Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Copyright (C) 2013 Freescale Semiconductor, Inc.
 
 
 
 
  4 */
  5
  6#include <linux/clk.h>
  7#include <linux/cpu.h>
  8#include <linux/cpufreq.h>
  9#include <linux/err.h>
 10#include <linux/module.h>
 11#include <linux/nvmem-consumer.h>
 12#include <linux/of.h>
 13#include <linux/of_address.h>
 14#include <linux/pm_opp.h>
 15#include <linux/platform_device.h>
 16#include <linux/regulator/consumer.h>
 17
 18#define PU_SOC_VOLTAGE_NORMAL	1250000
 19#define PU_SOC_VOLTAGE_HIGH	1275000
 20#define FREQ_1P2_GHZ		1200000000
 21
 22static struct regulator *arm_reg;
 23static struct regulator *pu_reg;
 24static struct regulator *soc_reg;
 25
 26enum IMX6_CPUFREQ_CLKS {
 27	ARM,
 28	PLL1_SYS,
 29	STEP,
 30	PLL1_SW,
 31	PLL2_PFD2_396M,
 32	/* MX6UL requires two more clks */
 33	PLL2_BUS,
 34	SECONDARY_SEL,
 35};
 36#define IMX6Q_CPUFREQ_CLK_NUM		5
 37#define IMX6UL_CPUFREQ_CLK_NUM		7
 38
 39static int num_clks;
 40static struct clk_bulk_data clks[] = {
 41	{ .id = "arm" },
 42	{ .id = "pll1_sys" },
 43	{ .id = "step" },
 44	{ .id = "pll1_sw" },
 45	{ .id = "pll2_pfd2_396m" },
 46	{ .id = "pll2_bus" },
 47	{ .id = "secondary_sel" },
 48};
 49
 50static struct device *cpu_dev;
 
 51static struct cpufreq_frequency_table *freq_table;
 52static unsigned int max_freq;
 53static unsigned int transition_latency;
 54
 55static u32 *imx6_soc_volt;
 56static u32 soc_opp_count;
 57
 58static int imx6q_set_target(struct cpufreq_policy *policy, unsigned int index)
 59{
 60	struct dev_pm_opp *opp;
 61	unsigned long freq_hz, volt, volt_old;
 62	unsigned int old_freq, new_freq;
 63	bool pll1_sys_temp_enabled = false;
 64	int ret;
 65
 66	new_freq = freq_table[index].frequency;
 67	freq_hz = new_freq * 1000;
 68	old_freq = clk_get_rate(clks[ARM].clk) / 1000;
 69
 
 70	opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz);
 71	if (IS_ERR(opp)) {
 
