Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support.
   3 *
   4 * Copyright (C) 2010, 2011 David S. Miller <davem@davemloft.net>
   5 */
   6
   7#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   8
   9#include <linux/kernel.h>
  10#include <linux/module.h>
  11#include <linux/of.h>
  12#include <linux/of_address.h>
  13#include <linux/platform_device.h>
  14#include <linux/cpumask.h>
  15#include <linux/slab.h>
  16#include <linux/interrupt.h>
  17#include <linux/crypto.h>
  18#include <crypto/md5.h>
  19#include <crypto/sha1.h>
  20#include <crypto/sha2.h>
  21#include <crypto/aes.h>
  22#include <crypto/internal/des.h>
  23#include <linux/mutex.h>
  24#include <linux/delay.h>
  25#include <linux/sched.h>
  26
  27#include <crypto/internal/hash.h>
  28#include <crypto/internal/skcipher.h>
  29#include <crypto/scatterwalk.h>
  30#include <crypto/algapi.h>
  31
  32#include <asm/hypervisor.h>
  33#include <asm/mdesc.h>
  34
  35#include "n2_core.h"
  36
  37#define DRV_MODULE_NAME		"n2_crypto"
  38#define DRV_MODULE_VERSION	"0.2"
  39#define DRV_MODULE_RELDATE	"July 28, 2011"
  40
  41static const char version[] =
  42	DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  43
  44MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
  45MODULE_DESCRIPTION("Niagara2 Crypto driver");
  46MODULE_LICENSE("GPL");
  47MODULE_VERSION(DRV_MODULE_VERSION);
  48
  49#define N2_CRA_PRIORITY		200
  50
  51static DEFINE_MUTEX(spu_lock);
  52
  53struct spu_queue {
  54	cpumask_t		sharing;
  55	unsigned long		qhandle;
  56
  57	spinlock_t		lock;
  58	u8			q_type;
  59	void			*q;
  60	unsigned long		head;
  61	unsigned long		tail;
  62	struct list_head	jobs;
  63
  64	unsigned long		devino;
  65
  66	char			irq_name[32];
  67	unsigned int		irq;
  68
  69	struct list_head	list;
  70};
  71
  72struct spu_qreg {
  73	struct spu_queue	*queue;
  74	unsigned long		type;
  75};
  76
  77static struct spu_queue **cpu_to_cwq;
  78static struct spu_queue **cpu_to_mau;
  79
  80static unsigned long spu_next_offset(struct spu_queue *q, unsigned long off)
  81{
  82	if (q->q_type == HV_NCS_QTYPE_MAU) {
  83		off += MAU_ENTRY_SIZE;
  84		if (off == (MAU_ENTRY_SIZE * MAU_NUM_ENTRIES))
  85			off = 0;
  86	} else {
  87		off += CWQ_ENTRY_SIZE;
  88		if (off == (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES))
  89			off = 0;
  90	}
  91	return off;
  92}
  93
  94struct n2_request_common {
  95	struct list_head	entry;
  96	unsigned int		offset;
  97};
  98#define OFFSET_NOT_RUNNING	(~(unsigned int)0)
  99
 100/* An async job request records the final tail value it used in
 101 * n2_request_common->offset, test to see if that offset is in
 102 * the range old_head, new_head, inclusive.
 103 */
 104static inline bool job_finished(struct spu_queue *q, unsigned int offset,
 105				unsigned long old_head, unsigned long new_head)
 106{
 107	if (old_head <= new_head) {
 108		if (offset > old_head && offset <= new_head)
 109			return true;
 110	} else {
 111		if (offset > old_head || offset <= new_head)
 112			return true;
 113	}
 114	return false;
 115}
 116
 117/* When the HEAD marker is unequal to the actual HEAD, we get
 118 * a virtual device INO interrupt.  We should process the
 119 * completed CWQ entries and adjust the HEAD marker to clear
 120 * the IRQ.
 121 */
 122static irqreturn_t cwq_intr(int irq, void *dev_id)
 123{
 124	unsigned long off, new_head, hv_ret;
 125	struct spu_queue *q = dev_id;
 126
 127	pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n",
 128	       smp_processor_id(), q->qhandle);
 129
 130	spin_lock(&q->lock);
 131
 132	hv_ret = sun4v_ncs_gethead(q->qhandle, &new_head);
 133
 134	pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n",
 135	       smp_processor_id(), new_head, hv_ret);
 136
 137	for (off = q->head; off != new_head; off = spu_next_offset(q, off)) {
 138		/* XXX ... XXX */
 139	}
 140
 141	hv_ret = sun4v_ncs_sethead_marker(q->qhandle, new_head);
 142	if (hv_ret == HV_EOK)
 143		q->head = new_head;
 144
 145	spin_unlock(&q->lock);
 146
 147	return IRQ_HANDLED;
 148}
 149
 150static irqreturn_t mau_intr(int irq, void *dev_id)
 151{
 152	struct spu_queue *q = dev_id;
 153	unsigned long head, hv_ret;
 154
 155	spin_lock(&q->lock);
 156
 157	pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n",
 158	       smp_processor_id(), q->qhandle);
 159
 160	hv_ret = sun4v_ncs_gethead(q->qhandle, &head);
 161
 162	pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n",
 163	       smp_processor_id(), head, hv_ret);
 164
 165	sun4v_ncs_sethead_marker(q->qhandle, head);
 166
 167	spin_unlock(&q->lock);
 168
 169	return IRQ_HANDLED;
 170}
 171
 172static void *spu_queue_next(struct spu_queue *q, void *cur)
 173{
 174	return q->q + spu_next_offset(q, cur - q->q);
 175}
 176
 177static int spu_queue_num_free(struct spu_queue *q)
 178{
 179	unsigned long head = q->head;
 180	unsigned long tail = q->tail;
 181	unsigned long end = (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES);
 182	unsigned long diff;
 183
 184	if (head > tail)
 185		diff = head - tail;
 186	else
 187		diff = (end - tail) + head;
 188
 189	return (diff / CWQ_ENTRY_SIZE) - 1;
 190}
 191
 192static void *spu_queue_alloc(struct spu_queue *q, int num_entries)
 193{
 194	int avail = spu_queue_num_free(q);
 195
 196	if (avail >= num_entries)
 197		return q->q + q->tail;
 198
 199	return NULL;
 200}
 201
 202static unsigned long spu_queue_submit(struct spu_queue *q, void *last)
 203{
 204	unsigned long hv_ret, new_tail;
 205
 206	new_tail = spu_next_offset(q, last - q->q);
 207
 208	hv_ret = sun4v_ncs_settail(q->qhandle, new_tail);
 209	if (hv_ret == HV_EOK)
 210		q->tail = new_tail;
 211	return hv_ret;
 212}
 213
 214static u64 control_word_base(unsigned int len, unsigned int hmac_key_len,
 215			     int enc_type, int auth_type,
 216			     unsigned int hash_len,
 217			     bool sfas, bool sob, bool eob, bool encrypt,
 218			     int opcode)
 219{
 220	u64 word = (len - 1) & CONTROL_LEN;
 221
 222	word |= ((u64) opcode << CONTROL_OPCODE_SHIFT);
 223	word |= ((u64) enc_type << CONTROL_ENC_TYPE_SHIFT);
 224	word |= ((u64) auth_type << CONTROL_AUTH_TYPE_SHIFT);
 225	if (sfas)
 226		word |= CONTROL_STORE_FINAL_AUTH_STATE;
 227	if (sob)
 228		word |= CONTROL_START_OF_BLOCK;
 229	if (eob)
 230		word |= CONTROL_END_OF_BLOCK;
 231	if (encrypt)
 232		word |= CONTROL_ENCRYPT;
 233	if (hmac_key_len)
 234		word |= ((u64) (hmac_key_len - 1)) << CONTROL_HMAC_KEY_LEN_SHIFT;
 235	if (hash_len)
 236		word |= ((u64) (hash_len - 1)) << CONTROL_HASH_LEN_SHIFT;
 237
 238	return word;
 239}
 240
 241#if 0
 242static inline bool n2_should_run_async(struct spu_queue *qp, int this_len)
 243{
 244	if (this_len >= 64 ||
 245	    qp->head != qp->tail)
 246		return true;
 247	return false;
 248}
 249#endif
 250
 251struct n2_ahash_alg {
 252	struct list_head	entry;
 253	const u8		*hash_zero;
 254	const u8		*hash_init;
 255	u8			hw_op_hashsz;
 256	u8			digest_size;
 257	u8			auth_type;
 258	u8			hmac_type;
 259	struct ahash_alg	alg;
 260};
 261
 262static inline struct n2_ahash_alg *n2_ahash_alg(struct crypto_tfm *tfm)
 263{
 264	struct crypto_alg *alg = tfm->__crt_alg;
 265	struct ahash_alg *ahash_alg;
 266
 267	ahash_alg = container_of(alg, struct ahash_alg, halg.base);
 268
 269	return container_of(ahash_alg, struct n2_ahash_alg, alg);
 270}
 271
 272struct n2_hmac_alg {
 273	const char		*child_alg;
 274	struct n2_ahash_alg	derived;
 275};
 276
 277static inline struct n2_hmac_alg *n2_hmac_alg(struct crypto_tfm *tfm)
 278{
 279	struct crypto_alg *alg = tfm->__crt_alg;
 280	struct ahash_alg *ahash_alg;
 281
 282	ahash_alg = container_of(alg, struct ahash_alg, halg.base);
 283
 284	return container_of(ahash_alg, struct n2_hmac_alg, derived.alg);
 285}
 286
 287struct n2_hash_ctx {
 288	struct crypto_ahash		*fallback_tfm;
 289};
 290
 291#define N2_HASH_KEY_MAX			32 /* HW limit for all HMAC requests */
 292
 293struct n2_hmac_ctx {
 294	struct n2_hash_ctx		base;
 295
 296	struct crypto_shash		*child_shash;
 297
 298	int				hash_key_len;
 299	unsigned char			hash_key[N2_HASH_KEY_MAX];
 300};
 301
 302struct n2_hash_req_ctx {
 303	union {
 304		struct md5_state	md5;
 305		struct sha1_state	sha1;
 306		struct sha256_state	sha256;
 307	} u;
 308
 309	struct ahash_request		fallback_req;
 310};
 311
 312static int n2_hash_async_init(struct ahash_request *req)
 313{
 314	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 315	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 316	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
 317
 318	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
 319	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
 320
 321	return crypto_ahash_init(&rctx->fallback_req);
 322}
 323
 324static int n2_hash_async_update(struct ahash_request *req)
 325{
 326	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 327	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 328	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
 329
 330	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
 331	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
 332	rctx->fallback_req.nbytes = req->nbytes;
 333	rctx->fallback_req.src = req->src;
 334
 335	return crypto_ahash_update(&rctx->fallback_req);
 336}
 337
 338static int n2_hash_async_final(struct ahash_request *req)
 339{
 340	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 341	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 342	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
 343
 344	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
 345	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
 346	rctx->fallback_req.result = req->result;
 347
 348	return crypto_ahash_final(&rctx->fallback_req);
 349}
 350
 351static int n2_hash_async_finup(struct ahash_request *req)
 352{
 353	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 354	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 355	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
 356
 357	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
 358	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
 359	rctx->fallback_req.nbytes = req->nbytes;
 360	rctx->fallback_req.src = req->src;
 361	rctx->fallback_req.result = req->result;
 362
 363	return crypto_ahash_finup(&rctx->fallback_req);
 364}
 365
 366static int n2_hash_async_noimport(struct ahash_request *req, const void *in)
 367{
 368	return -ENOSYS;
 369}
 370
 371static int n2_hash_async_noexport(struct ahash_request *req, void *out)
 372{
 373	return -ENOSYS;
 374}
 375
 376static int n2_hash_cra_init(struct crypto_tfm *tfm)
 377{
 378	const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
 379	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
 380	struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
 381	struct crypto_ahash *fallback_tfm;
 382	int err;
 383
 384	fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
 385					  CRYPTO_ALG_NEED_FALLBACK);
 386	if (IS_ERR(fallback_tfm)) {
 387		pr_warn("Fallback driver '%s' could not be loaded!\n",
 388			fallback_driver_name);
 389		err = PTR_ERR(fallback_tfm);
 390		goto out;
 391	}
 392
 393	crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
 394					 crypto_ahash_reqsize(fallback_tfm)));
 395
 396	ctx->fallback_tfm = fallback_tfm;
 397	return 0;
 398
 399out:
 400	return err;
 401}
 402
 403static void n2_hash_cra_exit(struct crypto_tfm *tfm)
 404{
 405	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
 406	struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
 407
 408	crypto_free_ahash(ctx->fallback_tfm);
 409}
 410
 411static int n2_hmac_cra_init(struct crypto_tfm *tfm)
 412{
 413	const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
 414	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
 415	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
 416	struct n2_hmac_alg *n2alg = n2_hmac_alg(tfm);
 417	struct crypto_ahash *fallback_tfm;
 418	struct crypto_shash *child_shash;
 419	int err;
 420
 421	fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
 422					  CRYPTO_ALG_NEED_FALLBACK);
 423	if (IS_ERR(fallback_tfm)) {
 424		pr_warn("Fallback driver '%s' could not be loaded!\n",
 425			fallback_driver_name);
 426		err = PTR_ERR(fallback_tfm);
 427		goto out;
 428	}
 429
 430	child_shash = crypto_alloc_shash(n2alg->child_alg, 0, 0);
 431	if (IS_ERR(child_shash)) {
 432		pr_warn("Child shash '%s' could not be loaded!\n",
 433			n2alg->child_alg);
 434		err = PTR_ERR(child_shash);
 435		goto out_free_fallback;
 436	}
 437
 438	crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
 439					 crypto_ahash_reqsize(fallback_tfm)));
 440
 441	ctx->child_shash = child_shash;
 442	ctx->base.fallback_tfm = fallback_tfm;
 443	return 0;
 444
 445out_free_fallback:
 446	crypto_free_ahash(fallback_tfm);
 447
 448out:
 449	return err;
 450}
 451
 452static void n2_hmac_cra_exit(struct crypto_tfm *tfm)
 453{
 454	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
 455	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
 456
 457	crypto_free_ahash(ctx->base.fallback_tfm);
 458	crypto_free_shash(ctx->child_shash);
 459}
 460
 461static int n2_hmac_async_setkey(struct crypto_ahash *tfm, const u8 *key,
 462				unsigned int keylen)
 463{
 464	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
 465	struct crypto_shash *child_shash = ctx->child_shash;
 466	struct crypto_ahash *fallback_tfm;
 
 467	int err, bs, ds;
 468
 469	fallback_tfm = ctx->base.fallback_tfm;
 470	err = crypto_ahash_setkey(fallback_tfm, key, keylen);
 471	if (err)
 472		return err;
 473
 
 
 
 
 474	bs = crypto_shash_blocksize(child_shash);
 475	ds = crypto_shash_digestsize(child_shash);
 476	BUG_ON(ds > N2_HASH_KEY_MAX);
 477	if (keylen > bs) {
 478		err = crypto_shash_tfm_digest(child_shash, key, keylen,
 479					      ctx->hash_key);
 480		if (err)
 481			return err;
 482		keylen = ds;
 483	} else if (keylen <= N2_HASH_KEY_MAX)
 484		memcpy(ctx->hash_key, key, keylen);
 485
 486	ctx->hash_key_len = keylen;
 487
 488	return err;
 489}
 490
 491static unsigned long wait_for_tail(struct spu_queue *qp)
 492{
 493	unsigned long head, hv_ret;
 494
 495	do {
 496		hv_ret = sun4v_ncs_gethead(qp->qhandle, &head);
 497		if (hv_ret != HV_EOK) {
 498			pr_err("Hypervisor error on gethead\n");
 499			break;
 500		}
 501		if (head == qp->tail) {
 502			qp->head = head;
 503			break;
 504		}
 505	} while (1);
 506	return hv_ret;
 507}
 508
 509static unsigned long submit_and_wait_for_tail(struct spu_queue *qp,
 510					      struct cwq_initial_entry *ent)
 511{
 512	unsigned long hv_ret = spu_queue_submit(qp, ent);
 513
 514	if (hv_ret == HV_EOK)
 515		hv_ret = wait_for_tail(qp);
 516
 517	return hv_ret;
 518}
 519
 520static int n2_do_async_digest(struct ahash_request *req,
 521			      unsigned int auth_type, unsigned int digest_size,
 522			      unsigned int result_size, void *hash_loc,
 523			      unsigned long auth_key, unsigned int auth_key_len)
 524{
 525	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 526	struct cwq_initial_entry *ent;
 527	struct crypto_hash_walk walk;
 528	struct spu_queue *qp;
 529	unsigned long flags;
 530	int err = -ENODEV;
 531	int nbytes, cpu;
 532
 533	/* The total effective length of the operation may not
 534	 * exceed 2^16.
 535	 */
 536	if (unlikely(req->nbytes > (1 << 16))) {
 537		struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 538		struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
 539
 540		ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
 541		rctx->fallback_req.base.flags =
 542			req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
 543		rctx->fallback_req.nbytes = req->nbytes;
 544		rctx->fallback_req.src = req->src;
 545		rctx->fallback_req.result = req->result;
 546
 547		return crypto_ahash_digest(&rctx->fallback_req);
 548	}
 549
 550	nbytes = crypto_hash_walk_first(req, &walk);
 551
 552	cpu = get_cpu();
 553	qp = cpu_to_cwq[cpu];
 554	if (!qp)
 555		goto out;
 556
 557	spin_lock_irqsave(&qp->lock, flags);
 558
 559	/* XXX can do better, improve this later by doing a by-hand scatterlist
 560	 * XXX walk, etc.
 561	 */
 562	ent = qp->q + qp->tail;
 563
 564	ent->control = control_word_base(nbytes, auth_key_len, 0,
 565					 auth_type, digest_size,
 566					 false, true, false, false,
 567					 OPCODE_INPLACE_BIT |
 568					 OPCODE_AUTH_MAC);
 569	ent->src_addr = __pa(walk.data);
 570	ent->auth_key_addr = auth_key;
 571	ent->auth_iv_addr = __pa(hash_loc);
 572	ent->final_auth_state_addr = 0UL;
 573	ent->enc_key_addr = 0UL;
 574	ent->enc_iv_addr = 0UL;
 575	ent->dest_addr = __pa(hash_loc);
 576
 577	nbytes = crypto_hash_walk_done(&walk, 0);
 578	while (nbytes > 0) {
 579		ent = spu_queue_next(qp, ent);
 580
 581		ent->control = (nbytes - 1);
 582		ent->src_addr = __pa(walk.data);
 583		ent->auth_key_addr = 0UL;
 584		ent->auth_iv_addr = 0UL;
 585		ent->final_auth_state_addr = 0UL;
 586		ent->enc_key_addr = 0UL;
 587		ent->enc_iv_addr = 0UL;
 588		ent->dest_addr = 0UL;
 589
 590		nbytes = crypto_hash_walk_done(&walk, 0);
 591	}
 592	ent->control |= CONTROL_END_OF_BLOCK;
 593
 594	if (submit_and_wait_for_tail(qp, ent) != HV_EOK)
 595		err = -EINVAL;
 596	else
 597		err = 0;
 598
 599	spin_unlock_irqrestore(&qp->lock, flags);
 600
 601	if (!err)
 602		memcpy(req->result, hash_loc, result_size);
 603out:
 604	put_cpu();
 605
 606	return err;
 607}
 608
 609static int n2_hash_async_digest(struct ahash_request *req)
 610{
 611	struct n2_ahash_alg *n2alg = n2_ahash_alg(req->base.tfm);
 612	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 613	int ds;
 614
 615	ds = n2alg->digest_size;
 616	if (unlikely(req->nbytes == 0)) {
 617		memcpy(req->result, n2alg->hash_zero, ds);
 618		return 0;
 619	}
 620	memcpy(&rctx->u, n2alg->hash_init, n2alg->hw_op_hashsz);
 621
 622	return n2_do_async_digest(req, n2alg->auth_type,
 623				  n2alg->hw_op_hashsz, ds,
 624				  &rctx->u, 0UL, 0);
 625}
 626
 627static int n2_hmac_async_digest(struct ahash_request *req)
 628{
 629	struct n2_hmac_alg *n2alg = n2_hmac_alg(req->base.tfm);
 630	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 631	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 632	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
 633	int ds;
 634
 635	ds = n2alg->derived.digest_size;
 636	if (unlikely(req->nbytes == 0) ||
 637	    unlikely(ctx->hash_key_len > N2_HASH_KEY_MAX)) {
 638		struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 639		struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
 640
 641		ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
 642		rctx->fallback_req.base.flags =
 643			req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
 644		rctx->fallback_req.nbytes = req->nbytes;
 645		rctx->fallback_req.src = req->src;
 646		rctx->fallback_req.result = req->result;
 647
 648		return crypto_ahash_digest(&rctx->fallback_req);
 649	}
 650	memcpy(&rctx->u, n2alg->derived.hash_init,
 651	       n2alg->derived.hw_op_hashsz);
 652
 653	return n2_do_async_digest(req, n2alg->derived.hmac_type,
 654				  n2alg->derived.hw_op_hashsz, ds,
 655				  &rctx->u,
 656				  __pa(&ctx->hash_key),
 657				  ctx->hash_key_len);
 658}
 659
 660struct n2_skcipher_context {
 661	int			key_len;
 662	int			enc_type;
 663	union {
 664		u8		aes[AES_MAX_KEY_SIZE];
 665		u8		des[DES_KEY_SIZE];
 666		u8		des3[3 * DES_KEY_SIZE];
 
