Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * SHA-512 routines supporting the Power 7+ Nest Accelerators driver
  4 *
  5 * Copyright (C) 2011-2012 International Business Machines Inc.
  6 *
 
 
 
 
 
 
 
 
 
 
 
 
 
  7 * Author: Kent Yoder <yoder1@us.ibm.com>
  8 */
  9
 10#include <crypto/internal/hash.h>
 11#include <crypto/sha2.h>
 12#include <linux/module.h>
 13#include <asm/vio.h>
 14
 15#include "nx_csbcpb.h"
 16#include "nx.h"
 17
 18struct sha512_state_be {
 19	__be64 state[SHA512_DIGEST_SIZE / 8];
 20	u64 count[2];
 21	u8 buf[SHA512_BLOCK_SIZE];
 22};
 23
 24static int nx_crypto_ctx_sha512_init(struct crypto_tfm *tfm)
 25{
 26	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(tfm);
 27	int err;
 28
 29	err = nx_crypto_ctx_sha_init(tfm);
 30	if (err)
 31		return err;
 32
 33	nx_ctx_init(nx_ctx, HCOP_FC_SHA);
 34
 35	nx_ctx->ap = &nx_ctx->props[NX_PROPS_SHA512];
 36
 37	NX_CPB_SET_DIGEST_SIZE(nx_ctx->csbcpb, NX_DS_SHA512);
 38
 39	return 0;
 40}
 41
 42static int nx_sha512_init(struct shash_desc *desc)
 43{
 44	struct sha512_state_be *sctx = shash_desc_ctx(desc);
 45
 46	memset(sctx, 0, sizeof *sctx);
 47
 48	sctx->state[0] = __cpu_to_be64(SHA512_H0);
 49	sctx->state[1] = __cpu_to_be64(SHA512_H1);
 50	sctx->state[2] = __cpu_to_be64(SHA512_H2);
 51	sctx->state[3] = __cpu_to_be64(SHA512_H3);
 52	sctx->state[4] = __cpu_to_be64(SHA512_H4);
 53	sctx->state[5] = __cpu_to_be64(SHA512_H5);
 54	sctx->state[6] = __cpu_to_be64(SHA512_H6);
 55	sctx->state[7] = __cpu_to_be64(SHA512_H7);
 56	sctx->count[0] = 0;
 57
 58	return 0;
 59}
 60
 61static int nx_sha512_update(struct shash_desc *desc, const u8 *data,
 62			    unsigned int len)
 63{
 64	struct sha512_state_be *sctx = shash_desc_ctx(desc);
 65	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
 66	struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb;
 67	struct nx_sg *out_sg;
 68	u64 to_process, leftover = 0, total;
 69	unsigned long irq_flags;
 70	int rc = 0;
 71	int data_len;
 72	u32 max_sg_len;
 73	u64 buf_len = (sctx->count[0] % SHA512_BLOCK_SIZE);
 74
 75	spin_lock_irqsave(&nx_ctx->lock, irq_flags);
 76
 77	/* 2 cases for total data len:
 78	 *  1: < SHA512_BLOCK_SIZE: copy into state, return 0
 79	 *  2: >= SHA512_BLOCK_SIZE: process X blocks, copy in leftover
 80	 */
 81	total = (sctx->count[0] % SHA512_BLOCK_SIZE) + len;
 82	if (total < SHA512_BLOCK_SIZE) {
 83		memcpy(sctx->buf + buf_len, data, len);
 84		sctx->count[0] += len;
 85		goto out;
 86	}
 87
 88	memcpy(csbcpb->cpb.sha512.message_digest, sctx->state, SHA512_DIGEST_SIZE);
 89	NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
 90	NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
 91
 92	max_sg_len = min_t(u64, nx_ctx->ap->sglen,
 93			nx_driver.of.max_sg_len/sizeof(struct nx_sg));
 94	max_sg_len = min_t(u64, max_sg_len,
 95			nx_ctx->ap->databytelen/NX_PAGE_SIZE);
 96
 97	data_len = SHA512_DIGEST_SIZE;
 98	out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *)sctx->state,
 99				  &data_len, max_sg_len);
100	nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
101
102	if (data_len != SHA512_DIGEST_SIZE) {
103		rc = -EINVAL;
104		goto out;
105	}
106
107	do {
108		int used_sgs = 0;
109		struct nx_sg *in_sg = nx_ctx->in_sg;
110
111		if (buf_len) {
112			data_len = buf_len;
113			in_sg = nx_build_sg_list(in_sg,
114						 (u8 *) sctx->buf,
115						 &data_len, max_sg_len);
116
117			if (data_len != buf_len) {
118				rc = -EINVAL;
119				goto out;
120			}
121			used_sgs = in_sg - nx_ctx->in_sg;
122		}
123
124		/* to_process: SHA512_BLOCK_SIZE aligned chunk to be
125		 * processed in this iteration. This value is restricted
126		 * by sg list limits and number of sgs we already used
127		 * for leftover data. (see above)
128		 * In ideal case, we could allow NX_PAGE_SIZE * max_sg_len,
129		 * but because data may not be aligned, we need to account
130		 * for that too. */
131		to_process = min_t(u64, total,
132			(max_sg_len - 1 - used_sgs) * NX_PAGE_SIZE);
133		to_process = to_process & ~(SHA512_BLOCK_SIZE - 1);
134
135		data_len = to_process - buf_len;
136		in_sg = nx_build_sg_list(in_sg, (u8 *) data,
137					 &data_len, max_sg_len);
138
139		nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
140
141		if (data_len != (to_process - buf_len)) {
142			rc = -EINVAL;
143			goto out;
144		}
145
146		to_process = data_len + buf_len;
147		leftover = total - to_process;
148
149		/*
150		 * we've hit the nx chip previously and we're updating
151		 * again, so copy over the partial digest.
152		 */
153		memcpy(csbcpb->cpb.sha512.input_partial_digest,
154			       csbcpb->cpb.sha512.message_digest,
155			       SHA512_DIGEST_SIZE);
156
157		if (!nx_ctx->op.inlen || !nx_ctx->op.outlen) {
158			rc = -EINVAL;
159			goto out;
160		}
161
162		rc = nx_hcall_sync(nx_ctx, &nx_ctx->op, 0);
 
