Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  Copyright (C) 1995  Linus Torvalds
  4 *
  5 *  Pentium III FXSR, SSE support
  6 *	Gareth Hughes <gareth@valinux.com>, May 2000
  7 *
  8 *  X86-64 port
  9 *	Andi Kleen.
 10 *
 11 *	CPU hotplug support - ashok.raj@intel.com
 12 */
 13
 14/*
 15 * This file handles the architecture-dependent parts of process handling..
 16 */
 17
 18#include <linux/cpu.h>
 19#include <linux/errno.h>
 20#include <linux/sched.h>
 21#include <linux/sched/task.h>
 22#include <linux/sched/task_stack.h>
 23#include <linux/fs.h>
 24#include <linux/kernel.h>
 25#include <linux/mm.h>
 26#include <linux/elfcore.h>
 27#include <linux/smp.h>
 28#include <linux/slab.h>
 29#include <linux/user.h>
 30#include <linux/interrupt.h>
 31#include <linux/delay.h>
 32#include <linux/export.h>
 33#include <linux/ptrace.h>
 34#include <linux/notifier.h>
 35#include <linux/kprobes.h>
 36#include <linux/kdebug.h>
 37#include <linux/prctl.h>
 38#include <linux/uaccess.h>
 39#include <linux/io.h>
 40#include <linux/ftrace.h>
 41#include <linux/syscalls.h>
 42#include <linux/iommu.h>
 43
 
 44#include <asm/processor.h>
 45#include <asm/pkru.h>
 46#include <asm/fpu/sched.h>
 47#include <asm/mmu_context.h>
 48#include <asm/prctl.h>
 49#include <asm/desc.h>
 50#include <asm/proto.h>
 51#include <asm/ia32.h>
 
 
 52#include <asm/debugreg.h>
 53#include <asm/switch_to.h>
 54#include <asm/xen/hypervisor.h>
 55#include <asm/vdso.h>
 56#include <asm/resctrl.h>
 57#include <asm/unistd.h>
 58#include <asm/fsgsbase.h>
 59#ifdef CONFIG_IA32_EMULATION
 60/* Not included via unistd.h */
 61#include <asm/unistd_32_ia32.h>
 62#endif
 63
 64#include "process.h"
 
 
 65
 66/* Prints also some state that isn't saved in the pt_regs */
 67void __show_regs(struct pt_regs *regs, enum show_regs_mode mode,
 68		 const char *log_lvl)
 69{
 70	unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L, fs, gs, shadowgs;
 71	unsigned long d0, d1, d2, d3, d6, d7;
 72	unsigned int fsindex, gsindex;
 73	unsigned int ds, es;
 74
 75	show_iret_regs(regs, log_lvl);
 76
 77	if (regs->orig_ax != -1)
 78		pr_cont(" ORIG_RAX: %016lx\n", regs->orig_ax);
 79	else
 80		pr_cont("\n");
 81
 82	printk("%sRAX: %016lx RBX: %016lx RCX: %016lx\n",
 83	       log_lvl, regs->ax, regs->bx, regs->cx);
 84	printk("%sRDX: %016lx RSI: %016lx RDI: %016lx\n",
 85	       log_lvl, regs->dx, regs->si, regs->di);
 86	printk("%sRBP: %016lx R08: %016lx R09: %016lx\n",
 87	       log_lvl, regs->bp, regs->r8, regs->r9);
 88	printk("%sR10: %016lx R11: %016lx R12: %016lx\n",
 89	       log_lvl, regs->r10, regs->r11, regs->r12);
 90	printk("%sR13: %016lx R14: %016lx R15: %016lx\n",
 91	       log_lvl, regs->r13, regs->r14, regs->r15);
 92
 93	if (mode == SHOW_REGS_SHORT)
 94		return;
 95
 96	if (mode == SHOW_REGS_USER) {
 97		rdmsrl(MSR_FS_BASE, fs);
 98		rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
 99		printk("%sFS:  %016lx GS:  %016lx\n",
100		       log_lvl, fs, shadowgs);
101		return;
102	}
103
104	asm("movl %%ds,%0" : "=r" (ds));
 
105	asm("movl %%es,%0" : "=r" (es));
106	asm("movl %%fs,%0" : "=r" (fsindex));
107	asm("movl %%gs,%0" : "=r" (gsindex));
108
109	rdmsrl(MSR_FS_BASE, fs);
110	rdmsrl(MSR_GS_BASE, gs);
111	rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
112
 
 
 
