Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * linux/net/sunrpc/svc.c
   4 *
   5 * High-level RPC service routines
   6 *
   7 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
   8 *
   9 * Multiple threads pools and NUMAisation
  10 * Copyright (c) 2006 Silicon Graphics, Inc.
  11 * by Greg Banks <gnb@melbourne.sgi.com>
  12 */
  13
  14#include <linux/linkage.h>
  15#include <linux/sched/signal.h>
  16#include <linux/errno.h>
  17#include <linux/net.h>
  18#include <linux/in.h>
  19#include <linux/mm.h>
  20#include <linux/interrupt.h>
  21#include <linux/module.h>
  22#include <linux/kthread.h>
  23#include <linux/slab.h>
  24
  25#include <linux/sunrpc/types.h>
  26#include <linux/sunrpc/xdr.h>
  27#include <linux/sunrpc/stats.h>
  28#include <linux/sunrpc/svcsock.h>
  29#include <linux/sunrpc/clnt.h>
  30#include <linux/sunrpc/bc_xprt.h>
  31
  32#include <trace/events/sunrpc.h>
  33
  34#include "fail.h"
  35
  36#define RPCDBG_FACILITY	RPCDBG_SVCDSP
  37
  38static void svc_unregister(const struct svc_serv *serv, struct net *net);
  39
  40#define SVC_POOL_DEFAULT	SVC_POOL_GLOBAL
  41
  42/*
  43 * Mode for mapping cpus to pools.
  44 */
  45enum {
  46	SVC_POOL_AUTO = -1,	/* choose one of the others */
  47	SVC_POOL_GLOBAL,	/* no mapping, just a single global pool
  48				 * (legacy & UP mode) */
  49	SVC_POOL_PERCPU,	/* one pool per cpu */
  50	SVC_POOL_PERNODE	/* one pool per numa node */
  51};
  52
  53/*
  54 * Structure for mapping cpus to pools and vice versa.
  55 * Setup once during sunrpc initialisation.
  56 */
  57
  58struct svc_pool_map {
  59	int count;			/* How many svc_servs use us */
  60	int mode;			/* Note: int not enum to avoid
  61					 * warnings about "enumeration value
  62					 * not handled in switch" */
  63	unsigned int npools;
  64	unsigned int *pool_to;		/* maps pool id to cpu or node */
  65	unsigned int *to_pool;		/* maps cpu or node to pool id */
  66};
  67
  68static struct svc_pool_map svc_pool_map = {
  69	.mode = SVC_POOL_DEFAULT
  70};
 
  71
  72static DEFINE_MUTEX(svc_pool_map_mutex);/* protects svc_pool_map.count only */
  73
  74static int
  75param_set_pool_mode(const char *val, const struct kernel_param *kp)
  76{
  77	int *ip = (int *)kp->arg;
  78	struct svc_pool_map *m = &svc_pool_map;
  79	int err;
  80
  81	mutex_lock(&svc_pool_map_mutex);
  82
  83	err = -EBUSY;
  84	if (m->count)
  85		goto out;
  86
  87	err = 0;
  88	if (!strncmp(val, "auto", 4))
  89		*ip = SVC_POOL_AUTO;
  90	else if (!strncmp(val, "global", 6))
  91		*ip = SVC_POOL_GLOBAL;
  92	else if (!strncmp(val, "percpu", 6))
  93		*ip = SVC_POOL_PERCPU;
  94	else if (!strncmp(val, "pernode", 7))
  95		*ip = SVC_POOL_PERNODE;
  96	else
  97		err = -EINVAL;
  98
  99out:
 100	mutex_unlock(&svc_pool_map_mutex);
 101	return err;
 102}
 103
 104static int
 105param_get_pool_mode(char *buf, const struct kernel_param *kp)
 106{
 107	int *ip = (int *)kp->arg;
 108
 109	switch (*ip)
 110	{
 111	case SVC_POOL_AUTO:
 112		return sysfs_emit(buf, "auto\n");
 113	case SVC_POOL_GLOBAL:
 114		return sysfs_emit(buf, "global\n");
 115	case SVC_POOL_PERCPU:
 116		return sysfs_emit(buf, "percpu\n");
 117	case SVC_POOL_PERNODE:
 118		return sysfs_emit(buf, "pernode\n");
 119	default:
 120		return sysfs_emit(buf, "%d\n", *ip);
 121	}
 122}
 123
 124module_param_call(pool_mode, param_set_pool_mode, param_get_pool_mode,
 125		 &svc_pool_map.mode, 0644);
 126
 127/*
 128 * Detect best pool mapping mode heuristically,
 129 * according to the machine's topology.
 130 */
 131static int
 132svc_pool_map_choose_mode(void)
 133{
 134	unsigned int node;
 135
 136	if (nr_online_nodes > 1) {
 137		/*
 138		 * Actually have multiple NUMA nodes,
 139		 * so split pools on NUMA node boundaries
 140		 */
 141		return SVC_POOL_PERNODE;
 142	}
 143
 144	node = first_online_node;
 145	if (nr_cpus_node(node) > 2) {
 146		/*
 147		 * Non-trivial SMP, or CONFIG_NUMA on
 148		 * non-NUMA hardware, e.g. with a generic
 149		 * x86_64 kernel on Xeons.  In this case we
 150		 * want to divide the pools on cpu boundaries.
 151		 */
 152		return SVC_POOL_PERCPU;
 153	}
 154
 155	/* default: one global pool */
 156	return SVC_POOL_GLOBAL;
 157}
 158
 159/*
 160 * Allocate the to_pool[] and pool_to[] arrays.
 161 * Returns 0 on success or an errno.
 162 */
 163static int
 164svc_pool_map_alloc_arrays(struct svc_pool_map *m, unsigned int maxpools)
 165{
 166	m->to_pool = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL);
 167	if (!m->to_pool)
 168		goto fail;
 169	m->pool_to = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL);
 170	if (!m->pool_to)
 171		goto fail_free;
 172
 173	return 0;
 174
 175fail_free:
 176	kfree(m->to_pool);
 177	m->to_pool = NULL;
 178fail:
 179	return -ENOMEM;
 180}
 181
 182/*
 183 * Initialise the pool map for SVC_POOL_PERCPU mode.
 184 * Returns number of pools or <0 on error.
 185 */
 186static int
 187svc_pool_map_init_percpu(struct svc_pool_map *m)
 188{
 189	unsigned int maxpools = nr_cpu_ids;
 190	unsigned int pidx = 0;
 191	unsigned int cpu;
 192	int err;
 193
 194	err = svc_pool_map_alloc_arrays(m, maxpools);
 195	if (err)
 196		return err;
 197
 198	for_each_online_cpu(cpu) {
 199		BUG_ON(pidx >= maxpools);
 200		m->to_pool[cpu] = pidx;
 201		m->pool_to[pidx] = cpu;
 202		pidx++;
 203	}
 204	/* cpus brought online later all get mapped to pool0, sorry */
 205
 206	return pidx;
 207};
 208
 209
 210/*
 211 * Initialise the pool map for SVC_POOL_PERNODE mode.
 212 * Returns number of pools or <0 on error.
 213 */
 214static int
 215svc_pool_map_init_pernode(struct svc_pool_map *m)
 216{
 217	unsigned int maxpools = nr_node_ids;
 218	unsigned int pidx = 0;
 219	unsigned int node;
 220	int err;
 221
 222	err = svc_pool_map_alloc_arrays(m, maxpools);
 223	if (err)
 224		return err;
 225
 226	for_each_node_with_cpus(node) {
 227		/* some architectures (e.g. SN2) have cpuless nodes */
 228		BUG_ON(pidx > maxpools);
 229		m->to_pool[node] = pidx;
 230		m->pool_to[pidx] = node;
 231		pidx++;
 232	}
 233	/* nodes brought online later all get mapped to pool0, sorry */
 234
 235	return pidx;
 236}
 237
 238
 239/*
 240 * Add a reference to the global map of cpus to pools (and
 241 * vice versa) if pools are in use.
 242 * Initialise the map if we're the first user.
 243 * Returns the number of pools. If this is '1', no reference
 244 * was taken.
 245 */
 246static unsigned int
 247svc_pool_map_get(void)
 248{
 249	struct svc_pool_map *m = &svc_pool_map;
 250	int npools = -1;
 251
 252	mutex_lock(&svc_pool_map_mutex);
 253
 254	if (m->count++) {
 255		mutex_unlock(&svc_pool_map_mutex);
 256		WARN_ON_ONCE(m->npools <= 1);
 257		return m->npools;
 258	}
 259
 260	if (m->mode == SVC_POOL_AUTO)
 261		m->mode = svc_pool_map_choose_mode();
 262
 263	switch (m->mode) {
 264	case SVC_POOL_PERCPU:
 265		npools = svc_pool_map_init_percpu(m);
 266		break;
 267	case SVC_POOL_PERNODE:
 268		npools = svc_pool_map_init_pernode(m);
 269		break;
 270	}
 271
 272	if (npools <= 0) {
 273		/* default, or memory allocation failure */
 274		npools = 1;
 275		m->mode = SVC_POOL_GLOBAL;
 276	}
 277	m->npools = npools;
 278
 279	if (npools == 1)
 280		/* service is unpooled, so doesn't hold a reference */
 281		m->count--;
 282
 283	mutex_unlock(&svc_pool_map_mutex);
 284	return npools;
 285}
 
 286
 287/*
 288 * Drop a reference to the global map of cpus to pools, if
 289 * pools were in use, i.e. if npools > 1.
 290 * When the last reference is dropped, the map data is
 291 * freed; this allows the sysadmin to change the pool
 292 * mode using the pool_mode module option without
 293 * rebooting or re-loading sunrpc.ko.
 294 */
 295static void
 296svc_pool_map_put(int npools)
 297{
 298	struct svc_pool_map *m = &svc_pool_map;
 299
 300	if (npools <= 1)
 301		return;
 302	mutex_lock(&svc_pool_map_mutex);
 303
 304	if (!--m->count) {
 305		kfree(m->to_pool);
 306		m->to_pool = NULL;
 307		kfree(m->pool_to);
 308		m->pool_to = NULL;
 309		m->npools = 0;
 310	}
 311
 312	mutex_unlock(&svc_pool_map_mutex);
 313}
 
 314
 315static int svc_pool_map_get_node(unsigned int pidx)
 316{
 317	const struct svc_pool_map *m = &svc_pool_map;
 318
 319	if (m->count) {
 320		if (m->mode == SVC_POOL_PERCPU)
 321			return cpu_to_node(m->pool_to[pidx]);
 322		if (m->mode == SVC_POOL_PERNODE)
 323			return m->pool_to[pidx];
 324	}
 325	return NUMA_NO_NODE;
 326}
 327/*
 328 * Set the given thread's cpus_allowed mask so that it
 329 * will only run on cpus in the given pool.
 330 */
 331static inline void
 332svc_pool_map_set_cpumask(struct task_struct *task, unsigned int pidx)
 333{
 334	struct svc_pool_map *m = &svc_pool_map;
 335	unsigned int node = m->pool_to[pidx];
 336
 337	/*
 338	 * The caller checks for sv_nrpools > 1, which
 339	 * implies that we've been initialized.
 340	 */
 341	WARN_ON_ONCE(m->count == 0);
 342	if (m->count == 0)
 343		return;
 344
 345	switch (m->mode) {
 346	case SVC_POOL_PERCPU:
 347	{
 348		set_cpus_allowed_ptr(task, cpumask_of(node));
 349		break;
 350	}
 351	case SVC_POOL_PERNODE:
 352	{
 353		set_cpus_allowed_ptr(task, cpumask_of_node(node));
 354		break;
 355	}
 356	}
 357}
 358
 359/**
 360 * svc_pool_for_cpu - Select pool to run a thread on this cpu
 361 * @serv: An RPC service
 362 *
 363 * Use the active CPU and the svc_pool_map's mode setting to
 364 * select the svc thread pool to use. Once initialized, the
 365 * svc_pool_map does not change.
 366 *
 367 * Return value:
 368 *   A pointer to an svc_pool
 369 */
 370struct svc_pool *svc_pool_for_cpu(struct svc_serv *serv)
 
 371{
 372	struct svc_pool_map *m = &svc_pool_map;
 373	int cpu = raw_smp_processor_id();
 374	unsigned int pidx = 0;
 375
 376	if (serv->sv_nrpools <= 1)
 377		return serv->sv_pools;
 378
 379	switch (m->mode) {
 380	case SVC_POOL_PERCPU:
 381		pidx = m->to_pool[cpu];
 382		break;
 383	case SVC_POOL_PERNODE:
 384		pidx = m->to_pool[cpu_to_node(cpu)];
 385		break;
 
 
 
 
 386	}
 387
 388	return &serv->sv_pools[pidx % serv->sv_nrpools];
 389}
 390
 391int svc_rpcb_setup(struct svc_serv *serv, struct net *net)
 392{
 393	int err;
 394
 395	err = rpcb_create_local(net);
 396	if (err)
 397		return err;
 398
 399	/* Remove any stale portmap registrations */
 400	svc_unregister(serv, net);
 401	return 0;
 402}
 403EXPORT_SYMBOL_GPL(svc_rpcb_setup);
 404
 405void svc_rpcb_cleanup(struct svc_serv *serv, struct net *net)
 406{
 407	svc_unregister(serv, net);
 408	rpcb_put_local(net);
 409}
 410EXPORT_SYMBOL_GPL(svc_rpcb_cleanup);
 411
 412static int svc_uses_rpcbind(struct svc_serv *serv)
 413{
 414	struct svc_program	*progp;
 415	unsigned int		i;
 416
 417	for (progp = serv->sv_program; progp; progp = progp->pg_next) {
 418		for (i = 0; i < progp->pg_nvers; i++) {
 419			if (progp->pg_vers[i] == NULL)
 420				continue;
 421			if (!progp->pg_vers[i]->vs_hidden)
 422				return 1;
 423		}
 424	}
 425
 426	return 0;
 427}
 428
 429int svc_bind(struct svc_serv *serv, struct net *net)
 430{
 431	if (!svc_uses_rpcbind(serv))
 432		return 0;
 433	return svc_rpcb_setup(serv, net);
 434}
 435EXPORT_SYMBOL_GPL(svc_bind);
 436
 437#if defined(CONFIG_SUNRPC_BACKCHANNEL)
 438static void
 439__svc_init_bc(struct svc_serv *serv)
 440{
 441	lwq_init(&serv->sv_cb_list);
 
 
 442}
 443#else
 444static void
 445__svc_init_bc(struct svc_serv *serv)
 446{
 447}
 448#endif
 449
 450/*
 451 * Create an RPC service
 452 */
 453static struct svc_serv *
 454__svc_create(struct svc_program *prog, unsigned int bufsize, int npools,
 455	     int (*threadfn)(void *data))
 456{
 457	struct svc_serv	*serv;
 458	unsigned int vers;
 459	unsigned int xdrsize;
 460	unsigned int i;
 461
 462	if (!(serv = kzalloc(sizeof(*serv), GFP_KERNEL)))
 463		return NULL;
 464	serv->sv_name      = prog->pg_name;
 465	serv->sv_program   = prog;
 
