Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
   4 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
   5 *
   6 * Standard functionality for the common clock API.  See Documentation/driver-api/clk.rst
 
 
 
 
   7 */
   8
   9#include <linux/clk.h>
  10#include <linux/clk-provider.h>
  11#include <linux/clk/clk-conf.h>
  12#include <linux/module.h>
  13#include <linux/mutex.h>
  14#include <linux/spinlock.h>
  15#include <linux/err.h>
  16#include <linux/list.h>
  17#include <linux/slab.h>
  18#include <linux/of.h>
  19#include <linux/device.h>
  20#include <linux/init.h>
  21#include <linux/pm_runtime.h>
  22#include <linux/sched.h>
  23#include <linux/clkdev.h>
  24
  25#include "clk.h"
  26
  27static DEFINE_SPINLOCK(enable_lock);
  28static DEFINE_MUTEX(prepare_lock);
  29
  30static struct task_struct *prepare_owner;
  31static struct task_struct *enable_owner;
  32
  33static int prepare_refcnt;
  34static int enable_refcnt;
  35
  36static HLIST_HEAD(clk_root_list);
  37static HLIST_HEAD(clk_orphan_list);
  38static LIST_HEAD(clk_notifier_list);
  39
  40static const struct hlist_head *all_lists[] = {
  41	&clk_root_list,
  42	&clk_orphan_list,
  43	NULL,
  44};
  45
  46/***    private data structures    ***/
  47
  48struct clk_parent_map {
  49	const struct clk_hw	*hw;
  50	struct clk_core		*core;
  51	const char		*fw_name;
  52	const char		*name;
  53	int			index;
  54};
  55
  56struct clk_core {
  57	const char		*name;
  58	const struct clk_ops	*ops;
  59	struct clk_hw		*hw;
  60	struct module		*owner;
  61	struct device		*dev;
  62	struct device_node	*of_node;
  63	struct clk_core		*parent;
  64	struct clk_parent_map	*parents;
 
  65	u8			num_parents;
  66	u8			new_parent_index;
  67	unsigned long		rate;
  68	unsigned long		req_rate;
  69	unsigned long		new_rate;
  70	struct clk_core		*new_parent;
  71	struct clk_core		*new_child;
  72	unsigned long		flags;
  73	bool			orphan;
  74	bool			rpm_enabled;
  75	unsigned int		enable_count;
  76	unsigned int		prepare_count;
  77	unsigned int		protect_count;
  78	unsigned long		min_rate;
  79	unsigned long		max_rate;
  80	unsigned long		accuracy;
  81	int			phase;
  82	struct clk_duty		duty;
  83	struct hlist_head	children;
  84	struct hlist_node	child_node;
  85	struct hlist_head	clks;
  86	unsigned int		notifier_count;
  87#ifdef CONFIG_DEBUG_FS
  88	struct dentry		*dentry;
  89	struct hlist_node	debug_node;
  90#endif
  91	struct kref		ref;
  92};
  93
  94#define CREATE_TRACE_POINTS
  95#include <trace/events/clk.h>
  96
  97struct clk {
  98	struct clk_core	*core;
  99	struct device *dev;
 100	const char *dev_id;
 101	const char *con_id;
 102	unsigned long min_rate;
 103	unsigned long max_rate;
 104	unsigned int exclusive_count;
 105	struct hlist_node clks_node;
 106};
 107
 108/***           runtime pm          ***/
 109static int clk_pm_runtime_get(struct clk_core *core)
 110{
 111	if (!core->rpm_enabled)
 112		return 0;
 113
 114	return pm_runtime_resume_and_get(core->dev);
 115}
 116
 117static void clk_pm_runtime_put(struct clk_core *core)
 118{
 119	if (!core->rpm_enabled)
 120		return;
 121
 122	pm_runtime_put_sync(core->dev);
 123}
 124
 125/***           locking             ***/
 126static void clk_prepare_lock(void)
 127{
 128	if (!mutex_trylock(&prepare_lock)) {
 129		if (prepare_owner == current) {
 130			prepare_refcnt++;
 131			return;
 132		}
 133		mutex_lock(&prepare_lock);
 134	}
 135	WARN_ON_ONCE(prepare_owner != NULL);
 136	WARN_ON_ONCE(prepare_refcnt != 0);
 137	prepare_owner = current;
 138	prepare_refcnt = 1;
 139}
 140
 141static void clk_prepare_unlock(void)
 142{
 143	WARN_ON_ONCE(prepare_owner != current);
 144	WARN_ON_ONCE(prepare_refcnt == 0);
 145
 146	if (--prepare_refcnt)
 147		return;
 148	prepare_owner = NULL;
 149	mutex_unlock(&prepare_lock);
 150}
 151
 152static unsigned long clk_enable_lock(void)
 153	__acquires(enable_lock)
 154{
 155	unsigned long flags;
 156
 157	/*
 158	 * On UP systems, spin_trylock_irqsave() always returns true, even if
 159	 * we already hold the lock. So, in that case, we rely only on
 160	 * reference counting.
 161	 */
 162	if (!IS_ENABLED(CONFIG_SMP) ||
 163	    !spin_trylock_irqsave(&enable_lock, flags)) {
 164		if (enable_owner == current) {
 165			enable_refcnt++;
 166			__acquire(enable_lock);
 167			if (!IS_ENABLED(CONFIG_SMP))
 168				local_save_flags(flags);
 169			return flags;
 170		}
 171		spin_lock_irqsave(&enable_lock, flags);
 172	}
 173	WARN_ON_ONCE(enable_owner != NULL);
 174	WARN_ON_ONCE(enable_refcnt != 0);
 175	enable_owner = current;
 176	enable_refcnt = 1;
 177	return flags;
 178}
 179
 180static void clk_enable_unlock(unsigned long flags)
 181	__releases(enable_lock)
 182{
 183	WARN_ON_ONCE(enable_owner != current);
 184	WARN_ON_ONCE(enable_refcnt == 0);
 185
 186	if (--enable_refcnt) {
 187		__release(enable_lock);
 188		return;
 189	}
 190	enable_owner = NULL;
 191	spin_unlock_irqrestore(&enable_lock, flags);
 192}
 193
 194static bool clk_core_rate_is_protected(struct clk_core *core)
 195{
 196	return core->protect_count;
 197}
 198
 199static bool clk_core_is_prepared(struct clk_core *core)
 200{
 201	bool ret = false;
 202
 203	/*
 204	 * .is_prepared is optional for clocks that can prepare
 205	 * fall back to software usage counter if it is missing
 206	 */
 207	if (!core->ops->is_prepared)
 208		return core->prepare_count;
 209
 210	if (!clk_pm_runtime_get(core)) {
 211		ret = core->ops->is_prepared(core->hw);
 212		clk_pm_runtime_put(core);
 213	}
 214
 215	return ret;
 216}
 217
 218static bool clk_core_is_enabled(struct clk_core *core)
 219{
 220	bool ret = false;
 221
 222	/*
 223	 * .is_enabled is only mandatory for clocks that gate
 224	 * fall back to software usage counter if .is_enabled is missing
 225	 */
 226	if (!core->ops->is_enabled)
 227		return core->enable_count;
 228
 229	/*
 230	 * Check if clock controller's device is runtime active before
 231	 * calling .is_enabled callback. If not, assume that clock is
 232	 * disabled, because we might be called from atomic context, from
 233	 * which pm_runtime_get() is not allowed.
 234	 * This function is called mainly from clk_disable_unused_subtree,
 235	 * which ensures proper runtime pm activation of controller before
 236	 * taking enable spinlock, but the below check is needed if one tries
 237	 * to call it from other places.
 238	 */
 239	if (core->rpm_enabled) {
 240		pm_runtime_get_noresume(core->dev);
 241		if (!pm_runtime_active(core->dev)) {
 242			ret = false;
 243			goto done;
 244		}
 
 
 
 
 
 
 
 
 
 245	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 246
 247	/*
 248	 * This could be called with the enable lock held, or from atomic
 249	 * context. If the parent isn't enabled already, we can't do
 250	 * anything here. We can also assume this clock isn't enabled.
 251	 */
 252	if ((core->flags & CLK_OPS_PARENT_ENABLE) && core->parent)
 253		if (!clk_core_is_enabled(core->parent)) {
 254			ret = false;
 255			goto done;
 256		}
 
 
 
 257
 258	ret = core->ops->is_enabled(core->hw);
 259done:
 260	if (core->rpm_enabled)
 261		pm_runtime_put(core->dev);
 262
 263	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 264}
 
 265
 266/***    helper functions   ***/
 267
 268const char *__clk_get_name(const struct clk *clk)
 269{
 270	return !clk ? NULL : clk->core->name;
 271}
 272EXPORT_SYMBOL_GPL(__clk_get_name);
 273
 274const char *clk_hw_get_name(const struct clk_hw *hw)
 275{
 276	return hw->core->name;
 277}
 278EXPORT_SYMBOL_GPL(clk_hw_get_name);
 279
 280struct clk_hw *__clk_get_hw(struct clk *clk)
 281{
 282	return !clk ? NULL : clk->core->hw;
 283}
 284EXPORT_SYMBOL_GPL(__clk_get_hw);
 285
 286unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
 287{
 288	return hw->core->num_parents;
 289}
 290EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
 291
 292struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
 293{
 294	return hw->core->parent ? hw->core->parent->hw : NULL;
 295}
 296EXPORT_SYMBOL_GPL(clk_hw_get_parent);
 297
 298static struct clk_core *__clk_lookup_subtree(const char *name,
 299					     struct clk_core *core)
 300{
 301	struct clk_core *child;
 302	struct clk_core *ret;
 303
 304	if (!strcmp(core->name, name))
 305		return core;
 306
 307	hlist_for_each_entry(child, &core->children, child_node) {
 308		ret = __clk_lookup_subtree(name, child);
 309		if (ret)
 310			return ret;
 311	}
 312
 313	return NULL;
 314}
 315
 316static struct clk_core *clk_core_lookup(const char *name)
 317{
 318	struct clk_core *root_clk;
 319	struct clk_core *ret;
 320
 321	if (!name)
 322		return NULL;
 323
 324	/* search the 'proper' clk tree first */
 325	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
 326		ret = __clk_lookup_subtree(name, root_clk);
 327		if (ret)
 328			return ret;
 329	}
 330
 331	/* if not found, then search the orphan tree */
 332	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
 333		ret = __clk_lookup_subtree(name, root_clk);
 334		if (ret)
 335			return ret;
 336	}
 337
 338	return NULL;
 339}
 340
 341#ifdef CONFIG_OF
 342static int of_parse_clkspec(const struct device_node *np, int index,
 343			    const char *name, struct of_phandle_args *out_args);
 344static struct clk_hw *
 345of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec);
 346#else
 347static inline int of_parse_clkspec(const struct device_node *np, int index,
 348				   const char *name,
 349				   struct of_phandle_args *out_args)
 350{
 351	return -ENOENT;
 352}
 353static inline struct clk_hw *
 354of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
 355{
 356	return ERR_PTR(-ENOENT);
 357}
 358#endif
 359
 360/**
 361 * clk_core_get - Find the clk_core parent of a clk
 362 * @core: clk to find parent of
 363 * @p_index: parent index to search for
 364 *
 365 * This is the preferred method for clk providers to find the parent of a
 366 * clk when that parent is external to the clk controller. The parent_names
 367 * array is indexed and treated as a local name matching a string in the device
 368 * node's 'clock-names' property or as the 'con_id' matching the device's
 369 * dev_name() in a clk_lookup. This allows clk providers to use their own
 370 * namespace instead of looking for a globally unique parent string.
 371 *
 372 * For example the following DT snippet would allow a clock registered by the
 373 * clock-controller@c001 that has a clk_init_data::parent_data array
 374 * with 'xtal' in the 'name' member to find the clock provided by the
 375 * clock-controller@f00abcd without needing to get the globally unique name of
 376 * the xtal clk.
 377 *
 378 *      parent: clock-controller@f00abcd {
 379 *              reg = <0xf00abcd 0xabcd>;
 380 *              #clock-cells = <0>;
 381 *      };
 382 *
 383 *      clock-controller@c001 {
 384 *              reg = <0xc001 0xf00d>;
 385 *              clocks = <&parent>;
 386 *              clock-names = "xtal";
 387 *              #clock-cells = <1>;
 388 *      };
 389 *
 390 * Returns: -ENOENT when the provider can't be found or the clk doesn't
 391 * exist in the provider or the name can't be found in the DT node or
 392 * in a clkdev lookup. NULL when the provider knows about the clk but it
 393 * isn't provided on this system.
 394 * A valid clk_core pointer when the clk can be found in the provider.
 395 */
 396static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index)
 397{
 398	const char *name = core->parents[p_index].fw_name;
 399	int index = core->parents[p_index].index;
 400	struct clk_hw *hw = ERR_PTR(-ENOENT);
 401	struct device *dev = core->dev;
 402	const char *dev_id = dev ? dev_name(dev) : NULL;
 403	struct device_node *np = core->of_node;
 404	struct of_phandle_args clkspec;
 405
 406	if (np && (name || index >= 0) &&
 407	    !of_parse_clkspec(np, index, name, &clkspec)) {
 408		hw = of_clk_get_hw_from_clkspec(&clkspec);
 409		of_node_put(clkspec.np);
 410	} else if (name) {
 411		/*
 412		 * If the DT search above couldn't find the provider fallback to
 413		 * looking up via clkdev based clk_lookups.
 414		 */
 415		hw = clk_find_hw(dev_id, name);
 416	}
 417
 418	if (IS_ERR(hw))
 419		return ERR_CAST(hw);
 420
 421	return hw->core;
 422}
 423
 424static void clk_core_fill_parent_index(struct clk_core *core, u8 index)
 425{
 426	struct clk_parent_map *entry = &core->parents[index];
 427	struct clk_core *parent;
 428
 429	if (entry->hw) {
 430		parent = entry->hw->core;
 431	} else {
 432		parent = clk_core_get(core, index);
 433		if (PTR_ERR(parent) == -ENOENT && entry->name)
 434			parent = clk_core_lookup(entry->name);
 435	}
 436
 437	/*
 438	 * We have a direct reference but it isn't registered yet?
 439	 * Orphan it and let clk_reparent() update the orphan status
 440	 * when the parent is registered.
 441	 */
 442	if (!parent)
 443		parent = ERR_PTR(-EPROBE_DEFER);
 444
 445	/* Only cache it if it's not an error */
 446	if (!IS_ERR(parent))
 447		entry->core = parent;
 448}
 449
 450static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
 451							 u8 index)
 452{
 453	if (!core || index >= core->num_parents || !core->parents)
 454		return NULL;
 455
 456	if (!core->parents[index].core)
 457		clk_core_fill_parent_index(core, index);
 
 458
 459	return core->parents[index].core;
 460}
 461
 462struct clk_hw *
 463clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
 464{
 465	struct clk_core *parent;
 466
 467	parent = clk_core_get_parent_by_index(hw->core, index);
 468
 469	return !parent ? NULL : parent->hw;
 470}
 471EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
 472
 473unsigned int __clk_get_enable_count(struct clk *clk)
 474{
 475	return !clk ? 0 : clk->core->enable_count;
 476}
 477
 478static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
 479{
 480	if (!core)
 481		return 0;
 482
 483	if (!core->num_parents || core->parent)
 484		return core->rate;
 
 
 485
 486	/*
 487	 * Clk must have a parent because num_parents > 0 but the parent isn't
 488	 * known yet. Best to return 0 as the rate of this clk until we can
 489	 * properly recalc the rate based on the parent's rate.
 490	 */
 491	return 0;
 
 
 
 
 492}
 493
 494unsigned long clk_hw_get_rate(const struct clk_hw *hw)
 495{
 496	return clk_core_get_rate_nolock(hw->core);
 497}
 498EXPORT_SYMBOL_GPL(clk_hw_get_rate);
 499
 500static unsigned long clk_core_get_accuracy_no_lock(struct clk_core *core)
 501{
 502	if (!core)
 503		return 0;
 504
 505	return core->accuracy;
 506}
 507
 
 
 
 
 
 
 508unsigned long clk_hw_get_flags(const struct clk_hw *hw)
 509{
 510	return hw->core->flags;
 511}
 512EXPORT_SYMBOL_GPL(clk_hw_get_flags);
 513
 514bool clk_hw_is_prepared(const struct clk_hw *hw)
 515{
 516	return clk_core_is_prepared(hw->core);
 517}
 518EXPORT_SYMBOL_GPL(clk_hw_is_prepared);
 519
 520bool clk_hw_rate_is_protected(const struct clk_hw *hw)
 521{
 522	return clk_core_rate_is_protected(hw->core);
 523}
 524EXPORT_SYMBOL_GPL(clk_hw_rate_is_protected);
 525
 526bool clk_hw_is_enabled(const struct clk_hw *hw)
 527{
 528	return clk_core_is_enabled(hw->core);
 529}
 530EXPORT_SYMBOL_GPL(clk_hw_is_enabled);
 531
 532bool __clk_is_enabled(struct clk *clk)
 533{
 534	if (!clk)
 535		return false;
 536
 537	return clk_core_is_enabled(clk->core);
 538}
 539EXPORT_SYMBOL_GPL(__clk_is_enabled);
 540
 541static bool mux_is_better_rate(unsigned long rate, unsigned long now,
 542			   unsigned long best, unsigned long flags)
 543{
 544	if (flags & CLK_MUX_ROUND_CLOSEST)
 545		return abs(now - rate) < abs(best - rate);
 546
 547	return now <= rate && now > best;
 548}
 549
 550static void clk_core_init_rate_req(struct clk_core * const core,
 551				   struct clk_rate_request *req,
 552				   unsigned long rate);
 553
 554static int clk_core_round_rate_nolock(struct clk_core *core,
 555				      struct clk_rate_request *req);
 556
 557static bool clk_core_has_parent(struct clk_core *core, const struct clk_core *parent)
 558{
 559	struct clk_core *tmp;
 560	unsigned int i;
 561
 562	/* Optimize for the case where the parent is already the parent. */
 563	if (core->parent == parent)
 564		return true;
 565
 566	for (i = 0; i < core->num_parents; i++) {
 567		tmp = clk_core_get_parent_by_index(core, i);
 568		if (!tmp)
 569			continue;
 570
 571		if (tmp == parent)
 572			return true;
 573	}
 574
 575	return false;
 576}
 577
 578static void
 579clk_core_forward_rate_req(struct clk_core *core,
 580			  const struct clk_rate_request *old_req,
 581			  struct clk_core *parent,
 582			  struct clk_rate_request *req,
 583			  unsigned long parent_rate)
 584{
 585	if (WARN_ON(!clk_core_has_parent(core, parent)))
 586		return;
 587
 588	clk_core_init_rate_req(parent, req, parent_rate);
 589
 590	if (req->min_rate < old_req->min_rate)
 591		req->min_rate = old_req->min_rate;
 592
 593	if (req->max_rate > old_req->max_rate)
 594		req->max_rate = old_req->max_rate;
 595}
 596
 597static int
 598clk_core_determine_rate_no_reparent(struct clk_hw *hw,
 599				    struct clk_rate_request *req)
 600{
 601	struct clk_core *core = hw->core;
 602	struct clk_core *parent = core->parent;
 603	unsigned long best;
 604	int ret;
 605
 606	if (core->flags & CLK_SET_RATE_PARENT) {
 607		struct clk_rate_request parent_req;
 608
 609		if (!parent) {
 610			req->rate = 0;
 611			return 0;
 612		}
 613
 614		clk_core_forward_rate_req(core, req, parent, &parent_req,
 615					  req->rate);
 616
 617		trace_clk_rate_request_start(&parent_req);
 618
 619		ret = clk_core_round_rate_nolock(parent, &parent_req);
 620		if (ret)
 621			return ret;
 622
 623		trace_clk_rate_request_done(&parent_req);
 624
 625		best = parent_req.rate;
 626	} else if (parent) {
 627		best = clk_core_get_rate_nolock(parent);
 628	} else {
 629		best = clk_core_get_rate_nolock(core);
 630	}
 631
 632	req->best_parent_rate = best;
 633	req->rate = best;
 634
 635	return 0;
 636}
 637
 638int clk_mux_determine_rate_flags(struct clk_hw *hw,
 639				 struct clk_rate_request *req,
 640				 unsigned long flags)
 641{
 642	struct clk_core *core = hw->core, *parent, *best_parent = NULL;
 643	int i, num_parents, ret;
 644	unsigned long best = 0;
 
 645
 646	/* if NO_REPARENT flag set, pass through to current parent */
 647	if (core->flags & CLK_SET_RATE_NO_REPARENT)
 648		return clk_core_determine_rate_no_reparent(hw, req);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 649
 650	/* find the parent that can provide the fastest rate <= rate */
 651	num_parents = core->num_parents;
 652	for (i = 0; i < num_parents; i++) {
 653		unsigned long parent_rate;
 654
 655		parent = clk_core_get_parent_by_index(core, i);
 656		if (!parent)
 657			continue;
 658
 659		if (core->flags & CLK_SET_RATE_PARENT) {
 660			struct clk_rate_request parent_req;
 661
 662			clk_core_forward_rate_req(core, req, parent, &parent_req, req->rate);
 663
 664			trace_clk_rate_request_start(&parent_req);
 665
 666			ret = clk_core_round_rate_nolock(parent, &parent_req);
 667			if (ret)
 668				continue;
 669
 670			trace_clk_rate_request_done(&parent_req);
 671
 672			parent_rate = parent_req.rate;
 673		} else {
 674			parent_rate = clk_core_get_rate_nolock(parent);
 675		}
 676
 677		if (mux_is_better_rate(req->rate, parent_rate,
 678				       best, flags)) {
 679			best_parent = parent;
 680			best = parent_rate;
 681		}
 682	}
 683
 684	if (!best_parent)
 685		return -EINVAL;
 686
 687	req->best_parent_hw = best_parent->hw;
 
 
 688	req->best_parent_rate = best;
 689	req->rate = best;
 690
 691	return 0;
 692}
 693EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags);
 694
 695struct clk *__clk_lookup(const char *name)
 696{
 697	struct clk_core *core = clk_core_lookup(name);
 698
 699	return !core ? NULL : core->hw->clk;
 700}
 701
 702static void clk_core_get_boundaries(struct clk_core *core,
 703				    unsigned long *min_rate,
 704				    unsigned long *max_rate)
 705{
 706	struct clk *clk_user;
 707
 708	lockdep_assert_held(&prepare_lock);
 709
 710	*min_rate = core->min_rate;
 711	*max_rate = core->max_rate;
 712
 713	hlist_for_each_entry(clk_user, &core->clks, clks_node)
 714		*min_rate = max(*min_rate, clk_user->min_rate);
 715
 716	hlist_for_each_entry(clk_user, &core->clks, clks_node)
 717		*max_rate = min(*max_rate, clk_user->max_rate);
 718}
 719
 720/*
 721 * clk_hw_get_rate_range() - returns the clock rate range for a hw clk
 722 * @hw: the hw clk we want to get the range from
 723 * @min_rate: pointer to the variable that will hold the minimum
 724 * @max_rate: pointer to the variable that will hold the maximum
 725 *
 726 * Fills the @min_rate and @max_rate variables with the minimum and
 727 * maximum that clock can reach.
 728 */
 729void clk_hw_get_rate_range(struct clk_hw *hw, unsigned long *min_rate,
 730			   unsigned long *max_rate)
 731{
 732	clk_core_get_boundaries(hw->core, min_rate, max_rate);
 733}
 734EXPORT_SYMBOL_GPL(clk_hw_get_rate_range);
 735
 736static bool clk_core_check_boundaries(struct clk_core *core,
 737				      unsigned long min_rate,
 738				      unsigned long max_rate)
 739{
 740	struct clk *user;
 741
 742	lockdep_assert_held(&prepare_lock);
 743
 744	if (min_rate > core->max_rate || max_rate < core->min_rate)
 745		return false;
 746
 747	hlist_for_each_entry(user, &core->clks, clks_node)
 748		if (min_rate > user->max_rate || max_rate < user->min_rate)
 749			return false;
 750
 751	return true;
 752}
 753
 754void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
 755			   unsigned long max_rate)
 756{
 757	hw->core->min_rate = min_rate;
 758	hw->core->max_rate = max_rate;
 759}
 760EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
 761
 762/*
 763 * __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk
 764 * @hw: mux type clk to determine rate on
 765 * @req: rate request, also used to return preferred parent and frequencies
 766 *
 767 * Helper for finding best parent to provide a given frequency. This can be used
 768 * directly as a determine_rate callback (e.g. for a mux), or from a more
 769 * complex clock that may combine a mux with other operations.
 770 *
 771 * Returns: 0 on success, -EERROR value on error
 772 */
 773int __clk_mux_determine_rate(struct clk_hw *hw,
 774			     struct clk_rate_request *req)
 775{
 776	return clk_mux_determine_rate_flags(hw, req, 0);
 777}
 778EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
 779
 780int __clk_mux_determine_rate_closest(struct clk_hw *hw,
 781				     struct clk_rate_request *req)
 782{
 783	return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
 784}
 785EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
 786
 787/*
 788 * clk_hw_determine_rate_no_reparent - clk_ops::determine_rate implementation for a clk that doesn't reparent
 789 * @hw: mux type clk to determine rate on
 790 * @req: rate request, also used to return preferred frequency
 791 *
 792 * Helper for finding best parent rate to provide a given frequency.
 793 * This can be used directly as a determine_rate callback (e.g. for a
 794 * mux), or from a more complex clock that may combine a mux with other
 795 * operations.
 796 *
 797 * Returns: 0 on success, -EERROR value on error
 798 */
 799int clk_hw_determine_rate_no_reparent(struct clk_hw *hw,
 800				      struct clk_rate_request *req)
 801{
 802	return clk_core_determine_rate_no_reparent(hw, req);
 803}
 804EXPORT_SYMBOL_GPL(clk_hw_determine_rate_no_reparent);
 805
 806/***        clk api        ***/
 807
 808static void clk_core_rate_unprotect(struct clk_core *core)
 809{
 810	lockdep_assert_held(&prepare_lock);
 811
 812	if (!core)
 813		return;
 814
 815	if (WARN(core->protect_count == 0,
 816	    "%s already unprotected\n", core->name))
 817		return;
 818
 819	if (--core->protect_count > 0)
 820		return;
 821
 822	clk_core_rate_unprotect(core->parent);
 823}
 824
 825static int clk_core_rate_nuke_protect(struct clk_core *core)
 826{
 827	int ret;
 828
 829	lockdep_assert_held(&prepare_lock);
 830
 831	if (!core)
 832		return -EINVAL;
 833
 834	if (core->protect_count == 0)
 835		return 0;
 836
 837	ret = core->protect_count;
 838	core->protect_count = 1;
 839	clk_core_rate_unprotect(core);
 840
 841	return ret;
 842}
 843
 844/**
 845 * clk_rate_exclusive_put - release exclusivity over clock rate control
 846 * @clk: the clk over which the exclusivity is released
 847 *
 848 * clk_rate_exclusive_put() completes a critical section during which a clock
 849 * consumer cannot tolerate any other consumer making any operation on the
 850 * clock which could result in a rate change or rate glitch. Exclusive clocks
 851 * cannot have their rate changed, either directly or indirectly due to changes
 852 * further up the parent chain of clocks. As a result, clocks up parent chain
 853 * also get under exclusive control of the calling consumer.
 854 *
 855 * If exlusivity is claimed more than once on clock, even by the same consumer,
 856 * the rate effectively gets locked as exclusivity can't be preempted.
 857 *
 858 * Calls to clk_rate_exclusive_put() must be balanced with calls to
 859 * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return
 860 * error status.
 861 */
 862void clk_rate_exclusive_put(struct clk *clk)
 863{
 864	if (!clk)
 865		return;
 866
 867	clk_prepare_lock();
 868
 869	/*
 870	 * if there is something wrong with this consumer protect count, stop
 871	 * here before messing with the provider
 872	 */
 873	if (WARN_ON(clk->exclusive_count <= 0))
 874		goto out;
 875
 876	clk_core_rate_unprotect(clk->core);
 877	clk->exclusive_count--;
 878out:
 879	clk_prepare_unlock();
 880}
 881EXPORT_SYMBOL_GPL(clk_rate_exclusive_put);
 882
 883static void clk_core_rate_protect(struct clk_core *core)
 884{
 885	lockdep_assert_held(&prepare_lock);
 886
 887	if (!core)
 888		return;
 889
 890	if (core->protect_count == 0)
 891		clk_core_rate_protect(core->parent);
 892
 893	core->protect_count++;
 894}
 895
 896static void clk_core_rate_restore_protect(struct clk_core *core, int count)
 897{
 898	lockdep_assert_held(&prepare_lock);
 899
 900	if (!core)
 901		return;
 902
 903	if (count == 0)
 904		return;
 905
 906	clk_core_rate_protect(core);
 907	core->protect_count = count;
 908}
 909
 910/**
 911 * clk_rate_exclusive_get - get exclusivity over the clk rate control
 912 * @clk: the clk over which the exclusity of rate control is requested
 913 *
 914 * clk_rate_exclusive_get() begins a critical section during which a clock
 915 * consumer cannot tolerate any other consumer making any operation on the
 916 * clock which could result in a rate change or rate glitch. Exclusive clocks
 917 * cannot have their rate changed, either directly or indirectly due to changes
 918 * further up the parent chain of clocks. As a result, clocks up parent chain
 919 * also get under exclusive control of the calling consumer.
 920 *
 921 * If exlusivity is claimed more than once on clock, even by the same consumer,
 922 * the rate effectively gets locked as exclusivity can't be preempted.
 923 *
 924 * Calls to clk_rate_exclusive_get() should be balanced with calls to
 925 * clk_rate_exclusive_put(). Calls to this function may sleep.
 926 * Returns 0 on success, -EERROR otherwise
 927 */
 928int clk_rate_exclusive_get(struct clk *clk)
 929{
 930	if (!clk)
 931		return 0;
 932
 933	clk_prepare_lock();
 934	clk_core_rate_protect(clk->core);
 935	clk->exclusive_count++;
 936	clk_prepare_unlock();
 937
 938	return 0;
 939}
 940EXPORT_SYMBOL_GPL(clk_rate_exclusive_get);
 941
 942static void clk_core_unprepare(struct clk_core *core)
 943{
 944	lockdep_assert_held(&prepare_lock);
 945
 946	if (!core)
 947		return;
 948
 949	if (WARN(core->prepare_count == 0,
 950	    "%s already unprepared\n", core->name))
 951		return;
 952
 953	if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL,
 954	    "Unpreparing critical %s\n", core->name))
 955		return;
 956
 957	if (core->flags & CLK_SET_RATE_GATE)
 958		clk_core_rate_unprotect(core);
 959
 960	if (--core->prepare_count > 0)
 961		return;
 962
 963	WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name);
 964
 965	trace_clk_unprepare(core);
 966
 967	if (core->ops->unprepare)
 968		core->ops->unprepare(core->hw);
 969
 970	trace_clk_unprepare_complete(core);
 971	clk_core_unprepare(core->parent);
 972	clk_pm_runtime_put(core);
 973}
 974
 975static void clk_core_unprepare_lock(struct clk_core *core)
 976{
 977	clk_prepare_lock();
 978	clk_core_unprepare(core);
 979	clk_prepare_unlock();
 980}
 981
 982/**
 983 * clk_unprepare - undo preparation of a clock source
 984 * @clk: the clk being unprepared
 985 *
 986 * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
 987 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
 988 * if the operation may sleep.  One example is a clk which is accessed over
 989 * I2c.  In the complex case a clk gate operation may require a fast and a slow
 990 * part.  It is this reason that clk_unprepare and clk_disable are not mutually
 991 * exclusive.  In fact clk_disable must be called before clk_unprepare.
 992 */
 993void clk_unprepare(struct clk *clk)
 994{
 995	if (IS_ERR_OR_NULL(clk))
 996		return;
 997
 998	clk_core_unprepare_lock(clk->core);
 
 
 999}
1000EXPORT_SYMBOL_GPL(clk_unprepare);
1001
1002static int clk_core_prepare(struct clk_core *core)
1003{
1004	int ret = 0;
1005
1006	lockdep_assert_held(&prepare_lock);
1007
1008	if (!core)
1009		return 0;
1010
1011	if (core->prepare_count == 0) {
1012		ret = clk_pm_runtime_get(core);
1013		if (ret)
1014			return ret;
1015
1016		ret = clk_core_prepare(core->parent);
1017		if (ret)
1018			goto runtime_put;
1019
1020		trace_clk_prepare(core);
1021
1022		if (core->ops->prepare)
1023			ret = core->ops->prepare(core->hw);
1024
1025		trace_clk_prepare_complete(core);
1026
1027		if (ret)
1028			goto unprepare;
 
 
1029	}
1030
1031	core->prepare_count++;
1032
1033	/*
1034	 * CLK_SET_RATE_GATE is a special case of clock protection
1035	 * Instead of a consumer claiming exclusive rate control, it is
1036	 * actually the provider which prevents any consumer from making any
1037	 * operation which could result in a rate change or rate glitch while
1038	 * the clock is prepared.
1039	 */
1040	if (core->flags & CLK_SET_RATE_GATE)
1041		clk_core_rate_protect(core);
1042
1043	return 0;
1044unprepare:
1045	clk_core_unprepare(core->parent);
1046runtime_put:
1047	clk_pm_runtime_put(core);
1048	return ret;
1049}
1050
1051static int clk_core_prepare_lock(struct clk_core *core)
1052{
1053	int ret;
1054
1055	clk_prepare_lock();
1056	ret = clk_core_prepare(core);
1057	clk_prepare_unlock();
1058
1059	return ret;
1060}
1061
1062/**
1063 * clk_prepare - prepare a clock source
1064 * @clk: the clk being prepared
1065 *
1066 * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
1067 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
1068 * operation may sleep.  One example is a clk which is accessed over I2c.  In
1069 * the complex case a clk ungate operation may require a fast and a slow part.
1070 * It is this reason that clk_prepare and clk_enable are not mutually
1071 * exclusive.  In fact clk_prepare must be called before clk_enable.
1072 * Returns 0 on success, -EERROR otherwise.
1073 */
1074int clk_prepare(struct clk *clk)
1075{
 
 
1076	if (!clk)
1077		return 0;
1078
1079	return clk_core_prepare_lock(clk->core);
 
 
 
