Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * drivers/clocksource/arm_global_timer.c
  4 *
  5 * Copyright (C) 2013 STMicroelectronics (R&D) Limited.
  6 * Author: Stuart Menefy <stuart.menefy@st.com>
  7 * Author: Srinivas Kandagatla <srinivas.kandagatla@st.com>
 
 
 
 
  8 */
  9
 10#include <linux/init.h>
 11#include <linux/interrupt.h>
 12#include <linux/clocksource.h>
 13#include <linux/clockchips.h>
 14#include <linux/cpu.h>
 15#include <linux/clk.h>
 16#include <linux/delay.h>
 17#include <linux/err.h>
 18#include <linux/io.h>
 19#include <linux/of.h>
 20#include <linux/of_irq.h>
 21#include <linux/of_address.h>
 22#include <linux/sched_clock.h>
 23
 24#include <asm/cputype.h>
 25
 26#define GT_COUNTER0	0x00
 27#define GT_COUNTER1	0x04
 28
 29#define GT_CONTROL	0x08
 30#define GT_CONTROL_TIMER_ENABLE		BIT(0)  /* this bit is NOT banked */
 31#define GT_CONTROL_COMP_ENABLE		BIT(1)	/* banked */
 32#define GT_CONTROL_IRQ_ENABLE		BIT(2)	/* banked */
 33#define GT_CONTROL_AUTO_INC		BIT(3)	/* banked */
 34#define GT_CONTROL_PRESCALER_SHIFT      8
 35#define GT_CONTROL_PRESCALER_MAX        0xF
 36#define GT_CONTROL_PRESCALER_MASK       (GT_CONTROL_PRESCALER_MAX << \
 37					 GT_CONTROL_PRESCALER_SHIFT)
 38
 39#define GT_INT_STATUS	0x0c
 40#define GT_INT_STATUS_EVENT_FLAG	BIT(0)
 41
 42#define GT_COMP0	0x10
 43#define GT_COMP1	0x14
 44#define GT_AUTO_INC	0x18
 45
 46#define MAX_F_ERR 50
 47/*
 48 * We are expecting to be clocked by the ARM peripheral clock.
 49 *
 50 * Note: it is assumed we are using a prescaler value of zero, so this is
 51 * the units for all operations.
 52 */
 53static void __iomem *gt_base;
 54static struct notifier_block gt_clk_rate_change_nb;
 55static u32 gt_psv_new, gt_psv_bck, gt_target_rate;
 56static int gt_ppi;
 57static struct clock_event_device __percpu *gt_evt;
 58
 59/*
 60 * To get the value from the Global Timer Counter register proceed as follows:
 61 * 1. Read the upper 32-bit timer counter register
 62 * 2. Read the lower 32-bit timer counter register
 63 * 3. Read the upper 32-bit timer counter register again. If the value is
 64 *  different to the 32-bit upper value read previously, go back to step 2.
 65 *  Otherwise the 64-bit timer counter value is correct.
 66 */
 67static u64 notrace _gt_counter_read(void)
 68{
 69	u64 counter;
 70	u32 lower;
 71	u32 upper, old_upper;
 72
 73	upper = readl_relaxed(gt_base + GT_COUNTER1);
 74	do {
 75		old_upper = upper;
 76		lower = readl_relaxed(gt_base + GT_COUNTER0);
 77		upper = readl_relaxed(gt_base + GT_COUNTER1);
 78	} while (upper != old_upper);
 79
 80	counter = upper;
 81	counter <<= 32;
 82	counter |= lower;
 83	return counter;
 84}
 85
 86static u64 gt_counter_read(void)
 87{
 88	return _gt_counter_read();
 89}
 90
 91/**
 92 * To ensure that updates to comparator value register do not set the
 93 * Interrupt Status Register proceed as follows:
 94 * 1. Clear the Comp Enable bit in the Timer Control Register.
 95 * 2. Write the lower 32-bit Comparator Value Register.
 96 * 3. Write the upper 32-bit Comparator Value Register.
 97 * 4. Set the Comp Enable bit and, if necessary, the IRQ enable bit.
 98 */
 99static void gt_compare_set(unsigned long delta, int periodic)
100{
101	u64 counter = gt_counter_read();
102	unsigned long ctrl;
103
104	counter += delta;
105	ctrl = readl(gt_base + GT_CONTROL);