 466	serv->sv_stats     = prog->pg_stats;
 467	if (bufsize > RPCSVC_MAXPAYLOAD)
 468		bufsize = RPCSVC_MAXPAYLOAD;
 469	serv->sv_max_payload = bufsize? bufsize : 4096;
 470	serv->sv_max_mesg  = roundup(serv->sv_max_payload + PAGE_SIZE, PAGE_SIZE);
 471	serv->sv_threadfn = threadfn;
 472	xdrsize = 0;
 473	while (prog) {
 474		prog->pg_lovers = prog->pg_nvers-1;
 475		for (vers=0; vers<prog->pg_nvers ; vers++)
 476			if (prog->pg_vers[vers]) {
 477				prog->pg_hivers = vers;
 478				if (prog->pg_lovers > vers)
 479					prog->pg_lovers = vers;
 480				if (prog->pg_vers[vers]->vs_xdrsize > xdrsize)
 481					xdrsize = prog->pg_vers[vers]->vs_xdrsize;
 482			}
 483		prog = prog->pg_next;
 484	}
 485	serv->sv_xdrsize   = xdrsize;
 486	INIT_LIST_HEAD(&serv->sv_tempsocks);
 487	INIT_LIST_HEAD(&serv->sv_permsocks);
 488	timer_setup(&serv->sv_temptimer, NULL, 0);
 489	spin_lock_init(&serv->sv_lock);
 490
 491	__svc_init_bc(serv);
 492
 493	serv->sv_nrpools = npools;
 494	serv->sv_pools =
 495		kcalloc(serv->sv_nrpools, sizeof(struct svc_pool),
 496			GFP_KERNEL);
 497	if (!serv->sv_pools) {
 498		kfree(serv);
 499		return NULL;
 500	}
 501
 502	for (i = 0; i < serv->sv_nrpools; i++) {
 503		struct svc_pool *pool = &serv->sv_pools[i];
 504
 505		dprintk("svc: initialising pool %u for %s\n",
 506				i, serv->sv_name);
 507
 508		pool->sp_id = i;
 509		lwq_init(&pool->sp_xprts);
 510		INIT_LIST_HEAD(&pool->sp_all_threads);
 511		init_llist_head(&pool->sp_idle_threads);
 512
 513		percpu_counter_init(&pool->sp_messages_arrived, 0, GFP_KERNEL);
 514		percpu_counter_init(&pool->sp_sockets_queued, 0, GFP_KERNEL);
 515		percpu_counter_init(&pool->sp_threads_woken, 0, GFP_KERNEL);
 516	}
 517
 518	return serv;
 519}
 520
 521/**
 522 * svc_create - Create an RPC service
 523 * @prog: the RPC program the new service will handle
 524 * @bufsize: maximum message size for @prog
 525 * @threadfn: a function to service RPC requests for @prog
 526 *
 527 * Returns an instantiated struct svc_serv object or NULL.
 528 */
 529struct svc_serv *svc_create(struct svc_program *prog, unsigned int bufsize,
 530			    int (*threadfn)(void *data))
 531{
 532	return __svc_create(prog, bufsize, 1, threadfn);
 533}
 534EXPORT_SYMBOL_GPL(svc_create);
 535
 536/**
 537 * svc_create_pooled - Create an RPC service with pooled threads
 538 * @prog: the RPC program the new service will handle
 539 * @bufsize: maximum message size for @prog
 540 * @threadfn: a function to service RPC requests for @prog
 541 *
 542 * Returns an instantiated struct svc_serv object or NULL.
 543 */
 544struct svc_serv *svc_create_pooled(struct svc_program *prog,
 545				   unsigned int bufsize,
 546				   int (*threadfn)(void *data))
 547{
 548	struct svc_serv *serv;
 549	unsigned int npools = svc_pool_map_get();
 550
 551	serv = __svc_create(prog, bufsize, npools, threadfn);
 552	if (!serv)
 553		goto out_err;
 554	return serv;
 555out_err:
 556	svc_pool_map_put(npools);
 557	return NULL;
 558}
 559EXPORT_SYMBOL_GPL(svc_create_pooled);
 560
 
 
 
 
 
 
 
 
 
 561/*
 562 * Destroy an RPC service. Should be called with appropriate locking to
 563 * protect sv_permsocks and sv_tempsocks.
 564 */
 565void
 566svc_destroy(struct svc_serv **servp)
 567{
 568	struct svc_serv *serv = *servp;
 569	unsigned int i;
 570
 571	*servp = NULL;
 
 
 
 
 
 
 
 572
 573	dprintk("svc: svc_destroy(%s)\n", serv->sv_program->pg_name);
 574	timer_shutdown_sync(&serv->sv_temptimer);
 575
 576	/*
 577	 * Remaining transports at this point are not expected.
 
 578	 */
 579	WARN_ONCE(!list_empty(&serv->sv_permsocks),
 580		  "SVC: permsocks remain for %s\n", serv->sv_program->pg_name);
 581	WARN_ONCE(!list_empty(&serv->sv_tempsocks),
 582		  "SVC: tempsocks remain for %s\n", serv->sv_program->pg_name);
 583
 584	cache_clean_deferred(serv);
 585
 586	svc_pool_map_put(serv->sv_nrpools);
 587
 588	for (i = 0; i < serv->sv_nrpools; i++) {
 589		struct svc_pool *pool = &serv->sv_pools[i];
 590
 591		percpu_counter_destroy(&pool->sp_messages_arrived);
 592		percpu_counter_destroy(&pool->sp_sockets_queued);
 593		percpu_counter_destroy(&pool->sp_threads_woken);
 594	}
 595	kfree(serv->sv_pools);
 596	kfree(serv);
 597}
 598EXPORT_SYMBOL_GPL(svc_destroy);
 599
 600static bool
 
 
 
 
 601svc_init_buffer(struct svc_rqst *rqstp, unsigned int size, int node)
 602{
 603	unsigned long pages, ret;
 604
 605	/* bc_xprt uses fore channel allocated buffers */
 606	if (svc_is_backchannel(rqstp))
 607		return true;
 608
 609	pages = size / PAGE_SIZE + 1; /* extra page as we hold both request and reply.
 610				       * We assume one is at most one page
 611				       */
 
 612	WARN_ON_ONCE(pages > RPCSVC_MAXPAGES);
 613	if (pages > RPCSVC_MAXPAGES)
 614		pages = RPCSVC_MAXPAGES;
 615
 616	ret = alloc_pages_bulk_array_node(GFP_KERNEL, node, pages,
 617					  rqstp->rq_pages);
 618	return ret == pages;
 
 
 
 
 619}
 620
 621/*
 622 * Release an RPC server buffer
 623 */
 624static void
 625svc_release_buffer(struct svc_rqst *rqstp)
 626{
 627	unsigned int i;
 628
 629	for (i = 0; i < ARRAY_SIZE(rqstp->rq_pages); i++)
 630		if (rqstp->rq_pages[i])
 631			put_page(rqstp->rq_pages[i]);
 632}
 633
 634struct svc_rqst *
 635svc_rqst_alloc(struct svc_serv *serv, struct svc_pool *pool, int node)
 636{
 637	struct svc_rqst	*rqstp;
 638
 639	rqstp = kzalloc_node(sizeof(*rqstp), GFP_KERNEL, node);
 640	if (!rqstp)
 641		return rqstp;
 642
 643	folio_batch_init(&rqstp->rq_fbatch);
 644
 645	rqstp->rq_server = serv;
 646	rqstp->rq_pool = pool;
 647
 648	rqstp->rq_scratch_page = alloc_pages_node(node, GFP_KERNEL, 0);
 649	if (!rqstp->rq_scratch_page)
 650		goto out_enomem;
 651
 652	rqstp->rq_argp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node);
 653	if (!rqstp->rq_argp)
 654		goto out_enomem;
 655
 656	rqstp->rq_resp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node);
 657	if (!rqstp->rq_resp)
 658		goto out_enomem;
 659
 660	if (!svc_init_buffer(rqstp, serv->sv_max_mesg, node))
 661		goto out_enomem;
 662
 663	return rqstp;
 664out_enomem:
 665	svc_rqst_free(rqstp);
 666	return NULL;
 667}
 668EXPORT_SYMBOL_GPL(svc_rqst_alloc);
 669
 670static struct svc_rqst *
 671svc_prepare_thread(struct svc_serv *serv, struct svc_pool *pool, int node)
 672{
 673	struct svc_rqst	*rqstp;
 674
 675	rqstp = svc_rqst_alloc(serv, pool, node);
 676	if (!rqstp)
 677		return ERR_PTR(-ENOMEM);
 678
 679	spin_lock_bh(&serv->sv_lock);
 680	serv->sv_nrthreads += 1;
 681	spin_unlock_bh(&serv->sv_lock);
 682
 683	atomic_inc(&pool->sp_nrthreads);
 684
 685	/* Protected by whatever lock the service uses when calling
 686	 * svc_set_num_threads()
 687	 */
 688	list_add_rcu(&rqstp->rq_all, &pool->sp_all_threads);
 689
 690	return rqstp;
 691}
 
 692
 693/**
 694 * svc_pool_wake_idle_thread - Awaken an idle thread in @pool
 695 * @pool: service thread pool
 696 *
 697 * Can be called from soft IRQ or process context. Finding an idle
 698 * service thread and marking it BUSY is atomic with respect to
 699 * other calls to svc_pool_wake_idle_thread().
 700 *
 701 */
 702void svc_pool_wake_idle_thread(struct svc_pool *pool)
 
 703{
 704	struct svc_rqst	*rqstp;
 705	struct llist_node *ln;
 706
 707	rcu_read_lock();
 708	ln = READ_ONCE(pool->sp_idle_threads.first);
 709	if (ln) {
 710		rqstp = llist_entry(ln, struct svc_rqst, rq_idle);
 711		WRITE_ONCE(rqstp->rq_qtime, ktime_get());
 712		if (!task_is_running(rqstp->rq_task)) {
 713			wake_up_process(rqstp->rq_task);
 714			trace_svc_wake_up(rqstp->rq_task->pid);
 715			percpu_counter_inc(&pool->sp_threads_woken);
 716		}
 717		rcu_read_unlock();
 718		return;
 719	}
 720	rcu_read_unlock();
 721
 
 722}
 723EXPORT_SYMBOL_GPL(svc_pool_wake_idle_thread);
 724
 725static struct svc_pool *
 726svc_pool_next(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state)
 727{
 728	return pool ? pool : &serv->sv_pools[(*state)++ % serv->sv_nrpools];
 729}
 730
 731static struct svc_pool *
 732svc_pool_victim(struct svc_serv *serv, struct svc_pool *target_pool,
 733		unsigned int *state)
 734{
 735	struct svc_pool *pool;
 736	unsigned int i;
 737
 738retry:
 739	pool = target_pool;
 740
 741	if (pool != NULL) {
 742		if (atomic_inc_not_zero(&pool->sp_nrthreads))
 743			goto found_pool;
 744		return NULL;
 745	} else {
 
 746		for (i = 0; i < serv->sv_nrpools; i++) {
 747			pool = &serv->sv_pools[--(*state) % serv->sv_nrpools];
 748			if (atomic_inc_not_zero(&pool->sp_nrthreads))
 
 749				goto found_pool;
 
 750		}
 751		return NULL;
 752	}
 753
 754found_pool:
 755	set_bit(SP_VICTIM_REMAINS, &pool->sp_flags);
 756	set_bit(SP_NEED_VICTIM, &pool->sp_flags);
 757	if (!atomic_dec_and_test(&pool->sp_nrthreads))
 758		return pool;
 759	/* Nothing left in this pool any more */
 760	clear_bit(SP_NEED_VICTIM, &pool->sp_flags);
 761	clear_bit(SP_VICTIM_REMAINS, &pool->sp_flags);
 762	goto retry;
 
 
 
 
 
 
 
 763}
 764
 
 765static int
 766svc_start_kthreads(struct svc_serv *serv, struct svc_pool *pool, int nrservs)
 767{
 768	struct svc_rqst	*rqstp;
 769	struct task_struct *task;
 770	struct svc_pool *chosen_pool;
 771	unsigned int state = serv->sv_nrthreads-1;
 772	int node;
 773
 774	do {
 775		nrservs--;
 776		chosen_pool = svc_pool_next(serv, pool, &state);
 777		node = svc_pool_map_get_node(chosen_pool->sp_id);
 778
 
 779		rqstp = svc_prepare_thread(serv, chosen_pool, node);
 780		if (IS_ERR(rqstp))
 781			return PTR_ERR(rqstp);
 782		task = kthread_create_on_node(serv->sv_threadfn, rqstp,
 
 
 783					      node, "%s", serv->sv_name);
 784		if (IS_ERR(task)) {
 
 785			svc_exit_thread(rqstp);
 786			return PTR_ERR(task);
 787		}
 788
 789		rqstp->rq_task = task;
 790		if (serv->sv_nrpools > 1)
 791			svc_pool_map_set_cpumask(task, chosen_pool->sp_id);
 792
 793		svc_sock_update_bufs(serv);
 794		wake_up_process(task);
 795	} while (nrservs > 0);
 796
 797	return 0;
 798}
 799
 
 
 800static int
 801svc_stop_kthreads(struct svc_serv *serv, struct svc_pool *pool, int nrservs)
 802{
 
 803	unsigned int state = serv->sv_nrthreads-1;
 804	struct svc_pool *victim;
 805
 
 806	do {
 807		victim = svc_pool_victim(serv, pool, &state);
 808		if (!victim)
 809			break;
 810		svc_pool_wake_idle_thread(victim);
 811		wait_on_bit(&victim->sp_flags, SP_VICTIM_REMAINS,
 812			    TASK_IDLE);
 813		nrservs++;
 814	} while (nrservs < 0);
 
 815	return 0;
 816}
 817
 818/**
 819 * svc_set_num_threads - adjust number of threads per RPC service
 820 * @serv: RPC service to adjust
 821 * @pool: Specific pool from which to choose threads, or NULL
 822 * @nrservs: New number of threads for @serv (0 or less means kill all threads)
 823 *
 824 * Create or destroy threads to make the number of threads for @serv the
 825 * given number. If @pool is non-NULL, change only threads in that pool;
 826 * otherwise, round-robin between all pools for @serv. @serv's
 827 * sv_nrthreads is adjusted for each thread created or destroyed.
 828 *
 829 * Caller must ensure mutual exclusion between this and server startup or
 830 * shutdown.
 831 *
 832 * Returns zero on success or a negative errno if an error occurred while
 833 * starting a thread.
 834 */
 835int
 836svc_set_num_threads(struct svc_serv *serv, struct svc_pool *pool, int nrservs)
 837{
 838	if (!pool)
 839		nrservs -= serv->sv_nrthreads;
 840	else
 841		nrservs -= atomic_read(&pool->sp_nrthreads);
 
 
 
 
 842
 843	if (nrservs > 0)
 844		return svc_start_kthreads(serv, pool, nrservs);
 845	if (nrservs < 0)
 846		return svc_stop_kthreads(serv, pool, nrservs);
 847	return 0;
 848}
 849EXPORT_SYMBOL_GPL(svc_set_num_threads);
 850
 851/**
 852 * svc_rqst_replace_page - Replace one page in rq_pages[]
 853 * @rqstp: svc_rqst with pages to replace
 854 * @page: replacement page
 855 *
 856 * When replacing a page in rq_pages, batch the release of the
 857 * replaced pages to avoid hammering the page allocator.
 858 *
 859 * Return values:
 860 *   %true: page replaced
 861 *   %false: array bounds checking failed
 862 */
 863bool svc_rqst_replace_page(struct svc_rqst *rqstp, struct page *page)
 864{
 865	struct page **begin = rqstp->rq_pages;
 866	struct page **end = &rqstp->rq_pages[RPCSVC_MAXPAGES];
 867
 868	if (unlikely(rqstp->rq_next_page < begin || rqstp->rq_next_page > end)) {
 869		trace_svc_replace_page_err(rqstp);
 870		return false;
 871	}
 872
 873	if (*rqstp->rq_next_page) {
 874		if (!folio_batch_add(&rqstp->rq_fbatch,
 875				page_folio(*rqstp->rq_next_page)))
 876			__folio_batch_release(&rqstp->rq_fbatch);
 877	}
 878
 879	get_page(page);
 880	*(rqstp->rq_next_page++) = page;
 881	return true;
 
