Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   3
   4#include <linux/kernel.h>
   5#include <linux/sched.h>
   6#include <linux/sched/clock.h>
   7#include <linux/init.h>
   8#include <linux/export.h>
   9#include <linux/timer.h>
  10#include <linux/acpi_pmtmr.h>
  11#include <linux/cpufreq.h>
  12#include <linux/delay.h>
  13#include <linux/clocksource.h>
  14#include <linux/percpu.h>
  15#include <linux/timex.h>
  16#include <linux/static_key.h>
  17#include <linux/static_call.h>
  18
  19#include <asm/hpet.h>
  20#include <asm/timer.h>
  21#include <asm/vgtod.h>
  22#include <asm/time.h>
  23#include <asm/delay.h>
  24#include <asm/hypervisor.h>
  25#include <asm/nmi.h>
  26#include <asm/x86_init.h>
  27#include <asm/geode.h>
  28#include <asm/apic.h>
  29#include <asm/intel-family.h>
  30#include <asm/i8259.h>
  31#include <asm/uv/uv.h>
  32
  33unsigned int __read_mostly cpu_khz;	/* TSC clocks / usec, not used here */
  34EXPORT_SYMBOL(cpu_khz);
  35
  36unsigned int __read_mostly tsc_khz;
  37EXPORT_SYMBOL(tsc_khz);
  38
  39#define KHZ	1000
  40
  41/*
  42 * TSC can be unstable due to cpufreq or due to unsynced TSCs
  43 */
  44static int __read_mostly tsc_unstable;
  45static unsigned int __initdata tsc_early_khz;
 
 
 
 
  46
  47static DEFINE_STATIC_KEY_FALSE(__use_tsc);
  48
  49int tsc_clocksource_reliable;
  50
  51static int __read_mostly tsc_force_recalibrate;
  52
  53static u32 art_to_tsc_numerator;
  54static u32 art_to_tsc_denominator;
  55static u64 art_to_tsc_offset;
  56static struct clocksource *art_related_clocksource;
  57
  58struct cyc2ns {
  59	struct cyc2ns_data data[2];	/*  0 + 2*16 = 32 */
  60	seqcount_latch_t   seq;		/* 32 + 4    = 36 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  61
  62}; /* fits one cacheline */
 
 
 
 
  63
  64static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
  65
  66static int __init tsc_early_khz_setup(char *buf)
  67{
  68	return kstrtouint(buf, 0, &tsc_early_khz);
  69}
  70early_param("tsc_early_khz", tsc_early_khz_setup);
  71
  72__always_inline void __cyc2ns_read(struct cyc2ns_data *data)
  73{
  74	int seq, idx;
  75
  76	do {
  77		seq = this_cpu_read(cyc2ns.seq.seqcount.sequence);
  78		idx = seq & 1;
 
 
 
 
 
  79
  80		data->cyc2ns_offset = this_cpu_read(cyc2ns.data[idx].cyc2ns_offset);
  81		data->cyc2ns_mul    = this_cpu_read(cyc2ns.data[idx].cyc2ns_mul);
  82		data->cyc2ns_shift  = this_cpu_read(cyc2ns.data[idx].cyc2ns_shift);
  83
  84	} while (unlikely(seq != this_cpu_read(cyc2ns.seq.seqcount.sequence)));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  85}
  86
  87__always_inline void cyc2ns_read_begin(struct cyc2ns_data *data)
 
 
 
 
 
 
  88{
  89	preempt_disable_notrace();
  90	__cyc2ns_read(data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  91}
  92
  93__always_inline void cyc2ns_read_end(void)
  94{
  95	preempt_enable_notrace();
 
 
 
 
 
 
 
 
  96}
  97
  98/*
  99 * Accelerators for sched_clock()
 100 * convert from cycles(64bits) => nanoseconds (64bits)
 101 *  basic equation:
 102 *              ns = cycles / (freq / ns_per_sec)
 103 *              ns = cycles * (ns_per_sec / freq)
 104 *              ns = cycles * (10^9 / (cpu_khz * 10^3))
 105 *              ns = cycles * (10^6 / cpu_khz)
 106 *
 107 *      Then we use scaling math (suggested by george@mvista.com) to get:
 108 *              ns = cycles * (10^6 * SC / cpu_khz) / SC
 109 *              ns = cycles * cyc2ns_scale / SC
 110 *
 111 *      And since SC is a constant power of two, we can convert the div
 112 *  into a shift. The larger SC is, the more accurate the conversion, but
 113 *  cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
 114 *  (64-bit result) can be used.
 115 *
 116 *  We can use khz divisor instead of mhz to keep a better precision.
 117 *  (mathieu.desnoyers@polymtl.ca)
 118 *
 119 *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
 120 */
 121
 122static __always_inline unsigned long long __cycles_2_ns(unsigned long long cyc)
 123{
 124	struct cyc2ns_data data;
 125	unsigned long long ns;
 
 
 
 126
 127	__cyc2ns_read(&data);
 
 
 128
 129	ns = data.cyc2ns_offset;
 130	ns += mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift);
 131
 132	return ns;
 
 133}
 134
 135static __always_inline unsigned long long cycles_2_ns(unsigned long long cyc)
 136{
 
 137	unsigned long long ns;
 
 
 
 
 
 
 
 
 138	preempt_disable_notrace();
 139	ns = __cycles_2_ns(cyc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 140	preempt_enable_notrace();
 
 141	return ns;
 142}
 143
 144static void __set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
 145{
 146	unsigned long long ns_now;
 147	struct cyc2ns_data data;
 148	struct cyc2ns *c2n;
 
 
 
 
 
 
 
 
 149
 
 150	ns_now = cycles_2_ns(tsc_now);
 151
 152	/*
 153	 * Compute a new multiplier as per the above comment and ensure our
 154	 * time function is continuous; see the comment near struct
 155	 * cyc2ns_data.
 156	 */
 157	clocks_calc_mult_shift(&data.cyc2ns_mul, &data.cyc2ns_shift, khz,
 158			       NSEC_PER_MSEC, 0);
 159
 160	/*
 161	 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
 162	 * not expected to be greater than 31 due to the original published
 163	 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
 164	 * value) - refer perf_event_mmap_page documentation in perf_event.h.
 165	 */
 166	if (data.cyc2ns_shift == 32) {
 167		data.cyc2ns_shift = 31;
 168		data.cyc2ns_mul >>= 1;
 169	}
 170
 171	data.cyc2ns_offset = ns_now -
 172		mul_u64_u32_shr(tsc_now, data.cyc2ns_mul, data.cyc2ns_shift);
 173
 174	c2n = per_cpu_ptr(&cyc2ns, cpu);
 175
 176	raw_write_seqcount_latch(&c2n->seq);
 177	c2n->data[0] = data;
 178	raw_write_seqcount_latch(&c2n->seq);
 179	c2n->data[1] = data;
 180}
 181
 182static void set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
 183{
 184	unsigned long flags;
 185
 186	local_irq_save(flags);
 187	sched_clock_idle_sleep_event();
 188
 189	if (khz)
 190		__set_cyc2ns_scale(khz, cpu, tsc_now);
 191
 192	sched_clock_idle_wakeup_event();
 193	local_irq_restore(flags);
 194}
 195
 196/*
 197 * Initialize cyc2ns for boot cpu
 198 */
 199static void __init cyc2ns_init_boot_cpu(void)
 200{
 201	struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
 202
 203	seqcount_latch_init(&c2n->seq);
 204	__set_cyc2ns_scale(tsc_khz, smp_processor_id(), rdtsc());
 205}
 206
 207/*
 208 * Secondary CPUs do not run through tsc_init(), so set up
 209 * all the scale factors for all CPUs, assuming the same
 210 * speed as the bootup CPU.
 211 */
 212static void __init cyc2ns_init_secondary_cpus(void)
 213{
 214	unsigned int cpu, this_cpu = smp_processor_id();
 215	struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
 216	struct cyc2ns_data *data = c2n->data;
 217
 218	for_each_possible_cpu(cpu) {
 219		if (cpu != this_cpu) {
 220			seqcount_latch_init(&c2n->seq);
 221			c2n = per_cpu_ptr(&cyc2ns, cpu);
 222			c2n->data[0] = data[0];
 223			c2n->data[1] = data[1];
 224		}
 225	}
 226}
 227
 228/*
 229 * Scheduler clock - returns current time in nanosec units.
 230 */
 231noinstr u64 native_sched_clock(void)
 232{
 233	if (static_branch_likely(&__use_tsc)) {
 234		u64 tsc_now = rdtsc();
 235
 236		/* return the value in ns */
 237		return __cycles_2_ns(tsc_now);
 238	}
 239
 240	/*
 241	 * Fall back to jiffies if there's no TSC available:
 242	 * ( But note that we still use it if the TSC is marked
 243	 *   unstable. We do this because unlike Time Of Day,
 244	 *   the scheduler clock tolerates small errors and it's
 245	 *   very important for it to be as fast as the platform
 246	 *   can achieve it. )
 247	 */
 248
 249	/* No locking but a rare wrong value is not a big deal: */
 250	return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
 251}
 252
 253/*
 254 * Generate a sched_clock if you already have a TSC value.
 255 */
 256u64 native_sched_clock_from_tsc(u64 tsc)
 257{
 258	return cycles_2_ns(tsc);
 259}
 260
 261/* We need to define a real function for sched_clock, to override the
 262   weak default version */
 263#ifdef CONFIG_PARAVIRT
 264noinstr u64 sched_clock_noinstr(void)
 265{
 266	return paravirt_sched_clock();
 267}
 268
 269bool using_native_sched_clock(void)
 270{
 271	return static_call_query(pv_sched_clock) == native_sched_clock;
 272}
 273#else
 274u64 sched_clock_noinstr(void) __attribute__((alias("native_sched_clock")));
 275
 276bool using_native_sched_clock(void) { return true; }
 277#endif
 278
 279notrace u64 sched_clock(void)
 280{
 281	u64 now;
 282	preempt_disable_notrace();
 283	now = sched_clock_noinstr();
 284	preempt_enable_notrace();
 285	return now;
 286}
 287
 288int check_tsc_unstable(void)
 289{
 290	return tsc_unstable;
 291}
 292EXPORT_SYMBOL_GPL(check_tsc_unstable);
 293
 
 
 
 
 
 
 294#ifdef CONFIG_X86_TSC
 295int __init notsc_setup(char *str)
 296{
 297	mark_tsc_unstable("boot parameter notsc");
 