106	ctrl &= ~(GT_CONTROL_COMP_ENABLE | GT_CONTROL_IRQ_ENABLE |
107		  GT_CONTROL_AUTO_INC);
108	ctrl |= GT_CONTROL_TIMER_ENABLE;
109	writel_relaxed(ctrl, gt_base + GT_CONTROL);
110	writel_relaxed(lower_32_bits(counter), gt_base + GT_COMP0);
111	writel_relaxed(upper_32_bits(counter), gt_base + GT_COMP1);
112
113	if (periodic) {
114		writel_relaxed(delta, gt_base + GT_AUTO_INC);
115		ctrl |= GT_CONTROL_AUTO_INC;
116	}
117
118	ctrl |= GT_CONTROL_COMP_ENABLE | GT_CONTROL_IRQ_ENABLE;
119	writel_relaxed(ctrl, gt_base + GT_CONTROL);
120}
121
122static int gt_clockevent_shutdown(struct clock_event_device *evt)
123{
124	unsigned long ctrl;
125
126	ctrl = readl(gt_base + GT_CONTROL);
127	ctrl &= ~(GT_CONTROL_COMP_ENABLE | GT_CONTROL_IRQ_ENABLE |
128		  GT_CONTROL_AUTO_INC);
129	writel(ctrl, gt_base + GT_CONTROL);
130	return 0;
131}
132
133static int gt_clockevent_set_periodic(struct clock_event_device *evt)
134{
135	gt_compare_set(DIV_ROUND_CLOSEST(gt_target_rate, HZ), 1);
136	return 0;
137}
138
139static int gt_clockevent_set_next_event(unsigned long evt,
140					struct clock_event_device *unused)
141{
142	gt_compare_set(evt, 0);
143	return 0;
144}
145
146static irqreturn_t gt_clockevent_interrupt(int irq, void *dev_id)
147{
148	struct clock_event_device *evt = dev_id;
149
150	if (!(readl_relaxed(gt_base + GT_INT_STATUS) &
151				GT_INT_STATUS_EVENT_FLAG))
152		return IRQ_NONE;
153
154	/**
155	 * ERRATA 740657( Global Timer can send 2 interrupts for
156	 * the same event in single-shot mode)
157	 * Workaround:
158	 *	Either disable single-shot mode.
159	 *	Or
160	 *	Modify the Interrupt Handler to avoid the
161	 *	offending sequence. This is achieved by clearing
162	 *	the Global Timer flag _after_ having incremented
163	 *	the Comparator register	value to a higher value.
164	 */
165	if (clockevent_state_oneshot(evt))
166		gt_compare_set(ULONG_MAX, 0);
167
168	writel_relaxed(GT_INT_STATUS_EVENT_FLAG, gt_base + GT_INT_STATUS);
169	evt->event_handler(evt);
170
171	return IRQ_HANDLED;
172}
173
174static int gt_starting_cpu(unsigned int cpu)
175{
176	struct clock_event_device *clk = this_cpu_ptr(gt_evt);
177
178	clk->name = "arm_global_timer";
179	clk->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT |
180		CLOCK_EVT_FEAT_PERCPU;
181	clk->set_state_shutdown = gt_clockevent_shutdown;
182	clk->set_state_periodic = gt_clockevent_set_periodic;
183	clk->set_state_oneshot = gt_clockevent_shutdown;
184	clk->set_state_oneshot_stopped = gt_clockevent_shutdown;
185	clk->set_next_event = gt_clockevent_set_next_event;
186	clk->cpumask = cpumask_of(cpu);
187	clk->rating = 300;
188	clk->irq = gt_ppi;
189	clockevents_config_and_register(clk, gt_target_rate,
190					1, 0xffffffff);
191	enable_percpu_irq(clk->irq, IRQ_TYPE_NONE);
192	return 0;
193}
194
195static int gt_dying_cpu(unsigned int cpu)
196{
197	struct clock_event_device *clk = this_cpu_ptr(gt_evt);
198
199	gt_clockevent_shutdown(clk);
200	disable_percpu_irq(clk->irq);
201	return 0;
202}
203
204static u64 gt_clocksource_read(struct clocksource *cs)
205{
206	return gt_counter_read();
207}
208
209static void gt_resume(struct clocksource *cs)
210{
211	unsigned long ctrl;
212
213	ctrl = readl(gt_base + GT_CONTROL);
214	if (!(ctrl & GT_CONTROL_TIMER_ENABLE))
215		/* re-enable timer on resume */
216		writel(GT_CONTROL_TIMER_ENABLE, gt_base + GT_CONTROL);