 
 
 
 
 
 882}
 883EXPORT_SYMBOL_GPL(svc_rqst_replace_page);
 884
 885/**
 886 * svc_rqst_release_pages - Release Reply buffer pages
 887 * @rqstp: RPC transaction context
 888 *
 889 * Release response pages that might still be in flight after
 890 * svc_send, and any spliced filesystem-owned pages.
 891 */
 892void svc_rqst_release_pages(struct svc_rqst *rqstp)
 893{
 894	int i, count = rqstp->rq_next_page - rqstp->rq_respages;
 895
 896	if (count) {
 897		release_pages(rqstp->rq_respages, count);
 898		for (i = 0; i < count; i++)
 899			rqstp->rq_respages[i] = NULL;
 
 900	}
 
 
 
 
 
 
 901}
 
 902
 903/*
 904 * Called from a server thread as it's exiting. Caller must hold the "service
 905 * mutex" for the service.
 906 */
 907void
 908svc_rqst_free(struct svc_rqst *rqstp)
 909{
 910	folio_batch_release(&rqstp->rq_fbatch);
 911	svc_release_buffer(rqstp);
 912	if (rqstp->rq_scratch_page)
 913		put_page(rqstp->rq_scratch_page);
 914	kfree(rqstp->rq_resp);
 915	kfree(rqstp->rq_argp);
 916	kfree(rqstp->rq_auth_data);
 917	kfree_rcu(rqstp, rq_rcu_head);
 918}
 919EXPORT_SYMBOL_GPL(svc_rqst_free);
 920
 921void
 922svc_exit_thread(struct svc_rqst *rqstp)
 923{
 924	struct svc_serv	*serv = rqstp->rq_server;
 925	struct svc_pool	*pool = rqstp->rq_pool;
 926
 927	list_del_rcu(&rqstp->rq_all);
 928
 929	atomic_dec(&pool->sp_nrthreads);
 930
 931	spin_lock_bh(&serv->sv_lock);
 932	serv->sv_nrthreads -= 1;
 933	spin_unlock_bh(&serv->sv_lock);
 934	svc_sock_update_bufs(serv);
 935
 936	svc_rqst_free(rqstp);
 937
 938	clear_and_wake_up_bit(SP_VICTIM_REMAINS, &pool->sp_flags);
 
 
 939}
 940EXPORT_SYMBOL_GPL(svc_exit_thread);
 941
 942/*
 943 * Register an "inet" protocol family netid with the local
 944 * rpcbind daemon via an rpcbind v4 SET request.
 945 *
 946 * No netconfig infrastructure is available in the kernel, so
 947 * we map IP_ protocol numbers to netids by hand.
 948 *
 949 * Returns zero on success; a negative errno value is returned
 950 * if any error occurs.
 951 */
 952static int __svc_rpcb_register4(struct net *net, const u32 program,
 953				const u32 version,
 954				const unsigned short protocol,
 955				const unsigned short port)
 956{
 957	const struct sockaddr_in sin = {
 958		.sin_family		= AF_INET,
 959		.sin_addr.s_addr	= htonl(INADDR_ANY),
 960		.sin_port		= htons(port),
 961	};
 962	const char *netid;
 963	int error;
 964
 965	switch (protocol) {
 966	case IPPROTO_UDP:
 967		netid = RPCBIND_NETID_UDP;
 968		break;
 969	case IPPROTO_TCP:
 970		netid = RPCBIND_NETID_TCP;
 971		break;
 972	default:
 973		return -ENOPROTOOPT;
 974	}
 975
 976	error = rpcb_v4_register(net, program, version,
 977					(const struct sockaddr *)&sin, netid);
 978
 979	/*
 980	 * User space didn't support rpcbind v4, so retry this
 981	 * registration request with the legacy rpcbind v2 protocol.
 982	 */
 983	if (error == -EPROTONOSUPPORT)
 984		error = rpcb_register(net, program, version, protocol, port);
 985
 986	return error;
 987}
 988
 989#if IS_ENABLED(CONFIG_IPV6)
 990/*
 991 * Register an "inet6" protocol family netid with the local
 992 * rpcbind daemon via an rpcbind v4 SET request.
 993 *
 994 * No netconfig infrastructure is available in the kernel, so
 995 * we map IP_ protocol numbers to netids by hand.
 996 *
 997 * Returns zero on success; a negative errno value is returned
 998 * if any error occurs.
 999 */
1000static int __svc_rpcb_register6(struct net *net, const u32 program,
1001				const u32 version,
1002				const unsigned short protocol,
1003				const unsigned short port)
1004{
1005	const struct sockaddr_in6 sin6 = {
1006		.sin6_family		= AF_INET6,
1007		.sin6_addr		= IN6ADDR_ANY_INIT,
1008		.sin6_port		= htons(port),
1009	};
1010	const char *netid;
1011	int error;
1012
1013	switch (protocol) {
1014	case IPPROTO_UDP:
1015		netid = RPCBIND_NETID_UDP6;
1016		break;
1017	case IPPROTO_TCP:
1018		netid = RPCBIND_NETID_TCP6;
1019		break;
1020	default:
1021		return -ENOPROTOOPT;
1022	}
1023
1024	error = rpcb_v4_register(net, program, version,
1025					(const struct sockaddr *)&sin6, netid);
1026
1027	/*
1028	 * User space didn't support rpcbind version 4, so we won't
1029	 * use a PF_INET6 listener.
1030	 */
1031	if (error == -EPROTONOSUPPORT)
1032		error = -EAFNOSUPPORT;
1033
1034	return error;
1035}
1036#endif	/* IS_ENABLED(CONFIG_IPV6) */
1037
1038/*
1039 * Register a kernel RPC service via rpcbind version 4.
1040 *
1041 * Returns zero on success; a negative errno value is returned
1042 * if any error occurs.
1043 */
1044static int __svc_register(struct net *net, const char *progname,
1045			  const u32 program, const u32 version,
1046			  const int family,
1047			  const unsigned short protocol,
1048			  const unsigned short port)
1049{
1050	int error = -EAFNOSUPPORT;
1051
1052	switch (family) {
1053	case PF_INET:
1054		error = __svc_rpcb_register4(net, program, version,
1055						protocol, port);
1056		break;
1057#if IS_ENABLED(CONFIG_IPV6)
1058	case PF_INET6:
1059		error = __svc_rpcb_register6(net, program, version,
1060						protocol, port);
1061#endif
1062	}
1063
1064	trace_svc_register(progname, version, family, protocol, port, error);
1065	return error;
1066}
1067
1068int svc_rpcbind_set_version(struct net *net,
1069			    const struct svc_program *progp,
1070			    u32 version, int family,
1071			    unsigned short proto,
1072			    unsigned short port)
1073{
1074	return __svc_register(net, progp->pg_name, progp->pg_prog,
1075				version, family, proto, port);
1076
1077}
1078EXPORT_SYMBOL_GPL(svc_rpcbind_set_version);
1079
1080int svc_generic_rpcbind_set(struct net *net,
1081			    const struct svc_program *progp,
1082			    u32 version, int family,
1083			    unsigned short proto,
1084			    unsigned short port)
1085{
1086	const struct svc_version *vers = progp->pg_vers[version];
1087	int error;
1088
1089	if (vers == NULL)
1090		return 0;
1091
1092	if (vers->vs_hidden) {
1093		trace_svc_noregister(progp->pg_name, version, proto,
1094				     port, family, 0);
1095		return 0;
1096	}
1097
1098	/*
1099	 * Don't register a UDP port if we need congestion
1100	 * control.
1101	 */
1102	if (vers->vs_need_cong_ctrl && proto == IPPROTO_UDP)
1103		return 0;
1104
1105	error = svc_rpcbind_set_version(net, progp, version,
1106					family, proto, port);
1107
1108	return (vers->vs_rpcb_optnl) ? 0 : error;
1109}
1110EXPORT_SYMBOL_GPL(svc_generic_rpcbind_set);
1111
1112/**
1113 * svc_register - register an RPC service with the local portmapper
1114 * @serv: svc_serv struct for the service to register
1115 * @net: net namespace for the service to register
1116 * @family: protocol family of service's listener socket
1117 * @proto: transport protocol number to advertise
1118 * @port: port to advertise
1119 *
1120 * Service is registered for any address in the passed-in protocol family
1121 */
1122int svc_register(const struct svc_serv *serv, struct net *net,
1123		 const int family, const unsigned short proto,
1124		 const unsigned short port)
1125{
1126	struct svc_program	*progp;
 
1127	unsigned int		i;
1128	int			error = 0;
1129
1130	WARN_ON_ONCE(proto == 0 && port == 0);
1131	if (proto == 0 && port == 0)
1132		return -EINVAL;
1133
1134	for (progp = serv->sv_program; progp; progp = progp->pg_next) {
1135		for (i = 0; i < progp->pg_nvers; i++) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1136
1137			error = progp->pg_rpcbind_set(net, progp, i,
1138					family, proto, port);
1139			if (error < 0) {
1140				printk(KERN_WARNING "svc: failed to register "
1141					"%sv%u RPC service (errno %d).\n",
1142					progp->pg_name, i, -error);
1143				break;
1144			}
1145		}
1146	}
1147
1148	return error;
1149}
1150
1151/*
1152 * If user space is running rpcbind, it should take the v4 UNSET
1153 * and clear everything for this [program, version].  If user space
1154 * is running portmap, it will reject the v4 UNSET, but won't have
1155 * any "inet6" entries anyway.  So a PMAP_UNSET should be sufficient
1156 * in this case to clear all existing entries for [program, version].
1157 */
1158static void __svc_unregister(struct net *net, const u32 program, const u32 version,
1159			     const char *progname)
1160{
1161	int error;
1162
1163	error = rpcb_v4_register(net, program, version, NULL, "");
1164
1165	/*
1166	 * User space didn't support rpcbind v4, so retry this
1167	 * request with the legacy rpcbind v2 protocol.
1168	 */
1169	if (error == -EPROTONOSUPPORT)
1170		error = rpcb_register(net, program, version, 0, 0);
1171
1172	trace_svc_unregister(progname, version, error);
 
1173}
1174
1175/*
1176 * All netids, bind addresses and ports registered for [program, version]
1177 * are removed from the local rpcbind database (if the service is not
1178 * hidden) to make way for a new instance of the service.
1179 *
1180 * The result of unregistration is reported via dprintk for those who want
1181 * verification of the result, but is otherwise not important.
1182 */
1183static void svc_unregister(const struct svc_serv *serv, struct net *net)
1184{
1185	struct sighand_struct *sighand;
1186	struct svc_program *progp;
1187	unsigned long flags;
1188	unsigned int i;
1189
1190	clear_thread_flag(TIF_SIGPENDING);
1191
1192	for (progp = serv->sv_program; progp; progp = progp->pg_next) {
1193		for (i = 0; i < progp->pg_nvers; i++) {
1194			if (progp->pg_vers[i] == NULL)
1195				continue;
1196			if (progp->pg_vers[i]->vs_hidden)
1197				continue;
 
 
 
1198			__svc_unregister(net, progp->pg_prog, i, progp->pg_name);
1199		}
1200	}
1201
1202	rcu_read_lock();
1203	sighand = rcu_dereference(current->sighand);
1204	spin_lock_irqsave(&sighand->siglock, flags);
1205	recalc_sigpending();
1206	spin_unlock_irqrestore(&sighand->siglock, flags);
1207	rcu_read_unlock();
1208}
1209
1210/*
1211 * dprintk the given error with the address of the client that caused it.
1212 */
1213#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
1214static __printf(2, 3)
1215void svc_printk(struct svc_rqst *rqstp, const char *fmt, ...)
1216{
1217	struct va_format vaf;
1218	va_list args;
1219	char 	buf[RPC_MAX_ADDRBUFLEN];
1220
1221	va_start(args, fmt);
1222
1223	vaf.fmt = fmt;
1224	vaf.va = &args;
1225
1226	dprintk("svc: %s: %pV", svc_print_addr(rqstp, buf, sizeof(buf)), &vaf);
1227
1228	va_end(args);
1229}
1230#else
1231static __printf(2,3) void svc_printk(struct svc_rqst *rqstp, const char *fmt, ...) {}
1232#endif
1233
1234__be32
1235svc_generic_init_request(struct svc_rqst *rqstp,
1236		const struct svc_program *progp,
1237		struct svc_process_info *ret)
1238{
1239	const struct svc_version *versp = NULL;	/* compiler food */
1240	const struct svc_procedure *procp = NULL;
1241
1242	if (rqstp->rq_vers >= progp->pg_nvers )
1243		goto err_bad_vers;
1244	versp = progp->pg_vers[rqstp->rq_vers];
1245	if (!versp)
1246		goto err_bad_vers;
1247
1248	/*
1249	 * Some protocol versions (namely NFSv4) require some form of
1250	 * congestion control.  (See RFC 7530 section 3.1 paragraph 2)
1251	 * In other words, UDP is not allowed. We mark those when setting
1252	 * up the svc_xprt, and verify that here.
1253	 *
1254	 * The spec is not very clear about what error should be returned
1255	 * when someone tries to access a server that is listening on UDP
1256	 * for lower versions. RPC_PROG_MISMATCH seems to be the closest
1257	 * fit.
1258	 */
1259	if (versp->vs_need_cong_ctrl && rqstp->rq_xprt &&
1260	    !test_bit(XPT_CONG_CTRL, &rqstp->rq_xprt->xpt_flags))
1261		goto err_bad_vers;
1262
1263	if (rqstp->rq_proc >= versp->vs_nproc)
1264		goto err_bad_proc;
1265	rqstp->rq_procinfo = procp = &versp->vs_proc[rqstp->rq_proc];
1266	if (!procp)
1267		goto err_bad_proc;
1268
1269	/* Initialize storage for argp and resp */
1270	memset(rqstp->rq_argp, 0, procp->pc_argzero);
1271	memset(rqstp->rq_resp, 0, procp->pc_ressize);
1272
1273	/* Bump per-procedure stats counter */
1274	this_cpu_inc(versp->vs_count[rqstp->rq_proc]);
1275
1276	ret->dispatch = versp->vs_dispatch;
1277	return rpc_success;
1278err_bad_vers:
1279	ret->mismatch.lovers = progp->pg_lovers;
1280	ret->mismatch.hivers = progp->pg_hivers;
1281	return rpc_prog_mismatch;
1282err_bad_proc:
1283	return rpc_proc_unavail;
1284}
1285EXPORT_SYMBOL_GPL(svc_generic_init_request);
1286
1287/*
1288 * Common routine for processing the RPC request.
1289 */
1290static int
1291svc_process_common(struct svc_rqst *rqstp)
1292{
1293	struct xdr_stream	*xdr = &rqstp->rq_res_stream;
1294	struct svc_program	*progp;
 
1295	const struct svc_procedure *procp = NULL;
1296	struct svc_serv		*serv = rqstp->rq_server;
1297	struct svc_process_info process;
1298	enum svc_auth_status	auth_res;
1299	unsigned int		aoffset;
1300	int			rc;
1301	__be32			*p;
 
 
1302
 
 
 
 
 
1303	/* Will be turned off only when NFSv4 Sessions are used */
1304	set_bit(RQ_USEDEFERRAL, &rqstp->rq_flags);
1305	clear_bit(RQ_DROPME, &rqstp->rq_flags);
1306
1307	/* Construct the first words of the reply: */
1308	svcxdr_init_encode(rqstp);
1309	xdr_stream_encode_be32(xdr, rqstp->rq_xid);
1310	xdr_stream_encode_be32(xdr, rpc_reply);
1311
1312	p = xdr_inline_decode(&rqstp->rq_arg_stream, XDR_UNIT * 4);
1313	if (unlikely(!p))
1314		goto err_short_len;
1315	if (*p++ != cpu_to_be32(RPC_VERSION))
 