 72		dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz);
 73		return PTR_ERR(opp);
 74	}
 75
 76	volt = dev_pm_opp_get_voltage(opp);
 77	dev_pm_opp_put(opp);
 78
 79	volt_old = regulator_get_voltage(arm_reg);
 80
 81	dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n",
 82		old_freq / 1000, volt_old / 1000,
 83		new_freq / 1000, volt / 1000);
 84
 85	/* scaling up?  scale voltage before frequency */
 86	if (new_freq > old_freq) {
 87		if (!IS_ERR(pu_reg)) {
 88			ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
 89			if (ret) {
 90				dev_err(cpu_dev, "failed to scale vddpu up: %d\n", ret);
 91				return ret;
 92			}
 93		}
 94		ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
 95		if (ret) {
 96			dev_err(cpu_dev, "failed to scale vddsoc up: %d\n", ret);
 97			return ret;
 98		}
 99		ret = regulator_set_voltage_tol(arm_reg, volt, 0);
100		if (ret) {
101			dev_err(cpu_dev,
102				"failed to scale vddarm up: %d\n", ret);
103			return ret;
104		}
105	}
106
107	/*
108	 * The setpoints are selected per PLL/PDF frequencies, so we need to
109	 * reprogram PLL for frequency scaling.  The procedure of reprogramming
110	 * PLL1 is as below.
111	 * For i.MX6UL, it has a secondary clk mux, the cpu frequency change
112	 * flow is slightly different from other i.MX6 OSC.
113	 * The cpu frequeny change flow for i.MX6(except i.MX6UL) is as below:
114	 *  - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it
115	 *  - Reprogram pll1_sys_clk and reparent pll1_sw_clk back to it
116	 *  - Disable pll2_pfd2_396m_clk
117	 */
118	if (of_machine_is_compatible("fsl,imx6ul") ||
119	    of_machine_is_compatible("fsl,imx6ull")) {
120		/*
121		 * When changing pll1_sw_clk's parent to pll1_sys_clk,
122		 * CPU may run at higher than 528MHz, this will lead to
123		 * the system unstable if the voltage is lower than the
124		 * voltage of 528MHz, so lower the CPU frequency to one
125		 * half before changing CPU frequency.
126		 */
127		clk_set_rate(clks[ARM].clk, (old_freq >> 1) * 1000);
128		clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk);
129		if (freq_hz > clk_get_rate(clks[PLL2_PFD2_396M].clk))
130			clk_set_parent(clks[SECONDARY_SEL].clk,
131				       clks[PLL2_BUS].clk);
132		else
133			clk_set_parent(clks[SECONDARY_SEL].clk,
134				       clks[PLL2_PFD2_396M].clk);
135		clk_set_parent(clks[STEP].clk, clks[SECONDARY_SEL].clk);
136		clk_set_parent(clks[PLL1_SW].clk, clks[STEP].clk);
137		if (freq_hz > clk_get_rate(clks[PLL2_BUS].clk)) {
138			clk_set_rate(clks[PLL1_SYS].clk, new_freq * 1000);
139			clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk);
140		}
141	} else {
142		clk_set_parent(clks[STEP].clk, clks[PLL2_PFD2_396M].clk);
143		clk_set_parent(clks[PLL1_SW].clk, clks[STEP].clk);
144		if (freq_hz > clk_get_rate(clks[PLL2_PFD2_396M].clk)) {
145			clk_set_rate(clks[PLL1_SYS].clk, new_freq * 1000);
146			clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk);
147		} else {
148			/* pll1_sys needs to be enabled for divider rate change to work. */
149			pll1_sys_temp_enabled = true;
150			clk_prepare_enable(clks[PLL1_SYS].clk);
151		}
152	}
153
154	/* Ensure the arm clock divider is what we expect */
155	ret = clk_set_rate(clks[ARM].clk, new_freq * 1000);
156	if (ret) {
157		int ret1;
158
159		dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
160		ret1 = regulator_set_voltage_tol(arm_reg, volt_old, 0);
161		if (ret1)
162			dev_warn(cpu_dev,
163				 "failed to restore vddarm voltage: %d\n", ret1);
164		return ret;
165	}
166
167	/* PLL1 is only needed until after ARM-PODF is set. */
168	if (pll1_sys_temp_enabled)
169		clk_disable_unprepare(clks[PLL1_SYS].clk);
170
171	/* scaling down?  scale voltage after frequency */
172	if (new_freq < old_freq) {
173		ret = regulator_set_voltage_tol(arm_reg, volt, 0);
174		if (ret)
175			dev_warn(cpu_dev,
176				 "failed to scale vddarm down: %d\n", ret);
 
 
177		ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
178		if (ret)
179			dev_warn(cpu_dev, "failed to scale vddsoc down: %d\n", ret);
 
 
180		if (!IS_ERR(pu_reg)) {
181			ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
182			if (ret)
183				dev_warn(cpu_dev, "failed to scale vddpu down: %d\n", ret);
 
