Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1/*
   2 *  PowerPC version
   3 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
   4 *
   5 *  Derived from "arch/m68k/kernel/ptrace.c"
   6 *  Copyright (C) 1994 by Hamish Macdonald
   7 *  Taken from linux/kernel/ptrace.c and modified for M680x0.
   8 *  linux/kernel/ptrace.c is by Ross Biro 1/23/92, edited by Linus Torvalds
   9 *
  10 * Modified by Cort Dougan (cort@hq.fsmlabs.com)
  11 * and Paul Mackerras (paulus@samba.org).
  12 *
  13 * This file is subject to the terms and conditions of the GNU General
  14 * Public License.  See the file README.legal in the main directory of
  15 * this archive for more details.
  16 */
  17
  18#include <linux/kernel.h>
  19#include <linux/sched.h>
  20#include <linux/mm.h>
  21#include <linux/smp.h>
  22#include <linux/errno.h>
  23#include <linux/ptrace.h>
  24#include <linux/regset.h>
  25#include <linux/tracehook.h>
  26#include <linux/elf.h>
  27#include <linux/user.h>
  28#include <linux/security.h>
  29#include <linux/signal.h>
  30#include <linux/seccomp.h>
  31#include <linux/audit.h>
  32#include <trace/syscall.h>
  33#include <linux/hw_breakpoint.h>
  34#include <linux/perf_event.h>
  35#include <linux/context_tracking.h>
  36
  37#include <asm/uaccess.h>
  38#include <asm/page.h>
  39#include <asm/pgtable.h>
  40#include <asm/switch_to.h>
  41
  42#define CREATE_TRACE_POINTS
  43#include <trace/events/syscalls.h>
  44
  45/*
  46 * The parameter save area on the stack is used to store arguments being passed
  47 * to callee function and is located at fixed offset from stack pointer.
  48 */
  49#ifdef CONFIG_PPC32
  50#define PARAMETER_SAVE_AREA_OFFSET	24  /* bytes */
  51#else /* CONFIG_PPC32 */
  52#define PARAMETER_SAVE_AREA_OFFSET	48  /* bytes */
  53#endif
  54
  55struct pt_regs_offset {
  56	const char *name;
  57	int offset;
  58};
  59
  60#define STR(s)	#s			/* convert to string */
  61#define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)}
  62#define GPR_OFFSET_NAME(num)	\
  63	{.name = STR(r##num), .offset = offsetof(struct pt_regs, gpr[num])}, \
  64	{.name = STR(gpr##num), .offset = offsetof(struct pt_regs, gpr[num])}
  65#define REG_OFFSET_END {.name = NULL, .offset = 0}
  66
  67static const struct pt_regs_offset regoffset_table[] = {
  68	GPR_OFFSET_NAME(0),
  69	GPR_OFFSET_NAME(1),
  70	GPR_OFFSET_NAME(2),
  71	GPR_OFFSET_NAME(3),
  72	GPR_OFFSET_NAME(4),
  73	GPR_OFFSET_NAME(5),
  74	GPR_OFFSET_NAME(6),
  75	GPR_OFFSET_NAME(7),
  76	GPR_OFFSET_NAME(8),
  77	GPR_OFFSET_NAME(9),
  78	GPR_OFFSET_NAME(10),
  79	GPR_OFFSET_NAME(11),
  80	GPR_OFFSET_NAME(12),
  81	GPR_OFFSET_NAME(13),
  82	GPR_OFFSET_NAME(14),
  83	GPR_OFFSET_NAME(15),
  84	GPR_OFFSET_NAME(16),
  85	GPR_OFFSET_NAME(17),
  86	GPR_OFFSET_NAME(18),
  87	GPR_OFFSET_NAME(19),
  88	GPR_OFFSET_NAME(20),
  89	GPR_OFFSET_NAME(21),
  90	GPR_OFFSET_NAME(22),
  91	GPR_OFFSET_NAME(23),
  92	GPR_OFFSET_NAME(24),
  93	GPR_OFFSET_NAME(25),
  94	GPR_OFFSET_NAME(26),
  95	GPR_OFFSET_NAME(27),
  96	GPR_OFFSET_NAME(28),
  97	GPR_OFFSET_NAME(29),
  98	GPR_OFFSET_NAME(30),
  99	GPR_OFFSET_NAME(31),
 100	REG_OFFSET_NAME(nip),
 101	REG_OFFSET_NAME(msr),
 102	REG_OFFSET_NAME(ctr),
 103	REG_OFFSET_NAME(link),
 104	REG_OFFSET_NAME(xer),
 105	REG_OFFSET_NAME(ccr),
 106#ifdef CONFIG_PPC64
 107	REG_OFFSET_NAME(softe),
 108#else
 109	REG_OFFSET_NAME(mq),
 110#endif
 111	REG_OFFSET_NAME(trap),
 112	REG_OFFSET_NAME(dar),
 113	REG_OFFSET_NAME(dsisr),
 114	REG_OFFSET_END,
 115};
 116
 117/**
 118 * regs_query_register_offset() - query register offset from its name
 119 * @name:	the name of a register
 120 *
 121 * regs_query_register_offset() returns the offset of a register in struct
 122 * pt_regs from its name. If the name is invalid, this returns -EINVAL;
 123 */
 124int regs_query_register_offset(const char *name)
 125{
 126	const struct pt_regs_offset *roff;
 127	for (roff = regoffset_table; roff->name != NULL; roff++)
 128		if (!strcmp(roff->name, name))
 129			return roff->offset;
 130	return -EINVAL;
 131}
 132
 133/**
 134 * regs_query_register_name() - query register name from its offset
 135 * @offset:	the offset of a register in struct pt_regs.
 136 *
 137 * regs_query_register_name() returns the name of a register from its
 138 * offset in struct pt_regs. If the @offset is invalid, this returns NULL;
 139 */
 140const char *regs_query_register_name(unsigned int offset)
 141{
 142	const struct pt_regs_offset *roff;
 143	for (roff = regoffset_table; roff->name != NULL; roff++)
 144		if (roff->offset == offset)
 145			return roff->name;
 146	return NULL;
 147}
 148
 149/*
 150 * does not yet catch signals sent when the child dies.
 151 * in exit.c or in signal.c.
 152 */
 153
 154/*
 155 * Set of msr bits that gdb can change on behalf of a process.
 156 */
 157#ifdef CONFIG_PPC_ADV_DEBUG_REGS
 158#define MSR_DEBUGCHANGE	0
 159#else
 160#define MSR_DEBUGCHANGE	(MSR_SE | MSR_BE)
 161#endif
 162
 163/*
 164 * Max register writeable via put_reg
 165 */
 166#ifdef CONFIG_PPC32
 167#define PT_MAX_PUT_REG	PT_MQ
 168#else
 169#define PT_MAX_PUT_REG	PT_CCR
 170#endif
 171
 172static unsigned long get_user_msr(struct task_struct *task)
 173{
 174	return task->thread.regs->msr | task->thread.fpexc_mode;
 175}
 176
 177static int set_user_msr(struct task_struct *task, unsigned long msr)
 178{
 179	task->thread.regs->msr &= ~MSR_DEBUGCHANGE;
 180	task->thread.regs->msr |= msr & MSR_DEBUGCHANGE;
 181	return 0;
 182}
 183
 184#ifdef CONFIG_PPC64
 185static int get_user_dscr(struct task_struct *task, unsigned long *data)
 186{
 187	*data = task->thread.dscr;
 188	return 0;
 189}
 190
 191static int set_user_dscr(struct task_struct *task, unsigned long dscr)
 192{
 193	task->thread.dscr = dscr;
 194	task->thread.dscr_inherit = 1;
 195	return 0;
 196}
 197#else
 198static int get_user_dscr(struct task_struct *task, unsigned long *data)
 199{
 200	return -EIO;
 201}
 202
 203static int set_user_dscr(struct task_struct *task, unsigned long dscr)
 204{
 205	return -EIO;
 206}
 207#endif
 208
 209/*
 210 * We prevent mucking around with the reserved area of trap
 211 * which are used internally by the kernel.
 212 */
 213static int set_user_trap(struct task_struct *task, unsigned long trap)
 214{
 215	task->thread.regs->trap = trap & 0xfff0;
 216	return 0;
 217}
 218
 219/*
 220 * Get contents of register REGNO in task TASK.
 221 */
 222int ptrace_get_reg(struct task_struct *task, int regno, unsigned long *data)
 223{
 224	if ((task->thread.regs == NULL) || !data)
 225		return -EIO;
 226
 227	if (regno == PT_MSR) {
 228		*data = get_user_msr(task);
 229		return 0;
 230	}
 231
 232	if (regno == PT_DSCR)
 233		return get_user_dscr(task, data);
 234
 235	if (regno < (sizeof(struct pt_regs) / sizeof(unsigned long))) {
 236		*data = ((unsigned long *)task->thread.regs)[regno];
 237		return 0;
 238	}
 239
 240	return -EIO;
 241}
 242
 243/*
 244 * Write contents of register REGNO in task TASK.