163		if (rc)
164			goto out;
165
166		atomic_inc(&(nx_ctx->stats->sha512_ops));
167
168		total -= to_process;
169		data += to_process - buf_len;
170		buf_len = 0;
171
172	} while (leftover >= SHA512_BLOCK_SIZE);
173
174	/* copy the leftover back into the state struct */
175	if (leftover)
176		memcpy(sctx->buf, data, leftover);
177	sctx->count[0] += len;
178	memcpy(sctx->state, csbcpb->cpb.sha512.message_digest, SHA512_DIGEST_SIZE);
179out:
180	spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
181	return rc;
182}
183
184static int nx_sha512_final(struct shash_desc *desc, u8 *out)
185{
186	struct sha512_state_be *sctx = shash_desc_ctx(desc);
187	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
188	struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb;
189	struct nx_sg *in_sg, *out_sg;
190	u32 max_sg_len;
191	u64 count0;
192	unsigned long irq_flags;
193	int rc = 0;
194	int len;
195
196	spin_lock_irqsave(&nx_ctx->lock, irq_flags);
197
198	max_sg_len = min_t(u64, nx_ctx->ap->sglen,
199			nx_driver.of.max_sg_len/sizeof(struct nx_sg));
200	max_sg_len = min_t(u64, max_sg_len,
201			nx_ctx->ap->databytelen/NX_PAGE_SIZE);
202
203	/* final is represented by continuing the operation and indicating that
204	 * this is not an intermediate operation */
205	if (sctx->count[0] >= SHA512_BLOCK_SIZE) {
206		/* we've hit the nx chip previously, now we're finalizing,
207		 * so copy over the partial digest */
208		memcpy(csbcpb->cpb.sha512.input_partial_digest, sctx->state,
209							SHA512_DIGEST_SIZE);
210		NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
211		NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
212	} else {
213		NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
214		NX_CPB_FDM(csbcpb) &= ~NX_FDM_CONTINUATION;
215	}
216
217	NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
218
219	count0 = sctx->count[0] * 8;
220
221	csbcpb->cpb.sha512.message_bit_length_lo = count0;
222
223	len = sctx->count[0] & (SHA512_BLOCK_SIZE - 1);
224	in_sg = nx_build_sg_list(nx_ctx->in_sg, sctx->buf, &len,
225				 max_sg_len);
226
227	if (len != (sctx->count[0] & (SHA512_BLOCK_SIZE - 1))) {
228		rc = -EINVAL;
229		goto out;
230	}
231
232	len = SHA512_DIGEST_SIZE;
233	out_sg = nx_build_sg_list(nx_ctx->out_sg, out, &len,
234				 max_sg_len);
235
236	nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
237	nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
238
239	if (!nx_ctx->op.outlen) {
240		rc = -EINVAL;
241		goto out;
242	}
243
244	rc = nx_hcall_sync(nx_ctx, &nx_ctx->op, 0);
 