 667	} key;
 668};
 669
 670#define N2_CHUNK_ARR_LEN	16
 671
 672struct n2_crypto_chunk {
 673	struct list_head	entry;
 674	unsigned long		iv_paddr : 44;
 675	unsigned long		arr_len : 20;
 676	unsigned long		dest_paddr;
 677	unsigned long		dest_final;
 678	struct {
 679		unsigned long	src_paddr : 44;
 680		unsigned long	src_len : 20;
 681	} arr[N2_CHUNK_ARR_LEN];
 682};
 683
 684struct n2_request_context {
 685	struct skcipher_walk	walk;
 686	struct list_head	chunk_list;
 687	struct n2_crypto_chunk	chunk;
 688	u8			temp_iv[16];
 689};
 690
 691/* The SPU allows some level of flexibility for partial cipher blocks
 692 * being specified in a descriptor.
 693 *
 694 * It merely requires that every descriptor's length field is at least
 695 * as large as the cipher block size.  This means that a cipher block
 696 * can span at most 2 descriptors.  However, this does not allow a
 697 * partial block to span into the final descriptor as that would
 698 * violate the rule (since every descriptor's length must be at lest
 699 * the block size).  So, for example, assuming an 8 byte block size:
 700 *
 701 *	0xe --> 0xa --> 0x8
 702 *
 703 * is a valid length sequence, whereas:
 704 *
 705 *	0xe --> 0xb --> 0x7
 706 *
 707 * is not a valid sequence.
 708 */
 709
 710struct n2_skcipher_alg {
 711	struct list_head	entry;
 712	u8			enc_type;
 713	struct skcipher_alg	skcipher;
 714};
 715
 716static inline struct n2_skcipher_alg *n2_skcipher_alg(struct crypto_skcipher *tfm)
 717{
 718	struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
 719
 720	return container_of(alg, struct n2_skcipher_alg, skcipher);
 721}
 722
 723struct n2_skcipher_request_context {
 724	struct skcipher_walk	walk;
 725};
 726
 727static int n2_aes_setkey(struct crypto_skcipher *skcipher, const u8 *key,
 728			 unsigned int keylen)
 729{
 730	struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
 731	struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
 732	struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
 733
 734	ctx->enc_type = (n2alg->enc_type & ENC_TYPE_CHAINING_MASK);
 735
 736	switch (keylen) {
 737	case AES_KEYSIZE_128:
 738		ctx->enc_type |= ENC_TYPE_ALG_AES128;
 739		break;
 740	case AES_KEYSIZE_192:
 741		ctx->enc_type |= ENC_TYPE_ALG_AES192;
 742		break;
 743	case AES_KEYSIZE_256:
 744		ctx->enc_type |= ENC_TYPE_ALG_AES256;
 745		break;
 746	default:
 
 747		return -EINVAL;
 748	}
 749
 750	ctx->key_len = keylen;
 751	memcpy(ctx->key.aes, key, keylen);
 752	return 0;
 753}
 754
 755static int n2_des_setkey(struct crypto_skcipher *skcipher, const u8 *key,
 756			 unsigned int keylen)
 757{
 758	struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
 759	struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
 760	struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
 
 761	int err;
 762
 763	err = verify_skcipher_des_key(skcipher, key);
 764	if (err)
 765		return err;
 766
 767	ctx->enc_type = n2alg->enc_type;
 768
 
 
 
 
 
 
 
 
 
 
 
 769	ctx->key_len = keylen;
 770	memcpy(ctx->key.des, key, keylen);
 771	return 0;
 772}
 773
 774static int n2_3des_setkey(struct crypto_skcipher *skcipher, const u8 *key,
 775			  unsigned int keylen)
 776{
 777	struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
 778	struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
 779	struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
 780	int err;
 781
 782	err = verify_skcipher_des3_key(skcipher, key);
 783	if (err)
 784		return err;
 785
 786	ctx->enc_type = n2alg->enc_type;
 787
 
 
 
 
 788	ctx->key_len = keylen;
 789	memcpy(ctx->key.des3, key, keylen);
 790	return 0;
 791}
 792
 793static inline int skcipher_descriptor_len(int nbytes, unsigned int block_size)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 794{
 795	int this_len = nbytes;
 796
 797	this_len -= (nbytes & (block_size - 1));
 798	return this_len > (1 << 16) ? (1 << 16) : this_len;
 799}
 800
 801static int __n2_crypt_chunk(struct crypto_skcipher *skcipher,
 802			    struct n2_crypto_chunk *cp,
 803			    struct spu_queue *qp, bool encrypt)
 804{
 805	struct n2_skcipher_context *ctx = crypto_skcipher_ctx(skcipher);
 806	struct cwq_initial_entry *ent;
 807	bool in_place;
 808	int i;
 809
 810	ent = spu_queue_alloc(qp, cp->arr_len);
 811	if (!ent) {
 812		pr_info("queue_alloc() of %d fails\n",
 813			cp->arr_len);
 814		return -EBUSY;
 815	}
 816
 817	in_place = (cp->dest_paddr == cp->arr[0].src_paddr);
 818
 819	ent->control = control_word_base(cp->arr[0].src_len,
 820					 0, ctx->enc_type, 0, 0,
 821					 false, true, false, encrypt,
 822					 OPCODE_ENCRYPT |
 823					 (in_place ? OPCODE_INPLACE_BIT : 0));
 824	ent->src_addr = cp->arr[0].src_paddr;
 825	ent->auth_key_addr = 0UL;
 826	ent->auth_iv_addr = 0UL;
 827	ent->final_auth_state_addr = 0UL;
 828	ent->enc_key_addr = __pa(&ctx->key);
 829	ent->enc_iv_addr = cp->iv_paddr;
 830	ent->dest_addr = (in_place ? 0UL : cp->dest_paddr);
 831
 832	for (i = 1; i < cp->arr_len; i++) {
 833		ent = spu_queue_next(qp, ent);
 834
 835		ent->control = cp->arr[i].src_len - 1;
 836		ent->src_addr = cp->arr[i].src_paddr;
 837		ent->auth_key_addr = 0UL;
 838		ent->auth_iv_addr = 0UL;
 839		ent->final_auth_state_addr = 0UL;
 840		ent->enc_key_addr = 0UL;
 841		ent->enc_iv_addr = 0UL;
 842		ent->dest_addr = 0UL;
 843	}
 844	ent->control |= CONTROL_END_OF_BLOCK;
 845
 846	return (spu_queue_submit(qp, ent) != HV_EOK) ? -EINVAL : 0;
 847}
 848
 849static int n2_compute_chunks(struct skcipher_request *req)
 850{
 851	struct n2_request_context *rctx = skcipher_request_ctx(req);
 852	struct skcipher_walk *walk = &rctx->walk;
 853	struct n2_crypto_chunk *chunk;
 854	unsigned long dest_prev;
 855	unsigned int tot_len;
 856	bool prev_in_place;
 857	int err, nbytes;
 858
 859	err = skcipher_walk_async(walk, req);
 
 860	if (err)
 861		return err;
 862
 863	INIT_LIST_HEAD(&rctx->chunk_list);
 864
 865	chunk = &rctx->chunk;
 866	INIT_LIST_HEAD(&chunk->entry);
 867
 868	chunk->iv_paddr = 0UL;
 869	chunk->arr_len = 0;
 870	chunk->dest_paddr = 0UL;
 871
 872	prev_in_place = false;
 873	dest_prev = ~0UL;
 874	tot_len = 0;
 875
 876	while ((nbytes = walk->nbytes) != 0) {
 877		unsigned long dest_paddr, src_paddr;
 878		bool in_place;
 879		int this_len;
 880
 881		src_paddr = (page_to_phys(walk->src.phys.page) +
 882			     walk->src.phys.offset);
 883		dest_paddr = (page_to_phys(walk->dst.phys.page) +
 884			      walk->dst.phys.offset);
 885		in_place = (src_paddr == dest_paddr);
 886		this_len = skcipher_descriptor_len(nbytes, walk->blocksize);
 887
 888		if (chunk->arr_len != 0) {
 889			if (in_place != prev_in_place ||
 890			    (!prev_in_place &&
 891			     dest_paddr != dest_prev) ||
 892			    chunk->arr_len == N2_CHUNK_ARR_LEN ||
 893			    tot_len + this_len > (1 << 16)) {
 894				chunk->dest_final = dest_prev;
 895				list_add_tail(&chunk->entry,
 896					      &rctx->chunk_list);
 897				chunk = kzalloc(sizeof(*chunk), GFP_ATOMIC);
 898				if (!chunk) {
 899					err = -ENOMEM;
 900					break;
 901				}
 902				INIT_LIST_HEAD(&chunk->entry);
 903			}
 904		}
 905		if (chunk->arr_len == 0) {
 906			chunk->dest_paddr = dest_paddr;
 907			tot_len = 0;
 908		}
 909		chunk->arr[chunk->arr_len].src_paddr = src_paddr;
 910		chunk->arr[chunk->arr_len].src_len = this_len;
 911		chunk->arr_len++;
 912
 913		dest_prev = dest_paddr + this_len;
 914		prev_in_place = in_place;
 915		tot_len += this_len;
 916
 917		err = skcipher_walk_done(walk, nbytes - this_len);
 918		if (err)
 919			break;
 920	}
 921	if (!err && chunk->arr_len != 0) {
 922		chunk->dest_final = dest_prev;
 923		list_add_tail(&chunk->entry, &rctx->chunk_list);
 924	}
 925
 926	return err;
 927}
 928
 929static void n2_chunk_complete(struct skcipher_request *req, void *final_iv)
 930{
 931	struct n2_request_context *rctx = skcipher_request_ctx(req);
 932	struct n2_crypto_chunk *c, *tmp;
 933
 934	if (final_iv)
 935		memcpy(rctx->walk.iv, final_iv, rctx->walk.blocksize);
 936
 
 937	list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
 938		list_del(&c->entry);
 939		if (unlikely(c != &rctx->chunk))
 940			kfree(c);
 941	}
 942
 943}
 944
 945static int n2_do_ecb(struct skcipher_request *req, bool encrypt)
 946{
 947	struct n2_request_context *rctx = skcipher_request_ctx(req);
 948	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
 949	int err = n2_compute_chunks(req);
 950	struct n2_crypto_chunk *c, *tmp;
 951	unsigned long flags, hv_ret;
 952	struct spu_queue *qp;
 953
 954	if (err)
 955		return err;
 956
 957	qp = cpu_to_cwq[get_cpu()];
 958	err = -ENODEV;
 959	if (!qp)
 960		goto out;
 961
 962	spin_lock_irqsave(&qp->lock, flags);
 963
 964	list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
 965		err = __n2_crypt_chunk(tfm, c, qp, encrypt);
 966		if (err)
 967			break;
 968		list_del(&c->entry);
 969		if (unlikely(c != &rctx->chunk))
 970			kfree(c);
 971	}
 972	if (!err) {
 973		hv_ret = wait_for_tail(qp);
 974		if (hv_ret != HV_EOK)
 975			err = -EINVAL;
 976	}
 977
 978	spin_unlock_irqrestore(&qp->lock, flags);
 979
 980out:
 981	put_cpu();
 982
 983	n2_chunk_complete(req, NULL);
 984	return err;
 985}
 986
 987static int n2_encrypt_ecb(struct skcipher_request *req)
 988{
 989	return n2_do_ecb(req, true);
 990}
 991
 992static int n2_decrypt_ecb(struct skcipher_request *req)
 993{
 994	return n2_do_ecb(req, false);
 995}
 996
 997static int n2_do_chaining(struct skcipher_request *req, bool encrypt)
 998{
 999	struct n2_request_context *rctx = skcipher_request_ctx(req);
1000	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
1001	unsigned long flags, hv_ret, iv_paddr;
1002	int err = n2_compute_chunks(req);
1003	struct n2_crypto_chunk *c, *tmp;
1004	struct spu_queue *qp;
1005	void *final_iv_addr;
1006
1007	final_iv_addr = NULL;
1008
1009	if (err)
1010		return err;
1011
1012	qp = cpu_to_cwq[get_cpu()];
1013	err = -ENODEV;
1014	if (!qp)
1015		goto out;
1016
1017	spin_lock_irqsave(&qp->lock, flags);
1018
1019	if (encrypt) {
1020		iv_paddr = __pa(rctx->walk.iv);
1021		list_for_each_entry_safe(c, tmp, &rctx->chunk_list,
1022					 entry) {
1023			c->iv_paddr = iv_paddr;
1024			err = __n2_crypt_chunk(tfm, c, qp, true);
1025			if (err)
1026				break;
1027			iv_paddr = c->dest_final - rctx->walk.blocksize;
1028			list_del(&c->entry);
1029			if (unlikely(c != &rctx->chunk))
1030				kfree(c);
1031		}
1032		final_iv_addr = __va(iv_paddr);
1033	} else {
1034		list_for_each_entry_safe_reverse(c, tmp, &rctx->chunk_list,
1035						 entry) {
1036			if (c == &rctx->chunk) {
1037				iv_paddr = __pa(rctx->walk.iv);
1038			} else {
1039				iv_paddr = (tmp->arr[tmp->arr_len-1].src_paddr +
1040					    tmp->arr[tmp->arr_len-1].src_len -
1041					    rctx->walk.blocksize);
1042			}
1043			if (!final_iv_addr) {
1044				unsigned long pa;
1045
1046				pa = (c->arr[c->arr_len-1].src_paddr +
1047				      c->arr[c->arr_len-1].src_len -
1048				      rctx->walk.blocksize);
1049				final_iv_addr = rctx->temp_iv;
1050				memcpy(rctx->temp_iv, __va(pa),
1051				       rctx->walk.blocksize);
1052			}
1053			c->iv_paddr = iv_paddr;
1054			err = __n2_crypt_chunk(tfm, c, qp, false);
1055			if (err)
1056				break;
1057			list_del(&c->entry);
1058			if (unlikely(c != &rctx->chunk))
1059				kfree(c);
1060		}
1061	}
1062	if (!err) {
1063		hv_ret = wait_for_tail(qp);
1064		if (hv_ret != HV_EOK)
1065			err = -EINVAL;
1066	}
1067
1068	spin_unlock_irqrestore(&qp->lock, flags);
1069
1070out:
1071	put_cpu();
1072
1073	n2_chunk_complete(req, err ? NULL : final_iv_addr);
1074	return err;
1075}
1076
1077static int n2_encrypt_chaining(struct skcipher_request *req)
1078{
1079	return n2_do_chaining(req, true);
1080}
1081
1082static int n2_decrypt_chaining(struct skcipher_request *req)
1083{
1084	return n2_do_chaining(req, false);
1085}
1086
1087struct n2_skcipher_tmpl {
1088	const char		*name;
1089	const char		*drv_name;
1090	u8			block_size;
1091	u8			enc_type;
1092	struct skcipher_alg	skcipher;
1093};
1094
1095static const struct n2_skcipher_tmpl skcipher_tmpls[] = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1096	/* DES: ECB CBC and CFB are supported */
1097	{	.name		= "ecb(des)",
1098		.drv_name	= "ecb-des",
1099		.block_size	= DES_BLOCK_SIZE,
1100		.enc_type	= (ENC_TYPE_ALG_DES |
1101				   ENC_TYPE_CHAINING_ECB),
1102		.skcipher	= {
1103			.min_keysize	= DES_KEY_SIZE,
1104			.max_keysize	= DES_KEY_SIZE,
1105			.setkey		= n2_des_setkey,
1106			.encrypt	= n2_encrypt_ecb,
1107			.decrypt	= n2_decrypt_ecb,
1108		},
1109	},
1110	{	.name		= "cbc(des)",
1111		.drv_name	= "cbc-des",
1112		.block_size	= DES_BLOCK_SIZE,
1113		.enc_type	= (ENC_TYPE_ALG_DES |
1114				   ENC_TYPE_CHAINING_CBC),
1115		.skcipher	= {
1116			.ivsize		= DES_BLOCK_SIZE,
1117			.min_keysize	= DES_KEY_SIZE,
1118			.max_keysize	= DES_KEY_SIZE,
1119			.setkey		= n2_des_setkey,
1120			.encrypt	= n2_encrypt_chaining,
1121			.decrypt	= n2_decrypt_chaining,
1122		},
1123	},
 
 
 
 
 
 
 
 
 
 
 
 
 