 
1080}
1081EXPORT_SYMBOL_GPL(clk_prepare);
1082
1083static void clk_core_disable(struct clk_core *core)
1084{
1085	lockdep_assert_held(&enable_lock);
1086
1087	if (!core)
1088		return;
1089
1090	if (WARN(core->enable_count == 0, "%s already disabled\n", core->name))
1091		return;
1092
1093	if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL,
1094	    "Disabling critical %s\n", core->name))
1095		return;
1096
1097	if (--core->enable_count > 0)
1098		return;
1099
1100	trace_clk_disable(core);
1101
1102	if (core->ops->disable)
1103		core->ops->disable(core->hw);
1104
1105	trace_clk_disable_complete(core);
1106
1107	clk_core_disable(core->parent);
1108}
1109
1110static void clk_core_disable_lock(struct clk_core *core)
1111{
1112	unsigned long flags;
1113
1114	flags = clk_enable_lock();
1115	clk_core_disable(core);
1116	clk_enable_unlock(flags);
1117}
1118
1119/**
1120 * clk_disable - gate a clock
1121 * @clk: the clk being gated
1122 *
1123 * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
1124 * a simple case, clk_disable can be used instead of clk_unprepare to gate a
1125 * clk if the operation is fast and will never sleep.  One example is a
1126 * SoC-internal clk which is controlled via simple register writes.  In the
1127 * complex case a clk gate operation may require a fast and a slow part.  It is
1128 * this reason that clk_unprepare and clk_disable are not mutually exclusive.
1129 * In fact clk_disable must be called before clk_unprepare.
1130 */
1131void clk_disable(struct clk *clk)
1132{
 
 
1133	if (IS_ERR_OR_NULL(clk))
1134		return;
1135
1136	clk_core_disable_lock(clk->core);
 
 
1137}
1138EXPORT_SYMBOL_GPL(clk_disable);
1139
1140static int clk_core_enable(struct clk_core *core)
1141{
1142	int ret = 0;
1143
1144	lockdep_assert_held(&enable_lock);
1145
1146	if (!core)
1147		return 0;
1148
1149	if (WARN(core->prepare_count == 0,
1150	    "Enabling unprepared %s\n", core->name))
1151		return -ESHUTDOWN;
1152
1153	if (core->enable_count == 0) {
1154		ret = clk_core_enable(core->parent);
1155
1156		if (ret)
1157			return ret;
1158
1159		trace_clk_enable(core);
1160
1161		if (core->ops->enable)
1162			ret = core->ops->enable(core->hw);
1163
1164		trace_clk_enable_complete(core);
1165
1166		if (ret) {
1167			clk_core_disable(core->parent);
1168			return ret;
1169		}
1170	}
1171
1172	core->enable_count++;
1173	return 0;
1174}
1175
1176static int clk_core_enable_lock(struct clk_core *core)
1177{
1178	unsigned long flags;
1179	int ret;
1180
1181	flags = clk_enable_lock();
1182	ret = clk_core_enable(core);
1183	clk_enable_unlock(flags);
1184
1185	return ret;
1186}
1187
1188/**
1189 * clk_gate_restore_context - restore context for poweroff
1190 * @hw: the clk_hw pointer of clock whose state is to be restored
1191 *
1192 * The clock gate restore context function enables or disables
1193 * the gate clocks based on the enable_count. This is done in cases
1194 * where the clock context is lost and based on the enable_count
1195 * the clock either needs to be enabled/disabled. This
1196 * helps restore the state of gate clocks.
1197 */
1198void clk_gate_restore_context(struct clk_hw *hw)
1199{
1200	struct clk_core *core = hw->core;
1201
1202	if (core->enable_count)
1203		core->ops->enable(hw);
1204	else
1205		core->ops->disable(hw);
1206}
1207EXPORT_SYMBOL_GPL(clk_gate_restore_context);
1208
1209static int clk_core_save_context(struct clk_core *core)
1210{
1211	struct clk_core *child;
1212	int ret = 0;
1213
1214	hlist_for_each_entry(child, &core->children, child_node) {
1215		ret = clk_core_save_context(child);
1216		if (ret < 0)
1217			return ret;
1218	}
1219
1220	if (core->ops && core->ops->save_context)
1221		ret = core->ops->save_context(core->hw);
1222
1223	return ret;
1224}
1225
1226static void clk_core_restore_context(struct clk_core *core)
1227{
1228	struct clk_core *child;
1229
1230	if (core->ops && core->ops->restore_context)
1231		core->ops->restore_context(core->hw);
1232
1233	hlist_for_each_entry(child, &core->children, child_node)
1234		clk_core_restore_context(child);
1235}
1236
1237/**
1238 * clk_save_context - save clock context for poweroff
1239 *
1240 * Saves the context of the clock register for powerstates in which the
1241 * contents of the registers will be lost. Occurs deep within the suspend
1242 * code.  Returns 0 on success.
1243 */
1244int clk_save_context(void)
1245{
1246	struct clk_core *clk;
1247	int ret;
1248
1249	hlist_for_each_entry(clk, &clk_root_list, child_node) {
1250		ret = clk_core_save_context(clk);
1251		if (ret < 0)
1252			return ret;
1253	}
1254
1255	hlist_for_each_entry(clk, &clk_orphan_list, child_node) {
1256		ret = clk_core_save_context(clk);
1257		if (ret < 0)
1258			return ret;
1259	}
1260
1261	return 0;
1262}
1263EXPORT_SYMBOL_GPL(clk_save_context);
1264
1265/**
1266 * clk_restore_context - restore clock context after poweroff
1267 *
1268 * Restore the saved clock context upon resume.
1269 *
1270 */
1271void clk_restore_context(void)
1272{
1273	struct clk_core *core;
1274
1275	hlist_for_each_entry(core, &clk_root_list, child_node)
1276		clk_core_restore_context(core);
1277
1278	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1279		clk_core_restore_context(core);
1280}
1281EXPORT_SYMBOL_GPL(clk_restore_context);
1282
1283/**
1284 * clk_enable - ungate a clock
1285 * @clk: the clk being ungated
1286 *
1287 * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
1288 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
1289 * if the operation will never sleep.  One example is a SoC-internal clk which
1290 * is controlled via simple register writes.  In the complex case a clk ungate
1291 * operation may require a fast and a slow part.  It is this reason that
1292 * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
1293 * must be called before clk_enable.  Returns 0 on success, -EERROR
1294 * otherwise.
1295 */
1296int clk_enable(struct clk *clk)
1297{
1298	if (!clk)
1299		return 0;
1300
1301	return clk_core_enable_lock(clk->core);
1302}
1303EXPORT_SYMBOL_GPL(clk_enable);
1304
1305/**
1306 * clk_is_enabled_when_prepared - indicate if preparing a clock also enables it.
1307 * @clk: clock source
1308 *
1309 * Returns true if clk_prepare() implicitly enables the clock, effectively
1310 * making clk_enable()/clk_disable() no-ops, false otherwise.
1311 *
1312 * This is of interest mainly to power management code where actually
1313 * disabling the clock also requires unpreparing it to have any material
1314 * effect.
1315 *
1316 * Regardless of the value returned here, the caller must always invoke
1317 * clk_enable() or clk_prepare_enable()  and counterparts for usage counts
1318 * to be right.
1319 */
1320bool clk_is_enabled_when_prepared(struct clk *clk)
1321{
1322	return clk && !(clk->core->ops->enable && clk->core->ops->disable);
1323}
1324EXPORT_SYMBOL_GPL(clk_is_enabled_when_prepared);
1325
1326static int clk_core_prepare_enable(struct clk_core *core)
1327{
1328	int ret;
1329
1330	ret = clk_core_prepare_lock(core);
1331	if (ret)
1332		return ret;
1333
1334	ret = clk_core_enable_lock(core);
1335	if (ret)
1336		clk_core_unprepare_lock(core);
1337
1338	return ret;
1339}
1340
1341static void clk_core_disable_unprepare(struct clk_core *core)
1342{
1343	clk_core_disable_lock(core);
1344	clk_core_unprepare_lock(core);
1345}
1346
1347static void __init clk_unprepare_unused_subtree(struct clk_core *core)
1348{
1349	struct clk_core *child;
1350
1351	lockdep_assert_held(&prepare_lock);
1352
1353	hlist_for_each_entry(child, &core->children, child_node)
1354		clk_unprepare_unused_subtree(child);
1355
1356	if (core->prepare_count)
1357		return;
1358
1359	if (core->flags & CLK_IGNORE_UNUSED)
1360		return;
1361
1362	if (clk_pm_runtime_get(core))
1363		return;
1364
1365	if (clk_core_is_prepared(core)) {
1366		trace_clk_unprepare(core);
1367		if (core->ops->unprepare_unused)
1368			core->ops->unprepare_unused(core->hw);
1369		else if (core->ops->unprepare)
1370			core->ops->unprepare(core->hw);
1371		trace_clk_unprepare_complete(core);
1372	}
1373
1374	clk_pm_runtime_put(core);
1375}
1376
1377static void __init clk_disable_unused_subtree(struct clk_core *core)
1378{
1379	struct clk_core *child;
1380	unsigned long flags;
 
1381
1382	lockdep_assert_held(&prepare_lock);
1383
1384	hlist_for_each_entry(child, &core->children, child_node)
1385		clk_disable_unused_subtree(child);
1386
1387	if (core->flags & CLK_OPS_PARENT_ENABLE)
1388		clk_core_prepare_enable(core->parent);
1389
1390	if (clk_pm_runtime_get(core))
1391		goto unprepare_out;
1392
1393	flags = clk_enable_lock();
1394
1395	if (core->enable_count)
1396		goto unlock_out;
1397
1398	if (core->flags & CLK_IGNORE_UNUSED)
1399		goto unlock_out;
1400
1401	/*
1402	 * some gate clocks have special needs during the disable-unused
1403	 * sequence.  call .disable_unused if available, otherwise fall
1404	 * back to .disable
1405	 */
1406	if (clk_core_is_enabled(core)) {
1407		trace_clk_disable(core);
1408		if (core->ops->disable_unused)
1409			core->ops->disable_unused(core->hw);
1410		else if (core->ops->disable)
1411			core->ops->disable(core->hw);
1412		trace_clk_disable_complete(core);
1413	}
1414
1415unlock_out:
1416	clk_enable_unlock(flags);
1417	clk_pm_runtime_put(core);
1418unprepare_out:
1419	if (core->flags & CLK_OPS_PARENT_ENABLE)
1420		clk_core_disable_unprepare(core->parent);
1421}
1422
1423static bool clk_ignore_unused __initdata;
1424static int __init clk_ignore_unused_setup(char *__unused)
1425{
1426	clk_ignore_unused = true;
1427	return 1;
1428}
1429__setup("clk_ignore_unused", clk_ignore_unused_setup);
1430
1431static int __init clk_disable_unused(void)
1432{
1433	struct clk_core *core;
1434
1435	if (clk_ignore_unused) {
1436		pr_warn("clk: Not disabling unused clocks\n");
1437		return 0;
1438	}
1439
1440	pr_info("clk: Disabling unused clocks\n");
1441
1442	clk_prepare_lock();
1443
1444	hlist_for_each_entry(core, &clk_root_list, child_node)
1445		clk_disable_unused_subtree(core);
1446
1447	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1448		clk_disable_unused_subtree(core);
1449
1450	hlist_for_each_entry(core, &clk_root_list, child_node)
1451		clk_unprepare_unused_subtree(core);
1452
1453	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1454		clk_unprepare_unused_subtree(core);
1455
1456	clk_prepare_unlock();
1457
1458	return 0;
1459}
1460late_initcall_sync(clk_disable_unused);
1461
1462static int clk_core_determine_round_nolock(struct clk_core *core,
1463					   struct clk_rate_request *req)
1464{
 
1465	long rate;
1466
1467	lockdep_assert_held(&prepare_lock);
1468
1469	if (!core)
1470		return 0;
1471
1472	/*
1473	 * Some clock providers hand-craft their clk_rate_requests and
1474	 * might not fill min_rate and max_rate.
1475	 *
1476	 * If it's the case, clamping the rate is equivalent to setting
1477	 * the rate to 0 which is bad. Skip the clamping but complain so
1478	 * that it gets fixed, hopefully.
1479	 */
1480	if (!req->min_rate && !req->max_rate)
1481		pr_warn("%s: %s: clk_rate_request has initialized min or max rate.\n",
1482			__func__, core->name);
1483	else
1484		req->rate = clamp(req->rate, req->min_rate, req->max_rate);
1485
1486	/*
1487	 * At this point, core protection will be disabled
1488	 * - if the provider is not protected at all
1489	 * - if the calling consumer is the only one which has exclusivity
1490	 *   over the provider
1491	 */
1492	if (clk_core_rate_is_protected(core)) {
1493		req->rate = core->rate;
1494	} else if (core->ops->determine_rate) {
1495		return core->ops->determine_rate(core->hw, req);
1496	} else if (core->ops->round_rate) {
1497		rate = core->ops->round_rate(core->hw, req->rate,
1498					     &req->best_parent_rate);
1499		if (rate < 0)
1500			return rate;
1501
1502		req->rate = rate;
1503	} else {
1504		return -EINVAL;
1505	}
1506
1507	return 0;
1508}
1509
1510static void clk_core_init_rate_req(struct clk_core * const core,
1511				   struct clk_rate_request *req,
1512				   unsigned long rate)
1513{
1514	struct clk_core *parent;
1515
1516	if (WARN_ON(!req))
1517		return;
1518
1519	memset(req, 0, sizeof(*req));
1520	req->max_rate = ULONG_MAX;
1521
1522	if (!core)
1523		return;
1524
1525	req->core = core;
1526	req->rate = rate;
1527	clk_core_get_boundaries(core, &req->min_rate, &req->max_rate);
1528
1529	parent = core->parent;
1530	if (parent) {
1531		req->best_parent_hw = parent->hw;
1532		req->best_parent_rate = parent->rate;
1533	} else {
1534		req->best_parent_hw = NULL;
1535		req->best_parent_rate = 0;
1536	}
1537}
1538
1539/**
1540 * clk_hw_init_rate_request - Initializes a clk_rate_request
1541 * @hw: the clk for which we want to submit a rate request
1542 * @req: the clk_rate_request structure we want to initialise
1543 * @rate: the rate which is to be requested
1544 *
1545 * Initializes a clk_rate_request structure to submit to
1546 * __clk_determine_rate() or similar functions.
1547 */
1548void clk_hw_init_rate_request(const struct clk_hw *hw,
1549			      struct clk_rate_request *req,
1550			      unsigned long rate)
1551{
1552	if (WARN_ON(!hw || !req))
1553		return;
1554
1555	clk_core_init_rate_req(hw->core, req, rate);
1556}
1557EXPORT_SYMBOL_GPL(clk_hw_init_rate_request);
1558
1559/**
1560 * clk_hw_forward_rate_request - Forwards a clk_rate_request to a clock's parent
1561 * @hw: the original clock that got the rate request
1562 * @old_req: the original clk_rate_request structure we want to forward
1563 * @parent: the clk we want to forward @old_req to
1564 * @req: the clk_rate_request structure we want to initialise
1565 * @parent_rate: The rate which is to be requested to @parent
1566 *
1567 * Initializes a clk_rate_request structure to submit to a clock parent
1568 * in __clk_determine_rate() or similar functions.
1569 */
1570void clk_hw_forward_rate_request(const struct clk_hw *hw,
1571				 const struct clk_rate_request *old_req,
1572				 const struct clk_hw *parent,
1573				 struct clk_rate_request *req,
1574				 unsigned long parent_rate)
1575{
1576	if (WARN_ON(!hw || !old_req || !parent || !req))
1577		return;
1578
1579	clk_core_forward_rate_req(hw->core, old_req,
1580				  parent->core, req,
1581				  parent_rate);
1582}
1583EXPORT_SYMBOL_GPL(clk_hw_forward_rate_request);
1584
1585static bool clk_core_can_round(struct clk_core * const core)
1586{
1587	return core->ops->determine_rate || core->ops->round_rate;
1588}
1589
1590static int clk_core_round_rate_nolock(struct clk_core *core,
1591				      struct clk_rate_request *req)
1592{
1593	int ret;
1594
1595	lockdep_assert_held(&prepare_lock);
1596
1597	if (!core) {
1598		req->rate = 0;
1599		return 0;
1600	}
1601
1602	if (clk_core_can_round(core))
1603		return clk_core_determine_round_nolock(core, req);
1604
1605	if (core->flags & CLK_SET_RATE_PARENT) {
1606		struct clk_rate_request parent_req;
1607
1608		clk_core_forward_rate_req(core, req, core->parent, &parent_req, req->rate);
1609
1610		trace_clk_rate_request_start(&parent_req);
1611
1612		ret = clk_core_round_rate_nolock(core->parent, &parent_req);
1613		if (ret)
1614			return ret;
1615
1616		trace_clk_rate_request_done(&parent_req);
1617
1618		req->best_parent_rate = parent_req.rate;
1619		req->rate = parent_req.rate;
1620
1621		return 0;
 
 
 
 
1622	}
1623
1624	req->rate = core->rate;
1625	return 0;
1626}
1627
1628/**
1629 * __clk_determine_rate - get the closest rate actually supported by a clock
1630 * @hw: determine the rate of this clock
1631 * @req: target rate request
 
 
1632 *
1633 * Useful for clk_ops such as .set_rate and .determine_rate.
1634 */
1635int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
1636{
1637	if (!hw) {
1638		req->rate = 0;
1639		return 0;
1640	}
1641
1642	return clk_core_round_rate_nolock(hw->core, req);
1643}
1644EXPORT_SYMBOL_GPL(__clk_determine_rate);
1645
1646/**
1647 * clk_hw_round_rate() - round the given rate for a hw clk
1648 * @hw: the hw clk for which we are rounding a rate
1649 * @rate: the rate which is to be rounded
1650 *
1651 * Takes in a rate as input and rounds it to a rate that the clk can actually
1652 * use.
1653 *
1654 * Context: prepare_lock must be held.
1655 *          For clk providers to call from within clk_ops such as .round_rate,
1656 *          .determine_rate.
1657 *
1658 * Return: returns rounded rate of hw clk if clk supports round_rate operation
1659 *         else returns the parent rate.
1660 */
1661unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
1662{
1663	int ret;
1664	struct clk_rate_request req;
1665
1666	clk_core_init_rate_req(hw->core, &req, rate);
1667
1668	trace_clk_rate_request_start(&req);
1669
1670	ret = clk_core_round_rate_nolock(hw->core, &req);
1671	if (ret)
1672		return 0;
1673
1674	trace_clk_rate_request_done(&req);
1675
1676	return req.rate;
1677}
1678EXPORT_SYMBOL_GPL(clk_hw_round_rate);
1679
1680/**
1681 * clk_round_rate - round the given rate for a clk
1682 * @clk: the clk for which we are rounding a rate
1683 * @rate: the rate which is to be rounded
1684 *
1685 * Takes in a rate as input and rounds it to a rate that the clk can actually
1686 * use which is then returned.  If clk doesn't support round_rate operation
1687 * then the parent rate is returned.
1688 */
1689long clk_round_rate(struct clk *clk, unsigned long rate)
1690{
1691	struct clk_rate_request req;
1692	int ret;
1693
1694	if (!clk)
1695		return 0;
1696
1697	clk_prepare_lock();
1698
1699	if (clk->exclusive_count)
1700		clk_core_rate_unprotect(clk->core);
1701
1702	clk_core_init_rate_req(clk->core, &req, rate);
1703
1704	trace_clk_rate_request_start(&req);
1705
1706	ret = clk_core_round_rate_nolock(clk->core, &req);
1707
1708	trace_clk_rate_request_done(&req);
1709
1710	if (clk->exclusive_count)
1711		clk_core_rate_protect(clk->core);
1712
1713	clk_prepare_unlock();
1714
1715	if (ret)
1716		return ret;
1717
1718	return req.rate;
1719}
1720EXPORT_SYMBOL_GPL(clk_round_rate);
1721
1722/**
1723 * __clk_notify - call clk notifier chain
1724 * @core: clk that is changing rate
1725 * @msg: clk notifier type (see include/linux/clk.h)
1726 * @old_rate: old clk rate
1727 * @new_rate: new clk rate
1728 *
1729 * Triggers a notifier call chain on the clk rate-change notification
1730 * for 'clk'.  Passes a pointer to the struct clk and the previous
1731 * and current rates to the notifier callback.  Intended to be called by
1732 * internal clock code only.  Returns NOTIFY_DONE from the last driver
1733 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1734 * a driver returns that.
1735 */
1736static int __clk_notify(struct clk_core *core, unsigned long msg,
1737		unsigned long old_rate, unsigned long new_rate)
1738{
1739	struct clk_notifier *cn;
1740	struct clk_notifier_data cnd;
1741	int ret = NOTIFY_DONE;
1742
1743	cnd.old_rate = old_rate;
1744	cnd.new_rate = new_rate;
1745
1746	list_for_each_entry(cn, &clk_notifier_list, node) {
1747		if (cn->clk->core == core) {
1748			cnd.clk = cn->clk;
1749			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1750					&cnd);
1751			if (ret & NOTIFY_STOP_MASK)
1752				return ret;
1753		}
1754	}
1755
1756	return ret;
1757}
1758
1759/**
1760 * __clk_recalc_accuracies
1761 * @core: first clk in the subtree
1762 *
1763 * Walks the subtree of clks starting with clk and recalculates accuracies as
1764 * it goes.  Note that if a clk does not implement the .recalc_accuracy
1765 * callback then it is assumed that the clock will take on the accuracy of its
1766 * parent.
1767 */
1768static void __clk_recalc_accuracies(struct clk_core *core)
1769{
1770	unsigned long parent_accuracy = 0;
1771	struct clk_core *child;
1772
1773	lockdep_assert_held(&prepare_lock);
1774
1775	if (core->parent)
1776		parent_accuracy = core->parent->accuracy;
1777
1778	if (core->ops->recalc_accuracy)
1779		core->accuracy = core->ops->recalc_accuracy(core->hw,
1780							  parent_accuracy);
1781	else
1782		core->accuracy = parent_accuracy;
1783
1784	hlist_for_each_entry(child, &core->children, child_node)
1785		__clk_recalc_accuracies(child);
1786}
1787
1788static long clk_core_get_accuracy_recalc(struct clk_core *core)
1789{
 
 
 
1790	if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
1791		__clk_recalc_accuracies(core);
1792
1793	return clk_core_get_accuracy_no_lock(core);
 
 
 
1794}
1795
1796/**
1797 * clk_get_accuracy - return the accuracy of clk
1798 * @clk: the clk whose accuracy is being returned
1799 *
1800 * Simply returns the cached accuracy of the clk, unless
1801 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1802 * issued.
1803 * If clk is NULL then returns 0.
1804 */
1805long clk_get_accuracy(struct clk *clk)
1806{
1807	long accuracy;
1808
1809	if (!clk)
1810		return 0;
1811
1812	clk_prepare_lock();
1813	accuracy = clk_core_get_accuracy_recalc(clk->core);
1814	clk_prepare_unlock();
1815
1816	return accuracy;
1817}
1818EXPORT_SYMBOL_GPL(clk_get_accuracy);
1819
1820static unsigned long clk_recalc(struct clk_core *core,
1821				unsigned long parent_rate)
1822{
1823	unsigned long rate = parent_rate;
1824
1825	if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) {
1826		rate = core->ops->recalc_rate(core->hw, parent_rate);
1827		clk_pm_runtime_put(core);
1828	}
1829	return rate;
1830}
1831
1832/**
1833 * __clk_recalc_rates
1834 * @core: first clk in the subtree
1835 * @update_req: Whether req_rate should be updated with the new rate
1836 * @msg: notification type (see include/linux/clk.h)
1837 *
1838 * Walks the subtree of clks starting with clk and recalculates rates as it
1839 * goes.  Note that if a clk does not implement the .recalc_rate callback then
1840 * it is assumed that the clock will take on the rate of its parent.
1841 *
1842 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1843 * if necessary.
1844 */
1845static void __clk_recalc_rates(struct clk_core *core, bool update_req,
1846			       unsigned long msg)
1847{
1848	unsigned long old_rate;
1849	unsigned long parent_rate = 0;
1850	struct clk_core *child;
1851
1852	lockdep_assert_held(&prepare_lock);
1853
1854	old_rate = core->rate;
1855
1856	if (core->parent)
1857		parent_rate = core->parent->rate;
1858
1859	core->rate = clk_recalc(core, parent_rate);
1860	if (update_req)
1861		core->req_rate = core->rate;
1862
1863	/*
1864	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1865	 * & ABORT_RATE_CHANGE notifiers
1866	 */
1867	if (core->notifier_count && msg)
1868		__clk_notify(core, msg, old_rate, core->rate);
1869
1870	hlist_for_each_entry(child, &core->children, child_node)
1871		__clk_recalc_rates(child, update_req, msg);
1872}
1873
1874static unsigned long clk_core_get_rate_recalc(struct clk_core *core)
1875{
 
 
 
 
1876	if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1877		__clk_recalc_rates(core, false, 0);
1878
1879	return clk_core_get_rate_nolock(core);
 
 
 
1880}
1881
1882/**
1883 * clk_get_rate - return the rate of clk
1884 * @clk: the clk whose rate is being returned
1885 *
1886 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1887 * is set, which means a recalc_rate will be issued. Can be called regardless of
1888 * the clock enabledness. If clk is NULL, or if an error occurred, then returns
1889 * 0.
1890 */
1891unsigned long clk_get_rate(struct clk *clk)
1892{
1893	unsigned long rate;
1894
1895	if (!clk)
1896		return 0;
1897
1898	clk_prepare_lock();
1899	rate = clk_core_get_rate_recalc(clk->core);
1900	clk_prepare_unlock();
1901
1902	return rate;
1903}
1904EXPORT_SYMBOL_GPL(clk_get_rate);
1905
1906static int clk_fetch_parent_index(struct clk_core *core,
1907				  struct clk_core *parent)
1908{
1909	int i;
1910
1911	if (!parent)
1912		return -EINVAL;
1913
1914	for (i = 0; i < core->num_parents; i++) {
1915		/* Found it first try! */
1916		if (core->parents[i].core == parent)
1917			return i;
1918
1919		/* Something else is here, so keep looking */
1920		if (core->parents[i].core)
1921			continue;
1922
1923		/* Maybe core hasn't been cached but the hw is all we know? */
1924		if (core->parents[i].hw) {
1925			if (core->parents[i].hw == parent->hw)
1926				break;
1927
1928			/* Didn't match, but we're expecting a clk_hw */
1929			continue;
1930		}
1931
1932		/* Maybe it hasn't been cached (clk_set_parent() path) */
1933		if (parent == clk_core_get(core, i))
1934			break;
1935
1936		/* Fallback to comparing globally unique names */
1937		if (core->parents[i].name &&
1938		    !strcmp(parent->name, core->parents[i].name))
1939			break;
1940	}
1941
1942	if (i == core->num_parents)
1943		return -EINVAL;
1944
1945	core->parents[i].core = parent;
1946	return i;
1947}
1948
1949/**
1950 * clk_hw_get_parent_index - return the index of the parent clock
1951 * @hw: clk_hw associated with the clk being consumed
1952 *
1953 * Fetches and returns the index of parent clock. Returns -EINVAL if the given
1954 * clock does not have a current parent.
1955 */
1956int clk_hw_get_parent_index(struct clk_hw *hw)
1957{
1958	struct clk_hw *parent = clk_hw_get_parent(hw);
1959
1960	if (WARN_ON(parent == NULL))
1961		return -EINVAL;
1962
1963	return clk_fetch_parent_index(hw->core, parent->core);
1964}
1965EXPORT_SYMBOL_GPL(clk_hw_get_parent_index);
1966
1967/*
1968 * Update the orphan status of @core and all its children.
1969 */
1970static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
1971{
1972	struct clk_core *child;
1973
1974	core->orphan = is_orphan;
1975
1976	hlist_for_each_entry(child, &core->children, child_node)
1977		clk_core_update_orphan_status(child, is_orphan);
1978}
1979
1980static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
1981{
1982	bool was_orphan = core->orphan;
1983
1984	hlist_del(&core->child_node);
1985
1986	if (new_parent) {
1987		bool becomes_orphan = new_parent->orphan;
1988
1989		/* avoid duplicate POST_RATE_CHANGE notifications */
1990		if (new_parent->new_child == core)
1991			new_parent->new_child = NULL;
1992
1993		hlist_add_head(&core->child_node, &new_parent->children);
1994
1995		if (was_orphan != becomes_orphan)
1996			clk_core_update_orphan_status(core, becomes_orphan);
1997	} else {
1998		hlist_add_head(&core->child_node, &clk_orphan_list);
1999		if (!was_orphan)
2000			clk_core_update_orphan_status(core, true);
2001	}
2002
2003	core->parent = new_parent;
2004}
2005
2006static struct clk_core *__clk_set_parent_before(struct clk_core *core,
2007					   struct clk_core *parent)
2008{
2009	unsigned long flags;
2010	struct clk_core *old_parent = core->parent;
2011
2012	/*
2013	 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock
2014	 *
2015	 * 2. Migrate prepare state between parents and prevent race with
2016	 * clk_enable().
2017	 *
2018	 * If the clock is not prepared, then a race with
2019	 * clk_enable/disable() is impossible since we already have the
2020	 * prepare lock (future calls to clk_enable() need to be preceded by
2021	 * a clk_prepare()).
2022	 *
2023	 * If the clock is prepared, migrate the prepared state to the new
2024	 * parent and also protect against a race with clk_enable() by
2025	 * forcing the clock and the new parent on.  This ensures that all
2026	 * future calls to clk_enable() are practically NOPs with respect to
2027	 * hardware and software states.
2028	 *
2029	 * See also: Comment for clk_set_parent() below.
2030	 */
2031
2032	/* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */
2033	if (core->flags & CLK_OPS_PARENT_ENABLE) {
2034		clk_core_prepare_enable(old_parent);
2035		clk_core_prepare_enable(parent);
2036	}
2037
2038	/* migrate prepare count if > 0 */
2039	if (core->prepare_count) {
2040		clk_core_prepare_enable(parent);
2041		clk_core_enable_lock(core);
 
 
 
2042	}
2043
2044	/* update the clk tree topology */
2045	flags = clk_enable_lock();
2046	clk_reparent(core, parent);
2047	clk_enable_unlock(flags);
2048
2049	return old_parent;
2050}
2051
2052static void __clk_set_parent_after(struct clk_core *core,
2053				   struct clk_core *parent,
2054				   struct clk_core *old_parent)
2055{
 
 
2056	/*
2057	 * Finish the migration of prepare state and undo the changes done
2058	 * for preventing a race with clk_enable().
2059	 */
2060	if (core->prepare_count) {
2061		clk_core_disable_lock(core);
2062		clk_core_disable_unprepare(old_parent);
2063	}
2064
2065	/* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */
2066	if (core->flags & CLK_OPS_PARENT_ENABLE) {
2067		clk_core_disable_unprepare(parent);
2068		clk_core_disable_unprepare(old_parent);
2069	}
2070}
2071
2072static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
2073			    u8 p_index)
2074{
2075	unsigned long flags;
2076	int ret = 0;
2077	struct clk_core *old_parent;
2078
2079	old_parent = __clk_set_parent_before(core, parent);
2080
2081	trace_clk_set_parent(core, parent);
2082
2083	/* change clock input source */
2084	if (parent && core->ops->set_parent)
2085		ret = core->ops->set_parent(core->hw, p_index);
2086
2087	trace_clk_set_parent_complete(core, parent);
2088
2089	if (ret) {
2090		flags = clk_enable_lock();
2091		clk_reparent(core, old_parent);
2092		clk_enable_unlock(flags);
2093
2094		__clk_set_parent_after(core, old_parent, parent);
2095
2096		return ret;
2097	}
2098
2099	__clk_set_parent_after(core, parent, old_parent);
2100
2101	return 0;
2102}
2103
2104/**
2105 * __clk_speculate_rates
2106 * @core: first clk in the subtree
2107 * @parent_rate: the "future" rate of clk's parent
2108 *
2109 * Walks the subtree of clks starting with clk, speculating rates as it
2110 * goes and firing off PRE_RATE_CHANGE notifications as necessary.
2111 *
2112 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
2113 * pre-rate change notifications and returns early if no clks in the
2114 * subtree have subscribed to the notifications.  Note that if a clk does not
2115 * implement the .recalc_rate callback then it is assumed that the clock will
2116 * take on the rate of its parent.
2117 */
2118static int __clk_speculate_rates(struct clk_core *core,
2119				 unsigned long parent_rate)
2120{
2121	struct clk_core *child;
2122	unsigned long new_rate;
2123	int ret = NOTIFY_DONE;
2124
2125	lockdep_assert_held(&prepare_lock);
2126
2127	new_rate = clk_recalc(core, parent_rate);
2128
2129	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
2130	if (core->notifier_count)
2131		ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
2132
2133	if (ret & NOTIFY_STOP_MASK) {
2134		pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
2135				__func__, core->name, ret);
2136		goto out;
2137	}
2138
2139	hlist_for_each_entry(child, &core->children, child_node) {
2140		ret = __clk_speculate_rates(child, new_rate);
2141		if (ret & NOTIFY_STOP_MASK)
2142			break;
2143	}
2144
2145out:
2146	return ret;
2147}
2148
2149static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
2150			     struct clk_core *new_parent, u8 p_index)
2151{
2152	struct clk_core *child;
2153
2154	core->new_rate = new_rate;
2155	core->new_parent = new_parent;
2156	core->new_parent_index = p_index;
2157	/* include clk in new parent's PRE_RATE_CHANGE notifications */
2158	core->new_child = NULL;
2159	if (new_parent && new_parent != core->parent)
2160		new_parent->new_child = core;
2161
2162	hlist_for_each_entry(child, &core->children, child_node) {
2163		child->new_rate = clk_recalc(child, new_rate);
2164		clk_calc_subtree(child, child->new_rate, NULL, 0);
2165	}
2166}
2167
2168/*
2169 * calculate the new rates returning the topmost clock that has to be
2170 * changed.
2171 */
2172static struct clk_core *clk_calc_new_rates(struct clk_core *core,
2173					   unsigned long rate)
2174{
2175	struct clk_core *top = core;
2176	struct clk_core *old_parent, *parent;
2177	unsigned long best_parent_rate = 0;
2178	unsigned long new_rate;
2179	unsigned long min_rate;
2180	unsigned long max_rate;
2181	int p_index = 0;
2182	long ret;
2183
2184	/* sanity */
2185	if (IS_ERR_OR_NULL(core))
2186		return NULL;
2187
2188	/* save parent rate, if it exists */
2189	parent = old_parent = core->parent;
2190	if (parent)
2191		best_parent_rate = parent->rate;
2192
2193	clk_core_get_boundaries(core, &min_rate, &max_rate);
2194
2195	/* find the closest rate and parent clk/rate */
2196	if (clk_core_can_round(core)) {
2197		struct clk_rate_request req;
2198
2199		clk_core_init_rate_req(core, &req, rate);
2200
2201		trace_clk_rate_request_start(&req);
 