113	cr0 = read_cr0();
114	cr2 = read_cr2();
115	cr3 = __read_cr3();
116	cr4 = __read_cr4();
117
118	printk("%sFS:  %016lx(%04x) GS:%016lx(%04x) knlGS:%016lx\n",
119	       log_lvl, fs, fsindex, gs, gsindex, shadowgs);
120	printk("%sCS:  %04lx DS: %04x ES: %04x CR0: %016lx\n",
121		log_lvl, regs->cs, ds, es, cr0);
122	printk("%sCR2: %016lx CR3: %016lx CR4: %016lx\n",
123		log_lvl, cr2, cr3, cr4);
124
125	get_debugreg(d0, 0);
126	get_debugreg(d1, 1);
127	get_debugreg(d2, 2);
128	get_debugreg(d3, 3);
129	get_debugreg(d6, 6);
130	get_debugreg(d7, 7);
131
132	/* Only print out debug registers if they are in their non-default state. */
133	if (!((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
134	    (d6 == DR6_RESERVED) && (d7 == 0x400))) {
135		printk("%sDR0: %016lx DR1: %016lx DR2: %016lx\n",
136		       log_lvl, d0, d1, d2);
137		printk("%sDR3: %016lx DR6: %016lx DR7: %016lx\n",
138		       log_lvl, d3, d6, d7);
139	}
140
141	if (cpu_feature_enabled(X86_FEATURE_OSPKE))
142		printk("%sPKRU: %08x\n", log_lvl, read_pkru());
143}
144
145void release_thread(struct task_struct *dead_task)
146{
147	WARN_ON(dead_task->mm);
148}
149
150enum which_selector {
151	FS,
152	GS
153};
154
155/*
156 * Out of line to be protected from kprobes and tracing. If this would be
157 * traced or probed than any access to a per CPU variable happens with
158 * the wrong GS.
159 *
160 * It is not used on Xen paravirt. When paravirt support is needed, it
161 * needs to be renamed with native_ prefix.
162 */
163static noinstr unsigned long __rdgsbase_inactive(void)
164{
165	unsigned long gsbase;
166
167	lockdep_assert_irqs_disabled();
168
169	if (!cpu_feature_enabled(X86_FEATURE_XENPV)) {
170		native_swapgs();
171		gsbase = rdgsbase();
172		native_swapgs();
173	} else {
174		instrumentation_begin();
175		rdmsrl(MSR_KERNEL_GS_BASE, gsbase);
176		instrumentation_end();
177	}
178
179	return gsbase;
180}
181
182/*
183 * Out of line to be protected from kprobes and tracing. If this would be
184 * traced or probed than any access to a per CPU variable happens with
185 * the wrong GS.
186 *
187 * It is not used on Xen paravirt. When paravirt support is needed, it
188 * needs to be renamed with native_ prefix.
189 */
190static noinstr void __wrgsbase_inactive(unsigned long gsbase)
191{
192	lockdep_assert_irqs_disabled();
193
194	if (!cpu_feature_enabled(X86_FEATURE_XENPV)) {
195		native_swapgs();
196		wrgsbase(gsbase);
197		native_swapgs();
198	} else {
199		instrumentation_begin();
200		wrmsrl(MSR_KERNEL_GS_BASE, gsbase);
201		instrumentation_end();
202	}
203}
204
205/*
206 * Saves the FS or GS base for an outgoing thread if FSGSBASE extensions are
207 * not available.  The goal is to be reasonably fast on non-FSGSBASE systems.
208 * It's forcibly inlined because it'll generate better code and this function
209 * is hot.
210 */
211static __always_inline void save_base_legacy(struct task_struct *prev_p,
212					     unsigned short selector,
213					     enum which_selector which)
214{
215	if (likely(selector == 0)) {
216		/*
217		 * On Intel (without X86_BUG_NULL_SEG), the segment base could
218		 * be the pre-existing saved base or it could be zero.  On AMD
219		 * (with X86_BUG_NULL_SEG), the segment base could be almost
220		 * anything.
221		 *
222		 * This branch is very hot (it's hit twice on almost every
223		 * context switch between 64-bit programs), and avoiding
224		 * the RDMSR helps a lot, so we just assume that whatever
225		 * value is already saved is correct.  This matches historical
226		 * Linux behavior, so it won't break existing applications.
227		 *
228		 * To avoid leaking state, on non-X86_BUG_NULL_SEG CPUs, if we
229		 * report that the base is zero, it needs to actually be zero:
230		 * see the corresponding logic in load_seg_legacy.
231		 */
232	} else {
233		/*
234		 * If the selector is 1, 2, or 3, then the base is zero on
235		 * !X86_BUG_NULL_SEG CPUs and could be anything on
236		 * X86_BUG_NULL_SEG CPUs.  In the latter case, Linux
237		 * has never attempted to preserve the base across context
238		 * switches.
239		 *
240		 * If selector > 3, then it refers to a real segment, and
241		 * saving the base isn't necessary.
242		 */
243		if (which == FS)
244			prev_p->thread.fsbase = 0;
245		else
246			prev_p->thread.gsbase = 0;
247	}
248}
249
250static __always_inline void save_fsgs(struct task_struct *task)
251{
252	savesegment(fs, task->thread.fsindex);
253	savesegment(gs, task->thread.gsindex);
254	if (static_cpu_has(X86_FEATURE_FSGSBASE)) {
255		/*
256		 * If FSGSBASE is enabled, we can't make any useful guesses
257		 * about the base, and user code expects us to save the current
258		 * value.  Fortunately, reading the base directly is efficient.
259		 */
260		task->thread.fsbase = rdfsbase();
261		task->thread.gsbase = __rdgsbase_inactive();
262	} else {
263		save_base_legacy(task, task->thread.fsindex, FS);
264		save_base_legacy(task, task->thread.gsindex, GS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
265	}
266}
267
268/*
269 * While a process is running,current->thread.fsbase and current->thread.gsbase
270 * may not match the corresponding CPU registers (see save_base_legacy()).
271 */
272void current_save_fsgs(void)
273{
274	unsigned long flags;
275
276	/* Interrupts need to be off for FSGSBASE */
277	local_irq_save(flags);
278	save_fsgs(current);
279	local_irq_restore(flags);
280}
281#if IS_ENABLED(CONFIG_KVM)
282EXPORT_SYMBOL_GPL(current_save_fsgs);
283#endif
284
285static __always_inline void loadseg(enum which_selector which,
286				    unsigned short sel)
287{
288	if (which == FS)
289		loadsegment(fs, sel);
290	else
291		load_gs_index(sel);
292}
293
294static __always_inline void load_seg_legacy(unsigned short prev_index,
295					    unsigned long prev_base,
296					    unsigned short next_index,
297					    unsigned long next_base,
298					    enum which_selector which)
299{
300	if (likely(next_index <= 3)) {
301		/*
302		 * The next task is using 64-bit TLS, is not using this
303		 * segment at all, or is having fun with arcane CPU features.
304		 */
305		if (next_base == 0) {
306			/*
307			 * Nasty case: on AMD CPUs, we need to forcibly zero
308			 * the base.
309			 */
310			if (static_cpu_has_bug(X86_BUG_NULL_SEG)) {
311				loadseg(which, __USER_DS);
312				loadseg(which, next_index);
313			} else {
314				/*
315				 * We could try to exhaustively detect cases
316				 * under which we can skip the segment load,
317				 * but there's really only one case that matters
318				 * for performance: if both the previous and
319				 * next states are fully zeroed, we can skip
320				 * the load.
321				 *
322				 * (This assumes that prev_base == 0 has no
323				 * false positives.  This is the case on
324				 * Intel-style CPUs.)
325				 */
326				if (likely(prev_index | next_index | prev_base))
327					loadseg(which, next_index);
328			}
329		} else {
330			if (prev_index != next_index)
331				loadseg(which, next_index);
332			wrmsrl(which == FS ? MSR_FS_BASE : MSR_KERNEL_GS_BASE,
333			       next_base);
334		}
335	} else {
336		/*
337		 * The next task is using a real segment.  Loading the selector
338		 * is sufficient.
339		 */
340		loadseg(which, next_index);
341	}
342}
343
344/*
345 * Store prev's PKRU value and load next's PKRU value if they differ. PKRU
346 * is not XSTATE managed on context switch because that would require a
347 * lookup in the task's FPU xsave buffer and require to keep that updated
348 * in various places.
349 */
350static __always_inline void x86_pkru_load(struct thread_struct *prev,
351					  struct thread_struct *next)
352{
353	if (!cpu_feature_enabled(X86_FEATURE_OSPKE))
354		return;
355
356	/* Stash the prev task's value: */
357	prev->pkru = rdpkru();
358
359	/*
360	 * PKRU writes are slightly expensive.  Avoid them when not
361	 * strictly necessary:
362	 */
363	if (prev->pkru != next->pkru)
364		wrpkru(next->pkru);
365}
366
367static __always_inline void x86_fsgsbase_load(struct thread_struct *prev,
368					      struct thread_struct *next)
369{
370	if (static_cpu_has(X86_FEATURE_FSGSBASE)) {
371		/* Update the FS and GS selectors if they could have changed. */
372		if (unlikely(prev->fsindex || next->fsindex))
373			loadseg(FS, next->fsindex);
374		if (unlikely(prev->gsindex || next->gsindex))
375			loadseg(GS, next->gsindex);
376
377		/* Update the bases. */
378		wrfsbase(next->fsbase);
379		__wrgsbase_inactive(next->gsbase);
380	} else {
381		load_seg_legacy(prev->fsindex, prev->fsbase,
382				next->fsindex, next->fsbase, FS);
383		load_seg_legacy(prev->gsindex, prev->gsbase,
384				next->gsindex, next->gsbase, GS);
385	}
386}
387
388unsigned long x86_fsgsbase_read_task(struct task_struct *task,
389				     unsigned short selector)
390{
391	unsigned short idx = selector >> 3;
392	unsigned long base;
393
394	if (likely((selector & SEGMENT_TI_MASK) == 0)) {
395		if (unlikely(idx >= GDT_ENTRIES))
396			return 0;
397
398		/*
399		 * There are no user segments in the GDT with nonzero bases
400		 * other than the TLS segments.
401		 */
402		if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
403			return 0;
404
405		idx -= GDT_ENTRY_TLS_MIN;
406		base = get_desc_base(&task->thread.tls_array[idx]);
407	} else {
408#ifdef CONFIG_MODIFY_LDT_SYSCALL
409		struct ldt_struct *ldt;
410
411		/*
412		 * If performance here mattered, we could protect the LDT
413		 * with RCU.  This is a slow path, though, so we can just
414		 * take the mutex.
415		 */
416		mutex_lock(&task->mm->context.lock);
417		ldt = task->mm->context.ldt;
418		if (unlikely(!ldt || idx >= ldt->nr_entries))
419			base = 0;
420		else
421			base = get_desc_base(ldt->entries + idx);
422		mutex_unlock(&task->mm->context.lock);
423#else
424		base = 0;
425#endif
 