 245 */
 246int ptrace_put_reg(struct task_struct *task, int regno, unsigned long data)
 247{
 248	if (task->thread.regs == NULL)
 249		return -EIO;
 250
 251	if (regno == PT_MSR)
 252		return set_user_msr(task, data);
 253	if (regno == PT_TRAP)
 254		return set_user_trap(task, data);
 255	if (regno == PT_DSCR)
 256		return set_user_dscr(task, data);
 257
 258	if (regno <= PT_MAX_PUT_REG) {
 259		((unsigned long *)task->thread.regs)[regno] = data;
 260		return 0;
 261	}
 262	return -EIO;
 263}
 264
 265static int gpr_get(struct task_struct *target, const struct user_regset *regset,
 266		   unsigned int pos, unsigned int count,
 267		   void *kbuf, void __user *ubuf)
 268{
 269	int i, ret;
 270
 271	if (target->thread.regs == NULL)
 272		return -EIO;
 273
 274	if (!FULL_REGS(target->thread.regs)) {
 275		/* We have a partial register set.  Fill 14-31 with bogus values */
 276		for (i = 14; i < 32; i++)
 277			target->thread.regs->gpr[i] = NV_REG_POISON;
 278	}
 279
 280	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
 281				  target->thread.regs,
 282				  0, offsetof(struct pt_regs, msr));
 283	if (!ret) {
 284		unsigned long msr = get_user_msr(target);
 285		ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &msr,
 286					  offsetof(struct pt_regs, msr),
 287					  offsetof(struct pt_regs, msr) +
 288					  sizeof(msr));
 289	}
 290
 291	BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
 292		     offsetof(struct pt_regs, msr) + sizeof(long));
 293
 294	if (!ret)
 295		ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
 296					  &target->thread.regs->orig_gpr3,
 297					  offsetof(struct pt_regs, orig_gpr3),
 298					  sizeof(struct pt_regs));
 299	if (!ret)
 300		ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
 301					       sizeof(struct pt_regs), -1);
 302
 303	return ret;
 304}
 305
 306static int gpr_set(struct task_struct *target, const struct user_regset *regset,
 307		   unsigned int pos, unsigned int count,
 308		   const void *kbuf, const void __user *ubuf)
 309{
 310	unsigned long reg;
 311	int ret;
 312
 313	if (target->thread.regs == NULL)
 314		return -EIO;
 315
 316	CHECK_FULL_REGS(target->thread.regs);
 317
 318	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
 319				 target->thread.regs,
 320				 0, PT_MSR * sizeof(reg));
 321
 322	if (!ret && count > 0) {
 323		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &reg,
 324					 PT_MSR * sizeof(reg),
 325					 (PT_MSR + 1) * sizeof(reg));
 326		if (!ret)
 327			ret = set_user_msr(target, reg);
 328	}
 329
 330	BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
 331		     offsetof(struct pt_regs, msr) + sizeof(long));
 332
 333	if (!ret)
 334		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
 335					 &target->thread.regs->orig_gpr3,
 336					 PT_ORIG_R3 * sizeof(reg),
 337					 (PT_MAX_PUT_REG + 1) * sizeof(reg));
 338
 339	if (PT_MAX_PUT_REG + 1 < PT_TRAP && !ret)
 340		ret = user_regset_copyin_ignore(
 341			&pos, &count, &kbuf, &ubuf,
 342			(PT_MAX_PUT_REG + 1) * sizeof(reg),
 343			PT_TRAP * sizeof(reg));
 344
 345	if (!ret && count > 0) {
 346		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &reg,
 347					 PT_TRAP * sizeof(reg),
 348					 (PT_TRAP + 1) * sizeof(reg));
 349		if (!ret)
 350			ret = set_user_trap(target, reg);
 351	}
 352
 353	if (!ret)
 354		ret = user_regset_copyin_ignore(
 355			&pos, &count, &kbuf, &ubuf,
 356			(PT_TRAP + 1) * sizeof(reg), -1);
 357
 358	return ret;
 359}
 360
 361static int fpr_get(struct task_struct *target, const struct user_regset *regset,
 362		   unsigned int pos, unsigned int count,
 363		   void *kbuf, void __user *ubuf)
 364{
 365#ifdef CONFIG_VSX
 366	u64 buf[33];
 367	int i;
 368#endif
 369	flush_fp_to_thread(target);
 370
 371#ifdef CONFIG_VSX
 372	/* copy to local buffer then write that out */
 373	for (i = 0; i < 32 ; i++)
 374		buf[i] = target->thread.TS_FPR(i);
 375	buf[32] = target->thread.fp_state.fpscr;
 376	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
 377
 378#else
 379	BUILD_BUG_ON(offsetof(struct thread_fp_state, fpscr) !=
 380		     offsetof(struct thread_fp_state, fpr[32][0]));
 381
 382	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
 383				   &target->thread.fp_state, 0, -1);
 384#endif
 385}
 386
 387static int fpr_set(struct task_struct *target, const struct user_regset *regset,
 388		   unsigned int pos, unsigned int count,
 389		   const void *kbuf, const void __user *ubuf)
 390{
 391#ifdef CONFIG_VSX
 392	u64 buf[33];
 393	int i;
 394#endif
 395	flush_fp_to_thread(target);
 396
 397#ifdef CONFIG_VSX
 398	/* copy to local buffer then write that out */
 399	i = user_regset_copyin(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
 400	if (i)
 401		return i;
 402	for (i = 0; i < 32 ; i++)
 403		target->thread.TS_FPR(i) = buf[i];
 404	target->thread.fp_state.fpscr = buf[32];
 405	return 0;
 406#else
 407	BUILD_BUG_ON(offsetof(struct thread_fp_state, fpscr) !=
 408		     offsetof(struct thread_fp_state, fpr[32][0]));
 409
 410	return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
 411				  &target->thread.fp_state, 0, -1);
 412#endif
 413}
 414
 415#ifdef CONFIG_ALTIVEC
 416/*
 417 * Get/set all the altivec registers vr0..vr31, vscr, vrsave, in one go.
 418 * The transfer totals 34 quadword.  Quadwords 0-31 contain the
 419 * corresponding vector registers.  Quadword 32 contains the vscr as the
 420 * last word (offset 12) within that quadword.  Quadword 33 contains the
 421 * vrsave as the first word (offset 0) within the quadword.
 422 *
 423 * This definition of the VMX state is compatible with the current PPC32
 424 * ptrace interface.  This allows signal handling and ptrace to use the
 425 * same structures.  This also simplifies the implementation of a bi-arch
 426 * (combined (32- and 64-bit) gdb.
 427 */
 428
 429static int vr_active(struct task_struct *target,
 430		     const struct user_regset *regset)
 431{
 432	flush_altivec_to_thread(target);
 433	return target->thread.used_vr ? regset->n : 0;
 434}
 435
 436static int vr_get(struct task_struct *target, const struct user_regset *regset,
 437		  unsigned int pos, unsigned int count,
 438		  void *kbuf, void __user *ubuf)
 439{
 440	int ret;
 441
 442	flush_altivec_to_thread(target);
 443
 444	BUILD_BUG_ON(offsetof(struct thread_vr_state, vscr) !=
 445		     offsetof(struct thread_vr_state, vr[32]));
 446
 447	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
 448				  &target->thread.vr_state, 0,
 449				  33 * sizeof(vector128));
 450	if (!ret) {
 451		/*
 452		 * Copy out only the low-order word of vrsave.
 453		 */
 454		union {
 455			elf_vrreg_t reg;
 456			u32 word;
 457		} vrsave;
 458		memset(&vrsave, 0, sizeof(vrsave));
 459		vrsave.word = target->thread.vrsave;
 460		ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &vrsave,
 461					  33 * sizeof(vector128), -1);
 462	}
 463
 464	return ret;
 465}
 466
 467static int vr_set(struct task_struct *target, const struct user_regset *regset,
 468		  unsigned int pos, unsigned int count,
 469		  const void *kbuf, const void __user *ubuf)
 470{
 471	int ret;
 472
 473	flush_altivec_to_thread(target);
 474
 475	BUILD_BUG_ON(offsetof(struct thread_vr_state, vscr) !=
 476		     offsetof(struct thread_vr_state, vr[32]));
 477
 478	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
 479				 &target->thread.vr_state, 0,
 480				 33 * sizeof(vector128));
 481	if (!ret && count > 0) {
 482		/*
 483		 * We use only the first word of vrsave.
 484		 */
 485		union {
 486			elf_vrreg_t reg;
 487			u32 word;
 488		} vrsave;
 489		memset(&vrsave, 0, sizeof(vrsave));
 490		vrsave.word = target->thread.vrsave;
 491		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &vrsave,
 492					 33 * sizeof(vector128), -1);
 493		if (!ret)
 494			target->thread.vrsave = vrsave.word;
 495	}
 496
 497	return ret;
 498}
 499#endif /* CONFIG_ALTIVEC */
 500
 501#ifdef CONFIG_VSX
 502/*
 503 * Currently to set and and get all the vsx state, you need to call
 504 * the fp and VMX calls as well.  This only get/sets the lower 32
 505 * 128bit VSX registers.