1124
1125	/* 3DES: ECB CBC and CFB are supported */
1126	{	.name		= "ecb(des3_ede)",
1127		.drv_name	= "ecb-3des",
1128		.block_size	= DES_BLOCK_SIZE,
1129		.enc_type	= (ENC_TYPE_ALG_3DES |
1130				   ENC_TYPE_CHAINING_ECB),
1131		.skcipher	= {
1132			.min_keysize	= 3 * DES_KEY_SIZE,
1133			.max_keysize	= 3 * DES_KEY_SIZE,
1134			.setkey		= n2_3des_setkey,
1135			.encrypt	= n2_encrypt_ecb,
1136			.decrypt	= n2_decrypt_ecb,
1137		},
1138	},
1139	{	.name		= "cbc(des3_ede)",
1140		.drv_name	= "cbc-3des",
1141		.block_size	= DES_BLOCK_SIZE,
1142		.enc_type	= (ENC_TYPE_ALG_3DES |
1143				   ENC_TYPE_CHAINING_CBC),
1144		.skcipher	= {
1145			.ivsize		= DES_BLOCK_SIZE,
1146			.min_keysize	= 3 * DES_KEY_SIZE,
1147			.max_keysize	= 3 * DES_KEY_SIZE,
1148			.setkey		= n2_3des_setkey,
1149			.encrypt	= n2_encrypt_chaining,
1150			.decrypt	= n2_decrypt_chaining,
1151		},
1152	},
1153
 
 
 
 
 
 
 
 
 
 
 
 
1154	/* AES: ECB CBC and CTR are supported */
1155	{	.name		= "ecb(aes)",
1156		.drv_name	= "ecb-aes",
1157		.block_size	= AES_BLOCK_SIZE,
1158		.enc_type	= (ENC_TYPE_ALG_AES128 |
1159				   ENC_TYPE_CHAINING_ECB),
1160		.skcipher	= {
1161			.min_keysize	= AES_MIN_KEY_SIZE,
1162			.max_keysize	= AES_MAX_KEY_SIZE,
1163			.setkey		= n2_aes_setkey,
1164			.encrypt	= n2_encrypt_ecb,
1165			.decrypt	= n2_decrypt_ecb,
1166		},
1167	},
1168	{	.name		= "cbc(aes)",
1169		.drv_name	= "cbc-aes",
1170		.block_size	= AES_BLOCK_SIZE,
1171		.enc_type	= (ENC_TYPE_ALG_AES128 |
1172				   ENC_TYPE_CHAINING_CBC),
1173		.skcipher	= {
1174			.ivsize		= AES_BLOCK_SIZE,
1175			.min_keysize	= AES_MIN_KEY_SIZE,
1176			.max_keysize	= AES_MAX_KEY_SIZE,
1177			.setkey		= n2_aes_setkey,
1178			.encrypt	= n2_encrypt_chaining,
1179			.decrypt	= n2_decrypt_chaining,
1180		},
1181	},
1182	{	.name		= "ctr(aes)",
1183		.drv_name	= "ctr-aes",
1184		.block_size	= AES_BLOCK_SIZE,
1185		.enc_type	= (ENC_TYPE_ALG_AES128 |
1186				   ENC_TYPE_CHAINING_COUNTER),
1187		.skcipher	= {
1188			.ivsize		= AES_BLOCK_SIZE,
1189			.min_keysize	= AES_MIN_KEY_SIZE,
1190			.max_keysize	= AES_MAX_KEY_SIZE,
1191			.setkey		= n2_aes_setkey,
1192			.encrypt	= n2_encrypt_chaining,
1193			.decrypt	= n2_encrypt_chaining,
1194		},
1195	},
1196
1197};
1198#define NUM_CIPHER_TMPLS ARRAY_SIZE(skcipher_tmpls)
1199
1200static LIST_HEAD(skcipher_algs);
1201
1202struct n2_hash_tmpl {
1203	const char	*name;
1204	const u8	*hash_zero;
1205	const u8	*hash_init;
1206	u8		hw_op_hashsz;
1207	u8		digest_size;
1208	u8		statesize;
1209	u8		block_size;
1210	u8		auth_type;
1211	u8		hmac_type;
1212};
1213
1214static const __le32 n2_md5_init[MD5_HASH_WORDS] = {
1215	cpu_to_le32(MD5_H0),
1216	cpu_to_le32(MD5_H1),
1217	cpu_to_le32(MD5_H2),
1218	cpu_to_le32(MD5_H3),
1219};
1220static const u32 n2_sha1_init[SHA1_DIGEST_SIZE / 4] = {
1221	SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4,
1222};
1223static const u32 n2_sha256_init[SHA256_DIGEST_SIZE / 4] = {
1224	SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
1225	SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7,
1226};
1227static const u32 n2_sha224_init[SHA256_DIGEST_SIZE / 4] = {
1228	SHA224_H0, SHA224_H1, SHA224_H2, SHA224_H3,
1229	SHA224_H4, SHA224_H5, SHA224_H6, SHA224_H7,
1230};
1231
1232static const struct n2_hash_tmpl hash_tmpls[] = {
1233	{ .name		= "md5",
1234	  .hash_zero	= md5_zero_message_hash,
1235	  .hash_init	= (u8 *)n2_md5_init,
1236	  .auth_type	= AUTH_TYPE_MD5,
1237	  .hmac_type	= AUTH_TYPE_HMAC_MD5,
1238	  .hw_op_hashsz	= MD5_DIGEST_SIZE,
1239	  .digest_size	= MD5_DIGEST_SIZE,
1240	  .statesize	= sizeof(struct md5_state),
1241	  .block_size	= MD5_HMAC_BLOCK_SIZE },
1242	{ .name		= "sha1",
1243	  .hash_zero	= sha1_zero_message_hash,
1244	  .hash_init	= (u8 *)n2_sha1_init,
1245	  .auth_type	= AUTH_TYPE_SHA1,
1246	  .hmac_type	= AUTH_TYPE_HMAC_SHA1,
1247	  .hw_op_hashsz	= SHA1_DIGEST_SIZE,
1248	  .digest_size	= SHA1_DIGEST_SIZE,
1249	  .statesize	= sizeof(struct sha1_state),
1250	  .block_size	= SHA1_BLOCK_SIZE },
1251	{ .name		= "sha256",
1252	  .hash_zero	= sha256_zero_message_hash,
1253	  .hash_init	= (u8 *)n2_sha256_init,
1254	  .auth_type	= AUTH_TYPE_SHA256,
1255	  .hmac_type	= AUTH_TYPE_HMAC_SHA256,
1256	  .hw_op_hashsz	= SHA256_DIGEST_SIZE,
1257	  .digest_size	= SHA256_DIGEST_SIZE,
1258	  .statesize	= sizeof(struct sha256_state),
1259	  .block_size	= SHA256_BLOCK_SIZE },
1260	{ .name		= "sha224",
1261	  .hash_zero	= sha224_zero_message_hash,
1262	  .hash_init	= (u8 *)n2_sha224_init,
1263	  .auth_type	= AUTH_TYPE_SHA256,
1264	  .hmac_type	= AUTH_TYPE_RESERVED,
1265	  .hw_op_hashsz	= SHA256_DIGEST_SIZE,
1266	  .digest_size	= SHA224_DIGEST_SIZE,
1267	  .statesize	= sizeof(struct sha256_state),
1268	  .block_size	= SHA224_BLOCK_SIZE },
1269};
1270#define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls)
1271
1272static LIST_HEAD(ahash_algs);
1273static LIST_HEAD(hmac_algs);
1274
1275static int algs_registered;
1276
1277static void __n2_unregister_algs(void)
1278{
1279	struct n2_skcipher_alg *skcipher, *skcipher_tmp;
1280	struct n2_ahash_alg *alg, *alg_tmp;
1281	struct n2_hmac_alg *hmac, *hmac_tmp;
1282
1283	list_for_each_entry_safe(skcipher, skcipher_tmp, &skcipher_algs, entry) {
1284		crypto_unregister_skcipher(&skcipher->skcipher);
1285		list_del(&skcipher->entry);
1286		kfree(skcipher);
1287	}
1288	list_for_each_entry_safe(hmac, hmac_tmp, &hmac_algs, derived.entry) {
1289		crypto_unregister_ahash(&hmac->derived.alg);
1290		list_del(&hmac->derived.entry);
1291		kfree(hmac);
1292	}
1293	list_for_each_entry_safe(alg, alg_tmp, &ahash_algs, entry) {
1294		crypto_unregister_ahash(&alg->alg);
1295		list_del(&alg->entry);
1296		kfree(alg);
1297	}
1298}
1299
1300static int n2_skcipher_init_tfm(struct crypto_skcipher *tfm)
1301{
1302	crypto_skcipher_set_reqsize(tfm, sizeof(struct n2_request_context));
1303	return 0;
1304}
1305
1306static int __n2_register_one_skcipher(const struct n2_skcipher_tmpl *tmpl)
1307{
1308	struct n2_skcipher_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1309	struct skcipher_alg *alg;
1310	int err;
1311
1312	if (!p)
1313		return -ENOMEM;
1314
1315	alg = &p->skcipher;
1316	*alg = tmpl->skcipher;
1317
1318	snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1319	snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->drv_name);
1320	alg->base.cra_priority = N2_CRA_PRIORITY;
1321	alg->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC |
1322			      CRYPTO_ALG_ALLOCATES_MEMORY;
1323	alg->base.cra_blocksize = tmpl->block_size;
1324	p->enc_type = tmpl->enc_type;
1325	alg->base.cra_ctxsize = sizeof(struct n2_skcipher_context);
1326	alg->base.cra_module = THIS_MODULE;
1327	alg->init = n2_skcipher_init_tfm;
 
 
1328
1329	list_add(&p->entry, &skcipher_algs);
1330	err = crypto_register_skcipher(alg);
1331	if (err) {
1332		pr_err("%s alg registration failed\n", alg->base.cra_name);
1333		list_del(&p->entry);
1334		kfree(p);
1335	} else {
1336		pr_info("%s alg registered\n", alg->base.cra_name);
1337	}
1338	return err;
1339}
1340
1341static int __n2_register_one_hmac(struct n2_ahash_alg *n2ahash)
1342{
1343	struct n2_hmac_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1344	struct ahash_alg *ahash;
1345	struct crypto_alg *base;
1346	int err;
1347
1348	if (!p)
1349		return -ENOMEM;
1350
1351	p->child_alg = n2ahash->alg.halg.base.cra_name;
1352	memcpy(&p->derived, n2ahash, sizeof(struct n2_ahash_alg));
1353	INIT_LIST_HEAD(&p->derived.entry);
1354
1355	ahash = &p->derived.alg;
1356	ahash->digest = n2_hmac_async_digest;
1357	ahash->setkey = n2_hmac_async_setkey;
1358
1359	base = &ahash->halg.base;
1360	if (snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)",
1361		     p->child_alg) >= CRYPTO_MAX_ALG_NAME)
1362		goto out_free_p;
1363	if (snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s-n2",
1364		     p->child_alg) >= CRYPTO_MAX_ALG_NAME)
1365		goto out_free_p;
1366
1367	base->cra_ctxsize = sizeof(struct n2_hmac_ctx);
1368	base->cra_init = n2_hmac_cra_init;
1369	base->cra_exit = n2_hmac_cra_exit;
1370
1371	list_add(&p->derived.entry, &hmac_algs);
1372	err = crypto_register_ahash(ahash);
1373	if (err) {
1374		pr_err("%s alg registration failed\n", base->cra_name);
1375		list_del(&p->derived.entry);
1376out_free_p:
1377		kfree(p);
1378	} else {
1379		pr_info("%s alg registered\n", base->cra_name);
1380	}
1381	return err;
1382}
1383
1384static int __n2_register_one_ahash(const struct n2_hash_tmpl *tmpl)
1385{
1386	struct n2_ahash_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1387	struct hash_alg_common *halg;
1388	struct crypto_alg *base;
1389	struct ahash_alg *ahash;
1390	int err;
1391
1392	if (!p)
1393		return -ENOMEM;
1394
1395	p->hash_zero = tmpl->hash_zero;
1396	p->hash_init = tmpl->hash_init;
1397	p->auth_type = tmpl->auth_type;
1398	p->hmac_type = tmpl->hmac_type;
1399	p->hw_op_hashsz = tmpl->hw_op_hashsz;
1400	p->digest_size = tmpl->digest_size;
1401
1402	ahash = &p->alg;
1403	ahash->init = n2_hash_async_init;
1404	ahash->update = n2_hash_async_update;
1405	ahash->final = n2_hash_async_final;
1406	ahash->finup = n2_hash_async_finup;
1407	ahash->digest = n2_hash_async_digest;
1408	ahash->export = n2_hash_async_noexport;
1409	ahash->import = n2_hash_async_noimport;
1410
1411	halg = &ahash->halg;
1412	halg->digestsize = tmpl->digest_size;
1413	halg->statesize = tmpl->statesize;
1414
1415	base = &halg->base;
1416	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1417	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->name);
1418	base->cra_priority = N2_CRA_PRIORITY;
1419	base->cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
 
1420			  CRYPTO_ALG_NEED_FALLBACK;
1421	base->cra_blocksize = tmpl->block_size;
1422	base->cra_ctxsize = sizeof(struct n2_hash_ctx);
1423	base->cra_module = THIS_MODULE;
1424	base->cra_init = n2_hash_cra_init;
1425	base->cra_exit = n2_hash_cra_exit;
1426
1427	list_add(&p->entry, &ahash_algs);
1428	err = crypto_register_ahash(ahash);
1429	if (err) {
1430		pr_err("%s alg registration failed\n", base->cra_name);
1431		list_del(&p->entry);
1432		kfree(p);
1433	} else {
1434		pr_info("%s alg registered\n", base->cra_name);
1435	}
1436	if (!err && p->hmac_type != AUTH_TYPE_RESERVED)
1437		err = __n2_register_one_hmac(p);
1438	return err;
1439}
1440
1441static int n2_register_algs(void)
1442{
1443	int i, err = 0;
1444
1445	mutex_lock(&spu_lock);
1446	if (algs_registered++)
1447		goto out;
1448
1449	for (i = 0; i < NUM_HASH_TMPLS; i++) {
1450		err = __n2_register_one_ahash(&hash_tmpls[i]);
1451		if (err) {
1452			__n2_unregister_algs();
1453			goto out;
1454		}
1455	}
1456	for (i = 0; i < NUM_CIPHER_TMPLS; i++) {
1457		err = __n2_register_one_skcipher(&skcipher_tmpls[i]);
1458		if (err) {
1459			__n2_unregister_algs();
1460			goto out;
1461		}
1462	}
1463
1464out:
1465	mutex_unlock(&spu_lock);
1466	return err;
1467}
1468
1469static void n2_unregister_algs(void)
1470{
1471	mutex_lock(&spu_lock);
1472	if (!--algs_registered)
1473		__n2_unregister_algs();
1474	mutex_unlock(&spu_lock);
1475}
1476
1477/* To map CWQ queues to interrupt sources, the hypervisor API provides
1478 * a devino.  This isn't very useful to us because all of the
1479 * interrupts listed in the device_node have been translated to
1480 * Linux virtual IRQ cookie numbers.
1481 *
1482 * So we have to back-translate, going through the 'intr' and 'ino'
1483 * property tables of the n2cp MDESC node, matching it with the OF
1484 * 'interrupts' property entries, in order to figure out which
1485 * devino goes to which already-translated IRQ.
1486 */
1487static int find_devino_index(struct platform_device *dev, struct spu_mdesc_info *ip,
1488			     unsigned long dev_ino)
1489{
1490	const unsigned int *dev_intrs;
1491	unsigned int intr;
1492	int i;
1493
1494	for (i = 0; i < ip->num_intrs; i++) {
1495		if (ip->ino_table[i].ino == dev_ino)
1496			break;
1497	}
1498	if (i == ip->num_intrs)
1499		return -ENODEV;
1500
1501	intr = ip->ino_table[i].intr;
1502
1503	dev_intrs = of_get_property(dev->dev.of_node, "interrupts", NULL);
1504	if (!dev_intrs)
1505		return -ENODEV;
1506
1507	for (i = 0; i < dev->archdata.num_irqs; i++) {
1508		if (dev_intrs[i] == intr)
1509			return i;
1510	}
1511
1512	return -ENODEV;
1513}
1514
1515static int spu_map_ino(struct platform_device *dev, struct spu_mdesc_info *ip,
1516		       const char *irq_name, struct spu_queue *p,
1517		       irq_handler_t handler)
1518{
1519	unsigned long herr;
1520	int index;
1521
1522	herr = sun4v_ncs_qhandle_to_devino(p->qhandle, &p->devino);
1523	if (herr)
1524		return -EINVAL;
1525
1526	index = find_devino_index(dev, ip, p->devino);
1527	if (index < 0)
1528		return index;
1529
1530	p->irq = dev->archdata.irqs[index];
1531
1532	sprintf(p->irq_name, "%s-%d", irq_name, index);
1533
1534	return request_irq(p->irq, handler, 0, p->irq_name, p);
1535}
1536
1537static struct kmem_cache *queue_cache[2];
1538
1539static void *new_queue(unsigned long q_type)
1540{
1541	return kmem_cache_zalloc(queue_cache[q_type - 1], GFP_KERNEL);
1542}
1543
1544static void free_queue(void *p, unsigned long q_type)
1545{
1546	kmem_cache_free(queue_cache[q_type - 1], p);
1547}
1548
1549static int queue_cache_init(void)
1550{
1551	if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1552		queue_cache[HV_NCS_QTYPE_MAU - 1] =
1553			kmem_cache_create("mau_queue",
1554					  (MAU_NUM_ENTRIES *
1555					   MAU_ENTRY_SIZE),
1556					  MAU_ENTRY_SIZE, 0, NULL);
1557	if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1558		return -ENOMEM;
1559
1560	if (!queue_cache[HV_NCS_QTYPE_CWQ - 1])
1561		queue_cache[HV_NCS_QTYPE_CWQ - 1] =
1562			kmem_cache_create("cwq_queue",
1563					  (CWQ_NUM_ENTRIES *
1564					   CWQ_ENTRY_SIZE),
1565					  CWQ_ENTRY_SIZE, 0, NULL);
1566	if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) {
1567		kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1568		queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1569		return -ENOMEM;
1570	}
1571	return 0;
1572}
1573
1574static void queue_cache_destroy(void)
1575{
1576	kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1577	kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_CWQ - 1]);
1578	queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1579	queue_cache[HV_NCS_QTYPE_CWQ - 1] = NULL;
1580}
1581
1582static long spu_queue_register_workfn(void *arg)
1583{
1584	struct spu_qreg *qr = arg;
1585	struct spu_queue *p = qr->queue;
1586	unsigned long q_type = qr->type;
1587	unsigned long hv_ret;
1588
 
 
 
 
 
 
 
 
 