 
 
 
 
 
 
 
 
426	}
427
428	return base;
429}
430
431unsigned long x86_gsbase_read_cpu_inactive(void)
432{
433	unsigned long gsbase;
434
435	if (boot_cpu_has(X86_FEATURE_FSGSBASE)) {
436		unsigned long flags;
437
438		local_irq_save(flags);
439		gsbase = __rdgsbase_inactive();
440		local_irq_restore(flags);
441	} else {
442		rdmsrl(MSR_KERNEL_GS_BASE, gsbase);
443	}
444
445	return gsbase;
446}
447
448void x86_gsbase_write_cpu_inactive(unsigned long gsbase)
449{
450	if (boot_cpu_has(X86_FEATURE_FSGSBASE)) {
451		unsigned long flags;
452
453		local_irq_save(flags);
454		__wrgsbase_inactive(gsbase);
455		local_irq_restore(flags);
456	} else {
457		wrmsrl(MSR_KERNEL_GS_BASE, gsbase);
458	}
459}
460
461unsigned long x86_fsbase_read_task(struct task_struct *task)
462{
463	unsigned long fsbase;
464
465	if (task == current)
466		fsbase = x86_fsbase_read_cpu();
467	else if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
468		 (task->thread.fsindex == 0))
469		fsbase = task->thread.fsbase;
470	else
471		fsbase = x86_fsgsbase_read_task(task, task->thread.fsindex);
472
473	return fsbase;
474}
475
476unsigned long x86_gsbase_read_task(struct task_struct *task)
477{
478	unsigned long gsbase;
479
480	if (task == current)
481		gsbase = x86_gsbase_read_cpu_inactive();
482	else if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
483		 (task->thread.gsindex == 0))
484		gsbase = task->thread.gsbase;
485	else
486		gsbase = x86_fsgsbase_read_task(task, task->thread.gsindex);
487
488	return gsbase;
489}
490
491void x86_fsbase_write_task(struct task_struct *task, unsigned long fsbase)
492{
493	WARN_ON_ONCE(task == current);
494
495	task->thread.fsbase = fsbase;
496}
497
498void x86_gsbase_write_task(struct task_struct *task, unsigned long gsbase)
499{
500	WARN_ON_ONCE(task == current);
501
502	task->thread.gsbase = gsbase;
503}
504
505static void
506start_thread_common(struct pt_regs *regs, unsigned long new_ip,
507		    unsigned long new_sp,
508		    unsigned int _cs, unsigned int _ss, unsigned int _ds)
509{
510	WARN_ON_ONCE(regs != current_pt_regs());
511
512	if (static_cpu_has(X86_BUG_NULL_SEG)) {
513		/* Loading zero below won't clear the base. */
514		loadsegment(fs, __USER_DS);
515		load_gs_index(__USER_DS);
516	}
517
518	reset_thread_features();
519
520	loadsegment(fs, 0);
521	loadsegment(es, _ds);
522	loadsegment(ds, _ds);
523	load_gs_index(0);
524
525	regs->ip		= new_ip;
526	regs->sp		= new_sp;
527	regs->cs		= _cs;
528	regs->ss		= _ss;
529	regs->flags		= X86_EFLAGS_IF;
 
530}
531
532void
533start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
534{
535	start_thread_common(regs, new_ip, new_sp,
536			    __USER_CS, __USER_DS, 0);
537}
538EXPORT_SYMBOL_GPL(start_thread);
539
540#ifdef CONFIG_COMPAT
541void compat_start_thread(struct pt_regs *regs, u32 new_ip, u32 new_sp, bool x32)
542{
543	start_thread_common(regs, new_ip, new_sp,
544			    x32 ? __USER_CS : __USER32_CS,
 
545			    __USER_DS, __USER_DS);
546}
547#endif
548
549/*
550 *	switch_to(x,y) should switch tasks from x to y.
551 *
552 * This could still be optimized:
553 * - fold all the options into a flag word and test it with a single test.
554 * - could test fs/gs bitsliced
555 *
556 * Kprobes not supported here. Set the probe on schedule instead.
557 * Function graph tracer not supported too.
558 */
559__no_kmsan_checks
560__visible __notrace_funcgraph struct task_struct *
561__switch_to(struct task_struct *prev_p, struct task_struct *next_p)
562{
563	struct thread_struct *prev = &prev_p->thread;
564	struct thread_struct *next = &next_p->thread;
565	struct fpu *prev_fpu = &prev->fpu;
 
566	int cpu = smp_processor_id();
 
 
 
567
568	WARN_ON_ONCE(IS_ENABLED(CONFIG_DEBUG_ENTRY) &&
569		     this_cpu_read(pcpu_hot.hardirq_stack_inuse));
570
571	if (!test_thread_flag(TIF_NEED_FPU_LOAD))
572		switch_fpu_prepare(prev_fpu, cpu);
573
574	/* We must save %fs and %gs before load_TLS() because
575	 * %fs and %gs may be cleared by load_TLS().
576	 *
577	 * (e.g. xen_load_tls())
578	 */
579	save_fsgs(prev_p);
 
580
581	/*
582	 * Load TLS before restoring any segments so that segment loads
583	 * reference the correct GDT entries.
584	 */
585	load_TLS(next, cpu);
586
587	/*
588	 * Leave lazy mode, flushing any hypercalls made here.  This
589	 * must be done after loading TLS entries in the GDT but before
590	 * loading segments that might reference them.
 