 
 
 
 
 
 
2202
2203		ret = clk_core_determine_round_nolock(core, &req);
2204		if (ret < 0)
2205			return NULL;
2206
2207		trace_clk_rate_request_done(&req);
2208
2209		best_parent_rate = req.best_parent_rate;
2210		new_rate = req.rate;
2211		parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
 
 
 
 
 
2212
 
2213		if (new_rate < min_rate || new_rate > max_rate)
2214			return NULL;
2215	} else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
2216		/* pass-through clock without adjustable parent */
2217		core->new_rate = core->rate;
2218		return NULL;
2219	} else {
2220		/* pass-through clock with adjustable parent */
2221		top = clk_calc_new_rates(parent, rate);
2222		new_rate = parent->new_rate;
2223		goto out;
2224	}
2225
2226	/* some clocks must be gated to change parent */
2227	if (parent != old_parent &&
2228	    (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
2229		pr_debug("%s: %s not gated but wants to reparent\n",
2230			 __func__, core->name);
2231		return NULL;
2232	}
2233
2234	/* try finding the new parent index */
2235	if (parent && core->num_parents > 1) {
2236		p_index = clk_fetch_parent_index(core, parent);
2237		if (p_index < 0) {
2238			pr_debug("%s: clk %s can not be parent of clk %s\n",
2239				 __func__, parent->name, core->name);
2240			return NULL;
2241		}
2242	}
2243
2244	if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
2245	    best_parent_rate != parent->rate)
2246		top = clk_calc_new_rates(parent, best_parent_rate);
2247
2248out:
2249	clk_calc_subtree(core, new_rate, parent, p_index);
2250
2251	return top;
2252}
2253
2254/*
2255 * Notify about rate changes in a subtree. Always walk down the whole tree
2256 * so that in case of an error we can walk down the whole tree again and
2257 * abort the change.
2258 */
2259static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
2260						  unsigned long event)
2261{
2262	struct clk_core *child, *tmp_clk, *fail_clk = NULL;
2263	int ret = NOTIFY_DONE;
2264
2265	if (core->rate == core->new_rate)
2266		return NULL;
2267
2268	if (core->notifier_count) {
2269		ret = __clk_notify(core, event, core->rate, core->new_rate);
2270		if (ret & NOTIFY_STOP_MASK)
2271			fail_clk = core;
2272	}
2273
2274	hlist_for_each_entry(child, &core->children, child_node) {
2275		/* Skip children who will be reparented to another clock */
2276		if (child->new_parent && child->new_parent != core)
2277			continue;
2278		tmp_clk = clk_propagate_rate_change(child, event);
2279		if (tmp_clk)
2280			fail_clk = tmp_clk;
2281	}
2282
2283	/* handle the new child who might not be in core->children yet */
2284	if (core->new_child) {
2285		tmp_clk = clk_propagate_rate_change(core->new_child, event);
2286		if (tmp_clk)
2287			fail_clk = tmp_clk;
2288	}
2289
2290	return fail_clk;
2291}
2292
2293/*
2294 * walk down a subtree and set the new rates notifying the rate
2295 * change on the way
2296 */
2297static void clk_change_rate(struct clk_core *core)
2298{
2299	struct clk_core *child;
2300	struct hlist_node *tmp;
2301	unsigned long old_rate;
2302	unsigned long best_parent_rate = 0;
2303	bool skip_set_rate = false;
2304	struct clk_core *old_parent;
2305	struct clk_core *parent = NULL;
2306
2307	old_rate = core->rate;
2308
2309	if (core->new_parent) {
2310		parent = core->new_parent;
2311		best_parent_rate = core->new_parent->rate;
2312	} else if (core->parent) {
2313		parent = core->parent;
2314		best_parent_rate = core->parent->rate;
2315	}
2316
2317	if (clk_pm_runtime_get(core))
2318		return;
2319
2320	if (core->flags & CLK_SET_RATE_UNGATE) {
 
 
2321		clk_core_prepare(core);
2322		clk_core_enable_lock(core);
 
 
2323	}
2324
2325	if (core->new_parent && core->new_parent != core->parent) {
2326		old_parent = __clk_set_parent_before(core, core->new_parent);
2327		trace_clk_set_parent(core, core->new_parent);
2328
2329		if (core->ops->set_rate_and_parent) {
2330			skip_set_rate = true;
2331			core->ops->set_rate_and_parent(core->hw, core->new_rate,
2332					best_parent_rate,
2333					core->new_parent_index);
2334		} else if (core->ops->set_parent) {
2335			core->ops->set_parent(core->hw, core->new_parent_index);
2336		}
2337
2338		trace_clk_set_parent_complete(core, core->new_parent);
2339		__clk_set_parent_after(core, core->new_parent, old_parent);
2340	}
2341
2342	if (core->flags & CLK_OPS_PARENT_ENABLE)
2343		clk_core_prepare_enable(parent);
2344
2345	trace_clk_set_rate(core, core->new_rate);
2346
2347	if (!skip_set_rate && core->ops->set_rate)
2348		core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
2349
2350	trace_clk_set_rate_complete(core, core->new_rate);
2351
2352	core->rate = clk_recalc(core, best_parent_rate);
2353
2354	if (core->flags & CLK_SET_RATE_UNGATE) {
2355		clk_core_disable_lock(core);
 
 
 
 
2356		clk_core_unprepare(core);
2357	}
2358
2359	if (core->flags & CLK_OPS_PARENT_ENABLE)
2360		clk_core_disable_unprepare(parent);
2361
2362	if (core->notifier_count && old_rate != core->rate)
2363		__clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
2364
2365	if (core->flags & CLK_RECALC_NEW_RATES)
2366		(void)clk_calc_new_rates(core, core->new_rate);
2367
2368	/*
2369	 * Use safe iteration, as change_rate can actually swap parents
2370	 * for certain clock types.
2371	 */
2372	hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
2373		/* Skip children who will be reparented to another clock */
2374		if (child->new_parent && child->new_parent != core)
2375			continue;
2376		clk_change_rate(child);
2377	}
2378
2379	/* handle the new child who might not be in core->children yet */
2380	if (core->new_child)
2381		clk_change_rate(core->new_child);
2382
2383	clk_pm_runtime_put(core);
2384}
2385
2386static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core,
2387						     unsigned long req_rate)
2388{
2389	int ret, cnt;
2390	struct clk_rate_request req;
2391
2392	lockdep_assert_held(&prepare_lock);
2393
2394	if (!core)
2395		return 0;
2396
2397	/* simulate what the rate would be if it could be freely set */
2398	cnt = clk_core_rate_nuke_protect(core);
2399	if (cnt < 0)
2400		return cnt;
2401
2402	clk_core_init_rate_req(core, &req, req_rate);
2403
2404	trace_clk_rate_request_start(&req);
2405
2406	ret = clk_core_round_rate_nolock(core, &req);
2407
2408	trace_clk_rate_request_done(&req);
2409
2410	/* restore the protection */
2411	clk_core_rate_restore_protect(core, cnt);
2412
2413	return ret ? 0 : req.rate;
2414}
2415
2416static int clk_core_set_rate_nolock(struct clk_core *core,
2417				    unsigned long req_rate)
2418{
2419	struct clk_core *top, *fail_clk;
2420	unsigned long rate;
2421	int ret;
2422
2423	if (!core)
2424		return 0;
2425
2426	rate = clk_core_req_round_rate_nolock(core, req_rate);
2427
2428	/* bail early if nothing to do */
2429	if (rate == clk_core_get_rate_nolock(core))
2430		return 0;
2431
2432	/* fail on a direct rate set of a protected provider */
2433	if (clk_core_rate_is_protected(core))
2434		return -EBUSY;
2435
2436	/* calculate new rates and get the topmost changed clock */
2437	top = clk_calc_new_rates(core, req_rate);
2438	if (!top)
2439		return -EINVAL;
2440
2441	ret = clk_pm_runtime_get(core);
2442	if (ret)
2443		return ret;
2444
2445	/* notify that we are about to change rates */
2446	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
2447	if (fail_clk) {
2448		pr_debug("%s: failed to set %s rate\n", __func__,
2449				fail_clk->name);
2450		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
2451		ret = -EBUSY;
2452		goto err;
2453	}
2454
2455	/* change the rates */
2456	clk_change_rate(top);
2457
2458	core->req_rate = req_rate;
2459err:
2460	clk_pm_runtime_put(core);
2461
2462	return ret;
2463}
2464
2465/**
2466 * clk_set_rate - specify a new rate for clk
2467 * @clk: the clk whose rate is being changed
2468 * @rate: the new rate for clk
2469 *
2470 * In the simplest case clk_set_rate will only adjust the rate of clk.
2471 *
2472 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
2473 * propagate up to clk's parent; whether or not this happens depends on the
2474 * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
2475 * after calling .round_rate then upstream parent propagation is ignored.  If
2476 * *parent_rate comes back with a new rate for clk's parent then we propagate
2477 * up to clk's parent and set its rate.  Upward propagation will continue
2478 * until either a clk does not support the CLK_SET_RATE_PARENT flag or
2479 * .round_rate stops requesting changes to clk's parent_rate.
2480 *
2481 * Rate changes are accomplished via tree traversal that also recalculates the
2482 * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
2483 *
2484 * Returns 0 on success, -EERROR otherwise.
2485 */
2486int clk_set_rate(struct clk *clk, unsigned long rate)
2487{
2488	int ret;
2489
2490	if (!clk)
2491		return 0;
2492
2493	/* prevent racing with updates to the clock topology */
2494	clk_prepare_lock();
2495
2496	if (clk->exclusive_count)
2497		clk_core_rate_unprotect(clk->core);
2498
2499	ret = clk_core_set_rate_nolock(clk->core, rate);
2500
2501	if (clk->exclusive_count)
2502		clk_core_rate_protect(clk->core);
2503
2504	clk_prepare_unlock();
2505
2506	return ret;
2507}
2508EXPORT_SYMBOL_GPL(clk_set_rate);
2509
2510/**
2511 * clk_set_rate_exclusive - specify a new rate and get exclusive control
2512 * @clk: the clk whose rate is being changed
2513 * @rate: the new rate for clk
2514 *
2515 * This is a combination of clk_set_rate() and clk_rate_exclusive_get()
2516 * within a critical section
2517 *
2518 * This can be used initially to ensure that at least 1 consumer is
2519 * satisfied when several consumers are competing for exclusivity over the
2520 * same clock provider.
2521 *
2522 * The exclusivity is not applied if setting the rate failed.
2523 *
2524 * Calls to clk_rate_exclusive_get() should be balanced with calls to
2525 * clk_rate_exclusive_put().
2526 *
2527 * Returns 0 on success, -EERROR otherwise.
2528 */
2529int clk_set_rate_exclusive(struct clk *clk, unsigned long rate)
2530{
2531	int ret;
2532
2533	if (!clk)
2534		return 0;
2535
2536	/* prevent racing with updates to the clock topology */
2537	clk_prepare_lock();
2538
2539	/*
2540	 * The temporary protection removal is not here, on purpose
2541	 * This function is meant to be used instead of clk_rate_protect,
2542	 * so before the consumer code path protect the clock provider
2543	 */
2544
2545	ret = clk_core_set_rate_nolock(clk->core, rate);
2546	if (!ret) {
2547		clk_core_rate_protect(clk->core);
2548		clk->exclusive_count++;
2549	}
2550
2551	clk_prepare_unlock();
2552
2553	return ret;
2554}
2555EXPORT_SYMBOL_GPL(clk_set_rate_exclusive);
2556
2557static int clk_set_rate_range_nolock(struct clk *clk,
2558				     unsigned long min,
2559				     unsigned long max)
2560{
2561	int ret = 0;
2562	unsigned long old_min, old_max, rate;
2563
2564	lockdep_assert_held(&prepare_lock);
2565
2566	if (!clk)
2567		return 0;
2568
2569	trace_clk_set_rate_range(clk->core, min, max);
2570
2571	if (min > max) {
2572		pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
2573		       __func__, clk->core->name, clk->dev_id, clk->con_id,
2574		       min, max);
2575		return -EINVAL;
2576	}
2577
2578	if (clk->exclusive_count)
2579		clk_core_rate_unprotect(clk->core);
2580
2581	/* Save the current values in case we need to rollback the change */
2582	old_min = clk->min_rate;
2583	old_max = clk->max_rate;
2584	clk->min_rate = min;
2585	clk->max_rate = max;
2586
2587	if (!clk_core_check_boundaries(clk->core, min, max)) {
2588		ret = -EINVAL;
2589		goto out;
2590	}
2591
2592	rate = clk->core->req_rate;
2593	if (clk->core->flags & CLK_GET_RATE_NOCACHE)
2594		rate = clk_core_get_rate_recalc(clk->core);
2595
2596	/*
2597	 * Since the boundaries have been changed, let's give the
2598	 * opportunity to the provider to adjust the clock rate based on
2599	 * the new boundaries.
2600	 *
2601	 * We also need to handle the case where the clock is currently
2602	 * outside of the boundaries. Clamping the last requested rate
2603	 * to the current minimum and maximum will also handle this.
2604	 *
2605	 * FIXME:
2606	 * There is a catch. It may fail for the usual reason (clock
2607	 * broken, clock protected, etc) but also because:
2608	 * - round_rate() was not favorable and fell on the wrong
2609	 *   side of the boundary
2610	 * - the determine_rate() callback does not really check for
2611	 *   this corner case when determining the rate
2612	 */
2613	rate = clamp(rate, min, max);
2614	ret = clk_core_set_rate_nolock(clk->core, rate);
2615	if (ret) {
2616		/* rollback the changes */
2617		clk->min_rate = old_min;
2618		clk->max_rate = old_max;
2619	}
2620
2621out:
2622	if (clk->exclusive_count)
2623		clk_core_rate_protect(clk->core);
2624
2625	return ret;
2626}
2627
2628/**
2629 * clk_set_rate_range - set a rate range for a clock source
2630 * @clk: clock source
2631 * @min: desired minimum clock rate in Hz, inclusive
2632 * @max: desired maximum clock rate in Hz, inclusive
2633 *
2634 * Return: 0 for success or negative errno on failure.
2635 */
2636int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
2637{
2638	int ret;
2639
2640	if (!clk)
2641		return 0;
2642
2643	clk_prepare_lock();
2644
2645	ret = clk_set_rate_range_nolock(clk, min, max);
 
 
 
 
2646
2647	clk_prepare_unlock();
2648
2649	return ret;
2650}
2651EXPORT_SYMBOL_GPL(clk_set_rate_range);
2652
2653/**
2654 * clk_set_min_rate - set a minimum clock rate for a clock source
2655 * @clk: clock source
2656 * @rate: desired minimum clock rate in Hz, inclusive
2657 *
2658 * Returns success (0) or negative errno.
2659 */
2660int clk_set_min_rate(struct clk *clk, unsigned long rate)
2661{
2662	if (!clk)
2663		return 0;
2664
2665	trace_clk_set_min_rate(clk->core, rate);
2666
2667	return clk_set_rate_range(clk, rate, clk->max_rate);
2668}
2669EXPORT_SYMBOL_GPL(clk_set_min_rate);
2670
2671/**
2672 * clk_set_max_rate - set a maximum clock rate for a clock source
2673 * @clk: clock source
2674 * @rate: desired maximum clock rate in Hz, inclusive
2675 *
2676 * Returns success (0) or negative errno.
2677 */
2678int clk_set_max_rate(struct clk *clk, unsigned long rate)
2679{
2680	if (!clk)
2681		return 0;
2682
2683	trace_clk_set_max_rate(clk->core, rate);
2684
2685	return clk_set_rate_range(clk, clk->min_rate, rate);
2686}
2687EXPORT_SYMBOL_GPL(clk_set_max_rate);
2688
2689/**
2690 * clk_get_parent - return the parent of a clk
2691 * @clk: the clk whose parent gets returned
2692 *
2693 * Simply returns clk->parent.  Returns NULL if clk is NULL.
2694 */
2695struct clk *clk_get_parent(struct clk *clk)
2696{
2697	struct clk *parent;
2698
2699	if (!clk)
2700		return NULL;
2701
2702	clk_prepare_lock();
2703	/* TODO: Create a per-user clk and change callers to call clk_put */
2704	parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
2705	clk_prepare_unlock();
2706
2707	return parent;
2708}
2709EXPORT_SYMBOL_GPL(clk_get_parent);
2710
2711static struct clk_core *__clk_init_parent(struct clk_core *core)
2712{
2713	u8 index = 0;
2714
2715	if (core->num_parents > 1 && core->ops->get_parent)
2716		index = core->ops->get_parent(core->hw);
2717
2718	return clk_core_get_parent_by_index(core, index);
2719}
2720
2721static void clk_core_reparent(struct clk_core *core,
2722				  struct clk_core *new_parent)
2723{
2724	clk_reparent(core, new_parent);
2725	__clk_recalc_accuracies(core);
2726	__clk_recalc_rates(core, true, POST_RATE_CHANGE);
2727}
2728
2729void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
2730{
2731	if (!hw)
2732		return;
2733
2734	clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
2735}
2736
2737/**
2738 * clk_has_parent - check if a clock is a possible parent for another
2739 * @clk: clock source
2740 * @parent: parent clock source
2741 *
2742 * This function can be used in drivers that need to check that a clock can be
2743 * the parent of another without actually changing the parent.
2744 *
2745 * Returns true if @parent is a possible parent for @clk, false otherwise.
2746 */
2747bool clk_has_parent(const struct clk *clk, const struct clk *parent)
2748{
 
 
 
2749	/* NULL clocks should be nops, so return success if either is NULL. */
2750	if (!clk || !parent)
2751		return true;
2752
2753	return clk_core_has_parent(clk->core, parent->core);
 
 
 
 
 
 
 
 
 
 
 
2754}
2755EXPORT_SYMBOL_GPL(clk_has_parent);
2756
2757static int clk_core_set_parent_nolock(struct clk_core *core,
2758				      struct clk_core *parent)
2759{
2760	int ret = 0;
2761	int p_index = 0;
2762	unsigned long p_rate = 0;
2763
2764	lockdep_assert_held(&prepare_lock);
2765
2766	if (!core)
2767		return 0;
2768
 
 
 
2769	if (core->parent == parent)
2770		return 0;
2771
2772	/* verify ops for multi-parent clks */
2773	if (core->num_parents > 1 && !core->ops->set_parent)
2774		return -EPERM;
 
 
2775
2776	/* check that we are allowed to re-parent if the clock is in use */
2777	if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count)
2778		return -EBUSY;
2779
2780	if (clk_core_rate_is_protected(core))
2781		return -EBUSY;
2782
2783	/* try finding the new parent index */
2784	if (parent) {
2785		p_index = clk_fetch_parent_index(core, parent);
2786		if (p_index < 0) {
2787			pr_debug("%s: clk %s can not be parent of clk %s\n",
2788					__func__, parent->name, core->name);
2789			return p_index;
 
2790		}
2791		p_rate = parent->rate;
2792	}
2793
2794	ret = clk_pm_runtime_get(core);
2795	if (ret)
2796		return ret;
2797
2798	/* propagate PRE_RATE_CHANGE notifications */
2799	ret = __clk_speculate_rates(core, p_rate);
2800
2801	/* abort if a driver objects */
2802	if (ret & NOTIFY_STOP_MASK)
2803		goto runtime_put;
2804
2805	/* do the re-parent */
2806	ret = __clk_set_parent(core, parent, p_index);
2807
2808	/* propagate rate an accuracy recalculation accordingly */
2809	if (ret) {
2810		__clk_recalc_rates(core, true, ABORT_RATE_CHANGE);
2811	} else {
2812		__clk_recalc_rates(core, true, POST_RATE_CHANGE);
2813		__clk_recalc_accuracies(core);
2814	}
2815
2816runtime_put:
2817	clk_pm_runtime_put(core);
2818
2819	return ret;
2820}
2821
2822int clk_hw_set_parent(struct clk_hw *hw, struct clk_hw *parent)
2823{
2824	return clk_core_set_parent_nolock(hw->core, parent->core);
2825}
2826EXPORT_SYMBOL_GPL(clk_hw_set_parent);
2827
2828/**
2829 * clk_set_parent - switch the parent of a mux clk
2830 * @clk: the mux clk whose input we are switching
2831 * @parent: the new input to clk
2832 *
2833 * Re-parent clk to use parent as its new input source.  If clk is in
2834 * prepared state, the clk will get enabled for the duration of this call. If
2835 * that's not acceptable for a specific clk (Eg: the consumer can't handle
2836 * that, the reparenting is glitchy in hardware, etc), use the
2837 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
2838 *
2839 * After successfully changing clk's parent clk_set_parent will update the
2840 * clk topology, sysfs topology and propagate rate recalculation via
2841 * __clk_recalc_rates.
2842 *
2843 * Returns 0 on success, -EERROR otherwise.
2844 */
2845int clk_set_parent(struct clk *clk, struct clk *parent)
2846{
2847	int ret;
2848
2849	if (!clk)
2850		return 0;
2851
2852	clk_prepare_lock();
2853
2854	if (clk->exclusive_count)
2855		clk_core_rate_unprotect(clk->core);
2856
2857	ret = clk_core_set_parent_nolock(clk->core,
2858					 parent ? parent->core : NULL);
2859
2860	if (clk->exclusive_count)
2861		clk_core_rate_protect(clk->core);
2862
2863	clk_prepare_unlock();
2864
2865	return ret;
2866}
2867EXPORT_SYMBOL_GPL(clk_set_parent);
2868
2869static int clk_core_set_phase_nolock(struct clk_core *core, int degrees)
2870{
2871	int ret = -EINVAL;
2872
2873	lockdep_assert_held(&prepare_lock);
2874
2875	if (!core)
2876		return 0;
2877
2878	if (clk_core_rate_is_protected(core))
2879		return -EBUSY;
2880
2881	trace_clk_set_phase(core, degrees);
2882
2883	if (core->ops->set_phase) {
2884		ret = core->ops->set_phase(core->hw, degrees);
2885		if (!ret)
2886			core->phase = degrees;
2887	}
2888
2889	trace_clk_set_phase_complete(core, degrees);
2890
2891	return ret;
2892}
2893
2894/**
2895 * clk_set_phase - adjust the phase shift of a clock signal
2896 * @clk: clock signal source
2897 * @degrees: number of degrees the signal is shifted
2898 *
2899 * Shifts the phase of a clock signal by the specified
2900 * degrees. Returns 0 on success, -EERROR otherwise.
2901 *
2902 * This function makes no distinction about the input or reference
2903 * signal that we adjust the clock signal phase against. For example
2904 * phase locked-loop clock signal generators we may shift phase with
2905 * respect to feedback clock signal input, but for other cases the
2906 * clock phase may be shifted with respect to some other, unspecified
2907 * signal.
2908 *
2909 * Additionally the concept of phase shift does not propagate through
2910 * the clock tree hierarchy, which sets it apart from clock rates and
2911 * clock accuracy. A parent clock phase attribute does not have an
2912 * impact on the phase attribute of a child clock.
2913 */
2914int clk_set_phase(struct clk *clk, int degrees)
2915{
2916	int ret;
2917
2918	if (!clk)
2919		return 0;
2920
2921	/* sanity check degrees */
2922	degrees %= 360;
2923	if (degrees < 0)
2924		degrees += 360;
2925
2926	clk_prepare_lock();
2927
2928	if (clk->exclusive_count)
2929		clk_core_rate_unprotect(clk->core);
 
 
 
2930
2931	ret = clk_core_set_phase_nolock(clk->core, degrees);
 
2932
2933	if (clk->exclusive_count)
2934		clk_core_rate_protect(clk->core);
 
 
2935
 
2936	clk_prepare_unlock();
2937
2938	return ret;
2939}
2940EXPORT_SYMBOL_GPL(clk_set_phase);
2941
2942static int clk_core_get_phase(struct clk_core *core)
2943{
2944	int ret;
2945
2946	lockdep_assert_held(&prepare_lock);
2947	if (!core->ops->get_phase)
2948		return 0;
2949
2950	/* Always try to update cached phase if possible */
2951	ret = core->ops->get_phase(core->hw);
2952	if (ret >= 0)
2953		core->phase = ret;
2954
2955	return ret;
2956}
2957
2958/**
2959 * clk_get_phase - return the phase shift of a clock signal
2960 * @clk: clock signal source
2961 *
2962 * Returns the phase shift of a clock node in degrees, otherwise returns
2963 * -EERROR.
2964 */
2965int clk_get_phase(struct clk *clk)
2966{
2967	int ret;
2968
2969	if (!clk)
2970		return 0;
2971
2972	clk_prepare_lock();
2973	ret = clk_core_get_phase(clk->core);
2974	clk_prepare_unlock();
2975
2976	return ret;
2977}
2978EXPORT_SYMBOL_GPL(clk_get_phase);
2979
2980static void clk_core_reset_duty_cycle_nolock(struct clk_core *core)
2981{
2982	/* Assume a default value of 50% */
2983	core->duty.num = 1;
2984	core->duty.den = 2;
2985}
2986
2987static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core);
2988
2989static int clk_core_update_duty_cycle_nolock(struct clk_core *core)
2990{
2991	struct clk_duty *duty = &core->duty;
2992	int ret = 0;
2993
2994	if (!core->ops->get_duty_cycle)
2995		return clk_core_update_duty_cycle_parent_nolock(core);
2996
2997	ret = core->ops->get_duty_cycle(core->hw, duty);
2998	if (ret)
2999		goto reset;
3000
3001	/* Don't trust the clock provider too much */
3002	if (duty->den == 0 || duty->num > duty->den) {
3003		ret = -EINVAL;
3004		goto reset;
3005	}
3006
3007	return 0;
3008
3009reset:
3010	clk_core_reset_duty_cycle_nolock(core);
3011	return ret;
3012}
3013
3014static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core)
3015{
3016	int ret = 0;
3017
3018	if (core->parent &&
3019	    core->flags & CLK_DUTY_CYCLE_PARENT) {
3020		ret = clk_core_update_duty_cycle_nolock(core->parent);
3021		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
3022	} else {
3023		clk_core_reset_duty_cycle_nolock(core);
3024	}
3025
3026	return ret;
3027}
3028
3029static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
3030						 struct clk_duty *duty);
3031
3032static int clk_core_set_duty_cycle_nolock(struct clk_core *core,
3033					  struct clk_duty *duty)
3034{
3035	int ret;
3036
3037	lockdep_assert_held(&prepare_lock);
3038
3039	if (clk_core_rate_is_protected(core))
3040		return -EBUSY;
3041
3042	trace_clk_set_duty_cycle(core, duty);
3043
3044	if (!core->ops->set_duty_cycle)
3045		return clk_core_set_duty_cycle_parent_nolock(core, duty);
3046
3047	ret = core->ops->set_duty_cycle(core->hw, duty);
3048	if (!ret)
3049		memcpy(&core->duty, duty, sizeof(*duty));
3050
3051	trace_clk_set_duty_cycle_complete(core, duty);
3052
3053	return ret;
3054}
3055
3056static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
3057						 struct clk_duty *duty)
3058{
3059	int ret = 0;
3060
3061	if (core->parent &&
3062	    core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) {
3063		ret = clk_core_set_duty_cycle_nolock(core->parent, duty);
3064		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
3065	}
3066
3067	return ret;
3068}
3069
3070/**
3071 * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal
3072 * @clk: clock signal source
3073 * @num: numerator of the duty cycle ratio to be applied
3074 * @den: denominator of the duty cycle ratio to be applied
3075 *
3076 * Apply the duty cycle ratio if the ratio is valid and the clock can
3077 * perform this operation
3078 *
3079 * Returns (0) on success, a negative errno otherwise.
3080 */
3081int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den)
3082{
3083	int ret;
3084	struct clk_duty duty;
3085
3086	if (!clk)
3087		return 0;
3088
3089	/* sanity check the ratio */
3090	if (den == 0 || num > den)
3091		return -EINVAL;
3092
3093	duty.num = num;
3094	duty.den = den;
3095
3096	clk_prepare_lock();
3097
3098	if (clk->exclusive_count)
3099		clk_core_rate_unprotect(clk->core);
3100
3101	ret = clk_core_set_duty_cycle_nolock(clk->core, &duty);
3102
3103	if (clk->exclusive_count)
3104		clk_core_rate_protect(clk->core);
3105
3106	clk_prepare_unlock();
3107
3108	return ret;
3109}
3110EXPORT_SYMBOL_GPL(clk_set_duty_cycle);
3111
3112static int clk_core_get_scaled_duty_cycle(struct clk_core *core,
3113					  unsigned int scale)
3114{
3115	struct clk_duty *duty = &core->duty;
3116	int ret;
3117
3118	clk_prepare_lock();
3119
3120	ret = clk_core_update_duty_cycle_nolock(core);
3121	if (!ret)
3122		ret = mult_frac(scale, duty->num, duty->den);
3123
3124	clk_prepare_unlock();
3125
3126	return ret;
3127}
3128
3129/**
3130 * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal
3131 * @clk: clock signal source
3132 * @scale: scaling factor to be applied to represent the ratio as an integer
3133 *
3134 * Returns the duty cycle ratio of a clock node multiplied by the provided
3135 * scaling factor, or negative errno on error.
3136 */
3137int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale)
3138{
3139	if (!clk)
3140		return 0;
3141
3142	return clk_core_get_scaled_duty_cycle(clk->core, scale);
3143}
3144EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle);
3145
3146/**
3147 * clk_is_match - check if two clk's point to the same hardware clock
3148 * @p: clk compared against q
3149 * @q: clk compared against p
3150 *
3151 * Returns true if the two struct clk pointers both point to the same hardware
3152 * clock node. Put differently, returns true if struct clk *p and struct clk *q
3153 * share the same struct clk_core object.
3154 *
3155 * Returns false otherwise. Note that two NULL clks are treated as matching.
3156 */
3157bool clk_is_match(const struct clk *p, const struct clk *q)
3158{
3159	/* trivial case: identical struct clk's or both NULL */
3160	if (p == q)
3161		return true;
3162
3163	/* true if clk->core pointers match. Avoid dereferencing garbage */
3164	if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
3165		if (p->core == q->core)
3166			return true;
3167
3168	return false;
3169}
3170EXPORT_SYMBOL_GPL(clk_is_match);
3171
3172/***        debugfs support        ***/
3173
3174#ifdef CONFIG_DEBUG_FS
3175#include <linux/debugfs.h>
3176
3177static struct dentry *rootdir;
3178static int inited = 0;
3179static DEFINE_MUTEX(clk_debug_lock);
3180static HLIST_HEAD(clk_debug_list);
3181
 
 
 
 
 
 
3182static struct hlist_head *orphan_list[] = {
3183	&clk_orphan_list,
3184	NULL,
3185};
3186
3187static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
3188				 int level)
3189{
3190	int phase;
3191	struct clk *clk_user;
3192	int multi_node = 0;
3193
3194	seq_printf(s, "%*s%-*s %-7d %-8d %-8d %-11lu %-10lu ",
3195		   level * 3 + 1, "",
3196		   35 - level * 3, c->name,
3197		   c->enable_count, c->prepare_count, c->protect_count,
3198		   clk_core_get_rate_recalc(c),
3199		   clk_core_get_accuracy_recalc(c));
3200
3201	phase = clk_core_get_phase(c);
3202	if (phase >= 0)
3203		seq_printf(s, "%-5d", phase);
3204	else
3205		seq_puts(s, "-----");
3206
3207	seq_printf(s, " %-6d", clk_core_get_scaled_duty_cycle(c, 100000));
3208
3209	if (c->ops->is_enabled)
3210		seq_printf(s, " %5c ", clk_core_is_enabled(c) ? 'Y' : 'N');
3211	else if (!c->ops->enable)
3212		seq_printf(s, " %5c ", 'Y');
3213	else
3214		seq_printf(s, " %5c ", '?');
3215
3216	hlist_for_each_entry(clk_user, &c->clks, clks_node) {
3217		seq_printf(s, "%*s%-*s  %-25s\n",
3218			   level * 3 + 2 + 105 * multi_node, "",
3219			   30,
3220			   clk_user->dev_id ? clk_user->dev_id : "deviceless",
3221			   clk_user->con_id ? clk_user->con_id : "no_connection_id");
3222
3223		multi_node = 1;
3224	}
3225
3226}
3227
3228static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
3229				     int level)
3230{
3231	struct clk_core *child;
3232
3233	clk_pm_runtime_get(c);
 
 
3234	clk_summary_show_one(s, c, level);
3235	clk_pm_runtime_put(c);
3236
3237	hlist_for_each_entry(child, &c->children, child_node)
3238		clk_summary_show_subtree(s, child, level + 1);
3239}
3240
3241static int clk_summary_show(struct seq_file *s, void *data)
3242{
3243	struct clk_core *c;
3244	struct hlist_head **lists = s->private;
3245
3246	seq_puts(s, "                                 enable  prepare  protect                                duty  hardware                            connection\n");
3247	seq_puts(s, "   clock                          count    count    count        rate   accuracy phase  cycle    enable   consumer                         id\n");
3248	seq_puts(s, "---------------------------------------------------------------------------------------------------------------------------------------------\n");
3249
 
 
3250
3251	clk_prepare_lock();
3252
3253	for (; *lists; lists++)
3254		hlist_for_each_entry(c, *lists, child_node)
3255			clk_summary_show_subtree(s, c, 0);
3256
3257	clk_prepare_unlock();
3258
3259	return 0;
3260}
3261DEFINE_SHOW_ATTRIBUTE(clk_summary);
3262
3263static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
 
3264{
3265	int phase;
3266	unsigned long min_rate, max_rate;
3267
3268	clk_core_get_boundaries(c, &min_rate, &max_rate);
 
 
 
 
 
 
 
 
 
 
3269
3270	/* This should be JSON format, i.e. elements separated with a comma */
3271	seq_printf(s, "\"%s\": { ", c->name);
3272	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
3273	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
3274	seq_printf(s, "\"protect_count\": %d,", c->protect_count);
3275	seq_printf(s, "\"rate\": %lu,", clk_core_get_rate_recalc(c));
3276	seq_printf(s, "\"min_rate\": %lu,", min_rate);
3277	seq_printf(s, "\"max_rate\": %lu,", max_rate);
3278	seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy_recalc(c));
3279	phase = clk_core_get_phase(c);
3280	if (phase >= 0)
3281		seq_printf(s, "\"phase\": %d,", phase);
3282	seq_printf(s, "\"duty_cycle\": %u",
3283		   clk_core_get_scaled_duty_cycle(c, 100000));
3284}
3285
3286static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
3287{
3288	struct clk_core *child;
3289
 