 
1589	hv_ret = sun4v_ncs_qconf(q_type, __pa(p->q),
1590				 CWQ_NUM_ENTRIES, &p->qhandle);
1591	if (!hv_ret)
1592		sun4v_ncs_sethead_marker(p->qhandle, 0);
1593
1594	return hv_ret ? -EINVAL : 0;
1595}
1596
1597static int spu_queue_register(struct spu_queue *p, unsigned long q_type)
1598{
1599	int cpu = cpumask_any_and(&p->sharing, cpu_online_mask);
1600	struct spu_qreg qr = { .queue = p, .type = q_type };
1601
1602	return work_on_cpu_safe(cpu, spu_queue_register_workfn, &qr);
1603}
1604
1605static int spu_queue_setup(struct spu_queue *p)
1606{
1607	int err;
1608
1609	p->q = new_queue(p->q_type);
1610	if (!p->q)
1611		return -ENOMEM;
1612
1613	err = spu_queue_register(p, p->q_type);
1614	if (err) {
1615		free_queue(p->q, p->q_type);
1616		p->q = NULL;
1617	}
1618
1619	return err;
1620}
1621
1622static void spu_queue_destroy(struct spu_queue *p)
1623{
1624	unsigned long hv_ret;
1625
1626	if (!p->q)
1627		return;
1628
1629	hv_ret = sun4v_ncs_qconf(p->q_type, p->qhandle, 0, &p->qhandle);
1630
1631	if (!hv_ret)
1632		free_queue(p->q, p->q_type);
1633}
1634
1635static void spu_list_destroy(struct list_head *list)
1636{
1637	struct spu_queue *p, *n;
1638
1639	list_for_each_entry_safe(p, n, list, list) {
1640		int i;
1641
1642		for (i = 0; i < NR_CPUS; i++) {
1643			if (cpu_to_cwq[i] == p)
1644				cpu_to_cwq[i] = NULL;
1645		}
1646
1647		if (p->irq) {
1648			free_irq(p->irq, p);
1649			p->irq = 0;
1650		}
1651		spu_queue_destroy(p);
1652		list_del(&p->list);
1653		kfree(p);
1654	}
1655}
1656
1657/* Walk the backward arcs of a CWQ 'exec-unit' node,
1658 * gathering cpu membership information.
1659 */
1660static int spu_mdesc_walk_arcs(struct mdesc_handle *mdesc,
1661			       struct platform_device *dev,
1662			       u64 node, struct spu_queue *p,
1663			       struct spu_queue **table)
1664{
1665	u64 arc;
1666
1667	mdesc_for_each_arc(arc, mdesc, node, MDESC_ARC_TYPE_BACK) {
1668		u64 tgt = mdesc_arc_target(mdesc, arc);
1669		const char *name = mdesc_node_name(mdesc, tgt);
1670		const u64 *id;
1671
1672		if (strcmp(name, "cpu"))
1673			continue;
1674		id = mdesc_get_property(mdesc, tgt, "id", NULL);
1675		if (table[*id] != NULL) {
1676			dev_err(&dev->dev, "%pOF: SPU cpu slot already set.\n",
1677				dev->dev.of_node);
1678			return -EINVAL;
1679		}
1680		cpumask_set_cpu(*id, &p->sharing);
1681		table[*id] = p;
1682	}
1683	return 0;
1684}
1685
1686/* Process an 'exec-unit' MDESC node of type 'cwq'.  */
1687static int handle_exec_unit(struct spu_mdesc_info *ip, struct list_head *list,
1688			    struct platform_device *dev, struct mdesc_handle *mdesc,
1689			    u64 node, const char *iname, unsigned long q_type,
1690			    irq_handler_t handler, struct spu_queue **table)
1691{
1692	struct spu_queue *p;
1693	int err;
1694
1695	p = kzalloc(sizeof(struct spu_queue), GFP_KERNEL);
1696	if (!p) {
1697		dev_err(&dev->dev, "%pOF: Could not allocate SPU queue.\n",
1698			dev->dev.of_node);
1699		return -ENOMEM;
1700	}
1701
1702	cpumask_clear(&p->sharing);
1703	spin_lock_init(&p->lock);
1704	p->q_type = q_type;
1705	INIT_LIST_HEAD(&p->jobs);
1706	list_add(&p->list, list);
1707
1708	err = spu_mdesc_walk_arcs(mdesc, dev, node, p, table);
1709	if (err)
1710		return err;
1711
1712	err = spu_queue_setup(p);
1713	if (err)
1714		return err;
1715
1716	return spu_map_ino(dev, ip, iname, p, handler);
1717}
1718
1719static int spu_mdesc_scan(struct mdesc_handle *mdesc, struct platform_device *dev,
1720			  struct spu_mdesc_info *ip, struct list_head *list,
1721			  const char *exec_name, unsigned long q_type,
1722			  irq_handler_t handler, struct spu_queue **table)
1723{
1724	int err = 0;
1725	u64 node;
1726
1727	mdesc_for_each_node_by_name(mdesc, node, "exec-unit") {
1728		const char *type;
1729
1730		type = mdesc_get_property(mdesc, node, "type", NULL);
1731		if (!type || strcmp(type, exec_name))
1732			continue;
1733
1734		err = handle_exec_unit(ip, list, dev, mdesc, node,
1735				       exec_name, q_type, handler, table);
1736		if (err) {
1737			spu_list_destroy(list);
1738			break;
1739		}
1740	}
1741
1742	return err;
1743}
1744
1745static int get_irq_props(struct mdesc_handle *mdesc, u64 node,
1746			 struct spu_mdesc_info *ip)
1747{
1748	const u64 *ino;
1749	int ino_len;
1750	int i;
1751
1752	ino = mdesc_get_property(mdesc, node, "ino", &ino_len);
1753	if (!ino) {
1754		printk("NO 'ino'\n");
1755		return -ENODEV;
1756	}
1757
1758	ip->num_intrs = ino_len / sizeof(u64);
1759	ip->ino_table = kzalloc((sizeof(struct ino_blob) *
1760				 ip->num_intrs),
1761				GFP_KERNEL);
1762	if (!ip->ino_table)
1763		return -ENOMEM;
1764
1765	for (i = 0; i < ip->num_intrs; i++) {
1766		struct ino_blob *b = &ip->ino_table[i];
1767		b->intr = i + 1;
1768		b->ino = ino[i];
1769	}
1770
1771	return 0;
1772}
1773
1774static int grab_mdesc_irq_props(struct mdesc_handle *mdesc,
1775				struct platform_device *dev,
1776				struct spu_mdesc_info *ip,
1777				const char *node_name)
1778{
1779	u64 node, reg;
 
1780
1781	if (of_property_read_reg(dev->dev.of_node, 0, &reg, NULL) < 0)
 
1782		return -ENODEV;
1783
1784	mdesc_for_each_node_by_name(mdesc, node, "virtual-device") {
1785		const char *name;
1786		const u64 *chdl;
1787
1788		name = mdesc_get_property(mdesc, node, "name", NULL);
1789		if (!name || strcmp(name, node_name))
1790			continue;
1791		chdl = mdesc_get_property(mdesc, node, "cfg-handle", NULL);
1792		if (!chdl || (*chdl != reg))
1793			continue;
1794		ip->cfg_handle = *chdl;
1795		return get_irq_props(mdesc, node, ip);
1796	}
1797
1798	return -ENODEV;
1799}
1800
1801static unsigned long n2_spu_hvapi_major;
1802static unsigned long n2_spu_hvapi_minor;
1803
1804static int n2_spu_hvapi_register(void)
1805{
1806	int err;
1807
1808	n2_spu_hvapi_major = 2;
1809	n2_spu_hvapi_minor = 0;
1810
1811	err = sun4v_hvapi_register(HV_GRP_NCS,
1812				   n2_spu_hvapi_major,
1813				   &n2_spu_hvapi_minor);
1814
1815	if (!err)
1816		pr_info("Registered NCS HVAPI version %lu.%lu\n",
1817			n2_spu_hvapi_major,
1818			n2_spu_hvapi_minor);
1819
1820	return err;
1821}
1822
1823static void n2_spu_hvapi_unregister(void)
1824{
1825	sun4v_hvapi_unregister(HV_GRP_NCS);
1826}
1827
1828static int global_ref;
1829
1830static int grab_global_resources(void)
1831{
1832	int err = 0;
1833
1834	mutex_lock(&spu_lock);
1835
1836	if (global_ref++)
1837		goto out;
1838
1839	err = n2_spu_hvapi_register();
1840	if (err)
1841		goto out;
1842
1843	err = queue_cache_init();
1844	if (err)
1845		goto out_hvapi_release;
1846
1847	err = -ENOMEM;
1848	cpu_to_cwq = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1849			     GFP_KERNEL);
1850	if (!cpu_to_cwq)
1851		goto out_queue_cache_destroy;
1852
1853	cpu_to_mau = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1854			     GFP_KERNEL);
1855	if (!cpu_to_mau)
1856		goto out_free_cwq_table;
1857
1858	err = 0;
1859
1860out:
1861	if (err)
1862		global_ref--;
1863	mutex_unlock(&spu_lock);
1864	return err;
1865
1866out_free_cwq_table:
1867	kfree(cpu_to_cwq);
1868	cpu_to_cwq = NULL;
1869
1870out_queue_cache_destroy:
1871	queue_cache_destroy();
1872
1873out_hvapi_release:
1874	n2_spu_hvapi_unregister();
1875	goto out;
1876}
1877
1878static void release_global_resources(void)
1879{
1880	mutex_lock(&spu_lock);
1881	if (!--global_ref) {
1882		kfree(cpu_to_cwq);
1883		cpu_to_cwq = NULL;
1884
1885		kfree(cpu_to_mau);
1886		cpu_to_mau = NULL;
1887
1888		queue_cache_destroy();
1889		n2_spu_hvapi_unregister();
1890	}
1891	mutex_unlock(&spu_lock);
1892}
1893
1894static struct n2_crypto *alloc_n2cp(void)
1895{
1896	struct n2_crypto *np = kzalloc(sizeof(struct n2_crypto), GFP_KERNEL);
1897
1898	if (np)
1899		INIT_LIST_HEAD(&np->cwq_list);
1900
1901	return np;
1902}
1903
1904static void free_n2cp(struct n2_crypto *np)
1905{
1906	kfree(np->cwq_info.ino_table);
1907	np->cwq_info.ino_table = NULL;
 
 
1908
1909	kfree(np);
1910}
1911
1912static void n2_spu_driver_version(void)
1913{
1914	static int n2_spu_version_printed;
1915
1916	if (n2_spu_version_printed++ == 0)
1917		pr_info("%s", version);
1918}
1919
1920static int n2_crypto_probe(struct platform_device *dev)
1921{
1922	struct mdesc_handle *mdesc;
 
1923	struct n2_crypto *np;
1924	int err;
1925
1926	n2_spu_driver_version();
1927
1928	pr_info("Found N2CP at %pOF\n", dev->dev.of_node);
 
1929
1930	np = alloc_n2cp();
1931	if (!np) {
1932		dev_err(&dev->dev, "%pOF: Unable to allocate n2cp.\n",
1933			dev->dev.of_node);
1934		return -ENOMEM;
1935	}
1936
1937	err = grab_global_resources();
1938	if (err) {
1939		dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
1940			dev->dev.of_node);
1941		goto out_free_n2cp;
1942	}
1943
1944	mdesc = mdesc_grab();
1945
1946	if (!mdesc) {
1947		dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
1948			dev->dev.of_node);
1949		err = -ENODEV;
1950		goto out_free_global;
1951	}
1952	err = grab_mdesc_irq_props(mdesc, dev, &np->cwq_info, "n2cp");
1953	if (err) {
1954		dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
1955			dev->dev.of_node);
1956		mdesc_release(mdesc);
1957		goto out_free_global;
1958	}
1959
1960	err = spu_mdesc_scan(mdesc, dev, &np->cwq_info, &np->cwq_list,
1961			     "cwq", HV_NCS_QTYPE_CWQ, cwq_intr,
1962			     cpu_to_cwq);
1963	mdesc_release(mdesc);
1964
1965	if (err) {
1966		dev_err(&dev->dev, "%pOF: CWQ MDESC scan failed.\n",
1967			dev->dev.of_node);
1968		goto out_free_global;
1969	}
1970
1971	err = n2_register_algs();
1972	if (err) {
1973		dev_err(&dev->dev, "%pOF: Unable to register algorithms.\n",
1974			dev->dev.of_node);
1975		goto out_free_spu_list;
1976	}
1977
1978	dev_set_drvdata(&dev->dev, np);
1979
1980	return 0;
1981
1982out_free_spu_list:
1983	spu_list_destroy(&np->cwq_list);
1984
1985out_free_global:
1986	release_global_resources();
1987
1988out_free_n2cp:
1989	free_n2cp(np);
1990
1991	return err;
1992}
1993
1994static void n2_crypto_remove(struct platform_device *dev)
1995{
1996	struct n2_crypto *np = dev_get_drvdata(&dev->dev);
1997
1998	n2_unregister_algs();
1999
2000	spu_list_destroy(&np->cwq_list);
2001
2002	release_global_resources();
2003
2004	free_n2cp(np);
 
 
2005}
2006
2007static struct n2_mau *alloc_ncp(void)
2008{
2009	struct n2_mau *mp = kzalloc(sizeof(struct n2_mau), GFP_KERNEL);
2010
2011	if (mp)
2012		INIT_LIST_HEAD(&mp->mau_list);
2013
2014	return mp;
2015}
2016
2017static void free_ncp(struct n2_mau *mp)
2018{
2019	kfree(mp->mau_info.ino_table);
2020	mp->mau_info.ino_table = NULL;
 
 
2021
2022	kfree(mp);
2023}
2024
2025static int n2_mau_probe(struct platform_device *dev)
2026{
2027	struct mdesc_handle *mdesc;
 
2028	struct n2_mau *mp;
2029	int err;
2030
2031	n2_spu_driver_version();
2032
2033	pr_info("Found NCP at %pOF\n", dev->dev.of_node);
 
2034
2035	mp = alloc_ncp();
2036	if (!mp) {
2037		dev_err(&dev->dev, "%pOF: Unable to allocate ncp.\n",
2038			dev->dev.of_node);
2039		return -ENOMEM;
2040	}
2041
2042	err = grab_global_resources();
2043	if (err) {
2044		dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
2045			dev->dev.of_node);
2046		goto out_free_ncp;
2047	}
2048
2049	mdesc = mdesc_grab();
2050
2051	if (!mdesc) {
2052		dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
2053			dev->dev.of_node);
2054		err = -ENODEV;
2055		goto out_free_global;
2056	}
2057
2058	err = grab_mdesc_irq_props(mdesc, dev, &mp->mau_info, "ncp");
2059	if (err) {
2060		dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
2061			dev->dev.of_node);
2062		mdesc_release(mdesc);
2063		goto out_free_global;
2064	}
2065
2066	err = spu_mdesc_scan(mdesc, dev, &mp->mau_info, &mp->mau_list,
2067			     "mau", HV_NCS_QTYPE_MAU, mau_intr,
2068			     cpu_to_mau);
2069	mdesc_release(mdesc);
2070
2071	if (err) {
2072		dev_err(&dev->dev, "%pOF: MAU MDESC scan failed.\n",
2073			dev->dev.of_node);
2074		goto out_free_global;
2075	}
2076
2077	dev_set_drvdata(&dev->dev, mp);
2078
2079	return 0;
2080
2081out_free_global:
2082	release_global_resources();
2083
2084out_free_ncp:
2085	free_ncp(mp);
2086
2087	return err;
2088}
2089
2090static void n2_mau_remove(struct platform_device *dev)
2091{
2092	struct n2_mau *mp = dev_get_drvdata(&dev->dev);
2093
2094	spu_list_destroy(&mp->mau_list);
2095
2096	release_global_resources();
2097
2098	free_ncp(mp);
 
 
2099}
2100
2101static const struct of_device_id n2_crypto_match[] = {
2102	{
2103		.name = "n2cp",
2104		.compatible = "SUNW,n2-cwq",
2105	},
2106	{
2107		.name = "n2cp",
2108		.compatible = "SUNW,vf-cwq",
2109	},
2110	{
2111		.name = "n2cp",
2112		.compatible = "SUNW,kt-cwq",
2113	},
2114	{},
2115};
2116
2117MODULE_DEVICE_TABLE(of, n2_crypto_match);
2118
2119static struct platform_driver n2_crypto_driver = {
2120	.driver = {
2121		.name		=	"n2cp",
2122		.of_match_table	=	n2_crypto_match,
2123	},
2124	.probe		=	n2_crypto_probe,
2125	.remove_new	=	n2_crypto_remove,
2126};
2127
2128static const struct of_device_id n2_mau_match[] = {
2129	{
2130		.name = "ncp",
2131		.compatible = "SUNW,n2-mau",
2132	},
2133	{
2134		.name = "ncp",
2135		.compatible = "SUNW,vf-mau",
2136	},
2137	{
2138		.name = "ncp",
2139		.compatible = "SUNW,kt-mau",
2140	},
2141	{},
2142};
2143
2144MODULE_DEVICE_TABLE(of, n2_mau_match);
2145
2146static struct platform_driver n2_mau_driver = {
2147	.driver = {
2148		.name		=	"ncp",
2149		.of_match_table	=	n2_mau_match,
2150	},
2151	.probe		=	n2_mau_probe,
2152	.remove_new	=	n2_mau_remove,
2153};
2154
2155static struct platform_driver * const drivers[] = {
2156	&n2_crypto_driver,
2157	&n2_mau_driver,
2158};
2159
2160static int __init n2_init(void)
2161{
2162	return platform_register_drivers(drivers, ARRAY_SIZE(drivers));
2163}
2164
2165static void __exit n2_exit(void)
2166{
2167	platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
2168}
2169
2170module_init(n2_init);
2171module_exit(n2_exit);
v4.6
 
   1/* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support.
   2 *
   3 * Copyright (C) 2010, 2011 David S. Miller <davem@davemloft.net>
   4 */
   5
   6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   7
   8#include <linux/kernel.h>
   9#include <linux/module.h>
  10#include <linux/of.h>
  11#include <linux/of_device.h>
 
  12#include <linux/cpumask.h>
  13#include <linux/slab.h>
  14#include <linux/interrupt.h>
  15#include <linux/crypto.h>
  16#include <crypto/md5.h>
  17#include <crypto/sha.h>
 
  18#include <crypto/aes.h>
  19#include <crypto/des.h>
  20#include <linux/mutex.h>
  21#include <linux/delay.h>
  22#include <linux/sched.h>
  23
  24#include <crypto/internal/hash.h>
 