245	if (rc)
246		goto out;
247
248	atomic_inc(&(nx_ctx->stats->sha512_ops));
249	atomic64_add(sctx->count[0], &(nx_ctx->stats->sha512_bytes));
250
251	memcpy(out, csbcpb->cpb.sha512.message_digest, SHA512_DIGEST_SIZE);
252out:
253	spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
254	return rc;
255}
256
257static int nx_sha512_export(struct shash_desc *desc, void *out)
258{
259	struct sha512_state_be *sctx = shash_desc_ctx(desc);
260
261	memcpy(out, sctx, sizeof(*sctx));
262
263	return 0;
264}
265
266static int nx_sha512_import(struct shash_desc *desc, const void *in)
267{
268	struct sha512_state_be *sctx = shash_desc_ctx(desc);
269
270	memcpy(sctx, in, sizeof(*sctx));
271
272	return 0;
273}
274
275struct shash_alg nx_shash_sha512_alg = {
276	.digestsize = SHA512_DIGEST_SIZE,
277	.init       = nx_sha512_init,
278	.update     = nx_sha512_update,
279	.final      = nx_sha512_final,
280	.export     = nx_sha512_export,
281	.import     = nx_sha512_import,
282	.descsize   = sizeof(struct sha512_state_be),
283	.statesize  = sizeof(struct sha512_state_be),
284	.base       = {
285		.cra_name        = "sha512",
286		.cra_driver_name = "sha512-nx",
287		.cra_priority    = 300,
 
288		.cra_blocksize   = SHA512_BLOCK_SIZE,
289		.cra_module      = THIS_MODULE,
290		.cra_ctxsize     = sizeof(struct nx_crypto_ctx),
291		.cra_init        = nx_crypto_ctx_sha512_init,
292		.cra_exit        = nx_crypto_ctx_exit,
293	}
294};
v4.6
  1/**
 
  2 * SHA-512 routines supporting the Power 7+ Nest Accelerators driver
  3 *
  4 * Copyright (C) 2011-2012 International Business Machines Inc.
  5 *
  6 * This program is free software; you can redistribute it and/or modify
  7 * it under the terms of the GNU General Public License as published by
  8 * the Free Software Foundation; version 2 only.
  9 *
 10 * This program is distributed in the hope that it will be useful,
 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 13 * GNU General Public License for more details.
 14 *
 15 * You should have received a copy of the GNU General Public License
 16 * along with this program; if not, write to the Free Software
 17 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 18 *
 19 * Author: Kent Yoder <yoder1@us.ibm.com>
 20 */
 21
 22#include <crypto/internal/hash.h>
 23#include <crypto/sha.h>
 24#include <linux/module.h>
 25#include <asm/vio.h>
 26
 27#include "nx_csbcpb.h"
 28#include "nx.h"
 29
 
 
 
 
 