 298	return 1;
 299}
 300#else
 301/*
 302 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
 303 * in cpu/common.c
 304 */
 305int __init notsc_setup(char *str)
 306{
 307	setup_clear_cpu_cap(X86_FEATURE_TSC);
 308	return 1;
 309}
 310#endif
 311
 312__setup("notsc", notsc_setup);
 313
 314static int no_sched_irq_time;
 315static int no_tsc_watchdog;
 316static int tsc_as_watchdog;
 317
 318static int __init tsc_setup(char *str)
 319{
 320	if (!strcmp(str, "reliable"))
 321		tsc_clocksource_reliable = 1;
 322	if (!strncmp(str, "noirqtime", 9))
 323		no_sched_irq_time = 1;
 324	if (!strcmp(str, "unstable"))
 325		mark_tsc_unstable("boot parameter");
 326	if (!strcmp(str, "nowatchdog")) {
 327		no_tsc_watchdog = 1;
 328		if (tsc_as_watchdog)
 329			pr_alert("%s: Overriding earlier tsc=watchdog with tsc=nowatchdog\n",
 330				 __func__);
 331		tsc_as_watchdog = 0;
 332	}
 333	if (!strcmp(str, "recalibrate"))
 334		tsc_force_recalibrate = 1;
 335	if (!strcmp(str, "watchdog")) {
 336		if (no_tsc_watchdog)
 337			pr_alert("%s: tsc=watchdog overridden by earlier tsc=nowatchdog\n",
 338				 __func__);
 339		else
 340			tsc_as_watchdog = 1;
 341	}
 342	return 1;
 343}
 344
 345__setup("tsc=", tsc_setup);
 346
 347#define MAX_RETRIES		5
 348#define TSC_DEFAULT_THRESHOLD	0x20000
 349
 350/*
 351 * Read TSC and the reference counters. Take care of any disturbances
 352 */
 353static u64 tsc_read_refs(u64 *p, int hpet)
 354{
 355	u64 t1, t2;
 356	u64 thresh = tsc_khz ? tsc_khz >> 5 : TSC_DEFAULT_THRESHOLD;
 357	int i;
 358
 359	for (i = 0; i < MAX_RETRIES; i++) {
 360		t1 = get_cycles();
 361		if (hpet)
 362			*p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
 363		else
 364			*p = acpi_pm_read_early();
 365		t2 = get_cycles();
 366		if ((t2 - t1) < thresh)
 367			return t2;
 368	}
 369	return ULLONG_MAX;
 370}
 371
 372/*
 373 * Calculate the TSC frequency from HPET reference
 374 */
 375static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
 376{
 377	u64 tmp;
 378
 379	if (hpet2 < hpet1)
 380		hpet2 += 0x100000000ULL;
 381	hpet2 -= hpet1;
 382	tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
 383	do_div(tmp, 1000000);
 384	deltatsc = div64_u64(deltatsc, tmp);
 385
 386	return (unsigned long) deltatsc;
 387}
 388
 389/*
 390 * Calculate the TSC frequency from PMTimer reference
 391 */
 392static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
 393{
 394	u64 tmp;
 395
 396	if (!pm1 && !pm2)
 397		return ULONG_MAX;
 398
 399	if (pm2 < pm1)
 400		pm2 += (u64)ACPI_PM_OVRRUN;
 401	pm2 -= pm1;
 402	tmp = pm2 * 1000000000LL;
 403	do_div(tmp, PMTMR_TICKS_PER_SEC);
 404	do_div(deltatsc, tmp);
 405
 406	return (unsigned long) deltatsc;
 407}
 408
 409#define CAL_MS		10
 410#define CAL_LATCH	(PIT_TICK_RATE / (1000 / CAL_MS))
 411#define CAL_PIT_LOOPS	1000
 412
 413#define CAL2_MS		50
 414#define CAL2_LATCH	(PIT_TICK_RATE / (1000 / CAL2_MS))
 415#define CAL2_PIT_LOOPS	5000
 416
 417
 418/*
 419 * Try to calibrate the TSC against the Programmable
 420 * Interrupt Timer and return the frequency of the TSC
 421 * in kHz.
 422 *
 423 * Return ULONG_MAX on failure to calibrate.
 424 */
 425static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
 426{
 427	u64 tsc, t1, t2, delta;
 428	unsigned long tscmin, tscmax;
 429	int pitcnt;
 430
 431	if (!has_legacy_pic()) {
 432		/*
 433		 * Relies on tsc_early_delay_calibrate() to have given us semi
 434		 * usable udelay(), wait for the same 50ms we would have with
 435		 * the PIT loop below.
 436		 */
 437		udelay(10 * USEC_PER_MSEC);
 438		udelay(10 * USEC_PER_MSEC);
 439		udelay(10 * USEC_PER_MSEC);
 440		udelay(10 * USEC_PER_MSEC);
 441		udelay(10 * USEC_PER_MSEC);
 442		return ULONG_MAX;
 443	}
 444
 445	/* Set the Gate high, disable speaker */
 446	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
 447
 448	/*
 449	 * Setup CTC channel 2* for mode 0, (interrupt on terminal
 450	 * count mode), binary count. Set the latch register to 50ms
 451	 * (LSB then MSB) to begin countdown.
 452	 */
 453	outb(0xb0, 0x43);
 454	outb(latch & 0xff, 0x42);
 455	outb(latch >> 8, 0x42);
 456
 457	tsc = t1 = t2 = get_cycles();
 458
 459	pitcnt = 0;
 460	tscmax = 0;
 461	tscmin = ULONG_MAX;
 462	while ((inb(0x61) & 0x20) == 0) {
 463		t2 = get_cycles();
 464		delta = t2 - tsc;
 465		tsc = t2;
 466		if ((unsigned long) delta < tscmin)
 467			tscmin = (unsigned int) delta;
 468		if ((unsigned long) delta > tscmax)
 469			tscmax = (unsigned int) delta;
 470		pitcnt++;
 471	}
 472
 473	/*
 474	 * Sanity checks:
 475	 *
 476	 * If we were not able to read the PIT more than loopmin
 477	 * times, then we have been hit by a massive SMI
 478	 *
 479	 * If the maximum is 10 times larger than the minimum,
 480	 * then we got hit by an SMI as well.
 481	 */
 482	if (pitcnt < loopmin || tscmax > 10 * tscmin)
 483		return ULONG_MAX;
 484
 485	/* Calculate the PIT value */
 486	delta = t2 - t1;
 487	do_div(delta, ms);
 488	return delta;
 489}
 490
 491/*
 492 * This reads the current MSB of the PIT counter, and
 493 * checks if we are running on sufficiently fast and
 494 * non-virtualized hardware.
 495 *
 496 * Our expectations are:
 497 *
 498 *  - the PIT is running at roughly 1.19MHz
 499 *
 500 *  - each IO is going to take about 1us on real hardware,
 501 *    but we allow it to be much faster (by a factor of 10) or
 502 *    _slightly_ slower (ie we allow up to a 2us read+counter
 503 *    update - anything else implies a unacceptably slow CPU
 504 *    or PIT for the fast calibration to work.
 505 *
 506 *  - with 256 PIT ticks to read the value, we have 214us to
 507 *    see the same MSB (and overhead like doing a single TSC
 508 *    read per MSB value etc).
 509 *
 510 *  - We're doing 2 reads per loop (LSB, MSB), and we expect
 511 *    them each to take about a microsecond on real hardware.
 512 *    So we expect a count value of around 100. But we'll be
 513 *    generous, and accept anything over 50.
 514 *
 515 *  - if the PIT is stuck, and we see *many* more reads, we
 516 *    return early (and the next caller of pit_expect_msb()
 517 *    then consider it a failure when they don't see the
 518 *    next expected value).
 519 *
 520 * These expectations mean that we know that we have seen the
 521 * transition from one expected value to another with a fairly
 522 * high accuracy, and we didn't miss any events. We can thus
 523 * use the TSC value at the transitions to calculate a pretty
 524 * good value for the TSC frequency.
 525 */
 526static inline int pit_verify_msb(unsigned char val)
 527{
 528	/* Ignore LSB */
 529	inb(0x42);
 530	return inb(0x42) == val;
 531}
 532
 533static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
 534{
 535	int count;
 536	u64 tsc = 0, prev_tsc = 0;
 537
 538	for (count = 0; count < 50000; count++) {
 539		if (!pit_verify_msb(val))
 540			break;
 541		prev_tsc = tsc;
 542		tsc = get_cycles();
 543	}
 544	*deltap = get_cycles() - prev_tsc;
 545	*tscp = tsc;
 546
 547	/*
 548	 * We require _some_ success, but the quality control
 549	 * will be based on the error terms on the TSC values.
 550	 */
 551	return count > 5;
 552}
 553
 554/*
 555 * How many MSB values do we want to see? We aim for
 556 * a maximum error rate of 500ppm (in practice the
 557 * real error is much smaller), but refuse to spend
 558 * more than 50ms on it.
 559 */
 560#define MAX_QUICK_PIT_MS 50
 561#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
 562
 563static unsigned long quick_pit_calibrate(void)
 564{
 565	int i;
 566	u64 tsc, delta;
 567	unsigned long d1, d2;
 568
 569	if (!has_legacy_pic())
 570		return 0;
 571
 572	/* Set the Gate high, disable speaker */
 573	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
 574
 575	/*
 576	 * Counter 2, mode 0 (one-shot), binary count
 577	 *
 578	 * NOTE! Mode 2 decrements by two (and then the
 579	 * output is flipped each time, giving the same
 580	 * final output frequency as a decrement-by-one),
 581	 * so mode 0 is much better when looking at the
 582	 * individual counts.
 583	 */
 584	outb(0xb0, 0x43);
 585
 586	/* Start at 0xffff */
 587	outb(0xff, 0x42);
 588	outb(0xff, 0x42);
 589
 590	/*
 591	 * The PIT starts counting at the next edge, so we
 592	 * need to delay for a microsecond. The easiest way
 593	 * to do that is to just read back the 16-bit counter
 594	 * once from the PIT.
 595	 */
 596	pit_verify_msb(0);
 597
 598	if (pit_expect_msb(0xff, &tsc, &d1)) {
 599		for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
 600			if (!pit_expect_msb(0xff-i, &delta, &d2))
 601				break;
 602
 603			delta -= tsc;
 604
 605			/*
 606			 * Extrapolate the error and fail fast if the error will
 607			 * never be below 500 ppm.
 608			 */
 609			if (i == 1 &&
 610			    d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
 611				return 0;
 612
 613			/*
 614			 * Iterate until the error is less than 500 ppm
 615			 */
 616			if (d1+d2 >= delta >> 11)
 617				continue;
 618
 619			/*
 620			 * Check the PIT one more time to verify that
 621			 * all TSC reads were stable wrt the PIT.
 622			 *
 623			 * This also guarantees serialization of the
 624			 * last cycle read ('d2') in pit_expect_msb.
 625			 */
 626			if (!pit_verify_msb(0xfe - i))
 627				break;
 628			goto success;
 629		}
 630	}
 631	pr_info("Fast TSC calibration failed\n");
 632	return 0;
 633
 634success:
 635	/*
 636	 * Ok, if we get here, then we've seen the
 637	 * MSB of the PIT decrement 'i' times, and the
 638	 * error has shrunk to less than 500 ppm.
 639	 *
 640	 * As a result, we can depend on there not being
 641	 * any odd delays anywhere, and the TSC reads are
 642	 * reliable (within the error).
 643	 *
 644	 * kHz = ticks / time-in-seconds / 1000;
 645	 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
 646	 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
 647	 */
 648	delta *= PIT_TICK_RATE;
 649	do_div(delta, i*256*1000);
 650	pr_info("Fast TSC calibration using PIT\n");
 651	return delta;
 652}
 653
 654/**
 655 * native_calibrate_tsc
 656 * Determine TSC frequency via CPUID, else return 0.
 657 */
 658unsigned long native_calibrate_tsc(void)
 659{
 660	unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
 661	unsigned int crystal_khz;
 662
 663	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
 664		return 0;
 665
 666	if (boot_cpu_data.cpuid_level < 0x15)
 667		return 0;
 668
 669	eax_denominator = ebx_numerator = ecx_hz = edx = 0;
 670
 671	/* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
 672	cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
 673
 674	if (ebx_numerator == 0 || eax_denominator == 0)
 675		return 0;
 676
 677	crystal_khz = ecx_hz / 1000;
 678
 679	/*
 680	 * Denverton SoCs don't report crystal clock, and also don't support
 681	 * CPUID.0x16 for the calculation below, so hardcode the 25MHz crystal
 682	 * clock.
 683	 */
 684	if (crystal_khz == 0 &&
 685			boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT_D)
 686		crystal_khz = 25000;
 687
 688	/*
 689	 * TSC frequency reported directly by CPUID is a "hardware reported"
 690	 * frequency and is the most accurate one so far we have. This
 691	 * is considered a known frequency.
 692	 */
 693	if (crystal_khz != 0)
 694		setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
 695
 696	/*
 697	 * Some Intel SoCs like Skylake and Kabylake don't report the crystal
 698	 * clock, but we can easily calculate it to a high degree of accuracy
 699	 * by considering the crystal ratio and the CPU speed.
 700	 */
 701	if (crystal_khz == 0 && boot_cpu_data.cpuid_level >= 0x16) {
 702		unsigned int eax_base_mhz, ebx, ecx, edx;
 703
 704		cpuid(0x16, &eax_base_mhz, &ebx, &ecx, &edx);
 705		crystal_khz = eax_base_mhz * 1000 *
 706			eax_denominator / ebx_numerator;
 707	}
 708
 709	if (crystal_khz == 0)
 710		return 0;
 711
 712	/*
 713	 * For Atom SoCs TSC is the only reliable clocksource.
 714	 * Mark TSC reliable so no watchdog on it.
 715	 */
 716	if (boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT)
 717		setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
 718
 719#ifdef CONFIG_X86_LOCAL_APIC
 720	/*
 721	 * The local APIC appears to be fed by the core crystal clock
 722	 * (which sounds entirely sensible). We can set the global
 723	 * lapic_timer_period here to avoid having to calibrate the APIC
 724	 * timer later.
 725	 */
 726	lapic_timer_period = crystal_khz * 1000 / HZ;
 727#endif
 728
 729	return crystal_khz * ebx_numerator / eax_denominator;
 730}
 731
 732static unsigned long cpu_khz_from_cpuid(void)
 733{
 734	unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;
 735
 736	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
 737		return 0;
 738
 739	if (boot_cpu_data.cpuid_level < 0x16)
 740		return 0;
 741
 742	eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;
 743
 744	cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);
 745
 746	return eax_base_mhz * 1000;
 747}
 748
 749/*
 750 * calibrate cpu using pit, hpet, and ptimer methods. They are available
 751 * later in boot after acpi is initialized.
 752 */
 753static unsigned long pit_hpet_ptimer_calibrate_cpu(void)
 754{
 755	u64 tsc1, tsc2, delta, ref1, ref2;
 756	unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
 757	unsigned long flags, latch, ms;
 758	int hpet = is_hpet_enabled(), i, loopmin;
 759
 