 
 
 
1316		goto err_bad_rpc;
1317
1318	xdr_stream_encode_be32(xdr, rpc_msg_accepted);
 
1319
1320	rqstp->rq_prog = be32_to_cpup(p++);
1321	rqstp->rq_vers = be32_to_cpup(p++);
1322	rqstp->rq_proc = be32_to_cpup(p);
 
 
1323
1324	for (progp = serv->sv_program; progp; progp = progp->pg_next)
1325		if (rqstp->rq_prog == progp->pg_prog)
1326			break;
1327
1328	/*
1329	 * Decode auth data, and add verifier to reply buffer.
1330	 * We do this before anything else in order to get a decent
1331	 * auth verifier.
1332	 */
1333	auth_res = svc_authenticate(rqstp);
1334	/* Also give the program a chance to reject this call: */
1335	if (auth_res == SVC_OK && progp)
 
1336		auth_res = progp->pg_authenticate(rqstp);
1337	trace_svc_authenticate(rqstp, auth_res);
1338	switch (auth_res) {
1339	case SVC_OK:
1340		break;
1341	case SVC_GARBAGE:
1342		goto err_garbage_args;
1343	case SVC_SYSERR:
1344		goto err_system_err;
 
1345	case SVC_DENIED:
1346		goto err_bad_auth;
1347	case SVC_CLOSE:
1348		goto close;
1349	case SVC_DROP:
1350		goto dropit;
1351	case SVC_COMPLETE:
1352		goto sendit;
1353	default:
1354		pr_warn_once("Unexpected svc_auth_status (%d)\n", auth_res);
1355		goto err_system_err;
1356	}
1357
1358	if (progp == NULL)
1359		goto err_bad_prog;
1360
1361	switch (progp->pg_init_request(rqstp, progp, &process)) {
1362	case rpc_success:
1363		break;
1364	case rpc_prog_unavail:
1365		goto err_bad_prog;
1366	case rpc_prog_mismatch:
 
 
 
 
 
 
 
 
 
 
 
1367		goto err_bad_vers;
1368	case rpc_proc_unavail:
1369		goto err_bad_proc;
1370	}
1371
1372	procp = rqstp->rq_procinfo;
1373	/* Should this check go into the dispatcher? */
1374	if (!procp || !procp->pc_func)
1375		goto err_bad_proc;
 
1376
1377	/* Syntactic check complete */
1378	serv->sv_stats->rpccnt++;
1379	trace_svc_process(rqstp, progp->pg_name);
1380
1381	aoffset = xdr_stream_pos(xdr);
 
 
 
 
 
 
 
 
 
1382
1383	/* un-reserve some of the out-queue now that we have a
1384	 * better idea of reply size
1385	 */
1386	if (procp->pc_xdrressize)
1387		svc_reserve_auth(rqstp, procp->pc_xdrressize<<2);
1388
1389	/* Call the function that processes the request. */
1390	rc = process.dispatch(rqstp);
1391	if (procp->pc_release)
1392		procp->pc_release(rqstp);
1393	xdr_finish_decode(xdr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1394
1395	if (!rc)
1396		goto dropit;
1397	if (rqstp->rq_auth_stat != rpc_auth_ok)
1398		goto err_bad_auth;
1399
1400	if (*rqstp->rq_accept_statp != rpc_success)
1401		xdr_truncate_encode(xdr, aoffset);
 
1402
1403	if (procp->pc_encode == NULL)
1404		goto dropit;
1405
1406 sendit:
1407	if (svc_authorise(rqstp))
1408		goto close_xprt;
1409	return 1;		/* Caller can now send it */
1410
1411 dropit:
1412	svc_authorise(rqstp);	/* doesn't hurt to call this twice */
1413	dprintk("svc: svc_process dropit\n");
1414	return 0;
1415
1416 close:
1417	svc_authorise(rqstp);
1418close_xprt:
1419	if (rqstp->rq_xprt && test_bit(XPT_TEMP, &rqstp->rq_xprt->xpt_flags))
1420		svc_xprt_close(rqstp->rq_xprt);
1421	dprintk("svc: svc_process close\n");
1422	return 0;
1423
1424err_short_len:
1425	svc_printk(rqstp, "short len %u, dropping request\n",
1426		   rqstp->rq_arg.len);
1427	goto close_xprt;
1428
1429err_bad_rpc:
1430	serv->sv_stats->rpcbadfmt++;
1431	xdr_stream_encode_u32(xdr, RPC_MSG_DENIED);
1432	xdr_stream_encode_u32(xdr, RPC_MISMATCH);
1433	/* Only RPCv2 supported */
1434	xdr_stream_encode_u32(xdr, RPC_VERSION);
1435	xdr_stream_encode_u32(xdr, RPC_VERSION);
1436	return 1;	/* don't wrap */
1437
1438err_bad_auth:
1439	dprintk("svc: authentication failed (%d)\n",
1440		be32_to_cpu(rqstp->rq_auth_stat));
1441	serv->sv_stats->rpcbadauth++;
1442	/* Restore write pointer to location of reply status: */
1443	xdr_truncate_encode(xdr, XDR_UNIT * 2);
1444	xdr_stream_encode_u32(xdr, RPC_MSG_DENIED);
1445	xdr_stream_encode_u32(xdr, RPC_AUTH_ERROR);
1446	xdr_stream_encode_be32(xdr, rqstp->rq_auth_stat);
1447	goto sendit;
1448
1449err_bad_prog:
1450	dprintk("svc: unknown program %d\n", rqstp->rq_prog);
1451	serv->sv_stats->rpcbadfmt++;
1452	*rqstp->rq_accept_statp = rpc_prog_unavail;
1453	goto sendit;
1454
1455err_bad_vers:
1456	svc_printk(rqstp, "unknown version (%d for prog %d, %s)\n",
1457		       rqstp->rq_vers, rqstp->rq_prog, progp->pg_name);
1458
1459	serv->sv_stats->rpcbadfmt++;
1460	*rqstp->rq_accept_statp = rpc_prog_mismatch;
1461
1462	/*
1463	 * svc_authenticate() has already added the verifier and
1464	 * advanced the stream just past rq_accept_statp.
1465	 */
1466	xdr_stream_encode_u32(xdr, process.mismatch.lovers);
1467	xdr_stream_encode_u32(xdr, process.mismatch.hivers);
1468	goto sendit;
1469
1470err_bad_proc:
1471	svc_printk(rqstp, "unknown procedure (%d)\n", rqstp->rq_proc);
1472
1473	serv->sv_stats->rpcbadfmt++;
1474	*rqstp->rq_accept_statp = rpc_proc_unavail;
1475	goto sendit;
1476
1477err_garbage_args:
1478	svc_printk(rqstp, "failed to decode RPC header\n");
1479
 
 
1480	serv->sv_stats->rpcbadfmt++;
1481	*rqstp->rq_accept_statp = rpc_garbage_args;
1482	goto sendit;
1483
1484err_system_err:
1485	serv->sv_stats->rpcbadfmt++;
1486	*rqstp->rq_accept_statp = rpc_system_err;
1487	goto sendit;
1488}
1489
1490/**
1491 * svc_process - Execute one RPC transaction
1492 * @rqstp: RPC transaction context
1493 *
1494 */
1495void svc_process(struct svc_rqst *rqstp)
 
1496{
 
1497	struct kvec		*resv = &rqstp->rq_res.head[0];
1498	__be32 *p;
1499
1500#if IS_ENABLED(CONFIG_FAIL_SUNRPC)
1501	if (!fail_sunrpc.ignore_server_disconnect &&
1502	    should_fail(&fail_sunrpc.attr, 1))
1503		svc_xprt_deferred_close(rqstp->rq_xprt);
1504#endif
1505
1506	/*
1507	 * Setup response xdr_buf.
1508	 * Initially it has just one page
1509	 */
1510	rqstp->rq_next_page = &rqstp->rq_respages[1];
1511	resv->iov_base = page_address(rqstp->rq_respages[0]);
1512	resv->iov_len = 0;
1513	rqstp->rq_res.pages = rqstp->rq_next_page;
1514	rqstp->rq_res.len = 0;
1515	rqstp->rq_res.page_base = 0;
1516	rqstp->rq_res.page_len = 0;
1517	rqstp->rq_res.buflen = PAGE_SIZE;
1518	rqstp->rq_res.tail[0].iov_base = NULL;
1519	rqstp->rq_res.tail[0].iov_len = 0;
1520
1521	svcxdr_init_decode(rqstp);
1522	p = xdr_inline_decode(&rqstp->rq_arg_stream, XDR_UNIT * 2);
1523	if (unlikely(!p))
 
 
1524		goto out_drop;
1525	rqstp->rq_xid = *p++;
1526	if (unlikely(*p != rpc_call))
1527		goto out_baddir;
1528
1529	if (!svc_process_common(rqstp))
1530		goto out_drop;
1531	svc_send(rqstp);
1532	return;
1533
1534out_baddir:
1535	svc_printk(rqstp, "bad direction 0x%08x, dropping request\n",
1536		   be32_to_cpu(*p));
1537	rqstp->rq_server->sv_stats->rpcbadfmt++;
1538out_drop:
1539	svc_drop(rqstp);
 
1540}
 
1541
1542#if defined(CONFIG_SUNRPC_BACKCHANNEL)
1543/**
1544 * svc_process_bc - process a reverse-direction RPC request
1545 * @req: RPC request to be used for client-side processing
1546 * @rqstp: server-side execution context
1547 *
1548 */
1549void svc_process_bc(struct rpc_rqst *req, struct svc_rqst *rqstp)
 
 
1550{
 
 
1551	struct rpc_task *task;
1552	int proc_error;
1553	struct rpc_timeout timeout;
 
 
1554
1555	/* Build the svc_rqst used by the common processing routine */
 
1556	rqstp->rq_xid = req->rq_xid;
1557	rqstp->rq_prot = req->rq_xprt->prot;
1558	rqstp->rq_bc_net = req->rq_xprt->xprt_net;
1559
1560	rqstp->rq_addrlen = sizeof(req->rq_xprt->addr);
1561	memcpy(&rqstp->rq_addr, &req->rq_xprt->addr, rqstp->rq_addrlen);
1562	memcpy(&rqstp->rq_arg, &req->rq_rcv_buf, sizeof(rqstp->rq_arg));
1563	memcpy(&rqstp->rq_res, &req->rq_snd_buf, sizeof(rqstp->rq_res));
1564
1565	/* Adjust the argument buffer length */
1566	rqstp->rq_arg.len = req->rq_private_buf.len;
1567	if (rqstp->rq_arg.len <= rqstp->rq_arg.head[0].iov_len) {
1568		rqstp->rq_arg.head[0].iov_len = rqstp->rq_arg.len;
1569		rqstp->rq_arg.page_len = 0;
1570	} else if (rqstp->rq_arg.len <= rqstp->rq_arg.head[0].iov_len +
1571			rqstp->rq_arg.page_len)
1572		rqstp->rq_arg.page_len = rqstp->rq_arg.len -
1573			rqstp->rq_arg.head[0].iov_len;
1574	else
1575		rqstp->rq_arg.len = rqstp->rq_arg.head[0].iov_len +
1576			rqstp->rq_arg.page_len;
1577
1578	/* Reset the response buffer */
1579	rqstp->rq_res.head[0].iov_len = 0;
1580
1581	/*
1582	 * Skip the XID and calldir fields because they've already
1583	 * been processed by the caller.
1584	 */
1585	svcxdr_init_decode(rqstp);
1586	if (!xdr_inline_decode(&rqstp->rq_arg_stream, XDR_UNIT * 2))
1587		return;
1588
1589	/* Parse and execute the bc call */
1590	proc_error = svc_process_common(rqstp);
1591
1592	atomic_dec(&req->rq_xprt->bc_slot_count);
1593	if (!proc_error) {
1594		/* Processing error: drop the request */
1595		xprt_free_bc_request(req);
1596		return;
1597	}
 
1598	/* Finally, send the reply synchronously */
1599	if (rqstp->bc_to_initval > 0) {
1600		timeout.to_initval = rqstp->bc_to_initval;
1601		timeout.to_retries = rqstp->bc_to_retries;
1602	} else {
1603		timeout.to_initval = req->rq_xprt->timeout->to_initval;
1604		timeout.to_retries = req->rq_xprt->timeout->to_retries;
1605	}
1606	memcpy(&req->rq_snd_buf, &rqstp->rq_res, sizeof(req->rq_snd_buf));
1607	task = rpc_run_bc_task(req, &timeout);
1608
1609	if (IS_ERR(task))
1610		return;
 
1611
1612	WARN_ON_ONCE(atomic_read(&task->tk_count) != 1);
 
1613	rpc_put_task(task);
 
 
 
 
1614}
1615EXPORT_SYMBOL_GPL(svc_process_bc);
1616#endif /* CONFIG_SUNRPC_BACKCHANNEL */
1617
1618/**
1619 * svc_max_payload - Return transport-specific limit on the RPC payload
1620 * @rqstp: RPC transaction context
1621 *
1622 * Returns the maximum number of payload bytes the current transport
1623 * allows.
1624 */
1625u32 svc_max_payload(const struct svc_rqst *rqstp)
1626{
1627	u32 max = rqstp->rq_xprt->xpt_class->xcl_max_payload;
1628
1629	if (rqstp->rq_server->sv_max_payload < max)
1630		max = rqstp->rq_server->sv_max_payload;
1631	return max;
1632}
1633EXPORT_SYMBOL_GPL(svc_max_payload);
1634
1635/**
1636 * svc_proc_name - Return RPC procedure name in string form
1637 * @rqstp: svc_rqst to operate on
1638 *
1639 * Return value:
1640 *   Pointer to a NUL-terminated string
1641 */
1642const char *svc_proc_name(const struct svc_rqst *rqstp)
1643{
1644	if (rqstp && rqstp->rq_procinfo)
1645		return rqstp->rq_procinfo->pc_name;
1646	return "unknown";
1647}
1648
1649
1650/**
1651 * svc_encode_result_payload - mark a range of bytes as a result payload
1652 * @rqstp: svc_rqst to operate on
1653 * @offset: payload's byte offset in rqstp->rq_res
1654 * @length: size of payload, in bytes
1655 *
1656 * Returns zero on success, or a negative errno if a permanent
1657 * error occurred.
1658 */
1659int svc_encode_result_payload(struct svc_rqst *rqstp, unsigned int offset,
1660			      unsigned int length)
1661{
1662	return rqstp->rq_xprt->xpt_ops->xpo_result_payload(rqstp, offset,
1663							   length);
1664}
1665EXPORT_SYMBOL_GPL(svc_encode_result_payload);
1666
1667/**
1668 * svc_fill_write_vector - Construct data argument for VFS write call
1669 * @rqstp: svc_rqst to operate on
1670 * @payload: xdr_buf containing only the write data payload
 
1671 *
1672 * Fills in rqstp::rq_vec, and returns the number of elements.
1673 */
1674unsigned int svc_fill_write_vector(struct svc_rqst *rqstp,
1675				   struct xdr_buf *payload)
1676{
1677	struct page **pages = payload->pages;
1678	struct kvec *first = payload->head;
1679	struct kvec *vec = rqstp->rq_vec;
1680	size_t total = payload->len;
1681	unsigned int i;
1682
1683	/* Some types of transport can present the write payload
1684	 * entirely in rq_arg.pages. In this case, @first is empty.
1685	 */
1686	i = 0;
1687	if (first->iov_len) {
1688		vec[i].iov_base = first->iov_base;
1689		vec[i].iov_len = min_t(size_t, total, first->iov_len);
1690		total -= vec[i].iov_len;
1691		++i;
1692	}
1693
 