 
184		}
185	}
186
187	return 0;
188}
189
190static int imx6q_cpufreq_init(struct cpufreq_policy *policy)
191{
192	policy->clk = clks[ARM].clk;
193	cpufreq_generic_init(policy, freq_table, transition_latency);
194	policy->suspend_freq = max_freq;
195
196	return 0;
197}
198
199static struct cpufreq_driver imx6q_cpufreq_driver = {
200	.flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK |
201		 CPUFREQ_IS_COOLING_DEV,
202	.verify = cpufreq_generic_frequency_table_verify,
203	.target_index = imx6q_set_target,
204	.get = cpufreq_generic_get,
205	.init = imx6q_cpufreq_init,
206	.register_em = cpufreq_register_em_with_opp,
207	.name = "imx6q-cpufreq",
208	.attr = cpufreq_generic_attr,
209	.suspend = cpufreq_generic_suspend,
210};
211
212static void imx6x_disable_freq_in_opp(struct device *dev, unsigned long freq)
213{
214	int ret = dev_pm_opp_disable(dev, freq);
215
216	if (ret < 0 && ret != -ENODEV)
217		dev_warn(dev, "failed to disable %ldMHz OPP\n", freq / 1000000);
218}
219
220#define OCOTP_CFG3			0x440
221#define OCOTP_CFG3_SPEED_SHIFT		16
222#define OCOTP_CFG3_SPEED_1P2GHZ		0x3
223#define OCOTP_CFG3_SPEED_996MHZ		0x2
224#define OCOTP_CFG3_SPEED_852MHZ		0x1
225
226static int imx6q_opp_check_speed_grading(struct device *dev)
227{
228	struct device_node *np;
229	void __iomem *base;
230	u32 val;
231	int ret;
232
233	if (of_property_present(dev->of_node, "nvmem-cells")) {
234		ret = nvmem_cell_read_u32(dev, "speed_grade", &val);
235		if (ret)
236			return ret;
237	} else {
238		np = of_find_compatible_node(NULL, NULL, "fsl,imx6q-ocotp");
239		if (!np)
240			return -ENOENT;
241
242		base = of_iomap(np, 0);
243		of_node_put(np);
244		if (!base) {
245			dev_err(dev, "failed to map ocotp\n");
246			return -EFAULT;
247		}
248
249		/*
250		 * SPEED_GRADING[1:0] defines the max speed of ARM:
251		 * 2b'11: 1200000000Hz;
252		 * 2b'10: 996000000Hz;
253		 * 2b'01: 852000000Hz; -- i.MX6Q Only, exclusive with 996MHz.
254		 * 2b'00: 792000000Hz;
255		 * We need to set the max speed of ARM according to fuse map.
256		 */
257		val = readl_relaxed(base + OCOTP_CFG3);
258		iounmap(base);
259	}
260
261	val >>= OCOTP_CFG3_SPEED_SHIFT;
262	val &= 0x3;
263
264	if (val < OCOTP_CFG3_SPEED_996MHZ)
265		imx6x_disable_freq_in_opp(dev, 996000000);
266
267	if (of_machine_is_compatible("fsl,imx6q") ||
268	    of_machine_is_compatible("fsl,imx6qp")) {
269		if (val != OCOTP_CFG3_SPEED_852MHZ)
270			imx6x_disable_freq_in_opp(dev, 852000000);
271
272		if (val != OCOTP_CFG3_SPEED_1P2GHZ)
273			imx6x_disable_freq_in_opp(dev, 1200000000);
274	}
275
276	return 0;
277}
278
279#define OCOTP_CFG3_6UL_SPEED_696MHZ	0x2
280#define OCOTP_CFG3_6ULL_SPEED_792MHZ	0x2
281#define OCOTP_CFG3_6ULL_SPEED_900MHZ	0x3
282
283static int imx6ul_opp_check_speed_grading(struct device *dev)
284{
285	u32 val;
286	int ret = 0;
287
288	if (of_property_present(dev->of_node, "nvmem-cells")) {
289		ret = nvmem_cell_read_u32(dev, "speed_grade", &val);
290		if (ret)
291			return ret;
292	} else {
293		struct device_node *np;
294		void __iomem *base;
295
296		np = of_find_compatible_node(NULL, NULL, "fsl,imx6ul-ocotp");
297		if (!np)
298			np = of_find_compatible_node(NULL, NULL,
299						     "fsl,imx6ull-ocotp");
300		if (!np)
301			return -ENOENT;
302
303		base = of_iomap(np, 0);
304		of_node_put(np);
305		if (!base) {
306			dev_err(dev, "failed to map ocotp\n");
307			return -EFAULT;
308		}
309
310		val = readl_relaxed(base + OCOTP_CFG3);
311		iounmap(base);
312	}
313
314	/*
315	 * Speed GRADING[1:0] defines the max speed of ARM:
316	 * 2b'00: Reserved;
317	 * 2b'01: 528000000Hz;
318	 * 2b'10: 696000000Hz on i.MX6UL, 792000000Hz on i.MX6ULL;
319	 * 2b'11: 900000000Hz on i.MX6ULL only;
320	 * We need to set the max speed of ARM according to fuse map.
321	 */
322	val >>= OCOTP_CFG3_SPEED_SHIFT;
323	val &= 0x3;
324
325	if (of_machine_is_compatible("fsl,imx6ul"))
326		if (val != OCOTP_CFG3_6UL_SPEED_696MHZ)
327			imx6x_disable_freq_in_opp(dev, 696000000);
328
329	if (of_machine_is_compatible("fsl,imx6ull")) {
330		if (val < OCOTP_CFG3_6ULL_SPEED_792MHZ)
331			imx6x_disable_freq_in_opp(dev, 792000000);
332
333		if (val != OCOTP_CFG3_6ULL_SPEED_900MHZ)
334			imx6x_disable_freq_in_opp(dev, 900000000);
335	}
336
337	return ret;
338}
339
340static int imx6q_cpufreq_probe(struct platform_device *pdev)
341{
342	struct device_node *np;
343	struct dev_pm_opp *opp;
344	unsigned long min_volt, max_volt;
345	int num, ret;
346	const struct property *prop;
347	const __be32 *val;
348	u32 nr, i, j;
349
350	cpu_dev = get_cpu_device(0);
351	if (!cpu_dev) {
352		pr_err("failed to get cpu0 device\n");
353		return -ENODEV;
354	}
355
356	np = of_node_get(cpu_dev->of_node);
357	if (!np) {
358		dev_err(cpu_dev, "failed to find cpu0 node\n");
359		return -ENOENT;
360	}
361
362	if (of_machine_is_compatible("fsl,imx6ul") ||
363	    of_machine_is_compatible("fsl,imx6ull"))
364		num_clks = IMX6UL_CPUFREQ_CLK_NUM;
365	else
366		num_clks = IMX6Q_CPUFREQ_CLK_NUM;
367
368	ret = clk_bulk_get(cpu_dev, num_clks, clks);
369	if (ret)
370		goto put_node;
 