 
 
 
 
 
 
 
 
 
 
 
 
 760	/*
 761	 * Run 5 calibration loops to get the lowest frequency value
 762	 * (the best estimate). We use two different calibration modes
 763	 * here:
 764	 *
 765	 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
 766	 * load a timeout of 50ms. We read the time right after we
 767	 * started the timer and wait until the PIT count down reaches
 768	 * zero. In each wait loop iteration we read the TSC and check
 769	 * the delta to the previous read. We keep track of the min
 770	 * and max values of that delta. The delta is mostly defined
 771	 * by the IO time of the PIT access, so we can detect when
 772	 * any disturbance happened between the two reads. If the
 773	 * maximum time is significantly larger than the minimum time,
 774	 * then we discard the result and have another try.
 775	 *
 776	 * 2) Reference counter. If available we use the HPET or the
 777	 * PMTIMER as a reference to check the sanity of that value.
 778	 * We use separate TSC readouts and check inside of the
 779	 * reference read for any possible disturbance. We discard
 780	 * disturbed values here as well. We do that around the PIT
 781	 * calibration delay loop as we have to wait for a certain
 782	 * amount of time anyway.
 783	 */
 784
 785	/* Preset PIT loop values */
 786	latch = CAL_LATCH;
 787	ms = CAL_MS;
 788	loopmin = CAL_PIT_LOOPS;
 789
 790	for (i = 0; i < 3; i++) {
 791		unsigned long tsc_pit_khz;
 792
 793		/*
 794		 * Read the start value and the reference count of
 795		 * hpet/pmtimer when available. Then do the PIT
 796		 * calibration, which will take at least 50ms, and
 797		 * read the end value.
 798		 */
 799		local_irq_save(flags);
 800		tsc1 = tsc_read_refs(&ref1, hpet);
 801		tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
 802		tsc2 = tsc_read_refs(&ref2, hpet);
 803		local_irq_restore(flags);
 804
 805		/* Pick the lowest PIT TSC calibration so far */
 806		tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
 807
 808		/* hpet or pmtimer available ? */
 809		if (ref1 == ref2)
 810			continue;
 811
 812		/* Check, whether the sampling was disturbed */
 813		if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
 814			continue;
 815
 816		tsc2 = (tsc2 - tsc1) * 1000000LL;
 817		if (hpet)
 818			tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
 819		else
 820			tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
 821
 822		tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
 823
 824		/* Check the reference deviation */
 825		delta = ((u64) tsc_pit_min) * 100;
 826		do_div(delta, tsc_ref_min);
 827
 828		/*
 829		 * If both calibration results are inside a 10% window
 830		 * then we can be sure, that the calibration
 831		 * succeeded. We break out of the loop right away. We
 832		 * use the reference value, as it is more precise.
 833		 */
 834		if (delta >= 90 && delta <= 110) {
 835			pr_info("PIT calibration matches %s. %d loops\n",
 836				hpet ? "HPET" : "PMTIMER", i + 1);
 837			return tsc_ref_min;
 838		}
 839
 840		/*
 841		 * Check whether PIT failed more than once. This
 842		 * happens in virtualized environments. We need to
 843		 * give the virtual PC a slightly longer timeframe for
 844		 * the HPET/PMTIMER to make the result precise.
 845		 */
 846		if (i == 1 && tsc_pit_min == ULONG_MAX) {
 847			latch = CAL2_LATCH;
 848			ms = CAL2_MS;
 849			loopmin = CAL2_PIT_LOOPS;
 850		}
 851	}
 852
 853	/*
 854	 * Now check the results.
 855	 */
 856	if (tsc_pit_min == ULONG_MAX) {
 857		/* PIT gave no useful value */
 858		pr_warn("Unable to calibrate against PIT\n");
 859
 860		/* We don't have an alternative source, disable TSC */
 861		if (!hpet && !ref1 && !ref2) {
 862			pr_notice("No reference (HPET/PMTIMER) available\n");
 863			return 0;
 864		}
 865
 866		/* The alternative source failed as well, disable TSC */
 867		if (tsc_ref_min == ULONG_MAX) {
 868			pr_warn("HPET/PMTIMER calibration failed\n");
 869			return 0;
 870		}
 871
 872		/* Use the alternative source */
 873		pr_info("using %s reference calibration\n",
 874			hpet ? "HPET" : "PMTIMER");
 875
 876		return tsc_ref_min;
 877	}
 878
 879	/* We don't have an alternative source, use the PIT calibration value */
 880	if (!hpet && !ref1 && !ref2) {
 881		pr_info("Using PIT calibration value\n");
 882		return tsc_pit_min;
 883	}
 884
 885	/* The alternative source failed, use the PIT calibration value */
 886	if (tsc_ref_min == ULONG_MAX) {
 887		pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
 888		return tsc_pit_min;
 889	}
 890
 891	/*
 892	 * The calibration values differ too much. In doubt, we use
 893	 * the PIT value as we know that there are PMTIMERs around
 894	 * running at double speed. At least we let the user know:
 895	 */
 896	pr_warn("PIT calibration deviates from %s: %lu %lu\n",
 897		hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
 898	pr_info("Using PIT calibration value\n");
 899	return tsc_pit_min;
 900}
 901
 902/**
 903 * native_calibrate_cpu_early - can calibrate the cpu early in boot
 904 */
 905unsigned long native_calibrate_cpu_early(void)
 906{
 907	unsigned long flags, fast_calibrate = cpu_khz_from_cpuid();
 908
 909	if (!fast_calibrate)
 910		fast_calibrate = cpu_khz_from_msr();
 911	if (!fast_calibrate) {
 912		local_irq_save(flags);
 913		fast_calibrate = quick_pit_calibrate();
 914		local_irq_restore(flags);
 915	}
 916	return fast_calibrate;
 917}
 918
 919
 920/**
 921 * native_calibrate_cpu - calibrate the cpu
 922 */
 923static unsigned long native_calibrate_cpu(void)
 924{
 925	unsigned long tsc_freq = native_calibrate_cpu_early();
 926
 927	if (!tsc_freq)
 928		tsc_freq = pit_hpet_ptimer_calibrate_cpu();
 929
 930	return tsc_freq;
 931}
 932
 933void recalibrate_cpu_khz(void)
 934{
 935#ifndef CONFIG_SMP
 936	unsigned long cpu_khz_old = cpu_khz;
 937
 938	if (!boot_cpu_has(X86_FEATURE_TSC))
 939		return;
 940
 941	cpu_khz = x86_platform.calibrate_cpu();
 942	tsc_khz = x86_platform.calibrate_tsc();
 943	if (tsc_khz == 0)
 944		tsc_khz = cpu_khz;
 945	else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
 946		cpu_khz = tsc_khz;
 947	cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
 948						    cpu_khz_old, cpu_khz);
 
 
 
 
 
 
 949#endif
 950}
 951EXPORT_SYMBOL_GPL(recalibrate_cpu_khz);
 
 952
 953
 954static unsigned long long cyc2ns_suspend;
 955
 956void tsc_save_sched_clock_state(void)
 957{
 958	if (!sched_clock_stable())
 959		return;
 960
 961	cyc2ns_suspend = sched_clock();
 962}
 963
 964/*
 965 * Even on processors with invariant TSC, TSC gets reset in some the
 966 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
 967 * arbitrary value (still sync'd across cpu's) during resume from such sleep
 968 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
 969 * that sched_clock() continues from the point where it was left off during
 970 * suspend.
 971 */
 972void tsc_restore_sched_clock_state(void)
 973{
 974	unsigned long long offset;
 975	unsigned long flags;
 976	int cpu;
 977
 978	if (!sched_clock_stable())
 979		return;
 980
 981	local_irq_save(flags);
 982
 983	/*
 984	 * We're coming out of suspend, there's no concurrency yet; don't
 985	 * bother being nice about the RCU stuff, just write to both
 986	 * data fields.
 987	 */
 988
 989	this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
 990	this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
 991
 992	offset = cyc2ns_suspend - sched_clock();
 993
 994	for_each_possible_cpu(cpu) {
 995		per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
 996		per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
 997	}
 998
 999	local_irq_restore(flags);
1000}
1001
1002#ifdef CONFIG_CPU_FREQ
1003/*
1004 * Frequency scaling support. Adjust the TSC based timer when the CPU frequency
1005 * changes.
1006 *
1007 * NOTE: On SMP the situation is not fixable in general, so simply mark the TSC
1008 * as unstable and give up in those cases.
 
1009 *
1010 * Should fix up last_tsc too. Currently gettimeofday in the
1011 * first tick after the change will be slightly wrong.
1012 */
1013
1014static unsigned int  ref_freq;
1015static unsigned long loops_per_jiffy_ref;
1016static unsigned long tsc_khz_ref;
1017
1018static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
1019				void *data)
1020{
1021	struct cpufreq_freqs *freq = data;
 
1022
1023	if (num_online_cpus() > 1) {
1024		mark_tsc_unstable("cpufreq changes on SMP");
1025		return 0;
1026	}
 
 
 
 
 
1027
1028	if (!ref_freq) {
1029		ref_freq = freq->old;
1030		loops_per_jiffy_ref = boot_cpu_data.loops_per_jiffy;
1031		tsc_khz_ref = tsc_khz;
1032	}
1033
1034	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
1035	    (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
1036		boot_cpu_data.loops_per_jiffy =
1037			cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
1038
1039		tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
1040		if (!(freq->flags & CPUFREQ_CONST_LOOPS))
1041			mark_tsc_unstable("cpufreq changes");
1042
1043		set_cyc2ns_scale(tsc_khz, freq->policy->cpu, rdtsc());
1044	}
1045
1046	return 0;
1047}
1048
1049static struct notifier_block time_cpufreq_notifier_block = {
1050	.notifier_call  = time_cpufreq_notifier
1051};
1052
1053static int __init cpufreq_register_tsc_scaling(void)
1054{
1055	if (!boot_cpu_has(X86_FEATURE_TSC))
1056		return 0;
1057	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1058		return 0;
1059	cpufreq_register_notifier(&time_cpufreq_notifier_block,
1060				CPUFREQ_TRANSITION_NOTIFIER);
1061	return 0;
1062}
1063
1064core_initcall(cpufreq_register_tsc_scaling);
1065
1066#endif /* CONFIG_CPU_FREQ */
1067
1068#define ART_CPUID_LEAF (0x15)
1069#define ART_MIN_DENOMINATOR (1)
1070
1071
1072/*
1073 * If ART is present detect the numerator:denominator to convert to TSC
1074 */
1075static void __init detect_art(void)
1076{
1077	unsigned int unused[2];
1078
1079	if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
1080		return;
1081
1082	/*
1083	 * Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required,
1084	 * and the TSC counter resets must not occur asynchronously.
1085	 */
1086	if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
1087	    !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
1088	    !boot_cpu_has(X86_FEATURE_TSC_ADJUST) ||
1089	    tsc_async_resets)
1090		return;
1091
1092	cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
1093	      &art_to_tsc_numerator, unused, unused+1);
1094
1095	if (art_to_tsc_denominator < ART_MIN_DENOMINATOR)
 
 
 
1096		return;
1097
1098	rdmsrl(MSR_IA32_TSC_ADJUST, art_to_tsc_offset);
 