  25#include <crypto/scatterwalk.h>
  26#include <crypto/algapi.h>
  27
  28#include <asm/hypervisor.h>
  29#include <asm/mdesc.h>
  30
  31#include "n2_core.h"
  32
  33#define DRV_MODULE_NAME		"n2_crypto"
  34#define DRV_MODULE_VERSION	"0.2"
  35#define DRV_MODULE_RELDATE	"July 28, 2011"
  36
  37static const char version[] =
  38	DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  39
  40MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
  41MODULE_DESCRIPTION("Niagara2 Crypto driver");
  42MODULE_LICENSE("GPL");
  43MODULE_VERSION(DRV_MODULE_VERSION);
  44
  45#define N2_CRA_PRIORITY		200
  46
  47static DEFINE_MUTEX(spu_lock);
  48
  49struct spu_queue {
  50	cpumask_t		sharing;
  51	unsigned long		qhandle;
  52
  53	spinlock_t		lock;
  54	u8			q_type;
  55	void			*q;
  56	unsigned long		head;
  57	unsigned long		tail;
  58	struct list_head	jobs;
  59
  60	unsigned long		devino;
  61
  62	char			irq_name[32];
  63	unsigned int		irq;
  64
  65	struct list_head	list;
  66};
  67
 
 
 
 
 
  68static struct spu_queue **cpu_to_cwq;
  69static struct spu_queue **cpu_to_mau;
  70
  71static unsigned long spu_next_offset(struct spu_queue *q, unsigned long off)
  72{
  73	if (q->q_type == HV_NCS_QTYPE_MAU) {
  74		off += MAU_ENTRY_SIZE;
  75		if (off == (MAU_ENTRY_SIZE * MAU_NUM_ENTRIES))
  76			off = 0;
  77	} else {
  78		off += CWQ_ENTRY_SIZE;
  79		if (off == (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES))
  80			off = 0;
  81	}
  82	return off;
  83}
  84
  85struct n2_request_common {
  86	struct list_head	entry;
  87	unsigned int		offset;
  88};
  89#define OFFSET_NOT_RUNNING	(~(unsigned int)0)
  90
  91/* An async job request records the final tail value it used in
  92 * n2_request_common->offset, test to see if that offset is in
  93 * the range old_head, new_head, inclusive.
  94 */
  95static inline bool job_finished(struct spu_queue *q, unsigned int offset,
  96				unsigned long old_head, unsigned long new_head)
  97{
  98	if (old_head <= new_head) {
  99		if (offset > old_head && offset <= new_head)
 100			return true;
 101	} else {
 102		if (offset > old_head || offset <= new_head)
 103			return true;
 104	}
 105	return false;
 106}
 107
 108/* When the HEAD marker is unequal to the actual HEAD, we get
 109 * a virtual device INO interrupt.  We should process the
 110 * completed CWQ entries and adjust the HEAD marker to clear
 111 * the IRQ.
 112 */
 113static irqreturn_t cwq_intr(int irq, void *dev_id)
 114{
 115	unsigned long off, new_head, hv_ret;
 116	struct spu_queue *q = dev_id;
 117
 118	pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n",
 119	       smp_processor_id(), q->qhandle);
 120
 121	spin_lock(&q->lock);
 122
 123	hv_ret = sun4v_ncs_gethead(q->qhandle, &new_head);
 124
 125	pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n",
 126	       smp_processor_id(), new_head, hv_ret);
 127
 128	for (off = q->head; off != new_head; off = spu_next_offset(q, off)) {
 129		/* XXX ... XXX */
 130	}
 131
 132	hv_ret = sun4v_ncs_sethead_marker(q->qhandle, new_head);
 133	if (hv_ret == HV_EOK)
 134		q->head = new_head;
 135
 136	spin_unlock(&q->lock);
 137
 138	return IRQ_HANDLED;
 139}
 140
 141static irqreturn_t mau_intr(int irq, void *dev_id)
 142{
 143	struct spu_queue *q = dev_id;
 144	unsigned long head, hv_ret;
 145
 146	spin_lock(&q->lock);
 147
 148	pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n",
 149	       smp_processor_id(), q->qhandle);
 150
 151	hv_ret = sun4v_ncs_gethead(q->qhandle, &head);
 152
 153	pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n",
 154	       smp_processor_id(), head, hv_ret);
 155
 156	sun4v_ncs_sethead_marker(q->qhandle, head);
 157
 158	spin_unlock(&q->lock);
 159
 160	return IRQ_HANDLED;
 161}
 162
 163static void *spu_queue_next(struct spu_queue *q, void *cur)
 164{
 165	return q->q + spu_next_offset(q, cur - q->q);
 166}
 167
 168static int spu_queue_num_free(struct spu_queue *q)
 169{
 170	unsigned long head = q->head;
 171	unsigned long tail = q->tail;
 172	unsigned long end = (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES);
 173	unsigned long diff;
 174
 175	if (head > tail)
 176		diff = head - tail;
 177	else
 178		diff = (end - tail) + head;
 179
 180	return (diff / CWQ_ENTRY_SIZE) - 1;
 181}
 182
 183static void *spu_queue_alloc(struct spu_queue *q, int num_entries)
 184{
 185	int avail = spu_queue_num_free(q);
 186
 187	if (avail >= num_entries)
 188		return q->q + q->tail;
 189
 190	return NULL;
 191}
 192
 193static unsigned long spu_queue_submit(struct spu_queue *q, void *last)
 194{
 195	unsigned long hv_ret, new_tail;
 196
 197	new_tail = spu_next_offset(q, last - q->q);
 198
 199	hv_ret = sun4v_ncs_settail(q->qhandle, new_tail);
 200	if (hv_ret == HV_EOK)
 201		q->tail = new_tail;
 202	return hv_ret;
 203}
 204
 205static u64 control_word_base(unsigned int len, unsigned int hmac_key_len,
 206			     int enc_type, int auth_type,
 207			     unsigned int hash_len,
 208			     bool sfas, bool sob, bool eob, bool encrypt,
 209			     int opcode)
 210{
 211	u64 word = (len - 1) & CONTROL_LEN;
 212
 213	word |= ((u64) opcode << CONTROL_OPCODE_SHIFT);
 214	word |= ((u64) enc_type << CONTROL_ENC_TYPE_SHIFT);
 215	word |= ((u64) auth_type << CONTROL_AUTH_TYPE_SHIFT);
 216	if (sfas)
 217		word |= CONTROL_STORE_FINAL_AUTH_STATE;
 218	if (sob)
 219		word |= CONTROL_START_OF_BLOCK;
 220	if (eob)
 221		word |= CONTROL_END_OF_BLOCK;
 222	if (encrypt)
 223		word |= CONTROL_ENCRYPT;
 224	if (hmac_key_len)
 225		word |= ((u64) (hmac_key_len - 1)) << CONTROL_HMAC_KEY_LEN_SHIFT;
 226	if (hash_len)
 227		word |= ((u64) (hash_len - 1)) << CONTROL_HASH_LEN_SHIFT;
 228
 229	return word;
 230}
 231
 232#if 0
 233static inline bool n2_should_run_async(struct spu_queue *qp, int this_len)
 234{
 235	if (this_len >= 64 ||
 236	    qp->head != qp->tail)
 237		return true;
 238	return false;
 239}
 240#endif
 241
 242struct n2_ahash_alg {
 243	struct list_head	entry;
 244	const u8		*hash_zero;
 245	const u32		*hash_init;
 246	u8			hw_op_hashsz;
 247	u8			digest_size;
 248	u8			auth_type;
 249	u8			hmac_type;
 250	struct ahash_alg	alg;
 251};
 252
 253static inline struct n2_ahash_alg *n2_ahash_alg(struct crypto_tfm *tfm)
 254{
 255	struct crypto_alg *alg = tfm->__crt_alg;
 256	struct ahash_alg *ahash_alg;
 257
 258	ahash_alg = container_of(alg, struct ahash_alg, halg.base);
 259
 260	return container_of(ahash_alg, struct n2_ahash_alg, alg);
 261}
 262
 263struct n2_hmac_alg {
 264	const char		*child_alg;
 265	struct n2_ahash_alg	derived;
 266};
 267
 268static inline struct n2_hmac_alg *n2_hmac_alg(struct crypto_tfm *tfm)
 269{
 270	struct crypto_alg *alg = tfm->__crt_alg;
 271	struct ahash_alg *ahash_alg;
 272
 273	ahash_alg = container_of(alg, struct ahash_alg, halg.base);
 274
 275	return container_of(ahash_alg, struct n2_hmac_alg, derived.alg);
 276}
 277
 278struct n2_hash_ctx {
 279	struct crypto_ahash		*fallback_tfm;
 280};
 281
 282#define N2_HASH_KEY_MAX			32 /* HW limit for all HMAC requests */
 283
 284struct n2_hmac_ctx {
 285	struct n2_hash_ctx		base;
 286
 287	struct crypto_shash		*child_shash;
 288
 289	int				hash_key_len;
 290	unsigned char			hash_key[N2_HASH_KEY_MAX];
 291};
 292
 293struct n2_hash_req_ctx {
 294	union {
 295		struct md5_state	md5;
 296		struct sha1_state	sha1;
 297		struct sha256_state	sha256;
 298	} u;
 299
 300	struct ahash_request		fallback_req;
 301};
 302
 303static int n2_hash_async_init(struct ahash_request *req)
 304{
 305	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 306	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 307	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
 308
 309	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
 310	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
 311
 312	return crypto_ahash_init(&rctx->fallback_req);
 313}
 314
 315static int n2_hash_async_update(struct ahash_request *req)
 316{
 317	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 318	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 319	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
 320
 321	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
 322	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
 323	rctx->fallback_req.nbytes = req->nbytes;
 324	rctx->fallback_req.src = req->src;
 325
 326	return crypto_ahash_update(&rctx->fallback_req);
 327}
 328
 329static int n2_hash_async_final(struct ahash_request *req)
 330{
 331	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 332	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 333	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
 334
 335	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
 336	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
 337	rctx->fallback_req.result = req->result;
 338
 339	return crypto_ahash_final(&rctx->fallback_req);
 340}
 341
 342static int n2_hash_async_finup(struct ahash_request *req)
 343{
 344	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 345	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 346	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
 347
 348	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
 349	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
 350	rctx->fallback_req.nbytes = req->nbytes;
 351	rctx->fallback_req.src = req->src;
 352	rctx->fallback_req.result = req->result;
 353
 354	return crypto_ahash_finup(&rctx->fallback_req);
 355}
 356
 
 
 
 
 
 
 
 
 
 
 357static int n2_hash_cra_init(struct crypto_tfm *tfm)
 358{
 359	const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
 360	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
 361	struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
 362	struct crypto_ahash *fallback_tfm;
 363	int err;
 364
 365	fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
 366					  CRYPTO_ALG_NEED_FALLBACK);
 367	if (IS_ERR(fallback_tfm)) {
 368		pr_warning("Fallback driver '%s' could not be loaded!\n",
 369			   fallback_driver_name);
 370		err = PTR_ERR(fallback_tfm);
 371		goto out;
 372	}
 373
 374	crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
 375					 crypto_ahash_reqsize(fallback_tfm)));
 376
 377	ctx->fallback_tfm = fallback_tfm;
 378	return 0;
 379
 380out:
 381	return err;
 382}
 383
 384static void n2_hash_cra_exit(struct crypto_tfm *tfm)
 385{
 386	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
 387	struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
 388
 389	crypto_free_ahash(ctx->fallback_tfm);
 390}
 391
 392static int n2_hmac_cra_init(struct crypto_tfm *tfm)
 393{
 394	const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
 395	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
 396	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
 397	struct n2_hmac_alg *n2alg = n2_hmac_alg(tfm);
 398	struct crypto_ahash *fallback_tfm;
 399	struct crypto_shash *child_shash;
 400	int err;
 401
 402	fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
 403					  CRYPTO_ALG_NEED_FALLBACK);
 404	if (IS_ERR(fallback_tfm)) {
 405		pr_warning("Fallback driver '%s' could not be loaded!\n",
 406			   fallback_driver_name);
 407		err = PTR_ERR(fallback_tfm);
 408		goto out;
 409	}
 410
 411	child_shash = crypto_alloc_shash(n2alg->child_alg, 0, 0);
 412	if (IS_ERR(child_shash)) {
 413		pr_warning("Child shash '%s' could not be loaded!\n",
 414			   n2alg->child_alg);
 415		err = PTR_ERR(child_shash);
 416		goto out_free_fallback;
 417	}
 418
 419	crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
 420					 crypto_ahash_reqsize(fallback_tfm)));
 421
 422	ctx->child_shash = child_shash;
 423	ctx->base.fallback_tfm = fallback_tfm;
 424	return 0;
 425
 426out_free_fallback:
 427	crypto_free_ahash(fallback_tfm);
 428
 429out:
 430	return err;
 431}
 432
 433static void n2_hmac_cra_exit(struct crypto_tfm *tfm)
 434{
 435	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
 436	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
 437
 438	crypto_free_ahash(ctx->base.fallback_tfm);
 439	crypto_free_shash(ctx->child_shash);
 440}
 441
 442static int n2_hmac_async_setkey(struct crypto_ahash *tfm, const u8 *key,
 443				unsigned int keylen)
 444{
 445	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
 446	struct crypto_shash *child_shash = ctx->child_shash;
 447	struct crypto_ahash *fallback_tfm;
 448	SHASH_DESC_ON_STACK(shash, child_shash);
 449	int err, bs, ds;
 450
 451	fallback_tfm = ctx->base.fallback_tfm;
 452	err = crypto_ahash_setkey(fallback_tfm, key, keylen);
 453	if (err)
 454		return err;
 455
 456	shash->tfm = child_shash;
 457	shash->flags = crypto_ahash_get_flags(tfm) &
 458		CRYPTO_TFM_REQ_MAY_SLEEP;
 459
 460	bs = crypto_shash_blocksize(child_shash);
 461	ds = crypto_shash_digestsize(child_shash);
 462	BUG_ON(ds > N2_HASH_KEY_MAX);
 463	if (keylen > bs) {
 464		err = crypto_shash_digest(shash, key, keylen,
 465					  ctx->hash_key);
 466		if (err)
 467			return err;
 468		keylen = ds;
 469	} else if (keylen <= N2_HASH_KEY_MAX)
 470		memcpy(ctx->hash_key, key, keylen);
 471
 472	ctx->hash_key_len = keylen;
 473
 474	return err;
 475}
 476
 477static unsigned long wait_for_tail(struct spu_queue *qp)
 478{
 479	unsigned long head, hv_ret;
 480
 481	do {
 482		hv_ret = sun4v_ncs_gethead(qp->qhandle, &head);
 483		if (hv_ret != HV_EOK) {
 484			pr_err("Hypervisor error on gethead\n");
 485			break;
 486		}
 487		if (head == qp->tail) {
 488			qp->head = head;
 489			break;
 490		}
 491	} while (1);
 492	return hv_ret;
 493}
 494
 495static unsigned long submit_and_wait_for_tail(struct spu_queue *qp,
 496					      struct cwq_initial_entry *ent)
 497{
 498	unsigned long hv_ret = spu_queue_submit(qp, ent);
 499
 500	if (hv_ret == HV_EOK)
 501		hv_ret = wait_for_tail(qp);
 502
 503	return hv_ret;
 504}
 505
 506static int n2_do_async_digest(struct ahash_request *req,
 507			      unsigned int auth_type, unsigned int digest_size,
 508			      unsigned int result_size, void *hash_loc,
 509			      unsigned long auth_key, unsigned int auth_key_len)
 510{
 511	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 512	struct cwq_initial_entry *ent;
 513	struct crypto_hash_walk walk;
 514	struct spu_queue *qp;
 515	unsigned long flags;
 516	int err = -ENODEV;
 517	int nbytes, cpu;
 518
 519	/* The total effective length of the operation may not
 520	 * exceed 2^16.
 521	 */
 522	if (unlikely(req->nbytes > (1 << 16))) {
 523		struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 524		struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
 525
 526		ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
 527		rctx->fallback_req.base.flags =
 528			req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
 529		rctx->fallback_req.nbytes = req->nbytes;
 530		rctx->fallback_req.src = req->src;
 531		rctx->fallback_req.result = req->result;
 532
 533		return crypto_ahash_digest(&rctx->fallback_req);
 534	}
 535
 536	nbytes = crypto_hash_walk_first(req, &walk);
 537
 538	cpu = get_cpu();
 539	qp = cpu_to_cwq[cpu];
 540	if (!qp)
 541		goto out;
 542
 543	spin_lock_irqsave(&qp->lock, flags);
 544
 545	/* XXX can do better, improve this later by doing a by-hand scatterlist
 546	 * XXX walk, etc.
 547	 */
 548	ent = qp->q + qp->tail;
 549
 550	ent->control = control_word_base(nbytes, auth_key_len, 0,
 551					 auth_type, digest_size,
 552					 false, true, false, false,
 553					 OPCODE_INPLACE_BIT |
 554					 OPCODE_AUTH_MAC);
 555	ent->src_addr = __pa(walk.data);
 556	ent->auth_key_addr = auth_key;
 557	ent->auth_iv_addr = __pa(hash_loc);
 558	ent->final_auth_state_addr = 0UL;
 559	ent->enc_key_addr = 0UL;
 560	ent->enc_iv_addr = 0UL;
 561	ent->dest_addr = __pa(hash_loc);
 562
 563	nbytes = crypto_hash_walk_done(&walk, 0);
 564	while (nbytes > 0) {
 565		ent = spu_queue_next(qp, ent);
 566
 567		ent->control = (nbytes - 1);
 568		ent->src_addr = __pa(walk.data);
 569		ent->auth_key_addr = 0UL;
 570		ent->auth_iv_addr = 0UL;
 571		ent->final_auth_state_addr = 0UL;
 572		ent->enc_key_addr = 0UL;
 573		ent->enc_iv_addr = 0UL;
 574		ent->dest_addr = 0UL;
 575
 576		nbytes = crypto_hash_walk_done(&walk, 0);
 577	}
 578	ent->control |= CONTROL_END_OF_BLOCK;
 579
 580	if (submit_and_wait_for_tail(qp, ent) != HV_EOK)
 581		err = -EINVAL;
 582	else
 583		err = 0;
 584
 585	spin_unlock_irqrestore(&qp->lock, flags);
 586
 587	if (!err)
 588		memcpy(req->result, hash_loc, result_size);
 589out:
 590	put_cpu();
 591
 592	return err;
 593}
 594
 595static int n2_hash_async_digest(struct ahash_request *req)
 596{
 597	struct n2_ahash_alg *n2alg = n2_ahash_alg(req->base.tfm);
 598	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 599	int ds;
 600
 601	ds = n2alg->digest_size;
 602	if (unlikely(req->nbytes == 0)) {
 603		memcpy(req->result, n2alg->hash_zero, ds);
 604		return 0;
 605	}
 606	memcpy(&rctx->u, n2alg->hash_init, n2alg->hw_op_hashsz);
 607
 608	return n2_do_async_digest(req, n2alg->auth_type,
 609				  n2alg->hw_op_hashsz, ds,
 610				  &rctx->u, 0UL, 0);
 611}
 612
 613static int n2_hmac_async_digest(struct ahash_request *req)
 614{
 615	struct n2_hmac_alg *n2alg = n2_hmac_alg(req->base.tfm);
 616	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 617	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 618	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
 619	int ds;
 620
 621	ds = n2alg->derived.digest_size;
 622	if (unlikely(req->nbytes == 0) ||
 623	    unlikely(ctx->hash_key_len > N2_HASH_KEY_MAX)) {
 624		struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 625		struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
 626
 627		ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
 628		rctx->fallback_req.base.flags =
 629			req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
 630		rctx->fallback_req.nbytes = req->nbytes;
 631		rctx->fallback_req.src = req->src;
 632		rctx->fallback_req.result = req->result;
 633
 634		return crypto_ahash_digest(&rctx->fallback_req);
 635	}
 636	memcpy(&rctx->u, n2alg->derived.hash_init,
 637	       n2alg->derived.hw_op_hashsz);
 638
 639	return n2_do_async_digest(req, n2alg->derived.hmac_type,
 640				  n2alg->derived.hw_op_hashsz, ds,
 641				  &rctx->u,
 642				  __pa(&ctx->hash_key),
 643				  ctx->hash_key_len);
 644}
 645
 646struct n2_cipher_context {
 647	int			key_len;
 648	int			enc_type;
 649	union {
 650		u8		aes[AES_MAX_KEY_SIZE];
 651		u8		des[DES_KEY_SIZE];
 652		u8		des3[3 * DES_KEY_SIZE];
 653		u8		arc4[258]; /* S-box, X, Y */
 654	} key;
 655};
 656
 657#define N2_CHUNK_ARR_LEN	16
 658
 659struct n2_crypto_chunk {
 660	struct list_head	entry;
 661	unsigned long		iv_paddr : 44;
 662	unsigned long		arr_len : 20;
 663	unsigned long		dest_paddr;
 664	unsigned long		dest_final;
 665	struct {
 666		unsigned long	src_paddr : 44;
 667		unsigned long	src_len : 20;
 668	} arr[N2_CHUNK_ARR_LEN];
 669};
 670
 671struct n2_request_context {
 672	struct ablkcipher_walk	walk;
 673	struct list_head	chunk_list;
 674	struct n2_crypto_chunk	chunk;
 675	u8			temp_iv[16];
 676};
 677
 678/* The SPU allows some level of flexibility for partial cipher blocks
 679 * being specified in a descriptor.
 680 *
 681 * It merely requires that every descriptor's length field is at least
 682 * as large as the cipher block size.  This means that a cipher block
 683 * can span at most 2 descriptors.  However, this does not allow a
 684 * partial block to span into the final descriptor as that would
 685 * violate the rule (since every descriptor's length must be at lest
 686 * the block size).  So, for example, assuming an 8 byte block size:
 687 *
 688 *	0xe --> 0xa --> 0x8
 689 *
 690 * is a valid length sequence, whereas:
 691 *
 692 *	0xe --> 0xb --> 0x7
 693 *
 694 * is not a valid sequence.
 695 */
 696
 697struct n2_cipher_alg {
 698	struct list_head	entry;
 699	u8			enc_type;
 700	struct crypto_alg	alg;
 701};
 702
 703static inline struct n2_cipher_alg *n2_cipher_alg(struct crypto_tfm *tfm)
 704{
 705	struct crypto_alg *alg = tfm->__crt_alg;
 706
 707	return container_of(alg, struct n2_cipher_alg, alg);
 708}
 709
 710struct n2_cipher_request_context {
 711	struct ablkcipher_walk	walk;
 712};
 713
 714static int n2_aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
 715			 unsigned int keylen)
 716{
 717	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
 718	struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
 719	struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
 720
 721	ctx->enc_type = (n2alg->enc_type & ENC_TYPE_CHAINING_MASK);
 722
 723	switch (keylen) {
 724	case AES_KEYSIZE_128:
 725		ctx->enc_type |= ENC_TYPE_ALG_AES128;
 726		break;
 727	case AES_KEYSIZE_192:
 728		ctx->enc_type |= ENC_TYPE_ALG_AES192;
 729		break;
 730	case AES_KEYSIZE_256:
 731		ctx->enc_type |= ENC_TYPE_ALG_AES256;
 732		break;
 733	default:
 734		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
 735		return -EINVAL;
 736	}
 737
 738	ctx->key_len = keylen;
 739	memcpy(ctx->key.aes, key, keylen);
 740	return 0;
 741}
 742
 743static int n2_des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
 744			 unsigned int keylen)
 745{
 746	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
 747	struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
 748	struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
 749	u32 tmp[DES_EXPKEY_WORDS];
 750	int err;
 751
 