 
 
 
 
 
 
 
 
 
 
 
371
372	arm_reg = regulator_get(cpu_dev, "arm");
373	pu_reg = regulator_get_optional(cpu_dev, "pu");
374	soc_reg = regulator_get(cpu_dev, "soc");
375	if (PTR_ERR(arm_reg) == -EPROBE_DEFER ||
376			PTR_ERR(soc_reg) == -EPROBE_DEFER ||
377			PTR_ERR(pu_reg) == -EPROBE_DEFER) {
378		ret = -EPROBE_DEFER;
379		dev_dbg(cpu_dev, "regulators not ready, defer\n");
380		goto put_reg;
381	}
382	if (IS_ERR(arm_reg) || IS_ERR(soc_reg)) {
383		dev_err(cpu_dev, "failed to get regulators\n");
384		ret = -ENOENT;
385		goto put_reg;
386	}
387
388	ret = dev_pm_opp_of_add_table(cpu_dev);
389	if (ret < 0) {
390		dev_err(cpu_dev, "failed to init OPP table: %d\n", ret);
391		goto put_reg;
392	}
393
394	if (of_machine_is_compatible("fsl,imx6ul") ||
395	    of_machine_is_compatible("fsl,imx6ull")) {
396		ret = imx6ul_opp_check_speed_grading(cpu_dev);
397	} else {
398		ret = imx6q_opp_check_speed_grading(cpu_dev);
399	}
400	if (ret) {
401		dev_err_probe(cpu_dev, ret, "failed to read ocotp\n");
402		goto out_free_opp;
403	}
404
405	num = dev_pm_opp_get_opp_count(cpu_dev);
406	if (num < 0) {
407		ret = num;
408		dev_err(cpu_dev, "no OPP table is found: %d\n", ret);
409		goto out_free_opp;
 
 
 
 
 
 
 
 
 
 
 
 
410	}
411
412	ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table);
413	if (ret) {
414		dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret);
415		goto out_free_opp;
416	}
417
418	/* Make imx6_soc_volt array's size same as arm opp number */
419	imx6_soc_volt = devm_kcalloc(cpu_dev, num, sizeof(*imx6_soc_volt),
420				     GFP_KERNEL);
421	if (imx6_soc_volt == NULL) {
422		ret = -ENOMEM;
423		goto free_freq_table;
424	}
425
426	prop = of_find_property(np, "fsl,soc-operating-points", NULL);
427	if (!prop || !prop->value)
428		goto soc_opp_out;
429
430	/*
431	 * Each OPP is a set of tuples consisting of frequency and
432	 * voltage like <freq-kHz vol-uV>.
433	 */
434	nr = prop->length / sizeof(u32);
435	if (nr % 2 || (nr / 2) < num)
436		goto soc_opp_out;
437
438	for (j = 0; j < num; j++) {
439		val = prop->value;
440		for (i = 0; i < nr / 2; i++) {
441			unsigned long freq = be32_to_cpup(val++);
442			unsigned long volt = be32_to_cpup(val++);
443			if (freq_table[j].frequency == freq) {
444				imx6_soc_volt[soc_opp_count++] = volt;
445				break;
446			}
447		}
448	}
449
450soc_opp_out:
451	/* use fixed soc opp volt if no valid soc opp info found in dtb */
452	if (soc_opp_count != num) {
453		dev_warn(cpu_dev, "can NOT find valid fsl,soc-operating-points property in dtb, use default value!\n");
454		for (j = 0; j < num; j++)
455			imx6_soc_volt[j] = PU_SOC_VOLTAGE_NORMAL;
456		if (freq_table[num - 1].frequency * 1000 == FREQ_1P2_GHZ)
457			imx6_soc_volt[num - 1] = PU_SOC_VOLTAGE_HIGH;
458	}
459
460	if (of_property_read_u32(np, "clock-latency", &transition_latency))
461		transition_latency = CPUFREQ_ETERNAL;
462
463	/*
464	 * Calculate the ramp time for max voltage change in the
465	 * VDDSOC and VDDPU regulators.
466	 */
467	ret = regulator_set_voltage_time(soc_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
468	if (ret > 0)
469		transition_latency += ret * 1000;
470	if (!IS_ERR(pu_reg)) {
471		ret = regulator_set_voltage_time(pu_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
472		if (ret > 0)
473			transition_latency += ret * 1000;
474	}
475
476	/*
477	 * OPP is maintained in order of increasing frequency, and
478	 * freq_table initialised from OPP is therefore sorted in the
479	 * same order.
480	 */
481	max_freq = freq_table[--num].frequency;
482	opp = dev_pm_opp_find_freq_exact(cpu_dev,
483				  freq_table[0].frequency * 1000, true);
484	min_volt = dev_pm_opp_get_voltage(opp);
485	dev_pm_opp_put(opp);
486	opp = dev_pm_opp_find_freq_exact(cpu_dev, max_freq * 1000, true);
487	max_volt = dev_pm_opp_get_voltage(opp);
488	dev_pm_opp_put(opp);
489
490	ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt);
491	if (ret > 0)
492		transition_latency += ret * 1000;
493
494	ret = cpufreq_register_driver(&imx6q_cpufreq_driver);
495	if (ret) {
496		dev_err(cpu_dev, "failed register driver: %d\n", ret);
497		goto free_freq_table;
498	}
499
500	of_node_put(np);
501	return 0;
502
503free_freq_table:
504	dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
505out_free_opp:
506	dev_pm_opp_of_remove_table(cpu_dev);
 