 
1694	while (total) {
1695		vec[i].iov_base = page_address(*pages);
1696		vec[i].iov_len = min_t(size_t, total, PAGE_SIZE);
1697		total -= vec[i].iov_len;
1698		++i;
 
1699		++pages;
1700	}
1701
1702	WARN_ON_ONCE(i > ARRAY_SIZE(rqstp->rq_vec));
1703	return i;
1704}
1705EXPORT_SYMBOL_GPL(svc_fill_write_vector);
1706
1707/**
1708 * svc_fill_symlink_pathname - Construct pathname argument for VFS symlink call
1709 * @rqstp: svc_rqst to operate on
1710 * @first: buffer containing first section of pathname
1711 * @p: buffer containing remaining section of pathname
1712 * @total: total length of the pathname argument
1713 *
1714 * The VFS symlink API demands a NUL-terminated pathname in mapped memory.
1715 * Returns pointer to a NUL-terminated string, or an ERR_PTR. Caller must free
1716 * the returned string.
1717 */
1718char *svc_fill_symlink_pathname(struct svc_rqst *rqstp, struct kvec *first,
1719				void *p, size_t total)
1720{
1721	size_t len, remaining;
1722	char *result, *dst;
 
 
 
 
 
 
 
 
 
 
 
1723
1724	result = kmalloc(total + 1, GFP_KERNEL);
1725	if (!result)
1726		return ERR_PTR(-ESERVERFAULT);
 
 
 
 
 
 
 
 
 
1727
1728	dst = result;
1729	remaining = total;
 
1730
1731	len = min_t(size_t, total, first->iov_len);
1732	if (len) {
1733		memcpy(dst, first->iov_base, len);
1734		dst += len;
1735		remaining -= len;
1736	}
1737
1738	if (remaining) {
1739		len = min_t(size_t, remaining, PAGE_SIZE);
1740		memcpy(dst, p, len);
1741		dst += len;
1742	}
 
1743
1744	*dst = '\0';
 
1745
1746	/* Sanity check: Linux doesn't allow the pathname argument to
1747	 * contain a NUL byte.
1748	 */
1749	if (strlen(result) != total) {
1750		kfree(result);
1751		return ERR_PTR(-EINVAL);
1752	}
1753	return result;
1754}
1755EXPORT_SYMBOL_GPL(svc_fill_symlink_pathname);
v4.17
 
   1/*
   2 * linux/net/sunrpc/svc.c
   3 *
   4 * High-level RPC service routines
   5 *
   6 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
   7 *
   8 * Multiple threads pools and NUMAisation
   9 * Copyright (c) 2006 Silicon Graphics, Inc.
  10 * by Greg Banks <gnb@melbourne.sgi.com>
  11 */
  12
  13#include <linux/linkage.h>
  14#include <linux/sched/signal.h>
  15#include <linux/errno.h>
  16#include <linux/net.h>
  17#include <linux/in.h>
  18#include <linux/mm.h>
  19#include <linux/interrupt.h>
  20#include <linux/module.h>
  21#include <linux/kthread.h>
  22#include <linux/slab.h>
  23
  24#include <linux/sunrpc/types.h>
  25#include <linux/sunrpc/xdr.h>
  26#include <linux/sunrpc/stats.h>
  27#include <linux/sunrpc/svcsock.h>
  28#include <linux/sunrpc/clnt.h>
  29#include <linux/sunrpc/bc_xprt.h>
  30
  31#include <trace/events/sunrpc.h>
  32
 
 
  33#define RPCDBG_FACILITY	RPCDBG_SVCDSP
  34
  35static void svc_unregister(const struct svc_serv *serv, struct net *net);
  36
  37#define svc_serv_is_pooled(serv)    ((serv)->sv_ops->svo_function)
  38
  39#define SVC_POOL_DEFAULT	SVC_POOL_GLOBAL
 
 
 
 
 
 
 
 
 
  40
  41/*
  42 * Structure for mapping cpus to pools and vice versa.
  43 * Setup once during sunrpc initialisation.
  44 */
  45struct svc_pool_map svc_pool_map = {
 
 
 
 
 
 
 
 
 
 
 
  46	.mode = SVC_POOL_DEFAULT
  47};
  48EXPORT_SYMBOL_GPL(svc_pool_map);
  49
  50static DEFINE_MUTEX(svc_pool_map_mutex);/* protects svc_pool_map.count only */
  51
  52static int
  53param_set_pool_mode(const char *val, const struct kernel_param *kp)
  54{
  55	int *ip = (int *)kp->arg;
  56	struct svc_pool_map *m = &svc_pool_map;
  57	int err;
  58
  59	mutex_lock(&svc_pool_map_mutex);
  60
  61	err = -EBUSY;
  62	if (m->count)
  63		goto out;
  64
  65	err = 0;
  66	if (!strncmp(val, "auto", 4))
  67		*ip = SVC_POOL_AUTO;
  68	else if (!strncmp(val, "global", 6))
  69		*ip = SVC_POOL_GLOBAL;
  70	else if (!strncmp(val, "percpu", 6))
  71		*ip = SVC_POOL_PERCPU;
  72	else if (!strncmp(val, "pernode", 7))
  73		*ip = SVC_POOL_PERNODE;
  74	else
  75		err = -EINVAL;
  76
  77out:
  78	mutex_unlock(&svc_pool_map_mutex);
  79	return err;
  80}
  81
  82static int
  83param_get_pool_mode(char *buf, const struct kernel_param *kp)
  84{
  85	int *ip = (int *)kp->arg;
  86
  87	switch (*ip)
  88	{
  89	case SVC_POOL_AUTO:
  90		return strlcpy(buf, "auto", 20);
  91	case SVC_POOL_GLOBAL:
  92		return strlcpy(buf, "global", 20);
  93	case SVC_POOL_PERCPU:
  94		return strlcpy(buf, "percpu", 20);
  95	case SVC_POOL_PERNODE:
  96		return strlcpy(buf, "pernode", 20);
  97	default:
  98		return sprintf(buf, "%d", *ip);
  99	}
 100}
 101
 102module_param_call(pool_mode, param_set_pool_mode, param_get_pool_mode,
 103		 &svc_pool_map.mode, 0644);
 104
 105/*
 106 * Detect best pool mapping mode heuristically,
 107 * according to the machine's topology.
 108 */
 109static int
 110svc_pool_map_choose_mode(void)
 111{
 112	unsigned int node;
 113
 114	if (nr_online_nodes > 1) {
 115		/*
 116		 * Actually have multiple NUMA nodes,
 117		 * so split pools on NUMA node boundaries
 118		 */
 119		return SVC_POOL_PERNODE;
 120	}
 121
 122	node = first_online_node;
 123	if (nr_cpus_node(node) > 2) {
 124		/*
 125		 * Non-trivial SMP, or CONFIG_NUMA on
 126		 * non-NUMA hardware, e.g. with a generic
 127		 * x86_64 kernel on Xeons.  In this case we
 128		 * want to divide the pools on cpu boundaries.
 129		 */
 130		return SVC_POOL_PERCPU;
 131	}
 132
 133	/* default: one global pool */
 134	return SVC_POOL_GLOBAL;
 135}
 136
 137/*
 138 * Allocate the to_pool[] and pool_to[] arrays.
 139 * Returns 0 on success or an errno.
 140 */
 141static int
 142svc_pool_map_alloc_arrays(struct svc_pool_map *m, unsigned int maxpools)
 143{
 144	m->to_pool = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL);
 145	if (!m->to_pool)
 146		goto fail;
 147	m->pool_to = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL);
 148	if (!m->pool_to)
 149		goto fail_free;
 150
 151	return 0;
 152
 153fail_free:
 154	kfree(m->to_pool);
 155	m->to_pool = NULL;
 156fail:
 157	return -ENOMEM;
 158}
 159
 160/*
 161 * Initialise the pool map for SVC_POOL_PERCPU mode.
 162 * Returns number of pools or <0 on error.
 163 */
 164static int
 165svc_pool_map_init_percpu(struct svc_pool_map *m)
 166{
 167	unsigned int maxpools = nr_cpu_ids;
 168	unsigned int pidx = 0;
 169	unsigned int cpu;
 170	int err;
 171
 172	err = svc_pool_map_alloc_arrays(m, maxpools);
 173	if (err)
 174		return err;
 175
 176	for_each_online_cpu(cpu) {
 177		BUG_ON(pidx >= maxpools);
 178		m->to_pool[cpu] = pidx;
 179		m->pool_to[pidx] = cpu;
 180		pidx++;
 181	}
 182	/* cpus brought online later all get mapped to pool0, sorry */
 183
 184	return pidx;
 185};
 186
 187
 188/*
 189 * Initialise the pool map for SVC_POOL_PERNODE mode.
 190 * Returns number of pools or <0 on error.
 191 */
 192static int
 193svc_pool_map_init_pernode(struct svc_pool_map *m)
 194{
 195	unsigned int maxpools = nr_node_ids;
 196	unsigned int pidx = 0;
 197	unsigned int node;
 198	int err;
 199
 200	err = svc_pool_map_alloc_arrays(m, maxpools);
 201	if (err)
 202		return err;
 203
 204	for_each_node_with_cpus(node) {
 205		/* some architectures (e.g. SN2) have cpuless nodes */
 206		BUG_ON(pidx > maxpools);
 207		m->to_pool[node] = pidx;
 208		m->pool_to[pidx] = node;
 209		pidx++;
 210	}
 211	/* nodes brought online later all get mapped to pool0, sorry */
 212
 213	return pidx;
 214}
 215
 216
 217/*
 218 * Add a reference to the global map of cpus to pools (and
 219 * vice versa).  Initialise the map if we're the first user.
 220 * Returns the number of pools.
 
 
 221 */
 222unsigned int
 223svc_pool_map_get(void)
 224{
 225	struct svc_pool_map *m = &svc_pool_map;
 226	int npools = -1;
 227
 228	mutex_lock(&svc_pool_map_mutex);
 229
 230	if (m->count++) {
 231		mutex_unlock(&svc_pool_map_mutex);
 
 232		return m->npools;
 233	}
 234
 235	if (m->mode == SVC_POOL_AUTO)
 236		m->mode = svc_pool_map_choose_mode();
 237
 238	switch (m->mode) {
 239	case SVC_POOL_PERCPU:
 240		npools = svc_pool_map_init_percpu(m);
 241		break;
 242	case SVC_POOL_PERNODE:
 243		npools = svc_pool_map_init_pernode(m);
 244		break;
 245	}
 246
 247	if (npools < 0) {
 248		/* default, or memory allocation failure */
 249		npools = 1;
 250		m->mode = SVC_POOL_GLOBAL;
 251	}
 252	m->npools = npools;
 253
 
 
 
 
 254	mutex_unlock(&svc_pool_map_mutex);
 255	return m->npools;
 256}
 257EXPORT_SYMBOL_GPL(svc_pool_map_get);
 258
 259/*
 260 * Drop a reference to the global map of cpus to pools.
 
 261 * When the last reference is dropped, the map data is
 262 * freed; this allows the sysadmin to change the pool
 263 * mode using the pool_mode module option without
 264 * rebooting or re-loading sunrpc.ko.
 265 */
 266void
 267svc_pool_map_put(void)
 268{
 269	struct svc_pool_map *m = &svc_pool_map;
 270
 
 
 271	mutex_lock(&svc_pool_map_mutex);
 272
 273	if (!--m->count) {
 274		kfree(m->to_pool);
 275		m->to_pool = NULL;
 276		kfree(m->pool_to);
 277		m->pool_to = NULL;
 278		m->npools = 0;
 279	}
 280
 281	mutex_unlock(&svc_pool_map_mutex);
 282}
 283EXPORT_SYMBOL_GPL(svc_pool_map_put);
 284
 285static int svc_pool_map_get_node(unsigned int pidx)
 286{
 287	const struct svc_pool_map *m = &svc_pool_map;
 288
 289	if (m->count) {
 290		if (m->mode == SVC_POOL_PERCPU)
 291			return cpu_to_node(m->pool_to[pidx]);
 292		if (m->mode == SVC_POOL_PERNODE)
 293			return m->pool_to[pidx];
 294	}
 295	return NUMA_NO_NODE;
 296}
 297/*
 298 * Set the given thread's cpus_allowed mask so that it
 299 * will only run on cpus in the given pool.
 300 */
 301static inline void
 302svc_pool_map_set_cpumask(struct task_struct *task, unsigned int pidx)
 303{
 304	struct svc_pool_map *m = &svc_pool_map;
 305	unsigned int node = m->pool_to[pidx];
 306
 307	/*
 308	 * The caller checks for sv_nrpools > 1, which
 309	 * implies that we've been initialized.
 310	 */
 311	WARN_ON_ONCE(m->count == 0);
 312	if (m->count == 0)
 313		return;
 314
 315	switch (m->mode) {
 316	case SVC_POOL_PERCPU:
 317	{
 318		set_cpus_allowed_ptr(task, cpumask_of(node));
 319		break;
 320	}
 321	case SVC_POOL_PERNODE:
 322	{
 323		set_cpus_allowed_ptr(task, cpumask_of_node(node));
 324		break;
 325	}
 326	}
 327}
 328
 329/*
 330 * Use the mapping mode to choose a pool for a given CPU.
 331 * Used when enqueueing an incoming RPC.  Always returns
 332 * a non-NULL pool pointer.
 