 
591	 */
592	arch_end_context_switch(next_p);
593
594	/* Switch DS and ES.
595	 *
596	 * Reading them only returns the selectors, but writing them (if
597	 * nonzero) loads the full descriptor from the GDT or LDT.  The
598	 * LDT for next is loaded in switch_mm, and the GDT is loaded
599	 * above.
600	 *
601	 * We therefore need to write new values to the segment
602	 * registers on every context switch unless both the new and old
603	 * values are zero.
604	 *
605	 * Note that we don't need to do anything for CS and SS, as
606	 * those are saved and restored as part of pt_regs.
607	 */
608	savesegment(es, prev->es);
609	if (unlikely(next->es | prev->es))
610		loadsegment(es, next->es);
611
612	savesegment(ds, prev->ds);
613	if (unlikely(next->ds | prev->ds))
614		loadsegment(ds, next->ds);
615
616	x86_fsgsbase_load(prev, next);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
617
618	x86_pkru_load(prev, next);
619
620	/*
621	 * Switch the PDA and FPU contexts.
622	 */
623	raw_cpu_write(pcpu_hot.current_task, next_p);
624	raw_cpu_write(pcpu_hot.top_of_stack, task_top_of_stack(next_p));
625
626	switch_fpu_finish();
 
627
628	/* Reload sp0. */
629	update_task_stack(next_p);
 
 
 
 
630
631	switch_to_extra(prev_p, next_p);
 
 
 
 
 
 
 
 
 
632
633	if (static_cpu_has_bug(X86_BUG_SYSRET_SS_ATTRS)) {
634		/*
635		 * AMD CPUs have a misfeature: SYSRET sets the SS selector but
636		 * does not update the cached descriptor.  As a result, if we
637		 * do SYSRET while SS is NULL, we'll end up in user mode with
638		 * SS apparently equal to __USER_DS but actually unusable.
639		 *
640		 * The straightforward workaround would be to fix it up just
641		 * before SYSRET, but that would slow down the system call
642		 * fast paths.  Instead, we ensure that SS is never NULL in
643		 * system call context.  We do this by replacing NULL SS
644		 * selectors at every context switch.  SYSCALL sets up a valid
645		 * SS, so the only way to get NULL is to re-enter the kernel
646		 * from CPL 3 through an interrupt.  Since that can't happen
647		 * in the same task as a running syscall, we are guaranteed to
648		 * context switch between every interrupt vector entry and a
649		 * subsequent SYSRET.
650		 *
651		 * We read SS first because SS reads are much faster than
652		 * writes.  Out of caution, we force SS to __KERNEL_DS even if
653		 * it previously had a different non-NULL value.
654		 */
655		unsigned short ss_sel;
656		savesegment(ss, ss_sel);
657		if (ss_sel != __KERNEL_DS)
658			loadsegment(ss, __KERNEL_DS);
659	}
660
661	/* Load the Intel cache allocation PQR MSR. */
662	resctrl_sched_in(next_p);
663
664	return prev_p;
665}
666
667void set_personality_64bit(void)
668{
669	/* inherit personality from parent */
670
671	/* Make sure to be in 64bit mode */
 
672	clear_thread_flag(TIF_ADDR32);
673	/* Pretend that this comes from a 64bit execve */
674	task_pt_regs(current)->orig_ax = __NR_execve;
675	current_thread_info()->status &= ~TS_COMPAT;
676	if (current->mm)
677		__set_bit(MM_CONTEXT_HAS_VSYSCALL, &current->mm->context.flags);
678
679	/* TBD: overwrites user setup. Should have two bits.
680	   But 64bit processes have always behaved this way,
681	   so it's not too bad. The main problem is just that
682	   32bit children are affected again. */
683	current->personality &= ~READ_IMPLIES_EXEC;
684}
685
686static void __set_personality_x32(void)
687{
688#ifdef CONFIG_X86_X32_ABI
689	if (current->mm)
690		current->mm->context.flags = 0;
691
692	current->personality &= ~READ_IMPLIES_EXEC;
693	/*
694	 * in_32bit_syscall() uses the presence of the x32 syscall bit
695	 * flag to determine compat status.  The x86 mmap() code relies on
696	 * the syscall bitness so set x32 syscall bit right here to make
697	 * in_32bit_syscall() work during exec().
698	 *
699	 * Pretend to come from a x32 execve.
700	 */
701	task_pt_regs(current)->orig_ax = __NR_x32_execve | __X32_SYSCALL_BIT;
702	current_thread_info()->status &= ~TS_COMPAT;
703#endif
704}
705
706static void __set_personality_ia32(void)
707{
708#ifdef CONFIG_IA32_EMULATION
709	if (current->mm) {
710		/*
711		 * uprobes applied to this MM need to know this and
712		 * cannot use user_64bit_mode() at that time.
713		 */
714		__set_bit(MM_CONTEXT_UPROBE_IA32, &current->mm->context.flags);
715	}
716
717	current->personality |= force_personality32;
718	/* Prepare the first "return" to user space */
719	task_pt_regs(current)->orig_ax = __NR_ia32_execve;
720	current_thread_info()->status |= TS_COMPAT;
721#endif
722}
723
724void set_personality_ia32(bool x32)
725{
 
 
726	/* Make sure to be in 32bit mode */
727	set_thread_flag(TIF_ADDR32);
728
729	if (x32)
730		__set_personality_x32();
731	else
732		__set_personality_ia32();
733}
734EXPORT_SYMBOL_GPL(set_personality_ia32);
735
736#ifdef CONFIG_CHECKPOINT_RESTORE
737static long prctl_map_vdso(const struct vdso_image *image, unsigned long addr)
738{
739	int ret;
740
741	ret = map_vdso_once(image, addr);
742	if (ret)
743		return ret;
744
745	return (long)image->size;
746}
747#endif
748
749#ifdef CONFIG_ADDRESS_MASKING
750
751#define LAM_U57_BITS 6
752
753static int prctl_enable_tagged_addr(struct mm_struct *mm, unsigned long nr_bits)
754{
755	if (!cpu_feature_enabled(X86_FEATURE_LAM))
756		return -ENODEV;
757
758	/* PTRACE_ARCH_PRCTL */
759	if (current->mm != mm)
760		return -EINVAL;
761
762	if (mm_valid_pasid(mm) &&
763	    !test_bit(MM_CONTEXT_FORCE_TAGGED_SVA, &mm->context.flags))
764		return -EINVAL;
765
766	if (mmap_write_lock_killable(mm))
767		return -EINTR;
768
769	if (test_bit(MM_CONTEXT_LOCK_LAM, &mm->context.flags)) {
770		mmap_write_unlock(mm);
771		return -EBUSY;
772	}
773
774	if (!nr_bits) {
775		mmap_write_unlock(mm);
776		return -EINVAL;
777	} else if (nr_bits <= LAM_U57_BITS) {
778		mm->context.lam_cr3_mask = X86_CR3_LAM_U57;
779		mm->context.untag_mask =  ~GENMASK(62, 57);
780	} else {
781		mmap_write_unlock(mm);
782		return -EINVAL;
 
 
 
 
 
783	}
784
785	write_cr3(__read_cr3() | mm->context.lam_cr3_mask);
786	set_tlbstate_lam_mode(mm);
787	set_bit(MM_CONTEXT_LOCK_LAM, &mm->context.flags);
788
789	mmap_write_unlock(mm);
790
791	return 0;
792}
793#endif
794
795long do_arch_prctl_64(struct task_struct *task, int option, unsigned long arg2)
796{
797	int ret = 0;
 