 506 */
 507
 508static int vsr_active(struct task_struct *target,
 509		      const struct user_regset *regset)
 510{
 511	flush_vsx_to_thread(target);
 512	return target->thread.used_vsr ? regset->n : 0;
 513}
 514
 515static int vsr_get(struct task_struct *target, const struct user_regset *regset,
 516		   unsigned int pos, unsigned int count,
 517		   void *kbuf, void __user *ubuf)
 518{
 519	u64 buf[32];
 520	int ret, i;
 521
 522	flush_vsx_to_thread(target);
 523
 524	for (i = 0; i < 32 ; i++)
 525		buf[i] = target->thread.fp_state.fpr[i][TS_VSRLOWOFFSET];
 526	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
 527				  buf, 0, 32 * sizeof(double));
 528
 529	return ret;
 530}
 531
 532static int vsr_set(struct task_struct *target, const struct user_regset *regset,
 533		   unsigned int pos, unsigned int count,
 534		   const void *kbuf, const void __user *ubuf)
 535{
 536	u64 buf[32];
 537	int ret,i;
 538
 539	flush_vsx_to_thread(target);
 540
 541	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
 542				 buf, 0, 32 * sizeof(double));
 543	for (i = 0; i < 32 ; i++)
 544		target->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
 545
 546
 547	return ret;
 548}
 549#endif /* CONFIG_VSX */
 550
 551#ifdef CONFIG_SPE
 552
 553/*
 554 * For get_evrregs/set_evrregs functions 'data' has the following layout:
 555 *
 556 * struct {
 557 *   u32 evr[32];
 558 *   u64 acc;
 559 *   u32 spefscr;
 560 * }
 561 */
 562
 563static int evr_active(struct task_struct *target,
 564		      const struct user_regset *regset)
 565{
 566	flush_spe_to_thread(target);
 567	return target->thread.used_spe ? regset->n : 0;
 568}
 569
 570static int evr_get(struct task_struct *target, const struct user_regset *regset,
 571		   unsigned int pos, unsigned int count,
 572		   void *kbuf, void __user *ubuf)
 573{
 574	int ret;
 575
 576	flush_spe_to_thread(target);
 577
 578	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
 579				  &target->thread.evr,
 580				  0, sizeof(target->thread.evr));
 581
 582	BUILD_BUG_ON(offsetof(struct thread_struct, acc) + sizeof(u64) !=
 583		     offsetof(struct thread_struct, spefscr));
 584
 585	if (!ret)
 586		ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
 587					  &target->thread.acc,
 588					  sizeof(target->thread.evr), -1);
 589
 590	return ret;
 591}
 592
 593static int evr_set(struct task_struct *target, const struct user_regset *regset,
 594		   unsigned int pos, unsigned int count,
 595		   const void *kbuf, const void __user *ubuf)
 596{
 597	int ret;
 598
 599	flush_spe_to_thread(target);
 600
 601	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
 602				 &target->thread.evr,
 603				 0, sizeof(target->thread.evr));
 604
 605	BUILD_BUG_ON(offsetof(struct thread_struct, acc) + sizeof(u64) !=
 606		     offsetof(struct thread_struct, spefscr));
 607
 608	if (!ret)
 609		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
 610					 &target->thread.acc,
 611					 sizeof(target->thread.evr), -1);
 612
 613	return ret;
 614}
 615#endif /* CONFIG_SPE */
 616
 617
 618/*
 619 * These are our native regset flavors.
 620 */
 621enum powerpc_regset {
 622	REGSET_GPR,
 623	REGSET_FPR,
 624#ifdef CONFIG_ALTIVEC
 625	REGSET_VMX,
 626#endif
 627#ifdef CONFIG_VSX
 628	REGSET_VSX,
 629#endif
 630#ifdef CONFIG_SPE
 631	REGSET_SPE,
 632#endif
 633};
 634
 635static const struct user_regset native_regsets[] = {
 636	[REGSET_GPR] = {
 637		.core_note_type = NT_PRSTATUS, .n = ELF_NGREG,
 638		.size = sizeof(long), .align = sizeof(long),
 639		.get = gpr_get, .set = gpr_set
 640	},
 641	[REGSET_FPR] = {
 642		.core_note_type = NT_PRFPREG, .n = ELF_NFPREG,
 643		.size = sizeof(double), .align = sizeof(double),
 644		.get = fpr_get, .set = fpr_set
 645	},
 646#ifdef CONFIG_ALTIVEC
 647	[REGSET_VMX] = {
 648		.core_note_type = NT_PPC_VMX, .n = 34,
 649		.size = sizeof(vector128), .align = sizeof(vector128),
 650		.active = vr_active, .get = vr_get, .set = vr_set
 651	},
 652#endif
 653#ifdef CONFIG_VSX
 654	[REGSET_VSX] = {
 655		.core_note_type = NT_PPC_VSX, .n = 32,
 656		.size = sizeof(double), .align = sizeof(double),
 657		.active = vsr_active, .get = vsr_get, .set = vsr_set
 658	},
 659#endif
 660#ifdef CONFIG_SPE
 661	[REGSET_SPE] = {
 662		.core_note_type = NT_PPC_SPE, .n = 35,
 663		.size = sizeof(u32), .align = sizeof(u32),
 664		.active = evr_active, .get = evr_get, .set = evr_set
 665	},
 666#endif
 667};
 668
 669static const struct user_regset_view user_ppc_native_view = {
 670	.name = UTS_MACHINE, .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI,
 671	.regsets = native_regsets, .n = ARRAY_SIZE(native_regsets)
 672};
 673
 674#ifdef CONFIG_PPC64
 675#include <linux/compat.h>
 676
 677static int gpr32_get(struct task_struct *target,
 678		     const struct user_regset *regset,
 679		     unsigned int pos, unsigned int count,
 680		     void *kbuf, void __user *ubuf)
 681{
 682	const unsigned long *regs = &target->thread.regs->gpr[0];
 683	compat_ulong_t *k = kbuf;
 684	compat_ulong_t __user *u = ubuf;
 685	compat_ulong_t reg;
 686	int i;
 687
 688	if (target->thread.regs == NULL)
 689		return -EIO;
 690
 691	if (!FULL_REGS(target->thread.regs)) {
 692		/* We have a partial register set.  Fill 14-31 with bogus values */
 693		for (i = 14; i < 32; i++)
 694			target->thread.regs->gpr[i] = NV_REG_POISON; 
 695	}
 696
 697	pos /= sizeof(reg);
 698	count /= sizeof(reg);
 699
 700	if (kbuf)
 701		for (; count > 0 && pos < PT_MSR; --count)
 702			*k++ = regs[pos++];
 703	else
 704		for (; count > 0 && pos < PT_MSR; --count)
 705			if (__put_user((compat_ulong_t) regs[pos++], u++))
 706				return -EFAULT;
 707
 708	if (count > 0 && pos == PT_MSR) {
 709		reg = get_user_msr(target);
 710		if (kbuf)
 711			*k++ = reg;
 712		else if (__put_user(reg, u++))
 713			return -EFAULT;
 714		++pos;
 715		--count;
 716	}
 717
 718	if (kbuf)
 719		for (; count > 0 && pos < PT_REGS_COUNT; --count)
 720			*k++ = regs[pos++];
 721	else
 722		for (; count > 0 && pos < PT_REGS_COUNT; --count)
 723			if (__put_user((compat_ulong_t) regs[pos++], u++))
 724				return -EFAULT;
 725
 726	kbuf = k;
 727	ubuf = u;
 728	pos *= sizeof(reg);
 729	count *= sizeof(reg);
 730	return user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
 731					PT_REGS_COUNT * sizeof(reg), -1);
 732}
 733
 734static int gpr32_set(struct task_struct *target,
 735		     const struct user_regset *regset,
 736		     unsigned int pos, unsigned int count,
 737		     const void *kbuf, const void __user *ubuf)
 738{
 739	unsigned long *regs = &target->thread.regs->gpr[0];
 740	const compat_ulong_t *k = kbuf;
 741	const compat_ulong_t __user *u = ubuf;
 742	compat_ulong_t reg;
 743
 744	if (target->thread.regs == NULL)
 745		return -EIO;
 746
 747	CHECK_FULL_REGS(target->thread.regs);
 748
 749	pos /= sizeof(reg);
 750	count /= sizeof(reg);
 751
 752	if (kbuf)
 753		for (; count > 0 && pos < PT_MSR; --count)
 754			regs[pos++] = *k++;
 755	else
 756		for (; count > 0 && pos < PT_MSR; --count) {
 757			if (__get_user(reg, u++))
 758				return -EFAULT;
 759			regs[pos++] = reg;
 760		}
 761
 762
 763	if (count > 0 && pos == PT_MSR) {
 764		if (kbuf)
 765			reg = *k++;
 766		else if (__get_user(reg, u++))
 767			return -EFAULT;
 768		set_user_msr(target, reg);
 769		++pos;
 770		--count;
 771	}
 772
 773	if (kbuf) {
 774		for (; count > 0 && pos <= PT_MAX_PUT_REG; --count)
 775			regs[pos++] = *k++;
 776		for (; count > 0 && pos < PT_TRAP; --count, ++pos)
 777			++k;
 778	} else {
 779		for (; count > 0 && pos <= PT_MAX_PUT_REG; --count) {
 780			if (__get_user(reg, u++))
 781				return -EFAULT;
 782			regs[pos++] = reg;
 783		}
 784		for (; count > 0 && pos < PT_TRAP; --count, ++pos)
 785			if (__get_user(reg, u++))
 786				return -EFAULT;
 787	}
 788
 789	if (count > 0 && pos == PT_TRAP) {
 790		if (kbuf)
 791			reg = *k++;
 792		else if (__get_user(reg, u++))
 793			return -EFAULT;
 794		set_user_trap(target, reg);
 795		++pos;
 796		--count;
 797	}
 798
 799	kbuf = k;
 800	ubuf = u;
 801	pos *= sizeof(reg);
 802	count *= sizeof(reg);
 803	return user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
 804					 (PT_TRAP + 1) * sizeof(reg), -1);
 805}
 806
 807/*
 808 * These are the regset flavors matching the CONFIG_PPC32 native set.