507put_reg:
508	if (!IS_ERR(arm_reg))
509		regulator_put(arm_reg);
510	if (!IS_ERR(pu_reg))
511		regulator_put(pu_reg);
512	if (!IS_ERR(soc_reg))
513		regulator_put(soc_reg);
514
515	clk_bulk_put(num_clks, clks);
516put_node:
 
 
 
 
 
 
 
 
 
 
 
 
517	of_node_put(np);
518
519	return ret;
520}
521
522static void imx6q_cpufreq_remove(struct platform_device *pdev)
523{
524	cpufreq_unregister_driver(&imx6q_cpufreq_driver);
525	dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
526	dev_pm_opp_of_remove_table(cpu_dev);
 
527	regulator_put(arm_reg);
528	if (!IS_ERR(pu_reg))
529		regulator_put(pu_reg);
530	regulator_put(soc_reg);
 
 
 
 
 
 
 
531
532	clk_bulk_put(num_clks, clks);
533}
534
535static struct platform_driver imx6q_cpufreq_platdrv = {
536	.driver = {
537		.name	= "imx6q-cpufreq",
538	},
539	.probe		= imx6q_cpufreq_probe,
540	.remove_new	= imx6q_cpufreq_remove,
541};
542module_platform_driver(imx6q_cpufreq_platdrv);
543
544MODULE_ALIAS("platform:imx6q-cpufreq");
545MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
546MODULE_DESCRIPTION("Freescale i.MX6Q cpufreq driver");
547MODULE_LICENSE("GPL");
v4.6
 
  1/*
  2 * Copyright (C) 2013 Freescale Semiconductor, Inc.
  3 *
  4 * This program is free software; you can redistribute it and/or modify
  5 * it under the terms of the GNU General Public License version 2 as
  6 * published by the Free Software Foundation.
  7 */
  8
  9#include <linux/clk.h>
 10#include <linux/cpu.h>
 11#include <linux/cpufreq.h>
 12#include <linux/err.h>
 13#include <linux/module.h>
 
 14#include <linux/of.h>
 
 15#include <linux/pm_opp.h>
 16#include <linux/platform_device.h>
 17#include <linux/regulator/consumer.h>
 18
 19#define PU_SOC_VOLTAGE_NORMAL	1250000
 20#define PU_SOC_VOLTAGE_HIGH	1275000
 21#define FREQ_1P2_GHZ		1200000000
 22
 23static struct regulator *arm_reg;
 24static struct regulator *pu_reg;
 25static struct regulator *soc_reg;
 26
 27static struct clk *arm_clk;
 28static struct clk *pll1_sys_clk;
 29static struct clk *pll1_sw_clk;
 30static struct clk *step_clk;
 31static struct clk *pll2_pfd2_396m_clk;
 32
 33/* clk used by i.MX6UL */
 34static struct clk *pll2_bus_clk;
 35static struct clk *secondary_sel_clk;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 36
 37static struct device *cpu_dev;
 38static bool free_opp;
 39static struct cpufreq_frequency_table *freq_table;
 
 40static unsigned int transition_latency;
 41
 42static u32 *imx6_soc_volt;
 43static u32 soc_opp_count;
 44
 45static int imx6q_set_target(struct cpufreq_policy *policy, unsigned int index)
 46{
 47	struct dev_pm_opp *opp;
 48	unsigned long freq_hz, volt, volt_old;
 49	unsigned int old_freq, new_freq;
 