 
 
 
 
 
 333 */
 334struct svc_pool *
 335svc_pool_for_cpu(struct svc_serv *serv, int cpu)
 336{
 337	struct svc_pool_map *m = &svc_pool_map;
 
 338	unsigned int pidx = 0;
 339
 340	/*
 341	 * An uninitialised map happens in a pure client when
 342	 * lockd is brought up, so silently treat it the
 343	 * same as SVC_POOL_GLOBAL.
 344	 */
 345	if (svc_serv_is_pooled(serv)) {
 346		switch (m->mode) {
 347		case SVC_POOL_PERCPU:
 348			pidx = m->to_pool[cpu];
 349			break;
 350		case SVC_POOL_PERNODE:
 351			pidx = m->to_pool[cpu_to_node(cpu)];
 352			break;
 353		}
 354	}
 
 355	return &serv->sv_pools[pidx % serv->sv_nrpools];
 356}
 357
 358int svc_rpcb_setup(struct svc_serv *serv, struct net *net)
 359{
 360	int err;
 361
 362	err = rpcb_create_local(net);
 363	if (err)
 364		return err;
 365
 366	/* Remove any stale portmap registrations */
 367	svc_unregister(serv, net);
 368	return 0;
 369}
 370EXPORT_SYMBOL_GPL(svc_rpcb_setup);
 371
 372void svc_rpcb_cleanup(struct svc_serv *serv, struct net *net)
 373{
 374	svc_unregister(serv, net);
 375	rpcb_put_local(net);
 376}
 377EXPORT_SYMBOL_GPL(svc_rpcb_cleanup);
 378
 379static int svc_uses_rpcbind(struct svc_serv *serv)
 380{
 381	struct svc_program	*progp;
 382	unsigned int		i;
 383
 384	for (progp = serv->sv_program; progp; progp = progp->pg_next) {
 385		for (i = 0; i < progp->pg_nvers; i++) {
 386			if (progp->pg_vers[i] == NULL)
 387				continue;
 388			if (!progp->pg_vers[i]->vs_hidden)
 389				return 1;
 390		}
 391	}
 392
 393	return 0;
 394}
 395
 396int svc_bind(struct svc_serv *serv, struct net *net)
 397{
 398	if (!svc_uses_rpcbind(serv))
 399		return 0;
 400	return svc_rpcb_setup(serv, net);
 401}
 402EXPORT_SYMBOL_GPL(svc_bind);
 403
 404#if defined(CONFIG_SUNRPC_BACKCHANNEL)
 405static void
 406__svc_init_bc(struct svc_serv *serv)
 407{
 408	INIT_LIST_HEAD(&serv->sv_cb_list);
 409	spin_lock_init(&serv->sv_cb_lock);
 410	init_waitqueue_head(&serv->sv_cb_waitq);
 411}
 412#else
 413static void
 414__svc_init_bc(struct svc_serv *serv)
 415{
 416}
 417#endif
 418
 419/*
 420 * Create an RPC service
 421 */
 422static struct svc_serv *
 423__svc_create(struct svc_program *prog, unsigned int bufsize, int npools,
 424	     const struct svc_serv_ops *ops)
 425{
 426	struct svc_serv	*serv;
 427	unsigned int vers;
 428	unsigned int xdrsize;
 429	unsigned int i;
 430
 431	if (!(serv = kzalloc(sizeof(*serv), GFP_KERNEL)))
 432		return NULL;
 433	serv->sv_name      = prog->pg_name;
 434	serv->sv_program   = prog;
 435	serv->sv_nrthreads = 1;
 436	serv->sv_stats     = prog->pg_stats;
 437	if (bufsize > RPCSVC_MAXPAYLOAD)
 438		bufsize = RPCSVC_MAXPAYLOAD;
 439	serv->sv_max_payload = bufsize? bufsize : 4096;
 440	serv->sv_max_mesg  = roundup(serv->sv_max_payload + PAGE_SIZE, PAGE_SIZE);
 441	serv->sv_ops = ops;
 442	xdrsize = 0;
 443	while (prog) {
 444		prog->pg_lovers = prog->pg_nvers-1;
 445		for (vers=0; vers<prog->pg_nvers ; vers++)
 446			if (prog->pg_vers[vers]) {
 447				prog->pg_hivers = vers;
 448				if (prog->pg_lovers > vers)
 449					prog->pg_lovers = vers;
 450				if (prog->pg_vers[vers]->vs_xdrsize > xdrsize)
 451					xdrsize = prog->pg_vers[vers]->vs_xdrsize;
 452			}
 453		prog = prog->pg_next;
 454	}
 455	serv->sv_xdrsize   = xdrsize;
 456	INIT_LIST_HEAD(&serv->sv_tempsocks);
 457	INIT_LIST_HEAD(&serv->sv_permsocks);
 458	timer_setup(&serv->sv_temptimer, NULL, 0);
 459	spin_lock_init(&serv->sv_lock);
 460
 461	__svc_init_bc(serv);
 462
 463	serv->sv_nrpools = npools;
 464	serv->sv_pools =
 465		kcalloc(serv->sv_nrpools, sizeof(struct svc_pool),
 466			GFP_KERNEL);
 467	if (!serv->sv_pools) {
 468		kfree(serv);
 469		return NULL;
 470	}
 471
 472	for (i = 0; i < serv->sv_nrpools; i++) {
 473		struct svc_pool *pool = &serv->sv_pools[i];
 474
 475		dprintk("svc: initialising pool %u for %s\n",
 476				i, serv->sv_name);
 477
 478		pool->sp_id = i;
 479		INIT_LIST_HEAD(&pool->sp_sockets);
 480		INIT_LIST_HEAD(&pool->sp_all_threads);
 481		spin_lock_init(&pool->sp_lock);
 
 
 
 
 482	}
 483
 484	return serv;
 485}
 486
 487struct svc_serv *
 488svc_create(struct svc_program *prog, unsigned int bufsize,
 489	   const struct svc_serv_ops *ops)
 
 
 
 
 
 
 
 490{
 491	return __svc_create(prog, bufsize, /*npools*/1, ops);
 492}
 493EXPORT_SYMBOL_GPL(svc_create);
 494
 495struct svc_serv *
 496svc_create_pooled(struct svc_program *prog, unsigned int bufsize,
 497		  const struct svc_serv_ops *ops)
 
 
 
 
 
 
 
 
 498{
 499	struct svc_serv *serv;
 500	unsigned int npools = svc_pool_map_get();
 501
 502	serv = __svc_create(prog, bufsize, npools, ops);
 503	if (!serv)
 504		goto out_err;
 505	return serv;
 506out_err:
 507	svc_pool_map_put();
 508	return NULL;
 509}
 510EXPORT_SYMBOL_GPL(svc_create_pooled);
 511
 512void svc_shutdown_net(struct svc_serv *serv, struct net *net)
 513{
 514	svc_close_net(serv, net);
 515
 516	if (serv->sv_ops->svo_shutdown)
 517		serv->sv_ops->svo_shutdown(serv, net);
 518}
 519EXPORT_SYMBOL_GPL(svc_shutdown_net);
 520
 521/*
 522 * Destroy an RPC service. Should be called with appropriate locking to
 523 * protect the sv_nrthreads, sv_permsocks and sv_tempsocks.
 524 */
 525void
 526svc_destroy(struct svc_serv *serv)
 527{
 528	dprintk("svc: svc_destroy(%s, %d)\n",
 529				serv->sv_program->pg_name,
 530				serv->sv_nrthreads);
 531
 532	if (serv->sv_nrthreads) {
 533		if (--(serv->sv_nrthreads) != 0) {
 534			svc_sock_update_bufs(serv);
 535			return;
 536		}
 537	} else
 538		printk("svc_destroy: no threads for serv=%p!\n", serv);
 539
 540	del_timer_sync(&serv->sv_temptimer);
 
 541
 542	/*
 543	 * The last user is gone and thus all sockets have to be destroyed to
 544	 * the point. Check this.
 545	 */
 546	BUG_ON(!list_empty(&serv->sv_permsocks));
 547	BUG_ON(!list_empty(&serv->sv_tempsocks));
 
 
 548
 549	cache_clean_deferred(serv);
 550
 551	if (svc_serv_is_pooled(serv))
 552		svc_pool_map_put();
 
 
 553
 
 
 
 
 554	kfree(serv->sv_pools);
 555	kfree(serv);
 556}
 557EXPORT_SYMBOL_GPL(svc_destroy);
 558
 559/*
 560 * Allocate an RPC server's buffer space.
 561 * We allocate pages and place them in rq_argpages.
 562 */
 563static int
 564svc_init_buffer(struct svc_rqst *rqstp, unsigned int size, int node)
 565{
 566	unsigned int pages, arghi;
 567
 568	/* bc_xprt uses fore channel allocated buffers */
 569	if (svc_is_backchannel(rqstp))
 570		return 1;
 571
 572	pages = size / PAGE_SIZE + 1; /* extra page as we hold both request and reply.
 573				       * We assume one is at most one page
 574				       */
 575	arghi = 0;
 576	WARN_ON_ONCE(pages > RPCSVC_MAXPAGES);
 577	if (pages > RPCSVC_MAXPAGES)
 578		pages = RPCSVC_MAXPAGES;
 579	while (pages) {
 580		struct page *p = alloc_pages_node(node, GFP_KERNEL, 0);
 581		if (!p)
 582			break;
 583		rqstp->rq_pages[arghi++] = p;
 584		pages--;
 585	}
 586	return pages == 0;
 587}
 588
 589/*
 590 * Release an RPC server buffer
 591 */
 592static void
 593svc_release_buffer(struct svc_rqst *rqstp)
 594{
 595	unsigned int i;
 596
 597	for (i = 0; i < ARRAY_SIZE(rqstp->rq_pages); i++)
 598		if (rqstp->rq_pages[i])
 599			put_page(rqstp->rq_pages[i]);
 600}
 601
 602struct svc_rqst *
 603svc_rqst_alloc(struct svc_serv *serv, struct svc_pool *pool, int node)
 604{
 605	struct svc_rqst	*rqstp;
 606
 607	rqstp = kzalloc_node(sizeof(*rqstp), GFP_KERNEL, node);
 608	if (!rqstp)
 609		return rqstp;
 610
 611	__set_bit(RQ_BUSY, &rqstp->rq_flags);
 612	spin_lock_init(&rqstp->rq_lock);
 613	rqstp->rq_server = serv;
 614	rqstp->rq_pool = pool;
 615
 
 
 
 
 616	rqstp->rq_argp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node);
 617	if (!rqstp->rq_argp)
 618		goto out_enomem;
 619
 620	rqstp->rq_resp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node);
 621	if (!rqstp->rq_resp)
 622		goto out_enomem;
 623
 624	if (!svc_init_buffer(rqstp, serv->sv_max_mesg, node))
 625		goto out_enomem;
 626
 627	return rqstp;
 628out_enomem:
 629	svc_rqst_free(rqstp);
 630	return NULL;
 631}
 632EXPORT_SYMBOL_GPL(svc_rqst_alloc);
 633
 634struct svc_rqst *
 635svc_prepare_thread(struct svc_serv *serv, struct svc_pool *pool, int node)
 636{
 637	struct svc_rqst	*rqstp;
 638
 639	rqstp = svc_rqst_alloc(serv, pool, node);
 640	if (!rqstp)
 641		return ERR_PTR(-ENOMEM);
 642
 643	serv->sv_nrthreads++;
 644	spin_lock_bh(&pool->sp_lock);
 645	pool->sp_nrthreads++;
 
 
 
 
 
 
 646	list_add_rcu(&rqstp->rq_all, &pool->sp_all_threads);
 647	spin_unlock_bh(&pool->sp_lock);
 648	return rqstp;
 649}
 650EXPORT_SYMBOL_GPL(svc_prepare_thread);
 651
 652/*
 653 * Choose a pool in which to create a new thread, for svc_set_num_threads
 
 
 
 
 
 
 654 */
 655static inline struct svc_pool *
 656choose_pool(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state)
 657{
 658	if (pool != NULL)
 659		return pool;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 660
 661	return &serv->sv_pools[(*state)++ % serv->sv_nrpools];
 662}
 
 663
 664/*
 665 * Choose a thread to kill, for svc_set_num_threads
 666 */
 667static inline struct task_struct *
 668choose_victim(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state)
 
 
 
 
 669{
 
 670	unsigned int i;
 671	struct task_struct *task = NULL;
 
 
 672
 673	if (pool != NULL) {
 674		spin_lock_bh(&pool->sp_lock);
 
 
 675	} else {
 676		/* choose a pool in round-robin fashion */
 677		for (i = 0; i < serv->sv_nrpools; i++) {
 678			pool = &serv->sv_pools[--(*state) % serv->sv_nrpools];
 679			spin_lock_bh(&pool->sp_lock);
 680			if (!list_empty(&pool->sp_all_threads))
 681				goto found_pool;
 682			spin_unlock_bh(&pool->sp_lock);
 683		}
 684		return NULL;
 685	}
 686
 687found_pool:
 688	if (!list_empty(&pool->sp_all_threads)) {
 689		struct svc_rqst *rqstp;
 690
 691		/*
 692		 * Remove from the pool->sp_all_threads list
 693		 * so we don't try to kill it again.
 694		 */
 695		rqstp = list_entry(pool->sp_all_threads.next, struct svc_rqst, rq_all);
 696		set_bit(RQ_VICTIM, &rqstp->rq_flags);
 697		list_del_rcu(&rqstp->rq_all);
 698		task = rqstp->rq_task;
 699	}
 700	spin_unlock_bh(&pool->sp_lock);
 701
 702	return task;
 703}
 704
 705/* create new threads */
 706static int
 707svc_start_kthreads(struct svc_serv *serv, struct svc_pool *pool, int nrservs)
 708{
 709	struct svc_rqst	*rqstp;
 710	struct task_struct *task;
 711	struct svc_pool *chosen_pool;
 712	unsigned int state = serv->sv_nrthreads-1;
 713	int node;
 714
 715	do {
 716		nrservs--;
 717		chosen_pool = choose_pool(serv, pool, &state);
 
 718
 719		node = svc_pool_map_get_node(chosen_pool->sp_id);
 720		rqstp = svc_prepare_thread(serv, chosen_pool, node);
 721		if (IS_ERR(rqstp))
 722			return PTR_ERR(rqstp);
 723
 724		__module_get(serv->sv_ops->svo_module);
 725		task = kthread_create_on_node(serv->sv_ops->svo_function, rqstp,
 726					      node, "%s", serv->sv_name);
 727		if (IS_ERR(task)) {
 728			module_put(serv->sv_ops->svo_module);
 729			svc_exit_thread(rqstp);
 730			return PTR_ERR(task);
 731		}
 732
 733		rqstp->rq_task = task;
 734		if (serv->sv_nrpools > 1)
 735			svc_pool_map_set_cpumask(task, chosen_pool->sp_id);
 736
 737		svc_sock_update_bufs(serv);
 738		wake_up_process(task);
 739	} while (nrservs > 0);
 740
 741	return 0;
 742}
 743
 744
 745/* destroy old threads */
 746static int
 747svc_signal_kthreads(struct svc_serv *serv, struct svc_pool *pool, int nrservs)
 748{
 749	struct task_struct *task;
 750	unsigned int state = serv->sv_nrthreads-1;
 
 751
 752	/* destroy old threads */
 753	do {
 754		task = choose_victim(serv, pool, &state);
 755		if (task == NULL)
 756			break;
 757		send_sig(SIGINT, task, 1);
 
 
 758		nrservs++;
 759	} while (nrservs < 0);
 760
 761	return 0;
 762}
 763
 764/*
 765 * Create or destroy enough new threads to make the number
 766 * of threads the given number.  If `pool' is non-NULL, applies
 767 * only to threads in that pool, otherwise round-robins between
 768 * all pools.  Caller must ensure that mutual exclusion between this and
 769 * server startup or shutdown.
 770 *
 771 * Destroying threads relies on the service threads filling in
 772 * rqstp->rq_task, which only the nfs ones do.  Assumes the serv
 773 * has been created using svc_create_pooled().
 