 
 
3290	clk_dump_one(s, c, level);
3291
3292	hlist_for_each_entry(child, &c->children, child_node) {
3293		seq_putc(s, ',');
3294		clk_dump_subtree(s, child, level + 1);
3295	}
3296
3297	seq_putc(s, '}');
3298}
3299
3300static int clk_dump_show(struct seq_file *s, void *data)
3301{
3302	struct clk_core *c;
3303	bool first_node = true;
3304	struct hlist_head **lists = s->private;
 
 
3305
3306	seq_putc(s, '{');
3307	clk_prepare_lock();
3308
3309	for (; *lists; lists++) {
3310		hlist_for_each_entry(c, *lists, child_node) {
3311			if (!first_node)
3312				seq_putc(s, ',');
3313			first_node = false;
3314			clk_dump_subtree(s, c, 0);
3315		}
3316	}
3317
3318	clk_prepare_unlock();
3319
3320	seq_puts(s, "}\n");
3321	return 0;
3322}
3323DEFINE_SHOW_ATTRIBUTE(clk_dump);
3324
3325#undef CLOCK_ALLOW_WRITE_DEBUGFS
3326#ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3327/*
3328 * This can be dangerous, therefore don't provide any real compile time
3329 * configuration option for this feature.
3330 * People who want to use this will need to modify the source code directly.
3331 */
3332static int clk_rate_set(void *data, u64 val)
3333{
3334	struct clk_core *core = data;
3335	int ret;
3336
3337	clk_prepare_lock();
3338	ret = clk_core_set_rate_nolock(core, val);
3339	clk_prepare_unlock();
3340
3341	return ret;
3342}
3343
3344#define clk_rate_mode	0644
3345
3346static int clk_phase_set(void *data, u64 val)
3347{
3348	struct clk_core *core = data;
3349	int degrees = do_div(val, 360);
3350	int ret;
3351
3352	clk_prepare_lock();
3353	ret = clk_core_set_phase_nolock(core, degrees);
3354	clk_prepare_unlock();
3355
3356	return ret;
3357}
3358
3359#define clk_phase_mode	0644
3360
3361static int clk_prepare_enable_set(void *data, u64 val)
3362{
3363	struct clk_core *core = data;
3364	int ret = 0;
3365
3366	if (val)
3367		ret = clk_prepare_enable(core->hw->clk);
3368	else
3369		clk_disable_unprepare(core->hw->clk);
3370
3371	return ret;
3372}
3373
3374static int clk_prepare_enable_get(void *data, u64 *val)
3375{
3376	struct clk_core *core = data;
3377
3378	*val = core->enable_count && core->prepare_count;
3379	return 0;
3380}
3381
3382DEFINE_DEBUGFS_ATTRIBUTE(clk_prepare_enable_fops, clk_prepare_enable_get,
3383			 clk_prepare_enable_set, "%llu\n");
3384
3385#else
3386#define clk_rate_set	NULL
3387#define clk_rate_mode	0444
3388
3389#define clk_phase_set	NULL
3390#define clk_phase_mode	0644
3391#endif
3392
3393static int clk_rate_get(void *data, u64 *val)
3394{
3395	struct clk_core *core = data;
3396
3397	clk_prepare_lock();
3398	*val = clk_core_get_rate_recalc(core);
3399	clk_prepare_unlock();
3400
3401	return 0;
3402}
3403
3404DEFINE_DEBUGFS_ATTRIBUTE(clk_rate_fops, clk_rate_get, clk_rate_set, "%llu\n");
3405
3406static int clk_phase_get(void *data, u64 *val)
3407{
3408	struct clk_core *core = data;
3409
3410	*val = core->phase;
3411	return 0;
3412}
3413
3414DEFINE_DEBUGFS_ATTRIBUTE(clk_phase_fops, clk_phase_get, clk_phase_set, "%llu\n");
3415
3416static const struct {
3417	unsigned long flag;
3418	const char *name;
3419} clk_flags[] = {
3420#define ENTRY(f) { f, #f }
3421	ENTRY(CLK_SET_RATE_GATE),
3422	ENTRY(CLK_SET_PARENT_GATE),
3423	ENTRY(CLK_SET_RATE_PARENT),
3424	ENTRY(CLK_IGNORE_UNUSED),
3425	ENTRY(CLK_GET_RATE_NOCACHE),
3426	ENTRY(CLK_SET_RATE_NO_REPARENT),
3427	ENTRY(CLK_GET_ACCURACY_NOCACHE),
3428	ENTRY(CLK_RECALC_NEW_RATES),
3429	ENTRY(CLK_SET_RATE_UNGATE),
3430	ENTRY(CLK_IS_CRITICAL),
3431	ENTRY(CLK_OPS_PARENT_ENABLE),
3432	ENTRY(CLK_DUTY_CYCLE_PARENT),
3433#undef ENTRY
3434};
3435
3436static int clk_flags_show(struct seq_file *s, void *data)
3437{
3438	struct clk_core *core = s->private;
3439	unsigned long flags = core->flags;
3440	unsigned int i;
3441
3442	for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) {
3443		if (flags & clk_flags[i].flag) {
3444			seq_printf(s, "%s\n", clk_flags[i].name);
3445			flags &= ~clk_flags[i].flag;
3446		}
3447	}
3448	if (flags) {
3449		/* Unknown flags */
3450		seq_printf(s, "0x%lx\n", flags);
3451	}
3452
3453	return 0;
3454}
3455DEFINE_SHOW_ATTRIBUTE(clk_flags);
3456
3457static void possible_parent_show(struct seq_file *s, struct clk_core *core,
3458				 unsigned int i, char terminator)
3459{
3460	struct clk_core *parent;
3461	const char *name = NULL;
3462
3463	/*
3464	 * Go through the following options to fetch a parent's name.
3465	 *
3466	 * 1. Fetch the registered parent clock and use its name
3467	 * 2. Use the global (fallback) name if specified
3468	 * 3. Use the local fw_name if provided
3469	 * 4. Fetch parent clock's clock-output-name if DT index was set
3470	 *
3471	 * This may still fail in some cases, such as when the parent is
3472	 * specified directly via a struct clk_hw pointer, but it isn't
3473	 * registered (yet).
3474	 */
3475	parent = clk_core_get_parent_by_index(core, i);
3476	if (parent) {
3477		seq_puts(s, parent->name);
3478	} else if (core->parents[i].name) {
3479		seq_puts(s, core->parents[i].name);
3480	} else if (core->parents[i].fw_name) {
3481		seq_printf(s, "<%s>(fw)", core->parents[i].fw_name);
3482	} else {
3483		if (core->parents[i].index >= 0)
3484			name = of_clk_get_parent_name(core->of_node, core->parents[i].index);
3485		if (!name)
3486			name = "(missing)";
3487
3488		seq_puts(s, name);
3489	}
3490
3491	seq_putc(s, terminator);
3492}
3493
3494static int possible_parents_show(struct seq_file *s, void *data)
3495{
3496	struct clk_core *core = s->private;
3497	int i;
3498
3499	for (i = 0; i < core->num_parents - 1; i++)
3500		possible_parent_show(s, core, i, ' ');
3501
3502	possible_parent_show(s, core, i, '\n');
3503
3504	return 0;
3505}
3506DEFINE_SHOW_ATTRIBUTE(possible_parents);
3507
3508static int current_parent_show(struct seq_file *s, void *data)
3509{
3510	struct clk_core *core = s->private;
3511
3512	if (core->parent)
3513		seq_printf(s, "%s\n", core->parent->name);
3514
3515	return 0;
3516}
3517DEFINE_SHOW_ATTRIBUTE(current_parent);
3518
3519#ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3520static ssize_t current_parent_write(struct file *file, const char __user *ubuf,
3521				    size_t count, loff_t *ppos)
3522{
3523	struct seq_file *s = file->private_data;
3524	struct clk_core *core = s->private;
3525	struct clk_core *parent;
3526	u8 idx;
3527	int err;
3528
3529	err = kstrtou8_from_user(ubuf, count, 0, &idx);
3530	if (err < 0)
3531		return err;
3532
3533	parent = clk_core_get_parent_by_index(core, idx);
3534	if (!parent)
3535		return -ENOENT;
3536
3537	clk_prepare_lock();
3538	err = clk_core_set_parent_nolock(core, parent);
3539	clk_prepare_unlock();
3540	if (err)
3541		return err;
3542
3543	return count;
3544}
3545
3546static const struct file_operations current_parent_rw_fops = {
3547	.open		= current_parent_open,
3548	.write		= current_parent_write,
3549	.read		= seq_read,
3550	.llseek		= seq_lseek,
3551	.release	= single_release,
3552};
3553#endif
3554
3555static int clk_duty_cycle_show(struct seq_file *s, void *data)
3556{
3557	struct clk_core *core = s->private;
3558	struct clk_duty *duty = &core->duty;
3559
3560	seq_printf(s, "%u/%u\n", duty->num, duty->den);
3561
3562	return 0;
3563}
3564DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle);
3565
3566static int clk_min_rate_show(struct seq_file *s, void *data)
3567{
3568	struct clk_core *core = s->private;
3569	unsigned long min_rate, max_rate;
3570
3571	clk_prepare_lock();
3572	clk_core_get_boundaries(core, &min_rate, &max_rate);
3573	clk_prepare_unlock();
3574	seq_printf(s, "%lu\n", min_rate);
3575
3576	return 0;
3577}
3578DEFINE_SHOW_ATTRIBUTE(clk_min_rate);
3579
3580static int clk_max_rate_show(struct seq_file *s, void *data)
3581{
3582	struct clk_core *core = s->private;
3583	unsigned long min_rate, max_rate;
3584
3585	clk_prepare_lock();
3586	clk_core_get_boundaries(core, &min_rate, &max_rate);
3587	clk_prepare_unlock();
3588	seq_printf(s, "%lu\n", max_rate);
3589
3590	return 0;
3591}
3592DEFINE_SHOW_ATTRIBUTE(clk_max_rate);
3593
3594static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
3595{
3596	struct dentry *root;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3597
3598	if (!core || !pdentry)
3599		return;
 
 
 
3600
3601	root = debugfs_create_dir(core->name, pdentry);
3602	core->dentry = root;
3603
3604	debugfs_create_file("clk_rate", clk_rate_mode, root, core,
3605			    &clk_rate_fops);
3606	debugfs_create_file("clk_min_rate", 0444, root, core, &clk_min_rate_fops);
3607	debugfs_create_file("clk_max_rate", 0444, root, core, &clk_max_rate_fops);
3608	debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy);
3609	debugfs_create_file("clk_phase", clk_phase_mode, root, core,
3610			    &clk_phase_fops);
3611	debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops);
3612	debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count);
3613	debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count);
3614	debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count);
3615	debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count);
3616	debugfs_create_file("clk_duty_cycle", 0444, root, core,
3617			    &clk_duty_cycle_fops);
3618#ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3619	debugfs_create_file("clk_prepare_enable", 0644, root, core,
3620			    &clk_prepare_enable_fops);
3621
3622	if (core->num_parents > 1)
3623		debugfs_create_file("clk_parent", 0644, root, core,
3624				    &current_parent_rw_fops);
3625	else
3626#endif
3627	if (core->num_parents > 0)
3628		debugfs_create_file("clk_parent", 0444, root, core,
3629				    &current_parent_fops);
3630
3631	if (core->num_parents > 1)
3632		debugfs_create_file("clk_possible_parents", 0444, root, core,
3633				    &possible_parents_fops);
3634
3635	if (core->ops->debug_init)
3636		core->ops->debug_init(core->hw, core->dentry);
3637}
3638
3639/**
3640 * clk_debug_register - add a clk node to the debugfs clk directory
3641 * @core: the clk being added to the debugfs clk directory
3642 *
3643 * Dynamically adds a clk to the debugfs clk directory if debugfs has been
3644 * initialized.  Otherwise it bails out early since the debugfs clk directory
3645 * will be created lazily by clk_debug_init as part of a late_initcall.
3646 */
3647static void clk_debug_register(struct clk_core *core)
3648{
 
 
3649	mutex_lock(&clk_debug_lock);
3650	hlist_add_head(&core->debug_node, &clk_debug_list);
3651	if (inited)
3652		clk_debug_create_one(core, rootdir);
 
 
 
 
3653	mutex_unlock(&clk_debug_lock);
 
 
3654}
3655
3656 /**
3657 * clk_debug_unregister - remove a clk node from the debugfs clk directory
3658 * @core: the clk being removed from the debugfs clk directory
3659 *
3660 * Dynamically removes a clk and all its child nodes from the
3661 * debugfs clk directory if clk->dentry points to debugfs created by
3662 * clk_debug_register in __clk_core_init.
3663 */
3664static void clk_debug_unregister(struct clk_core *core)
3665{
3666	mutex_lock(&clk_debug_lock);
3667	hlist_del_init(&core->debug_node);
3668	debugfs_remove_recursive(core->dentry);
3669	core->dentry = NULL;
3670	mutex_unlock(&clk_debug_lock);
3671}
3672
 
 
 
 
 
 
 
 
 
 
 
 
 
3673/**
3674 * clk_debug_init - lazily populate the debugfs clk directory
3675 *
3676 * clks are often initialized very early during boot before memory can be
3677 * dynamically allocated and well before debugfs is setup. This function
3678 * populates the debugfs clk directory once at boot-time when we know that
3679 * debugfs is setup. It should only be called once at boot-time, all other clks
3680 * added dynamically will be done so with clk_debug_register.
3681 */
3682static int __init clk_debug_init(void)
3683{
3684	struct clk_core *core;
3685
3686#ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3687	pr_warn("\n");
3688	pr_warn("********************************************************************\n");
3689	pr_warn("**     NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE           **\n");
3690	pr_warn("**                                                                **\n");
3691	pr_warn("**  WRITEABLE clk DebugFS SUPPORT HAS BEEN ENABLED IN THIS KERNEL **\n");
3692	pr_warn("**                                                                **\n");
3693	pr_warn("** This means that this kernel is built to expose clk operations  **\n");
3694	pr_warn("** such as parent or rate setting, enabling, disabling, etc.      **\n");
3695	pr_warn("** to userspace, which may compromise security on your system.    **\n");
3696	pr_warn("**                                                                **\n");
3697	pr_warn("** If you see this message and you are not debugging the          **\n");
3698	pr_warn("** kernel, report this immediately to your vendor!                **\n");
3699	pr_warn("**                                                                **\n");
3700	pr_warn("**     NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE           **\n");
3701	pr_warn("********************************************************************\n");
3702#endif
3703
3704	rootdir = debugfs_create_dir("clk", NULL);
3705
3706	debugfs_create_file("clk_summary", 0444, rootdir, &all_lists,
3707			    &clk_summary_fops);
3708	debugfs_create_file("clk_dump", 0444, rootdir, &all_lists,
3709			    &clk_dump_fops);
3710	debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list,
3711			    &clk_summary_fops);
3712	debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list,
3713			    &clk_dump_fops);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3714
3715	mutex_lock(&clk_debug_lock);
3716	hlist_for_each_entry(core, &clk_debug_list, debug_node)
3717		clk_debug_create_one(core, rootdir);
3718
3719	inited = 1;
3720	mutex_unlock(&clk_debug_lock);
3721
3722	return 0;
3723}
3724late_initcall(clk_debug_init);
3725#else
3726static inline void clk_debug_register(struct clk_core *core) { }
3727static inline void clk_debug_unregister(struct clk_core *core)
 
3728{
3729}
3730#endif
3731
3732static void clk_core_reparent_orphans_nolock(void)
3733{
3734	struct clk_core *orphan;
3735	struct hlist_node *tmp2;
3736
3737	/*
3738	 * walk the list of orphan clocks and reparent any that newly finds a
3739	 * parent.
3740	 */
3741	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
3742		struct clk_core *parent = __clk_init_parent(orphan);
3743
3744		/*
3745		 * We need to use __clk_set_parent_before() and _after() to
3746		 * properly migrate any prepare/enable count of the orphan
3747		 * clock. This is important for CLK_IS_CRITICAL clocks, which
3748		 * are enabled during init but might not have a parent yet.
3749		 */
3750		if (parent) {
3751			/* update the clk tree topology */
3752			__clk_set_parent_before(orphan, parent);
3753			__clk_set_parent_after(orphan, parent, NULL);
3754			__clk_recalc_accuracies(orphan);
3755			__clk_recalc_rates(orphan, true, 0);
3756
3757			/*
3758			 * __clk_init_parent() will set the initial req_rate to
3759			 * 0 if the clock doesn't have clk_ops::recalc_rate and
3760			 * is an orphan when it's registered.
3761			 *
3762			 * 'req_rate' is used by clk_set_rate_range() and
3763			 * clk_put() to trigger a clk_set_rate() call whenever
3764			 * the boundaries are modified. Let's make sure
3765			 * 'req_rate' is set to something non-zero so that
3766			 * clk_set_rate_range() doesn't drop the frequency.
3767			 */
3768			orphan->req_rate = orphan->rate;
3769		}
3770	}
3771}
 
3772
3773/**
3774 * __clk_core_init - initialize the data structures in a struct clk_core
3775 * @core:	clk_core being initialized
3776 *
3777 * Initializes the lists in struct clk_core, queries the hardware for the
3778 * parent and rate and sets them both.
3779 */
3780static int __clk_core_init(struct clk_core *core)
3781{
3782	int ret;
3783	struct clk_core *parent;
 
3784	unsigned long rate;
3785	int phase;
3786
3787	clk_prepare_lock();
3788
3789	/*
3790	 * Set hw->core after grabbing the prepare_lock to synchronize with
3791	 * callers of clk_core_fill_parent_index() where we treat hw->core
3792	 * being NULL as the clk not being registered yet. This is crucial so
3793	 * that clks aren't parented until their parent is fully registered.
3794	 */
3795	core->hw->core = core;
3796
3797	ret = clk_pm_runtime_get(core);
3798	if (ret)
3799		goto unlock;
3800
3801	/* check to see if a clock with this name is already registered */
3802	if (clk_core_lookup(core->name)) {
3803		pr_debug("%s: clk %s already initialized\n",
3804				__func__, core->name);
3805		ret = -EEXIST;
3806		goto out;
3807	}
3808
3809	/* check that clk_ops are sane.  See Documentation/driver-api/clk.rst */
3810	if (core->ops->set_rate &&
3811	    !((core->ops->round_rate || core->ops->determine_rate) &&
3812	      core->ops->recalc_rate)) {
3813		pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
3814		       __func__, core->name);
3815		ret = -EINVAL;
3816		goto out;
3817	}
3818
3819	if (core->ops->set_parent && !core->ops->get_parent) {
3820		pr_err("%s: %s must implement .get_parent & .set_parent\n",
3821		       __func__, core->name);
3822		ret = -EINVAL;
3823		goto out;
3824	}
3825
3826	if (core->ops->set_parent && !core->ops->determine_rate) {
3827		pr_err("%s: %s must implement .set_parent & .determine_rate\n",
3828			__func__, core->name);
3829		ret = -EINVAL;
3830		goto out;
3831	}
3832
3833	if (core->num_parents > 1 && !core->ops->get_parent) {
3834		pr_err("%s: %s must implement .get_parent as it has multi parents\n",
3835		       __func__, core->name);
3836		ret = -EINVAL;
3837		goto out;
3838	}
3839
3840	if (core->ops->set_rate_and_parent &&
3841			!(core->ops->set_parent && core->ops->set_rate)) {
3842		pr_err("%s: %s must implement .set_parent & .set_rate\n",
3843				__func__, core->name);
3844		ret = -EINVAL;
3845		goto out;
3846	}
3847
3848	/*
3849	 * optional platform-specific magic
3850	 *
3851	 * The .init callback is not used by any of the basic clock types, but
3852	 * exists for weird hardware that must perform initialization magic for
3853	 * CCF to get an accurate view of clock for any other callbacks. It may
3854	 * also be used needs to perform dynamic allocations. Such allocation
3855	 * must be freed in the terminate() callback.
3856	 * This callback shall not be used to initialize the parameters state,
3857	 * such as rate, parent, etc ...
3858	 *
3859	 * If it exist, this callback should called before any other callback of
3860	 * the clock
3861	 */
3862	if (core->ops->init) {
3863		ret = core->ops->init(core->hw);
3864		if (ret)
3865			goto out;
3866	}
3867
3868	parent = core->parent = __clk_init_parent(core);
3869
3870	/*
3871	 * Populate core->parent if parent has already been clk_core_init'd. If
3872	 * parent has not yet been clk_core_init'd then place clk in the orphan
3873	 * list.  If clk doesn't have any parents then place it in the root
3874	 * clk list.
3875	 *
3876	 * Every time a new clk is clk_init'd then we walk the list of orphan
3877	 * clocks and re-parent any that are children of the clock currently
3878	 * being clk_init'd.
3879	 */
3880	if (parent) {
3881		hlist_add_head(&core->child_node, &parent->children);
3882		core->orphan = parent->orphan;
 
3883	} else if (!core->num_parents) {
3884		hlist_add_head(&core->child_node, &clk_root_list);
3885		core->orphan = false;
3886	} else {
3887		hlist_add_head(&core->child_node, &clk_orphan_list);
3888		core->orphan = true;
3889	}
3890
3891	/*
3892	 * Set clk's accuracy.  The preferred method is to use
3893	 * .recalc_accuracy. For simple clocks and lazy developers the default
3894	 * fallback is to use the parent's accuracy.  If a clock doesn't have a
3895	 * parent (or is orphaned) then accuracy is set to zero (perfect
3896	 * clock).
3897	 */
3898	if (core->ops->recalc_accuracy)
3899		core->accuracy = core->ops->recalc_accuracy(core->hw,
3900					clk_core_get_accuracy_no_lock(parent));
3901	else if (parent)
3902		core->accuracy = parent->accuracy;
3903	else
3904		core->accuracy = 0;
3905
3906	/*
3907	 * Set clk's phase by clk_core_get_phase() caching the phase.
3908	 * Since a phase is by definition relative to its parent, just
3909	 * query the current clock phase, or just assume it's in phase.
3910	 */
3911	phase = clk_core_get_phase(core);
3912	if (phase < 0) {
3913		ret = phase;
3914		pr_warn("%s: Failed to get phase for clk '%s'\n", __func__,
3915			core->name);
3916		goto out;
3917	}
3918
3919	/*
3920	 * Set clk's duty cycle.
3921	 */
3922	clk_core_update_duty_cycle_nolock(core);
3923
3924	/*
3925	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
3926	 * simple clocks and lazy developers the default fallback is to use the
3927	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
3928	 * then rate is set to zero.
3929	 */
3930	if (core->ops->recalc_rate)
3931		rate = core->ops->recalc_rate(core->hw,
3932				clk_core_get_rate_nolock(parent));
3933	else if (parent)
3934		rate = parent->rate;
3935	else
3936		rate = 0;
3937	core->rate = core->req_rate = rate;
3938
3939	/*
3940	 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks
3941	 * don't get accidentally disabled when walking the orphan tree and
3942	 * reparenting clocks
3943	 */
3944	if (core->flags & CLK_IS_CRITICAL) {
3945		ret = clk_core_prepare(core);
3946		if (ret) {
3947			pr_warn("%s: critical clk '%s' failed to prepare\n",
3948			       __func__, core->name);
3949			goto out;
3950		}
3951
3952		ret = clk_core_enable_lock(core);
3953		if (ret) {
3954			pr_warn("%s: critical clk '%s' failed to enable\n",
3955			       __func__, core->name);
3956			clk_core_unprepare(core);
3957			goto out;
3958		}
3959	}
3960
3961	clk_core_reparent_orphans_nolock();
 
 
 
 
 
 
 
 
 
3962
3963	kref_init(&core->ref);
3964out:
3965	clk_pm_runtime_put(core);
3966unlock:
3967	if (ret) {
3968		hlist_del_init(&core->child_node);
3969		core->hw->core = NULL;
3970	}
3971
3972	clk_prepare_unlock();
3973
3974	if (!ret)
3975		clk_debug_register(core);
3976
3977	return ret;
3978}
3979
3980/**
3981 * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core
3982 * @core: clk to add consumer to
3983 * @clk: consumer to link to a clk
3984 */
3985static void clk_core_link_consumer(struct clk_core *core, struct clk *clk)
3986{
3987	clk_prepare_lock();
3988	hlist_add_head(&clk->clks_node, &core->clks);
3989	clk_prepare_unlock();
3990}
3991
3992/**
3993 * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core
3994 * @clk: consumer to unlink
3995 */
3996static void clk_core_unlink_consumer(struct clk *clk)
3997{
3998	lockdep_assert_held(&prepare_lock);
3999	hlist_del(&clk->clks_node);
4000}
4001
4002/**
4003 * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core
4004 * @core: clk to allocate a consumer for
4005 * @dev_id: string describing device name
4006 * @con_id: connection ID string on device
4007 *
4008 * Returns: clk consumer left unlinked from the consumer list
4009 */
4010static struct clk *alloc_clk(struct clk_core *core, const char *dev_id,
4011			     const char *con_id)
4012{
4013	struct clk *clk;
4014
 
 
 
 
4015	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
4016	if (!clk)
4017		return ERR_PTR(-ENOMEM);
4018
4019	clk->core = core;
4020	clk->dev_id = dev_id;
4021	clk->con_id = kstrdup_const(con_id, GFP_KERNEL);
4022	clk->max_rate = ULONG_MAX;
4023
4024	return clk;
4025}
 
4026
4027/**
4028 * free_clk - Free a clk consumer
4029 * @clk: clk consumer to free
4030 *
4031 * Note, this assumes the clk has been unlinked from the clk_core consumer
4032 * list.
4033 */
4034static void free_clk(struct clk *clk)
4035{
4036	kfree_const(clk->con_id);
4037	kfree(clk);
4038}
4039
4040/**
4041 * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given
4042 * a clk_hw
4043 * @dev: clk consumer device
4044 * @hw: clk_hw associated with the clk being consumed
4045 * @dev_id: string describing device name
4046 * @con_id: connection ID string on device
4047 *
4048 * This is the main function used to create a clk pointer for use by clk
4049 * consumers. It connects a consumer to the clk_core and clk_hw structures
4050 * used by the framework and clk provider respectively.
4051 */
4052struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw,
4053			      const char *dev_id, const char *con_id)
4054{
4055	struct clk *clk;
4056	struct clk_core *core;
4057
4058	/* This is to allow this function to be chained to others */
4059	if (IS_ERR_OR_NULL(hw))
4060		return ERR_CAST(hw);
4061
4062	core = hw->core;
4063	clk = alloc_clk(core, dev_id, con_id);
4064	if (IS_ERR(clk))
4065		return clk;
4066	clk->dev = dev;
4067
4068	if (!try_module_get(core->owner)) {
4069		free_clk(clk);
4070		return ERR_PTR(-ENOENT);
4071	}
4072
4073	kref_get(&core->ref);
4074	clk_core_link_consumer(core, clk);
4075
4076	return clk;
4077}
4078
4079/**
4080 * clk_hw_get_clk - get clk consumer given an clk_hw
4081 * @hw: clk_hw associated with the clk being consumed
4082 * @con_id: connection ID string on device
4083 *
4084 * Returns: new clk consumer
4085 * This is the function to be used by providers which need
4086 * to get a consumer clk and act on the clock element
4087 * Calls to this function must be balanced with calls clk_put()
 
4088 */
4089struct clk *clk_hw_get_clk(struct clk_hw *hw, const char *con_id)
4090{
4091	struct device *dev = hw->core->dev;
4092	const char *name = dev ? dev_name(dev) : NULL;
4093
4094	return clk_hw_create_clk(dev, hw, name, con_id);
4095}
4096EXPORT_SYMBOL(clk_hw_get_clk);
4097
4098static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist)
4099{
4100	const char *dst;
4101
4102	if (!src) {
4103		if (must_exist)
4104			return -EINVAL;
4105		return 0;
4106	}
4107
4108	*dst_p = dst = kstrdup_const(src, GFP_KERNEL);
4109	if (!dst)
4110		return -ENOMEM;
4111
4112	return 0;
4113}
4114
4115static int clk_core_populate_parent_map(struct clk_core *core,
4116					const struct clk_init_data *init)
4117{
4118	u8 num_parents = init->num_parents;
4119	const char * const *parent_names = init->parent_names;
4120	const struct clk_hw **parent_hws = init->parent_hws;
4121	const struct clk_parent_data *parent_data = init->parent_data;
4122	int i, ret = 0;
4123	struct clk_parent_map *parents, *parent;
4124
4125	if (!num_parents)
4126		return 0;
4127
4128	/*
4129	 * Avoid unnecessary string look-ups of clk_core's possible parents by
4130	 * having a cache of names/clk_hw pointers to clk_core pointers.
4131	 */
4132	parents = kcalloc(num_parents, sizeof(*parents), GFP_KERNEL);
4133	core->parents = parents;
4134	if (!parents)
4135		return -ENOMEM;
4136
4137	/* Copy everything over because it might be __initdata */
4138	for (i = 0, parent = parents; i < num_parents; i++, parent++) {
4139		parent->index = -1;
4140		if (parent_names) {
4141			/* throw a WARN if any entries are NULL */
4142			WARN(!parent_names[i],
4143				"%s: invalid NULL in %s's .parent_names\n",
4144				__func__, core->name);
4145			ret = clk_cpy_name(&parent->name, parent_names[i],
4146					   true);
4147		} else if (parent_data) {
4148			parent->hw = parent_data[i].hw;
4149			parent->index = parent_data[i].index;
4150			ret = clk_cpy_name(&parent->fw_name,
4151					   parent_data[i].fw_name, false);
4152			if (!ret)
4153				ret = clk_cpy_name(&parent->name,
4154						   parent_data[i].name,
4155						   false);
4156		} else if (parent_hws) {
4157			parent->hw = parent_hws[i];
4158		} else {
4159			ret = -EINVAL;
4160			WARN(1, "Must specify parents if num_parents > 0\n");
4161		}
4162
4163		if (ret) {
4164			do {
4165				kfree_const(parents[i].name);
4166				kfree_const(parents[i].fw_name);
4167			} while (--i >= 0);
4168			kfree(parents);
4169
4170			return ret;
4171		}
4172	}
4173
4174	return 0;
4175}
4176
4177static void clk_core_free_parent_map(struct clk_core *core)
4178{
4179	int i = core->num_parents;
4180
4181	if (!core->num_parents)
4182		return;
4183
4184	while (--i >= 0) {
4185		kfree_const(core->parents[i].name);
4186		kfree_const(core->parents[i].fw_name);
4187	}
4188
4189	kfree(core->parents);
4190}
4191
4192static struct clk *
4193__clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw)
4194{
4195	int ret;
4196	struct clk_core *core;
4197	const struct clk_init_data *init = hw->init;
4198
4199	/*
4200	 * The init data is not supposed to be used outside of registration path.
4201	 * Set it to NULL so that provider drivers can't use it either and so that
4202	 * we catch use of hw->init early on in the core.
4203	 */
4204	hw->init = NULL;
4205
4206	core = kzalloc(sizeof(*core), GFP_KERNEL);
4207	if (!core) {
4208		ret = -ENOMEM;
4209		goto fail_out;
4210	}
4211
4212	core->name = kstrdup_const(init->name, GFP_KERNEL);
4213	if (!core->name) {
4214		ret = -ENOMEM;
4215		goto fail_name;
4216	}
4217
4218	if (WARN_ON(!init->ops)) {
4219		ret = -EINVAL;
4220		goto fail_ops;
4221	}
4222	core->ops = init->ops;
4223
4224	if (dev && pm_runtime_enabled(dev))
4225		core->rpm_enabled = true;
4226	core->dev = dev;
4227	core->of_node = np;
4228	if (dev && dev->driver)
4229		core->owner = dev->driver->owner;
4230	core->hw = hw;
4231	core->flags = init->flags;
4232	core->num_parents = init->num_parents;
4233	core->min_rate = 0;
4234	core->max_rate = ULONG_MAX;
 
4235
4236	ret = clk_core_populate_parent_map(core, init);
4237	if (ret)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4238		goto fail_parents;
 
4239
4240	INIT_HLIST_HEAD(&core->clks);
4241
4242	/*
4243	 * Don't call clk_hw_create_clk() here because that would pin the
4244	 * provider module to itself and prevent it from ever being removed.
4245	 */
4246	hw->clk = alloc_clk(core, NULL, NULL);
4247	if (IS_ERR(hw->clk)) {
4248		ret = PTR_ERR(hw->clk);
4249		goto fail_create_clk;
4250	}
4251
4252	clk_core_link_consumer(core, hw->clk);
4253
4254	ret = __clk_core_init(core);
4255	if (!ret)
4256		return hw->clk;
4257
4258	clk_prepare_lock();
4259	clk_core_unlink_consumer(hw->clk);
4260	clk_prepare_unlock();
4261
4262	free_clk(hw->clk);
4263	hw->clk = NULL;
4264
4265fail_create_clk:
4266	clk_core_free_parent_map(core);
4267fail_parents:
4268fail_ops:
 
 
 
 
 