 809 */
 810static const struct user_regset compat_regsets[] = {
 811	[REGSET_GPR] = {
 812		.core_note_type = NT_PRSTATUS, .n = ELF_NGREG,
 813		.size = sizeof(compat_long_t), .align = sizeof(compat_long_t),
 814		.get = gpr32_get, .set = gpr32_set
 815	},
 816	[REGSET_FPR] = {
 817		.core_note_type = NT_PRFPREG, .n = ELF_NFPREG,
 818		.size = sizeof(double), .align = sizeof(double),
 819		.get = fpr_get, .set = fpr_set
 820	},
 821#ifdef CONFIG_ALTIVEC
 822	[REGSET_VMX] = {
 823		.core_note_type = NT_PPC_VMX, .n = 34,
 824		.size = sizeof(vector128), .align = sizeof(vector128),
 825		.active = vr_active, .get = vr_get, .set = vr_set
 826	},
 827#endif
 828#ifdef CONFIG_SPE
 829	[REGSET_SPE] = {
 830		.core_note_type = NT_PPC_SPE, .n = 35,
 831		.size = sizeof(u32), .align = sizeof(u32),
 832		.active = evr_active, .get = evr_get, .set = evr_set
 833	},
 834#endif
 835};
 836
 837static const struct user_regset_view user_ppc_compat_view = {
 838	.name = "ppc", .e_machine = EM_PPC, .ei_osabi = ELF_OSABI,
 839	.regsets = compat_regsets, .n = ARRAY_SIZE(compat_regsets)
 840};
 841#endif	/* CONFIG_PPC64 */
 842
 843const struct user_regset_view *task_user_regset_view(struct task_struct *task)
 844{
 845#ifdef CONFIG_PPC64
 846	if (test_tsk_thread_flag(task, TIF_32BIT))
 847		return &user_ppc_compat_view;
 848#endif
 849	return &user_ppc_native_view;
 850}
 851
 852
 853void user_enable_single_step(struct task_struct *task)
 854{
 855	struct pt_regs *regs = task->thread.regs;
 856
 857	if (regs != NULL) {
 858#ifdef CONFIG_PPC_ADV_DEBUG_REGS
 859		task->thread.debug.dbcr0 &= ~DBCR0_BT;
 860		task->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
 861		regs->msr |= MSR_DE;
 862#else
 863		regs->msr &= ~MSR_BE;
 864		regs->msr |= MSR_SE;
 865#endif
 866	}
 867	set_tsk_thread_flag(task, TIF_SINGLESTEP);
 868}
 869
 870void user_enable_block_step(struct task_struct *task)
 871{
 872	struct pt_regs *regs = task->thread.regs;
 873
 874	if (regs != NULL) {
 875#ifdef CONFIG_PPC_ADV_DEBUG_REGS
 876		task->thread.debug.dbcr0 &= ~DBCR0_IC;
 877		task->thread.debug.dbcr0 = DBCR0_IDM | DBCR0_BT;
 878		regs->msr |= MSR_DE;
 879#else
 880		regs->msr &= ~MSR_SE;
 881		regs->msr |= MSR_BE;
 882#endif
 883	}
 884	set_tsk_thread_flag(task, TIF_SINGLESTEP);
 885}
 886
 887void user_disable_single_step(struct task_struct *task)
 888{
 889	struct pt_regs *regs = task->thread.regs;
 890
 891	if (regs != NULL) {
 892#ifdef CONFIG_PPC_ADV_DEBUG_REGS
 893		/*
 894		 * The logic to disable single stepping should be as
 895		 * simple as turning off the Instruction Complete flag.
 896		 * And, after doing so, if all debug flags are off, turn
 897		 * off DBCR0(IDM) and MSR(DE) .... Torez
 898		 */
 899		task->thread.debug.dbcr0 &= ~(DBCR0_IC|DBCR0_BT);
 900		/*
 901		 * Test to see if any of the DBCR_ACTIVE_EVENTS bits are set.
 902		 */
 903		if (!DBCR_ACTIVE_EVENTS(task->thread.debug.dbcr0,
 904					task->thread.debug.dbcr1)) {
 905			/*
 906			 * All debug events were off.....
 907			 */
 908			task->thread.debug.dbcr0 &= ~DBCR0_IDM;
 909			regs->msr &= ~MSR_DE;
 910		}
 911#else
 912		regs->msr &= ~(MSR_SE | MSR_BE);
 913#endif
 914	}
 915	clear_tsk_thread_flag(task, TIF_SINGLESTEP);
 916}
 917
 918#ifdef CONFIG_HAVE_HW_BREAKPOINT
 919void ptrace_triggered(struct perf_event *bp,
 920		      struct perf_sample_data *data, struct pt_regs *regs)
 921{
 922	struct perf_event_attr attr;
 923
 924	/*
 925	 * Disable the breakpoint request here since ptrace has defined a
 926	 * one-shot behaviour for breakpoint exceptions in PPC64.
 927	 * The SIGTRAP signal is generated automatically for us in do_dabr().
 928	 * We don't have to do anything about that here
 929	 */
 930	attr = bp->attr;
 931	attr.disabled = true;
 932	modify_user_hw_breakpoint(bp, &attr);
 933}
 934#endif /* CONFIG_HAVE_HW_BREAKPOINT */
 935
 936static int ptrace_set_debugreg(struct task_struct *task, unsigned long addr,
 937			       unsigned long data)
 938{
 939#ifdef CONFIG_HAVE_HW_BREAKPOINT
 940	int ret;
 941	struct thread_struct *thread = &(task->thread);
 942	struct perf_event *bp;
 943	struct perf_event_attr attr;
 944#endif /* CONFIG_HAVE_HW_BREAKPOINT */
 945#ifndef CONFIG_PPC_ADV_DEBUG_REGS
 946	struct arch_hw_breakpoint hw_brk;
 947#endif
 948
 949	/* For ppc64 we support one DABR and no IABR's at the moment (ppc64).
 950	 *  For embedded processors we support one DAC and no IAC's at the
 951	 *  moment.
 952	 */
 953	if (addr > 0)
 954		return -EINVAL;
 955
 956	/* The bottom 3 bits in dabr are flags */
 957	if ((data & ~0x7UL) >= TASK_SIZE)
 958		return -EIO;
 959
 960#ifndef CONFIG_PPC_ADV_DEBUG_REGS
 961	/* For processors using DABR (i.e. 970), the bottom 3 bits are flags.
 962	 *  It was assumed, on previous implementations, that 3 bits were
 963	 *  passed together with the data address, fitting the design of the
 964	 *  DABR register, as follows:
 965	 *
 966	 *  bit 0: Read flag
 967	 *  bit 1: Write flag
 968	 *  bit 2: Breakpoint translation
 969	 *
 970	 *  Thus, we use them here as so.