 
 
 774 *
 775 * Based on code that used to be in nfsd_svc() but tweaked
 776 * to be pool-aware.
 777 */
 778int
 779svc_set_num_threads(struct svc_serv *serv, struct svc_pool *pool, int nrservs)
 780{
 781	if (pool == NULL) {
 782		/* The -1 assumes caller has done a svc_get() */
 783		nrservs -= (serv->sv_nrthreads-1);
 784	} else {
 785		spin_lock_bh(&pool->sp_lock);
 786		nrservs -= pool->sp_nrthreads;
 787		spin_unlock_bh(&pool->sp_lock);
 788	}
 789
 790	if (nrservs > 0)
 791		return svc_start_kthreads(serv, pool, nrservs);
 792	if (nrservs < 0)
 793		return svc_signal_kthreads(serv, pool, nrservs);
 794	return 0;
 795}
 796EXPORT_SYMBOL_GPL(svc_set_num_threads);
 797
 798/* destroy old threads */
 799static int
 800svc_stop_kthreads(struct svc_serv *serv, struct svc_pool *pool, int nrservs)
 
 
 
 
 
 
 
 
 
 
 801{
 802	struct task_struct *task;
 803	unsigned int state = serv->sv_nrthreads-1;
 
 
 
 
 
 
 
 
 
 
 
 804
 805	/* destroy old threads */
 806	do {
 807		task = choose_victim(serv, pool, &state);
 808		if (task == NULL)
 809			break;
 810		kthread_stop(task);
 811		nrservs++;
 812	} while (nrservs < 0);
 813	return 0;
 814}
 
 815
 816int
 817svc_set_num_threads_sync(struct svc_serv *serv, struct svc_pool *pool, int nrservs)
 
 
 
 
 
 
 818{
 819	if (pool == NULL) {
 820		/* The -1 assumes caller has done a svc_get() */
 821		nrservs -= (serv->sv_nrthreads-1);
 822	} else {
 823		spin_lock_bh(&pool->sp_lock);
 824		nrservs -= pool->sp_nrthreads;
 825		spin_unlock_bh(&pool->sp_lock);
 826	}
 827
 828	if (nrservs > 0)
 829		return svc_start_kthreads(serv, pool, nrservs);
 830	if (nrservs < 0)
 831		return svc_stop_kthreads(serv, pool, nrservs);
 832	return 0;
 833}
 834EXPORT_SYMBOL_GPL(svc_set_num_threads_sync);
 835
 836/*
 837 * Called from a server thread as it's exiting. Caller must hold the "service
 838 * mutex" for the service.
 839 */
 840void
 841svc_rqst_free(struct svc_rqst *rqstp)
 842{
 
 843	svc_release_buffer(rqstp);
 
 
 844	kfree(rqstp->rq_resp);
 845	kfree(rqstp->rq_argp);
 846	kfree(rqstp->rq_auth_data);
 847	kfree_rcu(rqstp, rq_rcu_head);
 848}
 849EXPORT_SYMBOL_GPL(svc_rqst_free);
 850
 851void
 852svc_exit_thread(struct svc_rqst *rqstp)
 853{
 854	struct svc_serv	*serv = rqstp->rq_server;
 855	struct svc_pool	*pool = rqstp->rq_pool;
 856
 857	spin_lock_bh(&pool->sp_lock);
 858	pool->sp_nrthreads--;
 859	if (!test_and_set_bit(RQ_VICTIM, &rqstp->rq_flags))
 860		list_del_rcu(&rqstp->rq_all);
 861	spin_unlock_bh(&pool->sp_lock);
 
 
 
 862
 863	svc_rqst_free(rqstp);
 864
 865	/* Release the server */
 866	if (serv)
 867		svc_destroy(serv);
 868}
 869EXPORT_SYMBOL_GPL(svc_exit_thread);
 870
 871/*
 872 * Register an "inet" protocol family netid with the local
 873 * rpcbind daemon via an rpcbind v4 SET request.
 874 *
 875 * No netconfig infrastructure is available in the kernel, so
 876 * we map IP_ protocol numbers to netids by hand.
 877 *
 878 * Returns zero on success; a negative errno value is returned
 879 * if any error occurs.
 880 */
 881static int __svc_rpcb_register4(struct net *net, const u32 program,
 882				const u32 version,
 883				const unsigned short protocol,
 884				const unsigned short port)
 885{
 886	const struct sockaddr_in sin = {
 887		.sin_family		= AF_INET,
 888		.sin_addr.s_addr	= htonl(INADDR_ANY),
 889		.sin_port		= htons(port),
 890	};
 891	const char *netid;
 892	int error;
 893
 894	switch (protocol) {
 895	case IPPROTO_UDP:
 896		netid = RPCBIND_NETID_UDP;
 897		break;
 898	case IPPROTO_TCP:
 899		netid = RPCBIND_NETID_TCP;
 900		break;
 901	default:
 902		return -ENOPROTOOPT;
 903	}
 904
 905	error = rpcb_v4_register(net, program, version,
 906					(const struct sockaddr *)&sin, netid);
 907
 908	/*
 909	 * User space didn't support rpcbind v4, so retry this
 910	 * registration request with the legacy rpcbind v2 protocol.
 911	 */
 912	if (error == -EPROTONOSUPPORT)
 913		error = rpcb_register(net, program, version, protocol, port);
 914
 915	return error;
 916}
 917
 918#if IS_ENABLED(CONFIG_IPV6)
 919/*
 920 * Register an "inet6" protocol family netid with the local
 921 * rpcbind daemon via an rpcbind v4 SET request.
 922 *
 923 * No netconfig infrastructure is available in the kernel, so
 924 * we map IP_ protocol numbers to netids by hand.
 925 *
 926 * Returns zero on success; a negative errno value is returned
 927 * if any error occurs.
 928 */
 929static int __svc_rpcb_register6(struct net *net, const u32 program,
 930				const u32 version,
 931				const unsigned short protocol,
 932				const unsigned short port)
 933{
 934	const struct sockaddr_in6 sin6 = {
 935		.sin6_family		= AF_INET6,
 936		.sin6_addr		= IN6ADDR_ANY_INIT,
 937		.sin6_port		= htons(port),
 938	};
 939	const char *netid;
 940	int error;
 941
 942	switch (protocol) {
 943	case IPPROTO_UDP:
 944		netid = RPCBIND_NETID_UDP6;
 945		break;
 946	case IPPROTO_TCP:
 947		netid = RPCBIND_NETID_TCP6;
 948		break;
 949	default:
 950		return -ENOPROTOOPT;
 951	}
 952
 953	error = rpcb_v4_register(net, program, version,
 954					(const struct sockaddr *)&sin6, netid);
 955
 956	/*
 957	 * User space didn't support rpcbind version 4, so we won't
 958	 * use a PF_INET6 listener.
 959	 */
 960	if (error == -EPROTONOSUPPORT)
 961		error = -EAFNOSUPPORT;
 962
 963	return error;
 964}
 965#endif	/* IS_ENABLED(CONFIG_IPV6) */
 966
 967/*
 968 * Register a kernel RPC service via rpcbind version 4.
 969 *
 970 * Returns zero on success; a negative errno value is returned
 971 * if any error occurs.
 972 */
 973static int __svc_register(struct net *net, const char *progname,
 974			  const u32 program, const u32 version,
 975			  const int family,
 976			  const unsigned short protocol,
 977			  const unsigned short port)
 978{
 979	int error = -EAFNOSUPPORT;
 980
 981	switch (family) {
 982	case PF_INET:
 983		error = __svc_rpcb_register4(net, program, version,
 984						protocol, port);
 985		break;
 986#if IS_ENABLED(CONFIG_IPV6)
 987	case PF_INET6:
 988		error = __svc_rpcb_register6(net, program, version,
 989						protocol, port);
 990#endif
 991	}
 992
 
 993	return error;
 994}
 995
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 996/**
 997 * svc_register - register an RPC service with the local portmapper
 998 * @serv: svc_serv struct for the service to register
 999 * @net: net namespace for the service to register
1000 * @family: protocol family of service's listener socket
1001 * @proto: transport protocol number to advertise
1002 * @port: port to advertise
1003 *
1004 * Service is registered for any address in the passed-in protocol family
1005 */
1006int svc_register(const struct svc_serv *serv, struct net *net,
1007		 const int family, const unsigned short proto,
1008		 const unsigned short port)
1009{
1010	struct svc_program	*progp;
1011	const struct svc_version *vers;
1012	unsigned int		i;
1013	int			error = 0;
1014
1015	WARN_ON_ONCE(proto == 0 && port == 0);
1016	if (proto == 0 && port == 0)
1017		return -EINVAL;
1018
1019	for (progp = serv->sv_program; progp; progp = progp->pg_next) {
1020		for (i = 0; i < progp->pg_nvers; i++) {
1021			vers = progp->pg_vers[i];
1022			if (vers == NULL)
1023				continue;
1024
1025			dprintk("svc: svc_register(%sv%d, %s, %u, %u)%s\n",
1026					progp->pg_name,
1027					i,
1028					proto == IPPROTO_UDP?  "udp" : "tcp",
1029					port,
1030					family,
1031					vers->vs_hidden ?
1032					" (but not telling portmap)" : "");
1033
1034			if (vers->vs_hidden)
1035				continue;
1036
1037			/*
1038			 * Don't register a UDP port if we need congestion
1039			 * control.
1040			 */
1041			if (vers->vs_need_cong_ctrl && proto == IPPROTO_UDP)
1042				continue;
1043
1044			error = __svc_register(net, progp->pg_name, progp->pg_prog,
1045						i, family, proto, port);
1046
1047			if (vers->vs_rpcb_optnl) {
1048				error = 0;
1049				continue;
1050			}
1051
 
 
1052			if (error < 0) {
1053				printk(KERN_WARNING "svc: failed to register "
1054					"%sv%u RPC service (errno %d).\n",
1055					progp->pg_name, i, -error);
1056				break;
1057			}
1058		}
1059	}
1060
1061	return error;
1062}
1063
1064/*
1065 * If user space is running rpcbind, it should take the v4 UNSET
1066 * and clear everything for this [program, version].  If user space
1067 * is running portmap, it will reject the v4 UNSET, but won't have
1068 * any "inet6" entries anyway.  So a PMAP_UNSET should be sufficient
1069 * in this case to clear all existing entries for [program, version].
1070 */
1071static void __svc_unregister(struct net *net, const u32 program, const u32 version,
1072			     const char *progname)
1073{
1074	int error;
1075
1076	error = rpcb_v4_register(net, program, version, NULL, "");
1077
1078	/*
1079	 * User space didn't support rpcbind v4, so retry this
1080	 * request with the legacy rpcbind v2 protocol.
1081	 */
1082	if (error == -EPROTONOSUPPORT)
1083		error = rpcb_register(net, program, version, 0, 0);
1084
1085	dprintk("svc: %s(%sv%u), error %d\n",
1086			__func__, progname, version, error);
1087}
1088
1089/*
1090 * All netids, bind addresses and ports registered for [program, version]
1091 * are removed from the local rpcbind database (if the service is not
1092 * hidden) to make way for a new instance of the service.
1093 *
1094 * The result of unregistration is reported via dprintk for those who want
1095 * verification of the result, but is otherwise not important.
1096 */
1097static void svc_unregister(const struct svc_serv *serv, struct net *net)
1098{
 
1099	struct svc_program *progp;
1100	unsigned long flags;
1101	unsigned int i;
1102
1103	clear_thread_flag(TIF_SIGPENDING);
1104
1105	for (progp = serv->sv_program; progp; progp = progp->pg_next) {
1106		for (i = 0; i < progp->pg_nvers; i++) {
1107			if (progp->pg_vers[i] == NULL)
1108				continue;
1109			if (progp->pg_vers[i]->vs_hidden)
1110				continue;
1111
1112			dprintk("svc: attempting to unregister %sv%u\n",
1113				progp->pg_name, i);
1114			__svc_unregister(net, progp->pg_prog, i, progp->pg_name);
1115		}
1116	}
1117
1118	spin_lock_irqsave(&current->sighand->siglock, flags);
 
 
1119	recalc_sigpending();
1120	spin_unlock_irqrestore(&current->sighand->siglock, flags);
 
1121}
1122
1123/*
1124 * dprintk the given error with the address of the client that caused it.
1125 */
1126#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
1127static __printf(2, 3)
1128void svc_printk(struct svc_rqst *rqstp, const char *fmt, ...)
1129{
1130	struct va_format vaf;
1131	va_list args;
1132	char 	buf[RPC_MAX_ADDRBUFLEN];
1133
1134	va_start(args, fmt);
1135
1136	vaf.fmt = fmt;
1137	vaf.va = &args;
1138
1139	dprintk("svc: %s: %pV", svc_print_addr(rqstp, buf, sizeof(buf)), &vaf);
1140
1141	va_end(args);
1142}
1143#else
1144static __printf(2,3) void svc_printk(struct svc_rqst *rqstp, const char *fmt, ...) {}
1145#endif
1146
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1147/*
1148 * Common routine for processing the RPC request.
1149 */
1150static int
1151svc_process_common(struct svc_rqst *rqstp, struct kvec *argv, struct kvec *resv)
1152{
 
1153	struct svc_program	*progp;
1154	const struct svc_version *versp = NULL;	/* compiler food */
1155	const struct svc_procedure *procp = NULL;
1156	struct svc_serv		*serv = rqstp->rq_server;
1157	__be32			*statp;
1158	u32			prog, vers, proc;
1159	__be32			auth_stat, rpc_stat;
1160	int			auth_res;
1161	__be32			*reply_statp;
1162
1163	rpc_stat = rpc_success;
1164
1165	if (argv->iov_len < 6*4)
1166		goto err_short_len;
1167
1168	/* Will be turned off by GSS integrity and privacy services */
1169	set_bit(RQ_SPLICE_OK, &rqstp->rq_flags);
1170	/* Will be turned off only when NFSv4 Sessions are used */
1171	set_bit(RQ_USEDEFERRAL, &rqstp->rq_flags);
1172	clear_bit(RQ_DROPME, &rqstp->rq_flags);
1173
1174	/* Setup reply header */
1175	rqstp->rq_xprt->xpt_ops->xpo_prep_reply_hdr(rqstp);
 
 
1176
1177	svc_putu32(resv, rqstp->rq_xid);
1178
1179	vers = svc_getnl(argv);
1180
1181	/* First words of reply: */
1182	svc_putnl(resv, 1);		/* REPLY */
1183
1184	if (vers != 2)		/* RPC version number */
1185		goto err_bad_rpc;
1186
1187	/* Save position in case we later decide to reject: */
1188	reply_statp = resv->iov_base + resv->iov_len;
1189
1190	svc_putnl(resv, 0);		/* ACCEPT */
1191
1192	rqstp->rq_prog = prog = svc_getnl(argv);	/* program number */
1193	rqstp->rq_vers = vers = svc_getnl(argv);	/* version number */
1194	rqstp->rq_proc = proc = svc_getnl(argv);	/* procedure number */
1195
1196	for (progp = serv->sv_program; progp; progp = progp->pg_next)
1197		if (prog == progp->pg_prog)
1198			break;
1199
1200	/*
1201	 * Decode auth data, and add verifier to reply buffer.
1202	 * We do this before anything else in order to get a decent
1203	 * auth verifier.
1204	 */
1205	auth_res = svc_authenticate(rqstp, &auth_stat);
1206	/* Also give the program a chance to reject this call: */
1207	if (auth_res == SVC_OK && progp) {
1208		auth_stat = rpc_autherr_badcred;
1209		auth_res = progp->pg_authenticate(rqstp);
1210	}
1211	switch (auth_res) {
1212	case SVC_OK:
1213		break;
1214	case SVC_GARBAGE:
1215		goto err_garbage;
1216	case SVC_SYSERR:
1217		rpc_stat = rpc_system_err;
1218		goto err_bad;
1219	case SVC_DENIED:
1220		goto err_bad_auth;
1221	case SVC_CLOSE:
1222		goto close;
1223	case SVC_DROP:
1224		goto dropit;
1225	case SVC_COMPLETE:
1226		goto sendit;
 
 
 
1227	}
1228
1229	if (progp == NULL)
1230		goto err_bad_prog;
1231
1232	if (vers >= progp->pg_nvers ||
1233	  !(versp = progp->pg_vers[vers]))
1234		goto err_bad_vers;
1235
1236	/*
1237	 * Some protocol versions (namely NFSv4) require some form of
1238	 * congestion control.  (See RFC 7530 section 3.1 paragraph 2)
1239	 * In other words, UDP is not allowed. We mark those when setting
1240	 * up the svc_xprt, and verify that here.
1241	 *
1242	 * The spec is not very clear about what error should be returned
1243	 * when someone tries to access a server that is listening on UDP
1244	 * for lower versions. RPC_PROG_MISMATCH seems to be the closest
1245	 * fit.
1246	 */
1247	if (versp->vs_need_cong_ctrl &&
1248	    !test_bit(XPT_CONG_CTRL, &rqstp->rq_xprt->xpt_flags))
1249		goto err_bad_vers;
 
 
 
1250
1251	procp = versp->vs_proc + proc;
1252	if (proc >= versp->vs_nproc || !procp->pc_func)
 