 50	int ret;
 51
 52	new_freq = freq_table[index].frequency;
 53	freq_hz = new_freq * 1000;
 54	old_freq = clk_get_rate(arm_clk) / 1000;
 55
 56	rcu_read_lock();
 57	opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz);
 58	if (IS_ERR(opp)) {
 59		rcu_read_unlock();
 60		dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz);
 61		return PTR_ERR(opp);
 62	}
 63
 64	volt = dev_pm_opp_get_voltage(opp);
 65	rcu_read_unlock();
 
 66	volt_old = regulator_get_voltage(arm_reg);
 67
 68	dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n",
 69		old_freq / 1000, volt_old / 1000,
 70		new_freq / 1000, volt / 1000);
 71
 72	/* scaling up?  scale voltage before frequency */
 73	if (new_freq > old_freq) {
 74		if (!IS_ERR(pu_reg)) {
 75			ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
 76			if (ret) {
 77				dev_err(cpu_dev, "failed to scale vddpu up: %d\n", ret);
 78				return ret;
 79			}
 80		}
 81		ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
 82		if (ret) {
 83			dev_err(cpu_dev, "failed to scale vddsoc up: %d\n", ret);
 84			return ret;
 85		}
 86		ret = regulator_set_voltage_tol(arm_reg, volt, 0);
 87		if (ret) {
 88			dev_err(cpu_dev,
 89				"failed to scale vddarm up: %d\n", ret);
 90			return ret;
 91		}
 92	}
 93
 94	/*
 95	 * The setpoints are selected per PLL/PDF frequencies, so we need to
 96	 * reprogram PLL for frequency scaling.  The procedure of reprogramming
 97	 * PLL1 is as below.
 98	 * For i.MX6UL, it has a secondary clk mux, the cpu frequency change
 99	 * flow is slightly different from other i.MX6 OSC.
100	 * The cpu frequeny change flow for i.MX6(except i.MX6UL) is as below:
101	 *  - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it
102	 *  - Reprogram pll1_sys_clk and reparent pll1_sw_clk back to it
103	 *  - Disable pll2_pfd2_396m_clk
104	 */
105	if (of_machine_is_compatible("fsl,imx6ul")) {
 
106		/*
107		 * When changing pll1_sw_clk's parent to pll1_sys_clk,
108		 * CPU may run at higher than 528MHz, this will lead to
109		 * the system unstable if the voltage is lower than the
110		 * voltage of 528MHz, so lower the CPU frequency to one
111		 * half before changing CPU frequency.
112		 */
113		clk_set_rate(arm_clk, (old_freq >> 1) * 1000);
114		clk_set_parent(pll1_sw_clk, pll1_sys_clk);
115		if (freq_hz > clk_get_rate(pll2_pfd2_396m_clk))
116			clk_set_parent(secondary_sel_clk, pll2_bus_clk);
 
117		else
118			clk_set_parent(secondary_sel_clk, pll2_pfd2_396m_clk);
119		clk_set_parent(step_clk, secondary_sel_clk);
120		clk_set_parent(pll1_sw_clk, step_clk);
 
 
 
 
 
121	} else {
122		clk_set_parent(step_clk, pll2_pfd2_396m_clk);
123		clk_set_parent(pll1_sw_clk, step_clk);
124		if (freq_hz > clk_get_rate(pll2_pfd2_396m_clk)) {
125			clk_set_rate(pll1_sys_clk, new_freq * 1000);
126			clk_set_parent(pll1_sw_clk, pll1_sys_clk);
 
 
 
 
127		}
128	}
129
130	/* Ensure the arm clock divider is what we expect */
131	ret = clk_set_rate(arm_clk, new_freq * 1000);
132	if (ret) {
 
 
133		dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
134		regulator_set_voltage_tol(arm_reg, volt_old, 0);
 
 
 
135		return ret;
136	}
137
 
 
 
 
138	/* scaling down?  scale voltage after frequency */
139	if (new_freq < old_freq) {
140		ret = regulator_set_voltage_tol(arm_reg, volt, 0);
141		if (ret) {
142			dev_warn(cpu_dev,
143				 "failed to scale vddarm down: %d\n", ret);
144			ret = 0;
145		}
146		ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
147		if (ret) {
148			dev_warn(cpu_dev, "failed to scale vddsoc down: %d\n", ret);
149			ret = 0;
150		}
151		if (!IS_ERR(pu_reg)) {
152			ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
153			if (ret) {
154				dev_warn(cpu_dev, "failed to scale vddpu down: %d\n", ret);
155				ret = 0;
156			}
157		}
158	}
159
160	return 0;
161}
162
163static int imx6q_cpufreq_init(struct cpufreq_policy *policy)
164{
165	policy->clk = arm_clk;
166	return cpufreq_generic_init(policy, freq_table, transition_latency);
 
 
 
167}
168
169static struct cpufreq_driver imx6q_cpufreq_driver = {
170	.flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK,
 