 971	 */
 972
 973	/* Ensure breakpoint translation bit is set */
 974	if (data && !(data & HW_BRK_TYPE_TRANSLATE))
 975		return -EIO;
 976	hw_brk.address = data & (~HW_BRK_TYPE_DABR);
 977	hw_brk.type = (data & HW_BRK_TYPE_DABR) | HW_BRK_TYPE_PRIV_ALL;
 978	hw_brk.len = 8;
 979#ifdef CONFIG_HAVE_HW_BREAKPOINT
 980	bp = thread->ptrace_bps[0];
 981	if ((!data) || !(hw_brk.type & HW_BRK_TYPE_RDWR)) {
 982		if (bp) {
 983			unregister_hw_breakpoint(bp);
 984			thread->ptrace_bps[0] = NULL;
 985		}
 986		return 0;
 987	}
 988	if (bp) {
 989		attr = bp->attr;
 990		attr.bp_addr = hw_brk.address;
 991		arch_bp_generic_fields(hw_brk.type, &attr.bp_type);
 992
 993		/* Enable breakpoint */
 994		attr.disabled = false;
 995
 996		ret =  modify_user_hw_breakpoint(bp, &attr);
 997		if (ret) {
 998			return ret;
 999		}
1000		thread->ptrace_bps[0] = bp;
1001		thread->hw_brk = hw_brk;
1002		return 0;
1003	}
1004
1005	/* Create a new breakpoint request if one doesn't exist already */
1006	hw_breakpoint_init(&attr);
1007	attr.bp_addr = hw_brk.address;
1008	arch_bp_generic_fields(hw_brk.type,
1009			       &attr.bp_type);
1010
1011	thread->ptrace_bps[0] = bp = register_user_hw_breakpoint(&attr,
1012					       ptrace_triggered, NULL, task);
1013	if (IS_ERR(bp)) {
1014		thread->ptrace_bps[0] = NULL;
1015		return PTR_ERR(bp);
1016	}
1017
1018#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1019	task->thread.hw_brk = hw_brk;
1020#else /* CONFIG_PPC_ADV_DEBUG_REGS */
1021	/* As described above, it was assumed 3 bits were passed with the data
1022	 *  address, but we will assume only the mode bits will be passed
1023	 *  as to not cause alignment restrictions for DAC-based processors.
1024	 */
1025
1026	/* DAC's hold the whole address without any mode flags */
1027	task->thread.debug.dac1 = data & ~0x3UL;
1028
1029	if (task->thread.debug.dac1 == 0) {
1030		dbcr_dac(task) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1031		if (!DBCR_ACTIVE_EVENTS(task->thread.debug.dbcr0,
1032					task->thread.debug.dbcr1)) {
1033			task->thread.regs->msr &= ~MSR_DE;
1034			task->thread.debug.dbcr0 &= ~DBCR0_IDM;
1035		}
1036		return 0;
1037	}
1038
1039	/* Read or Write bits must be set */
1040
1041	if (!(data & 0x3UL))
1042		return -EINVAL;
1043
1044	/* Set the Internal Debugging flag (IDM bit 1) for the DBCR0
1045	   register */
1046	task->thread.debug.dbcr0 |= DBCR0_IDM;
1047
1048	/* Check for write and read flags and set DBCR0
1049	   accordingly */
1050	dbcr_dac(task) &= ~(DBCR_DAC1R|DBCR_DAC1W);
1051	if (data & 0x1UL)
1052		dbcr_dac(task) |= DBCR_DAC1R;
1053	if (data & 0x2UL)
1054		dbcr_dac(task) |= DBCR_DAC1W;
1055	task->thread.regs->msr |= MSR_DE;
1056#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
1057	return 0;
1058}
1059
1060/*
1061 * Called by kernel/ptrace.c when detaching..
1062 *
1063 * Make sure single step bits etc are not set.
1064 */
1065void ptrace_disable(struct task_struct *child)
1066{
1067	/* make sure the single step bit is not set. */
1068	user_disable_single_step(child);
1069}
1070
1071#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1072static long set_instruction_bp(struct task_struct *child,
1073			      struct ppc_hw_breakpoint *bp_info)
1074{
1075	int slot;
1076	int slot1_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC1) != 0);
1077	int slot2_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC2) != 0);
1078	int slot3_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC3) != 0);
1079	int slot4_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC4) != 0);
1080
1081	if (dbcr_iac_range(child) & DBCR_IAC12MODE)
1082		slot2_in_use = 1;
1083	if (dbcr_iac_range(child) & DBCR_IAC34MODE)
1084		slot4_in_use = 1;
1085
1086	if (bp_info->addr >= TASK_SIZE)
1087		return -EIO;
1088
1089	if (bp_info->addr_mode != PPC_BREAKPOINT_MODE_EXACT) {
1090
1091		/* Make sure range is valid. */
1092		if (bp_info->addr2 >= TASK_SIZE)
1093			return -EIO;
1094
1095		/* We need a pair of IAC regsisters */
1096		if ((!slot1_in_use) && (!slot2_in_use)) {
1097			slot = 1;
1098			child->thread.debug.iac1 = bp_info->addr;
1099			child->thread.debug.iac2 = bp_info->addr2;
1100			child->thread.debug.dbcr0 |= DBCR0_IAC1;
1101			if (bp_info->addr_mode ==
1102					PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE)
1103				dbcr_iac_range(child) |= DBCR_IAC12X;
1104			else
1105				dbcr_iac_range(child) |= DBCR_IAC12I;
1106#if CONFIG_PPC_ADV_DEBUG_IACS > 2
1107		} else if ((!slot3_in_use) && (!slot4_in_use)) {
1108			slot = 3;
1109			child->thread.debug.iac3 = bp_info->addr;
1110			child->thread.debug.iac4 = bp_info->addr2;
1111			child->thread.debug.dbcr0 |= DBCR0_IAC3;
1112			if (bp_info->addr_mode ==
1113					PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE)
1114				dbcr_iac_range(child) |= DBCR_IAC34X;
1115			else
1116				dbcr_iac_range(child) |= DBCR_IAC34I;
1117#endif
1118		} else
1119			return -ENOSPC;
1120	} else {
1121		/* We only need one.  If possible leave a pair free in
1122		 * case a range is needed later
1123		 */
1124		if (!slot1_in_use) {
1125			/*
1126			 * Don't use iac1 if iac1-iac2 are free and either
1127			 * iac3 or iac4 (but not both) are free
1128			 */
1129			if (slot2_in_use || (slot3_in_use == slot4_in_use)) {
1130				slot = 1;
1131				child->thread.debug.iac1 = bp_info->addr;
1132				child->thread.debug.dbcr0 |= DBCR0_IAC1;
1133				goto out;
1134			}
1135		}
1136		if (!slot2_in_use) {
1137			slot = 2;
1138			child->thread.debug.iac2 = bp_info->addr;
1139			child->thread.debug.dbcr0 |= DBCR0_IAC2;
1140#if CONFIG_PPC_ADV_DEBUG_IACS > 2
1141		} else if (!slot3_in_use) {
1142			slot = 3;
1143			child->thread.debug.iac3 = bp_info->addr;
1144			child->thread.debug.dbcr0 |= DBCR0_IAC3;
1145		} else if (!slot4_in_use) {
1146			slot = 4;
1147			child->thread.debug.iac4 = bp_info->addr;
1148			child->thread.debug.dbcr0 |= DBCR0_IAC4;
1149#endif
1150		} else
1151			return -ENOSPC;
1152	}
1153out:
1154	child->thread.debug.dbcr0 |= DBCR0_IDM;
1155	child->thread.regs->msr |= MSR_DE;
1156
1157	return slot;
1158}
1159
1160static int del_instruction_bp(struct task_struct *child, int slot)
1161{
1162	switch (slot) {
1163	case 1:
1164		if ((child->thread.debug.dbcr0 & DBCR0_IAC1) == 0)
1165			return -ENOENT;
1166
1167		if (dbcr_iac_range(child) & DBCR_IAC12MODE) {
1168			/* address range - clear slots 1 & 2 */
1169			child->thread.debug.iac2 = 0;
1170			dbcr_iac_range(child) &= ~DBCR_IAC12MODE;
1171		}
1172		child->thread.debug.iac1 = 0;
1173		child->thread.debug.dbcr0 &= ~DBCR0_IAC1;
1174		break;
1175	case 2:
1176		if ((child->thread.debug.dbcr0 & DBCR0_IAC2) == 0)
1177			return -ENOENT;
1178
1179		if (dbcr_iac_range(child) & DBCR_IAC12MODE)
1180			/* used in a range */
1181			return -EINVAL;
1182		child->thread.debug.iac2 = 0;
1183		child->thread.debug.dbcr0 &= ~DBCR0_IAC2;
1184		break;
1185#if CONFIG_PPC_ADV_DEBUG_IACS > 2
1186	case 3:
1187		if ((child->thread.debug.dbcr0 & DBCR0_IAC3) == 0)
1188			return -ENOENT;
1189
1190		if (dbcr_iac_range(child) & DBCR_IAC34MODE) {
1191			/* address range - clear slots 3 & 4 */
1192			child->thread.debug.iac4 = 0;
1193			dbcr_iac_range(child) &= ~DBCR_IAC34MODE;
1194		}
1195		child->thread.debug.iac3 = 0;
1196		child->thread.debug.dbcr0 &= ~DBCR0_IAC3;
1197		break;
1198	case 4:
1199		if ((child->thread.debug.dbcr0 & DBCR0_IAC4) == 0)
1200			return -ENOENT;
1201
1202		if (dbcr_iac_range(child) & DBCR_IAC34MODE)
1203			/* Used in a range */
1204			return -EINVAL;
1205		child->thread.debug.iac4 = 0;
1206		child->thread.debug.dbcr0 &= ~DBCR0_IAC4;
1207		break;
1208#endif
1209	default:
1210		return -EINVAL;
1211	}
1212	return 0;
1213}
1214
1215static int set_dac(struct task_struct *child, struct ppc_hw_breakpoint *bp_info)
1216{
1217	int byte_enable =
1218		(bp_info->condition_mode >> PPC_BREAKPOINT_CONDITION_BE_SHIFT)
1219		& 0xf;
1220	int condition_mode =