4269	kfree_const(core->name);
4270fail_name:
4271	kfree(core);
4272fail_out:
4273	return ERR_PTR(ret);
4274}
4275
4276/**
4277 * dev_or_parent_of_node() - Get device node of @dev or @dev's parent
4278 * @dev: Device to get device node of
4279 *
4280 * Return: device node pointer of @dev, or the device node pointer of
4281 * @dev->parent if dev doesn't have a device node, or NULL if neither
4282 * @dev or @dev->parent have a device node.
4283 */
4284static struct device_node *dev_or_parent_of_node(struct device *dev)
4285{
4286	struct device_node *np;
4287
4288	if (!dev)
4289		return NULL;
4290
4291	np = dev_of_node(dev);
4292	if (!np)
4293		np = dev_of_node(dev->parent);
4294
4295	return np;
4296}
4297
4298/**
4299 * clk_register - allocate a new clock, register it and return an opaque cookie
4300 * @dev: device that is registering this clock
4301 * @hw: link to hardware-specific clock data
4302 *
4303 * clk_register is the *deprecated* interface for populating the clock tree with
4304 * new clock nodes. Use clk_hw_register() instead.
4305 *
4306 * Returns: a pointer to the newly allocated struct clk which
4307 * cannot be dereferenced by driver code but may be used in conjunction with the
4308 * rest of the clock API.  In the event of an error clk_register will return an
4309 * error code; drivers must test for an error code after calling clk_register.
4310 */
4311struct clk *clk_register(struct device *dev, struct clk_hw *hw)
4312{
4313	return __clk_register(dev, dev_or_parent_of_node(dev), hw);
4314}
4315EXPORT_SYMBOL_GPL(clk_register);
4316
4317/**
4318 * clk_hw_register - register a clk_hw and return an error code
4319 * @dev: device that is registering this clock
4320 * @hw: link to hardware-specific clock data
4321 *
4322 * clk_hw_register is the primary interface for populating the clock tree with
4323 * new clock nodes. It returns an integer equal to zero indicating success or
4324 * less than zero indicating failure. Drivers must test for an error code after
4325 * calling clk_hw_register().
4326 */
4327int clk_hw_register(struct device *dev, struct clk_hw *hw)
4328{
4329	return PTR_ERR_OR_ZERO(__clk_register(dev, dev_or_parent_of_node(dev),
4330			       hw));
4331}
4332EXPORT_SYMBOL_GPL(clk_hw_register);
4333
4334/*
4335 * of_clk_hw_register - register a clk_hw and return an error code
4336 * @node: device_node of device that is registering this clock
4337 * @hw: link to hardware-specific clock data
4338 *
4339 * of_clk_hw_register() is the primary interface for populating the clock tree
4340 * with new clock nodes when a struct device is not available, but a struct
4341 * device_node is. It returns an integer equal to zero indicating success or
4342 * less than zero indicating failure. Drivers must test for an error code after
4343 * calling of_clk_hw_register().
4344 */
4345int of_clk_hw_register(struct device_node *node, struct clk_hw *hw)
4346{
4347	return PTR_ERR_OR_ZERO(__clk_register(NULL, node, hw));
4348}
4349EXPORT_SYMBOL_GPL(of_clk_hw_register);
4350
4351/* Free memory allocated for a clock. */
4352static void __clk_release(struct kref *ref)
4353{
4354	struct clk_core *core = container_of(ref, struct clk_core, ref);
 
4355
4356	lockdep_assert_held(&prepare_lock);
4357
4358	clk_core_free_parent_map(core);
 
 
 
 
4359	kfree_const(core->name);
4360	kfree(core);
4361}
4362
4363/*
4364 * Empty clk_ops for unregistered clocks. These are used temporarily
4365 * after clk_unregister() was called on a clock and until last clock
4366 * consumer calls clk_put() and the struct clk object is freed.
4367 */
4368static int clk_nodrv_prepare_enable(struct clk_hw *hw)
4369{
4370	return -ENXIO;
4371}
4372
4373static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
4374{
4375	WARN_ON_ONCE(1);
4376}
4377
4378static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
4379					unsigned long parent_rate)
4380{
4381	return -ENXIO;
4382}
4383
4384static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
4385{
4386	return -ENXIO;
4387}
4388
4389static int clk_nodrv_determine_rate(struct clk_hw *hw,
4390				    struct clk_rate_request *req)
4391{
4392	return -ENXIO;
4393}
4394
4395static const struct clk_ops clk_nodrv_ops = {
4396	.enable		= clk_nodrv_prepare_enable,
4397	.disable	= clk_nodrv_disable_unprepare,
4398	.prepare	= clk_nodrv_prepare_enable,
4399	.unprepare	= clk_nodrv_disable_unprepare,
4400	.determine_rate	= clk_nodrv_determine_rate,
4401	.set_rate	= clk_nodrv_set_rate,
4402	.set_parent	= clk_nodrv_set_parent,
4403};
4404
4405static void clk_core_evict_parent_cache_subtree(struct clk_core *root,
4406						const struct clk_core *target)
4407{
4408	int i;
4409	struct clk_core *child;
4410
4411	for (i = 0; i < root->num_parents; i++)
4412		if (root->parents[i].core == target)
4413			root->parents[i].core = NULL;
4414
4415	hlist_for_each_entry(child, &root->children, child_node)
4416		clk_core_evict_parent_cache_subtree(child, target);
4417}
4418
4419/* Remove this clk from all parent caches */
4420static void clk_core_evict_parent_cache(struct clk_core *core)
4421{
4422	const struct hlist_head **lists;
4423	struct clk_core *root;
4424
4425	lockdep_assert_held(&prepare_lock);
4426
4427	for (lists = all_lists; *lists; lists++)
4428		hlist_for_each_entry(root, *lists, child_node)
4429			clk_core_evict_parent_cache_subtree(root, core);
4430
4431}
4432
4433/**
4434 * clk_unregister - unregister a currently registered clock
4435 * @clk: clock to unregister
4436 */
4437void clk_unregister(struct clk *clk)
4438{
4439	unsigned long flags;
4440	const struct clk_ops *ops;
4441
4442	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4443		return;
4444
4445	clk_debug_unregister(clk->core);
4446
4447	clk_prepare_lock();
4448
4449	ops = clk->core->ops;
4450	if (ops == &clk_nodrv_ops) {
4451		pr_err("%s: unregistered clock: %s\n", __func__,
4452		       clk->core->name);
4453		goto unlock;
4454	}
4455	/*
4456	 * Assign empty clock ops for consumers that might still hold
4457	 * a reference to this clock.
4458	 */
4459	flags = clk_enable_lock();
4460	clk->core->ops = &clk_nodrv_ops;
4461	clk_enable_unlock(flags);
4462
4463	if (ops->terminate)
4464		ops->terminate(clk->core->hw);
4465
4466	if (!hlist_empty(&clk->core->children)) {
4467		struct clk_core *child;
4468		struct hlist_node *t;
4469
4470		/* Reparent all children to the orphan list. */
4471		hlist_for_each_entry_safe(child, t, &clk->core->children,
4472					  child_node)
4473			clk_core_set_parent_nolock(child, NULL);
4474	}
4475
4476	clk_core_evict_parent_cache(clk->core);
4477
4478	hlist_del_init(&clk->core->child_node);
4479
4480	if (clk->core->prepare_count)
4481		pr_warn("%s: unregistering prepared clock: %s\n",
4482					__func__, clk->core->name);
4483
4484	if (clk->core->protect_count)
4485		pr_warn("%s: unregistering protected clock: %s\n",
4486					__func__, clk->core->name);
4487
4488	kref_put(&clk->core->ref, __clk_release);
4489	free_clk(clk);
4490unlock:
4491	clk_prepare_unlock();
4492}
4493EXPORT_SYMBOL_GPL(clk_unregister);
4494
4495/**
4496 * clk_hw_unregister - unregister a currently registered clk_hw
4497 * @hw: hardware-specific clock data to unregister
4498 */
4499void clk_hw_unregister(struct clk_hw *hw)
4500{
4501	clk_unregister(hw->clk);
4502}
4503EXPORT_SYMBOL_GPL(clk_hw_unregister);
4504
4505static void devm_clk_unregister_cb(struct device *dev, void *res)
4506{
4507	clk_unregister(*(struct clk **)res);
4508}
4509
4510static void devm_clk_hw_unregister_cb(struct device *dev, void *res)
4511{
4512	clk_hw_unregister(*(struct clk_hw **)res);
4513}
4514
4515/**
4516 * devm_clk_register - resource managed clk_register()
4517 * @dev: device that is registering this clock
4518 * @hw: link to hardware-specific clock data
4519 *
4520 * Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead.
4521 *
4522 * Clocks returned from this function are automatically clk_unregister()ed on
4523 * driver detach. See clk_register() for more information.
4524 */
4525struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
4526{
4527	struct clk *clk;
4528	struct clk **clkp;
4529
4530	clkp = devres_alloc(devm_clk_unregister_cb, sizeof(*clkp), GFP_KERNEL);
4531	if (!clkp)
4532		return ERR_PTR(-ENOMEM);
4533
4534	clk = clk_register(dev, hw);
4535	if (!IS_ERR(clk)) {
4536		*clkp = clk;
4537		devres_add(dev, clkp);
4538	} else {
4539		devres_free(clkp);
4540	}
4541
4542	return clk;
4543}
4544EXPORT_SYMBOL_GPL(devm_clk_register);
4545
4546/**
4547 * devm_clk_hw_register - resource managed clk_hw_register()
4548 * @dev: device that is registering this clock
4549 * @hw: link to hardware-specific clock data
4550 *
4551 * Managed clk_hw_register(). Clocks registered by this function are
4552 * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register()
4553 * for more information.
4554 */
4555int devm_clk_hw_register(struct device *dev, struct clk_hw *hw)
4556{
4557	struct clk_hw **hwp;
4558	int ret;
4559
4560	hwp = devres_alloc(devm_clk_hw_unregister_cb, sizeof(*hwp), GFP_KERNEL);
4561	if (!hwp)
4562		return -ENOMEM;
4563
4564	ret = clk_hw_register(dev, hw);
4565	if (!ret) {
4566		*hwp = hw;
4567		devres_add(dev, hwp);
4568	} else {
4569		devres_free(hwp);
4570	}
4571
4572	return ret;
4573}
4574EXPORT_SYMBOL_GPL(devm_clk_hw_register);
4575
4576static void devm_clk_release(struct device *dev, void *res)
4577{
4578	clk_put(*(struct clk **)res);
 
 
 
4579}
4580
4581/**
4582 * devm_clk_hw_get_clk - resource managed clk_hw_get_clk()
4583 * @dev: device that is registering this clock
4584 * @hw: clk_hw associated with the clk being consumed
4585 * @con_id: connection ID string on device
4586 *
4587 * Managed clk_hw_get_clk(). Clocks got with this function are
4588 * automatically clk_put() on driver detach. See clk_put()
4589 * for more information.
4590 */
4591struct clk *devm_clk_hw_get_clk(struct device *dev, struct clk_hw *hw,
4592				const char *con_id)
4593{
4594	struct clk *clk;
4595	struct clk **clkp;
4596
4597	/* This should not happen because it would mean we have drivers
4598	 * passing around clk_hw pointers instead of having the caller use
4599	 * proper clk_get() style APIs
4600	 */
4601	WARN_ON_ONCE(dev != hw->core->dev);
4602
4603	clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
4604	if (!clkp)
4605		return ERR_PTR(-ENOMEM);
4606
4607	clk = clk_hw_get_clk(hw, con_id);
4608	if (!IS_ERR(clk)) {
4609		*clkp = clk;
4610		devres_add(dev, clkp);
4611	} else {
4612		devres_free(clkp);
4613	}
4614
4615	return clk;
4616}
4617EXPORT_SYMBOL_GPL(devm_clk_hw_get_clk);
4618
4619/*
4620 * clkdev helpers
4621 */
 
 
 
 
 
 
 
 
 
 
 
 
4622
4623void __clk_put(struct clk *clk)
4624{
4625	struct module *owner;
4626
4627	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4628		return;
4629
4630	clk_prepare_lock();
4631
4632	/*
4633	 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a
4634	 * given user should be balanced with calls to clk_rate_exclusive_put()
4635	 * and by that same consumer
4636	 */
4637	if (WARN_ON(clk->exclusive_count)) {
4638		/* We voiced our concern, let's sanitize the situation */
4639		clk->core->protect_count -= (clk->exclusive_count - 1);
4640		clk_core_rate_unprotect(clk->core);
4641		clk->exclusive_count = 0;
4642	}
4643
4644	hlist_del(&clk->clks_node);
4645
4646	/* If we had any boundaries on that clock, let's drop them. */
4647	if (clk->min_rate > 0 || clk->max_rate < ULONG_MAX)
4648		clk_set_rate_range_nolock(clk, 0, ULONG_MAX);
4649
4650	owner = clk->core->owner;
4651	kref_put(&clk->core->ref, __clk_release);
4652
4653	clk_prepare_unlock();
4654
4655	module_put(owner);
4656
4657	free_clk(clk);
4658}
4659
4660/***        clk rate change notifiers        ***/
4661
4662/**
4663 * clk_notifier_register - add a clk rate change notifier
4664 * @clk: struct clk * to watch
4665 * @nb: struct notifier_block * with callback info
4666 *
4667 * Request notification when clk's rate changes.  This uses an SRCU
4668 * notifier because we want it to block and notifier unregistrations are
4669 * uncommon.  The callbacks associated with the notifier must not
4670 * re-enter into the clk framework by calling any top-level clk APIs;
4671 * this will cause a nested prepare_lock mutex.
4672 *
4673 * In all notification cases (pre, post and abort rate change) the original
4674 * clock rate is passed to the callback via struct clk_notifier_data.old_rate
4675 * and the new frequency is passed via struct clk_notifier_data.new_rate.
4676 *
4677 * clk_notifier_register() must be called from non-atomic context.
4678 * Returns -EINVAL if called with null arguments, -ENOMEM upon
4679 * allocation failure; otherwise, passes along the return value of
4680 * srcu_notifier_chain_register().
4681 */
4682int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
4683{
4684	struct clk_notifier *cn;
4685	int ret = -ENOMEM;
4686
4687	if (!clk || !nb)
4688		return -EINVAL;
4689
4690	clk_prepare_lock();
4691
4692	/* search the list of notifiers for this clk */
4693	list_for_each_entry(cn, &clk_notifier_list, node)
4694		if (cn->clk == clk)
4695			goto found;
4696
4697	/* if clk wasn't in the notifier list, allocate new clk_notifier */
4698	cn = kzalloc(sizeof(*cn), GFP_KERNEL);
4699	if (!cn)
4700		goto out;
 
4701
4702	cn->clk = clk;
4703	srcu_init_notifier_head(&cn->notifier_head);
4704
4705	list_add(&cn->node, &clk_notifier_list);
 
4706
4707found:
4708	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
4709
4710	clk->core->notifier_count++;
4711
4712out:
4713	clk_prepare_unlock();
4714
4715	return ret;
4716}
4717EXPORT_SYMBOL_GPL(clk_notifier_register);
4718
4719/**
4720 * clk_notifier_unregister - remove a clk rate change notifier
4721 * @clk: struct clk *
4722 * @nb: struct notifier_block * with callback info
4723 *
4724 * Request no further notification for changes to 'clk' and frees memory
4725 * allocated in clk_notifier_register.
4726 *
4727 * Returns -EINVAL if called with null arguments; otherwise, passes
4728 * along the return value of srcu_notifier_chain_unregister().
4729 */
4730int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
4731{
4732	struct clk_notifier *cn;
4733	int ret = -ENOENT;
4734
4735	if (!clk || !nb)
4736		return -EINVAL;
4737
4738	clk_prepare_lock();
4739
4740	list_for_each_entry(cn, &clk_notifier_list, node) {
4741		if (cn->clk == clk) {
4742			ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
4743
4744			clk->core->notifier_count--;
4745
4746			/* XXX the notifier code should handle this better */
4747			if (!cn->notifier_head.head) {
4748				srcu_cleanup_notifier_head(&cn->notifier_head);
4749				list_del(&cn->node);
4750				kfree(cn);
4751			}
4752			break;
4753		}
4754	}
4755
4756	clk_prepare_unlock();
4757
4758	return ret;
4759}
4760EXPORT_SYMBOL_GPL(clk_notifier_unregister);
4761
4762struct clk_notifier_devres {
4763	struct clk *clk;
4764	struct notifier_block *nb;
4765};
4766
4767static void devm_clk_notifier_release(struct device *dev, void *res)
4768{
4769	struct clk_notifier_devres *devres = res;
4770
4771	clk_notifier_unregister(devres->clk, devres->nb);
4772}
4773
4774int devm_clk_notifier_register(struct device *dev, struct clk *clk,
4775			       struct notifier_block *nb)
4776{
4777	struct clk_notifier_devres *devres;
4778	int ret;
4779
4780	devres = devres_alloc(devm_clk_notifier_release,
4781			      sizeof(*devres), GFP_KERNEL);
4782
4783	if (!devres)
4784		return -ENOMEM;
 
 
 
 
4785
4786	ret = clk_notifier_register(clk, nb);
4787	if (!ret) {
4788		devres->clk = clk;
4789		devres->nb = nb;
4790		devres_add(dev, devres);
4791	} else {
4792		devres_free(devres);
4793	}
4794
 
 
4795	return ret;
4796}
4797EXPORT_SYMBOL_GPL(devm_clk_notifier_register);
4798
4799#ifdef CONFIG_OF
4800static void clk_core_reparent_orphans(void)
4801{
4802	clk_prepare_lock();
4803	clk_core_reparent_orphans_nolock();
4804	clk_prepare_unlock();
4805}
4806
4807/**
4808 * struct of_clk_provider - Clock provider registration structure
4809 * @link: Entry in global list of clock providers
4810 * @node: Pointer to device tree node of clock provider
4811 * @get: Get clock callback.  Returns NULL or a struct clk for the
4812 *       given clock specifier
4813 * @get_hw: Get clk_hw callback.  Returns NULL, ERR_PTR or a
4814 *       struct clk_hw for the given clock specifier
4815 * @data: context pointer to be passed into @get callback
4816 */
4817struct of_clk_provider {
4818	struct list_head link;
4819
4820	struct device_node *node;
4821	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
4822	struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data);
4823	void *data;
4824};
4825
4826extern struct of_device_id __clk_of_table;
4827static const struct of_device_id __clk_of_table_sentinel
4828	__used __section("__clk_of_table_end");
4829
4830static LIST_HEAD(of_clk_providers);
4831static DEFINE_MUTEX(of_clk_mutex);
4832
4833struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
4834				     void *data)
4835{
4836	return data;
4837}
4838EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
4839
4840struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data)
4841{
4842	return data;
4843}
4844EXPORT_SYMBOL_GPL(of_clk_hw_simple_get);
4845
4846struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
4847{
4848	struct clk_onecell_data *clk_data = data;
4849	unsigned int idx = clkspec->args[0];
4850
4851	if (idx >= clk_data->clk_num) {
4852		pr_err("%s: invalid clock index %u\n", __func__, idx);
4853		return ERR_PTR(-EINVAL);
4854	}
4855
4856	return clk_data->clks[idx];
4857}
4858EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
4859
4860struct clk_hw *
4861of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data)
4862{
4863	struct clk_hw_onecell_data *hw_data = data;
4864	unsigned int idx = clkspec->args[0];
4865
4866	if (idx >= hw_data->num) {
4867		pr_err("%s: invalid index %u\n", __func__, idx);
4868		return ERR_PTR(-EINVAL);
4869	}
4870
4871	return hw_data->hws[idx];
4872}
4873EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get);
4874
4875/**
4876 * of_clk_add_provider() - Register a clock provider for a node
4877 * @np: Device node pointer associated with clock provider
4878 * @clk_src_get: callback for decoding clock
4879 * @data: context pointer for @clk_src_get callback.
4880 *
4881 * This function is *deprecated*. Use of_clk_add_hw_provider() instead.
4882 */
4883int of_clk_add_provider(struct device_node *np,
4884			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
4885						   void *data),
4886			void *data)
4887{
4888	struct of_clk_provider *cp;
4889	int ret;
4890
4891	if (!np)
4892		return 0;
4893
4894	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4895	if (!cp)
4896		return -ENOMEM;
4897
4898	cp->node = of_node_get(np);
4899	cp->data = data;
4900	cp->get = clk_src_get;
4901
4902	mutex_lock(&of_clk_mutex);
4903	list_add(&cp->link, &of_clk_providers);
4904	mutex_unlock(&of_clk_mutex);
4905	pr_debug("Added clock from %pOF\n", np);
4906
4907	clk_core_reparent_orphans();
4908
4909	ret = of_clk_set_defaults(np, true);
4910	if (ret < 0)
4911		of_clk_del_provider(np);
4912
4913	fwnode_dev_initialized(&np->fwnode, true);
4914
4915	return ret;
4916}
4917EXPORT_SYMBOL_GPL(of_clk_add_provider);
4918
4919/**
4920 * of_clk_add_hw_provider() - Register a clock provider for a node
4921 * @np: Device node pointer associated with clock provider
4922 * @get: callback for decoding clk_hw
4923 * @data: context pointer for @get callback.
4924 */
4925int of_clk_add_hw_provider(struct device_node *np,
4926			   struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4927						 void *data),
4928			   void *data)
4929{
4930	struct of_clk_provider *cp;
4931	int ret;
4932
4933	if (!np)
4934		return 0;
4935
4936	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4937	if (!cp)
4938		return -ENOMEM;
4939
4940	cp->node = of_node_get(np);
4941	cp->data = data;
4942	cp->get_hw = get;
4943
4944	mutex_lock(&of_clk_mutex);
4945	list_add(&cp->link, &of_clk_providers);
4946	mutex_unlock(&of_clk_mutex);
4947	pr_debug("Added clk_hw provider from %pOF\n", np);
4948
4949	clk_core_reparent_orphans();
4950
4951	ret = of_clk_set_defaults(np, true);
4952	if (ret < 0)
4953		of_clk_del_provider(np);
4954
4955	fwnode_dev_initialized(&np->fwnode, true);
4956
4957	return ret;
4958}
4959EXPORT_SYMBOL_GPL(of_clk_add_hw_provider);
4960
4961static void devm_of_clk_release_provider(struct device *dev, void *res)
4962{
4963	of_clk_del_provider(*(struct device_node **)res);
4964}
4965
4966/*
4967 * We allow a child device to use its parent device as the clock provider node
4968 * for cases like MFD sub-devices where the child device driver wants to use
4969 * devm_*() APIs but not list the device in DT as a sub-node.
4970 */
4971static struct device_node *get_clk_provider_node(struct device *dev)
4972{
4973	struct device_node *np, *parent_np;
4974
4975	np = dev->of_node;
4976	parent_np = dev->parent ? dev->parent->of_node : NULL;
4977
4978	if (!of_property_present(np, "#clock-cells"))
4979		if (of_property_present(parent_np, "#clock-cells"))
4980			np = parent_np;
4981
4982	return np;
4983}
4984
4985/**
4986 * devm_of_clk_add_hw_provider() - Managed clk provider node registration
4987 * @dev: Device acting as the clock provider (used for DT node and lifetime)
4988 * @get: callback for decoding clk_hw
4989 * @data: context pointer for @get callback
4990 *
4991 * Registers clock provider for given device's node. If the device has no DT
4992 * node or if the device node lacks of clock provider information (#clock-cells)
4993 * then the parent device's node is scanned for this information. If parent node
4994 * has the #clock-cells then it is used in registration. Provider is
4995 * automatically released at device exit.
4996 *
4997 * Return: 0 on success or an errno on failure.
4998 */
4999int devm_of_clk_add_hw_provider(struct device *dev,
5000			struct clk_hw *(*get)(struct of_phandle_args *clkspec,
5001					      void *data),
5002			void *data)
5003{
5004	struct device_node **ptr, *np;
5005	int ret;
5006
5007	ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr),
5008			   GFP_KERNEL);
5009	if (!ptr)
5010		return -ENOMEM;
5011
5012	np = get_clk_provider_node(dev);
5013	ret = of_clk_add_hw_provider(np, get, data);
5014	if (!ret) {
5015		*ptr = np;
5016		devres_add(dev, ptr);
5017	} else {
5018		devres_free(ptr);
5019	}
5020
5021	return ret;
5022}
5023EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider);
5024
5025/**
5026 * of_clk_del_provider() - Remove a previously registered clock provider
5027 * @np: Device node pointer associated with clock provider
5028 */
5029void of_clk_del_provider(struct device_node *np)
5030{
5031	struct of_clk_provider *cp;
5032
5033	if (!np)
5034		return;
5035
5036	mutex_lock(&of_clk_mutex);
5037	list_for_each_entry(cp, &of_clk_providers, link) {
5038		if (cp->node == np) {
5039			list_del(&cp->link);
5040			fwnode_dev_initialized(&np->fwnode, false);
5041			of_node_put(cp->node);
5042			kfree(cp);
5043			break;
5044		}
5045	}
5046	mutex_unlock(&of_clk_mutex);
5047}
5048EXPORT_SYMBOL_GPL(of_clk_del_provider);
5049
5050/**
5051 * of_parse_clkspec() - Parse a DT clock specifier for a given device node
5052 * @np: device node to parse clock specifier from
5053 * @index: index of phandle to parse clock out of. If index < 0, @name is used
5054 * @name: clock name to find and parse. If name is NULL, the index is used
5055 * @out_args: Result of parsing the clock specifier
5056 *
5057 * Parses a device node's "clocks" and "clock-names" properties to find the
5058 * phandle and cells for the index or name that is desired. The resulting clock
5059 * specifier is placed into @out_args, or an errno is returned when there's a
5060 * parsing error. The @index argument is ignored if @name is non-NULL.
5061 *
5062 * Example:
5063 *
5064 * phandle1: clock-controller@1 {
5065 *	#clock-cells = <2>;
5066 * }
5067 *
5068 * phandle2: clock-controller@2 {
5069 *	#clock-cells = <1>;
5070 * }
5071 *
5072 * clock-consumer@3 {
5073 *	clocks = <&phandle1 1 2 &phandle2 3>;
5074 *	clock-names = "name1", "name2";
5075 * }
5076 *
5077 * To get a device_node for `clock-controller@2' node you may call this
5078 * function a few different ways:
5079 *
5080 *   of_parse_clkspec(clock-consumer@3, -1, "name2", &args);
5081 *   of_parse_clkspec(clock-consumer@3, 1, NULL, &args);
5082 *   of_parse_clkspec(clock-consumer@3, 1, "name2", &args);
5083 *
5084 * Return: 0 upon successfully parsing the clock specifier. Otherwise, -ENOENT
5085 * if @name is NULL or -EINVAL if @name is non-NULL and it can't be found in
5086 * the "clock-names" property of @np.
5087 */
5088static int of_parse_clkspec(const struct device_node *np, int index,
5089			    const char *name, struct of_phandle_args *out_args)
5090{
5091	int ret = -ENOENT;
5092
5093	/* Walk up the tree of devices looking for a clock property that matches */
5094	while (np) {
5095		/*
5096		 * For named clocks, first look up the name in the
5097		 * "clock-names" property.  If it cannot be found, then index
5098		 * will be an error code and of_parse_phandle_with_args() will
5099		 * return -EINVAL.
5100		 */
5101		if (name)
5102			index = of_property_match_string(np, "clock-names", name);
5103		ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells",
5104						 index, out_args);
5105		if (!ret)
5106			break;
5107		if (name && index >= 0)
5108			break;
5109
5110		/*
5111		 * No matching clock found on this node.  If the parent node
5112		 * has a "clock-ranges" property, then we can try one of its
5113		 * clocks.
5114		 */
5115		np = np->parent;
5116		if (np && !of_get_property(np, "clock-ranges", NULL))
5117			break;
5118		index = 0;
5119	}
5120
5121	return ret;
5122}
5123
5124static struct clk_hw *
5125__of_clk_get_hw_from_provider(struct of_clk_provider *provider,
5126			      struct of_phandle_args *clkspec)
5127{
5128	struct clk *clk;
5129
5130	if (provider->get_hw)
5131		return provider->get_hw(clkspec, provider->data);
5132
5133	clk = provider->get(clkspec, provider->data);
5134	if (IS_ERR(clk))
5135		return ERR_CAST(clk);
5136	return __clk_get_hw(clk);
5137}
5138
5139static struct clk_hw *
5140of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
5141{
5142	struct of_clk_provider *provider;
5143	struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER);
5144
5145	if (!clkspec)
5146		return ERR_PTR(-EINVAL);
5147
 
5148	mutex_lock(&of_clk_mutex);
5149	list_for_each_entry(provider, &of_clk_providers, link) {
5150		if (provider->node == clkspec->np) {
5151			hw = __of_clk_get_hw_from_provider(provider, clkspec);
5152			if (!IS_ERR(hw))
5153				break;
 
 
 
 
 
 
 
 
5154		}
5155	}
5156	mutex_unlock(&of_clk_mutex);
5157
5158	return hw;
5159}
5160
5161/**
5162 * of_clk_get_from_provider() - Lookup a clock from a clock provider
5163 * @clkspec: pointer to a clock specifier data structure
5164 *
5165 * This function looks up a struct clk from the registered list of clock
5166 * providers, an input is a clock specifier data structure as returned
5167 * from the of_parse_phandle_with_args() function call.
5168 */
5169struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
5170{
5171	struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec);
5172
5173	return clk_hw_create_clk(NULL, hw, NULL, __func__);
5174}
5175EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
5176
5177struct clk_hw *of_clk_get_hw(struct device_node *np, int index,
5178			     const char *con_id)
5179{
5180	int ret;
5181	struct clk_hw *hw;
5182	struct of_phandle_args clkspec;
5183
5184	ret = of_parse_clkspec(np, index, con_id, &clkspec);
5185	if (ret)
5186		return ERR_PTR(ret);
5187
5188	hw = of_clk_get_hw_from_clkspec(&clkspec);
5189	of_node_put(clkspec.np);
5190
5191	return hw;
5192}
5193
5194static struct clk *__of_clk_get(struct device_node *np,
5195				int index, const char *dev_id,
5196				const char *con_id)
5197{
5198	struct clk_hw *hw = of_clk_get_hw(np, index, con_id);
5199
5200	return clk_hw_create_clk(NULL, hw, dev_id, con_id);
5201}
5202
5203struct clk *of_clk_get(struct device_node *np, int index)
5204{
5205	return __of_clk_get(np, index, np->full_name, NULL);
5206}
5207EXPORT_SYMBOL(of_clk_get);
5208
5209/**
5210 * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node
5211 * @np: pointer to clock consumer node
5212 * @name: name of consumer's clock input, or NULL for the first clock reference
5213 *
5214 * This function parses the clocks and clock-names properties,
5215 * and uses them to look up the struct clk from the registered list of clock
5216 * providers.
5217 */
5218struct clk *of_clk_get_by_name(struct device_node *np, const char *name)
5219{
5220	if (!np)
5221		return ERR_PTR(-ENOENT);
5222
5223	return __of_clk_get(np, 0, np->full_name, name);
5224}
5225EXPORT_SYMBOL(of_clk_get_by_name);
5226
5227/**
5228 * of_clk_get_parent_count() - Count the number of clocks a device node has
5229 * @np: device node to count
5230 *
5231 * Returns: The number of clocks that are possible parents of this node
5232 */
5233unsigned int of_clk_get_parent_count(const struct device_node *np)
5234{
5235	int count;
5236
5237	count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
5238	if (count < 0)
5239		return 0;
5240
5241	return count;
5242}
5243EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
5244
5245const char *of_clk_get_parent_name(const struct device_node *np, int index)
5246{
5247	struct of_phandle_args clkspec;
5248	struct property *prop;
5249	const char *clk_name;
5250	const __be32 *vp;
5251	u32 pv;
5252	int rc;
5253	int count;
5254	struct clk *clk;
5255
5256	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
5257					&clkspec);
5258	if (rc)
5259		return NULL;
5260
5261	index = clkspec.args_count ? clkspec.args[0] : 0;
5262	count = 0;
5263
5264	/* if there is an indices property, use it to transfer the index
5265	 * specified into an array offset for the clock-output-names property.
5266	 */
5267	of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
5268		if (index == pv) {
5269			index = count;
5270			break;
5271		}
5272		count++;
5273	}
5274	/* We went off the end of 'clock-indices' without finding it */
5275	if (prop && !vp)
5276		return NULL;
5277
5278	if (of_property_read_string_index(clkspec.np, "clock-output-names",
5279					  index,
5280					  &clk_name) < 0) {
5281		/*
5282		 * Best effort to get the name if the clock has been
5283		 * registered with the framework. If the clock isn't
5284		 * registered, we return the node name as the name of
5285		 * the clock as long as #clock-cells = 0.
5286		 */
5287		clk = of_clk_get_from_provider(&clkspec);
5288		if (IS_ERR(clk)) {
5289			if (clkspec.args_count == 0)
5290				clk_name = clkspec.np->name;
5291			else
5292				clk_name = NULL;
5293		} else {
5294			clk_name = __clk_get_name(clk);
5295			clk_put(clk);
5296		}
5297	}
5298
5299
5300	of_node_put(clkspec.np);
5301	return clk_name;
5302}
5303EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
5304
5305/**
5306 * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
5307 * number of parents
5308 * @np: Device node pointer associated with clock provider
5309 * @parents: pointer to char array that hold the parents' names
5310 * @size: size of the @parents array
5311 *
5312 * Return: number of parents for the clock node.
5313 */
5314int of_clk_parent_fill(struct device_node *np, const char **parents,
5315		       unsigned int size)
5316{
5317	unsigned int i = 0;
5318
5319	while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
5320		i++;
5321
5322	return i;
5323}
5324EXPORT_SYMBOL_GPL(of_clk_parent_fill);
5325
5326struct clock_provider {
5327	void (*clk_init_cb)(struct device_node *);
5328	struct device_node *np;
5329	struct list_head node;
5330};
5331
5332/*
5333 * This function looks for a parent clock. If there is one, then it
5334 * checks that the provider for this parent clock was initialized, in
5335 * this case the parent clock will be ready.
5336 */
5337static int parent_ready(struct device_node *np)
5338{
5339	int i = 0;
5340
5341	while (true) {
5342		struct clk *clk = of_clk_get(np, i);
5343
5344		/* this parent is ready we can check the next one */
5345		if (!IS_ERR(clk)) {
5346			clk_put(clk);
5347			i++;
5348			continue;
5349		}
5350
5351		/* at least one parent is not ready, we exit now */
5352		if (PTR_ERR(clk) == -EPROBE_DEFER)
5353			return 0;
5354
5355		/*
5356		 * Here we make assumption that the device tree is
5357		 * written correctly. So an error means that there is
5358		 * no more parent. As we didn't exit yet, then the
5359		 * previous parent are ready. If there is no clock
5360		 * parent, no need to wait for them, then we can
5361		 * consider their absence as being ready
5362		 */
5363		return 1;
5364	}
5365}
5366
5367/**
5368 * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree
5369 * @np: Device node pointer associated with clock provider
5370 * @index: clock index
5371 * @flags: pointer to top-level framework flags
5372 *
5373 * Detects if the clock-critical property exists and, if so, sets the
5374 * corresponding CLK_IS_CRITICAL flag.
5375 *
5376 * Do not use this function. It exists only for legacy Device Tree
5377 * bindings, such as the one-clock-per-node style that are outdated.
5378 * Those bindings typically put all clock data into .dts and the Linux
5379 * driver has no clock data, thus making it impossible to set this flag
5380 * correctly from the driver. Only those drivers may call
5381 * of_clk_detect_critical from their setup functions.
5382 *
5383 * Return: error code or zero on success
5384 */
5385int of_clk_detect_critical(struct device_node *np, int index,
5386			   unsigned long *flags)
5387{
5388	struct property *prop;
5389	const __be32 *cur;
5390	uint32_t idx;
5391
5392	if (!np || !flags)
5393		return -EINVAL;
5394
5395	of_property_for_each_u32(np, "clock-critical", prop, cur, idx)
5396		if (index == idx)
5397			*flags |= CLK_IS_CRITICAL;
5398
5399	return 0;
5400}
5401
5402/**
5403 * of_clk_init() - Scan and init clock providers from the DT
5404 * @matches: array of compatible values and init functions for providers.
5405 *
5406 * This function scans the device tree for matching clock providers
5407 * and calls their initialization functions. It also does it by trying
5408 * to follow the dependencies.
5409 */
5410void __init of_clk_init(const struct of_device_id *matches)
5411{
5412	const struct of_device_id *match;
5413	struct device_node *np;
5414	struct clock_provider *clk_provider, *next;
5415	bool is_init_done;
5416	bool force = false;
5417	LIST_HEAD(clk_provider_list);
5418
5419	if (!matches)
5420		matches = &__clk_of_table;
5421
5422	/* First prepare the list of the clocks providers */
5423	for_each_matching_node_and_match(np, matches, &match) {
5424		struct clock_provider *parent;
5425
5426		if (!of_device_is_available(np))
5427			continue;
5428
5429		parent = kzalloc(sizeof(*parent), GFP_KERNEL);
5430		if (!parent) {
5431			list_for_each_entry_safe(clk_provider, next,
5432						 &clk_provider_list, node) {
5433				list_del(&clk_provider->node);
5434				of_node_put(clk_provider->np);
5435				kfree(clk_provider);
5436			}
5437			of_node_put(np);
5438			return;
5439		}
5440
5441		parent->clk_init_cb = match->data;
5442		parent->np = of_node_get(np);
5443		list_add_tail(&parent->node, &clk_provider_list);
5444	}
5445
5446	while (!list_empty(&clk_provider_list)) {
5447		is_init_done = false;
5448		list_for_each_entry_safe(clk_provider, next,
5449					&clk_provider_list, node) {
5450			if (force || parent_ready(clk_provider->np)) {
5451
5452				/* Don't populate platform devices */
5453				of_node_set_flag(clk_provider->np,
5454						 OF_POPULATED);
5455
5456				clk_provider->clk_init_cb(clk_provider->np);
5457				of_clk_set_defaults(clk_provider->np, true);
5458
5459				list_del(&clk_provider->node);
5460				of_node_put(clk_provider->np);
5461				kfree(clk_provider);
5462				is_init_done = true;
5463			}
5464		}
5465
5466		/*
5467		 * We didn't manage to initialize any of the
5468		 * remaining providers during the last loop, so now we
5469		 * initialize all the remaining ones unconditionally
5470		 * in case the clock parent was not mandatory
5471		 */
5472		if (!is_init_done)
5473			force = true;
5474	}
5475}
5476#endif
v4.6
 