1099
1100	/* Make this sticky over multiple CPU init calls */
1101	setup_force_cpu_cap(X86_FEATURE_ART);
1102}
1103
1104
1105/* clocksource code */
1106
1107static void tsc_resume(struct clocksource *cs)
1108{
1109	tsc_verify_tsc_adjust(true);
1110}
1111
1112/*
1113 * We used to compare the TSC to the cycle_last value in the clocksource
1114 * structure to avoid a nasty time-warp. This can be observed in a
1115 * very small window right after one CPU updated cycle_last under
1116 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
1117 * is smaller than the cycle_last reference value due to a TSC which
1118 * is slightly behind. This delta is nowhere else observable, but in
1119 * that case it results in a forward time jump in the range of hours
1120 * due to the unsigned delta calculation of the time keeping core
1121 * code, which is necessary to support wrapping clocksources like pm
1122 * timer.
1123 *
1124 * This sanity check is now done in the core timekeeping code.
1125 * checking the result of read_tsc() - cycle_last for being negative.
1126 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
1127 */
1128static u64 read_tsc(struct clocksource *cs)
1129{
1130	return (u64)rdtsc_ordered();
1131}
1132
1133static void tsc_cs_mark_unstable(struct clocksource *cs)
1134{
1135	if (tsc_unstable)
1136		return;
1137
1138	tsc_unstable = 1;
1139	if (using_native_sched_clock())
1140		clear_sched_clock_stable();
1141	disable_sched_clock_irqtime();
1142	pr_info("Marking TSC unstable due to clocksource watchdog\n");
1143}
1144
1145static void tsc_cs_tick_stable(struct clocksource *cs)
1146{
1147	if (tsc_unstable)
1148		return;
1149
1150	if (using_native_sched_clock())
1151		sched_clock_tick_stable();
1152}
1153
1154static int tsc_cs_enable(struct clocksource *cs)
1155{
1156	vclocks_set_used(VDSO_CLOCKMODE_TSC);
1157	return 0;
1158}
1159
1160/*
1161 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
1162 */
1163static struct clocksource clocksource_tsc_early = {
1164	.name			= "tsc-early",
1165	.rating			= 299,
1166	.uncertainty_margin	= 32 * NSEC_PER_MSEC,
1167	.read			= read_tsc,
1168	.mask			= CLOCKSOURCE_MASK(64),
1169	.flags			= CLOCK_SOURCE_IS_CONTINUOUS |
1170				  CLOCK_SOURCE_MUST_VERIFY,
1171	.vdso_clock_mode	= VDSO_CLOCKMODE_TSC,
1172	.enable			= tsc_cs_enable,
1173	.resume			= tsc_resume,
1174	.mark_unstable		= tsc_cs_mark_unstable,
1175	.tick_stable		= tsc_cs_tick_stable,
1176	.list			= LIST_HEAD_INIT(clocksource_tsc_early.list),
1177};
1178
1179/*
1180 * Must mark VALID_FOR_HRES early such that when we unregister tsc_early
1181 * this one will immediately take over. We will only register if TSC has
1182 * been found good.
1183 */
1184static struct clocksource clocksource_tsc = {
1185	.name			= "tsc",
1186	.rating			= 300,
1187	.read			= read_tsc,
1188	.mask			= CLOCKSOURCE_MASK(64),
1189	.flags			= CLOCK_SOURCE_IS_CONTINUOUS |
1190				  CLOCK_SOURCE_VALID_FOR_HRES |
1191				  CLOCK_SOURCE_MUST_VERIFY |
1192				  CLOCK_SOURCE_VERIFY_PERCPU,
1193	.vdso_clock_mode	= VDSO_CLOCKMODE_TSC,
1194	.enable			= tsc_cs_enable,
1195	.resume			= tsc_resume,
1196	.mark_unstable		= tsc_cs_mark_unstable,
1197	.tick_stable		= tsc_cs_tick_stable,
1198	.list			= LIST_HEAD_INIT(clocksource_tsc.list),
1199};
1200
1201void mark_tsc_unstable(char *reason)
1202{
1203	if (tsc_unstable)
1204		return;
1205
1206	tsc_unstable = 1;
1207	if (using_native_sched_clock())
1208		clear_sched_clock_stable();
1209	disable_sched_clock_irqtime();
1210	pr_info("Marking TSC unstable due to %s\n", reason);
1211
1212	clocksource_mark_unstable(&clocksource_tsc_early);
1213	clocksource_mark_unstable(&clocksource_tsc);
 
 
 
 
 
1214}
1215
1216EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1217
1218static void __init tsc_disable_clocksource_watchdog(void)
1219{
1220	clocksource_tsc_early.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1221	clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1222}
1223
1224bool tsc_clocksource_watchdog_disabled(void)
1225{
1226	return !(clocksource_tsc.flags & CLOCK_SOURCE_MUST_VERIFY) &&
1227	       tsc_as_watchdog && !no_tsc_watchdog;
1228}
1229
1230static void __init check_system_tsc_reliable(void)
1231{
1232#if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1233	if (is_geode_lx()) {
1234		/* RTSC counts during suspend */
1235#define RTSC_SUSP 0x100
1236		unsigned long res_low, res_high;
1237
1238		rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1239		/* Geode_LX - the OLPC CPU has a very reliable TSC */
1240		if (res_low & RTSC_SUSP)
1241			tsc_clocksource_reliable = 1;
1242	}
1243#endif
1244	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1245		tsc_clocksource_reliable = 1;
1246
1247	/*
1248	 * Disable the clocksource watchdog when the system has:
1249	 *  - TSC running at constant frequency
1250	 *  - TSC which does not stop in C-States
1251	 *  - the TSC_ADJUST register which allows to detect even minimal
1252	 *    modifications
1253	 *  - not more than two sockets. As the number of sockets cannot be
1254	 *    evaluated at the early boot stage where this has to be
1255	 *    invoked, check the number of online memory nodes as a
1256	 *    fallback solution which is an reasonable estimate.
1257	 */
1258	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
1259	    boot_cpu_has(X86_FEATURE_NONSTOP_TSC) &&
1260	    boot_cpu_has(X86_FEATURE_TSC_ADJUST) &&
1261	    nr_online_nodes <= 4)
1262		tsc_disable_clocksource_watchdog();
1263}
1264
1265/*
1266 * Make an educated guess if the TSC is trustworthy and synchronized
1267 * over all CPUs.
1268 */
1269int unsynchronized_tsc(void)
1270{
1271	if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
1272		return 1;
1273
1274#ifdef CONFIG_SMP
1275	if (apic_is_clustered_box())
1276		return 1;
1277#endif
1278
1279	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1280		return 0;
1281
1282	if (tsc_clocksource_reliable)
1283		return 0;
1284	/*
1285	 * Intel systems are normally all synchronized.
1286	 * Exceptions must mark TSC as unstable:
1287	 */
1288	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1289		/* assume multi socket systems are not synchronized: */
1290		if (num_possible_cpus() > 1)
1291			return 1;
1292	}
1293
1294	return 0;
1295}
1296
1297/*
1298 * Convert ART to TSC given numerator/denominator found in detect_art()
1299 */
1300struct system_counterval_t convert_art_to_tsc(u64 art)
1301{
1302	u64 tmp, res, rem;
1303
1304	rem = do_div(art, art_to_tsc_denominator);
1305
1306	res = art * art_to_tsc_numerator;
1307	tmp = rem * art_to_tsc_numerator;
1308
1309	do_div(tmp, art_to_tsc_denominator);
1310	res += tmp + art_to_tsc_offset;
1311
1312	return (struct system_counterval_t) {.cs = art_related_clocksource,
1313			.cycles = res};
1314}
1315EXPORT_SYMBOL(convert_art_to_tsc);
1316
1317/**
1318 * convert_art_ns_to_tsc() - Convert ART in nanoseconds to TSC.
1319 * @art_ns: ART (Always Running Timer) in unit of nanoseconds
1320 *
1321 * PTM requires all timestamps to be in units of nanoseconds. When user
1322 * software requests a cross-timestamp, this function converts system timestamp
1323 * to TSC.
1324 *
1325 * This is valid when CPU feature flag X86_FEATURE_TSC_KNOWN_FREQ is set
1326 * indicating the tsc_khz is derived from CPUID[15H]. Drivers should check
1327 * that this flag is set before conversion to TSC is attempted.
1328 *
1329 * Return:
1330 * struct system_counterval_t - system counter value with the pointer to the
1331 *	corresponding clocksource
1332 *	@cycles:	System counter value
1333 *	@cs:		Clocksource corresponding to system counter value. Used
1334 *			by timekeeping code to verify comparability of two cycle
1335 *			values.
1336 */
1337
1338struct system_counterval_t convert_art_ns_to_tsc(u64 art_ns)
1339{
1340	u64 tmp, res, rem;
1341
1342	rem = do_div(art_ns, USEC_PER_SEC);
1343
1344	res = art_ns * tsc_khz;
1345	tmp = rem * tsc_khz;
1346
1347	do_div(tmp, USEC_PER_SEC);
1348	res += tmp;
1349
1350	return (struct system_counterval_t) { .cs = art_related_clocksource,
1351					      .cycles = res};
1352}
1353EXPORT_SYMBOL(convert_art_ns_to_tsc);
1354
1355
1356static void tsc_refine_calibration_work(struct work_struct *work);
1357static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1358/**
1359 * tsc_refine_calibration_work - Further refine tsc freq calibration
1360 * @work - ignored.
1361 *
1362 * This functions uses delayed work over a period of a
1363 * second to further refine the TSC freq value. Since this is
1364 * timer based, instead of loop based, we don't block the boot
1365 * process while this longer calibration is done.
1366 *
1367 * If there are any calibration anomalies (too many SMIs, etc),
1368 * or the refined calibration is off by 1% of the fast early
1369 * calibration, we throw out the new calibration and use the
1370 * early calibration.
1371 */
1372static void tsc_refine_calibration_work(struct work_struct *work)
1373{
1374	static u64 tsc_start = ULLONG_MAX, ref_start;
1375	static int hpet;
1376	u64 tsc_stop, ref_stop, delta;
1377	unsigned long freq;
1378	int cpu;
1379
1380	/* Don't bother refining TSC on unstable systems */
1381	if (tsc_unstable)
1382		goto unreg;
1383
1384	/*
1385	 * Since the work is started early in boot, we may be
1386	 * delayed the first time we expire. So set the workqueue
1387	 * again once we know timers are working.
1388	 */
1389	if (tsc_start == ULLONG_MAX) {
1390restart:
1391		/*
1392		 * Only set hpet once, to avoid mixing hardware
1393		 * if the hpet becomes enabled later.
1394		 */
1395		hpet = is_hpet_enabled();
1396		tsc_start = tsc_read_refs(&ref_start, hpet);
1397		schedule_delayed_work(&tsc_irqwork, HZ);
 
1398		return;
1399	}
1400
1401	tsc_stop = tsc_read_refs(&ref_stop, hpet);
1402
1403	/* hpet or pmtimer available ? */
1404	if (ref_start == ref_stop)
1405		goto out;
1406
1407	/* Check, whether the sampling was disturbed */
1408	if (tsc_stop == ULLONG_MAX)
1409		goto restart;
1410
1411	delta = tsc_stop - tsc_start;
1412	delta *= 1000000LL;
1413	if (hpet)
1414		freq = calc_hpet_ref(delta, ref_start, ref_stop);
1415	else
1416		freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1417
1418	/* Will hit this only if tsc_force_recalibrate has been set */
1419	if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
1420
1421		/* Warn if the deviation exceeds 500 ppm */
1422		if (abs(tsc_khz - freq) > (tsc_khz >> 11)) {
1423			pr_warn("Warning: TSC freq calibrated by CPUID/MSR differs from what is calibrated by HW timer, please check with vendor!!\n");
1424			pr_info("Previous calibrated TSC freq:\t %lu.%03lu MHz\n",
1425				(unsigned long)tsc_khz / 1000,
1426				(unsigned long)tsc_khz % 1000);
1427		}
1428
1429		pr_info("TSC freq recalibrated by [%s]:\t %lu.%03lu MHz\n",
1430			hpet ? "HPET" : "PM_TIMER",
1431			(unsigned long)freq / 1000,
1432			(unsigned long)freq % 1000);
1433
1434		return;
1435	}
1436
1437	/* Make sure we're within 1% */
1438	if (abs(tsc_khz - freq) > tsc_khz/100)
1439		goto out;
1440
1441	tsc_khz = freq;
1442	pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1443		(unsigned long)tsc_khz / 1000,
1444		(unsigned long)tsc_khz % 1000);
1445
1446	/* Inform the TSC deadline clockevent devices about the recalibration */
1447	lapic_update_tsc_freq();
1448
1449	/* Update the sched_clock() rate to match the clocksource one */
1450	for_each_possible_cpu(cpu)
1451		set_cyc2ns_scale(tsc_khz, cpu, tsc_stop);
1452
1453out:
1454	if (tsc_unstable)
1455		goto unreg;
1456
1457	if (boot_cpu_has(X86_FEATURE_ART))
1458		art_related_clocksource = &clocksource_tsc;
1459	clocksource_register_khz(&clocksource_tsc, tsc_khz);
1460unreg:
1461	clocksource_unregister(&clocksource_tsc_early);
1462}
1463
1464
1465static int __init init_tsc_clocksource(void)
1466{
1467	if (!boot_cpu_has(X86_FEATURE_TSC) || !tsc_khz)
1468		return 0;
1469
1470	if (tsc_unstable) {
1471		clocksource_unregister(&clocksource_tsc_early);
1472		return 0;
 