217}
218
219static struct clocksource gt_clocksource = {
220	.name	= "arm_global_timer",
221	.rating	= 300,
222	.read	= gt_clocksource_read,
223	.mask	= CLOCKSOURCE_MASK(64),
224	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
225	.resume = gt_resume,
226};
227
228#ifdef CONFIG_CLKSRC_ARM_GLOBAL_TIMER_SCHED_CLOCK
229static u64 notrace gt_sched_clock_read(void)
230{
231	return _gt_counter_read();
232}
233#endif
234
235static unsigned long gt_read_long(void)
236{
237	return readl_relaxed(gt_base + GT_COUNTER0);
238}
239
240static struct delay_timer gt_delay_timer = {
241	.read_current_timer = gt_read_long,
242};
243
244static void gt_write_presc(u32 psv)
245{
246	u32 reg;
247
248	reg = readl(gt_base + GT_CONTROL);
249	reg &= ~GT_CONTROL_PRESCALER_MASK;
250	reg |= psv << GT_CONTROL_PRESCALER_SHIFT;
251	writel(reg, gt_base + GT_CONTROL);
252}
253
254static u32 gt_read_presc(void)
255{
256	u32 reg;
257
258	reg = readl(gt_base + GT_CONTROL);
259	reg &= GT_CONTROL_PRESCALER_MASK;
260	return reg >> GT_CONTROL_PRESCALER_SHIFT;
261}
262
263static void __init gt_delay_timer_init(void)
264{
265	gt_delay_timer.freq = gt_target_rate;
266	register_current_timer_delay(&gt_delay_timer);
267}
268
269static int __init gt_clocksource_init(void)
270{
271	writel(0, gt_base + GT_CONTROL);
272	writel(0, gt_base + GT_COUNTER0);
273	writel(0, gt_base + GT_COUNTER1);
274	/* set prescaler and enable timer on all the cores */
275	writel(((CONFIG_ARM_GT_INITIAL_PRESCALER_VAL - 1) <<
276		GT_CONTROL_PRESCALER_SHIFT)
277	       | GT_CONTROL_TIMER_ENABLE, gt_base + GT_CONTROL);
278
279#ifdef CONFIG_CLKSRC_ARM_GLOBAL_TIMER_SCHED_CLOCK
280	sched_clock_register(gt_sched_clock_read, 64, gt_target_rate);
281#endif
282	return clocksource_register_hz(&gt_clocksource, gt_target_rate);
283}
284
285static int gt_clk_rate_change_cb(struct notifier_block *nb,
286				 unsigned long event, void *data)
287{
288	struct clk_notifier_data *ndata = data;
289
290	switch (event) {
291	case PRE_RATE_CHANGE:
292	{
293		int psv;
294
295		psv = DIV_ROUND_CLOSEST(ndata->new_rate,
296					gt_target_rate);
297
298		if (abs(gt_target_rate - (ndata->new_rate / psv)) > MAX_F_ERR)
299			return NOTIFY_BAD;
300
301		psv--;
302
303		/* prescaler within legal range? */
304		if (psv < 0 || psv > GT_CONTROL_PRESCALER_MAX)
305			return NOTIFY_BAD;
306
307		/*
308		 * store timer clock ctrl register so we can restore it in case
309		 * of an abort.
310		 */
311		gt_psv_bck = gt_read_presc();
312		gt_psv_new = psv;
313		/* scale down: adjust divider in post-change notification */
314		if (ndata->new_rate < ndata->old_rate)
315			return NOTIFY_DONE;
316
317		/* scale up: adjust divider now - before frequency change */
318		gt_write_presc(psv);
319		break;
320	}
321	case POST_RATE_CHANGE:
322		/* scale up: pre-change notification did the adjustment */
323		if (ndata->new_rate > ndata->old_rate)
324			return NOTIFY_OK;
325
326		/* scale down: adjust divider now - after frequency change */
327		gt_write_presc(gt_psv_new);
328		break;
329
330	case ABORT_RATE_CHANGE:
331		/* we have to undo the adjustment in case we scale up */
332		if (ndata->new_rate < ndata->old_rate)
333			return NOTIFY_OK;
334
335		/* restore original register value */
336		gt_write_presc(gt_psv_bck);
337		break;
338	default:
339		return NOTIFY_DONE;
340	}
341
342	return NOTIFY_DONE;
343}
 