 
 
 
 752	ctx->enc_type = n2alg->enc_type;
 753
 754	if (keylen != DES_KEY_SIZE) {
 755		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
 756		return -EINVAL;
 757	}
 758
 759	err = des_ekey(tmp, key);
 760	if (err == 0 && (tfm->crt_flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
 761		tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
 762		return -EINVAL;
 763	}
 764
 765	ctx->key_len = keylen;
 766	memcpy(ctx->key.des, key, keylen);
 767	return 0;
 768}
 769
 770static int n2_3des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
 771			  unsigned int keylen)
 772{
 773	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
 774	struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
 775	struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
 
 
 
 
 
 776
 777	ctx->enc_type = n2alg->enc_type;
 778
 779	if (keylen != (3 * DES_KEY_SIZE)) {
 780		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
 781		return -EINVAL;
 782	}
 783	ctx->key_len = keylen;
 784	memcpy(ctx->key.des3, key, keylen);
 785	return 0;
 786}
 787
 788static int n2_arc4_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
 789			  unsigned int keylen)
 790{
 791	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
 792	struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
 793	struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
 794	u8 *s = ctx->key.arc4;
 795	u8 *x = s + 256;
 796	u8 *y = x + 1;
 797	int i, j, k;
 798
 799	ctx->enc_type = n2alg->enc_type;
 800
 801	j = k = 0;
 802	*x = 0;
 803	*y = 0;
 804	for (i = 0; i < 256; i++)
 805		s[i] = i;
 806	for (i = 0; i < 256; i++) {
 807		u8 a = s[i];
 808		j = (j + key[k] + a) & 0xff;
 809		s[i] = s[j];
 810		s[j] = a;
 811		if (++k >= keylen)
 812			k = 0;
 813	}
 814
 815	return 0;
 816}
 817
 818static inline int cipher_descriptor_len(int nbytes, unsigned int block_size)
 819{
 820	int this_len = nbytes;
 821
 822	this_len -= (nbytes & (block_size - 1));
 823	return this_len > (1 << 16) ? (1 << 16) : this_len;
 824}
 825
 826static int __n2_crypt_chunk(struct crypto_tfm *tfm, struct n2_crypto_chunk *cp,
 
 827			    struct spu_queue *qp, bool encrypt)
 828{
 829	struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
 830	struct cwq_initial_entry *ent;
 831	bool in_place;
 832	int i;
 833
 834	ent = spu_queue_alloc(qp, cp->arr_len);
 835	if (!ent) {
 836		pr_info("queue_alloc() of %d fails\n",
 837			cp->arr_len);
 838		return -EBUSY;
 839	}
 840
 841	in_place = (cp->dest_paddr == cp->arr[0].src_paddr);
 842
 843	ent->control = control_word_base(cp->arr[0].src_len,
 844					 0, ctx->enc_type, 0, 0,
 845					 false, true, false, encrypt,
 846					 OPCODE_ENCRYPT |
 847					 (in_place ? OPCODE_INPLACE_BIT : 0));
 848	ent->src_addr = cp->arr[0].src_paddr;
 849	ent->auth_key_addr = 0UL;
 850	ent->auth_iv_addr = 0UL;
 851	ent->final_auth_state_addr = 0UL;
 852	ent->enc_key_addr = __pa(&ctx->key);
 853	ent->enc_iv_addr = cp->iv_paddr;
 854	ent->dest_addr = (in_place ? 0UL : cp->dest_paddr);
 855
 856	for (i = 1; i < cp->arr_len; i++) {
 857		ent = spu_queue_next(qp, ent);
 858
 859		ent->control = cp->arr[i].src_len - 1;
 860		ent->src_addr = cp->arr[i].src_paddr;
 861		ent->auth_key_addr = 0UL;
 862		ent->auth_iv_addr = 0UL;
 863		ent->final_auth_state_addr = 0UL;
 864		ent->enc_key_addr = 0UL;
 865		ent->enc_iv_addr = 0UL;
 866		ent->dest_addr = 0UL;
 867	}
 868	ent->control |= CONTROL_END_OF_BLOCK;
 869
 870	return (spu_queue_submit(qp, ent) != HV_EOK) ? -EINVAL : 0;
 871}
 872
 873static int n2_compute_chunks(struct ablkcipher_request *req)
 874{
 875	struct n2_request_context *rctx = ablkcipher_request_ctx(req);
 876	struct ablkcipher_walk *walk = &rctx->walk;
 877	struct n2_crypto_chunk *chunk;
 878	unsigned long dest_prev;
 879	unsigned int tot_len;
 880	bool prev_in_place;
 881	int err, nbytes;
 882
 883	ablkcipher_walk_init(walk, req->dst, req->src, req->nbytes);
 884	err = ablkcipher_walk_phys(req, walk);
 885	if (err)
 886		return err;
 887
 888	INIT_LIST_HEAD(&rctx->chunk_list);
 889
 890	chunk = &rctx->chunk;
 891	INIT_LIST_HEAD(&chunk->entry);
 892
 893	chunk->iv_paddr = 0UL;
 894	chunk->arr_len = 0;
 895	chunk->dest_paddr = 0UL;
 896
 897	prev_in_place = false;
 898	dest_prev = ~0UL;
 899	tot_len = 0;
 900
 901	while ((nbytes = walk->nbytes) != 0) {
 902		unsigned long dest_paddr, src_paddr;
 903		bool in_place;
 904		int this_len;
 905
 906		src_paddr = (page_to_phys(walk->src.page) +
 907			     walk->src.offset);
 908		dest_paddr = (page_to_phys(walk->dst.page) +
 909			      walk->dst.offset);
 910		in_place = (src_paddr == dest_paddr);
 911		this_len = cipher_descriptor_len(nbytes, walk->blocksize);
 912
 913		if (chunk->arr_len != 0) {
 914			if (in_place != prev_in_place ||
 915			    (!prev_in_place &&
 916			     dest_paddr != dest_prev) ||
 917			    chunk->arr_len == N2_CHUNK_ARR_LEN ||
 918			    tot_len + this_len > (1 << 16)) {
 919				chunk->dest_final = dest_prev;
 920				list_add_tail(&chunk->entry,
 921					      &rctx->chunk_list);
 922				chunk = kzalloc(sizeof(*chunk), GFP_ATOMIC);
 923				if (!chunk) {
 924					err = -ENOMEM;
 925					break;
 926				}
 927				INIT_LIST_HEAD(&chunk->entry);
 928			}
 929		}
 930		if (chunk->arr_len == 0) {
 931			chunk->dest_paddr = dest_paddr;
 932			tot_len = 0;
 933		}
 934		chunk->arr[chunk->arr_len].src_paddr = src_paddr;
 935		chunk->arr[chunk->arr_len].src_len = this_len;
 936		chunk->arr_len++;
 937
 938		dest_prev = dest_paddr + this_len;
 939		prev_in_place = in_place;
 940		tot_len += this_len;
 941
 942		err = ablkcipher_walk_done(req, walk, nbytes - this_len);
 943		if (err)
 944			break;
 945	}
 946	if (!err && chunk->arr_len != 0) {
 947		chunk->dest_final = dest_prev;
 948		list_add_tail(&chunk->entry, &rctx->chunk_list);
 949	}
 950
 951	return err;
 952}
 953
 954static void n2_chunk_complete(struct ablkcipher_request *req, void *final_iv)
 955{
 956	struct n2_request_context *rctx = ablkcipher_request_ctx(req);
 957	struct n2_crypto_chunk *c, *tmp;
 958
 959	if (final_iv)
 960		memcpy(rctx->walk.iv, final_iv, rctx->walk.blocksize);
 961
 962	ablkcipher_walk_complete(&rctx->walk);
 963	list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
 964		list_del(&c->entry);
 965		if (unlikely(c != &rctx->chunk))
 966			kfree(c);
 967	}
 968
 969}
 970
 971static int n2_do_ecb(struct ablkcipher_request *req, bool encrypt)
 972{
 973	struct n2_request_context *rctx = ablkcipher_request_ctx(req);
 974	struct crypto_tfm *tfm = req->base.tfm;
 975	int err = n2_compute_chunks(req);
 976	struct n2_crypto_chunk *c, *tmp;
 977	unsigned long flags, hv_ret;
 978	struct spu_queue *qp;
 979
 980	if (err)
 981		return err;
 982
 983	qp = cpu_to_cwq[get_cpu()];
 984	err = -ENODEV;
 985	if (!qp)
 986		goto out;
 987
 988	spin_lock_irqsave(&qp->lock, flags);
 989
 990	list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
 991		err = __n2_crypt_chunk(tfm, c, qp, encrypt);
 992		if (err)
 993			break;
 994		list_del(&c->entry);
 995		if (unlikely(c != &rctx->chunk))
 996			kfree(c);
 997	}
 998	if (!err) {
 999		hv_ret = wait_for_tail(qp);
1000		if (hv_ret != HV_EOK)
1001			err = -EINVAL;
1002	}
1003
1004	spin_unlock_irqrestore(&qp->lock, flags);
1005
1006out:
1007	put_cpu();
1008
1009	n2_chunk_complete(req, NULL);
1010	return err;
1011}
1012
1013static int n2_encrypt_ecb(struct ablkcipher_request *req)
1014{
1015	return n2_do_ecb(req, true);
1016}
1017
1018static int n2_decrypt_ecb(struct ablkcipher_request *req)
1019{
1020	return n2_do_ecb(req, false);
1021}
1022
1023static int n2_do_chaining(struct ablkcipher_request *req, bool encrypt)
1024{
1025	struct n2_request_context *rctx = ablkcipher_request_ctx(req);
1026	struct crypto_tfm *tfm = req->base.tfm;
1027	unsigned long flags, hv_ret, iv_paddr;
1028	int err = n2_compute_chunks(req);
1029	struct n2_crypto_chunk *c, *tmp;
1030	struct spu_queue *qp;
1031	void *final_iv_addr;
1032
1033	final_iv_addr = NULL;
1034
1035	if (err)
1036		return err;
1037
1038	qp = cpu_to_cwq[get_cpu()];
1039	err = -ENODEV;
1040	if (!qp)
1041		goto out;
1042
1043	spin_lock_irqsave(&qp->lock, flags);
1044
1045	if (encrypt) {
1046		iv_paddr = __pa(rctx->walk.iv);
1047		list_for_each_entry_safe(c, tmp, &rctx->chunk_list,
1048					 entry) {
1049			c->iv_paddr = iv_paddr;
1050			err = __n2_crypt_chunk(tfm, c, qp, true);
1051			if (err)
1052				break;
1053			iv_paddr = c->dest_final - rctx->walk.blocksize;
1054			list_del(&c->entry);
1055			if (unlikely(c != &rctx->chunk))
1056				kfree(c);
1057		}
1058		final_iv_addr = __va(iv_paddr);
1059	} else {
1060		list_for_each_entry_safe_reverse(c, tmp, &rctx->chunk_list,
1061						 entry) {
1062			if (c == &rctx->chunk) {
1063				iv_paddr = __pa(rctx->walk.iv);
1064			} else {
1065				iv_paddr = (tmp->arr[tmp->arr_len-1].src_paddr +
1066					    tmp->arr[tmp->arr_len-1].src_len -
1067					    rctx->walk.blocksize);
1068			}
1069			if (!final_iv_addr) {
1070				unsigned long pa;
1071
1072				pa = (c->arr[c->arr_len-1].src_paddr +
1073				      c->arr[c->arr_len-1].src_len -
1074				      rctx->walk.blocksize);
1075				final_iv_addr = rctx->temp_iv;
1076				memcpy(rctx->temp_iv, __va(pa),
1077				       rctx->walk.blocksize);
1078			}
1079			c->iv_paddr = iv_paddr;
1080			err = __n2_crypt_chunk(tfm, c, qp, false);
1081			if (err)
1082				break;
1083			list_del(&c->entry);
1084			if (unlikely(c != &rctx->chunk))
1085				kfree(c);
1086		}
1087	}
1088	if (!err) {
1089		hv_ret = wait_for_tail(qp);
1090		if (hv_ret != HV_EOK)
1091			err = -EINVAL;
1092	}
1093
1094	spin_unlock_irqrestore(&qp->lock, flags);
1095
1096out:
1097	put_cpu();
1098
1099	n2_chunk_complete(req, err ? NULL : final_iv_addr);
1100	return err;
1101}
1102
1103static int n2_encrypt_chaining(struct ablkcipher_request *req)
1104{
1105	return n2_do_chaining(req, true);
1106}
1107
1108static int n2_decrypt_chaining(struct ablkcipher_request *req)
1109{
1110	return n2_do_chaining(req, false);
1111}
1112
1113struct n2_cipher_tmpl {
1114	const char		*name;
1115	const char		*drv_name;
1116	u8			block_size;
1117	u8			enc_type;
1118	struct ablkcipher_alg	ablkcipher;
1119};
1120
1121static const struct n2_cipher_tmpl cipher_tmpls[] = {
1122	/* ARC4: only ECB is supported (chaining bits ignored) */
1123	{	.name		= "ecb(arc4)",
1124		.drv_name	= "ecb-arc4",
1125		.block_size	= 1,
1126		.enc_type	= (ENC_TYPE_ALG_RC4_STREAM |
1127				   ENC_TYPE_CHAINING_ECB),
1128		.ablkcipher	= {
1129			.min_keysize	= 1,
1130			.max_keysize	= 256,
1131			.setkey		= n2_arc4_setkey,
1132			.encrypt	= n2_encrypt_ecb,
1133			.decrypt	= n2_decrypt_ecb,
1134		},
1135	},
1136
1137	/* DES: ECB CBC and CFB are supported */
1138	{	.name		= "ecb(des)",
1139		.drv_name	= "ecb-des",
1140		.block_size	= DES_BLOCK_SIZE,
1141		.enc_type	= (ENC_TYPE_ALG_DES |
1142				   ENC_TYPE_CHAINING_ECB),
1143		.ablkcipher	= {
1144			.min_keysize	= DES_KEY_SIZE,
1145			.max_keysize	= DES_KEY_SIZE,
1146			.setkey		= n2_des_setkey,
1147			.encrypt	= n2_encrypt_ecb,
1148			.decrypt	= n2_decrypt_ecb,
1149		},
1150	},
1151	{	.name		= "cbc(des)",
1152		.drv_name	= "cbc-des",
1153		.block_size	= DES_BLOCK_SIZE,
1154		.enc_type	= (ENC_TYPE_ALG_DES |
1155				   ENC_TYPE_CHAINING_CBC),
1156		.ablkcipher	= {
1157			.ivsize		= DES_BLOCK_SIZE,
1158			.min_keysize	= DES_KEY_SIZE,
1159			.max_keysize	= DES_KEY_SIZE,
1160			.setkey		= n2_des_setkey,
1161			.encrypt	= n2_encrypt_chaining,
1162			.decrypt	= n2_decrypt_chaining,
1163		},
1164	},
1165	{	.name		= "cfb(des)",
1166		.drv_name	= "cfb-des",
1167		.block_size	= DES_BLOCK_SIZE,
1168		.enc_type	= (ENC_TYPE_ALG_DES |
1169				   ENC_TYPE_CHAINING_CFB),
1170		.ablkcipher	= {
1171			.min_keysize	= DES_KEY_SIZE,
1172			.max_keysize	= DES_KEY_SIZE,
1173			.setkey		= n2_des_setkey,
1174			.encrypt	= n2_encrypt_chaining,
1175			.decrypt	= n2_decrypt_chaining,
1176		},
1177	},
1178
1179	/* 3DES: ECB CBC and CFB are supported */
1180	{	.name		= "ecb(des3_ede)",
1181		.drv_name	= "ecb-3des",
1182		.block_size	= DES_BLOCK_SIZE,
1183		.enc_type	= (ENC_TYPE_ALG_3DES |
1184				   ENC_TYPE_CHAINING_ECB),
1185		.ablkcipher	= {
1186			.min_keysize	= 3 * DES_KEY_SIZE,
1187			.max_keysize	= 3 * DES_KEY_SIZE,
1188			.setkey		= n2_3des_setkey,
1189			.encrypt	= n2_encrypt_ecb,
1190			.decrypt	= n2_decrypt_ecb,
1191		},
1192	},
1193	{	.name		= "cbc(des3_ede)",
1194		.drv_name	= "cbc-3des",
1195		.block_size	= DES_BLOCK_SIZE,
1196		.enc_type	= (ENC_TYPE_ALG_3DES |
1197				   ENC_TYPE_CHAINING_CBC),
1198		.ablkcipher	= {
1199			.ivsize		= DES_BLOCK_SIZE,
1200			.min_keysize	= 3 * DES_KEY_SIZE,
1201			.max_keysize	= 3 * DES_KEY_SIZE,
1202			.setkey		= n2_3des_setkey,
1203			.encrypt	= n2_encrypt_chaining,
1204			.decrypt	= n2_decrypt_chaining,
1205		},
1206	},
1207	{	.name		= "cfb(des3_ede)",
1208		.drv_name	= "cfb-3des",
1209		.block_size	= DES_BLOCK_SIZE,
1210		.enc_type	= (ENC_TYPE_ALG_3DES |
1211				   ENC_TYPE_CHAINING_CFB),
1212		.ablkcipher	= {
1213			.min_keysize	= 3 * DES_KEY_SIZE,
1214			.max_keysize	= 3 * DES_KEY_SIZE,
1215			.setkey		= n2_3des_setkey,
1216			.encrypt	= n2_encrypt_chaining,
1217			.decrypt	= n2_decrypt_chaining,
1218		},
1219	},
1220	/* AES: ECB CBC and CTR are supported */
1221	{	.name		= "ecb(aes)",
1222		.drv_name	= "ecb-aes",
1223		.block_size	= AES_BLOCK_SIZE,
1224		.enc_type	= (ENC_TYPE_ALG_AES128 |
1225				   ENC_TYPE_CHAINING_ECB),
1226		.ablkcipher	= {
1227			.min_keysize	= AES_MIN_KEY_SIZE,
1228			.max_keysize	= AES_MAX_KEY_SIZE,
1229			.setkey		= n2_aes_setkey,
1230			.encrypt	= n2_encrypt_ecb,
1231			.decrypt	= n2_decrypt_ecb,
1232		},
1233	},
1234	{	.name		= "cbc(aes)",
1235		.drv_name	= "cbc-aes",
1236		.block_size	= AES_BLOCK_SIZE,
1237		.enc_type	= (ENC_TYPE_ALG_AES128 |
1238				   ENC_TYPE_CHAINING_CBC),
1239		.ablkcipher	= {
1240			.ivsize		= AES_BLOCK_SIZE,
1241			.min_keysize	= AES_MIN_KEY_SIZE,
1242			.max_keysize	= AES_MAX_KEY_SIZE,
1243			.setkey		= n2_aes_setkey,
1244			.encrypt	= n2_encrypt_chaining,
1245			.decrypt	= n2_decrypt_chaining,
1246		},
1247	},
1248	{	.name		= "ctr(aes)",
1249		.drv_name	= "ctr-aes",
1250		.block_size	= AES_BLOCK_SIZE,
1251		.enc_type	= (ENC_TYPE_ALG_AES128 |
1252				   ENC_TYPE_CHAINING_COUNTER),
1253		.ablkcipher	= {
1254			.ivsize		= AES_BLOCK_SIZE,
1255			.min_keysize	= AES_MIN_KEY_SIZE,
1256			.max_keysize	= AES_MAX_KEY_SIZE,
1257			.setkey		= n2_aes_setkey,
1258			.encrypt	= n2_encrypt_chaining,
1259			.decrypt	= n2_encrypt_chaining,
1260		},
1261	},
1262
1263};
1264#define NUM_CIPHER_TMPLS ARRAY_SIZE(cipher_tmpls)
1265
1266static LIST_HEAD(cipher_algs);
1267
1268struct n2_hash_tmpl {
1269	const char	*name;
1270	const u8	*hash_zero;
1271	const u32	*hash_init;
1272	u8		hw_op_hashsz;
1273	u8		digest_size;
 