 
 
1473	}
1474
1475	if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1476		clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1477
1478	/*
1479	 * When TSC frequency is known (retrieved via MSR or CPUID), we skip
1480	 * the refined calibration and directly register it as a clocksource.
1481	 */
1482	if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
1483		if (boot_cpu_has(X86_FEATURE_ART))
1484			art_related_clocksource = &clocksource_tsc;
1485		clocksource_register_khz(&clocksource_tsc, tsc_khz);
1486		clocksource_unregister(&clocksource_tsc_early);
1487
1488		if (!tsc_force_recalibrate)
1489			return 0;
1490	}
1491
1492	schedule_delayed_work(&tsc_irqwork, 0);
1493	return 0;
1494}
1495/*
1496 * We use device_initcall here, to ensure we run after the hpet
1497 * is fully initialized, which may occur at fs_initcall time.
1498 */
1499device_initcall(init_tsc_clocksource);
1500
1501static bool __init determine_cpu_tsc_frequencies(bool early)
1502{
1503	/* Make sure that cpu and tsc are not already calibrated */
1504	WARN_ON(cpu_khz || tsc_khz);
1505
1506	if (early) {
1507		cpu_khz = x86_platform.calibrate_cpu();
1508		if (tsc_early_khz)
1509			tsc_khz = tsc_early_khz;
1510		else
1511			tsc_khz = x86_platform.calibrate_tsc();
1512	} else {
1513		/* We should not be here with non-native cpu calibration */
1514		WARN_ON(x86_platform.calibrate_cpu != native_calibrate_cpu);
1515		cpu_khz = pit_hpet_ptimer_calibrate_cpu();
1516	}
1517
1518	/*
1519	 * Trust non-zero tsc_khz as authoritative,
1520	 * and use it to sanity check cpu_khz,
1521	 * which will be off if system timer is off.
1522	 */
1523	if (tsc_khz == 0)
1524		tsc_khz = cpu_khz;
1525	else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
1526		cpu_khz = tsc_khz;
1527
1528	if (tsc_khz == 0)
1529		return false;
1530
1531	pr_info("Detected %lu.%03lu MHz processor\n",
1532		(unsigned long)cpu_khz / KHZ,
1533		(unsigned long)cpu_khz % KHZ);
1534
1535	if (cpu_khz != tsc_khz) {
1536		pr_info("Detected %lu.%03lu MHz TSC",
1537			(unsigned long)tsc_khz / KHZ,
1538			(unsigned long)tsc_khz % KHZ);
1539	}
1540	return true;
1541}
1542
1543static unsigned long __init get_loops_per_jiffy(void)
1544{
1545	u64 lpj = (u64)tsc_khz * KHZ;
1546
1547	do_div(lpj, HZ);
1548	return lpj;
1549}
1550
1551static void __init tsc_enable_sched_clock(void)
1552{
1553	loops_per_jiffy = get_loops_per_jiffy();
1554	use_tsc_delay();
1555
1556	/* Sanitize TSC ADJUST before cyc2ns gets initialized */
1557	tsc_store_and_check_tsc_adjust(true);
1558	cyc2ns_init_boot_cpu();
1559	static_branch_enable(&__use_tsc);
1560}
1561
1562void __init tsc_early_init(void)
1563{
1564	if (!boot_cpu_has(X86_FEATURE_TSC))
1565		return;
1566	/* Don't change UV TSC multi-chassis synchronization */
1567	if (is_early_uv_system())
1568		return;
1569	if (!determine_cpu_tsc_frequencies(true))
1570		return;
1571	tsc_enable_sched_clock();
1572}
1573
1574void __init tsc_init(void)
1575{
1576	if (!cpu_feature_enabled(X86_FEATURE_TSC)) {
1577		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1578		return;
1579	}
1580
 
 
 
 
1581	/*
1582	 * native_calibrate_cpu_early can only calibrate using methods that are
1583	 * available early in boot.
 
 
1584	 */
1585	if (x86_platform.calibrate_cpu == native_calibrate_cpu_early)
1586		x86_platform.calibrate_cpu = native_calibrate_cpu;
1587
1588	if (!tsc_khz) {
1589		/* We failed to determine frequencies earlier, try again */
1590		if (!determine_cpu_tsc_frequencies(false)) {
1591			mark_tsc_unstable("could not calculate TSC khz");
1592			setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1593			return;
1594		}
1595		tsc_enable_sched_clock();
1596	}
1597
1598	cyc2ns_init_secondary_cpus();
 
 
 
 
 
 
1599
1600	if (!no_sched_irq_time)
1601		enable_sched_clock_irqtime();
1602
1603	lpj_fine = get_loops_per_jiffy();
 
 
1604
1605	check_system_tsc_reliable();
1606
1607	if (unsynchronized_tsc()) {
1608		mark_tsc_unstable("TSCs unsynchronized");
1609		return;
1610	}
1611
1612	if (tsc_clocksource_reliable || no_tsc_watchdog)
1613		tsc_disable_clocksource_watchdog();
1614
1615	clocksource_register_khz(&clocksource_tsc_early, tsc_khz);
1616	detect_art();
1617}
1618
1619#ifdef CONFIG_SMP
1620/*
1621 * Check whether existing calibration data can be reused.
 
 
 
1622 */
1623unsigned long calibrate_delay_is_known(void)
1624{
1625	int sibling, cpu = smp_processor_id();
1626	int constant_tsc = cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC);
1627	const struct cpumask *mask = topology_core_cpumask(cpu);
1628
1629	/*
1630	 * If TSC has constant frequency and TSC is synchronized across
1631	 * sockets then reuse CPU0 calibration.
1632	 */
1633	if (constant_tsc && !tsc_unstable)
1634		return cpu_data(0).loops_per_jiffy;
1635
1636	/*
1637	 * If TSC has constant frequency and TSC is not synchronized across
1638	 * sockets and this is not the first CPU in the socket, then reuse
1639	 * the calibration value of an already online CPU on that socket.
1640	 *
1641	 * This assumes that CONSTANT_TSC is consistent for all CPUs in a
1642	 * socket.
1643	 */
1644	if (!constant_tsc || !mask)
1645		return 0;
1646
1647	sibling = cpumask_any_but(mask, cpu);
1648	if (sibling < nr_cpu_ids)
1649		return cpu_data(sibling).loops_per_jiffy;
1650	return 0;
1651}
1652#endif
v4.6
 
   1#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   2
   3#include <linux/kernel.h>
   4#include <linux/sched.h>
 
   5#include <linux/init.h>
   6#include <linux/module.h>
   7#include <linux/timer.h>
   8#include <linux/acpi_pmtmr.h>
   9#include <linux/cpufreq.h>
  10#include <linux/delay.h>
  11#include <linux/clocksource.h>
  12#include <linux/percpu.h>
  13#include <linux/timex.h>
  14#include <linux/static_key.h>
 
  15
  16#include <asm/hpet.h>
  17#include <asm/timer.h>
  18#include <asm/vgtod.h>
  19#include <asm/time.h>
  20#include <asm/delay.h>
  21#include <asm/hypervisor.h>
  22#include <asm/nmi.h>
  23#include <asm/x86_init.h>
  24#include <asm/geode.h>
 
 
 
 
  25
  26unsigned int __read_mostly cpu_khz;	/* TSC clocks / usec, not used here */
  27EXPORT_SYMBOL(cpu_khz);
  28
  29unsigned int __read_mostly tsc_khz;
  30EXPORT_SYMBOL(tsc_khz);
  31
 
 
  32/*
  33 * TSC can be unstable due to cpufreq or due to unsynced TSCs
  34 */
  35static int __read_mostly tsc_unstable;
  36
  37/* native_sched_clock() is called before tsc_init(), so
  38   we must start with the TSC soft disabled to prevent
  39   erroneous rdtsc usage on !cpu_has_tsc processors */
  40static int __read_mostly tsc_disabled = -1;
  41
  42static DEFINE_STATIC_KEY_FALSE(__use_tsc);
  43
  44int tsc_clocksource_reliable;
  45
 
 
  46static u32 art_to_tsc_numerator;
  47static u32 art_to_tsc_denominator;
  48static u64 art_to_tsc_offset;
  49struct clocksource *art_related_clocksource;
  50
  51/*
  52 * Use a ring-buffer like data structure, where a writer advances the head by
  53 * writing a new data entry and a reader advances the tail when it observes a
  54 * new entry.
  55 *
  56 * Writers are made to wait on readers until there's space to write a new
  57 * entry.
  58 *
  59 * This means that we can always use an {offset, mul} pair to compute a ns
  60 * value that is 'roughly' in the right direction, even if we're writing a new
  61 * {offset, mul} pair during the clock read.
  62 *
  63 * The down-side is that we can no longer guarantee strict monotonicity anymore
  64 * (assuming the TSC was that to begin with), because while we compute the
  65 * intersection point of the two clock slopes and make sure the time is
  66 * continuous at the point of switching; we can no longer guarantee a reader is
  67 * strictly before or after the switch point.
  68 *
  69 * It does mean a reader no longer needs to disable IRQs in order to avoid
  70 * CPU-Freq updates messing with his times, and similarly an NMI reader will
  71 * no longer run the risk of hitting half-written state.
  72 */
  73
  74struct cyc2ns {
  75	struct cyc2ns_data data[2];	/*  0 + 2*24 = 48 */
  76	struct cyc2ns_data *head;	/* 48 + 8    = 56 */
  77	struct cyc2ns_data *tail;	/* 56 + 8    = 64 */
  78}; /* exactly fits one cacheline */
  79
  80static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
  81
  82struct cyc2ns_data *cyc2ns_read_begin(void)
  83{
  84	struct cyc2ns_data *head;
 
 
  85
  86	preempt_disable();
 
 
  87
  88	head = this_cpu_read(cyc2ns.head);
  89	/*
  90	 * Ensure we observe the entry when we observe the pointer to it.
  91	 * matches the wmb from cyc2ns_write_end().
  92	 */
  93	smp_read_barrier_depends();
  94	head->__count++;
  95	barrier();
  96
  97	return head;
  98}
 