 30
 31static int nx_crypto_ctx_sha512_init(struct crypto_tfm *tfm)
 32{
 33	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(tfm);
 34	int err;
 35
 36	err = nx_crypto_ctx_sha_init(tfm);
 37	if (err)
 38		return err;
 39
 40	nx_ctx_init(nx_ctx, HCOP_FC_SHA);
 41
 42	nx_ctx->ap = &nx_ctx->props[NX_PROPS_SHA512];
 43
 44	NX_CPB_SET_DIGEST_SIZE(nx_ctx->csbcpb, NX_DS_SHA512);
 45
 46	return 0;
 47}
 48
 49static int nx_sha512_init(struct shash_desc *desc)
 50{
 51	struct sha512_state *sctx = shash_desc_ctx(desc);
 52
 53	memset(sctx, 0, sizeof *sctx);
 54
 55	sctx->state[0] = __cpu_to_be64(SHA512_H0);
 56	sctx->state[1] = __cpu_to_be64(SHA512_H1);
 57	sctx->state[2] = __cpu_to_be64(SHA512_H2);
 58	sctx->state[3] = __cpu_to_be64(SHA512_H3);
 59	sctx->state[4] = __cpu_to_be64(SHA512_H4);
 60	sctx->state[5] = __cpu_to_be64(SHA512_H5);
 61	sctx->state[6] = __cpu_to_be64(SHA512_H6);
 62	sctx->state[7] = __cpu_to_be64(SHA512_H7);
 63	sctx->count[0] = 0;
 64
 65	return 0;
 66}
 67
 68static int nx_sha512_update(struct shash_desc *desc, const u8 *data,
 69			    unsigned int len)
 70{
 71	struct sha512_state *sctx = shash_desc_ctx(desc);
 72	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
 73	struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb;
 74	struct nx_sg *out_sg;
 75	u64 to_process, leftover = 0, total;
 76	unsigned long irq_flags;
 77	int rc = 0;
 78	int data_len;
 79	u32 max_sg_len;
 80	u64 buf_len = (sctx->count[0] % SHA512_BLOCK_SIZE);
 81
 82	spin_lock_irqsave(&nx_ctx->lock, irq_flags);
 83
 84	/* 2 cases for total data len:
 85	 *  1: < SHA512_BLOCK_SIZE: copy into state, return 0
 86	 *  2: >= SHA512_BLOCK_SIZE: process X blocks, copy in leftover
 87	 */
 88	total = (sctx->count[0] % SHA512_BLOCK_SIZE) + len;
 89	if (total < SHA512_BLOCK_SIZE) {
 90		memcpy(sctx->buf + buf_len, data, len);
 91		sctx->count[0] += len;
 92		goto out;
 93	}
 94
 95	memcpy(csbcpb->cpb.sha512.message_digest, sctx->state, SHA512_DIGEST_SIZE);
 96	NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
 97	NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
 98
 99	max_sg_len = min_t(u64, nx_ctx->ap->sglen,
100			nx_driver.of.max_sg_len/sizeof(struct nx_sg));
101	max_sg_len = min_t(u64, max_sg_len,
102			nx_ctx->ap->databytelen/NX_PAGE_SIZE);
103
104	data_len = SHA512_DIGEST_SIZE;
105	out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *)sctx->state,
106				  &data_len, max_sg_len);
107	nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
108
109	if (data_len != SHA512_DIGEST_SIZE) {
110		rc = -EINVAL;
111		goto out;
112	}
113
114	do {
115		int used_sgs = 0;
116		struct nx_sg *in_sg = nx_ctx->in_sg;
117
118		if (buf_len) {
119			data_len = buf_len;
120			in_sg = nx_build_sg_list(in_sg,
121						 (u8 *) sctx->buf,
122						 &data_len, max_sg_len);
123
124			if (data_len != buf_len) {
125				rc = -EINVAL;
126				goto out;
127			}
128			used_sgs = in_sg - nx_ctx->in_sg;
129		}
130
131		/* to_process: SHA512_BLOCK_SIZE aligned chunk to be
132		 * processed in this iteration. This value is restricted
133		 * by sg list limits and number of sgs we already used
134		 * for leftover data. (see above)
135		 * In ideal case, we could allow NX_PAGE_SIZE * max_sg_len,
136		 * but because data may not be aligned, we need to account
137		 * for that too. */
138		to_process = min_t(u64, total,
139			(max_sg_len - 1 - used_sgs) * NX_PAGE_SIZE);
140		to_process = to_process & ~(SHA512_BLOCK_SIZE - 1);
141
142		data_len = to_process - buf_len;
143		in_sg = nx_build_sg_list(in_sg, (u8 *) data,
144					 &data_len, max_sg_len);
145
146		nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
147
148		if (data_len != (to_process - buf_len)) {
149			rc = -EINVAL;
150			goto out;
151		}
152
153		to_process = data_len + buf_len;
154		leftover = total - to_process;
155
156		/*
157		 * we've hit the nx chip previously and we're updating
158		 * again, so copy over the partial digest.
159		 */
160		memcpy(csbcpb->cpb.sha512.input_partial_digest,
161			       csbcpb->cpb.sha512.message_digest,
162			       SHA512_DIGEST_SIZE);
163
164		if (!nx_ctx->op.inlen || !nx_ctx->op.outlen) {
165			rc = -EINVAL;
166			goto out;
167		}
168