1221		bp_info->condition_mode & PPC_BREAKPOINT_CONDITION_MODE;
1222	int slot;
1223
1224	if (byte_enable && (condition_mode == 0))
1225		return -EINVAL;
1226
1227	if (bp_info->addr >= TASK_SIZE)
1228		return -EIO;
1229
1230	if ((dbcr_dac(child) & (DBCR_DAC1R | DBCR_DAC1W)) == 0) {
1231		slot = 1;
1232		if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
1233			dbcr_dac(child) |= DBCR_DAC1R;
1234		if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
1235			dbcr_dac(child) |= DBCR_DAC1W;
1236		child->thread.debug.dac1 = (unsigned long)bp_info->addr;
1237#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
1238		if (byte_enable) {
1239			child->thread.debug.dvc1 =
1240				(unsigned long)bp_info->condition_value;
1241			child->thread.debug.dbcr2 |=
1242				((byte_enable << DBCR2_DVC1BE_SHIFT) |
1243				 (condition_mode << DBCR2_DVC1M_SHIFT));
1244		}
1245#endif
1246#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1247	} else if (child->thread.debug.dbcr2 & DBCR2_DAC12MODE) {
1248		/* Both dac1 and dac2 are part of a range */
1249		return -ENOSPC;
1250#endif
1251	} else if ((dbcr_dac(child) & (DBCR_DAC2R | DBCR_DAC2W)) == 0) {
1252		slot = 2;
1253		if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
1254			dbcr_dac(child) |= DBCR_DAC2R;
1255		if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
1256			dbcr_dac(child) |= DBCR_DAC2W;
1257		child->thread.debug.dac2 = (unsigned long)bp_info->addr;
1258#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
1259		if (byte_enable) {
1260			child->thread.debug.dvc2 =
1261				(unsigned long)bp_info->condition_value;
1262			child->thread.debug.dbcr2 |=
1263				((byte_enable << DBCR2_DVC2BE_SHIFT) |
1264				 (condition_mode << DBCR2_DVC2M_SHIFT));
1265		}
1266#endif
1267	} else
1268		return -ENOSPC;
1269	child->thread.debug.dbcr0 |= DBCR0_IDM;
1270	child->thread.regs->msr |= MSR_DE;
1271
1272	return slot + 4;
1273}
1274
1275static int del_dac(struct task_struct *child, int slot)
1276{
1277	if (slot == 1) {
1278		if ((dbcr_dac(child) & (DBCR_DAC1R | DBCR_DAC1W)) == 0)
1279			return -ENOENT;
1280
1281		child->thread.debug.dac1 = 0;
1282		dbcr_dac(child) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1283#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1284		if (child->thread.debug.dbcr2 & DBCR2_DAC12MODE) {
1285			child->thread.debug.dac2 = 0;
1286			child->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
1287		}
1288		child->thread.debug.dbcr2 &= ~(DBCR2_DVC1M | DBCR2_DVC1BE);
1289#endif
1290#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
1291		child->thread.debug.dvc1 = 0;
1292#endif
1293	} else if (slot == 2) {
1294		if ((dbcr_dac(child) & (DBCR_DAC2R | DBCR_DAC2W)) == 0)
1295			return -ENOENT;
1296
1297#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1298		if (child->thread.debug.dbcr2 & DBCR2_DAC12MODE)
1299			/* Part of a range */
1300			return -EINVAL;
1301		child->thread.debug.dbcr2 &= ~(DBCR2_DVC2M | DBCR2_DVC2BE);
1302#endif
1303#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
1304		child->thread.debug.dvc2 = 0;
1305#endif
1306		child->thread.debug.dac2 = 0;
1307		dbcr_dac(child) &= ~(DBCR_DAC2R | DBCR_DAC2W);
1308	} else
1309		return -EINVAL;
1310
1311	return 0;
1312}
1313#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
1314
1315#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1316static int set_dac_range(struct task_struct *child,
1317			 struct ppc_hw_breakpoint *bp_info)
1318{
1319	int mode = bp_info->addr_mode & PPC_BREAKPOINT_MODE_MASK;
1320
1321	/* We don't allow range watchpoints to be used with DVC */
1322	if (bp_info->condition_mode)
1323		return -EINVAL;
1324
1325	/*
1326	 * Best effort to verify the address range.  The user/supervisor bits
1327	 * prevent trapping in kernel space, but let's fail on an obvious bad
1328	 * range.  The simple test on the mask is not fool-proof, and any
1329	 * exclusive range will spill over into kernel space.
1330	 */
1331	if (bp_info->addr >= TASK_SIZE)
1332		return -EIO;
1333	if (mode == PPC_BREAKPOINT_MODE_MASK) {
1334		/*
1335		 * dac2 is a bitmask.  Don't allow a mask that makes a
1336		 * kernel space address from a valid dac1 value
1337		 */
1338		if (~((unsigned long)bp_info->addr2) >= TASK_SIZE)
1339			return -EIO;
1340	} else {
1341		/*
1342		 * For range breakpoints, addr2 must also be a valid address
1343		 */
1344		if (bp_info->addr2 >= TASK_SIZE)
1345			return -EIO;
1346	}
1347
1348	if (child->thread.debug.dbcr0 &
1349	    (DBCR0_DAC1R | DBCR0_DAC1W | DBCR0_DAC2R | DBCR0_DAC2W))
1350		return -ENOSPC;
1351
1352	if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
1353		child->thread.debug.dbcr0 |= (DBCR0_DAC1R | DBCR0_IDM);
1354	if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
1355		child->thread.debug.dbcr0 |= (DBCR0_DAC1W | DBCR0_IDM);
1356	child->thread.debug.dac1 = bp_info->addr;
1357	child->thread.debug.dac2 = bp_info->addr2;
1358	if (mode == PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE)
1359		child->thread.debug.dbcr2  |= DBCR2_DAC12M;
1360	else if (mode == PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE)
1361		child->thread.debug.dbcr2  |= DBCR2_DAC12MX;
1362	else	/* PPC_BREAKPOINT_MODE_MASK */
1363		child->thread.debug.dbcr2  |= DBCR2_DAC12MM;
1364	child->thread.regs->msr |= MSR_DE;
1365
1366	return 5;
1367}
1368#endif /* CONFIG_PPC_ADV_DEBUG_DAC_RANGE */
1369
1370static long ppc_set_hwdebug(struct task_struct *child,
1371		     struct ppc_hw_breakpoint *bp_info)
1372{
1373#ifdef CONFIG_HAVE_HW_BREAKPOINT
1374	int len = 0;
1375	struct thread_struct *thread = &(child->thread);
1376	struct perf_event *bp;
1377	struct perf_event_attr attr;
1378#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1379#ifndef CONFIG_PPC_ADV_DEBUG_REGS
1380	struct arch_hw_breakpoint brk;
1381#endif
1382
1383	if (bp_info->version != 1)
1384		return -ENOTSUPP;
1385#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1386	/*
1387	 * Check for invalid flags and combinations
1388	 */
1389	if ((bp_info->trigger_type == 0) ||
1390	    (bp_info->trigger_type & ~(PPC_BREAKPOINT_TRIGGER_EXECUTE |
1391				       PPC_BREAKPOINT_TRIGGER_RW)) ||
1392	    (bp_info->addr_mode & ~PPC_BREAKPOINT_MODE_MASK) ||
1393	    (bp_info->condition_mode &
1394	     ~(PPC_BREAKPOINT_CONDITION_MODE |
1395	       PPC_BREAKPOINT_CONDITION_BE_ALL)))
1396		return -EINVAL;
1397#if CONFIG_PPC_ADV_DEBUG_DVCS == 0
1398	if (bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE)
1399		return -EINVAL;
1400#endif
1401
1402	if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_EXECUTE) {
1403		if ((bp_info->trigger_type != PPC_BREAKPOINT_TRIGGER_EXECUTE) ||
1404		    (bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE))
1405			return -EINVAL;
1406		return set_instruction_bp(child, bp_info);
1407	}
1408	if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_EXACT)
1409		return set_dac(child, bp_info);
1410
1411#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1412	return set_dac_range(child, bp_info);
1413#else
1414	return -EINVAL;
1415#endif
1416#else /* !CONFIG_PPC_ADV_DEBUG_DVCS */
1417	/*
1418	 * We only support one data breakpoint
1419	 */
1420	if ((bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_RW) == 0 ||
1421	    (bp_info->trigger_type & ~PPC_BREAKPOINT_TRIGGER_RW) != 0 ||
1422	    bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE)
1423		return -EINVAL;
1424
1425	if ((unsigned long)bp_info->addr >= TASK_SIZE)
1426		return -EIO;
1427
1428	brk.address = bp_info->addr & ~7UL;
1429	brk.type = HW_BRK_TYPE_TRANSLATE;
1430	brk.len = 8;
1431	if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
1432		brk.type |= HW_BRK_TYPE_READ;
1433	if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
1434		brk.type |= HW_BRK_TYPE_WRITE;
1435#ifdef CONFIG_HAVE_HW_BREAKPOINT
1436	/*
1437	 * Check if the request is for 'range' breakpoints. We can
1438	 * support it if range < 8 bytes.