 
 
344
345static int __init global_timer_of_register(struct device_node *np)
346{
347	struct clk *gt_clk;
348	static unsigned long gt_clk_rate;
349	int err = 0;
350
351	/*
352	 * In A9 r2p0 the comparators for each processor with the global timer
353	 * fire when the timer value is greater than or equal to. In previous
354	 * revisions the comparators fired when the timer value was equal to.
355	 */
356	if (read_cpuid_part() == ARM_CPU_PART_CORTEX_A9
357	    && (read_cpuid_id() & 0xf0000f) < 0x200000) {
358		pr_warn("global-timer: non support for this cpu version.\n");
359		return -ENOSYS;
360	}
361
362	gt_ppi = irq_of_parse_and_map(np, 0);
363	if (!gt_ppi) {
364		pr_warn("global-timer: unable to parse irq\n");
365		return -EINVAL;
366	}
367
368	gt_base = of_iomap(np, 0);
369	if (!gt_base) {
370		pr_warn("global-timer: invalid base address\n");
371		return -ENXIO;
372	}
373
374	gt_clk = of_clk_get(np, 0);
375	if (!IS_ERR(gt_clk)) {
376		err = clk_prepare_enable(gt_clk);
377		if (err)
378			goto out_unmap;
379	} else {
380		pr_warn("global-timer: clk not found\n");
381		err = -EINVAL;
382		goto out_unmap;
383	}
384
385	gt_clk_rate = clk_get_rate(gt_clk);
386	gt_target_rate = gt_clk_rate / CONFIG_ARM_GT_INITIAL_PRESCALER_VAL;
387	gt_clk_rate_change_nb.notifier_call =
388		gt_clk_rate_change_cb;
389	err = clk_notifier_register(gt_clk, &gt_clk_rate_change_nb);
390	if (err) {
391		pr_warn("Unable to register clock notifier\n");
392		goto out_clk;
393	}
394
395	gt_evt = alloc_percpu(struct clock_event_device);
396	if (!gt_evt) {
397		pr_warn("global-timer: can't allocate memory\n");
398		err = -ENOMEM;
399		goto out_clk_nb;
400	}
401
402	err = request_percpu_irq(gt_ppi, gt_clockevent_interrupt,
403				 "gt", gt_evt);
404	if (err) {
405		pr_warn("global-timer: can't register interrupt %d (%d)\n",
406			gt_ppi, err);
407		goto out_free;
408	}
409
410	/* Register and immediately configure the timer on the boot CPU */
411	err = gt_clocksource_init();
412	if (err)
413		goto out_irq;
414	
415	err = cpuhp_setup_state(CPUHP_AP_ARM_GLOBAL_TIMER_STARTING,
416				"clockevents/arm/global_timer:starting",
417				gt_starting_cpu, gt_dying_cpu);
418	if (err)
419		goto out_irq;
 
420
 
 
 
421	gt_delay_timer_init();
422
423	return 0;
424
425out_irq:
426	free_percpu_irq(gt_ppi, gt_evt);
427out_free:
428	free_percpu(gt_evt);
429out_clk_nb:
430	clk_notifier_unregister(gt_clk, &gt_clk_rate_change_nb);
431out_clk:
432	clk_disable_unprepare(gt_clk);
433out_unmap:
434	iounmap(gt_base);
435	WARN(err, "ARM Global timer register failed (%d)\n", err);
436
437	return err;
438}
439
440/* Only tested on r2p2 and r3p0  */
441TIMER_OF_DECLARE(arm_gt, "arm,cortex-a9-global-timer",
442			global_timer_of_register);
v4.6
 
