Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
  1/*
  2 * File:	mca_asm.h
  3 * Purpose:	Machine check handling specific defines
  4 *
  5 * Copyright (C) 1999 Silicon Graphics, Inc.
  6 * Copyright (C) Vijay Chander <vijay@engr.sgi.com>
  7 * Copyright (C) Srinivasa Thirumalachar <sprasad@engr.sgi.com>
  8 * Copyright (C) 2000 Hewlett-Packard Co.
  9 * Copyright (C) 2000 David Mosberger-Tang <davidm@hpl.hp.com>
 10 * Copyright (C) 2002 Intel Corp.
 11 * Copyright (C) 2002 Jenna Hall <jenna.s.hall@intel.com>
 12 * Copyright (C) 2005 Silicon Graphics, Inc
 13 * Copyright (C) 2005 Keith Owens <kaos@sgi.com>
 14 */
 15#ifndef _ASM_IA64_MCA_ASM_H
 16#define _ASM_IA64_MCA_ASM_H
 17
 18#include <asm/percpu.h>
 19
 20#define PSR_IC		13
 21#define PSR_I		14
 22#define	PSR_DT		17
 23#define PSR_RT		27
 24#define PSR_MC		35
 25#define PSR_IT		36
 26#define PSR_BN		44
 27
 28/*
 29 * This macro converts a instruction virtual address to a physical address
 30 * Right now for simulation purposes the virtual addresses are
 31 * direct mapped to physical addresses.
 32 *	1. Lop off bits 61 thru 63 in the virtual address
 33 */
 34#define INST_VA_TO_PA(addr)							\
 35	dep	addr	= 0, addr, 61, 3
 36/*
 37 * This macro converts a data virtual address to a physical address
 38 * Right now for simulation purposes the virtual addresses are
 39 * direct mapped to physical addresses.
 40 *	1. Lop off bits 61 thru 63 in the virtual address
 41 */
 42#define DATA_VA_TO_PA(addr)							\
 43	tpa	addr	= addr
 44/*
 45 * This macro converts a data physical address to a virtual address
 46 * Right now for simulation purposes the virtual addresses are
 47 * direct mapped to physical addresses.
 48 *	1. Put 0x7 in bits 61 thru 63.
 49 */
 50#define DATA_PA_TO_VA(addr,temp)							\
 51	mov	temp	= 0x7	;;							\
 52	dep	addr	= temp, addr, 61, 3
 53
 54#define GET_THIS_PADDR(reg, var)		\
 55	mov	reg = IA64_KR(PER_CPU_DATA);;	\
 56        addl	reg = THIS_CPU(var), reg
 57
 58/*
 59 * This macro jumps to the instruction at the given virtual address
 60 * and starts execution in physical mode with all the address
 61 * translations turned off.
 62 *	1.	Save the current psr
 63 *	2.	Make sure that all the upper 32 bits are off
 64 *
 65 *	3.	Clear the interrupt enable and interrupt state collection bits
 66 *		in the psr before updating the ipsr and iip.
 67 *
 68 *	4.	Turn off the instruction, data and rse translation bits of the psr
 69 *		and store the new value into ipsr
 70 *		Also make sure that the interrupts are disabled.
 71 *		Ensure that we are in little endian mode.
 72 *		[psr.{rt, it, dt, i, be} = 0]
 73 *
 74 *	5.	Get the physical address corresponding to the virtual address
 75 *		of the next instruction bundle and put it in iip.
 76 *		(Using magic numbers 24 and 40 in the deposint instruction since
 77 *		 the IA64_SDK code directly maps to lower 24bits as physical address
 78 *		 from a virtual address).
 79 *
 80 *	6.	Do an rfi to move the values from ipsr to psr and iip to ip.
 81 */
 82#define  PHYSICAL_MODE_ENTER(temp1, temp2, start_addr, old_psr)				\
 83	mov	old_psr = psr;								\
 84	;;										\
 85	dep	old_psr = 0, old_psr, 32, 32;						\
 86											\
 87	mov	ar.rsc = 0 ;								\
 88	;;										\
 89	srlz.d;										\
 90	mov	temp2 = ar.bspstore;							\
 91	;;										\
 92	DATA_VA_TO_PA(temp2);								\
 93	;;										\
 94	mov	temp1 = ar.rnat;							\
 95	;;										\
 96	mov	ar.bspstore = temp2;							\
 97	;;										\
 98	mov	ar.rnat = temp1;							\
 99	mov	temp1 = psr;								\
100	mov	temp2 = psr;								\
101	;;										\
102											\
103	dep	temp2 = 0, temp2, PSR_IC, 2;						\
104	;;										\
105	mov	psr.l = temp2;								\
106	;;										\
107	srlz.d;										\
108	dep	temp1 = 0, temp1, 32, 32;						\
109	;;										\
110	dep	temp1 = 0, temp1, PSR_IT, 1;						\
111	;;										\
112	dep	temp1 = 0, temp1, PSR_DT, 1;						\
113	;;										\
114	dep	temp1 = 0, temp1, PSR_RT, 1;						\
115	;;										\
116	dep	temp1 = 0, temp1, PSR_I, 1;						\
117	;;										\
118	dep	temp1 = 0, temp1, PSR_IC, 1;						\
119	;;										\
120	dep	temp1 = -1, temp1, PSR_MC, 1;						\
121	;;										\
122	mov	cr.ipsr = temp1;							\
123	;;										\
124	LOAD_PHYSICAL(p0, temp2, start_addr);						\
125	;;										\
126	mov	cr.iip = temp2;								\
127	mov	cr.ifs = r0;								\
128	DATA_VA_TO_PA(sp);								\
129	DATA_VA_TO_PA(gp);								\
130	;;										\
131	srlz.i;										\
132	;;										\
133	nop	1;									\
134	nop	2;									\
135	nop	1;									\
136	nop	2;									\
137	rfi;										\
138	;;
139
140/*
141 * This macro jumps to the instruction at the given virtual address
142 * and starts execution in virtual mode with all the address
143 * translations turned on.