1439	 */
1440	if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE)
1441		len = bp_info->addr2 - bp_info->addr;
1442	else if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_EXACT)
1443		len = 1;
1444	else
1445		return -EINVAL;
1446	bp = thread->ptrace_bps[0];
1447	if (bp)
1448		return -ENOSPC;
1449
1450	/* Create a new breakpoint request if one doesn't exist already */
1451	hw_breakpoint_init(&attr);
1452	attr.bp_addr = (unsigned long)bp_info->addr & ~HW_BREAKPOINT_ALIGN;
1453	attr.bp_len = len;
1454	arch_bp_generic_fields(brk.type, &attr.bp_type);
1455
1456	thread->ptrace_bps[0] = bp = register_user_hw_breakpoint(&attr,
1457					       ptrace_triggered, NULL, child);
1458	if (IS_ERR(bp)) {
1459		thread->ptrace_bps[0] = NULL;
1460		return PTR_ERR(bp);
1461	}
1462
1463	return 1;
1464#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1465
1466	if (bp_info->addr_mode != PPC_BREAKPOINT_MODE_EXACT)
1467		return -EINVAL;
1468
1469	if (child->thread.hw_brk.address)
1470		return -ENOSPC;
1471
1472	child->thread.hw_brk = brk;
1473
1474	return 1;
1475#endif /* !CONFIG_PPC_ADV_DEBUG_DVCS */
1476}
1477
1478static long ppc_del_hwdebug(struct task_struct *child, long data)
1479{
1480#ifdef CONFIG_HAVE_HW_BREAKPOINT
1481	int ret = 0;
1482	struct thread_struct *thread = &(child->thread);
1483	struct perf_event *bp;
1484#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1485#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1486	int rc;
1487
1488	if (data <= 4)
1489		rc = del_instruction_bp(child, (int)data);
1490	else
1491		rc = del_dac(child, (int)data - 4);
1492
1493	if (!rc) {
1494		if (!DBCR_ACTIVE_EVENTS(child->thread.debug.dbcr0,
1495					child->thread.debug.dbcr1)) {
1496			child->thread.debug.dbcr0 &= ~DBCR0_IDM;
1497			child->thread.regs->msr &= ~MSR_DE;
1498		}
1499	}
1500	return rc;
1501#else
1502	if (data != 1)
1503		return -EINVAL;
1504
1505#ifdef CONFIG_HAVE_HW_BREAKPOINT
1506	bp = thread->ptrace_bps[0];
1507	if (bp) {
1508		unregister_hw_breakpoint(bp);
1509		thread->ptrace_bps[0] = NULL;
1510	} else
1511		ret = -ENOENT;
1512	return ret;
1513#else /* CONFIG_HAVE_HW_BREAKPOINT */
1514	if (child->thread.hw_brk.address == 0)
1515		return -ENOENT;
1516
1517	child->thread.hw_brk.address = 0;
1518	child->thread.hw_brk.type = 0;
1519#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1520
1521	return 0;
1522#endif
1523}
1524
1525long arch_ptrace(struct task_struct *child, long request,
1526		 unsigned long addr, unsigned long data)
1527{
1528	int ret = -EPERM;
1529	void __user *datavp = (void __user *) data;
1530	unsigned long __user *datalp = datavp;
1531
1532	switch (request) {
1533	/* read the word at location addr in the USER area. */
1534	case PTRACE_PEEKUSR: {
1535		unsigned long index, tmp;
1536
1537		ret = -EIO;
1538		/* convert to index and check */
1539#ifdef CONFIG_PPC32
1540		index = addr >> 2;
1541		if ((addr & 3) || (index > PT_FPSCR)
1542		    || (child->thread.regs == NULL))
1543#else
1544		index = addr >> 3;
1545		if ((addr & 7) || (index > PT_FPSCR))
1546#endif
1547			break;
1548
1549		CHECK_FULL_REGS(child->thread.regs);
1550		if (index < PT_FPR0) {
1551			ret = ptrace_get_reg(child, (int) index, &tmp);
1552			if (ret)
1553				break;
1554		} else {
1555			unsigned int fpidx = index - PT_FPR0;
1556
1557			flush_fp_to_thread(child);
1558			if (fpidx < (PT_FPSCR - PT_FPR0))
1559				memcpy(&tmp, &child->thread.TS_FPR(fpidx),
1560				       sizeof(long));
1561			else
1562				tmp = child->thread.fp_state.fpscr;
1563		}
1564		ret = put_user(tmp, datalp);
1565		break;
1566	}
1567
1568	/* write the word at location addr in the USER area */
1569	case PTRACE_POKEUSR: {
1570		unsigned long index;
1571
1572		ret = -EIO;
1573		/* convert to index and check */
1574#ifdef CONFIG_PPC32
1575		index = addr >> 2;
1576		if ((addr & 3) || (index > PT_FPSCR)
1577		    || (child->thread.regs == NULL))
1578#else
1579		index = addr >> 3;
1580		if ((addr & 7) || (index > PT_FPSCR))
1581#endif
1582			break;
1583
1584		CHECK_FULL_REGS(child->thread.regs);
1585		if (index < PT_FPR0) {
1586			ret = ptrace_put_reg(child, index, data);
1587		} else {
1588			unsigned int fpidx = index - PT_FPR0;
1589
1590			flush_fp_to_thread(child);
1591			if (fpidx < (PT_FPSCR - PT_FPR0))
1592				memcpy(&child->thread.TS_FPR(fpidx), &data,
1593				       sizeof(long));
1594			else
1595				child->thread.fp_state.fpscr = data;
1596			ret = 0;
1597		}
1598		break;
1599	}
1600
1601	case PPC_PTRACE_GETHWDBGINFO: {
1602		struct ppc_debug_info dbginfo;
1603
1604		dbginfo.version = 1;
1605#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1606		dbginfo.num_instruction_bps = CONFIG_PPC_ADV_DEBUG_IACS;
1607		dbginfo.num_data_bps = CONFIG_PPC_ADV_DEBUG_DACS;
1608		dbginfo.num_condition_regs = CONFIG_PPC_ADV_DEBUG_DVCS;
1609		dbginfo.data_bp_alignment = 4;
1610		dbginfo.sizeof_condition = 4;
1611		dbginfo.features = PPC_DEBUG_FEATURE_INSN_BP_RANGE |
1612				   PPC_DEBUG_FEATURE_INSN_BP_MASK;
1613#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1614		dbginfo.features |=
1615				   PPC_DEBUG_FEATURE_DATA_BP_RANGE |
1616				   PPC_DEBUG_FEATURE_DATA_BP_MASK;
1617#endif
1618#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
1619		dbginfo.num_instruction_bps = 0;
1620		dbginfo.num_data_bps = 1;
1621		dbginfo.num_condition_regs = 0;
1622#ifdef CONFIG_PPC64
1623		dbginfo.data_bp_alignment = 8;
1624#else
1625		dbginfo.data_bp_alignment = 4;
1626#endif
1627		dbginfo.sizeof_condition = 0;
1628#ifdef CONFIG_HAVE_HW_BREAKPOINT
1629		dbginfo.features = PPC_DEBUG_FEATURE_DATA_BP_RANGE;
1630		if (cpu_has_feature(CPU_FTR_DAWR))
1631			dbginfo.features |= PPC_DEBUG_FEATURE_DATA_BP_DAWR;
1632#else
1633		dbginfo.features = 0;
1634#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1635#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
1636
1637		if (!access_ok(VERIFY_WRITE, datavp,
1638			       sizeof(struct ppc_debug_info)))
1639			return -EFAULT;
1640		ret = __copy_to_user(datavp, &dbginfo,
1641				     sizeof(struct ppc_debug_info)) ?
1642		      -EFAULT : 0;
1643		break;
1644	}
1645
1646	case PPC_PTRACE_SETHWDEBUG: {
1647		struct ppc_hw_breakpoint bp_info;
1648
1649		if (!access_ok(VERIFY_READ, datavp,
1650			       sizeof(struct ppc_hw_breakpoint)))
1651			return -EFAULT;
1652		ret = __copy_from_user(&bp_info, datavp,
1653				       sizeof(struct ppc_hw_breakpoint)) ?