   1/*
   2 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
   3 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License version 2 as
   7 * published by the Free Software Foundation.
   8 *
   9 * Standard functionality for the common clock API.  See Documentation/clk.txt
  10 */
  11
  12#include <linux/clk.h>
  13#include <linux/clk-provider.h>
  14#include <linux/clk/clk-conf.h>
  15#include <linux/module.h>
  16#include <linux/mutex.h>
  17#include <linux/spinlock.h>
  18#include <linux/err.h>
  19#include <linux/list.h>
  20#include <linux/slab.h>
  21#include <linux/of.h>
  22#include <linux/device.h>
  23#include <linux/init.h>
 
  24#include <linux/sched.h>
  25#include <linux/clkdev.h>
  26
  27#include "clk.h"
  28
  29static DEFINE_SPINLOCK(enable_lock);
  30static DEFINE_MUTEX(prepare_lock);
  31
  32static struct task_struct *prepare_owner;
  33static struct task_struct *enable_owner;
  34
  35static int prepare_refcnt;
  36static int enable_refcnt;
  37
  38static HLIST_HEAD(clk_root_list);
  39static HLIST_HEAD(clk_orphan_list);
  40static LIST_HEAD(clk_notifier_list);
  41
 
 
 
 
 
 
  42/***    private data structures    ***/
  43
 
 
 
 
 
 
 
 
  44struct clk_core {
  45	const char		*name;
  46	const struct clk_ops	*ops;
  47	struct clk_hw		*hw;
  48	struct module		*owner;
 
 
  49	struct clk_core		*parent;
  50	const char		**parent_names;
  51	struct clk_core		**parents;
  52	u8			num_parents;
  53	u8			new_parent_index;
  54	unsigned long		rate;
  55	unsigned long		req_rate;
  56	unsigned long		new_rate;
  57	struct clk_core		*new_parent;
  58	struct clk_core		*new_child;
  59	unsigned long		flags;
  60	bool			orphan;
 
  61	unsigned int		enable_count;
  62	unsigned int		prepare_count;
 
  63	unsigned long		min_rate;
  64	unsigned long		max_rate;
  65	unsigned long		accuracy;
  66	int			phase;
 
  67	struct hlist_head	children;
  68	struct hlist_node	child_node;
  69	struct hlist_head	clks;
  70	unsigned int		notifier_count;
  71#ifdef CONFIG_DEBUG_FS
  72	struct dentry		*dentry;
  73	struct hlist_node	debug_node;
  74#endif
  75	struct kref		ref;
  76};
  77
  78#define CREATE_TRACE_POINTS
  79#include <trace/events/clk.h>
  80
  81struct clk {
  82	struct clk_core	*core;
 
  83	const char *dev_id;
  84	const char *con_id;
  85	unsigned long min_rate;
  86	unsigned long max_rate;
 
  87	struct hlist_node clks_node;
  88};
  89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  90/***           locking             ***/
  91static void clk_prepare_lock(void)
  92{
  93	if (!mutex_trylock(&prepare_lock)) {
  94		if (prepare_owner == current) {
  95			prepare_refcnt++;
  96			return;
  97		}
  98		mutex_lock(&prepare_lock);
  99	}
 100	WARN_ON_ONCE(prepare_owner != NULL);
 101	WARN_ON_ONCE(prepare_refcnt != 0);
 102	prepare_owner = current;
 103	prepare_refcnt = 1;
 104}
 105
 106static void clk_prepare_unlock(void)
 107{
 108	WARN_ON_ONCE(prepare_owner != current);
 109	WARN_ON_ONCE(prepare_refcnt == 0);
 110
 111	if (--prepare_refcnt)
 112		return;
 113	prepare_owner = NULL;
 114	mutex_unlock(&prepare_lock);
 115}
 116
 117static unsigned long clk_enable_lock(void)
 118	__acquires(enable_lock)
 119{
 120	unsigned long flags;
 121
 122	if (!spin_trylock_irqsave(&enable_lock, flags)) {
 
 
 
 
 
 
 123		if (enable_owner == current) {
 124			enable_refcnt++;
 125			__acquire(enable_lock);
 
 
 126			return flags;
 127		}
 128		spin_lock_irqsave(&enable_lock, flags);
 129	}
 130	WARN_ON_ONCE(enable_owner != NULL);
 131	WARN_ON_ONCE(enable_refcnt != 0);
 132	enable_owner = current;
 133	enable_refcnt = 1;
 134	return flags;
 135}
 136
 137static void clk_enable_unlock(unsigned long flags)
 138	__releases(enable_lock)
 139{
 140	WARN_ON_ONCE(enable_owner != current);
 141	WARN_ON_ONCE(enable_refcnt == 0);
 142
 143	if (--enable_refcnt) {
 144		__release(enable_lock);
 145		return;
 146	}
 147	enable_owner = NULL;
 148	spin_unlock_irqrestore(&enable_lock, flags);
 149}
 150
 
 
 
 
 
 151static bool clk_core_is_prepared(struct clk_core *core)
 152{
 
 
 153	/*
 154	 * .is_prepared is optional for clocks that can prepare
 155	 * fall back to software usage counter if it is missing
 156	 */
 157	if (!core->ops->is_prepared)
 158		return core->prepare_count;
 159
 160	return core->ops->is_prepared(core->hw);
 
 
 
 
 
 161}
 162
 163static bool clk_core_is_enabled(struct clk_core *core)
 164{
 
 
 165	/*
 166	 * .is_enabled is only mandatory for clocks that gate
 167	 * fall back to software usage counter if .is_enabled is missing
 168	 */
 169	if (!core->ops->is_enabled)
 170		return core->enable_count;
 171
 172	return core->ops->is_enabled(core->hw);
 173}
 174
 175static void clk_unprepare_unused_subtree(struct clk_core *core)
 176{
 177	struct clk_core *child;
 178
 179	lockdep_assert_held(&prepare_lock);
 180
 181	hlist_for_each_entry(child, &core->children, child_node)
 182		clk_unprepare_unused_subtree(child);
 183
 184	if (core->prepare_count)
 185		return;
 186
 187	if (core->flags & CLK_IGNORE_UNUSED)
 188		return;
 189
 190	if (clk_core_is_prepared(core)) {
 191		trace_clk_unprepare(core);
 192		if (core->ops->unprepare_unused)
 193			core->ops->unprepare_unused(core->hw);
 194		else if (core->ops->unprepare)
 195			core->ops->unprepare(core->hw);
 196		trace_clk_unprepare_complete(core);
 197	}
 198}
 199
 200static void clk_disable_unused_subtree(struct clk_core *core)
 201{
 202	struct clk_core *child;
 203	unsigned long flags;
 204
 205	lockdep_assert_held(&prepare_lock);
 206
 207	hlist_for_each_entry(child, &core->children, child_node)
 208		clk_disable_unused_subtree(child);
 209
 210	flags = clk_enable_lock();
 211
 212	if (core->enable_count)
 213		goto unlock_out;
 214
 215	if (core->flags & CLK_IGNORE_UNUSED)
 216		goto unlock_out;
 217
 218	/*
 219	 * some gate clocks have special needs during the disable-unused
 220	 * sequence.  call .disable_unused if available, otherwise fall
 221	 * back to .disable
 222	 */
 223	if (clk_core_is_enabled(core)) {
 224		trace_clk_disable(core);
 225		if (core->ops->disable_unused)
 226			core->ops->disable_unused(core->hw);
 227		else if (core->ops->disable)
 228			core->ops->disable(core->hw);
 229		trace_clk_disable_complete(core);
 230	}
 231
 232unlock_out:
 233	clk_enable_unlock(flags);
 234}
 
 235
 236static bool clk_ignore_unused;
 237static int __init clk_ignore_unused_setup(char *__unused)
 238{
 239	clk_ignore_unused = true;
 240	return 1;
 241}
 242__setup("clk_ignore_unused", clk_ignore_unused_setup);
 243
 244static int clk_disable_unused(void)
 245{
 246	struct clk_core *core;
 247
 248	if (clk_ignore_unused) {
 249		pr_warn("clk: Not disabling unused clocks\n");
 250		return 0;
 251	}
 252
 253	clk_prepare_lock();
 254
 255	hlist_for_each_entry(core, &clk_root_list, child_node)
 256		clk_disable_unused_subtree(core);
 257
 258	hlist_for_each_entry(core, &clk_orphan_list, child_node)
 259		clk_disable_unused_subtree(core);
 260
 261	hlist_for_each_entry(core, &clk_root_list, child_node)
 262		clk_unprepare_unused_subtree(core);
 263
 264	hlist_for_each_entry(core, &clk_orphan_list, child_node)
 265		clk_unprepare_unused_subtree(core);
 266
 267	clk_prepare_unlock();
 268
 269	return 0;
 270}
 271late_initcall_sync(clk_disable_unused);
 272
 273/***    helper functions   ***/
 274
 275const char *__clk_get_name(const struct clk *clk)
 276{
 277	return !clk ? NULL : clk->core->name;
 278}
 279EXPORT_SYMBOL_GPL(__clk_get_name);
 280
 281const char *clk_hw_get_name(const struct clk_hw *hw)
 282{
 283	return hw->core->name;
 284}
 285EXPORT_SYMBOL_GPL(clk_hw_get_name);
 286
 287struct clk_hw *__clk_get_hw(struct clk *clk)
 288{
 289	return !clk ? NULL : clk->core->hw;
 290}
 291EXPORT_SYMBOL_GPL(__clk_get_hw);
 292
 293unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
 294{
 295	return hw->core->num_parents;
 296}
 297EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
 298
 299struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
 300{
 301	return hw->core->parent ? hw->core->parent->hw : NULL;
 302}
 303EXPORT_SYMBOL_GPL(clk_hw_get_parent);
 304
 305static struct clk_core *__clk_lookup_subtree(const char *name,
 306					     struct clk_core *core)
 307{
 308	struct clk_core *child;
 309	struct clk_core *ret;
 310
 311	if (!strcmp(core->name, name))
 312		return core;
 313
 314	hlist_for_each_entry(child, &core->children, child_node) {
 315		ret = __clk_lookup_subtree(name, child);
 316		if (ret)
 317			return ret;
 318	}
 319
 320	return NULL;
 321}
 322
 323static struct clk_core *clk_core_lookup(const char *name)
 324{
 325	struct clk_core *root_clk;
 326	struct clk_core *ret;
 327
 328	if (!name)
 329		return NULL;
 330
 331	/* search the 'proper' clk tree first */
 332	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
 333		ret = __clk_lookup_subtree(name, root_clk);
 334		if (ret)
 335			return ret;
 336	}
 337
 338	/* if not found, then search the orphan tree */
 339	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
 340		ret = __clk_lookup_subtree(name, root_clk);
 341		if (ret)
 342			return ret;
 343	}
 344
 345	return NULL;
 346}
 347
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 348static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
 349							 u8 index)
 350{
 351	if (!core || index >= core->num_parents)
 352		return NULL;
 353
 354	if (!core->parents[index])
 355		core->parents[index] =
 356				clk_core_lookup(core->parent_names[index]);
 357
 358	return core->parents[index];
 359}
 360
 361struct clk_hw *
 362clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
 363{
 364	struct clk_core *parent;
 365
 366	parent = clk_core_get_parent_by_index(hw->core, index);
 367
 368	return !parent ? NULL : parent->hw;
 369}
 370EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
 371
 372unsigned int __clk_get_enable_count(struct clk *clk)
 373{
 374	return !clk ? 0 : clk->core->enable_count;
 375}
 376
 377static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
 378{
 379	unsigned long ret;
 
 380
 381	if (!core) {
 382		ret = 0;
 383		goto out;
 384	}
 385
 386	ret = core->rate;
 387
 388	if (!core->num_parents)
 389		goto out;
 390
 391	if (!core->parent)
 392		ret = 0;
 393
 394out:
 395	return ret;
 396}
 397
 398unsigned long clk_hw_get_rate(const struct clk_hw *hw)
 399{
 400	return clk_core_get_rate_nolock(hw->core);
 401}
 402EXPORT_SYMBOL_GPL(clk_hw_get_rate);
 403
 404static unsigned long __clk_get_accuracy(struct clk_core *core)
 405{
 406	if (!core)
 407		return 0;
 408
 409	return core->accuracy;
 410}
 411
 412unsigned long __clk_get_flags(struct clk *clk)
 413{
 414	return !clk ? 0 : clk->core->flags;
 415}
 416EXPORT_SYMBOL_GPL(__clk_get_flags);
 417
 418unsigned long clk_hw_get_flags(const struct clk_hw *hw)
 419{
 420	return hw->core->flags;
 421}
 422EXPORT_SYMBOL_GPL(clk_hw_get_flags);
 423
 424bool clk_hw_is_prepared(const struct clk_hw *hw)
 425{
 426	return clk_core_is_prepared(hw->core);
 427}
 
 
 
 
 
 
 
 428
 429bool clk_hw_is_enabled(const struct clk_hw *hw)
 430{
 431	return clk_core_is_enabled(hw->core);
 432}
 
 433
 434bool __clk_is_enabled(struct clk *clk)
 435{
 436	if (!clk)
 437		return false;
 438
 439	return clk_core_is_enabled(clk->core);
 440}
 441EXPORT_SYMBOL_GPL(__clk_is_enabled);
 442
 443static bool mux_is_better_rate(unsigned long rate, unsigned long now,
 444			   unsigned long best, unsigned long flags)
 445{
 446	if (flags & CLK_MUX_ROUND_CLOSEST)
 447		return abs(now - rate) < abs(best - rate);
 448
 449	return now <= rate && now > best;
 450}
 451
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 452static int
 453clk_mux_determine_rate_flags(struct clk_hw *hw, struct clk_rate_request *req,
 454			     unsigned long flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 455{
 456	struct clk_core *core = hw->core, *parent, *best_parent = NULL;
 457	int i, num_parents, ret;
 458	unsigned long best = 0;
 459	struct clk_rate_request parent_req = *req;
 460
 461	/* if NO_REPARENT flag set, pass through to current parent */
 462	if (core->flags & CLK_SET_RATE_NO_REPARENT) {
 463		parent = core->parent;
 464		if (core->flags & CLK_SET_RATE_PARENT) {
 465			ret = __clk_determine_rate(parent ? parent->hw : NULL,
 466						   &parent_req);
 467			if (ret)
 468				return ret;
 469
 470			best = parent_req.rate;
 471		} else if (parent) {
 472			best = clk_core_get_rate_nolock(parent);
 473		} else {
 474			best = clk_core_get_rate_nolock(core);
 475		}
 476
 477		goto out;
 478	}
 479
 480	/* find the parent that can provide the fastest rate <= rate */
 481	num_parents = core->num_parents;
 482	for (i = 0; i < num_parents; i++) {
 
 
 483		parent = clk_core_get_parent_by_index(core, i);
 484		if (!parent)
 485			continue;
 486
 487		if (core->flags & CLK_SET_RATE_PARENT) {
 488			parent_req = *req;
 489			ret = __clk_determine_rate(parent->hw, &parent_req);
 
 
 
 
 
 490			if (ret)
 491				continue;
 
 
 
 
 492		} else {
 493			parent_req.rate = clk_core_get_rate_nolock(parent);
 494		}
 495
 496		if (mux_is_better_rate(req->rate, parent_req.rate,
 497				       best, flags)) {
 498			best_parent = parent;
 499			best = parent_req.rate;
 500		}
 501	}
 502
 503	if (!best_parent)
 504		return -EINVAL;
 505
 506out:
 507	if (best_parent)
 508		req->best_parent_hw = best_parent->hw;
 509	req->best_parent_rate = best;
 510	req->rate = best;
 511
 512	return 0;
 513}
 
 514
 515struct clk *__clk_lookup(const char *name)
 516{
 517	struct clk_core *core = clk_core_lookup(name);
 518
 519	return !core ? NULL : core->hw->clk;
 520}
 521
 522static void clk_core_get_boundaries(struct clk_core *core,
 523				    unsigned long *min_rate,
 524				    unsigned long *max_rate)
 525{
 526	struct clk *clk_user;
 527
 
 
 528	*min_rate = core->min_rate;
 529	*max_rate = core->max_rate;
 530
 531	hlist_for_each_entry(clk_user, &core->clks, clks_node)
 532		*min_rate = max(*min_rate, clk_user->min_rate);
 533
 534	hlist_for_each_entry(clk_user, &core->clks, clks_node)
 535		*max_rate = min(*max_rate, clk_user->max_rate);
 536}
 537
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 538void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
 539			   unsigned long max_rate)
 540{
 541	hw->core->min_rate = min_rate;
 542	hw->core->max_rate = max_rate;
 543}
 544EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
 545
 546/*
 
 
 
 
 547 * Helper for finding best parent to provide a given frequency. This can be used
 548 * directly as a determine_rate callback (e.g. for a mux), or from a more
 549 * complex clock that may combine a mux with other operations.
 
 
 550 */
 551int __clk_mux_determine_rate(struct clk_hw *hw,
 552			     struct clk_rate_request *req)
 553{
 554	return clk_mux_determine_rate_flags(hw, req, 0);
 555}
 556EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
 557
 558int __clk_mux_determine_rate_closest(struct clk_hw *hw,
 559				     struct clk_rate_request *req)
 560{
 561	return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
 562}
 563EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
 564
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 565/***        clk api        ***/
 566
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 567static void clk_core_unprepare(struct clk_core *core)
 568{
 569	lockdep_assert_held(&prepare_lock);
 570
 571	if (!core)
 572		return;
 573
 574	if (WARN_ON(core->prepare_count == 0))
 
 575		return;
 576
 
 
 
 
 
 
 
 577	if (--core->prepare_count > 0)
 578		return;
 579
 580	WARN_ON(core->enable_count > 0);
 581
 582	trace_clk_unprepare(core);
 583
 584	if (core->ops->unprepare)
 585		core->ops->unprepare(core->hw);
 586
 587	trace_clk_unprepare_complete(core);
 588	clk_core_unprepare(core->parent);
 
 
 
 
 
 
 
 
 589}
 590
 591/**
 592 * clk_unprepare - undo preparation of a clock source
 593 * @clk: the clk being unprepared
 594 *
 595 * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
 596 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
 597 * if the operation may sleep.  One example is a clk which is accessed over
 598 * I2c.  In the complex case a clk gate operation may require a fast and a slow
 599 * part.  It is this reason that clk_unprepare and clk_disable are not mutually
 600 * exclusive.  In fact clk_disable must be called before clk_unprepare.
 601 */
 602void clk_unprepare(struct clk *clk)
 603{
 604	if (IS_ERR_OR_NULL(clk))
 605		return;
 606
 607	clk_prepare_lock();
 608	clk_core_unprepare(clk->core);
 609	clk_prepare_unlock();
 610}
 611EXPORT_SYMBOL_GPL(clk_unprepare);
 612
 613static int clk_core_prepare(struct clk_core *core)
 614{
 615	int ret = 0;
 616
 617	lockdep_assert_held(&prepare_lock);
 618
 619	if (!core)
 620		return 0;
 621
 622	if (core->prepare_count == 0) {
 
 
 
 
 623		ret = clk_core_prepare(core->parent);
 624		if (ret)
 625			return ret;
 626
 627		trace_clk_prepare(core);
 628
 629		if (core->ops->prepare)
 630			ret = core->ops->prepare(core->hw);
 631
 632		trace_clk_prepare_complete(core);
 633
 634		if (ret) {
 635			clk_core_unprepare(core->parent);
 636			return ret;
 637		}
 638	}
 639
 640	core->prepare_count++;
 641
 
 
 
 
 
 
 
 
 
 
 642	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 643}
 644
 645/**
 646 * clk_prepare - prepare a clock source
 647 * @clk: the clk being prepared
 648 *
 649 * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
 650 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
 651 * operation may sleep.  One example is a clk which is accessed over I2c.  In
 652 * the complex case a clk ungate operation may require a fast and a slow part.
 653 * It is this reason that clk_prepare and clk_enable are not mutually
 654 * exclusive.  In fact clk_prepare must be called before clk_enable.
 655 * Returns 0 on success, -EERROR otherwise.
 656 */
 657int clk_prepare(struct clk *clk)
 658{
 659	int ret;
 660
 661	if (!clk)
 662		return 0;
 663
 664	clk_prepare_lock();
 665	ret = clk_core_prepare(clk->core);
 666	clk_prepare_unlock();
 667
 668	return ret;
 669}
 670EXPORT_SYMBOL_GPL(clk_prepare);
 671
 672static void clk_core_disable(struct clk_core *core)
 673{
 674	lockdep_assert_held(&enable_lock);
 675
 676	if (!core)
 677		return;
 678
 679	if (WARN_ON(core->enable_count == 0))
 
 
 
 
 680		return;
 681
 682	if (--core->enable_count > 0)
 683		return;
 684
 685	trace_clk_disable(core);
 686
 687	if (core->ops->disable)
 688		core->ops->disable(core->hw);
 689
 690	trace_clk_disable_complete(core);
 691
 692	clk_core_disable(core->parent);
 693}
 694
 
 
 
 
 
 
 
 
 
 695/**
 696 * clk_disable - gate a clock
 697 * @clk: the clk being gated
 698 *
 699 * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
 700 * a simple case, clk_disable can be used instead of clk_unprepare to gate a
 701 * clk if the operation is fast and will never sleep.  One example is a
 702 * SoC-internal clk which is controlled via simple register writes.  In the
 703 * complex case a clk gate operation may require a fast and a slow part.  It is
 704 * this reason that clk_unprepare and clk_disable are not mutually exclusive.
 705 * In fact clk_disable must be called before clk_unprepare.
 706 */
 707void clk_disable(struct clk *clk)
 708{
 709	unsigned long flags;
 710
 711	if (IS_ERR_OR_NULL(clk))
 712		return;
 713
 714	flags = clk_enable_lock();
 715	clk_core_disable(clk->core);
 716	clk_enable_unlock(flags);
 717}
 718EXPORT_SYMBOL_GPL(clk_disable);
 719
 720static int clk_core_enable(struct clk_core *core)
 721{
 722	int ret = 0;
 723
 724	lockdep_assert_held(&enable_lock);
 725
 726	if (!core)
 727		return 0;
 728
 729	if (WARN_ON(core->prepare_count == 0))
 
 730		return -ESHUTDOWN;
 731
 732	if (core->enable_count == 0) {
 733		ret = clk_core_enable(core->parent);
 734
 735		if (ret)
 736			return ret;
 737
 738		trace_clk_enable(core);
 739
 740		if (core->ops->enable)
 741			ret = core->ops->enable(core->hw);
 742
 743		trace_clk_enable_complete(core);
 744
 745		if (ret) {
 746			clk_core_disable(core->parent);
 747			return ret;
 748		}
 749	}
 750
 751	core->enable_count++;
 752	return 0;
 753}
 754
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 755/**
 756 * clk_enable - ungate a clock
 757 * @clk: the clk being ungated
 758 *
 759 * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
 760 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
 761 * if the operation will never sleep.  One example is a SoC-internal clk which
 762 * is controlled via simple register writes.  In the complex case a clk ungate
 763 * operation may require a fast and a slow part.  It is this reason that
 764 * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
 765 * must be called before clk_enable.  Returns 0 on success, -EERROR
 766 * otherwise.
 767 */
 768int clk_enable(struct clk *clk)
 769{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 770	unsigned long flags;
 771	int ret;
 772
 773	if (!clk)
 774		return 0;
 
 
 
 
 
 
 
 
 775
 776	flags = clk_enable_lock();
 777	ret = clk_core_enable(clk->core);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 778	clk_enable_unlock(flags);
 
 
 
 
 
 779
 780	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 781}
 782EXPORT_SYMBOL_GPL(clk_enable);
 783
 784static int clk_core_round_rate_nolock(struct clk_core *core,
 785				      struct clk_rate_request *req)
 786{
 787	struct clk_core *parent;
 788	long rate;
 789
 790	lockdep_assert_held(&prepare_lock);
 791
 792	if (!core)
 793		return 0;
 794
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 795	parent = core->parent;
 796	if (parent) {
 797		req->best_parent_hw = parent->hw;
 798		req->best_parent_rate = parent->rate;
 799	} else {
 800		req->best_parent_hw = NULL;
 801		req->best_parent_rate = 0;
 802	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 803
 804	if (core->ops->determine_rate) {
 805		return core->ops->determine_rate(core->hw, req);
 806	} else if (core->ops->round_rate) {
 807		rate = core->ops->round_rate(core->hw, req->rate,
 808					     &req->best_parent_rate);
 809		if (rate < 0)
 810			return rate;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 811
 812		req->rate = rate;
 813	} else if (core->flags & CLK_SET_RATE_PARENT) {
 814		return clk_core_round_rate_nolock(parent, req);
 815	} else {
 816		req->rate = core->rate;
 817	}
 818
 
 819	return 0;
 820}
 821
 822/**
 823 * __clk_determine_rate - get the closest rate actually supported by a clock
 824 * @hw: determine the rate of this clock
 825 * @rate: target rate
 826 * @min_rate: returned rate must be greater than this rate
 827 * @max_rate: returned rate must be less than this rate
 828 *
 829 * Useful for clk_ops such as .set_rate and .determine_rate.
 830 */
 831int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
 832{
 833	if (!hw) {
 834		req->rate = 0;
 835		return 0;
 836	}
 837
 838	return clk_core_round_rate_nolock(hw->core, req);
 839}
 840EXPORT_SYMBOL_GPL(__clk_determine_rate);
 841
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 842unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
 843{
 844	int ret;
 845	struct clk_rate_request req;
 846
 847	clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate);
 848	req.rate = rate;
 
 849
 850	ret = clk_core_round_rate_nolock(hw->core, &req);
 851	if (ret)
 852		return 0;
 853
 
 
 854	return req.rate;
 855}
 856EXPORT_SYMBOL_GPL(clk_hw_round_rate);
 857
 858/**
 859 * clk_round_rate - round the given rate for a clk
 860 * @clk: the clk for which we are rounding a rate
 861 * @rate: the rate which is to be rounded
 862 *
 863 * Takes in a rate as input and rounds it to a rate that the clk can actually
 864 * use which is then returned.  If clk doesn't support round_rate operation
 865 * then the parent rate is returned.
 866 */
 867long clk_round_rate(struct clk *clk, unsigned long rate)
 868{
 869	struct clk_rate_request req;
 870	int ret;
 871
 872	if (!clk)
 873		return 0;
 874
 875	clk_prepare_lock();
 876
 877	clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate);
 878	req.rate = rate;
 
 
 
 
 879
 880	ret = clk_core_round_rate_nolock(clk->core, &req);
 
 
 
 
 
 
 881	clk_prepare_unlock();
 882
 883	if (ret)
 884		return ret;
 885
 886	return req.rate;
 887}
 888EXPORT_SYMBOL_GPL(clk_round_rate);
 889
 890/**
 891 * __clk_notify - call clk notifier chain
 892 * @core: clk that is changing rate
 893 * @msg: clk notifier type (see include/linux/clk.h)
 894 * @old_rate: old clk rate
 895 * @new_rate: new clk rate
 896 *
 897 * Triggers a notifier call chain on the clk rate-change notification
 898 * for 'clk'.  Passes a pointer to the struct clk and the previous
 899 * and current rates to the notifier callback.  Intended to be called by
 900 * internal clock code only.  Returns NOTIFY_DONE from the last driver
 901 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
 902 * a driver returns that.
 903 */
 904static int __clk_notify(struct clk_core *core, unsigned long msg,
 905		unsigned long old_rate, unsigned long new_rate)
 906{
 907	struct clk_notifier *cn;
 908	struct clk_notifier_data cnd;
 909	int ret = NOTIFY_DONE;
 910
 911	cnd.old_rate = old_rate;
 912	cnd.new_rate = new_rate;
 913
 914	list_for_each_entry(cn, &clk_notifier_list, node) {
 915		if (cn->clk->core == core) {
 916			cnd.clk = cn->clk;
 917			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
 918					&cnd);
 
 
 919		}
 920	}
 921
 922	return ret;
 923}
 924
 925/**
 926 * __clk_recalc_accuracies
 927 * @core: first clk in the subtree
 928 *
 929 * Walks the subtree of clks starting with clk and recalculates accuracies as
 930 * it goes.  Note that if a clk does not implement the .recalc_accuracy
 931 * callback then it is assumed that the clock will take on the accuracy of its
 932 * parent.
 933 */
 934static void __clk_recalc_accuracies(struct clk_core *core)
 935{
 936	unsigned long parent_accuracy = 0;
 937	struct clk_core *child;
 938
 939	lockdep_assert_held(&prepare_lock);
 940
 941	if (core->parent)
 942		parent_accuracy = core->parent->accuracy;
 943
 944	if (core->ops->recalc_accuracy)
 945		core->accuracy = core->ops->recalc_accuracy(core->hw,
 946							  parent_accuracy);
 947	else
 948		core->accuracy = parent_accuracy;
 949
 950	hlist_for_each_entry(child, &core->children, child_node)
 951		__clk_recalc_accuracies(child);
 952}
 953
 954static long clk_core_get_accuracy(struct clk_core *core)
 955{
 956	unsigned long accuracy;
 957
 958	clk_prepare_lock();
 959	if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
 960		__clk_recalc_accuracies(core);
 961
 962	accuracy = __clk_get_accuracy(core);
 963	clk_prepare_unlock();
 964
 965	return accuracy;
 966}
 967
 968/**
 969 * clk_get_accuracy - return the accuracy of clk
 970 * @clk: the clk whose accuracy is being returned
 971 *
 972 * Simply returns the cached accuracy of the clk, unless
 973 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
 974 * issued.
 975 * If clk is NULL then returns 0.
 976 */
 977long clk_get_accuracy(struct clk *clk)
 978{
 
 
 979	if (!clk)
 980		return 0;
 981
 982	return clk_core_get_accuracy(clk->core);
 
 
 
 
 983}
 984EXPORT_SYMBOL_GPL(clk_get_accuracy);
 985
 986static unsigned long clk_recalc(struct clk_core *core,
 987				unsigned long parent_rate)
 988{
 989	if (core->ops->recalc_rate)
 990		return core->ops->recalc_rate(core->hw, parent_rate);
 991	return parent_rate;
 
 
 
 
 992}
 993
 994/**
 995 * __clk_recalc_rates
 996 * @core: first clk in the subtree
 
 997 * @msg: notification type (see include/linux/clk.h)
 998 *
 999 * Walks the subtree of clks starting with clk and recalculates rates as it
1000 * goes.  Note that if a clk does not implement the .recalc_rate callback then
1001 * it is assumed that the clock will take on the rate of its parent.
1002 *
1003 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1004 * if necessary.
1005 */
1006static void __clk_recalc_rates(struct clk_core *core, unsigned long msg)
 
1007{
1008	unsigned long old_rate;
1009	unsigned long parent_rate = 0;
1010	struct clk_core *child;
1011
1012	lockdep_assert_held(&prepare_lock);
1013
1014	old_rate = core->rate;
1015
1016	if (core->parent)
1017		parent_rate = core->parent->rate;
1018
1019	core->rate = clk_recalc(core, parent_rate);
 
 
1020
1021	/*
1022	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1023	 * & ABORT_RATE_CHANGE notifiers
1024	 */
1025	if (core->notifier_count && msg)
1026		__clk_notify(core, msg, old_rate, core->rate);
1027
1028	hlist_for_each_entry(child, &core->children, child_node)
1029		__clk_recalc_rates(child, msg);
1030}
1031
1032static unsigned long clk_core_get_rate(struct clk_core *core)
1033{
1034	unsigned long rate;
1035
1036	clk_prepare_lock();
1037
1038	if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1039		__clk_recalc_rates(core, 0);
1040
1041	rate = clk_core_get_rate_nolock(core);
1042	clk_prepare_unlock();
1043
1044	return rate;
1045}
1046
1047/**
1048 * clk_get_rate - return the rate of clk
1049 * @clk: the clk whose rate is being returned
1050 *
1051 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1052 * is set, which means a recalc_rate will be issued.
1053 * If clk is NULL then returns 0.
 