 
798
799	switch (option) {
800	case ARCH_SET_GS: {
801		if (unlikely(arg2 >= TASK_SIZE_MAX))
802			return -EPERM;
803
804		preempt_disable();
805		/*
806		 * ARCH_SET_GS has always overwritten the index
807		 * and the base. Zero is the most sensible value
808		 * to put in the index, and is the only value that
809		 * makes any sense if FSGSBASE is unavailable.
810		 */
811		if (task == current) {
812			loadseg(GS, 0);
813			x86_gsbase_write_cpu_inactive(arg2);
814
815			/*
816			 * On non-FSGSBASE systems, save_base_legacy() expects
817			 * that we also fill in thread.gsbase.
818			 */
819			task->thread.gsbase = arg2;
820
821		} else {
822			task->thread.gsindex = 0;
823			x86_gsbase_write_task(task, arg2);
 
 
 
 
824		}
825		preempt_enable();
826		break;
827	}
828	case ARCH_SET_FS: {
829		/*
830		 * Not strictly needed for %fs, but do it for symmetry
831		 * with %gs
832		 */
833		if (unlikely(arg2 >= TASK_SIZE_MAX))
834			return -EPERM;
835
836		preempt_disable();
837		/*
838		 * Set the selector to 0 for the same reason
839		 * as %gs above.
840		 */
841		if (task == current) {
842			loadseg(FS, 0);
843			x86_fsbase_write_cpu(arg2);
844
845			/*
846			 * On non-FSGSBASE systems, save_base_legacy() expects
847			 * that we also fill in thread.fsbase.
848			 */
849			task->thread.fsbase = arg2;
850		} else {
851			task->thread.fsindex = 0;
852			x86_fsbase_write_task(task, arg2);
 
 
 
 
 
 
853		}
854		preempt_enable();
855		break;
856	}
857	case ARCH_GET_FS: {
858		unsigned long base = x86_fsbase_read_task(task);
859
860		ret = put_user(base, (unsigned long __user *)arg2);
 
 
 
 
 
861		break;
862	}
863	case ARCH_GET_GS: {
864		unsigned long base = x86_gsbase_read_task(task);
865
866		ret = put_user(base, (unsigned long __user *)arg2);
 
 
 
 
 
 
 
 
 
 
867		break;
868	}
869
870#ifdef CONFIG_CHECKPOINT_RESTORE
871# ifdef CONFIG_X86_X32_ABI
872	case ARCH_MAP_VDSO_X32:
873		return prctl_map_vdso(&vdso_image_x32, arg2);
874# endif
875# if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
876	case ARCH_MAP_VDSO_32:
877		return prctl_map_vdso(&vdso_image_32, arg2);
878# endif
879	case ARCH_MAP_VDSO_64:
880		return prctl_map_vdso(&vdso_image_64, arg2);
881#endif
882#ifdef CONFIG_ADDRESS_MASKING
883	case ARCH_GET_UNTAG_MASK:
884		return put_user(task->mm->context.untag_mask,
885				(unsigned long __user *)arg2);
886	case ARCH_ENABLE_TAGGED_ADDR:
887		return prctl_enable_tagged_addr(task->mm, arg2);
888	case ARCH_FORCE_TAGGED_SVA:
889		if (current != task)
890			return -EINVAL;
891		set_bit(MM_CONTEXT_FORCE_TAGGED_SVA, &task->mm->context.flags);
892		return 0;
893	case ARCH_GET_MAX_TAG_BITS:
894		if (!cpu_feature_enabled(X86_FEATURE_LAM))
895			return put_user(0, (unsigned long __user *)arg2);
896		else
897			return put_user(LAM_U57_BITS, (unsigned long __user *)arg2);
898#endif
899	case ARCH_SHSTK_ENABLE:
900	case ARCH_SHSTK_DISABLE:
901	case ARCH_SHSTK_LOCK:
902	case ARCH_SHSTK_UNLOCK:
903	case ARCH_SHSTK_STATUS:
904		return shstk_prctl(task, option, arg2);
905	default:
906		ret = -EINVAL;
907		break;
908	}
909
910	return ret;
911}
912
913SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
914{
915	long ret;
916
917	ret = do_arch_prctl_64(current, option, arg2);
918	if (ret == -EINVAL)
919		ret = do_arch_prctl_common(option, arg2);
920
921	return ret;
922}
923
924#ifdef CONFIG_IA32_EMULATION
925COMPAT_SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
926{
927	return do_arch_prctl_common(option, arg2);
928}
929#endif
930
931unsigned long KSTK_ESP(struct task_struct *task)
932{
933	return task_pt_regs(task)->sp;
934}
v4.6
 
  1/*
  2 *  Copyright (C) 1995  Linus Torvalds
  3 *
  4 *  Pentium III FXSR, SSE support
  5 *	Gareth Hughes <gareth@valinux.com>, May 2000
  6 *
  7 *  X86-64 port
  8 *	Andi Kleen.
  9 *
 10 *	CPU hotplug support - ashok.raj@intel.com
 11 */
 12
 13/*
 14 * This file handles the architecture-dependent parts of process handling..
 15 */
 16
 17#include <linux/cpu.h>
 18#include <linux/errno.h>
 19#include <linux/sched.h>
 
 
 20#include <linux/fs.h>
 21#include <linux/kernel.h>
 22#include <linux/mm.h>
 23#include <linux/elfcore.h>
 24#include <linux/smp.h>
 25#include <linux/slab.h>
 26#include <linux/user.h>
 27#include <linux/interrupt.h>
 28#include <linux/delay.h>
 29#include <linux/module.h>
 30#include <linux/ptrace.h>
 31#include <linux/notifier.h>
 32#include <linux/kprobes.h>
 33#include <linux/kdebug.h>
 34#include <linux/prctl.h>
 35#include <linux/uaccess.h>
 36#include <linux/io.h>
 37#include <linux/ftrace.h>
 
 
 38
 39#include <asm/pgtable.h>
 40#include <asm/processor.h>
 41#include <asm/fpu/internal.h>
 
 42#include <asm/mmu_context.h>
 43#include <asm/prctl.h>
 44#include <asm/desc.h>
 45#include <asm/proto.h>
 46#include <asm/ia32.h>
 47#include <asm/idle.h>
 48#include <asm/syscalls.h>
 49#include <asm/debugreg.h>
 50#include <asm/switch_to.h>
 51#include <asm/xen/hypervisor.h>
 
 
 
 
 
 
 
 
 52
 53asmlinkage extern void ret_from_fork(void);
 54
 55__visible DEFINE_PER_CPU(unsigned long, rsp_scratch);
 56
 57/* Prints also some state that isn't saved in the pt_regs */
 58void __show_regs(struct pt_regs *regs, int all)
 
 59{
 60	unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L, fs, gs, shadowgs;
 61	unsigned long d0, d1, d2, d3, d6, d7;
 62	unsigned int fsindex, gsindex;
 63	unsigned int ds, cs, es;
 