169		rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
170				   desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
171		if (rc)
172			goto out;
173
174		atomic_inc(&(nx_ctx->stats->sha512_ops));
175
176		total -= to_process;
177		data += to_process - buf_len;
178		buf_len = 0;
179
180	} while (leftover >= SHA512_BLOCK_SIZE);
181
182	/* copy the leftover back into the state struct */
183	if (leftover)
184		memcpy(sctx->buf, data, leftover);
185	sctx->count[0] += len;
186	memcpy(sctx->state, csbcpb->cpb.sha512.message_digest, SHA512_DIGEST_SIZE);
187out:
188	spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
189	return rc;
190}
191
192static int nx_sha512_final(struct shash_desc *desc, u8 *out)
193{
194	struct sha512_state *sctx = shash_desc_ctx(desc);
195	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
196	struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb;
197	struct nx_sg *in_sg, *out_sg;
198	u32 max_sg_len;
199	u64 count0;
200	unsigned long irq_flags;
201	int rc = 0;
202	int len;
203
204	spin_lock_irqsave(&nx_ctx->lock, irq_flags);
205
206	max_sg_len = min_t(u64, nx_ctx->ap->sglen,
207			nx_driver.of.max_sg_len/sizeof(struct nx_sg));
208	max_sg_len = min_t(u64, max_sg_len,
209			nx_ctx->ap->databytelen/NX_PAGE_SIZE);
210
211	/* final is represented by continuing the operation and indicating that
212	 * this is not an intermediate operation */
213	if (sctx->count[0] >= SHA512_BLOCK_SIZE) {
214		/* we've hit the nx chip previously, now we're finalizing,
215		 * so copy over the partial digest */
216		memcpy(csbcpb->cpb.sha512.input_partial_digest, sctx->state,
217							SHA512_DIGEST_SIZE);
218		NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
219		NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
220	} else {
221		NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
222		NX_CPB_FDM(csbcpb) &= ~NX_FDM_CONTINUATION;
223	}
224
225	NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
226
227	count0 = sctx->count[0] * 8;
228
229	csbcpb->cpb.sha512.message_bit_length_lo = count0;
230
231	len = sctx->count[0] & (SHA512_BLOCK_SIZE - 1);
232	in_sg = nx_build_sg_list(nx_ctx->in_sg, sctx->buf, &len,
233				 max_sg_len);
234
235	if (len != (sctx->count[0] & (SHA512_BLOCK_SIZE - 1))) {
236		rc = -EINVAL;
237		goto out;
238	}
239
240	len = SHA512_DIGEST_SIZE;
241	out_sg = nx_build_sg_list(nx_ctx->out_sg, out, &len,
242				 max_sg_len);
243
244	nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
245	nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
246
247	if (!nx_ctx->op.outlen) {
248		rc = -EINVAL;
249		goto out;
250	}
251
252	rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
253			   desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
254	if (rc)
255		goto out;
256
257	atomic_inc(&(nx_ctx->stats->sha512_ops));
258	atomic64_add(sctx->count[0], &(nx_ctx->stats->sha512_bytes));
259
260	memcpy(out, csbcpb->cpb.sha512.message_digest, SHA512_DIGEST_SIZE);
261out:
262	spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
263	return rc;
264}
265
266static int nx_sha512_export(struct shash_desc *desc, void *out)
267{
268	struct sha512_state *sctx = shash_desc_ctx(desc);
269
270	memcpy(out, sctx, sizeof(*sctx));
271
272	return 0;
273}
274
275static int nx_sha512_import(struct shash_desc *desc, const void *in)
276{
277	struct sha512_state *sctx = shash_desc_ctx(desc);
278
279	memcpy(sctx, in, sizeof(*sctx));
280
281	return 0;
282}
283
284struct shash_alg nx_shash_sha512_alg = {
285	.digestsize = SHA512_DIGEST_SIZE,
286	.init       = nx_sha512_init,
287	.update     = nx_sha512_update,
288	.final      = nx_sha512_final,
289	.export     = nx_sha512_export,
290	.import     = nx_sha512_import,
291	.descsize   = sizeof(struct sha512_state),
292	.statesize  = sizeof(struct sha512_state),
293	.base       = {
294		.cra_name        = "sha512",
295		.cra_driver_name = "sha512-nx",
296		.cra_priority    = 300,
297		.cra_flags       = CRYPTO_ALG_TYPE_SHASH,
298		.cra_blocksize   = SHA512_BLOCK_SIZE,
299		.cra_module      = THIS_MODULE,
300		.cra_ctxsize     = sizeof(struct nx_crypto_ctx),
301		.cra_init        = nx_crypto_ctx_sha512_init,
302		.cra_exit        = nx_crypto_ctx_exit,
303	}
304};