  1/*
  2 * drivers/clocksource/arm_global_timer.c
  3 *
  4 * Copyright (C) 2013 STMicroelectronics (R&D) Limited.
  5 * Author: Stuart Menefy <stuart.menefy@st.com>
  6 * Author: Srinivas Kandagatla <srinivas.kandagatla@st.com>
  7 *
  8 * This program is free software; you can redistribute it and/or modify
  9 * it under the terms of the GNU General Public License version 2 as
 10 * published by the Free Software Foundation.
 11 */
 12
 13#include <linux/init.h>
 14#include <linux/interrupt.h>
 15#include <linux/clocksource.h>
 16#include <linux/clockchips.h>
 17#include <linux/cpu.h>
 18#include <linux/clk.h>
 19#include <linux/delay.h>
 20#include <linux/err.h>
 21#include <linux/io.h>
 22#include <linux/of.h>
 23#include <linux/of_irq.h>
 24#include <linux/of_address.h>
 25#include <linux/sched_clock.h>
 26
 27#include <asm/cputype.h>
 28
 29#define GT_COUNTER0	0x00
 30#define GT_COUNTER1	0x04
 31
 32#define GT_CONTROL	0x08
 33#define GT_CONTROL_TIMER_ENABLE		BIT(0)  /* this bit is NOT banked */
 34#define GT_CONTROL_COMP_ENABLE		BIT(1)	/* banked */
 35#define GT_CONTROL_IRQ_ENABLE		BIT(2)	/* banked */
 36#define GT_CONTROL_AUTO_INC		BIT(3)	/* banked */
 
 
 
 
 37
 38#define GT_INT_STATUS	0x0c
 39#define GT_INT_STATUS_EVENT_FLAG	BIT(0)
 40
 41#define GT_COMP0	0x10
 42#define GT_COMP1	0x14
 43#define GT_AUTO_INC	0x18
 44
 
 45/*
 46 * We are expecting to be clocked by the ARM peripheral clock.
 47 *
 48 * Note: it is assumed we are using a prescaler value of zero, so this is
 49 * the units for all operations.
 50 */
 51static void __iomem *gt_base;
 52static unsigned long gt_clk_rate;
 
 53static int gt_ppi;
 54static struct clock_event_device __percpu *gt_evt;
 55
 56/*
 57 * To get the value from the Global Timer Counter register proceed as follows:
 58 * 1. Read the upper 32-bit timer counter register
 59 * 2. Read the lower 32-bit timer counter register
 60 * 3. Read the upper 32-bit timer counter register again. If the value is
 61 *  different to the 32-bit upper value read previously, go back to step 2.
 62 *  Otherwise the 64-bit timer counter value is correct.
 63 */
 64static u64 notrace _gt_counter_read(void)
 65{
 66	u64 counter;
 67	u32 lower;
 68	u32 upper, old_upper;
 69
 70	upper = readl_relaxed(gt_base + GT_COUNTER1);
 71	do {
 72		old_upper = upper;
 73		lower = readl_relaxed(gt_base + GT_COUNTER0);
 74		upper = readl_relaxed(gt_base + GT_COUNTER1);
 75	} while (upper != old_upper);
 76
 77	counter = upper;
 78	counter <<= 32;
 79	counter |= lower;
 80	return counter;
 81}
 82
 83static u64 gt_counter_read(void)
 84{
 85	return _gt_counter_read();
 86}
 87
 88/**
 89 * To ensure that updates to comparator value register do not set the
 90 * Interrupt Status Register proceed as follows:
 91 * 1. Clear the Comp Enable bit in the Timer Control Register.
 92 * 2. Write the lower 32-bit Comparator Value Register.
 93 * 3. Write the upper 32-bit Comparator Value Register.
 94 * 4. Set the Comp Enable bit and, if necessary, the IRQ enable bit.
 95 */
 96static void gt_compare_set(unsigned long delta, int periodic)
 97{
 98	u64 counter = gt_counter_read();
 99	unsigned long ctrl;
100
101	counter += delta;
102	ctrl = GT_CONTROL_TIMER_ENABLE;
 
 
 