  99
 100void cyc2ns_read_end(struct cyc2ns_data *head)
 101{
 102	barrier();
 103	/*
 104	 * If we're the outer most nested read; update the tail pointer
 105	 * when we're done. This notifies possible pending writers
 106	 * that we've observed the head pointer and that the other
 107	 * entry is now free.
 108	 */
 109	if (!--head->__count) {
 110		/*
 111		 * x86-TSO does not reorder writes with older reads;
 112		 * therefore once this write becomes visible to another
 113		 * cpu, we must be finished reading the cyc2ns_data.
 114		 *
 115		 * matches with cyc2ns_write_begin().
 116		 */
 117		this_cpu_write(cyc2ns.tail, head);
 118	}
 119	preempt_enable();
 120}
 121
 122/*
 123 * Begin writing a new @data entry for @cpu.
 124 *
 125 * Assumes some sort of write side lock; currently 'provided' by the assumption
 126 * that cpufreq will call its notifiers sequentially.
 127 */
 128static struct cyc2ns_data *cyc2ns_write_begin(int cpu)
 129{
 130	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
 131	struct cyc2ns_data *data = c2n->data;
 132
 133	if (data == c2n->head)
 134		data++;
 135
 136	/* XXX send an IPI to @cpu in order to guarantee a read? */
 137
 138	/*
 139	 * When we observe the tail write from cyc2ns_read_end(),
 140	 * the cpu must be done with that entry and its safe
 141	 * to start writing to it.
 142	 */
 143	while (c2n->tail == data)
 144		cpu_relax();
 145
 146	return data;
 147}
 148
 149static void cyc2ns_write_end(int cpu, struct cyc2ns_data *data)
 150{
 151	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
 152
 153	/*
 154	 * Ensure the @data writes are visible before we publish the
 155	 * entry. Matches the data-depencency in cyc2ns_read_begin().
 156	 */
 157	smp_wmb();
 158
 159	ACCESS_ONCE(c2n->head) = data;
 160}
 161
 162/*
 163 * Accelerators for sched_clock()
 164 * convert from cycles(64bits) => nanoseconds (64bits)
 165 *  basic equation:
 166 *              ns = cycles / (freq / ns_per_sec)
 167 *              ns = cycles * (ns_per_sec / freq)
 168 *              ns = cycles * (10^9 / (cpu_khz * 10^3))
 169 *              ns = cycles * (10^6 / cpu_khz)
 170 *
 171 *      Then we use scaling math (suggested by george@mvista.com) to get:
 172 *              ns = cycles * (10^6 * SC / cpu_khz) / SC
 173 *              ns = cycles * cyc2ns_scale / SC
 174 *
 175 *      And since SC is a constant power of two, we can convert the div
 176 *  into a shift. The larger SC is, the more accurate the conversion, but
 177 *  cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
 178 *  (64-bit result) can be used.
 179 *
 180 *  We can use khz divisor instead of mhz to keep a better precision.
 181 *  (mathieu.desnoyers@polymtl.ca)
 182 *
 183 *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
 184 */
 185
 186static void cyc2ns_data_init(struct cyc2ns_data *data)
 187{
 188	data->cyc2ns_mul = 0;
 189	data->cyc2ns_shift = 0;
 190	data->cyc2ns_offset = 0;
 191	data->__count = 0;
 192}
 193
 194static void cyc2ns_init(int cpu)
 195{
 196	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
 197
 198	cyc2ns_data_init(&c2n->data[0]);
 199	cyc2ns_data_init(&c2n->data[1]);
 200
 201	c2n->head = c2n->data;
 202	c2n->tail = c2n->data;
 203}
 204
 205static inline unsigned long long cycles_2_ns(unsigned long long cyc)
 206{
 207	struct cyc2ns_data *data, *tail;
 208	unsigned long long ns;
 209
 210	/*
 211	 * See cyc2ns_read_*() for details; replicated in order to avoid
 212	 * an extra few instructions that came with the abstraction.
 213	 * Notable, it allows us to only do the __count and tail update
 214	 * dance when its actually needed.
 215	 */
 216
 217	preempt_disable_notrace();
 218	data = this_cpu_read(cyc2ns.head);
 219	tail = this_cpu_read(cyc2ns.tail);
 220
 221	if (likely(data == tail)) {
 222		ns = data->cyc2ns_offset;
 223		ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
 224	} else {
 225		data->__count++;
 226
 227		barrier();
 228
 229		ns = data->cyc2ns_offset;
 230		ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
 231
 232		barrier();
 233
 234		if (!--data->__count)
 235			this_cpu_write(cyc2ns.tail, data);
 236	}
 237	preempt_enable_notrace();
 238
 239	return ns;
 240}
 241
 242static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
 243{
 244	unsigned long long tsc_now, ns_now;
 245	struct cyc2ns_data *data;
 246	unsigned long flags;
 247
 248	local_irq_save(flags);
 249	sched_clock_idle_sleep_event();
 250
 251	if (!cpu_khz)
 252		goto done;
 253
 254	data = cyc2ns_write_begin(cpu);
 255
 256	tsc_now = rdtsc();
 257	ns_now = cycles_2_ns(tsc_now);
 258
 259	/*
 260	 * Compute a new multiplier as per the above comment and ensure our
 261	 * time function is continuous; see the comment near struct
 262	 * cyc2ns_data.
 263	 */
 264	clocks_calc_mult_shift(&data->cyc2ns_mul, &data->cyc2ns_shift, cpu_khz,
 265			       NSEC_PER_MSEC, 0);
 266
 267	/*
 268	 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
 269	 * not expected to be greater than 31 due to the original published
 270	 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
 271	 * value) - refer perf_event_mmap_page documentation in perf_event.h.
 272	 */
 273	if (data->cyc2ns_shift == 32) {
 274		data->cyc2ns_shift = 31;
 275		data->cyc2ns_mul >>= 1;
 276	}
 277
 278	data->cyc2ns_offset = ns_now -
 279		mul_u64_u32_shr(tsc_now, data->cyc2ns_mul, data->cyc2ns_shift);
 280
 281	cyc2ns_write_end(cpu, data);
 
 
 
 
 
 
 282
 283done:
 284	sched_clock_idle_wakeup_event(0);
 
 
 
 
 
 
 
 
 
 285	local_irq_restore(flags);
 286}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 287/*
 288 * Scheduler clock - returns current time in nanosec units.
 289 */
 290u64 native_sched_clock(void)
 291{
 292	if (static_branch_likely(&__use_tsc)) {
 293		u64 tsc_now = rdtsc();
 294
 295		/* return the value in ns */
 296		return cycles_2_ns(tsc_now);
 297	}
 298
 299	/*
 300	 * Fall back to jiffies if there's no TSC available:
 301	 * ( But note that we still use it if the TSC is marked
 302	 *   unstable. We do this because unlike Time Of Day,
 303	 *   the scheduler clock tolerates small errors and it's
 304	 *   very important for it to be as fast as the platform
 305	 *   can achieve it. )
 306	 */
 307
 308	/* No locking but a rare wrong value is not a big deal: */
 309	return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
 310}
 311
 312/*
 313 * Generate a sched_clock if you already have a TSC value.
 314 */
 315u64 native_sched_clock_from_tsc(u64 tsc)
 316{
 317	return cycles_2_ns(tsc);
 318}
 319
 320/* We need to define a real function for sched_clock, to override the
 321   weak default version */
 322#ifdef CONFIG_PARAVIRT
 323unsigned long long sched_clock(void)
 324{
 325	return paravirt_sched_clock();
 326}
 
 
 
 
 
 327#else
 328unsigned long long
 329sched_clock(void) __attribute__((alias("native_sched_clock")));
 
 330#endif
 331
 
 
 
 
 
 
 
 
 
 332int check_tsc_unstable(void)
 333{
 334	return tsc_unstable;
 335}
 336EXPORT_SYMBOL_GPL(check_tsc_unstable);
 337
 338int check_tsc_disabled(void)
 339{
 340	return tsc_disabled;
 341}
 342EXPORT_SYMBOL_GPL(check_tsc_disabled);
 343
 344#ifdef CONFIG_X86_TSC
 345int __init notsc_setup(char *str)
 346{
 347	pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
 348	tsc_disabled = 1;
 349	return 1;
 350}
 351#else
 352/*
 353 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
 354 * in cpu/common.c
 355 */
 356int __init notsc_setup(char *str)
 357{
 358	setup_clear_cpu_cap(X86_FEATURE_TSC);
 359	return 1;
 360}
 361#endif
 362
 363__setup("notsc", notsc_setup);
 364
 365static int no_sched_irq_time;
 
 
 366
 367static int __init tsc_setup(char *str)
 368{
 369	if (!strcmp(str, "reliable"))
 370		tsc_clocksource_reliable = 1;
 371	if (!strncmp(str, "noirqtime", 9))
 372		no_sched_irq_time = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 373	return 1;
 374}
 375
 376__setup("tsc=", tsc_setup);
 377
 378#define MAX_RETRIES     5
 379#define SMI_TRESHOLD    50000
 380
 381/*
 382 * Read TSC and the reference counters. Take care of SMI disturbance
 383 */
 384static u64 tsc_read_refs(u64 *p, int hpet)
 385{
 386	u64 t1, t2;
 
 387	int i;
 388
 389	for (i = 0; i < MAX_RETRIES; i++) {
 390		t1 = get_cycles();
 391		if (hpet)
 392			*p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
 393		else
 394			*p = acpi_pm_read_early();
 395		t2 = get_cycles();
 396		if ((t2 - t1) < SMI_TRESHOLD)
 397			return t2;
 398	}
 399	return ULLONG_MAX;
 400}
 401
 402/*
 403 * Calculate the TSC frequency from HPET reference
 404 */
 405static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
 406{
 407	u64 tmp;
 408
 409	if (hpet2 < hpet1)
 410		hpet2 += 0x100000000ULL;
 411	hpet2 -= hpet1;
 412	tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
 413	do_div(tmp, 1000000);
 414	do_div(deltatsc, tmp);
 415
 416	return (unsigned long) deltatsc;
 417}
 418
 419/*
 420 * Calculate the TSC frequency from PMTimer reference
 421 */
 422static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
 423{
 424	u64 tmp;
 425
 426	if (!pm1 && !pm2)
 427		return ULONG_MAX;
 428
 429	if (pm2 < pm1)
 430		pm2 += (u64)ACPI_PM_OVRRUN;
 431	pm2 -= pm1;
 432	tmp = pm2 * 1000000000LL;
 433	do_div(tmp, PMTMR_TICKS_PER_SEC);
 434	do_div(deltatsc, tmp);
 435
 436	return (unsigned long) deltatsc;
 437}
 438
 439#define CAL_MS		10
 440#define CAL_LATCH	(PIT_TICK_RATE / (1000 / CAL_MS))
 441#define CAL_PIT_LOOPS	1000
 442
 443#define CAL2_MS		50
 444#define CAL2_LATCH	(PIT_TICK_RATE / (1000 / CAL2_MS))
 445#define CAL2_PIT_LOOPS	5000
 446
 447
 448/*
 449 * Try to calibrate the TSC against the Programmable
 450 * Interrupt Timer and return the frequency of the TSC
 451 * in kHz.
 452 *
 453 * Return ULONG_MAX on failure to calibrate.
 454 */
 455static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
 456{
 457	u64 tsc, t1, t2, delta;
 458	unsigned long tscmin, tscmax;
 459	int pitcnt;
 460
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 461	/* Set the Gate high, disable speaker */
 462	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
 463
 464	/*
 465	 * Setup CTC channel 2* for mode 0, (interrupt on terminal
 466	 * count mode), binary count. Set the latch register to 50ms
 467	 * (LSB then MSB) to begin countdown.
 468	 */
 469	outb(0xb0, 0x43);
 470	outb(latch & 0xff, 0x42);
 471	outb(latch >> 8, 0x42);
 472
 473	tsc = t1 = t2 = get_cycles();
 474
 475	pitcnt = 0;
 476	tscmax = 0;
 477	tscmin = ULONG_MAX;
 478	while ((inb(0x61) & 0x20) == 0) {
 479		t2 = get_cycles();
 480		delta = t2 - tsc;
 481		tsc = t2;
 482		if ((unsigned long) delta < tscmin)
 483			tscmin = (unsigned int) delta;
 484		if ((unsigned long) delta > tscmax)
 485			tscmax = (unsigned int) delta;
 486		pitcnt++;
 487	}
 488
 489	/*
 490	 * Sanity checks:
 491	 *
 492	 * If we were not able to read the PIT more than loopmin
 493	 * times, then we have been hit by a massive SMI
 494	 *
 495	 * If the maximum is 10 times larger than the minimum,
 496	 * then we got hit by an SMI as well.
 497	 */
 498	if (pitcnt < loopmin || tscmax > 10 * tscmin)
 499		return ULONG_MAX;
 500
 501	/* Calculate the PIT value */
 502	delta = t2 - t1;
 503	do_div(delta, ms);
 504	return delta;
 505}
 506
 507/*
 508 * This reads the current MSB of the PIT counter, and
 509 * checks if we are running on sufficiently fast and
 510 * non-virtualized hardware.
 511 *
 512 * Our expectations are:
 513 *
 514 *  - the PIT is running at roughly 1.19MHz
 515 *
 516 *  - each IO is going to take about 1us on real hardware,
 517 *    but we allow it to be much faster (by a factor of 10) or
 518 *    _slightly_ slower (ie we allow up to a 2us read+counter
 519 *    update - anything else implies a unacceptably slow CPU
 520 *    or PIT for the fast calibration to work.
 521 *
 522 *  - with 256 PIT ticks to read the value, we have 214us to
 523 *    see the same MSB (and overhead like doing a single TSC
 524 *    read per MSB value etc).
 525 *
 526 *  - We're doing 2 reads per loop (LSB, MSB), and we expect
 527 *    them each to take about a microsecond on real hardware.
 528 *    So we expect a count value of around 100. But we'll be
 529 *    generous, and accept anything over 50.
 530 *
 531 *  - if the PIT is stuck, and we see *many* more reads, we
 532 *    return early (and the next caller of pit_expect_msb()
 533 *    then consider it a failure when they don't see the
 534 *    next expected value).
 535 *
 536 * These expectations mean that we know that we have seen the
 537 * transition from one expected value to another with a fairly
 538 * high accuracy, and we didn't miss any events. We can thus
 539 * use the TSC value at the transitions to calculate a pretty
 540 * good value for the TSC frequencty.
 541 */
 542static inline int pit_verify_msb(unsigned char val)
 543{
 544	/* Ignore LSB */
 545	inb(0x42);
 546	return inb(0x42) == val;
 547}
 548
 549static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
 550{
 551	int count;
 552	u64 tsc = 0, prev_tsc = 0;
 553
 554	for (count = 0; count < 50000; count++) {
 555		if (!pit_verify_msb(val))
 556			break;
 557		prev_tsc = tsc;
 558		tsc = get_cycles();
 559	}
 560	*deltap = get_cycles() - prev_tsc;
 561	*tscp = tsc;
 562
 563	/*
 564	 * We require _some_ success, but the quality control
 565	 * will be based on the error terms on the TSC values.
 566	 */
 567	return count > 5;
 568}
 569
 570/*
 571 * How many MSB values do we want to see? We aim for
 572 * a maximum error rate of 500ppm (in practice the
 573 * real error is much smaller), but refuse to spend
 574 * more than 50ms on it.
 575 */
 576#define MAX_QUICK_PIT_MS 50
 577#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
 578
 579static unsigned long quick_pit_calibrate(void)
 580{
 581	int i;
 582	u64 tsc, delta;
 583	unsigned long d1, d2;
 584
 