171	.verify = cpufreq_generic_frequency_table_verify,
172	.target_index = imx6q_set_target,
173	.get = cpufreq_generic_get,
174	.init = imx6q_cpufreq_init,
 
175	.name = "imx6q-cpufreq",
176	.attr = cpufreq_generic_attr,
 
177};
178
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
179static int imx6q_cpufreq_probe(struct platform_device *pdev)
180{
181	struct device_node *np;
182	struct dev_pm_opp *opp;
183	unsigned long min_volt, max_volt;
184	int num, ret;
185	const struct property *prop;
186	const __be32 *val;
187	u32 nr, i, j;
188
189	cpu_dev = get_cpu_device(0);
190	if (!cpu_dev) {
191		pr_err("failed to get cpu0 device\n");
192		return -ENODEV;
193	}
194
195	np = of_node_get(cpu_dev->of_node);
196	if (!np) {
197		dev_err(cpu_dev, "failed to find cpu0 node\n");
198		return -ENOENT;
199	}
200
201	arm_clk = clk_get(cpu_dev, "arm");
202	pll1_sys_clk = clk_get(cpu_dev, "pll1_sys");
203	pll1_sw_clk = clk_get(cpu_dev, "pll1_sw");
204	step_clk = clk_get(cpu_dev, "step");
205	pll2_pfd2_396m_clk = clk_get(cpu_dev, "pll2_pfd2_396m");
206	if (IS_ERR(arm_clk) || IS_ERR(pll1_sys_clk) || IS_ERR(pll1_sw_clk) ||
207	    IS_ERR(step_clk) || IS_ERR(pll2_pfd2_396m_clk)) {
208		dev_err(cpu_dev, "failed to get clocks\n");
209		ret = -ENOENT;
210		goto put_clk;
211	}
212
213	if (of_machine_is_compatible("fsl,imx6ul")) {
214		pll2_bus_clk = clk_get(cpu_dev, "pll2_bus");
215		secondary_sel_clk = clk_get(cpu_dev, "secondary_sel");
216		if (IS_ERR(pll2_bus_clk) || IS_ERR(secondary_sel_clk)) {
217			dev_err(cpu_dev, "failed to get clocks specific to imx6ul\n");
218			ret = -ENOENT;
219			goto put_clk;
220		}
221	}
222
223	arm_reg = regulator_get(cpu_dev, "arm");
224	pu_reg = regulator_get_optional(cpu_dev, "pu");
225	soc_reg = regulator_get(cpu_dev, "soc");
 
 
 
 
 
 
 
226	if (IS_ERR(arm_reg) || IS_ERR(soc_reg)) {
227		dev_err(cpu_dev, "failed to get regulators\n");
228		ret = -ENOENT;
229		goto put_reg;
230	}
231
232	/*
233	 * We expect an OPP table supplied by platform.
234	 * Just, incase the platform did not supply the OPP
235	 * table, it will try to get it.
236	 */
 
 
 
 
 
 
 
 
 
 
 
 
237	num = dev_pm_opp_get_opp_count(cpu_dev);
238	if (num < 0) {
239		ret = dev_pm_opp_of_add_table(cpu_dev);
240		if (ret < 0) {
241			dev_err(cpu_dev, "failed to init OPP table: %d\n", ret);
242			goto put_reg;
243		}
244
245		/* Because we have added the OPPs here, we must free them */
246		free_opp = true;
247
248		num = dev_pm_opp_get_opp_count(cpu_dev);
249		if (num < 0) {
250			ret = num;
251			dev_err(cpu_dev, "no OPP table is found: %d\n", ret);
252			goto out_free_opp;
253		}
254	}
255
256	ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table);
257	if (ret) {
258		dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret);
259		goto put_reg;
260	}
261
262	/* Make imx6_soc_volt array's size same as arm opp number */
263	imx6_soc_volt = devm_kzalloc(cpu_dev, sizeof(*imx6_soc_volt) * num, GFP_KERNEL);
 