1253		goto err_bad_proc;
1254	rqstp->rq_procinfo = procp;
1255
1256	/* Syntactic check complete */
1257	serv->sv_stats->rpccnt++;
1258	trace_svc_process(rqstp, progp->pg_name);
1259
1260	/* Build the reply header. */
1261	statp = resv->iov_base +resv->iov_len;
1262	svc_putnl(resv, RPC_SUCCESS);
1263
1264	/* Bump per-procedure stats counter */
1265	versp->vs_count[proc]++;
1266
1267	/* Initialize storage for argp and resp */
1268	memset(rqstp->rq_argp, 0, procp->pc_argsize);
1269	memset(rqstp->rq_resp, 0, procp->pc_ressize);
1270
1271	/* un-reserve some of the out-queue now that we have a
1272	 * better idea of reply size
1273	 */
1274	if (procp->pc_xdrressize)
1275		svc_reserve_auth(rqstp, procp->pc_xdrressize<<2);
1276
1277	/* Call the function that processes the request. */
1278	if (!versp->vs_dispatch) {
1279		/*
1280		 * Decode arguments
1281		 * XXX: why do we ignore the return value?
1282		 */
1283		if (procp->pc_decode &&
1284		    !procp->pc_decode(rqstp, argv->iov_base))
1285			goto err_garbage;
1286
1287		*statp = procp->pc_func(rqstp);
1288
1289		/* Encode reply */
1290		if (*statp == rpc_drop_reply ||
1291		    test_bit(RQ_DROPME, &rqstp->rq_flags)) {
1292			if (procp->pc_release)
1293				procp->pc_release(rqstp);
1294			goto dropit;
1295		}
1296		if (*statp == rpc_autherr_badcred) {
1297			if (procp->pc_release)
1298				procp->pc_release(rqstp);
1299			goto err_bad_auth;
1300		}
1301		if (*statp == rpc_success && procp->pc_encode &&
1302		    !procp->pc_encode(rqstp, resv->iov_base + resv->iov_len)) {
1303			dprintk("svc: failed to encode reply\n");
1304			/* serv->sv_stats->rpcsystemerr++; */
1305			*statp = rpc_system_err;
1306		}
1307	} else {
1308		dprintk("svc: calling dispatcher\n");
1309		if (!versp->vs_dispatch(rqstp, statp)) {
1310			/* Release reply info */
1311			if (procp->pc_release)
1312				procp->pc_release(rqstp);
1313			goto dropit;
1314		}
1315	}
1316
1317	/* Check RPC status result */
1318	if (*statp != rpc_success)
1319		resv->iov_len = ((void*)statp)  - resv->iov_base + 4;
 
1320
1321	/* Release reply info */
1322	if (procp->pc_release)
1323		procp->pc_release(rqstp);
1324
1325	if (procp->pc_encode == NULL)
1326		goto dropit;
1327
1328 sendit:
1329	if (svc_authorise(rqstp))
1330		goto close;
1331	return 1;		/* Caller can now send it */
1332
1333 dropit:
1334	svc_authorise(rqstp);	/* doesn't hurt to call this twice */
1335	dprintk("svc: svc_process dropit\n");
1336	return 0;
1337
1338 close:
1339	if (test_bit(XPT_TEMP, &rqstp->rq_xprt->xpt_flags))
1340		svc_close_xprt(rqstp->rq_xprt);
 
 
1341	dprintk("svc: svc_process close\n");
1342	return 0;
1343
1344err_short_len:
1345	svc_printk(rqstp, "short len %zd, dropping request\n",
1346			argv->iov_len);
1347	goto close;
1348
1349err_bad_rpc:
1350	serv->sv_stats->rpcbadfmt++;
1351	svc_putnl(resv, 1);	/* REJECT */
1352	svc_putnl(resv, 0);	/* RPC_MISMATCH */
1353	svc_putnl(resv, 2);	/* Only RPCv2 supported */
1354	svc_putnl(resv, 2);
1355	goto sendit;
 
1356
1357err_bad_auth:
1358	dprintk("svc: authentication failed (%d)\n", ntohl(auth_stat));
 
1359	serv->sv_stats->rpcbadauth++;
1360	/* Restore write pointer to location of accept status: */
1361	xdr_ressize_check(rqstp, reply_statp);
1362	svc_putnl(resv, 1);	/* REJECT */
1363	svc_putnl(resv, 1);	/* AUTH_ERROR */
1364	svc_putnl(resv, ntohl(auth_stat));	/* status */
1365	goto sendit;
1366
1367err_bad_prog:
1368	dprintk("svc: unknown program %d\n", prog);
1369	serv->sv_stats->rpcbadfmt++;
1370	svc_putnl(resv, RPC_PROG_UNAVAIL);
1371	goto sendit;
1372
1373err_bad_vers:
1374	svc_printk(rqstp, "unknown version (%d for prog %d, %s)\n",
1375		       vers, prog, progp->pg_name);
1376
1377	serv->sv_stats->rpcbadfmt++;
1378	svc_putnl(resv, RPC_PROG_MISMATCH);
1379	svc_putnl(resv, progp->pg_lovers);
1380	svc_putnl(resv, progp->pg_hivers);
 
 
 
 
 
1381	goto sendit;
1382
1383err_bad_proc:
1384	svc_printk(rqstp, "unknown procedure (%d)\n", proc);
1385
1386	serv->sv_stats->rpcbadfmt++;
1387	svc_putnl(resv, RPC_PROC_UNAVAIL);
1388	goto sendit;
1389
1390err_garbage:
1391	svc_printk(rqstp, "failed to decode args\n");
1392
1393	rpc_stat = rpc_garbage_args;
1394err_bad:
1395	serv->sv_stats->rpcbadfmt++;
1396	svc_putnl(resv, ntohl(rpc_stat));
 
 
 
 
 
1397	goto sendit;
1398}
1399
1400/*
1401 * Process the RPC request.
 
 
1402 */
1403int
1404svc_process(struct svc_rqst *rqstp)
1405{
1406	struct kvec		*argv = &rqstp->rq_arg.head[0];
1407	struct kvec		*resv = &rqstp->rq_res.head[0];
1408	struct svc_serv		*serv = rqstp->rq_server;
1409	u32			dir;
 
 
 
 
 
1410
1411	/*
1412	 * Setup response xdr_buf.
1413	 * Initially it has just one page
1414	 */
1415	rqstp->rq_next_page = &rqstp->rq_respages[1];
1416	resv->iov_base = page_address(rqstp->rq_respages[0]);
1417	resv->iov_len = 0;
1418	rqstp->rq_res.pages = rqstp->rq_respages + 1;
1419	rqstp->rq_res.len = 0;
1420	rqstp->rq_res.page_base = 0;
1421	rqstp->rq_res.page_len = 0;
1422	rqstp->rq_res.buflen = PAGE_SIZE;
1423	rqstp->rq_res.tail[0].iov_base = NULL;
1424	rqstp->rq_res.tail[0].iov_len = 0;
1425
1426	dir  = svc_getnl(argv);
1427	if (dir != 0) {
1428		/* direction != CALL */
1429		svc_printk(rqstp, "bad direction %d, dropping request\n", dir);
1430		serv->sv_stats->rpcbadfmt++;
1431		goto out_drop;
1432	}
 
 
1433
1434	/* Returns 1 for send, 0 for drop */
1435	if (likely(svc_process_common(rqstp, argv, resv)))
1436		return svc_send(rqstp);
 
1437
 
 
 
 
1438out_drop:
1439	svc_drop(rqstp);
1440	return 0;
1441}
1442EXPORT_SYMBOL_GPL(svc_process);
1443
1444#if defined(CONFIG_SUNRPC_BACKCHANNEL)
1445/*
1446 * Process a backchannel RPC request that arrived over an existing
1447 * outbound connection
 
 
1448 */
1449int
1450bc_svc_process(struct svc_serv *serv, struct rpc_rqst *req,
1451	       struct svc_rqst *rqstp)
1452{
1453	struct kvec	*argv = &rqstp->rq_arg.head[0];
1454	struct kvec	*resv = &rqstp->rq_res.head[0];
1455	struct rpc_task *task;
1456	int proc_error;
1457	int error;
1458
1459	dprintk("svc: %s(%p)\n", __func__, req);
1460
1461	/* Build the svc_rqst used by the common processing routine */
1462	rqstp->rq_xprt = serv->sv_bc_xprt;
1463	rqstp->rq_xid = req->rq_xid;
1464	rqstp->rq_prot = req->rq_xprt->prot;
1465	rqstp->rq_server = serv;
1466
1467	rqstp->rq_addrlen = sizeof(req->rq_xprt->addr);
1468	memcpy(&rqstp->rq_addr, &req->rq_xprt->addr, rqstp->rq_addrlen);
1469	memcpy(&rqstp->rq_arg, &req->rq_rcv_buf, sizeof(rqstp->rq_arg));
1470	memcpy(&rqstp->rq_res, &req->rq_snd_buf, sizeof(rqstp->rq_res));
1471
1472	/* Adjust the argument buffer length */
1473	rqstp->rq_arg.len = req->rq_private_buf.len;
1474	if (rqstp->rq_arg.len <= rqstp->rq_arg.head[0].iov_len) {
1475		rqstp->rq_arg.head[0].iov_len = rqstp->rq_arg.len;
1476		rqstp->rq_arg.page_len = 0;
1477	} else if (rqstp->rq_arg.len <= rqstp->rq_arg.head[0].iov_len +
1478			rqstp->rq_arg.page_len)
1479		rqstp->rq_arg.page_len = rqstp->rq_arg.len -
1480			rqstp->rq_arg.head[0].iov_len;
1481	else
1482		rqstp->rq_arg.len = rqstp->rq_arg.head[0].iov_len +
1483			rqstp->rq_arg.page_len;
1484
1485	/* reset result send buffer "put" position */
1486	resv->iov_len = 0;
1487
1488	/*
1489	 * Skip the next two words because they've already been
1490	 * processed in the transport
1491	 */
1492	svc_getu32(argv);	/* XID */
1493	svc_getnl(argv);	/* CALLDIR */
 
1494
1495	/* Parse and execute the bc call */
1496	proc_error = svc_process_common(rqstp, argv, resv);
1497
1498	atomic_inc(&req->rq_xprt->bc_free_slots);
1499	if (!proc_error) {
1500		/* Processing error: drop the request */
1501		xprt_free_bc_request(req);
1502		return 0;
1503	}
1504
1505	/* Finally, send the reply synchronously */
 
 
 
 
 
 
 
1506	memcpy(&req->rq_snd_buf, &rqstp->rq_res, sizeof(req->rq_snd_buf));
1507	task = rpc_run_bc_task(req);
1508	if (IS_ERR(task)) {
1509		error = PTR_ERR(task);
1510		goto out;
1511	}
1512
1513	WARN_ON_ONCE(atomic_read(&task->tk_count) != 1);
1514	error = task->tk_status;
1515	rpc_put_task(task);
1516
1517out:
1518	dprintk("svc: %s(), error=%d\n", __func__, error);
1519	return error;
1520}
1521EXPORT_SYMBOL_GPL(bc_svc_process);
1522#endif /* CONFIG_SUNRPC_BACKCHANNEL */
1523
1524/*
1525 * Return (transport-specific) limit on the rpc payload.
 
 
 
 
1526 */
1527u32 svc_max_payload(const struct svc_rqst *rqstp)
1528{
1529	u32 max = rqstp->rq_xprt->xpt_class->xcl_max_payload;
1530
1531	if (rqstp->rq_server->sv_max_payload < max)
1532		max = rqstp->rq_server->sv_max_payload;
1533	return max;
1534}
1535EXPORT_SYMBOL_GPL(svc_max_payload);
1536
1537/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1538 * svc_fill_write_vector - Construct data argument for VFS write call
1539 * @rqstp: svc_rqst to operate on
1540 * @first: buffer containing first section of write payload
1541 * @total: total number of bytes of write payload
1542 *
1543 * Returns the number of elements populated in the data argument array.
1544 */
1545unsigned int svc_fill_write_vector(struct svc_rqst *rqstp, struct kvec *first,
1546				   size_t total)
1547{
 
 
1548	struct kvec *vec = rqstp->rq_vec;
1549	struct page **pages;
1550	unsigned int i;
1551
1552	/* Some types of transport can present the write payload
1553	 * entirely in rq_arg.pages. In this case, @first is empty.
1554	 */
1555	i = 0;
1556	if (first->iov_len) {
1557		vec[i].iov_base = first->iov_base;
1558		vec[i].iov_len = min_t(size_t, total, first->iov_len);
1559		total -= vec[i].iov_len;
1560		++i;
1561	}
1562
1563	WARN_ON_ONCE(rqstp->rq_arg.page_base != 0);
1564	pages = rqstp->rq_arg.pages;
1565	while (total) {
1566		vec[i].iov_base = page_address(*pages);
1567		vec[i].iov_len = min_t(size_t, total, PAGE_SIZE);
1568		total -= vec[i].iov_len;
1569		++i;
1570
1571		++pages;
1572	}
1573
1574	WARN_ON_ONCE(i > ARRAY_SIZE(rqstp->rq_vec));
1575	return i;
1576}
1577EXPORT_SYMBOL_GPL(svc_fill_write_vector);
1578
1579/**
1580 * svc_fill_symlink_pathname - Construct pathname argument for VFS symlink call
1581 * @rqstp: svc_rqst to operate on
1582 * @first: buffer containing first section of pathname
 
1583 * @total: total length of the pathname argument
1584 *
1585 * Returns pointer to a NUL-terminated string, or an ERR_PTR. The buffer is
1586 * released automatically when @rqstp is recycled.
 
1587 */
1588char *svc_fill_symlink_pathname(struct svc_rqst *rqstp, struct kvec *first,
1589				size_t total)
1590{
1591	struct xdr_buf *arg = &rqstp->rq_arg;
1592	struct page **pages;
1593	char *result;
1594
1595	/* VFS API demands a NUL-terminated pathname. This function
1596	 * uses a page from @rqstp as the pathname buffer, to enable
1597	 * direct placement. Thus the total buffer size is PAGE_SIZE.
1598	 * Space in this buffer for NUL-termination requires that we
1599	 * cap the size of the returned symlink pathname just a
1600	 * little early.
1601	 */
1602	if (total > PAGE_SIZE - 1)
1603		return ERR_PTR(-ENAMETOOLONG);
1604
1605	/* Some types of transport can present the pathname entirely
1606	 * in rq_arg.pages. If not, then copy the pathname into one
1607	 * page.
1608	 */
1609	pages = arg->pages;
1610	WARN_ON_ONCE(arg->page_base != 0);
1611	if (first->iov_base == 0) {
1612		result = page_address(*pages);
1613		result[total] = '\0';
1614	} else {
1615		size_t len, remaining;
1616		char *dst;
1617
1618		result = page_address(*(rqstp->rq_next_page++));
1619		dst = result;
1620		remaining = total;
1621
1622		len = min_t(size_t, total, first->iov_len);
 
1623		memcpy(dst, first->iov_base, len);
1624		dst += len;
1625		remaining -= len;
 
1626
1627		/* No more than one page left */
1628		if (remaining) {
1629			len = min_t(size_t, remaining, PAGE_SIZE);
1630			memcpy(dst, page_address(*pages), len);
1631			dst += len;
1632		}
1633
1634		*dst = '\0';
1635	}
1636
1637	/* Sanity check: we don't allow the pathname argument to
1638	 * contain a NUL byte.
1639	 */
1640	if (strlen(result) != total)
 
1641		return ERR_PTR(-EINVAL);
 
1642	return result;
1643}
1644EXPORT_SYMBOL_GPL(svc_fill_symlink_pathname);