 
 64
 65	printk(KERN_DEFAULT "RIP: %04lx:[<%016lx>] ", regs->cs & 0xffff, regs->ip);
 66	printk_address(regs->ip);
 67	printk(KERN_DEFAULT "RSP: %04lx:%016lx  EFLAGS: %08lx\n", regs->ss,
 68			regs->sp, regs->flags);
 69	printk(KERN_DEFAULT "RAX: %016lx RBX: %016lx RCX: %016lx\n",
 70	       regs->ax, regs->bx, regs->cx);
 71	printk(KERN_DEFAULT "RDX: %016lx RSI: %016lx RDI: %016lx\n",
 72	       regs->dx, regs->si, regs->di);
 73	printk(KERN_DEFAULT "RBP: %016lx R08: %016lx R09: %016lx\n",
 74	       regs->bp, regs->r8, regs->r9);
 75	printk(KERN_DEFAULT "R10: %016lx R11: %016lx R12: %016lx\n",
 76	       regs->r10, regs->r11, regs->r12);
 77	printk(KERN_DEFAULT "R13: %016lx R14: %016lx R15: %016lx\n",
 78	       regs->r13, regs->r14, regs->r15);
 
 
 
 
 
 
 
 
 
 
 
 
 79
 80	asm("movl %%ds,%0" : "=r" (ds));
 81	asm("movl %%cs,%0" : "=r" (cs));
 82	asm("movl %%es,%0" : "=r" (es));
 83	asm("movl %%fs,%0" : "=r" (fsindex));
 84	asm("movl %%gs,%0" : "=r" (gsindex));
 85
 86	rdmsrl(MSR_FS_BASE, fs);
 87	rdmsrl(MSR_GS_BASE, gs);
 88	rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
 89
 90	if (!all)
 91		return;
 92
 93	cr0 = read_cr0();
 94	cr2 = read_cr2();
 95	cr3 = read_cr3();
 96	cr4 = __read_cr4();
 97
 98	printk(KERN_DEFAULT "FS:  %016lx(%04x) GS:%016lx(%04x) knlGS:%016lx\n",
 99	       fs, fsindex, gs, gsindex, shadowgs);
100	printk(KERN_DEFAULT "CS:  %04x DS: %04x ES: %04x CR0: %016lx\n", cs, ds,
101			es, cr0);
102	printk(KERN_DEFAULT "CR2: %016lx CR3: %016lx CR4: %016lx\n", cr2, cr3,
103			cr4);
104
105	get_debugreg(d0, 0);
106	get_debugreg(d1, 1);
107	get_debugreg(d2, 2);
108	get_debugreg(d3, 3);
109	get_debugreg(d6, 6);
110	get_debugreg(d7, 7);
111
112	/* Only print out debug registers if they are in their non-default state. */
113	if ((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
114	    (d6 == DR6_RESERVED) && (d7 == 0x400))
115		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
116
117	printk(KERN_DEFAULT "DR0: %016lx DR1: %016lx DR2: %016lx\n", d0, d1, d2);
118	printk(KERN_DEFAULT "DR3: %016lx DR6: %016lx DR7: %016lx\n", d3, d6, d7);
 
 
 
 
 
 
 
 
 
119
120	if (boot_cpu_has(X86_FEATURE_OSPKE))
121		printk(KERN_DEFAULT "PKRU: %08x\n", read_pkru());
 
 
 
 
 
 
 
122}
123
124void release_thread(struct task_struct *dead_task)
 
 
 
 
 
 
 
 
125{
126	if (dead_task->mm) {
127#ifdef CONFIG_MODIFY_LDT_SYSCALL
128		if (dead_task->mm->context.ldt) {
129			pr_warn("WARNING: dead process %s still has LDT? <%p/%d>\n",
130				dead_task->comm,
131				dead_task->mm->context.ldt->entries,
132				dead_task->mm->context.ldt->size);
133			BUG();
134		}
135#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
136	}
137}
138
139static inline void set_32bit_tls(struct task_struct *t, int tls, u32 addr)
140{
141	struct user_desc ud = {
142		.base_addr = addr,
143		.limit = 0xfffff,
144		.seg_32bit = 1,
145		.limit_in_pages = 1,
146		.useable = 1,
147	};
148	struct desc_struct *desc = t->thread.tls_array;
149	desc += tls;
150	fill_ldt(desc, &ud);
151}
152
153static inline u32 read_32bit_tls(struct task_struct *t, int tls)
154{
155	return get_desc_base(&t->thread.tls_array[tls]);
156}
157
158int copy_thread_tls(unsigned long clone_flags, unsigned long sp,
159		unsigned long arg, struct task_struct *p, unsigned long tls)
160{
161	int err;
162	struct pt_regs *childregs;
163	struct task_struct *me = current;
164
165	p->thread.sp0 = (unsigned long)task_stack_page(p) + THREAD_SIZE;
166	childregs = task_pt_regs(p);
167	p->thread.sp = (unsigned long) childregs;
168	set_tsk_thread_flag(p, TIF_FORK);
169	p->thread.io_bitmap_ptr = NULL;
170
171	savesegment(gs, p->thread.gsindex);
172	p->thread.gs = p->thread.gsindex ? 0 : me->thread.gs;
173	savesegment(fs, p->thread.fsindex);
174	p->thread.fs = p->thread.fsindex ? 0 : me->thread.fs;
175	savesegment(es, p->thread.es);
176	savesegment(ds, p->thread.ds);
177	memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
178
179	if (unlikely(p->flags & PF_KTHREAD)) {
180		/* kernel thread */
181		memset(childregs, 0, sizeof(struct pt_regs));
182		childregs->sp = (unsigned long)childregs;
183		childregs->ss = __KERNEL_DS;
184		childregs->bx = sp; /* function */
185		childregs->bp = arg;
186		childregs->orig_ax = -1;
187		childregs->cs = __KERNEL_CS | get_kernel_rpl();
188		childregs->flags = X86_EFLAGS_IF | X86_EFLAGS_FIXED;
189		return 0;
190	}
191	*childregs = *current_pt_regs();
192
193	childregs->ax = 0;
194	if (sp)
195		childregs->sp = sp;
196
197	err = -ENOMEM;
198	if (unlikely(test_tsk_thread_flag(me, TIF_IO_BITMAP))) {
199		p->thread.io_bitmap_ptr = kmemdup(me->thread.io_bitmap_ptr,
200						  IO_BITMAP_BYTES, GFP_KERNEL);
201		if (!p->thread.io_bitmap_ptr) {
202			p->thread.io_bitmap_max = 0;
203			return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
204		}
205		set_tsk_thread_flag(p, TIF_IO_BITMAP);
 
 
 
 
 
206	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
207
208	/*
209	 * Set a new TLS for the child thread?
 