1274	u8		block_size;
1275	u8		auth_type;
1276	u8		hmac_type;
1277};
1278
1279static const u32 md5_init[MD5_HASH_WORDS] = {
1280	cpu_to_le32(MD5_H0),
1281	cpu_to_le32(MD5_H1),
1282	cpu_to_le32(MD5_H2),
1283	cpu_to_le32(MD5_H3),
1284};
1285static const u32 sha1_init[SHA1_DIGEST_SIZE / 4] = {
1286	SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4,
1287};
1288static const u32 sha256_init[SHA256_DIGEST_SIZE / 4] = {
1289	SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
1290	SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7,
1291};
1292static const u32 sha224_init[SHA256_DIGEST_SIZE / 4] = {
1293	SHA224_H0, SHA224_H1, SHA224_H2, SHA224_H3,
1294	SHA224_H4, SHA224_H5, SHA224_H6, SHA224_H7,
1295};
1296
1297static const struct n2_hash_tmpl hash_tmpls[] = {
1298	{ .name		= "md5",
1299	  .hash_zero	= md5_zero_message_hash,
1300	  .hash_init	= md5_init,
1301	  .auth_type	= AUTH_TYPE_MD5,
1302	  .hmac_type	= AUTH_TYPE_HMAC_MD5,
1303	  .hw_op_hashsz	= MD5_DIGEST_SIZE,
1304	  .digest_size	= MD5_DIGEST_SIZE,
 
1305	  .block_size	= MD5_HMAC_BLOCK_SIZE },
1306	{ .name		= "sha1",
1307	  .hash_zero	= sha1_zero_message_hash,
1308	  .hash_init	= sha1_init,
1309	  .auth_type	= AUTH_TYPE_SHA1,
1310	  .hmac_type	= AUTH_TYPE_HMAC_SHA1,
1311	  .hw_op_hashsz	= SHA1_DIGEST_SIZE,
1312	  .digest_size	= SHA1_DIGEST_SIZE,
 
1313	  .block_size	= SHA1_BLOCK_SIZE },
1314	{ .name		= "sha256",
1315	  .hash_zero	= sha256_zero_message_hash,
1316	  .hash_init	= sha256_init,
1317	  .auth_type	= AUTH_TYPE_SHA256,
1318	  .hmac_type	= AUTH_TYPE_HMAC_SHA256,
1319	  .hw_op_hashsz	= SHA256_DIGEST_SIZE,
1320	  .digest_size	= SHA256_DIGEST_SIZE,
 
1321	  .block_size	= SHA256_BLOCK_SIZE },
1322	{ .name		= "sha224",
1323	  .hash_zero	= sha224_zero_message_hash,
1324	  .hash_init	= sha224_init,
1325	  .auth_type	= AUTH_TYPE_SHA256,
1326	  .hmac_type	= AUTH_TYPE_RESERVED,
1327	  .hw_op_hashsz	= SHA256_DIGEST_SIZE,
1328	  .digest_size	= SHA224_DIGEST_SIZE,
 
1329	  .block_size	= SHA224_BLOCK_SIZE },
1330};
1331#define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls)
1332
1333static LIST_HEAD(ahash_algs);
1334static LIST_HEAD(hmac_algs);
1335
1336static int algs_registered;
1337
1338static void __n2_unregister_algs(void)
1339{
1340	struct n2_cipher_alg *cipher, *cipher_tmp;
1341	struct n2_ahash_alg *alg, *alg_tmp;
1342	struct n2_hmac_alg *hmac, *hmac_tmp;
1343
1344	list_for_each_entry_safe(cipher, cipher_tmp, &cipher_algs, entry) {
1345		crypto_unregister_alg(&cipher->alg);
1346		list_del(&cipher->entry);
1347		kfree(cipher);
1348	}
1349	list_for_each_entry_safe(hmac, hmac_tmp, &hmac_algs, derived.entry) {
1350		crypto_unregister_ahash(&hmac->derived.alg);
1351		list_del(&hmac->derived.entry);
1352		kfree(hmac);
1353	}
1354	list_for_each_entry_safe(alg, alg_tmp, &ahash_algs, entry) {
1355		crypto_unregister_ahash(&alg->alg);
1356		list_del(&alg->entry);
1357		kfree(alg);
1358	}
1359}
1360
1361static int n2_cipher_cra_init(struct crypto_tfm *tfm)
1362{
1363	tfm->crt_ablkcipher.reqsize = sizeof(struct n2_request_context);
1364	return 0;
1365}
1366
1367static int __n2_register_one_cipher(const struct n2_cipher_tmpl *tmpl)
1368{
1369	struct n2_cipher_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1370	struct crypto_alg *alg;
1371	int err;
1372
1373	if (!p)
1374		return -ENOMEM;
1375
1376	alg = &p->alg;
 
1377
1378	snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1379	snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->drv_name);
1380	alg->cra_priority = N2_CRA_PRIORITY;
1381	alg->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1382			 CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC;
1383	alg->cra_blocksize = tmpl->block_size;
1384	p->enc_type = tmpl->enc_type;
1385	alg->cra_ctxsize = sizeof(struct n2_cipher_context);
1386	alg->cra_type = &crypto_ablkcipher_type;
1387	alg->cra_u.ablkcipher = tmpl->ablkcipher;
1388	alg->cra_init = n2_cipher_cra_init;
1389	alg->cra_module = THIS_MODULE;
1390
1391	list_add(&p->entry, &cipher_algs);
1392	err = crypto_register_alg(alg);
1393	if (err) {
1394		pr_err("%s alg registration failed\n", alg->cra_name);
1395		list_del(&p->entry);
1396		kfree(p);
1397	} else {
1398		pr_info("%s alg registered\n", alg->cra_name);
1399	}
1400	return err;
1401}
1402
1403static int __n2_register_one_hmac(struct n2_ahash_alg *n2ahash)
1404{
1405	struct n2_hmac_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1406	struct ahash_alg *ahash;
1407	struct crypto_alg *base;
1408	int err;
1409
1410	if (!p)
1411		return -ENOMEM;
1412
1413	p->child_alg = n2ahash->alg.halg.base.cra_name;
1414	memcpy(&p->derived, n2ahash, sizeof(struct n2_ahash_alg));
1415	INIT_LIST_HEAD(&p->derived.entry);
1416
1417	ahash = &p->derived.alg;
1418	ahash->digest = n2_hmac_async_digest;
1419	ahash->setkey = n2_hmac_async_setkey;
1420
1421	base = &ahash->halg.base;
1422	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", p->child_alg);
1423	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s-n2", p->child_alg);
 
 
 
 
1424
1425	base->cra_ctxsize = sizeof(struct n2_hmac_ctx);
1426	base->cra_init = n2_hmac_cra_init;
1427	base->cra_exit = n2_hmac_cra_exit;
1428
1429	list_add(&p->derived.entry, &hmac_algs);
1430	err = crypto_register_ahash(ahash);
1431	if (err) {
1432		pr_err("%s alg registration failed\n", base->cra_name);
1433		list_del(&p->derived.entry);
 
1434		kfree(p);
1435	} else {
1436		pr_info("%s alg registered\n", base->cra_name);
1437	}
1438	return err;
1439}
1440
1441static int __n2_register_one_ahash(const struct n2_hash_tmpl *tmpl)
1442{
1443	struct n2_ahash_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1444	struct hash_alg_common *halg;
1445	struct crypto_alg *base;
1446	struct ahash_alg *ahash;
1447	int err;
1448
1449	if (!p)
1450		return -ENOMEM;
1451
1452	p->hash_zero = tmpl->hash_zero;
1453	p->hash_init = tmpl->hash_init;
1454	p->auth_type = tmpl->auth_type;
1455	p->hmac_type = tmpl->hmac_type;
1456	p->hw_op_hashsz = tmpl->hw_op_hashsz;
1457	p->digest_size = tmpl->digest_size;
1458
1459	ahash = &p->alg;
1460	ahash->init = n2_hash_async_init;
1461	ahash->update = n2_hash_async_update;
1462	ahash->final = n2_hash_async_final;
1463	ahash->finup = n2_hash_async_finup;
1464	ahash->digest = n2_hash_async_digest;
 
 
1465
1466	halg = &ahash->halg;
1467	halg->digestsize = tmpl->digest_size;
 
1468
1469	base = &halg->base;
1470	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1471	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->name);
1472	base->cra_priority = N2_CRA_PRIORITY;
1473	base->cra_flags = CRYPTO_ALG_TYPE_AHASH |
1474			  CRYPTO_ALG_KERN_DRIVER_ONLY |
1475			  CRYPTO_ALG_NEED_FALLBACK;
1476	base->cra_blocksize = tmpl->block_size;
1477	base->cra_ctxsize = sizeof(struct n2_hash_ctx);
1478	base->cra_module = THIS_MODULE;
1479	base->cra_init = n2_hash_cra_init;
1480	base->cra_exit = n2_hash_cra_exit;
1481
1482	list_add(&p->entry, &ahash_algs);
1483	err = crypto_register_ahash(ahash);
1484	if (err) {
1485		pr_err("%s alg registration failed\n", base->cra_name);
1486		list_del(&p->entry);
1487		kfree(p);
1488	} else {
1489		pr_info("%s alg registered\n", base->cra_name);
1490	}
1491	if (!err && p->hmac_type != AUTH_TYPE_RESERVED)
1492		err = __n2_register_one_hmac(p);
1493	return err;
1494}
1495
1496static int n2_register_algs(void)
1497{
1498	int i, err = 0;
1499
1500	mutex_lock(&spu_lock);
1501	if (algs_registered++)
1502		goto out;
1503
1504	for (i = 0; i < NUM_HASH_TMPLS; i++) {
1505		err = __n2_register_one_ahash(&hash_tmpls[i]);
1506		if (err) {
1507			__n2_unregister_algs();
1508			goto out;
1509		}
1510	}
1511	for (i = 0; i < NUM_CIPHER_TMPLS; i++) {
1512		err = __n2_register_one_cipher(&cipher_tmpls[i]);
1513		if (err) {
1514			__n2_unregister_algs();
1515			goto out;
1516		}
1517	}
1518
1519out:
1520	mutex_unlock(&spu_lock);
1521	return err;
1522}
1523
1524static void n2_unregister_algs(void)
1525{
1526	mutex_lock(&spu_lock);
1527	if (!--algs_registered)
1528		__n2_unregister_algs();
1529	mutex_unlock(&spu_lock);
1530}
1531
1532/* To map CWQ queues to interrupt sources, the hypervisor API provides
1533 * a devino.  This isn't very useful to us because all of the
1534 * interrupts listed in the device_node have been translated to
1535 * Linux virtual IRQ cookie numbers.
1536 *
1537 * So we have to back-translate, going through the 'intr' and 'ino'
1538 * property tables of the n2cp MDESC node, matching it with the OF
1539 * 'interrupts' property entries, in order to to figure out which
1540 * devino goes to which already-translated IRQ.
1541 */
1542static int find_devino_index(struct platform_device *dev, struct spu_mdesc_info *ip,
1543			     unsigned long dev_ino)
1544{
1545	const unsigned int *dev_intrs;
1546	unsigned int intr;
1547	int i;
1548
1549	for (i = 0; i < ip->num_intrs; i++) {
1550		if (ip->ino_table[i].ino == dev_ino)
1551			break;
1552	}
1553	if (i == ip->num_intrs)
1554		return -ENODEV;
1555
1556	intr = ip->ino_table[i].intr;
1557
1558	dev_intrs = of_get_property(dev->dev.of_node, "interrupts", NULL);
1559	if (!dev_intrs)
1560		return -ENODEV;
1561
1562	for (i = 0; i < dev->archdata.num_irqs; i++) {
1563		if (dev_intrs[i] == intr)
1564			return i;
1565	}
1566
1567	return -ENODEV;
1568}
1569
1570static int spu_map_ino(struct platform_device *dev, struct spu_mdesc_info *ip,
1571		       const char *irq_name, struct spu_queue *p,
1572		       irq_handler_t handler)
1573{
1574	unsigned long herr;
1575	int index;
1576
1577	herr = sun4v_ncs_qhandle_to_devino(p->qhandle, &p->devino);
1578	if (herr)
1579		return -EINVAL;
1580
1581	index = find_devino_index(dev, ip, p->devino);
1582	if (index < 0)
1583		return index;
1584
1585	p->irq = dev->archdata.irqs[index];
1586
1587	sprintf(p->irq_name, "%s-%d", irq_name, index);
1588
1589	return request_irq(p->irq, handler, 0, p->irq_name, p);
1590}
1591
1592static struct kmem_cache *queue_cache[2];
1593
1594static void *new_queue(unsigned long q_type)
1595{
1596	return kmem_cache_zalloc(queue_cache[q_type - 1], GFP_KERNEL);
1597}
1598
1599static void free_queue(void *p, unsigned long q_type)
1600{
1601	return kmem_cache_free(queue_cache[q_type - 1], p);
1602}
1603
1604static int queue_cache_init(void)
1605{
1606	if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1607		queue_cache[HV_NCS_QTYPE_MAU - 1] =
1608			kmem_cache_create("mau_queue",
1609					  (MAU_NUM_ENTRIES *
1610					   MAU_ENTRY_SIZE),
1611					  MAU_ENTRY_SIZE, 0, NULL);
1612	if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1613		return -ENOMEM;
1614
1615	if (!queue_cache[HV_NCS_QTYPE_CWQ - 1])
1616		queue_cache[HV_NCS_QTYPE_CWQ - 1] =
1617			kmem_cache_create("cwq_queue",
1618					  (CWQ_NUM_ENTRIES *
1619					   CWQ_ENTRY_SIZE),
1620					  CWQ_ENTRY_SIZE, 0, NULL);
1621	if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) {
1622		kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
 