1054 */
1055unsigned long clk_get_rate(struct clk *clk)
1056{
 
 
1057	if (!clk)
1058		return 0;
1059
1060	return clk_core_get_rate(clk->core);
 
 
 
 
1061}
1062EXPORT_SYMBOL_GPL(clk_get_rate);
1063
1064static int clk_fetch_parent_index(struct clk_core *core,
1065				  struct clk_core *parent)
1066{
1067	int i;
1068
1069	if (!parent)
1070		return -EINVAL;
1071
1072	for (i = 0; i < core->num_parents; i++)
1073		if (clk_core_get_parent_by_index(core, i) == parent)
 
1074			return i;
1075
1076	return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1077}
 
1078
1079/*
1080 * Update the orphan status of @core and all its children.
1081 */
1082static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
1083{
1084	struct clk_core *child;
1085
1086	core->orphan = is_orphan;
1087
1088	hlist_for_each_entry(child, &core->children, child_node)
1089		clk_core_update_orphan_status(child, is_orphan);
1090}
1091
1092static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
1093{
1094	bool was_orphan = core->orphan;
1095
1096	hlist_del(&core->child_node);
1097
1098	if (new_parent) {
1099		bool becomes_orphan = new_parent->orphan;
1100
1101		/* avoid duplicate POST_RATE_CHANGE notifications */
1102		if (new_parent->new_child == core)
1103			new_parent->new_child = NULL;
1104
1105		hlist_add_head(&core->child_node, &new_parent->children);
1106
1107		if (was_orphan != becomes_orphan)
1108			clk_core_update_orphan_status(core, becomes_orphan);
1109	} else {
1110		hlist_add_head(&core->child_node, &clk_orphan_list);
1111		if (!was_orphan)
1112			clk_core_update_orphan_status(core, true);
1113	}
1114
1115	core->parent = new_parent;
1116}
1117
1118static struct clk_core *__clk_set_parent_before(struct clk_core *core,
1119					   struct clk_core *parent)
1120{
1121	unsigned long flags;
1122	struct clk_core *old_parent = core->parent;
1123
1124	/*
1125	 * Migrate prepare state between parents and prevent race with
 
 
1126	 * clk_enable().
1127	 *
1128	 * If the clock is not prepared, then a race with
1129	 * clk_enable/disable() is impossible since we already have the
1130	 * prepare lock (future calls to clk_enable() need to be preceded by
1131	 * a clk_prepare()).
1132	 *
1133	 * If the clock is prepared, migrate the prepared state to the new
1134	 * parent and also protect against a race with clk_enable() by
1135	 * forcing the clock and the new parent on.  This ensures that all
1136	 * future calls to clk_enable() are practically NOPs with respect to
1137	 * hardware and software states.
1138	 *
1139	 * See also: Comment for clk_set_parent() below.
1140	 */
 
 
 
 
 
 
 
 
1141	if (core->prepare_count) {
1142		clk_core_prepare(parent);
1143		flags = clk_enable_lock();
1144		clk_core_enable(parent);
1145		clk_core_enable(core);
1146		clk_enable_unlock(flags);
1147	}
1148
1149	/* update the clk tree topology */
1150	flags = clk_enable_lock();
1151	clk_reparent(core, parent);
1152	clk_enable_unlock(flags);
1153
1154	return old_parent;
1155}
1156
1157static void __clk_set_parent_after(struct clk_core *core,
1158				   struct clk_core *parent,
1159				   struct clk_core *old_parent)
1160{
1161	unsigned long flags;
1162
1163	/*
1164	 * Finish the migration of prepare state and undo the changes done
1165	 * for preventing a race with clk_enable().
1166	 */
1167	if (core->prepare_count) {
1168		flags = clk_enable_lock();
1169		clk_core_disable(core);
1170		clk_core_disable(old_parent);
1171		clk_enable_unlock(flags);
1172		clk_core_unprepare(old_parent);
 
 
 
1173	}
1174}
1175
1176static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
1177			    u8 p_index)
1178{
1179	unsigned long flags;
1180	int ret = 0;
1181	struct clk_core *old_parent;
1182
1183	old_parent = __clk_set_parent_before(core, parent);
1184
1185	trace_clk_set_parent(core, parent);
1186
1187	/* change clock input source */
1188	if (parent && core->ops->set_parent)
1189		ret = core->ops->set_parent(core->hw, p_index);
1190
1191	trace_clk_set_parent_complete(core, parent);
1192
1193	if (ret) {
1194		flags = clk_enable_lock();
1195		clk_reparent(core, old_parent);
1196		clk_enable_unlock(flags);
 
1197		__clk_set_parent_after(core, old_parent, parent);
1198
1199		return ret;
1200	}
1201
1202	__clk_set_parent_after(core, parent, old_parent);
1203
1204	return 0;
1205}
1206
1207/**
1208 * __clk_speculate_rates
1209 * @core: first clk in the subtree
1210 * @parent_rate: the "future" rate of clk's parent
1211 *
1212 * Walks the subtree of clks starting with clk, speculating rates as it
1213 * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1214 *
1215 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1216 * pre-rate change notifications and returns early if no clks in the
1217 * subtree have subscribed to the notifications.  Note that if a clk does not
1218 * implement the .recalc_rate callback then it is assumed that the clock will
1219 * take on the rate of its parent.
1220 */
1221static int __clk_speculate_rates(struct clk_core *core,
1222				 unsigned long parent_rate)
1223{
1224	struct clk_core *child;
1225	unsigned long new_rate;
1226	int ret = NOTIFY_DONE;
1227
1228	lockdep_assert_held(&prepare_lock);
1229
1230	new_rate = clk_recalc(core, parent_rate);
1231
1232	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1233	if (core->notifier_count)
1234		ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
1235
1236	if (ret & NOTIFY_STOP_MASK) {
1237		pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
1238				__func__, core->name, ret);
1239		goto out;
1240	}
1241
1242	hlist_for_each_entry(child, &core->children, child_node) {
1243		ret = __clk_speculate_rates(child, new_rate);
1244		if (ret & NOTIFY_STOP_MASK)
1245			break;
1246	}
1247
1248out:
1249	return ret;
1250}
1251
1252static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
1253			     struct clk_core *new_parent, u8 p_index)
1254{
1255	struct clk_core *child;
1256
1257	core->new_rate = new_rate;
1258	core->new_parent = new_parent;
1259	core->new_parent_index = p_index;
1260	/* include clk in new parent's PRE_RATE_CHANGE notifications */
1261	core->new_child = NULL;
1262	if (new_parent && new_parent != core->parent)
1263		new_parent->new_child = core;
1264
1265	hlist_for_each_entry(child, &core->children, child_node) {
1266		child->new_rate = clk_recalc(child, new_rate);
1267		clk_calc_subtree(child, child->new_rate, NULL, 0);
1268	}
1269}
1270
1271/*
1272 * calculate the new rates returning the topmost clock that has to be
1273 * changed.
1274 */
1275static struct clk_core *clk_calc_new_rates(struct clk_core *core,
1276					   unsigned long rate)
1277{
1278	struct clk_core *top = core;
1279	struct clk_core *old_parent, *parent;
1280	unsigned long best_parent_rate = 0;
1281	unsigned long new_rate;
1282	unsigned long min_rate;
1283	unsigned long max_rate;
1284	int p_index = 0;
1285	long ret;
1286
1287	/* sanity */
1288	if (IS_ERR_OR_NULL(core))
1289		return NULL;
1290
1291	/* save parent rate, if it exists */
1292	parent = old_parent = core->parent;
1293	if (parent)
1294		best_parent_rate = parent->rate;
1295
1296	clk_core_get_boundaries(core, &min_rate, &max_rate);
1297
1298	/* find the closest rate and parent clk/rate */
1299	if (core->ops->determine_rate) {
1300		struct clk_rate_request req;
1301
1302		req.rate = rate;
1303		req.min_rate = min_rate;
1304		req.max_rate = max_rate;
1305		if (parent) {
1306			req.best_parent_hw = parent->hw;
1307			req.best_parent_rate = parent->rate;
1308		} else {
1309			req.best_parent_hw = NULL;
1310			req.best_parent_rate = 0;
1311		}
1312
1313		ret = core->ops->determine_rate(core->hw, &req);
1314		if (ret < 0)
1315			return NULL;
1316
 
 
1317		best_parent_rate = req.best_parent_rate;
1318		new_rate = req.rate;
1319		parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
1320	} else if (core->ops->round_rate) {
1321		ret = core->ops->round_rate(core->hw, rate,
1322					    &best_parent_rate);
1323		if (ret < 0)
1324			return NULL;
1325
1326		new_rate = ret;
1327		if (new_rate < min_rate || new_rate > max_rate)
1328			return NULL;
1329	} else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
1330		/* pass-through clock without adjustable parent */
1331		core->new_rate = core->rate;
1332		return NULL;
1333	} else {
1334		/* pass-through clock with adjustable parent */
1335		top = clk_calc_new_rates(parent, rate);
1336		new_rate = parent->new_rate;
1337		goto out;
1338	}
1339
1340	/* some clocks must be gated to change parent */
1341	if (parent != old_parent &&
1342	    (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
1343		pr_debug("%s: %s not gated but wants to reparent\n",
1344			 __func__, core->name);
1345		return NULL;
1346	}
1347
1348	/* try finding the new parent index */
1349	if (parent && core->num_parents > 1) {
1350		p_index = clk_fetch_parent_index(core, parent);
1351		if (p_index < 0) {
1352			pr_debug("%s: clk %s can not be parent of clk %s\n",
1353				 __func__, parent->name, core->name);
1354			return NULL;
1355		}
1356	}
1357
1358	if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
1359	    best_parent_rate != parent->rate)
1360		top = clk_calc_new_rates(parent, best_parent_rate);
1361
1362out:
1363	clk_calc_subtree(core, new_rate, parent, p_index);
1364
1365	return top;
1366}
1367
1368/*
1369 * Notify about rate changes in a subtree. Always walk down the whole tree
1370 * so that in case of an error we can walk down the whole tree again and
1371 * abort the change.
1372 */
1373static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
1374						  unsigned long event)
1375{
1376	struct clk_core *child, *tmp_clk, *fail_clk = NULL;
1377	int ret = NOTIFY_DONE;
1378
1379	if (core->rate == core->new_rate)
1380		return NULL;
1381
1382	if (core->notifier_count) {
1383		ret = __clk_notify(core, event, core->rate, core->new_rate);
1384		if (ret & NOTIFY_STOP_MASK)
1385			fail_clk = core;
1386	}
1387
1388	hlist_for_each_entry(child, &core->children, child_node) {
1389		/* Skip children who will be reparented to another clock */
1390		if (child->new_parent && child->new_parent != core)
1391			continue;
1392		tmp_clk = clk_propagate_rate_change(child, event);
1393		if (tmp_clk)
1394			fail_clk = tmp_clk;
1395	}
1396
1397	/* handle the new child who might not be in core->children yet */
1398	if (core->new_child) {
1399		tmp_clk = clk_propagate_rate_change(core->new_child, event);
1400		if (tmp_clk)
1401			fail_clk = tmp_clk;
1402	}
1403
1404	return fail_clk;
1405}
1406
1407/*
1408 * walk down a subtree and set the new rates notifying the rate
1409 * change on the way
1410 */
1411static void clk_change_rate(struct clk_core *core)
1412{
1413	struct clk_core *child;
1414	struct hlist_node *tmp;
1415	unsigned long old_rate;
1416	unsigned long best_parent_rate = 0;
1417	bool skip_set_rate = false;
1418	struct clk_core *old_parent;
 
1419
1420	old_rate = core->rate;
1421
1422	if (core->new_parent)
 
1423		best_parent_rate = core->new_parent->rate;
1424	else if (core->parent)
 
1425		best_parent_rate = core->parent->rate;
 
 
 
 
1426
1427	if (core->flags & CLK_SET_RATE_UNGATE) {
1428		unsigned long flags;
1429
1430		clk_core_prepare(core);
1431		flags = clk_enable_lock();
1432		clk_core_enable(core);
1433		clk_enable_unlock(flags);
1434	}
1435
1436	if (core->new_parent && core->new_parent != core->parent) {
1437		old_parent = __clk_set_parent_before(core, core->new_parent);
1438		trace_clk_set_parent(core, core->new_parent);
1439
1440		if (core->ops->set_rate_and_parent) {
1441			skip_set_rate = true;
1442			core->ops->set_rate_and_parent(core->hw, core->new_rate,
1443					best_parent_rate,
1444					core->new_parent_index);
1445		} else if (core->ops->set_parent) {
1446			core->ops->set_parent(core->hw, core->new_parent_index);
1447		}
1448
1449		trace_clk_set_parent_complete(core, core->new_parent);
1450		__clk_set_parent_after(core, core->new_parent, old_parent);
1451	}
1452
 
 
 
1453	trace_clk_set_rate(core, core->new_rate);
1454
1455	if (!skip_set_rate && core->ops->set_rate)
1456		core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
1457
1458	trace_clk_set_rate_complete(core, core->new_rate);
1459
1460	core->rate = clk_recalc(core, best_parent_rate);
1461
1462	if (core->flags & CLK_SET_RATE_UNGATE) {
1463		unsigned long flags;
1464
1465		flags = clk_enable_lock();
1466		clk_core_disable(core);
1467		clk_enable_unlock(flags);
1468		clk_core_unprepare(core);
1469	}
1470
 
 
 
1471	if (core->notifier_count && old_rate != core->rate)
1472		__clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
1473
1474	if (core->flags & CLK_RECALC_NEW_RATES)
1475		(void)clk_calc_new_rates(core, core->new_rate);
1476
1477	/*
1478	 * Use safe iteration, as change_rate can actually swap parents
1479	 * for certain clock types.
1480	 */
1481	hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
1482		/* Skip children who will be reparented to another clock */
1483		if (child->new_parent && child->new_parent != core)
1484			continue;
1485		clk_change_rate(child);
1486	}
1487
1488	/* handle the new child who might not be in core->children yet */
1489	if (core->new_child)
1490		clk_change_rate(core->new_child);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1491}
1492
1493static int clk_core_set_rate_nolock(struct clk_core *core,
1494				    unsigned long req_rate)
1495{
1496	struct clk_core *top, *fail_clk;
1497	unsigned long rate = req_rate;
1498	int ret = 0;
1499
1500	if (!core)
1501		return 0;
1502
 
 
1503	/* bail early if nothing to do */
1504	if (rate == clk_core_get_rate_nolock(core))
1505		return 0;
1506
1507	if ((core->flags & CLK_SET_RATE_GATE) && core->prepare_count)
 
1508		return -EBUSY;
1509
1510	/* calculate new rates and get the topmost changed clock */
1511	top = clk_calc_new_rates(core, rate);
1512	if (!top)
1513		return -EINVAL;
1514
 
 
 
 
1515	/* notify that we are about to change rates */
1516	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
1517	if (fail_clk) {
1518		pr_debug("%s: failed to set %s rate\n", __func__,
1519				fail_clk->name);
1520		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
1521		return -EBUSY;
 
1522	}
1523
1524	/* change the rates */
1525	clk_change_rate(top);
1526
1527	core->req_rate = req_rate;
 
 
1528
1529	return ret;
1530}
1531
1532/**
1533 * clk_set_rate - specify a new rate for clk
1534 * @clk: the clk whose rate is being changed
1535 * @rate: the new rate for clk
1536 *
1537 * In the simplest case clk_set_rate will only adjust the rate of clk.
1538 *
1539 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
1540 * propagate up to clk's parent; whether or not this happens depends on the
1541 * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
1542 * after calling .round_rate then upstream parent propagation is ignored.  If
1543 * *parent_rate comes back with a new rate for clk's parent then we propagate
1544 * up to clk's parent and set its rate.  Upward propagation will continue
1545 * until either a clk does not support the CLK_SET_RATE_PARENT flag or
1546 * .round_rate stops requesting changes to clk's parent_rate.
1547 *
1548 * Rate changes are accomplished via tree traversal that also recalculates the
1549 * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
1550 *
1551 * Returns 0 on success, -EERROR otherwise.
1552 */
1553int clk_set_rate(struct clk *clk, unsigned long rate)
1554{
1555	int ret;
1556
1557	if (!clk)
1558		return 0;
1559
1560	/* prevent racing with updates to the clock topology */
1561	clk_prepare_lock();
1562
 
 
 
1563	ret = clk_core_set_rate_nolock(clk->core, rate);
1564
 
 
 
1565	clk_prepare_unlock();
1566
1567	return ret;
1568}
1569EXPORT_SYMBOL_GPL(clk_set_rate);
1570
1571/**
1572 * clk_set_rate_range - set a rate range for a clock source
1573 * @clk: clock source
1574 * @min: desired minimum clock rate in Hz, inclusive
1575 * @max: desired maximum clock rate in Hz, inclusive
 
 
 
 
 
 
 
 
 
 
 
1576 *
1577 * Returns success (0) or negative errno.
1578 */
1579int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1580{
1581	int ret = 0;
 
 
 
1582
1583	if (!clk)
1584		return 0;
1585
 
 
1586	if (min > max) {
1587		pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
1588		       __func__, clk->core->name, clk->dev_id, clk->con_id,
1589		       min, max);
1590		return -EINVAL;
1591	}
1592
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1593	clk_prepare_lock();
1594
1595	if (min != clk->min_rate || max != clk->max_rate) {
1596		clk->min_rate = min;
1597		clk->max_rate = max;
1598		ret = clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
1599	}
1600
1601	clk_prepare_unlock();
1602
1603	return ret;
1604}
1605EXPORT_SYMBOL_GPL(clk_set_rate_range);
1606
1607/**
1608 * clk_set_min_rate - set a minimum clock rate for a clock source
1609 * @clk: clock source
1610 * @rate: desired minimum clock rate in Hz, inclusive
1611 *
1612 * Returns success (0) or negative errno.
1613 */
1614int clk_set_min_rate(struct clk *clk, unsigned long rate)
1615{
1616	if (!clk)
1617		return 0;
1618
 
 
1619	return clk_set_rate_range(clk, rate, clk->max_rate);
1620}
1621EXPORT_SYMBOL_GPL(clk_set_min_rate);
1622
1623/**
1624 * clk_set_max_rate - set a maximum clock rate for a clock source
1625 * @clk: clock source
1626 * @rate: desired maximum clock rate in Hz, inclusive
1627 *
1628 * Returns success (0) or negative errno.
1629 */
1630int clk_set_max_rate(struct clk *clk, unsigned long rate)
1631{
1632	if (!clk)
1633		return 0;
1634
 
 
1635	return clk_set_rate_range(clk, clk->min_rate, rate);
1636}
1637EXPORT_SYMBOL_GPL(clk_set_max_rate);
1638
1639/**
1640 * clk_get_parent - return the parent of a clk
1641 * @clk: the clk whose parent gets returned
1642 *
1643 * Simply returns clk->parent.  Returns NULL if clk is NULL.
1644 */
1645struct clk *clk_get_parent(struct clk *clk)
1646{
1647	struct clk *parent;
1648
1649	if (!clk)
1650		return NULL;
1651
1652	clk_prepare_lock();
1653	/* TODO: Create a per-user clk and change callers to call clk_put */
1654	parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
1655	clk_prepare_unlock();
1656
1657	return parent;
1658}
1659EXPORT_SYMBOL_GPL(clk_get_parent);
1660
1661static struct clk_core *__clk_init_parent(struct clk_core *core)
1662{
1663	u8 index = 0;
1664
1665	if (core->num_parents > 1 && core->ops->get_parent)
1666		index = core->ops->get_parent(core->hw);
1667
1668	return clk_core_get_parent_by_index(core, index);
1669}
1670
1671static void clk_core_reparent(struct clk_core *core,
1672				  struct clk_core *new_parent)
1673{
1674	clk_reparent(core, new_parent);
1675	__clk_recalc_accuracies(core);
1676	__clk_recalc_rates(core, POST_RATE_CHANGE);
1677}
1678
1679void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
1680{
1681	if (!hw)
1682		return;
1683
1684	clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
1685}
1686
1687/**
1688 * clk_has_parent - check if a clock is a possible parent for another
1689 * @clk: clock source
1690 * @parent: parent clock source
1691 *
1692 * This function can be used in drivers that need to check that a clock can be
1693 * the parent of another without actually changing the parent.
1694 *
1695 * Returns true if @parent is a possible parent for @clk, false otherwise.
1696 */
1697bool clk_has_parent(struct clk *clk, struct clk *parent)
1698{
1699	struct clk_core *core, *parent_core;
1700	unsigned int i;
1701
1702	/* NULL clocks should be nops, so return success if either is NULL. */
1703	if (!clk || !parent)
1704		return true;
1705
1706	core = clk->core;
1707	parent_core = parent->core;
1708
1709	/* Optimize for the case where the parent is already the parent. */
1710	if (core->parent == parent_core)
1711		return true;
1712
1713	for (i = 0; i < core->num_parents; i++)
1714		if (strcmp(core->parent_names[i], parent_core->name) == 0)
1715			return true;
1716
1717	return false;
1718}
1719EXPORT_SYMBOL_GPL(clk_has_parent);
1720
1721static int clk_core_set_parent(struct clk_core *core, struct clk_core *parent)
 
1722{
1723	int ret = 0;
1724	int p_index = 0;
1725	unsigned long p_rate = 0;
1726
 
 
1727	if (!core)
1728		return 0;
1729
1730	/* prevent racing with updates to the clock topology */
1731	clk_prepare_lock();
1732
1733	if (core->parent == parent)
1734		goto out;
1735
1736	/* verify ops for for multi-parent clks */
1737	if ((core->num_parents > 1) && (!core->ops->set_parent)) {
1738		ret = -ENOSYS;
1739		goto out;
1740	}
1741
1742	/* check that we are allowed to re-parent if the clock is in use */
1743	if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
1744		ret = -EBUSY;
1745		goto out;
1746	}
 
1747
1748	/* try finding the new parent index */
1749	if (parent) {
1750		p_index = clk_fetch_parent_index(core, parent);
1751		if (p_index < 0) {
1752			pr_debug("%s: clk %s can not be parent of clk %s\n",
1753					__func__, parent->name, core->name);
1754			ret = p_index;
1755			goto out;
1756		}
1757		p_rate = parent->rate;
1758	}
1759
 
 
 
 
1760	/* propagate PRE_RATE_CHANGE notifications */
1761	ret = __clk_speculate_rates(core, p_rate);
1762
1763	/* abort if a driver objects */
1764	if (ret & NOTIFY_STOP_MASK)
1765		goto out;
1766
1767	/* do the re-parent */
1768	ret = __clk_set_parent(core, parent, p_index);
1769
1770	/* propagate rate an accuracy recalculation accordingly */
1771	if (ret) {
1772		__clk_recalc_rates(core, ABORT_RATE_CHANGE);
1773	} else {
1774		__clk_recalc_rates(core, POST_RATE_CHANGE);
1775		__clk_recalc_accuracies(core);
1776	}
1777
1778out:
1779	clk_prepare_unlock();
1780
1781	return ret;
1782}
1783
 
 
 
 
 
 
1784/**
1785 * clk_set_parent - switch the parent of a mux clk
1786 * @clk: the mux clk whose input we are switching
1787 * @parent: the new input to clk
1788 *
1789 * Re-parent clk to use parent as its new input source.  If clk is in
1790 * prepared state, the clk will get enabled for the duration of this call. If
1791 * that's not acceptable for a specific clk (Eg: the consumer can't handle
1792 * that, the reparenting is glitchy in hardware, etc), use the
1793 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
1794 *
1795 * After successfully changing clk's parent clk_set_parent will update the
1796 * clk topology, sysfs topology and propagate rate recalculation via
1797 * __clk_recalc_rates.
1798 *
1799 * Returns 0 on success, -EERROR otherwise.
1800 */
1801int clk_set_parent(struct clk *clk, struct clk *parent)
1802{
 
 
1803	if (!clk)
1804		return 0;
1805
1806	return clk_core_set_parent(clk->core, parent ? parent->core : NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
1807}
1808EXPORT_SYMBOL_GPL(clk_set_parent);
1809
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1810/**
1811 * clk_set_phase - adjust the phase shift of a clock signal
1812 * @clk: clock signal source
1813 * @degrees: number of degrees the signal is shifted
1814 *
1815 * Shifts the phase of a clock signal by the specified
1816 * degrees. Returns 0 on success, -EERROR otherwise.
1817 *
1818 * This function makes no distinction about the input or reference
1819 * signal that we adjust the clock signal phase against. For example
1820 * phase locked-loop clock signal generators we may shift phase with
1821 * respect to feedback clock signal input, but for other cases the
1822 * clock phase may be shifted with respect to some other, unspecified
1823 * signal.
1824 *
1825 * Additionally the concept of phase shift does not propagate through
1826 * the clock tree hierarchy, which sets it apart from clock rates and
1827 * clock accuracy. A parent clock phase attribute does not have an
1828 * impact on the phase attribute of a child clock.
1829 */
1830int clk_set_phase(struct clk *clk, int degrees)
1831{
1832	int ret = -EINVAL;
1833
1834	if (!clk)
1835		return 0;
1836
1837	/* sanity check degrees */
1838	degrees %= 360;
1839	if (degrees < 0)
1840		degrees += 360;
1841
1842	clk_prepare_lock();
1843
1844	/* bail early if nothing to do */
1845	if (degrees == clk->core->phase)
1846		goto out;
1847
1848	trace_clk_set_phase(clk->core, degrees);
1849
1850	if (clk->core->ops->set_phase)
1851		ret = clk->core->ops->set_phase(clk->core->hw, degrees);
1852
1853	trace_clk_set_phase_complete(clk->core, degrees);
1854
1855	if (!ret)
1856		clk->core->phase = degrees;
1857
1858out:
1859	clk_prepare_unlock();
1860
1861	return ret;
1862}
1863EXPORT_SYMBOL_GPL(clk_set_phase);
1864
1865static int clk_core_get_phase(struct clk_core *core)
1866{
1867	int ret;
1868
1869	clk_prepare_lock();
1870	ret = core->phase;
1871	clk_prepare_unlock();
 
 
 
 
 
1872
1873	return ret;
1874}
1875
1876/**
1877 * clk_get_phase - return the phase shift of a clock signal
1878 * @clk: clock signal source
1879 *
1880 * Returns the phase shift of a clock node in degrees, otherwise returns
1881 * -EERROR.
1882 */
1883int clk_get_phase(struct clk *clk)
1884{
 
 
1885	if (!clk)
1886		return 0;
1887
1888	return clk_core_get_phase(clk->core);
 
 
 
 
1889}
1890EXPORT_SYMBOL_GPL(clk_get_phase);
1891
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1892/**
1893 * clk_is_match - check if two clk's point to the same hardware clock
1894 * @p: clk compared against q
1895 * @q: clk compared against p
1896 *
1897 * Returns true if the two struct clk pointers both point to the same hardware
1898 * clock node. Put differently, returns true if struct clk *p and struct clk *q
1899 * share the same struct clk_core object.
1900 *
1901 * Returns false otherwise. Note that two NULL clks are treated as matching.
1902 */
1903bool clk_is_match(const struct clk *p, const struct clk *q)
1904{
1905	/* trivial case: identical struct clk's or both NULL */
1906	if (p == q)
1907		return true;
1908
1909	/* true if clk->core pointers match. Avoid dereferencing garbage */
1910	if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
1911		if (p->core == q->core)
1912			return true;
1913
1914	return false;
1915}
1916EXPORT_SYMBOL_GPL(clk_is_match);
1917
1918/***        debugfs support        ***/
1919
1920#ifdef CONFIG_DEBUG_FS
1921#include <linux/debugfs.h>
1922
1923static struct dentry *rootdir;
1924static int inited = 0;
1925static DEFINE_MUTEX(clk_debug_lock);
1926static HLIST_HEAD(clk_debug_list);
1927
1928static struct hlist_head *all_lists[] = {
1929	&clk_root_list,
1930	&clk_orphan_list,
1931	NULL,
1932};
1933
1934static struct hlist_head *orphan_list[] = {
1935	&clk_orphan_list,
1936	NULL,
1937};
1938
1939static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
1940				 int level)
1941{
1942	if (!c)
1943		return;
 
1944
1945	seq_printf(s, "%*s%-*s %11d %12d %11lu %10lu %-3d\n",
1946		   level * 3 + 1, "",
1947		   30 - level * 3, c->name,
1948		   c->enable_count, c->prepare_count, clk_core_get_rate(c),
1949		   clk_core_get_accuracy(c), clk_core_get_phase(c));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1950}
1951
1952static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
1953				     int level)
1954{
1955	struct clk_core *child;
1956
1957	if (!c)
1958		return;
1959
1960	clk_summary_show_one(s, c, level);
 
1961
1962	hlist_for_each_entry(child, &c->children, child_node)
1963		clk_summary_show_subtree(s, child, level + 1);
1964}
1965
1966static int clk_summary_show(struct seq_file *s, void *data)
1967{
1968	struct clk_core *c;
1969	struct hlist_head **lists = (struct hlist_head **)s->private;
 
 
 
 
1970
1971	seq_puts(s, "   clock                         enable_cnt  prepare_cnt        rate   accuracy   phase\n");
1972	seq_puts(s, "----------------------------------------------------------------------------------------\n");
1973
1974	clk_prepare_lock();
1975
1976	for (; *lists; lists++)
1977		hlist_for_each_entry(c, *lists, child_node)
1978			clk_summary_show_subtree(s, c, 0);
1979
1980	clk_prepare_unlock();
1981
1982	return 0;
1983}
 
1984
1985
1986static int clk_summary_open(struct inode *inode, struct file *file)
1987{
1988	return single_open(file, clk_summary_show, inode->i_private);
1989}
1990
1991static const struct file_operations clk_summary_fops = {
1992	.open		= clk_summary_open,
1993	.read		= seq_read,
1994	.llseek		= seq_lseek,
1995	.release	= single_release,
1996};
1997
1998static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
1999{
2000	if (!c)
2001		return;
2002
2003	/* This should be JSON format, i.e. elements separated with a comma */
2004	seq_printf(s, "\"%s\": { ", c->name);
2005	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
2006	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
2007	seq_printf(s, "\"rate\": %lu,", clk_core_get_rate(c));
2008	seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy(c));
2009	seq_printf(s, "\"phase\": %d", clk_core_get_phase(c));
 
 
 
 
 
 
 
2010}
2011
2012static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
2013{
2014	struct clk_core *child;
2015
2016	if (!c)
2017		return;
2018
2019	clk_dump_one(s, c, level);
2020
2021	hlist_for_each_entry(child, &c->children, child_node) {
2022		seq_printf(s, ",");
2023		clk_dump_subtree(s, child, level + 1);
2024	}
2025
2026	seq_printf(s, "}");
2027}
2028
2029static int clk_dump(struct seq_file *s, void *data)
2030{
2031	struct clk_core *c;
2032	bool first_node = true;
2033	struct hlist_head **lists = (struct hlist_head **)s->private;
2034
2035	seq_printf(s, "{");
2036
 
2037	clk_prepare_lock();
2038
2039	for (; *lists; lists++) {
2040		hlist_for_each_entry(c, *lists, child_node) {
2041			if (!first_node)
2042				seq_puts(s, ",");
2043			first_node = false;
2044			clk_dump_subtree(s, c, 0);
2045		}
2046	}
2047
2048	clk_prepare_unlock();
2049
2050	seq_puts(s, "}\n");
2051	return 0;
2052}
 
2053
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2054
2055static int clk_dump_open(struct inode *inode, struct file *file)
 
 
 
 
 
2056{
2057	return single_open(file, clk_dump, inode->i_private);
 
 
 
 
 
 
 
 
2058}
2059
2060static const struct file_operations clk_dump_fops = {
2061	.open		= clk_dump_open,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2062	.read		= seq_read,
2063	.llseek		= seq_lseek,
2064	.release	= single_release,
2065};
 
 
 
 
 
 
 
 
 
 
 
 
2066
2067static int clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
2068{
2069	struct dentry *d;
2070	int ret = -ENOMEM;
 
 
 
 
 
 
 
 
 
2071
2072	if (!core || !pdentry) {
2073		ret = -EINVAL;
2074		goto out;
2075	}
2076
2077	d = debugfs_create_dir(core->name, pdentry);
2078	if (!d)
2079		goto out;
 
2080
2081	core->dentry = d;
 
