_entry(&schan->active,
1097			struct sirfsoc_dma_desc,
1098			node);
1099		writel_relaxed(sdesc->width,
1100			sdma->base + width_offset + ch * 4);
1101		writel_relaxed(sdesc->xlen,
1102			sdma->base + ch * 0x10 + SIRFSOC_DMA_CH_XLEN);
1103		writel_relaxed(sdesc->ylen,
1104			sdma->base + ch * 0x10 + SIRFSOC_DMA_CH_YLEN);
1105		writel_relaxed(save->ctrl[ch],
1106			sdma->base + ch * 0x10 + SIRFSOC_DMA_CH_CTRL);
1107		if (sdma->type == SIRFSOC_DMA_VER_A7V2) {
1108			writel_relaxed(sdesc->addr,
1109				sdma->base + SIRFSOC_DMA_CH_ADDR);
1110		} else {
1111			writel_relaxed(sdesc->addr >> 2,
1112				sdma->base + ch * 0x10 + SIRFSOC_DMA_CH_ADDR);
1113
1114		}
1115	}
1116
1117	/* if we were runtime-suspended before, suspend again */
1118	if (pm_runtime_status_suspended(dev))
1119		sirfsoc_dma_runtime_suspend(dev);
1120
1121	return 0;
1122}
1123
1124static const struct dev_pm_ops sirfsoc_dma_pm_ops = {
1125	SET_RUNTIME_PM_OPS(sirfsoc_dma_runtime_suspend, sirfsoc_dma_runtime_resume, NULL)
1126	SET_SYSTEM_SLEEP_PM_OPS(sirfsoc_dma_pm_suspend, sirfsoc_dma_pm_resume)
1127};
1128
1129struct sirfsoc_dmadata sirfsoc_dmadata_a6 = {
1130	.exec = sirfsoc_dma_execute_hw_a6,
1131	.type = SIRFSOC_DMA_VER_A6,
1132};
1133
1134struct sirfsoc_dmadata sirfsoc_dmadata_a7v1 = {
1135	.exec = sirfsoc_dma_execute_hw_a7v1,
1136	.type = SIRFSOC_DMA_VER_A7V1,
1137};
1138
1139struct sirfsoc_dmadata sirfsoc_dmadata_a7v2 = {
1140	.exec = sirfsoc_dma_execute_hw_a7v2,
1141	.type = SIRFSOC_DMA_VER_A7V2,
1142};
1143
1144static const struct of_device_id sirfsoc_dma_match[] = {
1145	{ .compatible = "sirf,prima2-dmac", .data = &sirfsoc_dmadata_a6,},
1146	{ .compatible = "sirf,atlas7-dmac", .data = &sirfsoc_dmadata_a7v1,},
1147	{ .compatible = "sirf,atlas7-dmac-v2", .data = &sirfsoc_dmadata_a7v2,},
1148	{},
1149};
1150MODULE_DEVICE_TABLE(of, sirfsoc_dma_match);
1151
1152static struct platform_driver sirfsoc_dma_driver = {
1153	.probe		= sirfsoc_dma_probe,
1154	.remove		= sirfsoc_dma_remove,
1155	.driver = {
1156		.name = DRV_NAME,
1157		.pm = &sirfsoc_dma_pm_ops,
1158		.of_match_table	= sirfsoc_dma_match,
1159	},
1160};
1161
1162static __init int sirfsoc_dma_init(void)
1163{
1164	return platform_driver_register(&sirfsoc_dma_driver);
1165}
1166
1167static void __exit sirfsoc_dma_exit(void)
1168{
1169	platform_driver_unregister(&sirfsoc_dma_driver);
1170}
1171
1172subsys_initcall(sirfsoc_dma_init);
1173module_exit(sirfsoc_dma_exit);
1174
1175MODULE_AUTHOR("Rongjun Ying <rongjun.ying@csr.com>");
1176MODULE_AUTHOR("Barry Song <baohua.song@csr.com>");
1177MODULE_DESCRIPTION("SIRFSOC DMA control driver");
1178MODULE_LICENSE("GPL v2");