 
 
 585	/* Set the Gate high, disable speaker */
 586	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
 587
 588	/*
 589	 * Counter 2, mode 0 (one-shot), binary count
 590	 *
 591	 * NOTE! Mode 2 decrements by two (and then the
 592	 * output is flipped each time, giving the same
 593	 * final output frequency as a decrement-by-one),
 594	 * so mode 0 is much better when looking at the
 595	 * individual counts.
 596	 */
 597	outb(0xb0, 0x43);
 598
 599	/* Start at 0xffff */
 600	outb(0xff, 0x42);
 601	outb(0xff, 0x42);
 602
 603	/*
 604	 * The PIT starts counting at the next edge, so we
 605	 * need to delay for a microsecond. The easiest way
 606	 * to do that is to just read back the 16-bit counter
 607	 * once from the PIT.
 608	 */
 609	pit_verify_msb(0);
 610
 611	if (pit_expect_msb(0xff, &tsc, &d1)) {
 612		for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
 613			if (!pit_expect_msb(0xff-i, &delta, &d2))
 614				break;
 615
 616			delta -= tsc;
 617
 618			/*
 619			 * Extrapolate the error and fail fast if the error will
 620			 * never be below 500 ppm.
 621			 */
 622			if (i == 1 &&
 623			    d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
 624				return 0;
 625
 626			/*
 627			 * Iterate until the error is less than 500 ppm
 628			 */
 629			if (d1+d2 >= delta >> 11)
 630				continue;
 631
 632			/*
 633			 * Check the PIT one more time to verify that
 634			 * all TSC reads were stable wrt the PIT.
 635			 *
 636			 * This also guarantees serialization of the
 637			 * last cycle read ('d2') in pit_expect_msb.
 638			 */
 639			if (!pit_verify_msb(0xfe - i))
 640				break;
 641			goto success;
 642		}
 643	}
 644	pr_info("Fast TSC calibration failed\n");
 645	return 0;
 646
 647success:
 648	/*
 649	 * Ok, if we get here, then we've seen the
 650	 * MSB of the PIT decrement 'i' times, and the
 651	 * error has shrunk to less than 500 ppm.
 652	 *
 653	 * As a result, we can depend on there not being
 654	 * any odd delays anywhere, and the TSC reads are
 655	 * reliable (within the error).
 656	 *
 657	 * kHz = ticks / time-in-seconds / 1000;
 658	 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
 659	 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
 660	 */
 661	delta *= PIT_TICK_RATE;
 662	do_div(delta, i*256*1000);
 663	pr_info("Fast TSC calibration using PIT\n");
 664	return delta;
 665}
 666
 667/**
 668 * native_calibrate_tsc - calibrate the tsc on boot
 
 669 */
 670unsigned long native_calibrate_tsc(void)
 671{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 672	u64 tsc1, tsc2, delta, ref1, ref2;
 673	unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
 674	unsigned long flags, latch, ms, fast_calibrate;
 675	int hpet = is_hpet_enabled(), i, loopmin;
 676
 677	/* Calibrate TSC using MSR for Intel Atom SoCs */
 678	local_irq_save(flags);
 679	fast_calibrate = try_msr_calibrate_tsc();
 680	local_irq_restore(flags);
 681	if (fast_calibrate)
 682		return fast_calibrate;
 683
 684	local_irq_save(flags);
 685	fast_calibrate = quick_pit_calibrate();
 686	local_irq_restore(flags);
 687	if (fast_calibrate)
 688		return fast_calibrate;
 689
 690	/*
 691	 * Run 5 calibration loops to get the lowest frequency value
 692	 * (the best estimate). We use two different calibration modes
 693	 * here:
 694	 *
 695	 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
 696	 * load a timeout of 50ms. We read the time right after we
 697	 * started the timer and wait until the PIT count down reaches
 698	 * zero. In each wait loop iteration we read the TSC and check
 699	 * the delta to the previous read. We keep track of the min
 700	 * and max values of that delta. The delta is mostly defined
 701	 * by the IO time of the PIT access, so we can detect when a
 702	 * SMI/SMM disturbance happened between the two reads. If the
 703	 * maximum time is significantly larger than the minimum time,
 704	 * then we discard the result and have another try.
 705	 *
 706	 * 2) Reference counter. If available we use the HPET or the
 707	 * PMTIMER as a reference to check the sanity of that value.
 708	 * We use separate TSC readouts and check inside of the
 709	 * reference read for a SMI/SMM disturbance. We dicard
 710	 * disturbed values here as well. We do that around the PIT
 711	 * calibration delay loop as we have to wait for a certain
 712	 * amount of time anyway.
 713	 */
 714
 715	/* Preset PIT loop values */
 716	latch = CAL_LATCH;
 717	ms = CAL_MS;
 718	loopmin = CAL_PIT_LOOPS;
 719
 720	for (i = 0; i < 3; i++) {
 721		unsigned long tsc_pit_khz;
 722
 723		/*
 724		 * Read the start value and the reference count of
 725		 * hpet/pmtimer when available. Then do the PIT
 726		 * calibration, which will take at least 50ms, and
 727		 * read the end value.
 728		 */
 729		local_irq_save(flags);
 730		tsc1 = tsc_read_refs(&ref1, hpet);
 731		tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
 732		tsc2 = tsc_read_refs(&ref2, hpet);
 733		local_irq_restore(flags);
 734
 735		/* Pick the lowest PIT TSC calibration so far */
 736		tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
 737
 738		/* hpet or pmtimer available ? */
 739		if (ref1 == ref2)
 740			continue;
 741
 742		/* Check, whether the sampling was disturbed by an SMI */
 743		if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
 744			continue;
 745
 746		tsc2 = (tsc2 - tsc1) * 1000000LL;
 747		if (hpet)
 748			tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
 749		else
 750			tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
 751
 752		tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
 753
 754		/* Check the reference deviation */
 755		delta = ((u64) tsc_pit_min) * 100;
 756		do_div(delta, tsc_ref_min);
 757
 758		/*
 759		 * If both calibration results are inside a 10% window
 760		 * then we can be sure, that the calibration
 761		 * succeeded. We break out of the loop right away. We
 762		 * use the reference value, as it is more precise.
 763		 */
 764		if (delta >= 90 && delta <= 110) {
 765			pr_info("PIT calibration matches %s. %d loops\n",
 766				hpet ? "HPET" : "PMTIMER", i + 1);
 767			return tsc_ref_min;
 768		}
 769
 770		/*
 771		 * Check whether PIT failed more than once. This
 772		 * happens in virtualized environments. We need to
 773		 * give the virtual PC a slightly longer timeframe for
 774		 * the HPET/PMTIMER to make the result precise.
 775		 */
 776		if (i == 1 && tsc_pit_min == ULONG_MAX) {
 777			latch = CAL2_LATCH;
 778			ms = CAL2_MS;
 779			loopmin = CAL2_PIT_LOOPS;
 780		}
 781	}
 782
 783	/*
 784	 * Now check the results.
 785	 */
 786	if (tsc_pit_min == ULONG_MAX) {
 787		/* PIT gave no useful value */
 788		pr_warn("Unable to calibrate against PIT\n");
 789
 790		/* We don't have an alternative source, disable TSC */
 791		if (!hpet && !ref1 && !ref2) {
 792			pr_notice("No reference (HPET/PMTIMER) available\n");
 793			return 0;
 794		}
 795
 796		/* The alternative source failed as well, disable TSC */
 797		if (tsc_ref_min == ULONG_MAX) {
 798			pr_warn("HPET/PMTIMER calibration failed\n");
 799			return 0;
 800		}
 801
 802		/* Use the alternative source */
 803		pr_info("using %s reference calibration\n",
 804			hpet ? "HPET" : "PMTIMER");
 805
 806		return tsc_ref_min;
 807	}
 808
 809	/* We don't have an alternative source, use the PIT calibration value */
 810	if (!hpet && !ref1 && !ref2) {
 811		pr_info("Using PIT calibration value\n");
 812		return tsc_pit_min;
 813	}
 814
 815	/* The alternative source failed, use the PIT calibration value */
 816	if (tsc_ref_min == ULONG_MAX) {
 817		pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
 818		return tsc_pit_min;
 819	}
 820
 821	/*
 822	 * The calibration values differ too much. In doubt, we use
 823	 * the PIT value as we know that there are PMTIMERs around
 824	 * running at double speed. At least we let the user know:
 825	 */
 826	pr_warn("PIT calibration deviates from %s: %lu %lu\n",
 827		hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
 828	pr_info("Using PIT calibration value\n");
 829	return tsc_pit_min;
 830}
 831
 832int recalibrate_cpu_khz(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 833{
 834#ifndef CONFIG_SMP
 835	unsigned long cpu_khz_old = cpu_khz;
 836
 837	if (cpu_has_tsc) {
 838		tsc_khz = x86_platform.calibrate_tsc();
 
 
 
 
 
 
 839		cpu_khz = tsc_khz;
 840		cpu_data(0).loops_per_jiffy =
 841			cpufreq_scale(cpu_data(0).loops_per_jiffy,
 842					cpu_khz_old, cpu_khz);
 843		return 0;
 844	} else
 845		return -ENODEV;
 846#else
 847	return -ENODEV;
 848#endif
 849}
 850
 851EXPORT_SYMBOL(recalibrate_cpu_khz);
 852
 853
 854static unsigned long long cyc2ns_suspend;
 855
 856void tsc_save_sched_clock_state(void)
 857{
 858	if (!sched_clock_stable())
 859		return;
 860
 861	cyc2ns_suspend = sched_clock();
 862}
 863
 864/*
 865 * Even on processors with invariant TSC, TSC gets reset in some the
 866 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
 867 * arbitrary value (still sync'd across cpu's) during resume from such sleep
 868 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
 869 * that sched_clock() continues from the point where it was left off during
 870 * suspend.
 871 */
 872void tsc_restore_sched_clock_state(void)
 873{
 874	unsigned long long offset;
 875	unsigned long flags;
 876	int cpu;
 877
 878	if (!sched_clock_stable())
 879		return;
 880
 881	local_irq_save(flags);
 882
 883	/*
 884	 * We're coming out of suspend, there's no concurrency yet; don't
 885	 * bother being nice about the RCU stuff, just write to both
 886	 * data fields.
 887	 */
 888
 889	this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
 890	this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
 891
 892	offset = cyc2ns_suspend - sched_clock();
 893
 894	for_each_possible_cpu(cpu) {
 895		per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
 896		per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
 897	}
 898
 899	local_irq_restore(flags);
 900}
 901
 902#ifdef CONFIG_CPU_FREQ
 903
 904/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
 905 * changes.
 906 *
 907 * RED-PEN: On SMP we assume all CPUs run with the same frequency.  It's
 908 * not that important because current Opteron setups do not support
 909 * scaling on SMP anyroads.
 910 *
 911 * Should fix up last_tsc too. Currently gettimeofday in the
 912 * first tick after the change will be slightly wrong.
 913 */
 914
 915static unsigned int  ref_freq;
 916static unsigned long loops_per_jiffy_ref;
 917static unsigned long tsc_khz_ref;
 918
 919static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
 920				void *data)
 921{
 922	struct cpufreq_freqs *freq = data;
 923	unsigned long *lpj;
 924
 925	if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
 
 926		return 0;
 927
 928	lpj = &boot_cpu_data.loops_per_jiffy;
 929#ifdef CONFIG_SMP
 930	if (!(freq->flags & CPUFREQ_CONST_LOOPS))
 931		lpj = &cpu_data(freq->cpu).loops_per_jiffy;
 932#endif
 933
 934	if (!ref_freq) {
 935		ref_freq = freq->old;
 936		loops_per_jiffy_ref = *lpj;
 937		tsc_khz_ref = tsc_khz;
 938	}
 