1654		      -EFAULT : 0;
1655		if (!ret)
1656			ret = ppc_set_hwdebug(child, &bp_info);
1657		break;
1658	}
1659
1660	case PPC_PTRACE_DELHWDEBUG: {
1661		ret = ppc_del_hwdebug(child, data);
1662		break;
1663	}
1664
1665	case PTRACE_GET_DEBUGREG: {
1666#ifndef CONFIG_PPC_ADV_DEBUG_REGS
1667		unsigned long dabr_fake;
1668#endif
1669		ret = -EINVAL;
1670		/* We only support one DABR and no IABRS at the moment */
1671		if (addr > 0)
1672			break;
1673#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1674		ret = put_user(child->thread.debug.dac1, datalp);
1675#else
1676		dabr_fake = ((child->thread.hw_brk.address & (~HW_BRK_TYPE_DABR)) |
1677			     (child->thread.hw_brk.type & HW_BRK_TYPE_DABR));
1678		ret = put_user(dabr_fake, datalp);
1679#endif
1680		break;
1681	}
1682
1683	case PTRACE_SET_DEBUGREG:
1684		ret = ptrace_set_debugreg(child, addr, data);
1685		break;
1686
1687#ifdef CONFIG_PPC64
1688	case PTRACE_GETREGS64:
1689#endif
1690	case PTRACE_GETREGS:	/* Get all pt_regs from the child. */
1691		return copy_regset_to_user(child, &user_ppc_native_view,
1692					   REGSET_GPR,
1693					   0, sizeof(struct pt_regs),
1694					   datavp);
1695
1696#ifdef CONFIG_PPC64
1697	case PTRACE_SETREGS64:
1698#endif
1699	case PTRACE_SETREGS:	/* Set all gp regs in the child. */
1700		return copy_regset_from_user(child, &user_ppc_native_view,
1701					     REGSET_GPR,
1702					     0, sizeof(struct pt_regs),
1703					     datavp);
1704
1705	case PTRACE_GETFPREGS: /* Get the child FPU state (FPR0...31 + FPSCR) */
1706		return copy_regset_to_user(child, &user_ppc_native_view,
1707					   REGSET_FPR,
1708					   0, sizeof(elf_fpregset_t),
1709					   datavp);
1710
1711	case PTRACE_SETFPREGS: /* Set the child FPU state (FPR0...31 + FPSCR) */
1712		return copy_regset_from_user(child, &user_ppc_native_view,
1713					     REGSET_FPR,
1714					     0, sizeof(elf_fpregset_t),
1715					     datavp);
1716
1717#ifdef CONFIG_ALTIVEC
1718	case PTRACE_GETVRREGS:
1719		return copy_regset_to_user(child, &user_ppc_native_view,
1720					   REGSET_VMX,
1721					   0, (33 * sizeof(vector128) +
1722					       sizeof(u32)),
1723					   datavp);
1724
1725	case PTRACE_SETVRREGS:
1726		return copy_regset_from_user(child, &user_ppc_native_view,
1727					     REGSET_VMX,
1728					     0, (33 * sizeof(vector128) +
1729						 sizeof(u32)),
1730					     datavp);
1731#endif
1732#ifdef CONFIG_VSX
1733	case PTRACE_GETVSRREGS:
1734		return copy_regset_to_user(child, &user_ppc_native_view,
1735					   REGSET_VSX,
1736					   0, 32 * sizeof(double),
1737					   datavp);
1738
1739	case PTRACE_SETVSRREGS:
1740		return copy_regset_from_user(child, &user_ppc_native_view,
1741					     REGSET_VSX,
1742					     0, 32 * sizeof(double),
1743					     datavp);
1744#endif
1745#ifdef CONFIG_SPE
1746	case PTRACE_GETEVRREGS:
1747		/* Get the child spe register state. */
1748		return copy_regset_to_user(child, &user_ppc_native_view,
1749					   REGSET_SPE, 0, 35 * sizeof(u32),
1750					   datavp);
1751
1752	case PTRACE_SETEVRREGS:
1753		/* Set the child spe register state. */
1754		return copy_regset_from_user(child, &user_ppc_native_view,
1755					     REGSET_SPE, 0, 35 * sizeof(u32),
1756					     datavp);
1757#endif
1758
1759	default:
1760		ret = ptrace_request(child, request, addr, data);
1761		break;
1762	}
1763	return ret;
1764}
1765
1766#ifdef CONFIG_SECCOMP
1767static int do_seccomp(struct pt_regs *regs)
1768{
1769	if (!test_thread_flag(TIF_SECCOMP))
1770		return 0;
1771
1772	/*
1773	 * The ABI we present to seccomp tracers is that r3 contains
1774	 * the syscall return value and orig_gpr3 contains the first
1775	 * syscall parameter. This is different to the ptrace ABI where
1776	 * both r3 and orig_gpr3 contain the first syscall parameter.
1777	 */
1778	regs->gpr[3] = -ENOSYS;
1779
1780	/*
1781	 * We use the __ version here because we have already checked
1782	 * TIF_SECCOMP. If this fails, there is nothing left to do, we
1783	 * have already loaded -ENOSYS into r3, or seccomp has put
1784	 * something else in r3 (via SECCOMP_RET_ERRNO/TRACE).
1785	 */
1786	if (__secure_computing())
1787		return -1;
1788
1789	/*
1790	 * The syscall was allowed by seccomp, restore the register
1791	 * state to what ptrace and audit expect.
1792	 * Note that we use orig_gpr3, which means a seccomp tracer can
1793	 * modify the first syscall parameter (in orig_gpr3) and also
1794	 * allow the syscall to proceed.
1795	 */
1796	regs->gpr[3] = regs->orig_gpr3;
1797
1798	return 0;
1799}
1800#else
1801static inline int do_seccomp(struct pt_regs *regs) { return 0; }
1802#endif /* CONFIG_SECCOMP */
1803
1804/**
1805 * do_syscall_trace_enter() - Do syscall tracing on kernel entry.
1806 * @regs: the pt_regs of the task to trace (current)
1807 *
1808 * Performs various types of tracing on syscall entry. This includes seccomp,
1809 * ptrace, syscall tracepoints and audit.
1810 *
1811 * The pt_regs are potentially visible to userspace via ptrace, so their
1812 * contents is ABI.
1813 *
1814 * One or more of the tracers may modify the contents of pt_regs, in particular
1815 * to modify arguments or even the syscall number itself.
1816 *
1817 * It's also possible that a tracer can choose to reject the system call. In
1818 * that case this function will return an illegal syscall number, and will put
1819 * an appropriate return value in regs->r3.
1820 *
1821 * Return: the (possibly changed) syscall number.
1822 */
1823long do_syscall_trace_enter(struct pt_regs *regs)
1824{
1825	bool abort = false;
1826
1827	user_exit();
1828
1829	if (do_seccomp(regs))
1830		return -1;
1831
1832	if (test_thread_flag(TIF_SYSCALL_TRACE)) {
1833		/*
1834		 * The tracer may decide to abort the syscall, if so tracehook
1835		 * will return !0. Note that the tracer may also just change
1836		 * regs->gpr[0] to an invalid syscall number, that is handled
1837		 * below on the exit path.
1838		 */
1839		abort = tracehook_report_syscall_entry(regs) != 0;
1840	}
1841
1842	if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
1843		trace_sys_enter(regs, regs->gpr[0]);
1844
1845#ifdef CONFIG_PPC64
1846	if (!is_32bit_task())
1847		audit_syscall_entry(regs->gpr[0], regs->gpr[3], regs->gpr[4],
1848				    regs->gpr[5], regs->gpr[6]);
1849	else
1850#endif
1851		audit_syscall_entry(regs->gpr[0],
1852				    regs->gpr[3] & 0xffffffff,
1853				    regs->gpr[4] & 0xffffffff,
1854				    regs->gpr[5] & 0xffffffff,
1855				    regs->gpr[6] & 0xffffffff);
1856
1857	if (abort || regs->gpr[0] >= NR_syscalls) {
1858		/*
1859		 * If we are aborting explicitly, or if the syscall number is
1860		 * now invalid, set the return value to -ENOSYS.
1861		 */
1862		regs->gpr[3] = -ENOSYS;
1863		return -1;
1864	}
1865
1866	/* Return the possibly modified but valid syscall number */
1867	return regs->gpr[0];
1868}
1869
1870void do_syscall_trace_leave(struct pt_regs *regs)
1871{
1872	int step;
1873
1874	audit_syscall_exit(regs);
1875
1876	if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
1877		trace_sys_exit(regs, regs->result);
1878
1879	step = test_thread_flag(TIF_SINGLESTEP);
1880	if (step || test_thread_flag(TIF_SYSCALL_TRACE))
1881		tracehook_report_syscall_exit(regs, step);
1882
1883	user_enter();
1884}