144 *	1.	Get the old saved psr
145 *
146 *	2.	Clear the interrupt state collection bit in the current psr.
147 *
148 *	3.	Set the instruction translation bit back in the old psr
149 *		Note we have to do this since we are right now saving only the
150 *		lower 32-bits of old psr.(Also the old psr has the data and
151 *		rse translation bits on)
152 *
153 *	4.	Set ipsr to this old_psr with "it" bit set and "bn" = 1.
154 *
155 *	5.	Reset the current thread pointer (r13).
156 *
157 *	6.	Set iip to the virtual address of the next instruction bundle.
158 *
159 *	7.	Do an rfi to move ipsr to psr and iip to ip.
160 */
161
162#define VIRTUAL_MODE_ENTER(temp1, temp2, start_addr, old_psr)	\
163	mov	temp2 = psr;					\
164	;;							\
165	mov	old_psr = temp2;				\
166	;;							\
167	dep	temp2 = 0, temp2, PSR_IC, 2;			\
168	;;							\
169	mov	psr.l = temp2;					\
170	mov	ar.rsc = 0;					\
171	;;							\
172	srlz.d;							\
173	mov	r13 = ar.k6;					\
174	mov	temp2 = ar.bspstore;				\
175	;;							\
176	DATA_PA_TO_VA(temp2,temp1);				\
177	;;							\
178	mov	temp1 = ar.rnat;				\
179	;;							\
180	mov	ar.bspstore = temp2;				\
181	;;							\
182	mov	ar.rnat = temp1;				\
183	;;							\
184	mov	temp1 = old_psr;				\
185	;;							\
186	mov	temp2 = 1;					\
187	;;							\
188	dep	temp1 = temp2, temp1, PSR_IC, 1;		\
189	;;							\
190	dep	temp1 = temp2, temp1, PSR_IT, 1;		\
191	;;							\
192	dep	temp1 = temp2, temp1, PSR_DT, 1;		\
193	;;							\
194	dep	temp1 = temp2, temp1, PSR_RT, 1;		\
195	;;							\
196	dep	temp1 = temp2, temp1, PSR_BN, 1;		\
197	;;							\
198								\
199	mov     cr.ipsr = temp1;				\
200	movl	temp2 = start_addr;				\
201	;;							\
202	mov	cr.iip = temp2;					\
203	movl	gp = __gp					\
204	;;							\
205	DATA_PA_TO_VA(sp, temp1);				\
206	srlz.i;							\
207	;;							\
208	nop	1;						\
209	nop	2;						\
210	nop	1;						\
211	rfi							\
212	;;
213
214/*
215 * The MCA and INIT stacks in struct ia64_mca_cpu look like normal kernel
216 * stacks, except that the SAL/OS state and a switch_stack are stored near the
217 * top of the MCA/INIT stack.  To support concurrent entry to MCA or INIT, as
218 * well as MCA over INIT, each event needs its own SAL/OS state.  All entries
219 * are 16 byte aligned.
220 *
221 *      +---------------------------+
222 *      |          pt_regs          |
223 *      +---------------------------+
224 *      |        switch_stack       |
225 *      +---------------------------+
226 *      |        SAL/OS state       |
227 *      +---------------------------+
228 *      |    16 byte scratch area   |
229 *      +---------------------------+ <-------- SP at start of C MCA handler
230 *      |           .....           |
231 *      +---------------------------+
232 *      | RBS for MCA/INIT handler  |
233 *      +---------------------------+
234 *      | struct task for MCA/INIT  |
235 *      +---------------------------+ <-------- Bottom of MCA/INIT stack
236 */
237
238#define ALIGN16(x)			((x)&~15)
239#define MCA_PT_REGS_OFFSET		ALIGN16(KERNEL_STACK_SIZE-IA64_PT_REGS_SIZE)
240#define MCA_SWITCH_STACK_OFFSET		ALIGN16(MCA_PT_REGS_OFFSET-IA64_SWITCH_STACK_SIZE)
241#define MCA_SOS_OFFSET			ALIGN16(MCA_SWITCH_STACK_OFFSET-IA64_SAL_OS_STATE_SIZE)
242#define MCA_SP_OFFSET			ALIGN16(MCA_SOS_OFFSET-16)
243
244#endif /* _ASM_IA64_MCA_ASM_H */