264	if (imx6_soc_volt == NULL) {
265		ret = -ENOMEM;
266		goto free_freq_table;
267	}
268
269	prop = of_find_property(np, "fsl,soc-operating-points", NULL);
270	if (!prop || !prop->value)
271		goto soc_opp_out;
272
273	/*
274	 * Each OPP is a set of tuples consisting of frequency and
275	 * voltage like <freq-kHz vol-uV>.
276	 */
277	nr = prop->length / sizeof(u32);
278	if (nr % 2 || (nr / 2) < num)
279		goto soc_opp_out;
280
281	for (j = 0; j < num; j++) {
282		val = prop->value;
283		for (i = 0; i < nr / 2; i++) {
284			unsigned long freq = be32_to_cpup(val++);
285			unsigned long volt = be32_to_cpup(val++);
286			if (freq_table[j].frequency == freq) {
287				imx6_soc_volt[soc_opp_count++] = volt;
288				break;
289			}
290		}
291	}
292
293soc_opp_out:
294	/* use fixed soc opp volt if no valid soc opp info found in dtb */
295	if (soc_opp_count != num) {
296		dev_warn(cpu_dev, "can NOT find valid fsl,soc-operating-points property in dtb, use default value!\n");
297		for (j = 0; j < num; j++)
298			imx6_soc_volt[j] = PU_SOC_VOLTAGE_NORMAL;
299		if (freq_table[num - 1].frequency * 1000 == FREQ_1P2_GHZ)
300			imx6_soc_volt[num - 1] = PU_SOC_VOLTAGE_HIGH;
301	}
302
303	if (of_property_read_u32(np, "clock-latency", &transition_latency))
304		transition_latency = CPUFREQ_ETERNAL;
305
306	/*
307	 * Calculate the ramp time for max voltage change in the
308	 * VDDSOC and VDDPU regulators.
309	 */
310	ret = regulator_set_voltage_time(soc_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
311	if (ret > 0)
312		transition_latency += ret * 1000;
313	if (!IS_ERR(pu_reg)) {
314		ret = regulator_set_voltage_time(pu_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
315		if (ret > 0)
316			transition_latency += ret * 1000;
317	}
318
319	/*
320	 * OPP is maintained in order of increasing frequency, and
321	 * freq_table initialised from OPP is therefore sorted in the
322	 * same order.
323	 */
324	rcu_read_lock();
325	opp = dev_pm_opp_find_freq_exact(cpu_dev,
326				  freq_table[0].frequency * 1000, true);
327	min_volt = dev_pm_opp_get_voltage(opp);
328	opp = dev_pm_opp_find_freq_exact(cpu_dev,
329				  freq_table[--num].frequency * 1000, true);
330	max_volt = dev_pm_opp_get_voltage(opp);
331	rcu_read_unlock();
 
332	ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt);
333	if (ret > 0)
334		transition_latency += ret * 1000;
335
336	ret = cpufreq_register_driver(&imx6q_cpufreq_driver);
337	if (ret) {
338		dev_err(cpu_dev, "failed register driver: %d\n", ret);
339		goto free_freq_table;
340	}
341
342	of_node_put(np);
343	return 0;
344
345free_freq_table:
346	dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
347out_free_opp:
348	if (free_opp)
349		dev_pm_opp_of_remove_table(cpu_dev);
350put_reg:
351	if (!IS_ERR(arm_reg))
352		regulator_put(arm_reg);
353	if (!IS_ERR(pu_reg))
354		regulator_put(pu_reg);
355	if (!IS_ERR(soc_reg))
356		regulator_put(soc_reg);
357put_clk:
358	if (!IS_ERR(arm_clk))
359		clk_put(arm_clk);
360	if (!IS_ERR(pll1_sys_clk))
361		clk_put(pll1_sys_clk);
362	if (!IS_ERR(pll1_sw_clk))
363		clk_put(pll1_sw_clk);
364	if (!IS_ERR(step_clk))
365		clk_put(step_clk);
366	if (!IS_ERR(pll2_pfd2_396m_clk))
367		clk_put(pll2_pfd2_396m_clk);
368	if (!IS_ERR(pll2_bus_clk))
369		clk_put(pll2_bus_clk);
370	if (!IS_ERR(secondary_sel_clk))
371		clk_put(secondary_sel_clk);
372	of_node_put(np);
 
373	return ret;
374}
375
376static int imx6q_cpufreq_remove(struct platform_device *pdev)
377{
378	cpufreq_unregister_driver(&imx6q_cpufreq_driver);
379	dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
380	if (free_opp)
381		dev_pm_opp_of_remove_table(cpu_dev);
382	regulator_put(arm_reg);
383	if (!IS_ERR(pu_reg))
384		regulator_put(pu_reg);
385	regulator_put(soc_reg);
386	clk_put(arm_clk);
387	clk_put(pll1_sys_clk);
388	clk_put(pll1_sw_clk);
389	clk_put(step_clk);
390	clk_put(pll2_pfd2_396m_clk);
391	clk_put(pll2_bus_clk);
392	clk_put(secondary_sel_clk);
393
394	return 0;
395}
396
397static struct platform_driver imx6q_cpufreq_platdrv = {
398	.driver = {
399		.name	= "imx6q-cpufreq",
400	},
401	.probe		= imx6q_cpufreq_probe,
402	.remove		= imx6q_cpufreq_remove,
403};
404module_platform_driver(imx6q_cpufreq_platdrv);
405
 
406MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
407MODULE_DESCRIPTION("Freescale i.MX6Q cpufreq driver");
408MODULE_LICENSE("GPL");