210	 */
211	if (clone_flags & CLONE_SETTLS) {
212#ifdef CONFIG_IA32_EMULATION
213		if (is_ia32_task())
214			err = do_set_thread_area(p, -1,
215				(struct user_desc __user *)tls, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
216		else
 
 
 
 
217#endif
218			err = do_arch_prctl(p, ARCH_SET_FS, tls);
219		if (err)
220			goto out;
221	}
222	err = 0;
223out:
224	if (err && p->thread.io_bitmap_ptr) {
225		kfree(p->thread.io_bitmap_ptr);
226		p->thread.io_bitmap_max = 0;
227	}
228
229	return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
230}
231
232static void
233start_thread_common(struct pt_regs *regs, unsigned long new_ip,
234		    unsigned long new_sp,
235		    unsigned int _cs, unsigned int _ss, unsigned int _ds)
236{
 
 
 
 
 
 
 
 
 
 
237	loadsegment(fs, 0);
238	loadsegment(es, _ds);
239	loadsegment(ds, _ds);
240	load_gs_index(0);
 
241	regs->ip		= new_ip;
242	regs->sp		= new_sp;
243	regs->cs		= _cs;
244	regs->ss		= _ss;
245	regs->flags		= X86_EFLAGS_IF;
246	force_iret();
247}
248
249void
250start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
251{
252	start_thread_common(regs, new_ip, new_sp,
253			    __USER_CS, __USER_DS, 0);
254}
 
255
256#ifdef CONFIG_COMPAT
257void compat_start_thread(struct pt_regs *regs, u32 new_ip, u32 new_sp)
258{
259	start_thread_common(regs, new_ip, new_sp,
260			    test_thread_flag(TIF_X32)
261			    ? __USER_CS : __USER32_CS,
262			    __USER_DS, __USER_DS);
263}
264#endif
265
266/*
267 *	switch_to(x,y) should switch tasks from x to y.
268 *
269 * This could still be optimized:
270 * - fold all the options into a flag word and test it with a single test.
271 * - could test fs/gs bitsliced
272 *
273 * Kprobes not supported here. Set the probe on schedule instead.
274 * Function graph tracer not supported too.
275 */
 
276__visible __notrace_funcgraph struct task_struct *
277__switch_to(struct task_struct *prev_p, struct task_struct *next_p)
278{
279	struct thread_struct *prev = &prev_p->thread;
280	struct thread_struct *next = &next_p->thread;
281	struct fpu *prev_fpu = &prev->fpu;
282	struct fpu *next_fpu = &next->fpu;
283	int cpu = smp_processor_id();
284	struct tss_struct *tss = &per_cpu(cpu_tss, cpu);
285	unsigned fsindex, gsindex;
286	fpu_switch_t fpu_switch;
287
288	fpu_switch = switch_fpu_prepare(prev_fpu, next_fpu, cpu);
 
 
 
 
289
290	/* We must save %fs and %gs before load_TLS() because
291	 * %fs and %gs may be cleared by load_TLS().
292	 *
293	 * (e.g. xen_load_tls())
294	 */
295	savesegment(fs, fsindex);
296	savesegment(gs, gsindex);
297
298	/*
299	 * Load TLS before restoring any segments so that segment loads
300	 * reference the correct GDT entries.
301	 */
302	load_TLS(next, cpu);
303
304	/*
305	 * Leave lazy mode, flushing any hypercalls made here.  This
306	 * must be done after loading TLS entries in the GDT but before
307	 * loading segments that might reference them, and and it must
308	 * be done before fpu__restore(), so the TS bit is up to
309	 * date.
310	 */
311	arch_end_context_switch(next_p);
312
313	/* Switch DS and ES.
314	 *
315	 * Reading them only returns the selectors, but writing them (if
316	 * nonzero) loads the full descriptor from the GDT or LDT.  The
317	 * LDT for next is loaded in switch_mm, and the GDT is loaded
318	 * above.
319	 *
320	 * We therefore need to write new values to the segment
321	 * registers on every context switch unless both the new and old
322	 * values are zero.
323	 *
324	 * Note that we don't need to do anything for CS and SS, as
325	 * those are saved and restored as part of pt_regs.
326	 */
327	savesegment(es, prev->es);
328	if (unlikely(next->es | prev->es))
329		loadsegment(es, next->es);
330
331	savesegment(ds, prev->ds);
332	if (unlikely(next->ds | prev->ds))
333		loadsegment(ds, next->ds);
334
335	/*
336	 * Switch FS and GS.
337	 *
338	 * These are even more complicated than DS and ES: they have
339	 * 64-bit bases are that controlled by arch_prctl.  Those bases
340	 * only differ from the values in the GDT or LDT if the selector
341	 * is 0.
342	 *
343	 * Loading the segment register resets the hidden base part of
344	 * the register to 0 or the value from the GDT / LDT.  If the
345	 * next base address zero, writing 0 to the segment register is
346	 * much faster than using wrmsr to explicitly zero the base.
347	 *
348	 * The thread_struct.fs and thread_struct.gs values are 0
349	 * if the fs and gs bases respectively are not overridden
350	 * from the values implied by fsindex and gsindex.  They
351	 * are nonzero, and store the nonzero base addresses, if
352	 * the bases are overridden.
353	 *
354	 * (fs != 0 && fsindex != 0) || (gs != 0 && gsindex != 0) should
355	 * be impossible.
356	 *
357	 * Therefore we need to reload the segment registers if either
358	 * the old or new selector is nonzero, and we need to override
359	 * the base address if next thread expects it to be overridden.
360	 *
361	 * This code is unnecessarily slow in the case where the old and
362	 * new indexes are zero and the new base is nonzero -- it will
363	 * unnecessarily write 0 to the selector before writing the new
364	 * base address.
365	 *
366	 * Note: This all depends on arch_prctl being the only way that
367	 * user code can override the segment base.  Once wrfsbase and
368	 * wrgsbase are enabled, most of this code will need to change.
369	 */
370	if (unlikely(fsindex | next->fsindex | prev->fs)) {
371		loadsegment(fs, next->fsindex);
372
373		/*
374		 * If user code wrote a nonzero value to FS, then it also
375		 * cleared the overridden base address.
376		 *
377		 * XXX: if user code wrote 0 to FS and cleared the base
378		 * address itself, we won't notice and we'll incorrectly
379		 * restore the prior base address next time we reschdule
380		 * the process.
381		 */
382		if (fsindex)
383			prev->fs = 0;
384	}
385	if (next->fs)
386		wrmsrl(MSR_FS_BASE, next->fs);
387	prev->fsindex = fsindex;
388
389	if (unlikely(gsindex | next->gsindex | prev->gs)) {
390		load_gs_index(next->gsindex);
391
392		/* This works (and fails) the same way as fsindex above. */
393		if (gsindex)
394			prev->gs = 0;
395	}
396	if (next->gs)
397		wrmsrl(MSR_KERNEL_GS_BASE, next->gs);
398	prev->gsindex = gsindex;
399
400	switch_fpu_finish(next_fpu, fpu_switch);
401
402	/*
403	 * Switch the PDA and FPU contexts.
404	 */
405	this_cpu_write(current_task, next_p);
 