 939	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
 940			(val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
 941		*lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
 
 942
 943		tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
 944		if (!(freq->flags & CPUFREQ_CONST_LOOPS))
 945			mark_tsc_unstable("cpufreq changes");
 946
 947		set_cyc2ns_scale(tsc_khz, freq->cpu);
 948	}
 949
 950	return 0;
 951}
 952
 953static struct notifier_block time_cpufreq_notifier_block = {
 954	.notifier_call  = time_cpufreq_notifier
 955};
 956
 957static int __init cpufreq_tsc(void)
 958{
 959	if (!cpu_has_tsc)
 960		return 0;
 961	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
 962		return 0;
 963	cpufreq_register_notifier(&time_cpufreq_notifier_block,
 964				CPUFREQ_TRANSITION_NOTIFIER);
 965	return 0;
 966}
 967
 968core_initcall(cpufreq_tsc);
 969
 970#endif /* CONFIG_CPU_FREQ */
 971
 972#define ART_CPUID_LEAF (0x15)
 973#define ART_MIN_DENOMINATOR (1)
 974
 975
 976/*
 977 * If ART is present detect the numerator:denominator to convert to TSC
 978 */
 979static void detect_art(void)
 980{
 981	unsigned int unused[2];
 982
 983	if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
 984		return;
 985
 
 
 
 
 
 
 
 
 
 
 986	cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
 987	      &art_to_tsc_numerator, unused, unused+1);
 988
 989	/* Don't enable ART in a VM, non-stop TSC required */
 990	if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
 991	    !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
 992	    art_to_tsc_denominator < ART_MIN_DENOMINATOR)
 993		return;
 994
 995	if (rdmsrl_safe(MSR_IA32_TSC_ADJUST, &art_to_tsc_offset))
 996		return;
 997
 998	/* Make this sticky over multiple CPU init calls */
 999	setup_force_cpu_cap(X86_FEATURE_ART);
1000}
1001
1002
1003/* clocksource code */
1004
1005static struct clocksource clocksource_tsc;
 
 
 
1006
1007/*
1008 * We used to compare the TSC to the cycle_last value in the clocksource
1009 * structure to avoid a nasty time-warp. This can be observed in a
1010 * very small window right after one CPU updated cycle_last under
1011 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
1012 * is smaller than the cycle_last reference value due to a TSC which
1013 * is slighty behind. This delta is nowhere else observable, but in
1014 * that case it results in a forward time jump in the range of hours
1015 * due to the unsigned delta calculation of the time keeping core
1016 * code, which is necessary to support wrapping clocksources like pm
1017 * timer.
1018 *
1019 * This sanity check is now done in the core timekeeping code.
1020 * checking the result of read_tsc() - cycle_last for being negative.
1021 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
1022 */
1023static cycle_t read_tsc(struct clocksource *cs)
1024{
1025	return (cycle_t)rdtsc_ordered();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1026}
1027
1028/*
1029 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
1030 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1031static struct clocksource clocksource_tsc = {
1032	.name                   = "tsc",
1033	.rating                 = 300,
1034	.read                   = read_tsc,
1035	.mask                   = CLOCKSOURCE_MASK(64),
1036	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
1037				  CLOCK_SOURCE_MUST_VERIFY,
1038	.archdata               = { .vclock_mode = VCLOCK_TSC },
 
 
 
 
 
 
 
1039};
1040
1041void mark_tsc_unstable(char *reason)
1042{
1043	if (!tsc_unstable) {
1044		tsc_unstable = 1;
 
 
 
1045		clear_sched_clock_stable();
1046		disable_sched_clock_irqtime();
1047		pr_info("Marking TSC unstable due to %s\n", reason);
1048		/* Change only the rating, when not registered */
1049		if (clocksource_tsc.mult)
1050			clocksource_mark_unstable(&clocksource_tsc);
1051		else {
1052			clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
1053			clocksource_tsc.rating = 0;
1054		}
1055	}
1056}
1057
1058EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1059
 
 
 
 
 
 
 
 
 
 
 
 
1060static void __init check_system_tsc_reliable(void)
1061{
1062#if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1063	if (is_geode_lx()) {
1064		/* RTSC counts during suspend */
1065#define RTSC_SUSP 0x100
1066		unsigned long res_low, res_high;
1067
1068		rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1069		/* Geode_LX - the OLPC CPU has a very reliable TSC */
1070		if (res_low & RTSC_SUSP)
1071			tsc_clocksource_reliable = 1;
1072	}
1073#endif
1074	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1075		tsc_clocksource_reliable = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1076}
1077
1078/*
1079 * Make an educated guess if the TSC is trustworthy and synchronized
1080 * over all CPUs.
1081 */
1082int unsynchronized_tsc(void)
1083{
1084	if (!cpu_has_tsc || tsc_unstable)
1085		return 1;
1086
1087#ifdef CONFIG_SMP
1088	if (apic_is_clustered_box())
1089		return 1;
1090#endif
1091
1092	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1093		return 0;
1094
1095	if (tsc_clocksource_reliable)
1096		return 0;
1097	/*
1098	 * Intel systems are normally all synchronized.
1099	 * Exceptions must mark TSC as unstable:
1100	 */
1101	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1102		/* assume multi socket systems are not synchronized: */
1103		if (num_possible_cpus() > 1)
1104			return 1;
1105	}
1106
1107	return 0;
1108}
1109
1110/*
1111 * Convert ART to TSC given numerator/denominator found in detect_art()
1112 */
1113struct system_counterval_t convert_art_to_tsc(cycle_t art)
1114{
1115	u64 tmp, res, rem;
1116
1117	rem = do_div(art, art_to_tsc_denominator);
1118
1119	res = art * art_to_tsc_numerator;
1120	tmp = rem * art_to_tsc_numerator;
1121
1122	do_div(tmp, art_to_tsc_denominator);
1123	res += tmp + art_to_tsc_offset;
1124
1125	return (struct system_counterval_t) {.cs = art_related_clocksource,
1126			.cycles = res};
1127}
1128EXPORT_SYMBOL(convert_art_to_tsc);
1129
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1130static void tsc_refine_calibration_work(struct work_struct *work);
1131static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1132/**
1133 * tsc_refine_calibration_work - Further refine tsc freq calibration
1134 * @work - ignored.
1135 *
1136 * This functions uses delayed work over a period of a
1137 * second to further refine the TSC freq value. Since this is
1138 * timer based, instead of loop based, we don't block the boot
1139 * process while this longer calibration is done.
1140 *
1141 * If there are any calibration anomalies (too many SMIs, etc),
1142 * or the refined calibration is off by 1% of the fast early
1143 * calibration, we throw out the new calibration and use the
1144 * early calibration.
1145 */
1146static void tsc_refine_calibration_work(struct work_struct *work)
1147{
1148	static u64 tsc_start = -1, ref_start;
1149	static int hpet;
1150	u64 tsc_stop, ref_stop, delta;
1151	unsigned long freq;
 
1152
1153	/* Don't bother refining TSC on unstable systems */
1154	if (check_tsc_unstable())
1155		goto out;
1156
1157	/*
1158	 * Since the work is started early in boot, we may be
1159	 * delayed the first time we expire. So set the workqueue
1160	 * again once we know timers are working.
1161	 */
1162	if (tsc_start == -1) {
 
1163		/*
1164		 * Only set hpet once, to avoid mixing hardware
1165		 * if the hpet becomes enabled later.
1166		 */
1167		hpet = is_hpet_enabled();
 
1168		schedule_delayed_work(&tsc_irqwork, HZ);
1169		tsc_start = tsc_read_refs(&ref_start, hpet);
1170		return;
1171	}
1172
1173	tsc_stop = tsc_read_refs(&ref_stop, hpet);
1174
1175	/* hpet or pmtimer available ? */
1176	if (ref_start == ref_stop)
1177		goto out;
1178
1179	/* Check, whether the sampling was disturbed by an SMI */
1180	if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
1181		goto out;
1182
1183	delta = tsc_stop - tsc_start;
1184	delta *= 1000000LL;
1185	if (hpet)
1186		freq = calc_hpet_ref(delta, ref_start, ref_stop);
1187	else
1188		freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1189
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1190	/* Make sure we're within 1% */
1191	if (abs(tsc_khz - freq) > tsc_khz/100)
1192		goto out;
1193
1194	tsc_khz = freq;
1195	pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1196		(unsigned long)tsc_khz / 1000,
1197		(unsigned long)tsc_khz % 1000);
1198
 
 
 
 
 
 
 
1199out:
 
 
 
1200	if (boot_cpu_has(X86_FEATURE_ART))
1201		art_related_clocksource = &clocksource_tsc;
1202	clocksource_register_khz(&clocksource_tsc, tsc_khz);
 
 
1203}
1204
1205
1206static int __init init_tsc_clocksource(void)
1207{
1208	if (!cpu_has_tsc || tsc_disabled > 0 || !tsc_khz)
1209		return 0;
1210
1211	if (tsc_clocksource_reliable)
1212		clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1213	/* lower the rating if we already know its unstable: */
1214	if (check_tsc_unstable()) {
1215		clocksource_tsc.rating = 0;
1216		clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
1217	}
1218
1219	if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1220		clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1221
1222	/*
1223	 * Trust the results of the earlier calibration on systems
1224	 * exporting a reliable TSC.
1225	 */
1226	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) {
 
 
1227		clocksource_register_khz(&clocksource_tsc, tsc_khz);
1228		return 0;
 
 
 
1229	}
1230
1231	schedule_delayed_work(&tsc_irqwork, 0);
1232	return 0;
1233}
1234/*
1235 * We use device_initcall here, to ensure we run after the hpet
1236 * is fully initialized, which may occur at fs_initcall time.
1237 */
1238device_initcall(init_tsc_clocksource);
1239
1240void __init tsc_init(void)
1241{
1242	u64 lpj;
1243	int cpu;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1244
1245	if (!cpu_has_tsc) {
1246		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1247		return;
 
1248	}
 
 
 
 
 
 
1249
1250	tsc_khz = x86_platform.calibrate_tsc();
1251	cpu_khz = tsc_khz;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1252
1253	if (!tsc_khz) {
1254		mark_tsc_unstable("could not calculate TSC khz");
 
1255		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1256		return;
1257	}
1258
1259	pr_info("Detected %lu.%03lu MHz processor\n",
1260		(unsigned long)cpu_khz / 1000,
1261		(unsigned long)cpu_khz % 1000);
1262
1263	/*
1264	 * Secondary CPUs do not run through tsc_init(), so set up
1265	 * all the scale factors for all CPUs, assuming the same
1266	 * speed as the bootup CPU. (cpufreq notifiers will fix this
1267	 * up if their speed diverges)
1268	 */
1269	for_each_possible_cpu(cpu) {
1270		cyc2ns_init(cpu);
1271		set_cyc2ns_scale(cpu_khz, cpu);
 
 
 
 
 
 
 
 
1272	}
1273
1274	if (tsc_disabled > 0)
1275		return;
1276
1277	/* now allow native_sched_clock() to use rdtsc */
1278
1279	tsc_disabled = 0;
1280	static_branch_enable(&__use_tsc);
1281
1282	if (!no_sched_irq_time)
1283		enable_sched_clock_irqtime();
1284
1285	lpj = ((u64)tsc_khz * 1000);
1286	do_div(lpj, HZ);
1287	lpj_fine = lpj;
1288
1289	use_tsc_delay();
1290
1291	if (unsynchronized_tsc())
1292		mark_tsc_unstable("TSCs unsynchronized");
 
 
1293
1294	check_system_tsc_reliable();
 
1295
 
1296	detect_art();
1297}
1298
1299#ifdef CONFIG_SMP
1300/*
1301 * If we have a constant TSC and are using the TSC for the delay loop,
1302 * we can skip clock calibration if another cpu in the same socket has already
1303 * been calibrated. This assumes that CONSTANT_TSC applies to all
1304 * cpus in the socket - this should be a safe assumption.
1305 */
1306unsigned long calibrate_delay_is_known(void)
1307{
1308	int sibling, cpu = smp_processor_id();
1309	struct cpumask *mask = topology_core_cpumask(cpu);
 
1310
1311	if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC))
1312		return 0;
 
 
 
 
1313
1314	if (!mask)
 
 
 
 
 
 
 
 
1315		return 0;
1316
1317	sibling = cpumask_any_but(mask, cpu);
1318	if (sibling < nr_cpu_ids)
1319		return cpu_data(sibling).loops_per_jiffy;
1320	return 0;
1321}
1322#endif