 
2082
2083	d = debugfs_create_u32("clk_rate", S_IRUGO, core->dentry,
2084			(u32 *)&core->rate);
2085	if (!d)
2086		goto err_out;
2087
2088	d = debugfs_create_u32("clk_accuracy", S_IRUGO, core->dentry,
2089			(u32 *)&core->accuracy);
2090	if (!d)
2091		goto err_out;
2092
2093	d = debugfs_create_u32("clk_phase", S_IRUGO, core->dentry,
2094			(u32 *)&core->phase);
2095	if (!d)
2096		goto err_out;
2097
2098	d = debugfs_create_x32("clk_flags", S_IRUGO, core->dentry,
2099			(u32 *)&core->flags);
2100	if (!d)
2101		goto err_out;
2102
2103	d = debugfs_create_u32("clk_prepare_count", S_IRUGO, core->dentry,
2104			(u32 *)&core->prepare_count);
2105	if (!d)
2106		goto err_out;
2107
2108	d = debugfs_create_u32("clk_enable_count", S_IRUGO, core->dentry,
2109			(u32 *)&core->enable_count);
2110	if (!d)
2111		goto err_out;
2112
2113	d = debugfs_create_u32("clk_notifier_count", S_IRUGO, core->dentry,
2114			(u32 *)&core->notifier_count);
2115	if (!d)
2116		goto err_out;
2117
2118	if (core->ops->debug_init) {
2119		ret = core->ops->debug_init(core->hw, core->dentry);
2120		if (ret)
2121			goto err_out;
2122	}
2123
2124	ret = 0;
2125	goto out;
2126
2127err_out:
2128	debugfs_remove_recursive(core->dentry);
2129	core->dentry = NULL;
2130out:
2131	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2132}
2133
2134/**
2135 * clk_debug_register - add a clk node to the debugfs clk directory
2136 * @core: the clk being added to the debugfs clk directory
2137 *
2138 * Dynamically adds a clk to the debugfs clk directory if debugfs has been
2139 * initialized.  Otherwise it bails out early since the debugfs clk directory
2140 * will be created lazily by clk_debug_init as part of a late_initcall.
2141 */
2142static int clk_debug_register(struct clk_core *core)
2143{
2144	int ret = 0;
2145
2146	mutex_lock(&clk_debug_lock);
2147	hlist_add_head(&core->debug_node, &clk_debug_list);
2148
2149	if (!inited)
2150		goto unlock;
2151
2152	ret = clk_debug_create_one(core, rootdir);
2153unlock:
2154	mutex_unlock(&clk_debug_lock);
2155
2156	return ret;
2157}
2158
2159 /**
2160 * clk_debug_unregister - remove a clk node from the debugfs clk directory
2161 * @core: the clk being removed from the debugfs clk directory
2162 *
2163 * Dynamically removes a clk and all its child nodes from the
2164 * debugfs clk directory if clk->dentry points to debugfs created by
2165 * clk_debug_register in __clk_core_init.
2166 */
2167static void clk_debug_unregister(struct clk_core *core)
2168{
2169	mutex_lock(&clk_debug_lock);
2170	hlist_del_init(&core->debug_node);
2171	debugfs_remove_recursive(core->dentry);
2172	core->dentry = NULL;
2173	mutex_unlock(&clk_debug_lock);
2174}
2175
2176struct dentry *clk_debugfs_add_file(struct clk_hw *hw, char *name, umode_t mode,
2177				void *data, const struct file_operations *fops)
2178{
2179	struct dentry *d = NULL;
2180
2181	if (hw->core->dentry)
2182		d = debugfs_create_file(name, mode, hw->core->dentry, data,
2183					fops);
2184
2185	return d;
2186}
2187EXPORT_SYMBOL_GPL(clk_debugfs_add_file);
2188
2189/**
2190 * clk_debug_init - lazily populate the debugfs clk directory
2191 *
2192 * clks are often initialized very early during boot before memory can be
2193 * dynamically allocated and well before debugfs is setup. This function
2194 * populates the debugfs clk directory once at boot-time when we know that
2195 * debugfs is setup. It should only be called once at boot-time, all other clks
2196 * added dynamically will be done so with clk_debug_register.
2197 */
2198static int __init clk_debug_init(void)
2199{
2200	struct clk_core *core;
2201	struct dentry *d;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2202
2203	rootdir = debugfs_create_dir("clk", NULL);
2204
2205	if (!rootdir)
2206		return -ENOMEM;
2207
2208	d = debugfs_create_file("clk_summary", S_IRUGO, rootdir, &all_lists,
2209				&clk_summary_fops);
2210	if (!d)
2211		return -ENOMEM;
2212
2213	d = debugfs_create_file("clk_dump", S_IRUGO, rootdir, &all_lists,
2214				&clk_dump_fops);
2215	if (!d)
2216		return -ENOMEM;
2217
2218	d = debugfs_create_file("clk_orphan_summary", S_IRUGO, rootdir,
2219				&orphan_list, &clk_summary_fops);
2220	if (!d)
2221		return -ENOMEM;
2222
2223	d = debugfs_create_file("clk_orphan_dump", S_IRUGO, rootdir,
2224				&orphan_list, &clk_dump_fops);
2225	if (!d)
2226		return -ENOMEM;
2227
2228	mutex_lock(&clk_debug_lock);
2229	hlist_for_each_entry(core, &clk_debug_list, debug_node)
2230		clk_debug_create_one(core, rootdir);
2231
2232	inited = 1;
2233	mutex_unlock(&clk_debug_lock);
2234
2235	return 0;
2236}
2237late_initcall(clk_debug_init);
2238#else
2239static inline int clk_debug_register(struct clk_core *core) { return 0; }
2240static inline void clk_debug_reparent(struct clk_core *core,
2241				      struct clk_core *new_parent)
2242{
2243}
2244static inline void clk_debug_unregister(struct clk_core *core)
 
 
2245{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2246}
2247#endif
2248
2249/**
2250 * __clk_core_init - initialize the data structures in a struct clk_core
2251 * @core:	clk_core being initialized
2252 *
2253 * Initializes the lists in struct clk_core, queries the hardware for the
2254 * parent and rate and sets them both.
2255 */
2256static int __clk_core_init(struct clk_core *core)
2257{
2258	int i, ret = 0;
2259	struct clk_core *orphan;
2260	struct hlist_node *tmp2;
2261	unsigned long rate;
 
 
 
2262
2263	if (!core)
2264		return -EINVAL;
 
 
 
 
 
2265
2266	clk_prepare_lock();
 
 
2267
2268	/* check to see if a clock with this name is already registered */
2269	if (clk_core_lookup(core->name)) {
2270		pr_debug("%s: clk %s already initialized\n",
2271				__func__, core->name);
2272		ret = -EEXIST;
2273		goto out;
2274	}
2275
2276	/* check that clk_ops are sane.  See Documentation/clk.txt */
2277	if (core->ops->set_rate &&
2278	    !((core->ops->round_rate || core->ops->determine_rate) &&
2279	      core->ops->recalc_rate)) {
2280		pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
2281		       __func__, core->name);
2282		ret = -EINVAL;
2283		goto out;
2284	}
2285
2286	if (core->ops->set_parent && !core->ops->get_parent) {
2287		pr_err("%s: %s must implement .get_parent & .set_parent\n",
2288		       __func__, core->name);
2289		ret = -EINVAL;
2290		goto out;
2291	}
2292
 
 
 
 
 
 
 
2293	if (core->num_parents > 1 && !core->ops->get_parent) {
2294		pr_err("%s: %s must implement .get_parent as it has multi parents\n",
2295		       __func__, core->name);
2296		ret = -EINVAL;
2297		goto out;
2298	}
2299
2300	if (core->ops->set_rate_and_parent &&
2301			!(core->ops->set_parent && core->ops->set_rate)) {
2302		pr_err("%s: %s must implement .set_parent & .set_rate\n",
2303				__func__, core->name);
2304		ret = -EINVAL;
2305		goto out;
2306	}
2307
2308	/* throw a WARN if any entries in parent_names are NULL */
2309	for (i = 0; i < core->num_parents; i++)
2310		WARN(!core->parent_names[i],
2311				"%s: invalid NULL in %s's .parent_names\n",
2312				__func__, core->name);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2313
2314	core->parent = __clk_init_parent(core);
2315
2316	/*
2317	 * Populate core->parent if parent has already been clk_core_init'd. If
2318	 * parent has not yet been clk_core_init'd then place clk in the orphan
2319	 * list.  If clk doesn't have any parents then place it in the root
2320	 * clk list.
2321	 *
2322	 * Every time a new clk is clk_init'd then we walk the list of orphan
2323	 * clocks and re-parent any that are children of the clock currently
2324	 * being clk_init'd.
2325	 */
2326	if (core->parent) {
2327		hlist_add_head(&core->child_node,
2328				&core->parent->children);
2329		core->orphan = core->parent->orphan;
2330	} else if (!core->num_parents) {
2331		hlist_add_head(&core->child_node, &clk_root_list);
2332		core->orphan = false;
2333	} else {
2334		hlist_add_head(&core->child_node, &clk_orphan_list);
2335		core->orphan = true;
2336	}
2337
2338	/*
2339	 * Set clk's accuracy.  The preferred method is to use
2340	 * .recalc_accuracy. For simple clocks and lazy developers the default
2341	 * fallback is to use the parent's accuracy.  If a clock doesn't have a
2342	 * parent (or is orphaned) then accuracy is set to zero (perfect
2343	 * clock).
2344	 */
2345	if (core->ops->recalc_accuracy)
2346		core->accuracy = core->ops->recalc_accuracy(core->hw,
2347					__clk_get_accuracy(core->parent));
2348	else if (core->parent)
2349		core->accuracy = core->parent->accuracy;
2350	else
2351		core->accuracy = 0;
2352
2353	/*
2354	 * Set clk's phase.
2355	 * Since a phase is by definition relative to its parent, just
2356	 * query the current clock phase, or just assume it's in phase.
2357	 */
2358	if (core->ops->get_phase)
2359		core->phase = core->ops->get_phase(core->hw);
2360	else
2361		core->phase = 0;
 
 
 
 
 
 
 
 
2362
2363	/*
2364	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
2365	 * simple clocks and lazy developers the default fallback is to use the
2366	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
2367	 * then rate is set to zero.
2368	 */
2369	if (core->ops->recalc_rate)
2370		rate = core->ops->recalc_rate(core->hw,
2371				clk_core_get_rate_nolock(core->parent));
2372	else if (core->parent)
2373		rate = core->parent->rate;
2374	else
2375		rate = 0;
2376	core->rate = core->req_rate = rate;
2377
2378	/*
2379	 * walk the list of orphan clocks and reparent any that newly finds a
2380	 * parent.
 
2381	 */
2382	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
2383		struct clk_core *parent = __clk_init_parent(orphan);
 
 
 
 
 
2384
2385		if (parent)
2386			clk_core_reparent(orphan, parent);
 
 
 
 
 
2387	}
2388
2389	/*
2390	 * optional platform-specific magic
2391	 *
2392	 * The .init callback is not used by any of the basic clock types, but
2393	 * exists for weird hardware that must perform initialization magic.
2394	 * Please consider other ways of solving initialization problems before
2395	 * using this callback, as its use is discouraged.
2396	 */
2397	if (core->ops->init)
2398		core->ops->init(core->hw);
2399
2400	kref_init(&core->ref);
2401out:
 
 
 
 
 
 
 
2402	clk_prepare_unlock();
2403
2404	if (!ret)
2405		clk_debug_register(core);
2406
2407	return ret;
2408}
2409
2410struct clk *__clk_create_clk(struct clk_hw *hw, const char *dev_id,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2411			     const char *con_id)
2412{
2413	struct clk *clk;
2414
2415	/* This is to allow this function to be chained to others */
2416	if (IS_ERR_OR_NULL(hw))
2417		return (struct clk *) hw;
2418
2419	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
2420	if (!clk)
2421		return ERR_PTR(-ENOMEM);
2422
2423	clk->core = hw->core;
2424	clk->dev_id = dev_id;
2425	clk->con_id = con_id;
2426	clk->max_rate = ULONG_MAX;
2427
2428	clk_prepare_lock();
2429	hlist_add_head(&clk->clks_node, &hw->core->clks);
2430	clk_prepare_unlock();
2431
2432	return clk;
 
 
 
 
 
 
 
 
 
 
2433}
2434
2435void __clk_free_clk(struct clk *clk)
 
 
 
 
 
 
 
 
 
 
 
 
 
2436{
2437	clk_prepare_lock();
2438	hlist_del(&clk->clks_node);
2439	clk_prepare_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2440
2441	kfree(clk);
2442}
2443
2444/**
2445 * clk_register - allocate a new clock, register it and return an opaque cookie
2446 * @dev: device that is registering this clock
2447 * @hw: link to hardware-specific clock data
2448 *
2449 * clk_register is the primary interface for populating the clock tree with new
2450 * clock nodes.  It returns a pointer to the newly allocated struct clk which
2451 * cannot be dereferenced by driver code but may be used in conjunction with the
2452 * rest of the clock API.  In the event of an error clk_register will return an
2453 * error code; drivers must test for an error code after calling clk_register.
2454 */
2455struct clk *clk_register(struct device *dev, struct clk_hw *hw)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2456{
2457	int i, ret;
2458	struct clk_core *core;
 
 
 
 
 
 
 
 
2459
2460	core = kzalloc(sizeof(*core), GFP_KERNEL);
2461	if (!core) {
2462		ret = -ENOMEM;
2463		goto fail_out;
2464	}
2465
2466	core->name = kstrdup_const(hw->init->name, GFP_KERNEL);
2467	if (!core->name) {
2468		ret = -ENOMEM;
2469		goto fail_name;
2470	}
2471	core->ops = hw->init->ops;
 
 
 
 
 
 
 
 
 
 
2472	if (dev && dev->driver)
2473		core->owner = dev->driver->owner;
2474	core->hw = hw;
2475	core->flags = hw->init->flags;
2476	core->num_parents = hw->init->num_parents;
2477	core->min_rate = 0;
2478	core->max_rate = ULONG_MAX;
2479	hw->core = core;
2480
2481	/* allocate local copy in case parent_names is __initdata */
2482	core->parent_names = kcalloc(core->num_parents, sizeof(char *),
2483					GFP_KERNEL);
2484
2485	if (!core->parent_names) {
2486		ret = -ENOMEM;
2487		goto fail_parent_names;
2488	}
2489
2490
2491	/* copy each string name in case parent_names is __initdata */
2492	for (i = 0; i < core->num_parents; i++) {
2493		core->parent_names[i] = kstrdup_const(hw->init->parent_names[i],
2494						GFP_KERNEL);
2495		if (!core->parent_names[i]) {
2496			ret = -ENOMEM;
2497			goto fail_parent_names_copy;
2498		}
2499	}
2500
2501	/* avoid unnecessary string look-ups of clk_core's possible parents. */
2502	core->parents = kcalloc(core->num_parents, sizeof(*core->parents),
2503				GFP_KERNEL);
2504	if (!core->parents) {
2505		ret = -ENOMEM;
2506		goto fail_parents;
2507	};
2508
2509	INIT_HLIST_HEAD(&core->clks);
2510
2511	hw->clk = __clk_create_clk(hw, NULL, NULL);
 
 
 
 
2512	if (IS_ERR(hw->clk)) {
2513		ret = PTR_ERR(hw->clk);
2514		goto fail_parents;
2515	}
2516
 
 
2517	ret = __clk_core_init(core);
2518	if (!ret)
2519		return hw->clk;
2520
2521	__clk_free_clk(hw->clk);
 
 
 
 
2522	hw->clk = NULL;
2523
 
 
2524fail_parents:
2525	kfree(core->parents);
2526fail_parent_names_copy:
2527	while (--i >= 0)
2528		kfree_const(core->parent_names[i]);
2529	kfree(core->parent_names);
2530fail_parent_names:
2531	kfree_const(core->name);
2532fail_name:
2533	kfree(core);
2534fail_out:
2535	return ERR_PTR(ret);
2536}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2537EXPORT_SYMBOL_GPL(clk_register);
2538
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2539/* Free memory allocated for a clock. */
2540static void __clk_release(struct kref *ref)
2541{
2542	struct clk_core *core = container_of(ref, struct clk_core, ref);
2543	int i = core->num_parents;
2544
2545	lockdep_assert_held(&prepare_lock);
2546
2547	kfree(core->parents);
2548	while (--i >= 0)
2549		kfree_const(core->parent_names[i]);
2550
2551	kfree(core->parent_names);
2552	kfree_const(core->name);
2553	kfree(core);
2554}
2555
2556/*
2557 * Empty clk_ops for unregistered clocks. These are used temporarily
2558 * after clk_unregister() was called on a clock and until last clock
2559 * consumer calls clk_put() and the struct clk object is freed.
2560 */
2561static int clk_nodrv_prepare_enable(struct clk_hw *hw)
2562{
2563	return -ENXIO;
2564}
2565
2566static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
2567{
2568	WARN_ON_ONCE(1);
2569}
2570
2571static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
2572					unsigned long parent_rate)
2573{
2574	return -ENXIO;
2575}
2576
2577static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
2578{
2579	return -ENXIO;
2580}
2581
 
 
 
 
 
 
2582static const struct clk_ops clk_nodrv_ops = {
2583	.enable		= clk_nodrv_prepare_enable,
2584	.disable	= clk_nodrv_disable_unprepare,
2585	.prepare	= clk_nodrv_prepare_enable,
2586	.unprepare	= clk_nodrv_disable_unprepare,
 
2587	.set_rate	= clk_nodrv_set_rate,
2588	.set_parent	= clk_nodrv_set_parent,
2589};
2590
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2591/**
2592 * clk_unregister - unregister a currently registered clock
2593 * @clk: clock to unregister
2594 */
2595void clk_unregister(struct clk *clk)
2596{
2597	unsigned long flags;
 
2598
2599	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
2600		return;
2601
2602	clk_debug_unregister(clk->core);
2603
2604	clk_prepare_lock();
2605
2606	if (clk->core->ops == &clk_nodrv_ops) {
 
2607		pr_err("%s: unregistered clock: %s\n", __func__,
2608		       clk->core->name);
2609		goto unlock;
2610	}
2611	/*
2612	 * Assign empty clock ops for consumers that might still hold
2613	 * a reference to this clock.
2614	 */
2615	flags = clk_enable_lock();
2616	clk->core->ops = &clk_nodrv_ops;
2617	clk_enable_unlock(flags);
2618
 
 
 
2619	if (!hlist_empty(&clk->core->children)) {
2620		struct clk_core *child;
2621		struct hlist_node *t;
2622
2623		/* Reparent all children to the orphan list. */
2624		hlist_for_each_entry_safe(child, t, &clk->core->children,
2625					  child_node)
2626			clk_core_set_parent(child, NULL);
2627	}
2628
 
 
2629	hlist_del_init(&clk->core->child_node);
2630
2631	if (clk->core->prepare_count)
2632		pr_warn("%s: unregistering prepared clock: %s\n",
2633					__func__, clk->core->name);
 
 
 
 
 
2634	kref_put(&clk->core->ref, __clk_release);
 
2635unlock:
2636	clk_prepare_unlock();
2637}
2638EXPORT_SYMBOL_GPL(clk_unregister);
2639
2640static void devm_clk_release(struct device *dev, void *res)
 
 
 
 
 
 
 
 
 
 
2641{
2642	clk_unregister(*(struct clk **)res);
2643}
2644
 
 
 
 
 
2645/**
2646 * devm_clk_register - resource managed clk_register()
2647 * @dev: device that is registering this clock
2648 * @hw: link to hardware-specific clock data
2649 *
2650 * Managed clk_register(). Clocks returned from this function are
2651 * automatically clk_unregister()ed on driver detach. See clk_register() for
2652 * more information.
 
2653 */
2654struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
2655{
2656	struct clk *clk;
2657	struct clk **clkp;
2658
2659	clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
2660	if (!clkp)
2661		return ERR_PTR(-ENOMEM);
2662
2663	clk = clk_register(dev, hw);
2664	if (!IS_ERR(clk)) {
2665		*clkp = clk;
2666		devres_add(dev, clkp);
2667	} else {
2668		devres_free(clkp);
2669	}
2670
2671	return clk;
2672}
2673EXPORT_SYMBOL_GPL(devm_clk_register);
2674
2675static int devm_clk_match(struct device *dev, void *res, void *data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2676{
2677	struct clk *c = res;
2678	if (WARN_ON(!c))
2679		return 0;
2680	return c == data;
2681}
2682
2683/**
2684 * devm_clk_unregister - resource managed clk_unregister()
2685 * @clk: clock to unregister
 
 
2686 *
2687 * Deallocate a clock allocated with devm_clk_register(). Normally
2688 * this function will not need to be called and the resource management
2689 * code will ensure that the resource is freed.
2690 */
2691void devm_clk_unregister(struct device *dev, struct clk *clk)
 
2692{
2693	WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2694}
2695EXPORT_SYMBOL_GPL(devm_clk_unregister);
2696
2697/*
2698 * clkdev helpers
2699 */
2700int __clk_get(struct clk *clk)
2701{
2702	struct clk_core *core = !clk ? NULL : clk->core;
2703
2704	if (core) {
2705		if (!try_module_get(core->owner))
2706			return 0;
2707
2708		kref_get(&core->ref);
2709	}
2710	return 1;
2711}
2712
2713void __clk_put(struct clk *clk)
2714{
2715	struct module *owner;
2716
2717	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
2718		return;
2719
2720	clk_prepare_lock();
2721
 
 
 
 
 
 
 
 
 
 
 
 
2722	hlist_del(&clk->clks_node);
2723	if (clk->min_rate > clk->core->req_rate ||
2724	    clk->max_rate < clk->core->req_rate)
2725		clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
 
2726
2727	owner = clk->core->owner;
2728	kref_put(&clk->core->ref, __clk_release);
2729
2730	clk_prepare_unlock();
2731
2732	module_put(owner);
2733
2734	kfree(clk);
2735}
2736
2737/***        clk rate change notifiers        ***/
2738
2739/**
2740 * clk_notifier_register - add a clk rate change notifier
2741 * @clk: struct clk * to watch
2742 * @nb: struct notifier_block * with callback info
2743 *
2744 * Request notification when clk's rate changes.  This uses an SRCU
2745 * notifier because we want it to block and notifier unregistrations are
2746 * uncommon.  The callbacks associated with the notifier must not
2747 * re-enter into the clk framework by calling any top-level clk APIs;
2748 * this will cause a nested prepare_lock mutex.
2749 *
2750 * In all notification cases (pre, post and abort rate change) the original
2751 * clock rate is passed to the callback via struct clk_notifier_data.old_rate
2752 * and the new frequency is passed via struct clk_notifier_data.new_rate.
2753 *
2754 * clk_notifier_register() must be called from non-atomic context.
2755 * Returns -EINVAL if called with null arguments, -ENOMEM upon
2756 * allocation failure; otherwise, passes along the return value of
2757 * srcu_notifier_chain_register().
2758 */
2759int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
2760{
2761	struct clk_notifier *cn;
2762	int ret = -ENOMEM;
2763
2764	if (!clk || !nb)
2765		return -EINVAL;
2766
2767	clk_prepare_lock();
2768
2769	/* search the list of notifiers for this clk */
2770	list_for_each_entry(cn, &clk_notifier_list, node)
2771		if (cn->clk == clk)
2772			break;
2773
2774	/* if clk wasn't in the notifier list, allocate new clk_notifier */
2775	if (cn->clk != clk) {
2776		cn = kzalloc(sizeof(struct clk_notifier), GFP_KERNEL);
2777		if (!cn)
2778			goto out;
2779
2780		cn->clk = clk;
2781		srcu_init_notifier_head(&cn->notifier_head);
2782
2783		list_add(&cn->node, &clk_notifier_list);
2784	}
2785
 
2786	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
2787
2788	clk->core->notifier_count++;
2789
2790out:
2791	clk_prepare_unlock();
2792
2793	return ret;
2794}
2795EXPORT_SYMBOL_GPL(clk_notifier_register);
2796
2797/**
2798 * clk_notifier_unregister - remove a clk rate change notifier
2799 * @clk: struct clk *
2800 * @nb: struct notifier_block * with callback info
2801 *
2802 * Request no further notification for changes to 'clk' and frees memory
2803 * allocated in clk_notifier_register.
2804 *
2805 * Returns -EINVAL if called with null arguments; otherwise, passes
2806 * along the return value of srcu_notifier_chain_unregister().
2807 */
2808int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
2809{
2810	struct clk_notifier *cn = NULL;
2811	int ret = -EINVAL;
2812
2813	if (!clk || !nb)
2814		return -EINVAL;
2815
2816	clk_prepare_lock();
2817
2818	list_for_each_entry(cn, &clk_notifier_list, node)
2819		if (cn->clk == clk)
 
 
 
 
 
 
 
 
 
 
2820			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2821
2822	if (cn->clk == clk) {
2823		ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
 
 
 
 
 
 
2824
2825		clk->core->notifier_count--;
 
2826
2827		/* XXX the notifier code should handle this better */
2828		if (!cn->notifier_head.head) {
2829			srcu_cleanup_notifier_head(&cn->notifier_head);
2830			list_del(&cn->node);
2831			kfree(cn);
2832		}
2833
 
 
 
 
 
2834	} else {
2835		ret = -ENOENT;
2836	}
2837
2838	clk_prepare_unlock();
2839
2840	return ret;
2841}
2842EXPORT_SYMBOL_GPL(clk_notifier_unregister);
2843
2844#ifdef CONFIG_OF
 
 
 
 
 
 
 
2845/**
2846 * struct of_clk_provider - Clock provider registration structure
2847 * @link: Entry in global list of clock providers
2848 * @node: Pointer to device tree node of clock provider
2849 * @get: Get clock callback.  Returns NULL or a struct clk for the
2850 *       given clock specifier
 
 
2851 * @data: context pointer to be passed into @get callback
2852 */
2853struct of_clk_provider {
2854	struct list_head link;
2855
2856	struct device_node *node;
2857	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
 
2858	void *data;
2859};
2860
 
2861static const struct of_device_id __clk_of_table_sentinel
2862	__used __section(__clk_of_table_end);
2863
2864static LIST_HEAD(of_clk_providers);
2865static DEFINE_MUTEX(of_clk_mutex);
2866
2867struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
2868				     void *data)
2869{
2870	return data;
2871}
2872EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
2873
 
 
 
 
 
 
2874struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
2875{
2876	struct clk_onecell_data *clk_data = data;
2877	unsigned int idx = clkspec->args[0];
2878
2879	if (idx >= clk_data->clk_num) {
2880		pr_err("%s: invalid clock index %u\n", __func__, idx);
2881		return ERR_PTR(-EINVAL);
2882	}
2883
2884	return clk_data->clks[idx];
2885}
2886EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
2887
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2888/**
2889 * of_clk_add_provider() - Register a clock provider for a node
2890 * @np: Device node pointer associated with clock provider
2891 * @clk_src_get: callback for decoding clock
2892 * @data: context pointer for @clk_src_get callback.
 
 
2893 */
2894int of_clk_add_provider(struct device_node *np,
2895			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
2896						   void *data),
2897			void *data)
2898{
2899	struct of_clk_provider *cp;
2900	int ret;
2901
2902	cp = kzalloc(sizeof(struct of_clk_provider), GFP_KERNEL);
 
 
 
2903	if (!cp)
2904		return -ENOMEM;
2905
2906	cp->node = of_node_get(np);
2907	cp->data = data;
2908	cp->get = clk_src_get;
2909
2910	mutex_lock(&of_clk_mutex);
2911	list_add(&cp->link, &of_clk_providers);
2912	mutex_unlock(&of_clk_mutex);
2913	pr_debug("Added clock from %s\n", np->full_name);
 
 
2914
2915	ret = of_clk_set_defaults(np, true);
2916	if (ret < 0)
2917		of_clk_del_provider(np);
2918
 
 
2919	return ret;
2920}
2921EXPORT_SYMBOL_GPL(of_clk_add_provider);
2922
2923/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2924 * of_clk_del_provider() - Remove a previously registered clock provider
2925 * @np: Device node pointer associated with clock provider
2926 */
2927void of_clk_del_provider(struct device_node *np)
2928{
2929	struct of_clk_provider *cp;
2930
 
 
 
2931	mutex_lock(&of_clk_mutex);
2932	list_for_each_entry(cp, &of_clk_providers, link) {
2933		if (cp->node == np) {
2934			list_del(&cp->link);
 
2935			of_node_put(cp->node);
2936			kfree(cp);
2937			break;
2938		}
2939	}
2940	mutex_unlock(&of_clk_mutex);
2941}
2942EXPORT_SYMBOL_GPL(of_clk_del_provider);
2943
2944struct clk *__of_clk_get_from_provider(struct of_phandle_args *clkspec,
2945				       const char *dev_id, const char *con_id)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2946{
2947	struct of_clk_provider *provider;
2948	struct clk *clk = ERR_PTR(-EPROBE_DEFER);
2949
2950	if (!clkspec)
2951		return ERR_PTR(-EINVAL);
2952
2953	/* Check if we have such a provider in our array */
2954	mutex_lock(&of_clk_mutex);
2955	list_for_each_entry(provider, &of_clk_providers, link) {
2956		if (provider->node == clkspec->np)
2957			clk = provider->get(clkspec, provider->data);
2958		if (!IS_ERR(clk)) {
2959			clk = __clk_create_clk(__clk_get_hw(clk), dev_id,
2960					       con_id);
2961
2962			if (!IS_ERR(clk) && !__clk_get(clk)) {
2963				__clk_free_clk(clk);
2964				clk = ERR_PTR(-ENOENT);
2965			}
2966
2967			break;
2968		}
2969	}
2970	mutex_unlock(&of_clk_mutex);
2971
2972	return clk;
2973}
2974
2975/**
2976 * of_clk_get_from_provider() - Lookup a clock from a clock provider
2977 * @clkspec: pointer to a clock specifier data structure
2978 *
2979 * This function looks up a struct clk from the registered list of clock
2980 * providers, an input is a clock specifier data structure as returned
2981 * from the of_parse_phandle_with_args() function call.
2982 */
2983struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
2984{
2985	return __of_clk_get_from_provider(clkspec, NULL, __func__);
 
 
2986}
2987EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
2988
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2989/**
2990 * of_clk_get_parent_count() - Count the number of clocks a device node has
2991 * @np: device node to count
2992 *
2993 * Returns: The number of clocks that are possible parents of this node
2994 */
2995unsigned int of_clk_get_parent_count(struct device_node *np)
2996{
2997	int count;
2998
2999	count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
3000	if (count < 0)
3001		return 0;
3002
3003	return count;
3004}
3005EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
3006
3007const char *of_clk_get_parent_name(struct device_node *np, int index)
3008{
3009	struct of_phandle_args clkspec;
3010	struct property *prop;
3011	const char *clk_name;
3012	const __be32 *vp;
3013	u32 pv;
3014	int rc;
3015	int count;
3016	struct clk *clk;
3017
3018	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
3019					&clkspec);
3020	if (rc)
3021		return NULL;
3022
3023	index = clkspec.args_count ? clkspec.args[0] : 0;
3024	count = 0;
3025
3026	/* if there is an indices property, use it to transfer the index
3027	 * specified into an array offset for the clock-output-names property.
3028	 */
3029	of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
3030		if (index == pv) {
3031			index = count;
3032			break;
3033		}
3034		count++;
3035	}
3036	/* We went off the end of 'clock-indices' without finding it */
3037	if (prop && !vp)
3038		return NULL;
3039
3040	if (of_property_read_string_index(clkspec.np, "clock-output-names",
3041					  index,
3042					  &clk_name) < 0) {
3043		/*
3044		 * Best effort to get the name if the clock has been
3045		 * registered with the framework. If the clock isn't
3046		 * registered, we return the node name as the name of
3047		 * the clock as long as #clock-cells = 0.
3048		 */
3049		clk = of_clk_get_from_provider(&clkspec);
3050		if (IS_ERR(clk)) {
3051			if (clkspec.args_count == 0)
3052				clk_name = clkspec.np->name;
3053			else
3054				clk_name = NULL;
3055		} else {
3056			clk_name = __clk_get_name(clk);
3057			clk_put(clk);
3058		}
3059	}
3060
3061
3062	of_node_put(clkspec.np);
3063	return clk_name;
3064}
3065EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
3066
3067/**
3068 * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
3069 * number of parents
3070 * @np: Device node pointer associated with clock provider
3071 * @parents: pointer to char array that hold the parents' names
3072 * @size: size of the @parents array
3073 *
3074 * Return: number of parents for the clock node.
3075 */
3076int of_clk_parent_fill(struct device_node *np, const char **parents,
3077		       unsigned int size)
3078{
3079	unsigned int i = 0;
3080
3081	while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
3082		i++;
3083
3084	return i;
3085}
3086EXPORT_SYMBOL_GPL(of_clk_parent_fill);
3087
3088struct clock_provider {
3089	of_clk_init_cb_t clk_init_cb;
3090	struct device_node *np;
3091	struct list_head node;
3092};
3093
3094/*
3095 * This function looks for a parent clock. If there is one, then it
3096 * checks that the provider for this parent clock was initialized, in
3097 * this case the parent clock will be ready.
3098 */
3099static int parent_ready(struct device_node *np)
3100{
3101	int i = 0;
3102
3103	while (true) {
3104		struct clk *clk = of_clk_get(np, i);
3105
3106		/* this parent is ready we can check the next one */
3107		if (!IS_ERR(clk)) {
3108			clk_put(clk);
3109			i++;
3110			continue;
3111		}
3112
3113		/* at least one parent is not ready, we exit now */
3114		if (PTR_ERR(clk) == -EPROBE_DEFER)
3115			return 0;
3116
3117		/*
3118		 * Here we make assumption that the device tree is
3119		 * written correctly. So an error means that there is
3120		 * no more parent. As we didn't exit yet, then the
3121		 * previous parent are ready. If there is no clock
3122		 * parent, no need to wait for them, then we can
3123		 * consider their absence as being ready
3124		 */
3125		return 1;
3126	}
3127}
3128
3129/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3130 * of_clk_init() - Scan and init clock providers from the DT
3131 * @matches: array of compatible values and init functions for providers.
3132 *
3133 * This function scans the device tree for matching clock providers
3134 * and calls their initialization functions. It also does it by trying
3135 * to follow the dependencies.
3136 */
3137void __init of_clk_init(const struct of_device_id *matches)
3138{
3139	const struct of_device_id *match;
3140	struct device_node *np;
3141	struct clock_provider *clk_provider, *next;
3142	bool is_init_done;
3143	bool force = false;
3144	LIST_HEAD(clk_provider_list);
3145
3146	if (!matches)
3147		matches = &__clk_of_table;
3148
3149	/* First prepare the list of the clocks providers */
3150	for_each_matching_node_and_match(np, matches, &match) {
3151		struct clock_provider *parent;
3152
3153		if (!of_device_is_available(np))
3154			continue;
3155
3156		parent = kzalloc(sizeof(*parent), GFP_KERNEL);
3157		if (!parent) {
3158			list_for_each_entry_safe(clk_provider, next,
3159						 &clk_provider_list, node) {
3160				list_del(&clk_provider->node);
3161				of_node_put(clk_provider->np);
3162				kfree(clk_provider);
3163			}
3164			of_node_put(np);
3165			return;
3166		}
3167
3168		parent->clk_init_cb = match->data;
3169		parent->np = of_node_get(np);
3170		list_add_tail(&parent->node, &clk_provider_list);
3171	}
3172
3173	while (!list_empty(&clk_provider_list)) {
3174		is_init_done = false;
3175		list_for_each_entry_safe(clk_provider, next,
3176					&clk_provider_list, node) {
3177			if (force || parent_ready(clk_provider->np)) {
 
 
 
 
3178
3179				clk_provider->clk_init_cb(clk_provider->np);
3180				of_clk_set_defaults(clk_provider->np, true);
3181
3182				list_del(&clk_provider->node);
3183				of_node_put(clk_provider->np);
3184				kfree(clk_provider);
3185				is_init_done = true;
3186			}
3187		}
3188
3189		/*
3190		 * We didn't manage to initialize any of the
3191		 * remaining providers during the last loop, so now we
3192		 * initialize all the remaining ones unconditionally
3193		 * in case the clock parent was not mandatory
3194		 */
3195		if (!is_init_done)
3196			force = true;
3197	}
3198}
3199#endif