406
407	/* Reload esp0 and ss1.  This changes current_thread_info(). */
408	load_sp0(tss, next);
409
410	/*
411	 * Now maybe reload the debug registers and handle I/O bitmaps
412	 */
413	if (unlikely(task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT ||
414		     task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV))
415		__switch_to_xtra(prev_p, next_p, tss);
416
417#ifdef CONFIG_XEN
418	/*
419	 * On Xen PV, IOPL bits in pt_regs->flags have no effect, and
420	 * current_pt_regs()->flags may not match the current task's
421	 * intended IOPL.  We need to switch it manually.
422	 */
423	if (unlikely(static_cpu_has(X86_FEATURE_XENPV) &&
424		     prev->iopl != next->iopl))
425		xen_set_iopl_mask(next->iopl);
426#endif
427
428	if (static_cpu_has_bug(X86_BUG_SYSRET_SS_ATTRS)) {
429		/*
430		 * AMD CPUs have a misfeature: SYSRET sets the SS selector but
431		 * does not update the cached descriptor.  As a result, if we
432		 * do SYSRET while SS is NULL, we'll end up in user mode with
433		 * SS apparently equal to __USER_DS but actually unusable.
434		 *
435		 * The straightforward workaround would be to fix it up just
436		 * before SYSRET, but that would slow down the system call
437		 * fast paths.  Instead, we ensure that SS is never NULL in
438		 * system call context.  We do this by replacing NULL SS
439		 * selectors at every context switch.  SYSCALL sets up a valid
440		 * SS, so the only way to get NULL is to re-enter the kernel
441		 * from CPL 3 through an interrupt.  Since that can't happen
442		 * in the same task as a running syscall, we are guaranteed to
443		 * context switch between every interrupt vector entry and a
444		 * subsequent SYSRET.
445		 *
446		 * We read SS first because SS reads are much faster than
447		 * writes.  Out of caution, we force SS to __KERNEL_DS even if
448		 * it previously had a different non-NULL value.
449		 */
450		unsigned short ss_sel;
451		savesegment(ss, ss_sel);
452		if (ss_sel != __KERNEL_DS)
453			loadsegment(ss, __KERNEL_DS);
454	}
455
 
 
 
456	return prev_p;
457}
458
459void set_personality_64bit(void)
460{
461	/* inherit personality from parent */
462
463	/* Make sure to be in 64bit mode */
464	clear_thread_flag(TIF_IA32);
465	clear_thread_flag(TIF_ADDR32);
466	clear_thread_flag(TIF_X32);
467
468	/* Ensure the corresponding mm is not marked. */
469	if (current->mm)
470		current->mm->context.ia32_compat = 0;
471
472	/* TBD: overwrites user setup. Should have two bits.
473	   But 64bit processes have always behaved this way,
474	   so it's not too bad. The main problem is just that
475	   32bit childs are affected again. */
476	current->personality &= ~READ_IMPLIES_EXEC;
477}
478
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
479void set_personality_ia32(bool x32)
480{
481	/* inherit personality from parent */
482
483	/* Make sure to be in 32bit mode */
484	set_thread_flag(TIF_ADDR32);
485
486	/* Mark the associated mm as containing 32-bit tasks. */
487	if (x32) {
488		clear_thread_flag(TIF_IA32);
489		set_thread_flag(TIF_X32);
490		if (current->mm)
491			current->mm->context.ia32_compat = TIF_X32;
492		current->personality &= ~READ_IMPLIES_EXEC;
493		/* in_compat_syscall() uses the presence of the x32
494		   syscall bit flag to determine compat status */
495		current_thread_info()->status &= ~TS_COMPAT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
496	} else {
497		set_thread_flag(TIF_IA32);
498		clear_thread_flag(TIF_X32);
499		if (current->mm)
500			current->mm->context.ia32_compat = TIF_IA32;
501		current->personality |= force_personality32;
502		/* Prepare the first "return" to user space */
503		current_thread_info()->status |= TS_COMPAT;
504	}
 
 
 
 
 
 
 
 
505}
506EXPORT_SYMBOL_GPL(set_personality_ia32);
507
508long do_arch_prctl(struct task_struct *task, int code, unsigned long addr)
509{
510	int ret = 0;
511	int doit = task == current;
512	int cpu;
513
514	switch (code) {
515	case ARCH_SET_GS:
516		if (addr >= TASK_SIZE_OF(task))
517			return -EPERM;
518		cpu = get_cpu();
519		/* handle small bases via the GDT because that's faster to
520		   switch. */
521		if (addr <= 0xffffffff) {
522			set_32bit_tls(task, GS_TLS, addr);
523			if (doit) {
524				load_TLS(&task->thread, cpu);
525				load_gs_index(GS_TLS_SEL);
526			}
527			task->thread.gsindex = GS_TLS_SEL;
528			task->thread.gs = 0;
 
 
 
 
 
 
 
529		} else {
530			task->thread.gsindex = 0;
531			task->thread.gs = addr;
532			if (doit) {
533				load_gs_index(0);
534				ret = wrmsrl_safe(MSR_KERNEL_GS_BASE, addr);
535			}
536		}
537		put_cpu();
538		break;
539	case ARCH_SET_FS:
540		/* Not strictly needed for fs, but do it for symmetry
541		   with gs */
542		if (addr >= TASK_SIZE_OF(task))
 
 
 
543			return -EPERM;
544		cpu = get_cpu();
545		/* handle small bases via the GDT because that's faster to
546		   switch. */
547		if (addr <= 0xffffffff) {
548			set_32bit_tls(task, FS_TLS, addr);
549			if (doit) {
550				load_TLS(&task->thread, cpu);
551				loadsegment(fs, FS_TLS_SEL);
552			}
553			task->thread.fsindex = FS_TLS_SEL;
554			task->thread.fs = 0;
 
 
 
 
555		} else {
556			task->thread.fsindex = 0;
557			task->thread.fs = addr;
558			if (doit) {
559				/* set the selector to 0 to not confuse
560				   __switch_to */
561				loadsegment(fs, 0);
562				ret = wrmsrl_safe(MSR_FS_BASE, addr);
563			}
564		}
565		put_cpu();
566		break;
 
567	case ARCH_GET_FS: {
568		unsigned long base;
569		if (task->thread.fsindex == FS_TLS_SEL)
570			base = read_32bit_tls(task, FS_TLS);
571		else if (doit)
572			rdmsrl(MSR_FS_BASE, base);
573		else
574			base = task->thread.fs;
575		ret = put_user(base, (unsigned long __user *)addr);
576		break;
577	}
578	case ARCH_GET_GS: {
579		unsigned long base;
580		unsigned gsindex;
581		if (task->thread.gsindex == GS_TLS_SEL)
582			base = read_32bit_tls(task, GS_TLS);
583		else if (doit) {
584			savesegment(gs, gsindex);
585			if (gsindex)
586				rdmsrl(MSR_KERNEL_GS_BASE, base);
587			else
588				base = task->thread.gs;
589		} else
590			base = task->thread.gs;
591		ret = put_user(base, (unsigned long __user *)addr);
592		break;
593	}
594
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
595	default:
596		ret = -EINVAL;
597		break;
598	}
599
600	return ret;
601}
602
603long sys_arch_prctl(int code, unsigned long addr)
 
 
 
 
 
 
 
 
 
 
 
 
604{
605	return do_arch_prctl(current, code, addr);
606}
 
607
608unsigned long KSTK_ESP(struct task_struct *task)
609{
610	return task_pt_regs(task)->sp;
611}