1623		return -ENOMEM;
1624	}
1625	return 0;
1626}
1627
1628static void queue_cache_destroy(void)
1629{
1630	kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1631	kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_CWQ - 1]);
 
 
1632}
1633
1634static int spu_queue_register(struct spu_queue *p, unsigned long q_type)
1635{
1636	cpumask_var_t old_allowed;
 
 
1637	unsigned long hv_ret;
1638
1639	if (cpumask_empty(&p->sharing))
1640		return -EINVAL;
1641
1642	if (!alloc_cpumask_var(&old_allowed, GFP_KERNEL))
1643		return -ENOMEM;
1644
1645	cpumask_copy(old_allowed, &current->cpus_allowed);
1646
1647	set_cpus_allowed_ptr(current, &p->sharing);
1648
1649	hv_ret = sun4v_ncs_qconf(q_type, __pa(p->q),
1650				 CWQ_NUM_ENTRIES, &p->qhandle);
1651	if (!hv_ret)
1652		sun4v_ncs_sethead_marker(p->qhandle, 0);
1653
1654	set_cpus_allowed_ptr(current, old_allowed);
 
1655
1656	free_cpumask_var(old_allowed);
 
 
 
1657
1658	return (hv_ret ? -EINVAL : 0);
1659}
1660
1661static int spu_queue_setup(struct spu_queue *p)
1662{
1663	int err;
1664
1665	p->q = new_queue(p->q_type);
1666	if (!p->q)
1667		return -ENOMEM;
1668
1669	err = spu_queue_register(p, p->q_type);
1670	if (err) {
1671		free_queue(p->q, p->q_type);
1672		p->q = NULL;
1673	}
1674
1675	return err;
1676}
1677
1678static void spu_queue_destroy(struct spu_queue *p)
1679{
1680	unsigned long hv_ret;
1681
1682	if (!p->q)
1683		return;
1684
1685	hv_ret = sun4v_ncs_qconf(p->q_type, p->qhandle, 0, &p->qhandle);
1686
1687	if (!hv_ret)
1688		free_queue(p->q, p->q_type);
1689}
1690
1691static void spu_list_destroy(struct list_head *list)
1692{
1693	struct spu_queue *p, *n;
1694
1695	list_for_each_entry_safe(p, n, list, list) {
1696		int i;
1697
1698		for (i = 0; i < NR_CPUS; i++) {
1699			if (cpu_to_cwq[i] == p)
1700				cpu_to_cwq[i] = NULL;
1701		}
1702
1703		if (p->irq) {
1704			free_irq(p->irq, p);
1705			p->irq = 0;
1706		}
1707		spu_queue_destroy(p);
1708		list_del(&p->list);
1709		kfree(p);
1710	}
1711}
1712
1713/* Walk the backward arcs of a CWQ 'exec-unit' node,
1714 * gathering cpu membership information.
1715 */
1716static int spu_mdesc_walk_arcs(struct mdesc_handle *mdesc,
1717			       struct platform_device *dev,
1718			       u64 node, struct spu_queue *p,
1719			       struct spu_queue **table)
1720{
1721	u64 arc;
1722
1723	mdesc_for_each_arc(arc, mdesc, node, MDESC_ARC_TYPE_BACK) {
1724		u64 tgt = mdesc_arc_target(mdesc, arc);
1725		const char *name = mdesc_node_name(mdesc, tgt);
1726		const u64 *id;
1727
1728		if (strcmp(name, "cpu"))
1729			continue;
1730		id = mdesc_get_property(mdesc, tgt, "id", NULL);
1731		if (table[*id] != NULL) {
1732			dev_err(&dev->dev, "%s: SPU cpu slot already set.\n",
1733				dev->dev.of_node->full_name);
1734			return -EINVAL;
1735		}
1736		cpumask_set_cpu(*id, &p->sharing);
1737		table[*id] = p;
1738	}
1739	return 0;
1740}
1741
1742/* Process an 'exec-unit' MDESC node of type 'cwq'.  */
1743static int handle_exec_unit(struct spu_mdesc_info *ip, struct list_head *list,
1744			    struct platform_device *dev, struct mdesc_handle *mdesc,
1745			    u64 node, const char *iname, unsigned long q_type,
1746			    irq_handler_t handler, struct spu_queue **table)
1747{
1748	struct spu_queue *p;
1749	int err;
1750
1751	p = kzalloc(sizeof(struct spu_queue), GFP_KERNEL);
1752	if (!p) {
1753		dev_err(&dev->dev, "%s: Could not allocate SPU queue.\n",
1754			dev->dev.of_node->full_name);
1755		return -ENOMEM;
1756	}
1757
1758	cpumask_clear(&p->sharing);
1759	spin_lock_init(&p->lock);
1760	p->q_type = q_type;
1761	INIT_LIST_HEAD(&p->jobs);
1762	list_add(&p->list, list);
1763
1764	err = spu_mdesc_walk_arcs(mdesc, dev, node, p, table);
1765	if (err)
1766		return err;
1767
1768	err = spu_queue_setup(p);
1769	if (err)
1770		return err;
1771
1772	return spu_map_ino(dev, ip, iname, p, handler);
1773}
1774
1775static int spu_mdesc_scan(struct mdesc_handle *mdesc, struct platform_device *dev,
1776			  struct spu_mdesc_info *ip, struct list_head *list,
1777			  const char *exec_name, unsigned long q_type,
1778			  irq_handler_t handler, struct spu_queue **table)
1779{
1780	int err = 0;
1781	u64 node;
1782
1783	mdesc_for_each_node_by_name(mdesc, node, "exec-unit") {
1784		const char *type;
1785
1786		type = mdesc_get_property(mdesc, node, "type", NULL);
1787		if (!type || strcmp(type, exec_name))
1788			continue;
1789
1790		err = handle_exec_unit(ip, list, dev, mdesc, node,
1791				       exec_name, q_type, handler, table);
1792		if (err) {
1793			spu_list_destroy(list);
1794			break;
1795		}
1796	}
1797
1798	return err;
1799}
1800
1801static int get_irq_props(struct mdesc_handle *mdesc, u64 node,
1802			 struct spu_mdesc_info *ip)
1803{
1804	const u64 *ino;
1805	int ino_len;
1806	int i;
1807
1808	ino = mdesc_get_property(mdesc, node, "ino", &ino_len);
1809	if (!ino) {
1810		printk("NO 'ino'\n");
1811		return -ENODEV;
1812	}
1813
1814	ip->num_intrs = ino_len / sizeof(u64);
1815	ip->ino_table = kzalloc((sizeof(struct ino_blob) *
1816				 ip->num_intrs),
1817				GFP_KERNEL);
1818	if (!ip->ino_table)
1819		return -ENOMEM;
1820
1821	for (i = 0; i < ip->num_intrs; i++) {
1822		struct ino_blob *b = &ip->ino_table[i];
1823		b->intr = i + 1;
1824		b->ino = ino[i];
1825	}
1826
1827	return 0;
1828}
1829
1830static int grab_mdesc_irq_props(struct mdesc_handle *mdesc,
1831				struct platform_device *dev,
1832				struct spu_mdesc_info *ip,
1833				const char *node_name)
1834{
1835	const unsigned int *reg;
1836	u64 node;
1837
1838	reg = of_get_property(dev->dev.of_node, "reg", NULL);
1839	if (!reg)
1840		return -ENODEV;
1841
1842	mdesc_for_each_node_by_name(mdesc, node, "virtual-device") {
1843		const char *name;
1844		const u64 *chdl;
1845
1846		name = mdesc_get_property(mdesc, node, "name", NULL);
1847		if (!name || strcmp(name, node_name))
1848			continue;
1849		chdl = mdesc_get_property(mdesc, node, "cfg-handle", NULL);
1850		if (!chdl || (*chdl != *reg))
1851			continue;
1852		ip->cfg_handle = *chdl;
1853		return get_irq_props(mdesc, node, ip);
1854	}
1855
1856	return -ENODEV;
1857}
1858
1859static unsigned long n2_spu_hvapi_major;
1860static unsigned long n2_spu_hvapi_minor;
1861
1862static int n2_spu_hvapi_register(void)
1863{
1864	int err;
1865
1866	n2_spu_hvapi_major = 2;
1867	n2_spu_hvapi_minor = 0;
1868
1869	err = sun4v_hvapi_register(HV_GRP_NCS,
1870				   n2_spu_hvapi_major,
1871				   &n2_spu_hvapi_minor);
1872
1873	if (!err)
1874		pr_info("Registered NCS HVAPI version %lu.%lu\n",
1875			n2_spu_hvapi_major,
1876			n2_spu_hvapi_minor);
1877
1878	return err;
1879}
1880
1881static void n2_spu_hvapi_unregister(void)
1882{
1883	sun4v_hvapi_unregister(HV_GRP_NCS);
1884}
1885
1886static int global_ref;
1887
1888static int grab_global_resources(void)
1889{
1890	int err = 0;
1891
1892	mutex_lock(&spu_lock);
1893
1894	if (global_ref++)
1895		goto out;
1896
1897	err = n2_spu_hvapi_register();
1898	if (err)
1899		goto out;
1900
1901	err = queue_cache_init();
1902	if (err)
1903		goto out_hvapi_release;
1904
1905	err = -ENOMEM;
1906	cpu_to_cwq = kzalloc(sizeof(struct spu_queue *) * NR_CPUS,
1907			     GFP_KERNEL);
1908	if (!cpu_to_cwq)
1909		goto out_queue_cache_destroy;
1910
1911	cpu_to_mau = kzalloc(sizeof(struct spu_queue *) * NR_CPUS,
1912			     GFP_KERNEL);
1913	if (!cpu_to_mau)
1914		goto out_free_cwq_table;
1915
1916	err = 0;
1917
1918out:
1919	if (err)
1920		global_ref--;
1921	mutex_unlock(&spu_lock);
1922	return err;
1923
1924out_free_cwq_table:
1925	kfree(cpu_to_cwq);
1926	cpu_to_cwq = NULL;
1927
1928out_queue_cache_destroy:
1929	queue_cache_destroy();
1930
1931out_hvapi_release:
1932	n2_spu_hvapi_unregister();
1933	goto out;
1934}
1935
1936static void release_global_resources(void)
1937{
1938	mutex_lock(&spu_lock);
1939	if (!--global_ref) {
1940		kfree(cpu_to_cwq);
1941		cpu_to_cwq = NULL;
1942
1943		kfree(cpu_to_mau);
1944		cpu_to_mau = NULL;
1945
1946		queue_cache_destroy();
1947		n2_spu_hvapi_unregister();
1948	}
1949	mutex_unlock(&spu_lock);
1950}
1951
1952static struct n2_crypto *alloc_n2cp(void)
1953{
1954	struct n2_crypto *np = kzalloc(sizeof(struct n2_crypto), GFP_KERNEL);
1955
1956	if (np)
1957		INIT_LIST_HEAD(&np->cwq_list);
1958
1959	return np;
1960}
1961
1962static void free_n2cp(struct n2_crypto *np)
1963{
1964	if (np->cwq_info.ino_table) {
1965		kfree(np->cwq_info.ino_table);
1966		np->cwq_info.ino_table = NULL;
1967	}
1968
1969	kfree(np);
1970}
1971
1972static void n2_spu_driver_version(void)
1973{
1974	static int n2_spu_version_printed;
1975
1976	if (n2_spu_version_printed++ == 0)
1977		pr_info("%s", version);
1978}
1979
1980static int n2_crypto_probe(struct platform_device *dev)
1981{
1982	struct mdesc_handle *mdesc;
1983	const char *full_name;
1984	struct n2_crypto *np;
1985	int err;
1986
1987	n2_spu_driver_version();
1988
1989	full_name = dev->dev.of_node->full_name;
1990	pr_info("Found N2CP at %s\n", full_name);
1991
1992	np = alloc_n2cp();
1993	if (!np) {
1994		dev_err(&dev->dev, "%s: Unable to allocate n2cp.\n",
1995			full_name);
1996		return -ENOMEM;
1997	}
1998
1999	err = grab_global_resources();
2000	if (err) {
2001		dev_err(&dev->dev, "%s: Unable to grab "
2002			"global resources.\n", full_name);
2003		goto out_free_n2cp;
2004	}
2005
2006	mdesc = mdesc_grab();
2007
2008	if (!mdesc) {
2009		dev_err(&dev->dev, "%s: Unable to grab MDESC.\n",
2010			full_name);
2011		err = -ENODEV;
2012		goto out_free_global;
2013	}
2014	err = grab_mdesc_irq_props(mdesc, dev, &np->cwq_info, "n2cp");
2015	if (err) {
2016		dev_err(&dev->dev, "%s: Unable to grab IRQ props.\n",
2017			full_name);
2018		mdesc_release(mdesc);
2019		goto out_free_global;
2020	}
2021
2022	err = spu_mdesc_scan(mdesc, dev, &np->cwq_info, &np->cwq_list,
2023			     "cwq", HV_NCS_QTYPE_CWQ, cwq_intr,
2024			     cpu_to_cwq);
2025	mdesc_release(mdesc);
2026
2027	if (err) {
2028		dev_err(&dev->dev, "%s: CWQ MDESC scan failed.\n",
2029			full_name);
2030		goto out_free_global;
2031	}
2032
2033	err = n2_register_algs();
2034	if (err) {
2035		dev_err(&dev->dev, "%s: Unable to register algorithms.\n",
2036			full_name);
2037		goto out_free_spu_list;
2038	}
2039
2040	dev_set_drvdata(&dev->dev, np);
2041
2042	return 0;
2043
2044out_free_spu_list:
2045	spu_list_destroy(&np->cwq_list);
2046
2047out_free_global:
2048	release_global_resources();
2049
2050out_free_n2cp:
2051	free_n2cp(np);
2052
2053	return err;
2054}
2055
2056static int n2_crypto_remove(struct platform_device *dev)
2057{
2058	struct n2_crypto *np = dev_get_drvdata(&dev->dev);
2059
2060	n2_unregister_algs();
2061
2062	spu_list_destroy(&np->cwq_list);
2063
2064	release_global_resources();
2065
2066	free_n2cp(np);
2067
2068	return 0;
2069}
2070
2071static struct n2_mau *alloc_ncp(void)
2072{
2073	struct n2_mau *mp = kzalloc(sizeof(struct n2_mau), GFP_KERNEL);
2074
2075	if (mp)
2076		INIT_LIST_HEAD(&mp->mau_list);
2077
2078	return mp;
2079}
2080
2081static void free_ncp(struct n2_mau *mp)
2082{
2083	if (mp->mau_info.ino_table) {
2084		kfree(mp->mau_info.ino_table);
2085		mp->mau_info.ino_table = NULL;
2086	}
2087
2088	kfree(mp);
2089}
2090
2091static int n2_mau_probe(struct platform_device *dev)
2092{
2093	struct mdesc_handle *mdesc;
2094	const char *full_name;
2095	struct n2_mau *mp;
2096	int err;
2097
2098	n2_spu_driver_version();
2099
2100	full_name = dev->dev.of_node->full_name;
2101	pr_info("Found NCP at %s\n", full_name);
2102
2103	mp = alloc_ncp();
2104	if (!mp) {
2105		dev_err(&dev->dev, "%s: Unable to allocate ncp.\n",
2106			full_name);
2107		return -ENOMEM;
2108	}
2109
2110	err = grab_global_resources();
2111	if (err) {
2112		dev_err(&dev->dev, "%s: Unable to grab "
2113			"global resources.\n", full_name);
2114		goto out_free_ncp;
2115	}
2116
2117	mdesc = mdesc_grab();
2118
2119	if (!mdesc) {
2120		dev_err(&dev->dev, "%s: Unable to grab MDESC.\n",
2121			full_name);
2122		err = -ENODEV;
2123		goto out_free_global;
2124	}
2125
2126	err = grab_mdesc_irq_props(mdesc, dev, &mp->mau_info, "ncp");
2127	if (err) {
2128		dev_err(&dev->dev, "%s: Unable to grab IRQ props.\n",
2129			full_name);
2130		mdesc_release(mdesc);
2131		goto out_free_global;
2132	}
2133
2134	err = spu_mdesc_scan(mdesc, dev, &mp->mau_info, &mp->mau_list,
2135			     "mau", HV_NCS_QTYPE_MAU, mau_intr,
2136			     cpu_to_mau);
2137	mdesc_release(mdesc);
2138
2139	if (err) {
2140		dev_err(&dev->dev, "%s: MAU MDESC scan failed.\n",
2141			full_name);
2142		goto out_free_global;
2143	}
2144
2145	dev_set_drvdata(&dev->dev, mp);
2146
2147	return 0;
2148
2149out_free_global:
2150	release_global_resources();
2151
2152out_free_ncp:
2153	free_ncp(mp);
2154
2155	return err;
2156}
2157
2158static int n2_mau_remove(struct platform_device *dev)
2159{
2160	struct n2_mau *mp = dev_get_drvdata(&dev->dev);
2161
2162	spu_list_destroy(&mp->mau_list);
2163
2164	release_global_resources();
2165
2166	free_ncp(mp);
2167
2168	return 0;
2169}
2170
2171static struct of_device_id n2_crypto_match[] = {
2172	{
2173		.name = "n2cp",
2174		.compatible = "SUNW,n2-cwq",
2175	},
2176	{
2177		.name = "n2cp",
2178		.compatible = "SUNW,vf-cwq",
2179	},
2180	{
2181		.name = "n2cp",
2182		.compatible = "SUNW,kt-cwq",
2183	},
2184	{},
2185};
2186
2187MODULE_DEVICE_TABLE(of, n2_crypto_match);
2188
2189static struct platform_driver n2_crypto_driver = {
2190	.driver = {
2191		.name		=	"n2cp",
2192		.of_match_table	=	n2_crypto_match,
2193	},
2194	.probe		=	n2_crypto_probe,
2195	.remove		=	n2_crypto_remove,
2196};
2197
2198static struct of_device_id n2_mau_match[] = {
2199	{
2200		.name = "ncp",
2201		.compatible = "SUNW,n2-mau",
2202	},
2203	{
2204		.name = "ncp",
2205		.compatible = "SUNW,vf-mau",
2206	},
2207	{
2208		.name = "ncp",
2209		.compatible = "SUNW,kt-mau",
2210	},
2211	{},
2212};
2213
2214MODULE_DEVICE_TABLE(of, n2_mau_match);
2215
2216static struct platform_driver n2_mau_driver = {
2217	.driver = {
2218		.name		=	"ncp",
2219		.of_match_table	=	n2_mau_match,
2220	},
2221	.probe		=	n2_mau_probe,
2222	.remove		=	n2_mau_remove,
2223};
2224
2225static struct platform_driver * const drivers[] = {
2226	&n2_crypto_driver,
2227	&n2_mau_driver,
2228};
2229
2230static int __init n2_init(void)
2231{
2232	return platform_register_drivers(drivers, ARRAY_SIZE(drivers));
2233}
2234
2235static void __exit n2_exit(void)
2236{
2237	platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
2238}
2239
2240module_init(n2_init);
2241module_exit(n2_exit);