103	writel_relaxed(ctrl, gt_base + GT_CONTROL);
104	writel_relaxed(lower_32_bits(counter), gt_base + GT_COMP0);
105	writel_relaxed(upper_32_bits(counter), gt_base + GT_COMP1);
106
107	if (periodic) {
108		writel_relaxed(delta, gt_base + GT_AUTO_INC);
109		ctrl |= GT_CONTROL_AUTO_INC;
110	}
111
112	ctrl |= GT_CONTROL_COMP_ENABLE | GT_CONTROL_IRQ_ENABLE;
113	writel_relaxed(ctrl, gt_base + GT_CONTROL);
114}
115
116static int gt_clockevent_shutdown(struct clock_event_device *evt)
117{
118	unsigned long ctrl;
119
120	ctrl = readl(gt_base + GT_CONTROL);
121	ctrl &= ~(GT_CONTROL_COMP_ENABLE | GT_CONTROL_IRQ_ENABLE |
122		  GT_CONTROL_AUTO_INC);
123	writel(ctrl, gt_base + GT_CONTROL);
124	return 0;
125}
126
127static int gt_clockevent_set_periodic(struct clock_event_device *evt)
128{
129	gt_compare_set(DIV_ROUND_CLOSEST(gt_clk_rate, HZ), 1);
130	return 0;
131}
132
133static int gt_clockevent_set_next_event(unsigned long evt,
134					struct clock_event_device *unused)
135{
136	gt_compare_set(evt, 0);
137	return 0;
138}
139
140static irqreturn_t gt_clockevent_interrupt(int irq, void *dev_id)
141{
142	struct clock_event_device *evt = dev_id;
143
144	if (!(readl_relaxed(gt_base + GT_INT_STATUS) &
145				GT_INT_STATUS_EVENT_FLAG))
146		return IRQ_NONE;
147
148	/**
149	 * ERRATA 740657( Global Timer can send 2 interrupts for
150	 * the same event in single-shot mode)
151	 * Workaround:
152	 *	Either disable single-shot mode.
153	 *	Or
154	 *	Modify the Interrupt Handler to avoid the
155	 *	offending sequence. This is achieved by clearing
156	 *	the Global Timer flag _after_ having incremented
157	 *	the Comparator register	value to a higher value.
158	 */
159	if (clockevent_state_oneshot(evt))
160		gt_compare_set(ULONG_MAX, 0);
161
162	writel_relaxed(GT_INT_STATUS_EVENT_FLAG, gt_base + GT_INT_STATUS);
163	evt->event_handler(evt);
164
165	return IRQ_HANDLED;
166}
167
168static int gt_clockevents_init(struct clock_event_device *clk)
169{
170	int cpu = smp_processor_id();
171
172	clk->name = "arm_global_timer";
173	clk->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT |
174		CLOCK_EVT_FEAT_PERCPU;
175	clk->set_state_shutdown = gt_clockevent_shutdown;
176	clk->set_state_periodic = gt_clockevent_set_periodic;
177	clk->set_state_oneshot = gt_clockevent_shutdown;
178	clk->set_state_oneshot_stopped = gt_clockevent_shutdown;
179	clk->set_next_event = gt_clockevent_set_next_event;
180	clk->cpumask = cpumask_of(cpu);
181	clk->rating = 300;
182	clk->irq = gt_ppi;
183	clockevents_config_and_register(clk, gt_clk_rate,
184					1, 0xffffffff);
185	enable_percpu_irq(clk->irq, IRQ_TYPE_NONE);
186	return 0;
187}
188
189static void gt_clockevents_stop(struct clock_event_device *clk)
190{
 
 
191	gt_clockevent_shutdown(clk);
192	disable_percpu_irq(clk->irq);
 
193}
194
195static cycle_t gt_clocksource_read(struct clocksource *cs)
196{
197	return gt_counter_read();
198}
199
200static void gt_resume(struct clocksource *cs)
201{
202	unsigned long ctrl;
203
204	ctrl = readl(gt_base + GT_CONTROL);
205	if (!(ctrl & GT_CONTROL_TIMER_ENABLE))
206		/* re-enable timer on resume */
207		writel(GT_CONTROL_TIMER_ENABLE, gt_base + GT_CONTROL);
208}
209
210static struct clocksource gt_clocksource = {
211	.name	= "arm_global_timer",
212	.rating	= 300,
213	.read	= gt_clocksource_read,
214	.mask	= CLOCKSOURCE_MASK(64),
215	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
216	.resume = gt_resume,
217};
218
219#ifdef CONFIG_CLKSRC_ARM_GLOBAL_TIMER_SCHED_CLOCK
220static u64 notrace gt_sched_clock_read(void)
221{
222	return _gt_counter_read();
223}
224#endif
225
226static unsigned long gt_read_long(void)
227{
228	return readl_relaxed(gt_base + GT_COUNTER0);
229}
230
231static struct delay_timer gt_delay_timer = {
232	.read_current_timer = gt_read_long,
233};
234
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
235static void __init gt_delay_timer_init(void)
236{
237	gt_delay_timer.freq = gt_clk_rate;
238	register_current_timer_delay(&gt_delay_timer);
239}
240
241static void __init gt_clocksource_init(void)
242{
243	writel(0, gt_base + GT_CONTROL);
244	writel(0, gt_base + GT_COUNTER0);
245	writel(0, gt_base + GT_COUNTER1);
246	/* enables timer on all the cores */
247	writel(GT_CONTROL_TIMER_ENABLE, gt_base + GT_CONTROL);
 
 
248
249#ifdef CONFIG_CLKSRC_ARM_GLOBAL_TIMER_SCHED_CLOCK
250	sched_clock_register(gt_sched_clock_read, 64, gt_clk_rate);
251#endif
252	clocksource_register_hz(&gt_clocksource, gt_clk_rate);
253}
254
255static int gt_cpu_notify(struct notifier_block *self, unsigned long action,
256			 void *hcpu)
257{
258	switch (action & ~CPU_TASKS_FROZEN) {
259	case CPU_STARTING:
260		gt_clockevents_init(this_cpu_ptr(gt_evt));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
261		break;
262	case CPU_DYING:
263		gt_clockevents_stop(this_cpu_ptr(gt_evt));
 
 
 
 
 
 
264		break;
 
 
 
 
 
 
 
 
 
 
 
265	}
266
267	return NOTIFY_OK;
268}
269static struct notifier_block gt_cpu_nb = {
270	.notifier_call = gt_cpu_notify,
271};
272
273static void __init global_timer_of_register(struct device_node *np)
274{
275	struct clk *gt_clk;
 
276	int err = 0;
277
278	/*
279	 * In A9 r2p0 the comparators for each processor with the global timer
280	 * fire when the timer value is greater than or equal to. In previous
281	 * revisions the comparators fired when the timer value was equal to.
282	 */
283	if (read_cpuid_part() == ARM_CPU_PART_CORTEX_A9
284	    && (read_cpuid_id() & 0xf0000f) < 0x200000) {
285		pr_warn("global-timer: non support for this cpu version.\n");
286		return;
287	}
288
289	gt_ppi = irq_of_parse_and_map(np, 0);
290	if (!gt_ppi) {
291		pr_warn("global-timer: unable to parse irq\n");
292		return;
293	}
294
295	gt_base = of_iomap(np, 0);
296	if (!gt_base) {
297		pr_warn("global-timer: invalid base address\n");
298		return;
299	}
300
301	gt_clk = of_clk_get(np, 0);
302	if (!IS_ERR(gt_clk)) {
303		err = clk_prepare_enable(gt_clk);
304		if (err)
305			goto out_unmap;
306	} else {
307		pr_warn("global-timer: clk not found\n");
308		err = -EINVAL;
309		goto out_unmap;
310	}
311
312	gt_clk_rate = clk_get_rate(gt_clk);
 
 
 
 
 
 
 
 
 
313	gt_evt = alloc_percpu(struct clock_event_device);
314	if (!gt_evt) {
315		pr_warn("global-timer: can't allocate memory\n");
316		err = -ENOMEM;
317		goto out_clk;
318	}
319
320	err = request_percpu_irq(gt_ppi, gt_clockevent_interrupt,
321				 "gt", gt_evt);
322	if (err) {
323		pr_warn("global-timer: can't register interrupt %d (%d)\n",
324			gt_ppi, err);
325		goto out_free;
326	}
327
328	err = register_cpu_notifier(&gt_cpu_nb);
329	if (err) {
330		pr_warn("global-timer: unable to register cpu notifier.\n");
 
 
 
 
 
 
331		goto out_irq;
332	}
333
334	/* Immediately configure the timer on the boot CPU */
335	gt_clocksource_init();
336	gt_clockevents_init(this_cpu_ptr(gt_evt));
337	gt_delay_timer_init();
338
339	return;
340
341out_irq:
342	free_percpu_irq(gt_ppi, gt_evt);
343out_free:
344	free_percpu(gt_evt);
 
 
345out_clk:
346	clk_disable_unprepare(gt_clk);
347out_unmap:
348	iounmap(gt_base);
349	WARN(err, "ARM Global timer register failed (%d)\n", err);
 
 
350}
351
352/* Only tested on r2p2 and r3p0  */
353CLOCKSOURCE_OF_DECLARE(arm_gt, "arm,cortex-a9-global-timer",
354			global_timer_of_register);